JP2023122598A - コード状ヒータと面状ヒータ - Google Patents

コード状ヒータと面状ヒータ Download PDF

Info

Publication number
JP2023122598A
JP2023122598A JP2022026247A JP2022026247A JP2023122598A JP 2023122598 A JP2023122598 A JP 2023122598A JP 2022026247 A JP2022026247 A JP 2022026247A JP 2022026247 A JP2022026247 A JP 2022026247A JP 2023122598 A JP2023122598 A JP 2023122598A
Authority
JP
Japan
Prior art keywords
cord
wire
inner layer
outer layer
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022026247A
Other languages
English (en)
Inventor
基行 大場
Motoyuki Oba
智也 太田
Tomoya Ota
元宏 森
Motohiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP2022026247A priority Critical patent/JP2023122598A/ja
Priority to PCT/JP2022/045613 priority patent/WO2023162409A1/ja
Publication of JP2023122598A publication Critical patent/JP2023122598A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】端末加工性を向上させたコード状ヒータ及びそれを使用した面状ヒータを提供すること。【解決手段】絶縁被膜5bにより被覆された1本又は複数本の導体素線5aを有し、上記絶縁被膜5bが、少なくとも、上記導体素線5a上に形成された内層と、該内層の外側に形成された外層とからなり、上記内層を構成する材料の熱分解温度が、上記外層を構成する材料の融点または熱分解温度の内の低い方より低く、上記内層の厚さが、2μm以上であり、5μm以下であるか又は絶縁被膜5bの全厚さの2/3未満であり、上記外層の厚さが、1μm以上であり、5μm以下であるか又は絶縁被膜5bの全厚さの3/4未満であるコード状ヒータ10。上記内層を構成する材料がポリウレタン樹脂、上記外層を構成する材料がポリアミドイミド樹脂である上記コード状ヒータ10。上記のコード状ヒータを基材に配設した面状ヒータ。【選択図】 図1

Description

本発明は、電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータなどに好適に使用可能で、耐屈曲性が高く、加工性を向上させたコード状ヒータと、このコード状ヒータを使用した面状ヒータに関する。
コード状ヒータは、電気毛布、電気カーペット、カーシートヒータ等に使用されている。一般的に知られているコード状ヒータは、まず、芯線にヒータ線を螺旋状に巻き、その上から絶縁体層による外被を被覆して形成されている。ヒータ線は、銅線やニッケルクロム合金線などの導体素線を複数本引き揃えるか、この導体素線を複数本撚合せて形成されている。熱融着部材がヒータ線の外周に形成され、この熱融着部材により、ヒータ線は例えば不織布やアルミ箔で形成された基材に接着される(例えば、特許文献1など参照)。
導体素線が引張られたり屈曲されたりしたときに、導体素線の一部が断線することがある。従来は、コード状ヒータの各導体素線が接した状態となっているため、導体素線の一部が断線した場合、この断線した部分でヒータ線の径が細くなる。ヒータ線の径が細くなった部分は単位断面積当たりの電流量が増加するため、この部分は通常以上の発熱を起こす可能性がある。別の例で、導体素線の1本ずつを個別に絶縁被膜を形成してヒータ線を形成した場合、それぞれの導体素線が並列回路を形成する。このヒータ線の場合、導体素線の一部に断線が生じたとき、並列回路の一部が断線することになる。このヒータ線の場合、過大な発熱を防止できる(例えば、特許文献2、特許文献3など参照)。
又、本発明に関連する技術として、当該出願人より特許文献4、5が出願されている。
特開2003-174952公報:クラベ 特開昭61-47087号公報:松下電器産業 特開2008-311111公報:クラベ 特開2010-15691公報:クラベ 国際公開WO2011/001953公報:クラベ
ここで、上記特許文献2,3には、導体素線の絶縁被膜の複数の材料が記載されている。主に使用されている導体素線は所謂エナメル線と称されており、エナメル線の絶縁被膜の一般的な材料は、ポリウレタン樹脂である。ポリウレタン樹脂は耐熱性が低く、難燃性も十分ではない。絶縁被膜に耐熱や難燃の要求がある場合、耐熱性や難燃性に優れたシリコーン樹脂やポリイミド樹脂などの硬質材料が絶縁被膜の材料として使用される。シリコーン樹脂やポリイミド樹脂を使用した導体素線の端末を加工するのは容易ではない。シリコーン樹脂やポリイミド樹脂は、耐熱性が高く、難燃性に優れている。例えば、導体素線を半田付けによってリード線に接続する場合、シリコーン樹脂やポリイミド樹脂の絶縁被膜は半田の溶融温度では溶融しないので除去できない。端子の圧着によって導体素線をリード線と接続する場合、シリコーン樹脂やポリイミド樹脂は硬質であるため、圧着の圧力では絶縁被膜が破壊されず、導体素線とリード線とが導通しない。従って、接続する工程とは別の研磨する工程でシリコーン樹脂やポリイミド樹脂の絶縁被膜を除去する必要がある。しかし、コード状ヒータに使用される導体素線は、例えば外径0.1mm以下というように極めて細い。研磨する工程を行うためには、断線を防止するために細心の注意が必要であり、生産性が悪かった。
本発明はこのような従来技術の問題点を解決するためになされたもので、その目的とするところは、端末加工性を向上させたコード状ヒータ及びそれを使用した面状ヒータを提供することにある。
上記目的を達成するべく、本発明によるコード状ヒータは、絶縁被膜により被覆された1本又は複数本の導体素線を有するコード状ヒータであって、上記絶縁被膜が、少なくとも、上記導体素線上に形成された内層と、該内層の外側に形成された外層とからなり、上記内層を構成する材料の熱分解温度が、上記外層を構成する材料の融点または熱分解温度の内の低い方より低く、上記内層の厚さが2μm以上であり、上記内層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの2/3未満であり、上記外層の厚さが、1μm以上であり、上記外層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの3/4未満であることを特徴とするものである。
また、上記内層を構成する材料が、ポリウレタン樹脂またはポリエステル樹脂であり、上記外層を構成する材料が、ポリイミド樹脂、ポリアミドイミド樹脂またはシリコーン樹脂の何れかであることが考えられる。
又、本発明による面状ヒータは、上記のコード状ヒータを基材に配設したものである。
なお、熱分解温度とは、温度を徐々に上げていった際における重量減少が始まる温度のことであり、JIS-K7120-1997プラスチックの熱重量測定方法(またはISO7111-1997)に準拠して測定される。
本発明のコード状ヒータは、外層が溶融または熱分解する温度以下で、内層が熱分解する。そのため、内層の熱分解温度以上、外層の融点または熱分解温度の内の低い方の温度以下の温度では、内層のみが熱分解して無くなるため、導体素線と絶縁被膜の間に空間ができる。押出やテープ横巻の工法によって外層が形成されると、その外層は長さ方向に延伸がかけられた状態となる。また、塗布硬化の工法で外層が形成されると、その外層は硬化時に収縮の力が生じる。いずれの外層も、長さ方向に対して圧縮する方向の残留応力が存在する。そのため、絶縁被膜の外層と導体素線との間に空間が生じ、且つ、外層に熱を加えられると、絶縁被膜の外層は収縮する。この結果、例えば、導体素線の端部を、(半田の溶融温度等の)上述した所定の温度に加熱すると、絶縁被膜が除去されて導体素線が露出する。
特に、内層と外層の厚さが上記の範囲内であれば、上述した外層の収縮がより確実になる。そのため、より確実に、絶縁被膜が除去されて導体素線が露出する。
本発明による実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による実施の形態示す図で、絶縁被膜が形成された導体素線の構成を示す一部切り欠き側面図である。 本発明による実施の形態を示す図で、ホットプレス式ヒータ製造装置の構成を示す図である。 本発明による実施の形態を示す図で、コード状ヒータを所定のパターン形状に配設する様子を示す一部斜視図である。 本発明による実施の形態を示す図で、面状ヒータの構成を示す平面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による実施の形態を示す図で、面状ヒータを車両用シート内に埋め込んだ様子を一部切り欠いて部示す斜視図である。 本発明による面状ヒータをステアリングホイール内に埋め込んだ様子を一部切り欠いて示す斜視図である。 屈曲試験の方法を説明するための参考図である。
以下、図面を参照して本発明の実施の形態を説明する。これらの実施の形態は、本発明を面状ヒータとし、車両用シートヒータに適用することを想定した例を示すものである。
まず、図1~図5を参照して本実施の形態を説明する。この実施の形態におけるコード状ヒータ10の構成から説明する。本実施の形態におけるコード状ヒータ10は図1に示すような構成になっている。芯線3は外径約0.2mmの芳香族ポリアミド繊維束で形成されている。該芯線3の外周に、素線径0.08mmの硬質錫入り銅合金線である5本の導体素線5aを引き揃えて、ピッチ約1.0mmで、螺旋状に巻装されている。図1、図2に示すように、導体素線5aの周囲には、絶縁被膜5bが形成されている。絶縁被膜5bは、ポリウレタン樹脂製の内層5cと、ポリアミドイミド樹脂製の外層5dとから形成されている。絶縁被膜5bの内層5cは、導体素線5aの周囲にポリウレタンワニスを塗布し乾燥させることで厚さ4μmの層となるように形成された。次に、外層5dは、この内層5cの外周にポリアミドイミドワニスを塗布し乾燥して厚さ4μmの層となるように形成された。発熱線1は、芯線3上に導体素線5aを巻装して形成されている。コード状ヒータ10は、発熱線1の外周に絶縁体層7を被覆して形成されている。絶縁体層7は、発熱線1の外周に、難燃剤が配合されたポリエチレン樹脂を0.2mmの厚さとなるように押出被覆して形成されている。この実施の形態では、絶縁体層7のポリエチレン樹脂は、熱融着材として機能する。以上のコード状ヒータ10の仕上外径は0.8mmである。芯線3は屈曲性や引張強度が高くなる点で有効である。芯線3を使用せずに、複数本の導体素線を引き揃えるか或いは撚り合わせて発熱線1とすることも可能である。
次に、上記構成をなすコード状ヒータ10を接着・固定する基材11の構成について説明する。本実施例における基材11は、低融点ポリエステルを鞘成分とする芯鞘構造を有する熱融着性繊維10%と、難燃性ポリエステル繊維からなる難燃性繊維90%とを混合させた不織布(目付100g/m、厚さ0.6mm)で形成されている。この基材11は、型抜き等の公知の手法によって所望の形状に形成される。
次に、上記コード状ヒータ10を基材11上に所定のパターン形状で配設して接着・固定する構成について説明する。図3はコード状ヒータ10を基材11上に接着・固定させるためのホットプレス式ヒータ製造装置13の構成を示す図である。まず、ホットプレス治具15について説明する。このホットプレス治具15の上面に、複数個の係り止め機構17が配置されている。図4に示すように、上記係り止め機構17はピン19を備えていて、このピン19はホットプレス冶具15に穿孔された孔21に対して、その下方から上方に向けて挿入されている。このピン19の上面には、係り止め部材23がピン19の軸方向に移動可能に取り付けられ、係り止め部材23はコイルスプリング25によって常時上方に付勢されている。そして、図4中仮想線で示すように、コード状ヒータ10は、複数個の係り止め機構17の上面の係り止め部材23に係止されながら、係り止め部材23の位置に対応した所定のパターン形状となるように配設される。
図3に戻って、上記複数個の係り止め機構17の上方位置には、プレス熱板27が昇降可能に配置されている。まず、コード状ヒータ10が複数個の係り止め機構17の係り止め部材23に引っ掛けられながら所定のパターン形状を描くように配設され、次に、基材11がコード状ヒータ10の上に置かれる。その状態で上記プレス熱板27が降下して基材11をコード状ヒータ10に押し当てる。このとき、例えば、プレス熱板27は230℃/5秒間の加熱・加圧を基材11とコード状ヒータ10に施す。すると、コード状ヒータ10の熱融着部9と基材11の熱融着性繊維はともに加熱・加圧されて互いに融着する。その結果、コード状ヒータ10と基材11が接着されて固定される。上記加熱・加圧時、上記プレス熱板27は複数個の係り止め機構17の係り止め部材23のコイルスプリング25の付勢力に抗して下方に移動する。
基材11におけるコード状ヒータ10を配設しない面には、接着層を形成したり、或いは、両面テープを貼り付けたりしても良い。これらの接着層や両面テープは、面状ヒータ31を座席に固定する際に利用される。
上記作業を行うことにより、図5に示すような車両用シートヒータの面状ヒータ31を得ることができる。リード線40は接続端子(図示しない)を介して、上記面状ヒータ31におけるコード状ヒータ10の両端と、温度制御装置39とに接続されている。コード状ヒータ10と、温度制御装置39と、コネクタ35は、リード線40によって互いに接続されている。この接続端子によるコード状ヒータ10とリード線40の接続について詳述する。コード状ヒータ10の端部では、ストリップ加工機によって発熱線1の絶縁体層7を除去して発熱線1を露出させる。また、リード線40の端部でも、ストリップ加工機によってリード線40の絶縁体を除去して導線を露出させる。発熱線1を露出させたコード状ヒータ10の端部と導体を露出させたリード線40の端部とを接続端子に半田付けする。これにより、コード状ヒータ10、リード線40及び接続端子が互いに接続される。コード状ヒータ10の導体素線5aに形成された絶縁被膜5bは半田付けの熱により除去されており、導体素線5aと、リード線40の導体とが、電気的接続される。この作用機構について、以下に具体的に説明する。半田付けの温度は約360℃である。この温度は内層5cを構成するポリアミド樹脂の熱分解より高いため、内層5cは熱分解する。一方で、この360℃の温度は、外層5dを構成するポリアミドイミド樹脂の融点以下であり且つ熱分解温度以下でもある。即ち、導体素線5aが半田付けの温度で加熱されると、絶縁被膜5bの内層5cが熱分解し、絶縁被膜5bの外層5dと導体素線5aの間に空間が形成される。また、外層5dは、内層5cの周囲に塗布された後に乾燥工程を経ており、外層5dは延伸された状態となっているので、圧縮方向の残留応力が外層5dに生じている。コード状ヒータ10の端部において、絶縁被膜5bの外層5dと導体素線5aとは密着していない状態となると、絶縁被膜5bは加熱されて収縮する。従って、導体素線5aの端部が自ずと露出する。以上のように、導体素線5aの端部が自ずと露出するため、導体素線5aの端部を研磨して絶縁被膜5bを除去する必要がなくなる。これにより、導体素線5aの端部の加工性は大きく向上する。コード状ヒータ10は、コネクタ35を介して図示しない車両の電気系統に接続される。
そして、上記面状ヒータ31は、図12に示すような状態で、車両用のシート41内に埋め込まれた状態で配置されることになる。すなわち、上記した通り、車両用シート41の表皮カバー43又は座席パット45に、面状ヒータ31が貼り付けられる。
尚、本発明は、上記実施の形態に限定されるものではない。まず、従来公知の種々のコード状ヒータをコード状ヒータ10として使用されることができる。
発熱線1は、例えば、以下の構成とすることができる。
1.図1に示す上記実施の形態のように、まず、絶縁被膜5bにより被覆された導体素線5aを複数本撚り合わせ又は引き揃えて芯線3上に巻装し、さらに、その外周に絶縁被覆7を被覆して形成される発熱線1
2.図6に示すように、絶縁被膜5bにより被覆された導体素線5aを複数本撚り合わせて形成される発熱線1
3.図7に示すように、絶縁被膜5bにより被覆された導体素線5aを複数本引き揃えて形成される発熱線1
4.図8に示すように、絶縁被膜5bによって被覆された導体素線5aと、絶縁被膜5bによって被覆されていない導体素線5aとを、交互に配置して形成される発熱線1
5.図9に示すように、絶縁被膜5bにより被覆された導体素線5aの本数を図8に示すものよりも増やした状態で、絶縁被膜5bにより被覆された導体素線5aを引き揃えて配置して形成される発熱線1
発熱線1は、これら以外にも様々な構成のものが想定できる。又、発熱線1は、芯線3と導体素線5aを撚り合せて形成することもできる。
芯線3としては、例えば、ガラス繊維等の無機繊維や、ポリエチレンテレフタレート等のポリエステル繊維、脂肪族ポリアミド繊維、芳香族ポリアミド繊維、全芳香族ポリエステル繊維等の有機繊維のモノフィラメント、マルチフィラメント、スパン、或いはそれらの繊維材料、若しくは、それらの繊維材料を構成する有機高分子材料を芯材とし、その周上に熱可塑性の有機高分子材料が被覆された構成を有する繊維などが挙げられる。又、熱収縮性及び熱溶融性を有する芯線3を使用した場合、導体素線5aが断線して異常加熱すると、芯線3が溶融して切断されるとともに収縮する。芯線3が収縮すると、芯線3に巻装された導体素線5aは芯線3の動作に追従するため、断線した導体素線5aの端部同士が分離する。そのため、断線した導体素線5aのそれぞれの端部が、接したり離れたりすることを繰り返さなくなる。また、断線した導体素線5aのそれぞれの端部が点接触のようなわずかな接触面積で接することがなくなる。すると、異常発熱が防止される。又、導体素線5aが絶縁被膜5bにより絶縁されている場合、芯線3が絶縁材料で形成されている必要はない。例えば、芯線3として、ステンレス鋼線やチタン合金線等を使用できる。しかし、導体素線5aが断線する可能性があるので、芯線3は絶縁材料で形成される方が良い。
導体素線5aとしては、従来公知のものを使用することができ、例えば、銅線、銅合金線、ニッケル線、鉄線、アルミニウム線、ニッケル-クロム合金線、鉄-クロム合金線、などが挙げられ、銅合金線としては、例えば、錫-銅合金線、銅-ニッケル合金線、銅固溶体と銅銀共晶がファイバー状になった銀入り銅合金線などが挙げられる。このうち、コストと特性のバランスの点から、銅線又は銅合金線を使用することが好ましい。これら銅線又は銅合金線には軟質のものと硬質のものがあるが、耐屈曲性の観点から、軟質のものよりも硬質のものの方が特に好ましい。尚、硬質銅線や硬質銅合金線とは、線引き加工等の冷間加工によって個々の金属結晶粒が加工方向に長く引き伸ばされ繊維状組織となったものである。このような硬質銅線や硬質銅合金線は、再結晶温度以上で加熱すると、金属結晶内に生じた加工歪みが解消されるとともに、新たな金属結晶の基点となる結晶核が出現し始める。この結晶核が発達して、順次旧結晶粒と置換される再結晶が起き、更に結晶粒が成長した状態となる。軟質銅線や軟質銅合金線はこのような結晶粒が成長した状態のものである。この軟質銅線や軟質銅合金線は、硬質銅線や硬質銅合金線と比べて伸びや電気抵抗値は高いものの引張強さが低い性質となるため、耐屈曲性は硬質銅線や硬質銅合金線と比べて低くなる。このように、硬質銅線や硬質銅合金線は、熱処理によって耐屈曲性が低い軟質銅線や軟質銅合金線になるため、できるだけ熱履歴の少ない加工を行うことが好ましい。尚、硬質銅線はJIS-C3101(1994)、軟質銅線はJIS-C3102(1984)においても定義がなされており、外径0.10~0.26mmでは伸び15%以上、外径0.29~0.70mmでは伸び20%以上、外径0.80~1.8mmでは伸び25%以上、外径2.0~7.0mmでは伸び30%以上のものが軟質銅線とされる。また、銅線には錫メッキが施されているものも含まれる。錫メッキ硬質銅線はJIS-C3151(1994)、錫メッキ軟質銅線はJIS-C3152(1984)にて定義がなされている。又、導体素線5aの断面形状についても種々のものが使用でき、通常使用される断面円形のものに限られず、いわゆる平角線と称されるものを使用しても良い。
但し、芯線3に導体素線5aを巻装する場合は、上記した導体素線5aの材料の中でも、巻付けたときのスプリングバックする量が小さいものが良く、復元率が200%以下となるものが好ましい。例えば、銅固溶体と銅銀共晶がファイバー状になった銀入り銅合金線などは、抗張力性に優れ引張強度や屈曲強度には優れるものの、巻付けたときスプリングバックし易い。そのため、芯線3に巻装する際に、導体素線5aの浮きや、過度の巻付けテンションによる導体素線5aの破断が生じ易く、又加工後には撚り癖が生じ易いため好ましくない。特に、導体素線5aに絶縁被膜5bが被覆される形態とした場合は、この絶縁被膜5bによる復元力も加わることになる。そのため、導体素線5aの復元率が小さいものを選定し、絶縁被膜5bによる復元力をカバーすることが重要となる。
ここで、本発明で規定する復元率の測定について詳しく記述する。まず、導体素線に一定荷重を掛けながら、導体素線径の60倍の径の円柱形マンドレルに対して、導体素線が重ならないように3回以上巻きつける。10分後、荷重を取り去り、導体素線をマンドレルから外し、弾性により復元した形状の内径を測定して、導体素線のスプリングバックする割合を次の式(I)により算出して、復元率として評価する。
R=(d2/d1)×100―――(I)
記号の説明:
R:復元率(%)
d1:巻付試験に用いたマンドレル径(mm)
d2:導体素線をマンドレルに巻きつけた後、荷重を開放して復元した形状の内径(mm)
導体素線5aに被覆される絶縁被膜5bは、上記実施の形態のように、内層5cと外層5dの2層によって形成されても良いし、3層以上の複数層によって形成されても良い。但し、内層を構成する材料の熱分解温度は、外層を構成する材料の融点または熱分解温度の内の低い方より低くなければならない。ここで、内層とは、導体素線5a上に形成される層である。また、外層とは、この内層より外側であればよいので、外層のさらに外側に他の外層を形成したり、内層と外層の間に他の中間層を形成したりすることも可能である。
絶縁被膜5bの材料は、例えば、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ナイロン樹脂、ポリエステルナイロン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリベンゾイミダゾール樹脂、塩化ビニル樹脂、フッ素樹脂、シリコーン樹脂など種々の材料が挙げられる。これらの材料は、複数種類を組み合わせて使用しても良いし、難燃剤や老化防止剤などの公知の添加剤を種々配合しても良い。これらの樹脂の中から材料を組み合わせて、内層を構成する材料の熱分解温度が、外層を構成する材料の融点または熱分解温度の内の低い方より、低くなる材料にする。内層の材料は、ポリウレタン樹脂、塩化ビニル樹脂、ポリアセタール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリメチルメタクリレート、ポリエチレンテレフタレート等のポリエステル樹脂、ポリビニルアルコール等を選択できる。特に、内層の材料が、熱硬化性樹脂であり、外層を構成する材料が、熱硬化性樹脂であることが好ましい。ここで熱硬化性樹脂には、架橋性材料も含まれる。コード状ヒータとしての発熱特性や、半田付け等の端末加工の容易さの観点から、内層の材料は、ポリウレタン樹脂またはポリエステル樹脂であり、外層の材料は、ポリイミド樹脂、ポリアミドイミド樹脂またはシリコーン樹脂の何れかであることが好ましい。特に、内層の材料が、ポリウレタン樹脂であり、外層の材料が、ポリアミドイミド樹脂であることが好ましい。このポリウレタン樹脂は、例えばイミド含有ポリウレタン等、種々の変性や配合をしているようなものであっても良い。
本発明は、外層が溶融または熱分解する温度以下で、内層が熱分解する。そのため、絶縁被膜により被覆された導体素線の端部を、内層の熱分解温度以上、外層の融点または熱分解温度の内の低い方の温度以下の温度とすると、内層のみが熱分解し、導体素線と絶縁被膜の間に空間ができる。一方、外層は、押出工法またはテープ横巻の工法によって形成されると、長さ方向に延伸がかけられて形成される。また、外層は、塗布硬化の工法で形成されると、硬化時に収縮の力が生じる。即ち、外層には、長さ方向に対して圧縮する方向の残留応力が存在する。絶縁被膜により被覆された導体素線の内層が熱分解すると、絶縁被膜と導体素線との間に空間が生じる。さらに、熱を加えられると、絶縁被膜の外層は収縮する。このような作用により、例えば、絶縁被膜により被覆された導体素線の端部を、半田の溶融温度等の所定の温度に加熱すると、絶縁被膜を除去して導体素線を露出させることができる。これにより、端末加工性を向上させることができる。
また、端末加工性を向上させる要因は以下のように説明できる。導体素線は、半田等が接触して加熱されると、熱膨張する。銅線、銅合金線、ニッケル線等の金属材料を主体することが多い導体素線よりも、樹脂材料やゴム材料を主体とする絶縁被膜の方が熱膨張係数は大きい。そのため、導体素線よりも絶縁被膜の方が大きく熱膨張し、導体素線から絶縁被膜を剥離させようとする力が加わり、絶縁被膜にクラックが入る。半田等は絶縁被膜のこのクラックに浸入し、絶縁被膜の内層の熱分解を促進する。併せて、内層が熱分解すると分解性ガスが発生し、分解性ガスは外層を導体素線から押し剥がす。以上の考察に基づくと、絶縁被膜の材料は、熱膨張係数が大きいものが好ましい。また、内層の材料が熱分解する温度が、外層を構成する材料のガラス転移点以下であると、外層はゴム状態とならず、外層にクラックが入りやすくなる。
また、端末加工性を向上させる他の要因は以下のように説明できる。半田等が接触して加熱されると、絶縁被膜の内層が熱分解する。熱分解して生じる分解性ガスが、例えば、水素、一酸化炭素、アルデヒド、低分子量アルカン等の還元性ガスである場合、この還元性ガスによって導体素線表面の酸化被膜が還元される。導体素線表面の酸化被膜が還元されると、半田等との濡れ性を高める。導体素線表面の濡れ性が高められると、導体素線と絶縁被膜の間に半田等が浸透浸入しやすくなり、内層の熱分解と絶縁被膜の剥離を進行させるとともに、半田等と導体素線との接合が確実に行われる。上記実施の形態で内層5cの材料として使用したウレタン樹脂は、熱分解時に還元性ガスを発生する。また、熱分解時に還元性ガスを発生する材料を種々の樹脂やゴム等に配合し、内層5cを構成する材料をこの配合した材料とすることもできる。これらの要因は発明者が推測しているものであり、これによって本発明や特許権利の範囲に影響を与えたり制限したりするものではない。
内層5cの厚さは、2μm以上であることが好ましい。2μm未満であると、内層5cが熱分解したとしても、導体素線5aと外層5dの間に十分な空間が得られず、外層5dが除去できなくなるおそれがある。また、内層5cの厚さが、5μm以下であるか、または、絶縁被膜5bの全厚さの2/3未満であることが好ましい。内層5cの厚さが5μmを超え、且つ、絶縁被膜5bの全厚さの2/3以上となると、内層5cの熱分解時の発生ガス量が多くなる。例えば、この発生ガスが燃焼するものであると難燃性に悪影響を及ぼす可能性があるなど、発生ガスの影響を無視できなくなる。外層5dの厚さは、1μm以上であることが好ましい。上記のように、内層5cは比較的低温で熱分解するものであるため、外層5dの厚さが十分でないと、特に高温時で絶縁性能を維持できなくなる可能性がある。外層5dの厚さは、5μm以下であるか、または、絶縁被膜の全厚さの3/4未満であることが好ましい。外層5dの厚さが、5μmを越え、且つ、絶縁被膜の全厚さの3/4以上となると、外層5dの剛性が強くなりすぎ、例え内層5cが熱分解したとしても、外層5dの除去が困難となるおそれがある。
上記導体素線5aを芯材3の周囲に巻装する場合、撚り合せるよりも、引き揃えた方が好ましい。なぜなら、引き揃えたもののほうが発熱芯4の径が細くなるとともに、表面も平滑になるためである。又、引き揃える方法と、撚り合わせる方法の他に、芯材3の周囲に導体素線5aを編組することもできる。
絶縁体層7は押出成形等によって形成しても良いし、予めチューブ状に成形した絶縁体層7を使用しても良い。絶縁体層7を形成する方法は特に限定されない。押出成形によって絶縁体層7を形成したときは、導体素線5aの位置が固定されているので、絶縁体層7と導体素線5aとの位置ズレが生じにくい。この結果、導体素線5aの摩擦や屈曲が防止され、耐屈曲性が向上されるため好ましい。絶縁体層7の材料は、コード状ヒータの使用形態や使用環境などによって適宜設計すれば良く、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、芳香族ポリアミド系樹脂、脂肪族ポリアミド系樹脂、塩化ビニル樹脂、変性ノリル樹脂(ポリフェニレンオキサイド樹脂)、ナイロン樹脂、ポリスチレン樹脂、フッ素樹脂、合成ゴム、フッ素ゴム、エチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等、種々のものが挙げられる。特に、難燃性を有する高分子組成物が好ましく使用される。ここでの難燃性を有する高分子組成物とは、JIS-K7201(1999年)燃焼性試験における酸素指数が21以上のものを示す。酸素指数が26以上のものは特に好ましい。このような難燃性を得るため、上記した絶縁体層7を構成する材料に適宜難燃材等を配合してもよい。難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム等の金属水和物、酸化アンチモン、メラミン化合物、リン系化合物、塩素系難燃剤、臭素系難燃剤などが挙げられる。これらの難燃剤には公知の方法で適宜表面処理を施しても良い。
又、この絶縁体層7を熱融着材で形成することにより、加熱加圧によりコード状ヒータ10を基材11に熱融着することができる。このような場合、上記した絶縁体層7を構成する材料の中でも、基材11との接着性に優れるオレフィン系樹脂が好ましい。オレフィン系樹脂としては、例えば、高密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン、エチレン-α-オレフィン共重合体、エチレン-不飽和エステル共重合体などが挙げられる。エチレン-不飽和エステル共重合体としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-(メタ)アクリル酸ブチル共重合体などが挙げられ、これらの単独又は2種以上の混合物であってもよい。ここで「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の両方を表すものである。これらの内から任意に選択すれば良いが、上記した絶縁被膜5bを構成する材料の分解開始温度以下又は融点以下の温度で溶融する材料である方が良い。又、基材11との接着性に優れる材料として、ポリエステル系熱可塑性エラストマーが挙げられる。ポリエステル系熱可塑性エラストマーとしては、ポリエステル-ポリエステル型、ポリエステル-ポリエーテル型のものがあるが、ポリエステル-ポリエーテル型の方が高い接着性を有するため好ましい。尚、コード状ヒータ10と基材11を熱融着する場合、コード状ヒータ10と基材11との接着強度は非常に重要なものである。この接着強度が充分でないと、使用していくうちに基材11とコード状ヒータ10とが剥離してしまい、それにより、コード状ヒータ10には予期せぬ屈曲が加わることになるため、導体素線5aが断線する可能性が高くなる。導体素線5aが断線すると、ヒータとしての役を果たさなくなるだけでなく、チャタリングによりスパークに至るおそれもある。また、コード状ヒータ10の使用温度が高い場合は、ポリアミド系熱可塑性エラストマーを使用することが好ましい。もちろん、上記したような絶縁体層7の材料は、複数種類を組み合わせて使用しても良いし、難燃剤や老化防止剤などの公知の添加剤を種々配合しても良い。
絶縁体層7は1層だけでなく、複数層形成してもよい。例えば、導体素線5aの外周にフッ素樹脂による層を形成し、その外周に熱融着材としてポリエチレン樹脂の層を形成し、これら2層により絶縁体層7を構成するような形態も考えられる。もちろん、3層以上となっていても構わない。又、絶縁体層7は、長さ方向に連続して形成することに限定されない。例えば、コード状ヒータ10の長さ方向に沿って直線状やスパイラル線状に形成する、ドット模様に形成する、断続的に形成するなどの態様が考えられる。この際、熱融着材がコード状ヒータの長さ方向に連続していなければ、例え、熱融着材の一部に着火しても、燃焼部が広がらないため好ましい。又、熱融着材の体積が充分に小さければ、熱融着材が燃焼性の材料であっても、すぐに燃焼物がなくなり消火することになるし、ドリップ(燃焼滴下物)も発生しなくなる。従って、熱融着材の体積は、基材11との接着性を保持できる最低限とすることが好ましい。
また、上記のようにして得られたコード状ヒータ10は、自己径の6倍の曲率半径で90度ずつの屈曲を行う屈曲性試験において、導体素線が少なくとも1本切れるまでの屈曲回数が2万回以上であることが好ましい。
また、コード状ヒータ10の端末加工に際しては、上記実施の形態のように半田付け加工を行っても良いし、他の方法を用いることもできる。例えば、発熱線1を露出した端部について、所定の温度の熱源を近接させたり、所定の温度の温風を吹きかけたりすることでも、内層5cが熱分解するとともに絶縁被膜5b(外層5d)が収縮し、導体素線5aの端部が露出することになる。なお、ここでの所定の温度とは内層5cの熱分解温度以上の温度のことを示す。
基材11としては、上記実施の形態で示した不織布の他に、例えば、織布、紙、アルミ箔、マイカ板、樹脂シート、発泡樹脂シート、ゴムシート、発泡ゴムシート、延伸多孔質体等、種々のものが使用できるが、FMVSS-No.302自動車内層材料の燃焼試験に合格する難燃性を有するものが好ましい。ここで、FMVSSとは、Federal Motor Vehicle Safety Standard、即ち、米国連邦自動車安全基準のことであり、そのNo.302として、自動車内装材料の燃焼試験が規定されている。これらの中でも、不織布は、風合いが良く柔軟であるため、特にカーシートヒータの用途において好ましい。又、不織布を使用する場合も、上記実施の形態の場合には、不織布を構成する熱融着性繊維として、低融点ポリエステルを鞘成分とする芯鞘構造を有する繊維を使用しているが、それ以外にも、例えば、低融点ポリプロピレンを鞘成分とする芯鞘構造を有する繊維、又はポリエチレンを鞘成分とする芯鞘構造を有する繊維等の使用が考えられる。このような熱融着性繊維を使用することで、熱融着性繊維の芯部を取り囲んだ状態で、熱融着性繊維の鞘部と上記熱融着部9とが互いに融着し一体化することとなるため、コード状ヒータ1と不織布との接着は非常に強固なものとなる。又、難燃性繊維としては、例えば、上記の難燃性ポリエステルの他に、種々の難燃性繊維の使用が考えられる。ここで、難燃性繊維とは、JIS-L1091(1999年)に合格する繊維のことを指す。このような難燃性繊維を使用することで、基材は優れた難燃性を付与されることとなる。
熱融着性繊維の混合割合は、5%以上が好ましく、又、20%以下が好ましい。熱融着性繊維の混合割合が5%未満だと、十分な接着性が得られない。又、熱融着性繊維の混合割合が20%を超えると、不織布が固くなり、着座者が違和感を訴えることになり得るのみでなく、逆にコード状ヒータとの接着性が低下してしまう。更には、熱融着する際の熱によって基材が収縮し、設計で意図した寸法が得られなくなる可能性もある。難燃性繊維の混合割合は、70%以上であり、好ましくは70%以上95%以下である。難燃性繊維の混合割合が70%未満だと、十分な難燃性が得られない。又、難燃性繊維の混合割合が95%を超えると、相対的に熱融着性繊維の混合割合が不足してしまい、十分な接着性が得られない。尚、熱融着性繊維の混合割合と難燃性繊維の混合割合を合算して100%になる必要はなく、他の繊維を適宜混合させても良い。又、熱融着性繊維が混合されていない場合であっても、例えば、上記の熱融着部の材料と基材を構成する繊維の材料を同系統の材料とすることで、必要充分な接着性を得られることもあるので、熱融着性繊維が混合されていないことも充分に考えられる。
又、不織布の大きさや厚さなどは、使用用途によって適宜に変更するものであるが、その厚さ(乾燥時に測定した値)は、例えば、0.6mm~1.4mm程度とすることが望ましい。このような厚さの不織布を使用すれば、加熱・加圧によりコード状ヒータと不織布とを接着・固定した際、不織布がコード状ヒータの外周の30%以上、好ましくは50%以上の部分と良好に接着することになるからであり、それによって、強固な接着状態を得ることができるからである。
上記基材の中でも、空隙を有しているものが好ましく、特に、コード状ヒータが配設される面(以下、配設面と記す)が、コード状ヒータが配設されない面(以下、非配設面と記す)よりも空隙が多くなっているように構成されることが好ましい。空隙が多い状態とは、例えば、織布や不織布等の布体の場合、目付け、即ち単位体積当たりの繊維重量が小さい状態、発泡樹脂シートや発泡ゴムシートのような多孔体の場合、気孔率が大きい状態のことを示す。本発明による基材の具体的な態様としては、例えば、温度や圧力を調節するなどして片面のみ又は両面で強弱異なるカレンダー加工を行った織布又は不織布、片面のみからニードルパンチを行った不織布、片面にパイル形成や起毛をさせた布体、厚さ方向で気孔率が傾斜するように発泡制御した発泡樹脂シート又は発泡ゴムシート、空隙の多さが異なる材料を貼り合わせたもの、などが挙げられる。又、特に基材の空隙は連続していることが好ましい。これは、溶融した熱融着層が連続した空隙に浸透していくことで、アンカー効果が増して接着強度が向上するためである。このような空隙が連続している態様としては、繊維の集合体である織布や不織布等の布体、連続気孔を有する発泡樹脂シートや発泡ゴムシートなどが考えられる。尚、非配設面は空隙を有していないものも考えられる。
又、コード状ヒータ10を基材11に配設する際、加熱加圧による融着によって接着・固定する態様でなく、他の態様によりコード状ヒータ10を基材11に固定しても良い。例えば、温風により熱融着材からなる絶縁体層7を溶融させて接着・固定する態様、導体素線5aに通電してその発熱により熱融着材からなる絶縁体層7を溶融させて接着・固定する態様、加熱しながら一対の基材11で挟持固定する態様など、種々の態様が考えられる。
又、熱融着材を使用しない形態も考えられ、例えば、縫製によってコード状ヒータ10を基材11上に配置することや、一対の基材11でコード状ヒータ10を挟持固定することも考えられる。このような場合、図10や図11に示すように絶縁体層7を形成しないことが考えられる。
又、面状ヒータ31を座席に固定するための接着層については、基材11の伸縮性の点や、良質な風合いの保持という点からすると、離型シート等の上に接着剤のみからなる接着層を形成し、該接着層を上記離型シートから上記基材11表面に転写することによって接着層を形成することが好ましい。又、この接着層は、難燃性を有するものが好ましく、それ単独でFMVSS-No.302自動車内装材料の燃焼試験に合格するような難燃性を有するものが好ましい。例えば、高分子アクリル系粘着剤などが挙げられる。接着層は基材の配設面に形成しても良いし非配設面に形成しても良い。
また、上記構成をなす面状ヒータ31は、図13に示すような状態で、ステアリングホイール71に設置されてもよい。このステアリングホイール71は、ホイール部72、スポーク部73及びボス部74からなり、面状ヒータ31は、ホイール部72のホイール芯材77と被覆材78の間に設置されることになる。
上記実施の形態によって得られるコード状ヒータ10(図1参照)を実施例1として、加工性試験(接続端子との導通確認)、絶縁性試験(絶縁破壊電圧試験)、燃焼性試験(水平難燃試験)を行った。
加工性試験は、端子加工後の導通を確認することによって行った。まず、コード状ヒータ10について、導体素線5aの有効長が90mmとなるよう切り出しし、端部8mmについて絶縁体層7をストリップ加工した。また、リード線について、導体(1.73mmφ)の有効長が90mmとなるように切り出し、端部8mmについて絶縁体をストリップ加工した。これらのコード状ヒータ10とリード線とを揃えて配置して、端部に接続端子(市販のスプライス端子)をセットし、フラックス入り半田(融点340℃)を使用して半田付け加工をしコード状ヒータ10とリード線とを接続した。その後、コード状ヒータ10とリード線の間の抵抗値を測定した。試料数は20として平均値を算出した(但し、測定不能なほど抵抗値が大きかった試料は除いて平均値を算出)。平均値が1Ω未満であり、且つ、測定不能の試料が1つもなかったものを合格、平均値が1Ω以上か、または、測定不能の試料があったものを不合格とした。表1に結果を示し、合格のものを「〇」、不合格のものを「×」と示す。
絶縁性試験は、絶縁被膜5bの絶縁破壊電圧の試験を行った。導体素線5aに、AC1.5kVを印加し、絶縁破壊がなかったものを合格、絶縁破壊があったもの不合格とした。表1に結果を示し、合格のものを「〇」、不合格のものを「×」と示す。
燃焼性試験は、UL1581水平燃焼試験(2008年、第4版)に基づいて測定し、燃焼距離(炎の影響を受けた幅)を測定した。燃焼距離が30mm以下のものを合格、燃焼距離が30mmを超えていたものを不合格とした。表1に結果を示し、合格のものを「〇」、不合格のものを「×」と示す。
上記実施例1(上記実施の形態)によるコード状ヒータ10に対し、絶縁被膜5bを構成する材料を変化させたものについて、比較例1~3とした。比較例1は、絶縁被膜5bについて、ポリアミドイミド樹脂の単層としたものである。比較例2は、絶縁被膜5bについて、ポリウレタン樹脂の単層としたものである。比較例3は、絶縁被膜5bの内層5cをイミド含有ウレタン樹脂とし外層5dをアクリル樹脂としたものである。また、上記実施例1(上記実施の形態)によるコード状ヒータ10に対し、絶縁被膜5bにおける内層5cと外層5dの厚さを変化させたものについて、実施例2~8、比較例4~11とした。実施例1~8の内層5c及び外層5dの材料及び厚さは、表1に示す。また、比較例1~11の内層5c及び外層5dの材料及び厚さは、表2に示す。これらについても実施例1と同様に試験を行った。実施例の試験結果を表1に、比較例の試験結果を表2に示す。
Figure 2023122598000002
Figure 2023122598000003
実施例1~8におけるコード状ヒータは、何れも、内層を構成する材料の熱分解温度が、外層を構成する材料の融点または熱分解温度の内の低い方より、低いものである。一方、比較例3におけるコード状ヒータは、内層を構成する材料の熱分解温度が、外層を構成する材料の融点より、高いものである。これら熱分解温度については、JIS-K7120-1997プラスチックの熱重量測定方法(またはISO7111-1997)に準拠して測定した。また、融点については、JIS-K7121-1987プラスチックの転移温度測定方法に準拠して測定した。
表1及び表2に示すように、本実施例によるコード状ヒータ10は、端末の加工性に優れていることが確認された。比較例1,3によるコード状ヒータは、測定不能、即ち、絶縁被膜が全く除去されていない試料が半数以上を占めており、製品としての歩留まりが悪いものであった。また、本実施例によるコード状ヒータ10は、燃焼性の試験にも合格するものであり、実施例2によるコード状ヒータは特に燃焼性に優れていた。比較例2,3によるコード状ヒータは、燃焼範囲が合格ラインをはるかに超えてしまっており、燃焼性の面で劣るものであった。
また、実施例1~4,6によるコード状ヒータ10は、内層5cの厚さが2μm以上5μm以下であり、外層5dの厚さが1μm以上5μm以下である。実施例5によるコード状ヒータ10は、内層5cの厚さが2μm以上かつ絶縁被膜5bの厚さの2/3未満となっており、外層5dの厚さが1μm以上5μm以下である。実施例7,8によるコード状ヒータ10は、内層5cの厚さが2μm以上5μm以下となっており、外層5dの厚さが1μm以上かつ絶縁被膜5bの厚さの3/4未満である。そのため、加工性試験、耐電圧試験、燃焼性試験の何れにおいても、優れた結果を得ることができた。一方、比較例4は、内層5cの厚さが2μm未満であるため、外層5dの除去が確実にはできておらず、加工性が不合格となった。比較例5~7は、内層5cの厚さが5μmを超え且つ絶縁被膜5bの厚さの2/3以上であるため、燃焼範囲が合格ラインをはるかに超えてしまっており、燃焼性の面で劣るものであった。比較例8は、外層5dの厚さが1μm未満であるため、絶縁破壊をした箇所が発生し、絶縁性に劣るものであった。比較例9~11は、外層5dの厚さが5μmを超え且つ絶縁被膜5bの厚さの3/4以上であるため、外層5dの除去が確実にはできておらず、加工性が不合格となった。
上記実施例1によるコード状ヒータ10について、基材11上に直線形状で配設し、上記のようにホットプレス式ヒータ製造装置13を使用して、コード状ヒータ10を基材11上に接着・固定した。この基材11上に接着・固定したコード状ヒータ10についても、上記同様に屈曲性試験を行った。また、上記実施例1によるコード状ヒータ10について、基材11上に直線形状で配設し、粘着テープを使用して、コード状ヒータ10を基材11上に接着・固定した。この基材11上に接着・固定したコード状ヒータ10について、上記同様に屈曲性試験を行った。いずれにおいても、充分な耐屈曲性の値を示しており、本実施例によるコード状ヒータ10は、基材11上に接着・固定した状態でも充分な耐屈曲性を得ることが確認された。
以上詳述したように本発明によれば、加工性を向上されたコード状ヒータを得ることができる。このコード状ヒータは、例えば、アルミ箔、発泡樹脂、不織布等の基材上に蛇行形状等の所定の形状に配設されて面状ヒータとし、電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータ、暖房便座、防曇鏡用ヒータ、カメラ用凍結防止ヒータ、加熱調理器具等に好適に使用可能である。又、コード状ヒータ単体としても、例えば、パイプや槽等に巻き付けて接着したり、パイプ内に配置したりするような態様が考えられる。具体的な用途としては、例えば、配管や冷凍庫のパイプドレーンなどの凍結防止用ヒータ、エアコンや除湿機などの保温用ヒータ、冷蔵庫や冷凍庫などの除霜用ヒータ、乾燥用ヒータ、床暖房用ヒータとして好適に使用することができる。又、上記面状ヒータの用途として例示した電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータ、暖房便座、防曇鏡用ヒータ、加熱調理器具、床暖房等について、加熱対象物に本発明のコード状ヒータを直接貼り付けたり、巻き付けたりすることもできる。
1 発熱線
3 芯材
5a 導体素線
5b 絶縁被膜
5c 内層
5d 外層
7 絶縁体層
10 コード状ヒータ
11 基材
31 面状ヒータ
41 車両用シート

Claims (4)

  1. 絶縁被膜により被覆された1本又は複数本の導体素線を有するコード状ヒータであって、
    上記絶縁被膜が、少なくとも、上記導体素線上に形成された内層と、該内層の外側に形成された外層とからなり、
    上記内層を構成する材料の熱分解温度が、上記外層を構成する材料の融点または熱分解温度の内の低い方より低く、
    上記内層の厚さが2μm以上であり、
    上記内層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの2/3未満であり、
    上記外層の厚さが、1μm以上であり、
    上記外層の厚さが、5μm以下であるか、または、絶縁被膜の全厚さの3/4未満であることを特徴とするコード状ヒータ。
  2. 上記内層を構成する材料が、ポリウレタン樹脂またはポリエステル樹脂であり、上記外層を構成する材料が、ポリイミド樹脂、ポリアミドイミド樹脂またはシリコーン樹脂の何れかである請求項1記載のコード状ヒータ。
  3. 上記内層を構成する材料が、ポリウレタン樹脂であり、上記外層を構成する材料が、ポリアミドイミド樹脂である請求項1記載のコード状ヒータ。
  4. 請求項1~3何れか記載のコード状ヒータを基材に配設した面状ヒータ。
JP2022026247A 2022-02-23 2022-02-23 コード状ヒータと面状ヒータ Pending JP2023122598A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022026247A JP2023122598A (ja) 2022-02-23 2022-02-23 コード状ヒータと面状ヒータ
PCT/JP2022/045613 WO2023162409A1 (ja) 2022-02-23 2022-12-12 コード状ヒータと面状ヒータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022026247A JP2023122598A (ja) 2022-02-23 2022-02-23 コード状ヒータと面状ヒータ

Publications (1)

Publication Number Publication Date
JP2023122598A true JP2023122598A (ja) 2023-09-04

Family

ID=87881597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022026247A Pending JP2023122598A (ja) 2022-02-23 2022-02-23 コード状ヒータと面状ヒータ

Country Status (1)

Country Link
JP (1) JP2023122598A (ja)

Similar Documents

Publication Publication Date Title
KR101809928B1 (ko) 코드 형상 히터와 면 형상 히터
JP5916385B2 (ja) コード状ヒータと面状ヒータ
JP6351999B2 (ja) ヒータユニット及びシート
JP7360942B2 (ja) コード状ヒータ、面状ヒータおよび面状ヒータの製造方法
JP2011181316A (ja) ヒータユニット
JP2010015691A (ja) コード状ヒータ
WO2022054701A1 (ja) コード状ヒータと面状ヒータ
WO2023162409A1 (ja) コード状ヒータと面状ヒータ
JP2013020951A (ja) コード状ヒータと面状ヒータ
JP2023122598A (ja) コード状ヒータと面状ヒータ
JP6636825B2 (ja) ヒータユニット及び車両用シート
JP7210299B2 (ja) 面状ヒータ
JP2024075526A (ja) コード状ヒータと面状ヒータ
JP2019129112A (ja) ヒータユニット及びステアリングホイール
JP6101480B2 (ja) ヒータユニット
JP2023160011A (ja) 線状体を備えた面状ユニット及びその応用品
JP2019040694A (ja) ヒータユニット及びその製造方法
JP2022108228A (ja) ヒータユニット及び車両用シート
JP2022108229A (ja) ヒータユニット及び車両用シート
KR20220155270A (ko) 코드 형상 히터와 면 형상 히터
JP2024068100A (ja) 面状ユニット