WO2023162291A1 - 通信システム及び通信端末 - Google Patents

通信システム及び通信端末 Download PDF

Info

Publication number
WO2023162291A1
WO2023162291A1 PCT/JP2022/029546 JP2022029546W WO2023162291A1 WO 2023162291 A1 WO2023162291 A1 WO 2023162291A1 JP 2022029546 W JP2022029546 W JP 2022029546W WO 2023162291 A1 WO2023162291 A1 WO 2023162291A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
communication
information
communication terminal
control mode
Prior art date
Application number
PCT/JP2022/029546
Other languages
English (en)
French (fr)
Inventor
和敏 小林
賀須男 藤野
裕喜 南田
良太 森若
忠輔 弓場
諒 下留
幹夫 俣賀
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to CN202280091846.3A priority Critical patent/CN118696567A/zh
Priority to JP2024502795A priority patent/JPWO2023162291A1/ja
Publication of WO2023162291A1 publication Critical patent/WO2023162291A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present disclosure relates to communication systems and communication terminals.
  • Patent Document 1 discloses a system including a robot, a processing device, a robot controller that controls the robot, a processing device controller that controls the processing device, and a programmable logic controller that generates commands for the robot controller and the processing device controller. disclosed.
  • the present disclosure provides a communication system that is effective in improving the reliability of inter-device communication through mobile wireless communication.
  • a communication system includes a host system that includes a client device and a server device that performs inter-device communication with the client device; a communication terminal connected to a base station connected to the server device, and the communication terminal notifies information of the base station to a host system.
  • a communication terminal is connected to a client device of a host system having a client device and a server device that perform inter-device communication with each other, and performs inter-device communication with a base station connected to the server device.
  • a communication terminal that performs mobile radio communication for communication includes a base station information acquisition unit that acquires base station information and a notification unit that notifies a system of the base station information.
  • FIG. 1 is a schematic diagram illustrating the configuration of a machine system
  • FIG. 1 is a schematic diagram illustrating the configuration of a robot
  • FIG. FIG. 4 is a schematic diagram illustrating a system in which a server device changes control modes based on base station information notified from a communication terminal
  • 3 is a block diagram illustrating functional configurations of a communication terminal and a local controller
  • FIG. 3 is a block diagram illustrating functional configurations of a base station and a server device
  • FIG. 4 is a block diagram illustrating a functional configuration of a controller in the server device
  • FIG. 3 is a block diagram illustrating hardware configurations of a server device and a base station
  • FIG. 3 is a block diagram illustrating hardware configurations of a communication terminal and a local controller
  • 4 is a flowchart illustrating a connection procedure between a communication terminal and a base station; 10 is a flowchart illustrating a control procedure of a communication terminal by a host system; 4 is a flowchart illustrating a control mode change procedure based on base station information; 4 is a flowchart illustrating a control mode change procedure based on an indication of handover; 4 is a flowchart illustrating a control procedure in server control mode; 4 is a flowchart illustrating a control procedure in autonomous control mode;
  • FIG. 1 is a schematic diagram illustrating a machine system.
  • a machine system 1 shown in FIG. 1 includes a server device 100 and a plurality of machines 20 .
  • Each of the plurality of machines 20 implements motion.
  • three machines 20 are illustrated in FIG. 1, the number of machines 20 is not limited to this.
  • Each of the plurality of machines 20 has a main body 30 and a local controller 300.
  • the main body 30 is a machine that is controlled by the local controller 300 and performs multiple types of motions.
  • the type of main body 30 is not particularly limited.
  • FIG. 1 shows two types of main bodies 30A and 30B.
  • the main body 30A is a mobile robot, and performs motions for conveying, processing, assembling, etc. a work.
  • Specific examples of the motion include a motion of conveying a part and attaching it to a work, a motion of conveying a tool such as a screw tightening tool or a welding torch and processing the work, and a motion of conveying the work itself.
  • the main body 30 has an unmanned guided vehicle 31 and a robot 40.
  • the automatic guided vehicle 31 moves while supporting the robot 40 .
  • the robot 40 is, for example, a vertically articulated industrial robot. As shown in FIG. 2 , the robot 40 has a base portion 41 , a turning portion 42 , a first arm 43 , a second arm 44 , a wrist portion 45 and a tip portion 46 .
  • the base 41 is installed on the automatic guided vehicle 31 .
  • the swivel part 42 is mounted on the base part 41 so as to be rotatable around the vertical axis 51 .
  • the robot 40 has a joint 61 that attaches the pivot 42 to the base 41 so as to be rotatable about the axis 51 .
  • the first arm 43 is connected to the swivel portion 42 so as to be rotatable about an axis 52 that intersects (for example, is perpendicular to) the axis 51 .
  • the robot 40 has a joint 62 that connects the first arm 43 to the pivot 42 so as to be rotatable about the axis 52 .
  • An intersection includes being in a twisted relationship, such as a so-called overpass. The same applies to the following.
  • the first arm 43 extends from the turning portion 42 along one direction that intersects (for example, orthogonally) the axis 52 .
  • the second arm 44 is connected to the end of the first arm 43 so as to be rotatable around an axis 53 parallel to the axis 52 .
  • the robot 40 has a joint 63 connecting the second arm 44 to the first arm 43 so as to be rotatable about the axis 53 .
  • the second arm 44 includes an arm base 47 extending from the end of the first arm 43 along one direction intersecting (for example, perpendicular to) the axis 53 and an arm further extending from the end of the arm base 47 along the same one direction. and end 48 .
  • Arm end 48 is rotatable about axis 54 with respect to arm base 47 .
  • Axis 54 intersects (eg, is orthogonal to) axis 53 .
  • robot 40 has a joint 64 that connects arm end 48 to arm base 47 such that arm end 48 is rotatable about axis 54 .
  • the wrist 45 is connected to the end of the arm end 48 so as to be rotatable about an axis 55 that intersects (for example, is perpendicular to) the axis 54 .
  • the robot 40 has a joint 65 that connects the arm end 48 such that the wrist 45 is rotatable about the axis 55 .
  • Wrist 45 extends from the end of arm end 48 along a direction that intersects (eg, is perpendicular to) axis 55 .
  • the tip 46 is connected to the end of the wrist 45 so as to be rotatable about an axis 56 that intersects (eg, is perpendicular to) the axis 55 .
  • robot 40 has a joint 66 that connects tip 46 to wrist 45 such that tip 46 is rotatable about axis 56 .
  • An end effector is provided at the distal end portion 46 .
  • Specific examples of the end effector include a hand for gripping a work, and a work tool for processing, assembling, etc., the work.
  • Actuators 71 , 72 , 73 , 74 , 75 , 76 drive joints 61 , 62 , 63 , 64 , 65 , 66 .
  • Each of the actuators 71, 72, 73, 74, 75, 76 has, for example, an electric motor and a transmission section (for example, reduction gear) that transmits the power of the electric motor to the joints 61, 62, 63, 64, 65, 66. .
  • actuator 71 drives joint 61 to rotate pivot 42 about axis 51 .
  • Actuator 72 drives joint 62 to rotate first arm 43 about axis 52 .
  • Actuator 73 drives joint 63 to rotate second arm 44 about axis 53 .
  • Actuator 74 drives joint 64 to rotate arm end 48 about axis 54 .
  • Actuator 75 drives joint 65 to rotate wrist 45 about axis 55 .
  • Actuator 76 drives joint 66 to rotate tip 46 about axis 56 .
  • the main body 30 is not necessarily limited to the mobile robot described above, and may be a robot fixed at a fixed position.
  • the main body 30 may be an unmanned guided vehicle that carries out a motion of conveying an object to be conveyed such as a work.
  • the main body 30B is an unmanned guided vehicle that transports objects such as workpieces.
  • the main body 30B has an automatic guided vehicle 33 and a loading table 34 .
  • the unmanned guided vehicle 33 moves while supporting the load table 34 .
  • the loading table 34 supports the object to be conveyed.
  • the server device 100 performs inter-device communication with the local controllers 300 of the plurality of machines 20, and causes the main bodies 30 of the plurality of machines 20 to perform a series of motions for the purpose of producing workpieces.
  • machine system 1 is equipped with communication system 10 .
  • the communication system 10 includes a host system 11 and a communication terminal 400 .
  • the host system 11 includes the machine 20, which is an example of a client device, and the server device 100 that performs inter-device communication with the client device.
  • Inter-device communication is, for example, communication performed between devices to control motion, as described above.
  • Such inter-device communication may include transmission/reception of control commands, transmission/reception of feedback information during control, transmission/reception of operation completion notifications in response to control commands, and the like.
  • the communication terminal 400 is connected to the local controller 300 and performs mobile wireless communication for inter-device communication with the base station 200 connected to the server device 100 .
  • mobile wireless communication is communication by the fifth generation mobile communication system (5G communication), but it is not necessarily limited to this.
  • communication terminal 400 is fixed to main body 30 and moves together with main body 30 . Therefore, it is possible to move the communication terminal 400 by the local controller 300 .
  • a plurality of base stations 200 can be connected to the server device 100 .
  • the connection status between communication terminal 400 and a plurality of base stations 200 may affect the reliability of inter-device communication.
  • a plurality of base stations 200 have different specifications, and depending on the specifications of the base station 200 to which the communication terminal 400 is connected, there is a possibility that mobile wireless communication that satisfies the requirements for inter-device communication cannot be performed. .
  • the base station 200 with a slow communication speed may not be able to perform inter-device communication at a sufficient speed.
  • the base station 200 Even if the base station 200 has a sufficient communication speed according to the specification, it may not be possible to perform inter-device communication at a sufficient speed because it is shared by many terminals.
  • the base station 200 with weak radio wave intensity may not be able to ensure the reliability of communication required for inter-device communication.
  • handovers that occur between a plurality of base stations 200 may make it difficult to continue inter-device communication in the required communication cycle.
  • communication terminal 400 is configured to notify information of base station 200 to host system 11 . Therefore, in the host system 11, based on the information of the base station 200, it is possible to deal with the above-mentioned influence. As an example of countermeasures against the above influence, as shown in FIG.
  • the communication terminal 400 may notify the local controller 300 of the information of the base station 200, or notify the server device 100 of the information of the base station 200.
  • information on the base station 200 may be notified to both the local controller 300 and the server device 100 .
  • Notifying the server device 100 of the information of the base station 200 includes notifying the local controller 300 of the information of the base station 200 and causing the local controller 300 to transmit the information of the base station 200 to the server device 100 .
  • the information on the base station 200 can include both information on the connected base station 200 and information on the unconnected base station 200 .
  • the information of the base station 200 includes identification information of the base station 200, for example.
  • the identification information of base station 200 may be, for example, information capable of identifying an individual base station 200 or information capable of identifying an attribute of base station 200 .
  • Examples of information that can identify the attributes of the base station 200 include information representing the type of the base station 200, information representing the specifications of the base station 200, and the like.
  • the information on the base station 200 may include information on the state of communication between the local controller 300 and the communication terminal 400.
  • Examples of communication state information include information on radio waves received from the base station 200 (for example, information on the strength of radio waves), and information indicating signs of handover from a connected base station 200 to another base station 200. etc.
  • FIG. 4 is a block diagram illustrating functional configurations of the communication terminal 400 and the local controller 300.
  • communication terminal 400 includes a transmission/reception unit 411, a transmission buffer 412, a reception buffer 413, and a base station information acquisition unit 414 as functional components (hereinafter referred to as “functional blocks”). , and a notification unit 415 .
  • the transmitting/receiving unit 411 performs mobile radio communication with the base station 200 .
  • the transmission buffer 412 temporarily stores information that the transmission/reception unit 411 transmits to the base station 200 by mobile wireless communication.
  • the reception buffer 413 temporarily stores information received by the transmission/reception unit 411 from the base station 200 through mobile wireless communication.
  • the base station information acquisition unit 414 acquires information on the base station 200 from the information received from the base station 200 by the transmission/reception unit 411 .
  • the notification unit 415 notifies the information of the base station 200 to the local controller 300 .
  • the local controller 300 has a communication control section 311 and a motion control section 312 as functional blocks.
  • the communication control unit 311 performs inter-device communication with the server device 100 .
  • the communication control unit 311 stores information to be transmitted from the communication terminal 400 to the base station 200 in the transmission buffer 412 and reads information received by the communication terminal 400 from the base station 200 from the reception buffer 413 .
  • the motion control unit 312 controls the main body 30 based on the control command received by the communication control unit 311 from the server device 100 .
  • Motion control unit 312 may be configured to autonomously perform at least part of control of main body 30 without being based on a control command from server device 100 .
  • the local controller 300 controls the main body 30 based on, for example, an operating program stored by itself.
  • the operating program includes a plurality of operating instructions arranged in chronological order.
  • Each of the plurality of motion commands includes a motion target position and motion target speed of the body 30 .
  • An example of the operation target position of the main body 30 is the operation target position of the distal end portion 46 .
  • the motion target position of the distal end portion 46 includes the motion target posture of the distal end portion 46 .
  • the communication control unit 311 receives notification of information on the base station 200 from the notification unit 415 . Upon receiving notification of the information on the base station 200 , the communication control section 311 may store the information on the base station 200 in the transmission buffer 412 and cause the communication terminal 400 to transmit the information to the base station 200 . Thereby, the information of the base station 200 is also notified to the server device 100 .
  • communication terminal 400 may be configured to notify information of base station 200 to server device 100 without going through local controller 300 .
  • the notification unit 415 may store the information of the base station 200 in the transmission buffer 412 and cause the communication terminal 400 to transmit the information to the base station 200 .
  • the communication control unit 311 may control the communication terminal 400 to connect to a predetermined base station 200 (default base station). .
  • the communication control unit 311 designates the default base station and requests the transmission/reception unit 411 to limit the connection destination so that the default base station is preferentially connected.
  • the transmitting/receiving unit 411 controls the transmitting/receiving direction of radio signals by beamforming or the like so as to facilitate connection to the default base station.
  • the communication control unit 311 After the motion control unit 312 moves the body 30 so that the communication terminal 400 approaches the default base station, the communication control unit 311 requests the transmission/reception unit 411 to connect (including reconnection) to the base station 200. good too.
  • the communication control unit 311 causes the motion control unit 312 to move the main unit 30 so that the communication terminal 400 approaches the default base station, and controls the transmission/reception unit 411 so that the communication terminal 400 is preferentially connected to the default base station. You can do both.
  • FIG. 5 is a block diagram illustrating functional configurations of the base station 200 and the server device 100.
  • the base station 200 has a transmitting/receiving section 211, a transmitting buffer 212, a receiving buffer 213, and a base station information adding section 214 as functional blocks.
  • Transceiver 211 performs mobile wireless communication with communication terminal 400 .
  • Transmission buffer 212 temporarily stores information transmitted from transmission/reception section 211 to communication terminal 400 by mobile wireless communication.
  • Receiving buffer 213 temporarily stores information received from communication terminal 400 by transmitting/receiving section 211 through mobile wireless communication.
  • Base station information adding section 214 adds the above information of base station 200 to the information transmitted from transmitting/receiving section 211 to communication terminal 400 .
  • the server device 100 has a communication control unit 111 and a plurality of controllers 120 as functional blocks.
  • the communication control unit 111 performs inter-device communication with the local controller 300 .
  • the communication control unit 111 stores information to be transmitted from the base station 200 to the communication terminal 400 in the transmission buffer 212 , and reads information received by the base station 200 from the communication terminal 400 from the reception buffer 213 .
  • the communication control unit 111 receives the information on the base station 200. Thereby, the communication control unit 111 receives notification of the information of the base station 200 .
  • communication control section 111 may control communication terminal 400 to be connected to the default base station. For example, the communication control unit 111 stores in the transmission buffer 212 a request for connection destination restriction by beamforming or the like.
  • the communication control unit 311 requests the transmission/reception unit 411 to establish connection (including reconnection) with the base station 200. may be performed by the communication control unit 111 instead of .
  • the communication control unit 111 stores in the transmission buffer 212 a command to move the main unit 30 by the motion control unit 312 so that the communication terminal 400 approaches the predetermined base station, and reads the movement completion notification of the main unit 30 from the reception buffer 213. After that, a request for connection with the base station 200 to the transmission/reception unit 411 is stored in the transmission buffer 212 .
  • Each of the plurality of controllers 120 controls each of the plurality of machines 20 through inter-device communication executed by the communication control unit 111 .
  • each of the plurality of controllers 120 includes, as functional blocks, an information receiving unit 121, a command calculating unit 122, a command transmitting unit 123, a mode changing unit 124, and a symptom detecting unit 125. have.
  • the information receiving unit 121 receives feedback information representing the state of the corresponding machine 20 through inter-device communication.
  • feedback information include information representing the current position/orientation of the main body 30 .
  • the current position/orientation of the main body 30 include the current position/orientation of the automatic guided vehicle 31 in the main body 30A, the current position/orientation of the robot 40 on the automatic guided vehicle 31, and the like.
  • the information representing the current position/orientation of the robot 40 may be the current angles of the joints 61 , 62 , 63 , 64 , 65 and 66 .
  • the feedback information may be status information indicating whether or not the operation based on the command from the server device 100 has been completed.
  • the command calculation unit 122 calculates a motion command based on the feedback information.
  • a motion command is a command that causes the local controller 300 to cause the body 30 to perform a motion.
  • An example of the motion command is a speed command or force (torque) command for causing the current position/orientation of the main body 30 to follow the target position/orientation.
  • a motion command may be a command to start a series of predetermined actions.
  • the command transmission unit 123 transmits the motion command to the local controller 300 of the corresponding machine 20 through inter-device communication.
  • the mode changing unit 124 changes the control mode of the machine 20 by the controller 120 based on information from the base station 200 . For example, the mode changing unit 124 changes the control mode of the machine 20 by the controller 120 from one of a plurality of predetermined modes to another.
  • the mode changing unit 124 may change the control mode so as to reduce the influence of which controller 120 the communication terminal 400 is connected to.
  • the multiple control modes may include a server control mode and an autonomous control mode.
  • the server control mode is a mode in which the motion of the main body 30 is controlled by the controller 120 through inter-device communication.
  • the autonomous control mode is a mode in which the motion of the main body 30 is autonomously controlled by the local controller 300 .
  • the controller 120 transmits, for example, a motion start command to the local controller 300 and receives a motion completion notification from the local controller 300 .
  • the frequency of inter-device communication is lower than in server control mode. Therefore, in the autonomous control mode, the influence of which controller 120 the communication terminal 400 is connected to is less than in the server control mode.
  • An example of the server control mode is a mode in which the motion of the main body 30 is feedback-controlled by the server device 100 .
  • the controller 120 repeatedly executes the reception of the feedback information by the information receiving section 121, the generation of the motion command by the command calculation section 122, and the transmission of the motion command by the command transmission section 123 in a predetermined control cycle. do.
  • the information receiving unit 121 receives feedback information representing the current position/orientation of the main body 30 .
  • the command calculation unit 122 calculates a target position/orientation for each control cycle based on a predetermined operation program, and calculates a motion command so that the current position/orientation of the main body 30 follows the target position/orientation. .
  • Making the current position/orientation of the main body 30 follow the target position/orientation means adjusting the current position/orientation according to the transition of the target position/orientation so that the deviation between the target position/orientation and the current position/orientation remains within a predetermined range. ⁇ It means to change posture.
  • the command calculation unit 122 calculates a motion command by performing a proportional operation, a proportional/integral operation, or a proportional/integral/differential operation on the deviation between the target position/orientation and the current position/orientation.
  • the command transmission unit 123 may transmit the motion command to the local controller 300 by adding first cycle information specifying the control cycle from which the motion command should be read.
  • the communication control unit 311 stores the received motion commands until the control cycle designated by the first cycle information, and the motion control unit 312 reads out the motion commands in the control cycles, The main body 30 is controlled based on this.
  • the communication control unit 311 of the local controller 300 may transmit feedback information to the server device 100 by adding second cycle information specifying the control cycle from which the feedback information should be read.
  • the communication control unit 111 stores the feedback information
  • the information receiving unit 121 reads the feedback information in the control cycle, and based on the read feedback information, Then, the command calculator 122 generates a motion command.
  • the influence of variations in reception timing of feedback information and motion commands on the motion of the main body 30 is suppressed.
  • the performance of the base station 200 may be required to meet certain conditions.
  • the base station 200 that satisfies a predetermined condition is set as the above default base station. If the mode change unit 124 determines that the base station 200 (the base station 200 to which the communication terminal 400 is connected) is the default base station based on the information of the base station 200, the mode change unit 124 changes the control mode of the machine 20 to the server. If it is determined that the base station 200 is not the default base station, the control mode of the machine 20 is set to the autonomous control mode.
  • the mode change unit 124 changes from a state in which the base station 200 is the default base station to a state in which the base station 200 is not the default base station (handover from the default base station to another base station occurs).
  • the server control mode is changed to the autonomous control mode.
  • the mode changing unit 124 has switched from a state in which the base station 200 is not the default base station to a state in which the base station 200 is the default base station (handover from another base station to the default base station has occurred).
  • the autonomous control mode is changed to the server control mode.
  • the plurality of control modes may include a stop mode that keeps the main body 30 in a stopped state. If the mode changing unit 124 determines that the base station 200 is the default base station based on the information of the base station 200, the control mode of the machine 20 is changed to the server control mode, and the base station 200 is not the default base station. If it is determined, the control mode of the machine 20 may be set to the stop mode.
  • the mode change unit 124 changes from a state in which the base station 200 is the default base station to a state in which the base station 200 is not the default base station (handover from the default base station to another base station occurs).
  • the control mode of the machine 20 is changed from the server control mode to the stop mode.
  • the mode changing unit 124 has switched from a state in which the base station 200 is not the default base station to a state in which the base station 200 is the default base station (handover from another base station to the default base station has occurred). If so, the control mode of the machine 20 is changed from the stop mode to the server control mode.
  • the mode changing unit 124 may change the control mode so that the communication terminal 400 can be easily connected to the default base station.
  • the plurality of control modes are a first control mode in which the movement range of the main body 30 is farther than a predetermined reference distance from the predetermined base station, and a second control mode in which the movement range of the main body 30 is within the reference distance from the predetermined base station. 2 control modes.
  • the second control mode may be a mode in which the main body 30 is operated at a fixed position.
  • the second control mode may be a mode in which the robot 40 is operated while the automatic guided vehicle 31 is at a fixed position.
  • the main body 30 operates at a position closer to the default base station than in the first control mode. Therefore, according to the second control mode, communication terminal 400 is more likely to be connected to the default base station than in the first control mode.
  • the mode changing unit 124 determines that the base station 200 is not the default base station based on the information of the base station 200 while controlling the machine 20 in the first control mode, the machine 20 The control mode is changed from the first control mode to the second control mode.
  • the symptom detection unit 125 detects the handover symptom of the base station 200 based on the information of the base station 200 .
  • the sign detection unit 125 detects signs of handover based on information on radio waves received by the communication terminal 400 from the base station 200 .
  • the sign detection unit 125 detects a sign of handover when the strength of radio waves received by the communication terminal 400 from the base station 200 is below a predetermined reference strength.
  • the information on the base station 200 further includes information on whether or not the communication terminal 400 has received a connection instruction (hereinafter referred to as a "handover instruction") to a base station 200 other than the currently connected base station 200. You can stay.
  • sign detection section 125 may detect a sign of handover when communication terminal 400 receives a handover command.
  • Sign detection unit 125 detects signs of handover based on both whether communication terminal 400 has received a handover command and information on radio waves received by communication terminal 400 from base station 200. good too. For example, the sign detection unit 125 detects a sign of handover when the communication terminal 400 has received a handover command and the strength of the radio wave received by the communication terminal 400 from the base station 200 is below the reference strength. You may
  • the communication terminal 400 may be configured to detect a sign of handover, and may be configured to include the detection result of the sign of handover in the information of the base station 200 and notify the host system 11 of it.
  • the sign detection unit 125 detects the sign of handover based on the detection result of the sign of handover by the communication terminal 400 .
  • the mode changing unit 124 may change the control mode based on the handover symptom when the symptom detecting unit 125 detects the handover symptom.
  • the mode changing unit 124 may change the control mode based on signs of handover so as to reduce the impact of handover.
  • the mode changing unit 124 may change the server control mode to the autonomous control mode or the stop mode when the sign detection unit 125 detects a sign of handover during execution of the server control mode described above. After switching the server control mode to the autonomous control mode or the stop mode, the mode changing unit 124 changes the autonomous control mode to the server when the sign detection unit 125 no longer detects signs of handover due to handover completion or the like. You can change to control mode.
  • the mode changing unit 124 may change the control mode based on the signs of handover so as to reduce the signs of handover.
  • the plurality of control modes are a first control mode in which the movement range of the main body 30 reaches a position farther than a predetermined reference distance from the connected base station, and a first control mode in which the movement range of the main body 30 reaches a reference distance from the connected base station. and a second control mode that falls within the range.
  • the second control mode may be a mode in which the main body 30 is operated at a fixed position.
  • the main body 30 operates at a position closer to the connected base station than in the first control mode. Therefore, according to the second control mode, signs of handover are reduced compared to the first control mode.
  • the mode changing unit 124 changes the control mode of the machine 20 to the first control mode when the sign detecting unit 125 detects a sign of handover while the machine 20 is being controlled in the first control mode. to the second control mode.
  • the communication control unit 111 may control the communication terminal 400 to reduce the handover symptom when the symptom detection unit 125 detects the handover symptom.
  • the communication control unit 111 designates the connected base station 200 and stores a connection destination restriction request in the transmission buffer 212 so as to reduce the likelihood of handover.
  • the transmitting/receiving unit 411 controls the transmitting/receiving direction of radio signals by beamforming or the like so as to reduce the signs of handover.
  • the mode changing unit 124 and the sign detecting unit 125 may be provided in the server device 100 .
  • FIG. 7 is a block diagram illustrating hardware configurations of the server apparatus 100 and the base station 200.
  • server device 100 has circuit 190 .
  • Circuitry 190 includes processor 191 , memory 192 , storage 193 and user interface 195 .
  • Storage 193 is a non-volatile storage medium. Specific examples of the storage 193 include a hard disk, flash memory, and the like.
  • the storage 193 may be a portable storage medium such as an optical disc.
  • Storage 193 stores a program for configuring each functional block described above in server device 100 .
  • the memory 192 is a temporary storage medium such as random access memory, and temporarily stores programs loaded from the storage 193 .
  • the processor 191 is composed of one or more arithmetic elements, and executes a program loaded in the memory 192 to cause the server device 100 to configure each of the functional blocks described above.
  • Communication port 194 communicates with base station 200 in response to requests from processor 191 .
  • the base station 200 has a circuit 290.
  • Circuitry 290 includes processor 291 , memory 292 , storage 293 , communication port 294 and antenna 295 .
  • Storage 293 is a non-volatile storage medium. Specific examples of the storage 293 include a hard disk, flash memory, and the like.
  • the storage 293 may be a portable storage medium such as an optical disc.
  • Storage 293 stores a program for configuring each functional block described above in base station 200 .
  • the memory 292 is a temporary storage medium such as random access memory, and temporarily stores programs loaded from the storage 293 .
  • the processor 291 is composed of one or more arithmetic elements, and executes a program loaded in the memory 292 to cause the base station 200 to configure each of the above functional blocks.
  • Communication port 294 communicates with communication port 194 in response to requests from processor 291 .
  • Antenna 295 transmits and receives signals for mobile radio communication in response to requests from processor 291 .
  • FIG. 8 is a block diagram illustrating the hardware configuration of the local controller 300 and the communication terminal 400.
  • local controller 300 includes circuitry 390 .
  • Circuitry 390 includes processor 391 , memory 392 , storage 393 , communication port 394 and drive circuitry 395 .
  • the storage 393 is a non-volatile storage medium. Specific examples of the storage 393 include a hard disk, flash memory, and the like. The storage 393 may be a portable storage medium such as an optical disc. The storage 393 stores programs for causing the local controller 300 to configure each functional block described above.
  • the memory 392 is a temporary storage medium such as random access memory, and temporarily stores programs loaded from the storage 393 .
  • the processor 391 is composed of one or more arithmetic elements, and executes a program loaded in the memory 392 to cause the local controller 300 to configure each of the above functional blocks.
  • Communication port 394 communicates with communication terminal 400 in response to a request from processor 391 .
  • the drive circuit 395 outputs drive power to the main body 30 and acquires feedback information from the main body 30 in response to a request from the processor 391 .
  • the communication terminal 400 has a circuit 490.
  • Circuit 490 has processor 491 , memory 492 , storage 493 , communication port 494 and antenna 495 .
  • Storage 493 is a non-volatile storage medium. Specific examples of the storage 493 include a hard disk, flash memory, and the like.
  • the storage 493 may be a portable storage medium such as an optical disc.
  • Storage 493 stores a program for configuring communication terminal 400 with each functional block described above.
  • the memory 492 is a temporary storage medium such as random access memory, and temporarily stores programs loaded from the storage 493 .
  • Processor 491 is composed of one or more arithmetic elements, and executes a program loaded in memory 492 to cause communication terminal 400 to configure each of the functional blocks described above.
  • Communication port 494 communicates with communication port 394 in response to requests from processor 491 .
  • Antenna 495 transmits and receives signals for mobile radio communication in response to requests from processor 491 .
  • Control procedure A control procedure including a communication procedure by the communication system 10 will be described below as an example of the control method.
  • This control procedure is based on the connection procedure between the communication terminal 400 and the base station 200, the control procedure of the communication terminal 400 by the host system 11, the control mode change procedure based on the information of the base station 200, and the signs of handover. It includes a control mode change procedure, a control procedure in server control mode, and a control procedure in autonomous control mode. Each procedure is exemplified below.
  • step S ⁇ b>01 the base station information acquisition unit 414 acquires information on the base station 200 .
  • step S ⁇ b>02 the notification unit 415 notifies the local controller 300 of information on the base station 200 .
  • step S ⁇ b>03 the transmitting/receiving section 411 checks whether or not a request for connection with the base station 200 has been received from the local controller 300 .
  • step S03 the connection request has not been received
  • step S04 the transmission/reception unit 411 checks whether or not a request for connection destination restriction (for example, a request for beamforming or the like described above) has been received from the local controller 300 . If it is determined in step S04 that the request for connection destination restriction has not been received, communication terminal 400 returns the process to step S01.
  • a request for connection destination restriction for example, a request for beamforming or the like described above
  • step S05 the transmitting/receiving unit 411 controls the transmitting/receiving direction of the radio signal so that the transmitting/receiving unit 411 can easily connect to the base station 200 specified in the connection destination restriction request.
  • step S03 If it is determined in step S03 that a connection request has been received, the communication terminal 400 executes step S06. In step S ⁇ b>06 , the transmission/reception unit 411 establishes connection with the base station 200 .
  • Control procedure of communication terminal by host system The procedure described below can be executed by both the server device 100 and the local controller 300 when the connection between the base station 200 and the communication terminal 400 is established. Assuming that the connection between the base station 200 and the communication terminal 400 has not been established, the following procedure will be described as being executed by the local controller 300 .
  • the local controller 300 first executes steps S11 and S12.
  • step S ⁇ b>11 the communication control unit 311 waits for notification of information on the base station 200 from the notification unit 415 .
  • the communication control unit 311 waits for notification from the notification unit 415 of information on the base station 200 to which the communication terminal 400 can connect.
  • the base station 200 to which the communication terminal 400 can connect is hereinafter referred to as a "candidate base station 200".
  • step S12 the communication control unit 311 checks whether the candidate base station 200 is the default base station based on the information of the candidate base station 200. If it is determined in step S12 that the candidate base station 200 is not the default base station, the communication control section 311 executes steps S13, S14, and S15.
  • step S13 the communication control unit 311 specifies the default base station and requests the transmission/reception unit 411 to limit the connection destination.
  • the transmitting/receiving section 411 controls the transmitting/receiving direction of the radio signal so as to facilitate connection to the default base station (step S05 above).
  • step S ⁇ b>14 communication control section 311 waits for notification section 415 to notify the candidate base station 200 information again.
  • step S ⁇ b>15 communication control section 311 checks whether candidate base station 200 is the default base station based on information on candidate base station 200 .
  • step S15 If it is determined in step S15 that the candidate base station 200 is not the default base station, the local controller 300 executes step S16.
  • step S16 the communication control section 311 causes the motion control section 312 to move the body 30 so that the communication terminal 400 approaches the default base station. After that, the local controller 300 returns the process to step S13.
  • step S12 If it is determined in step S12 that the candidate base station 200 is the default base station, or if it is determined in step S15 that the candidate base station 200 is the default base station, the local controller 300 executes step S17.
  • step S ⁇ b>17 the communication control unit 311 requests the transmission/reception unit 411 to connect with the base station 200 .
  • the transmitting/receiving unit 411 establishes connection with the base station 200 (step S06 above). This completes the control procedure of communication terminal 400 .
  • Step S ⁇ b>21 the communication control unit 111 waits for notification of information on the base station 200 from the notification unit 415 .
  • step S ⁇ b>22 based on the information about the base station 200 notified from the notification unit 415 , the communication control unit 111 confirms whether or not the connection between the communication terminal 400 and the base station 200 is maintained. If it is determined in step S22 that the connection between communication terminal 400 and base station 200 is maintained, server device 100 executes step S23. In step S23, based on the information about the base station 200 acquired by the communication control section 111, the mode changing section 124 confirms whether or not the base station 200 is the default base station.
  • step S24 the mode changing unit 124 changes the control mode to the server control mode described above. If it is determined in step S23 that the base station 200 is not the default base station, the server device 100 executes step S25. In step S25, the mode changing unit 124 changes the control mode to the autonomous control mode described above. After steps S24 and S25, the server apparatus 100 returns the process to step S21. The server device 100 repeats the above processing until it is determined in step S22 that the connection between the communication terminal 400 and the base station 200 is not maintained. If it is determined in step S22 that the connection between communication terminal 400 and base station 200 is not maintained, server device 100 terminates the process. After that, for example, the procedure of FIG. 10 is executed again.
  • Step S31 the communication control unit 111 waits for notification of information on the base station 200 from the notification unit 415 .
  • step S32 the server device 100 executes step S32.
  • step S ⁇ b>32 the sign detection unit 125 checks whether there is a sign of handover of the base station 200 based on the information of the base station 200 . If it is determined in step S32 that there is no sign of handover, the server apparatus 100 returns the process to step S31.
  • step S33 the communication control unit 111 designates the connected base station 200 and stores a connection destination restriction request in the transmission buffer 212 so as to reduce the signs of handover.
  • the transmitting/receiving unit 411 controls the transmitting/receiving direction of radio signals by beamforming or the like so as to reduce the signs of handover.
  • step S34 the server device 100 executes step S34.
  • step S ⁇ b>34 the communication control unit 111 waits for notification of information on the base station 200 from the notification unit 415 .
  • step S ⁇ b>35 the symptom detection unit 125 confirms whether or not the handover symptom of the base station 200 has been resolved based on the information of the base station 200 .
  • step S35 If it is determined in step S35 that the sign of handover of the base station 200 has not been resolved, the server device 100 executes steps S36, S37, and S38.
  • step S36 the mode changing unit 124 changes the server control mode described above to the autonomous control mode described above.
  • step S ⁇ b>37 the communication control unit 111 waits for notification of information on the base station 200 from the notification unit 415 .
  • step S38 the symptom detection unit 125 checks whether the symptom of handover of the base station 200 has been resolved due to the completion of handover or the like, based on the information of the base station 200.
  • step S38 If it is determined in step S38 that the symptom of handover has not been resolved, the server apparatus 100 returns the process to step S37. If it is determined in step S38 that the signs of handover have been resolved, the server apparatus 100 executes step S39. In step S39, the mode changing unit 124 changes the autonomous control mode to the server control mode.
  • step S31 the server device 100 returns the process to step S31. If it is determined in step S35 that the sign of handover of the base station 200 has been resolved, the server apparatus 100 returns the process to step S31 without executing steps S36, S37, S38, and S39. The server apparatus 100 repeatedly executes the above procedure.
  • Step S ⁇ b>41 the information receiving section 121 acquires feedback information representing the current position/orientation of the main body 30 described above.
  • step S42 the command calculation unit 122 calculates a target position/orientation for each control cycle based on a predetermined operation program, and causes the current position/orientation of the main body 30 to follow the target position/orientation. Calculate the directive.
  • step S ⁇ b>43 the command transmission unit 123 transmits the motion command to the local controller 300 .
  • step S44 the command calculator 122 checks whether or not the control cycle has elapsed immediately before the start of step S41.
  • step S44 the server device 100 executes step S46.
  • step S46 the command calculator 122 checks whether the control mode has been changed from the server control mode to the autonomous control mode. If it is determined in step S46 that the control mode has not been changed, the server apparatus 100 returns the process to step S44. After that, the server device 100 waits for the control cycle to elapse or for the control mode to be changed.
  • step S45 the command calculation unit 122 confirms whether or not all operations based on the operation program have been completed. If it is determined in step S45 that all operations have not been completed, the server apparatus 100 returns the process to step S41. If it is determined in step S45 that all operations have been completed, the server device 100 completes control in the server control mode.
  • step S46 If it is determined in step S46 that the control mode has been changed, the server device 100 executes step S47.
  • step S47 each of the information receiving unit 121, the command calculating unit 122, and the command transmitting unit 123 starts processing for the autonomous control mode. This completes the control in the server control mode.
  • This procedure is a control procedure executed by the server device 100 in the above-described autonomous control mode. As shown in FIG. 14, the server device 100 executes steps S51 and S52. In step S ⁇ b>51 , the command transmission unit 123 transmits an operation command by autonomous control to the local controller 300 . In step S ⁇ b>52 , the information receiving unit 121 checks whether or not a notification of completion of all operations in autonomous control has been received from the local controller 300 .
  • step S52 If it is determined in step S52 that the notification of completion of all operations has not been received, the server device 100 executes step S53.
  • step S53 the command calculator 122 checks whether the control mode has been changed from the autonomous control mode to the server control mode. If it is determined in step S53 that the control mode has not been changed, the server apparatus 100 returns the process to step S52. After that, the server device 100 waits for receiving a notification of completion of all operations or for changing the control mode.
  • step S52 If it is determined in step S52 that the notification of completion of all operations has been received, the server device 100 completes control in the autonomous control mode. If it is determined in step S53 that the control mode has been changed, the server apparatus 100 executes step S54. In step S54, each of the information receiving unit 121, the command calculating unit 122, and the command transmitting unit 123 starts processing for the server control mode. This completes the control in the autonomous control mode.
  • a host system 11 having a client device 20 and a server device 100 that performs inter-device communication with the client device 20, and the server device 100 that is connected to the client device 20 and performs mobile wireless communication for inter-device communication.
  • a communication terminal 400 that communicates with a base station 200 connected to a communication system 10 , wherein the communication terminal 400 notifies information of the base station 200 to a host system 11 .
  • Base station 200 with which communication terminal 400 communicates may affect the reliability of inter-device communication in host system 11 .
  • the communication terminal 400 notifies the host system 11 of information on the base station 200 of the communication partner. Therefore, in the host system 11, based on the information of the base station 200, it is possible to deal with the above-mentioned influence. Therefore, it is effective in improving the reliability of inter-device communication by mobile wireless communication.
  • the host system 11 changes the control mode from the mode in which the server device 100 controls the motion of the client device 20 through inter-device communication, so that the client device 20 autonomously controls the motion.
  • the server device 100 includes an information receiving unit 121 that receives feedback information representing the state of the client device 20, a command calculation unit 122 that calculates a motion command based on the feedback information, and a communication between devices.
  • the host system 11 detects signs of handover of the base station 200 based on the information of the base station 200, and changes the control mode based on the signs of handover, (2) to (5). 10.
  • a communication system 10 according to any of the preceding claims. Prior to the handover, the host system 11 can easily take measures such as avoiding the handover or changing the control mode so as not to be affected by the handover.
  • the host system 11 If the host system 11 detects a sign of handover while controlling the client device 20 in the first control mode, it compares the first control mode with the first control mode and connects.
  • the communication system 10 according to any one of (1) to (7), wherein the communication terminal 400 notifies the host system 11 of identification information of the base station 200 as information of the base station 200 .
  • the host system 11 can more easily deal with the above-mentioned influence (the influence of the base station 200 on the reliability of inter-device communication).
  • a communication terminal 400 that performs mobile wireless communication, comprising a base station information acquisition unit 414 that acquires information on the base station 200, and a notification unit 415 that notifies the system of the information on the base station 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信システム10は、クライアント装置20と、クライアント装置20と装置間通信を行うサーバ装置100と、を有する上位システム11と、クライアント装置20に接続され、装置間通信のための移動体無線通信をサーバ装置100に接続された基地局200と行う通信端末400と、を備え、通信端末400は、基地局200の情報を上位システム11に通知する。

Description

通信システム及び通信端末
 本開示は、通信システム及び通信端末に関する。
 特許文献1には、ロボットと、加工装置と、ロボットを制御するロボットコントローラと、加工装置を制御する加工装置コントローラと、ロボットコントローラ及び加工装置コントローラに対する指令を生成するプログラマブルロジックコントローラとを備えるシステムが開示されている。
特開2019-209454号公報
 本開示は、移動体無線通信による装置間通信の信頼性向上に有効な通信システムを提供する。
 本開示の一側面に係る通信システムは、クライアント装置と、クライアント装置と装置間通信を行うサーバ装置と、を有する上位システムと、クライアント装置に接続され、装置間通信のための移動体無線通信をサーバ装置に接続された基地局と行う通信端末と、を備え、通信端末は、基地局の情報を上位システムに通知する。
 本開示の他の側面に係る通信端末は、互いに装置間通信を行うクライアント装置とサーバ装置とを有する上位システムのクライアント装置に接続され、サーバ装置に接続された基地局との間で、装置間通信のための移動体無線通信を行う通信端末であって、基地局の情報を取得する基地局情報取得部と、基地局の情報をシステムに通知する通知部と、を備える。
 本開示によれば、移動体無線通信による装置間通信の信頼性向上に有効な通信システムを提供することができる。
マシンシステムの構成を例示する模式図である。 ロボットの構成を例示する模式図である。 通信端末から通知される基地局の情報に基づいて、サーバ装置が制御モードを変更するシステムを例示する模式図である。 通信端末及びローカルコントローラの機能的な構成を例示するブロック図である。 基地局及びサーバ装置の機能的な構成を例示するブロック図である。 サーバ装置におけるコントローラの機能的な構成を例示するブロック図である。 サーバ装置及び基地局のハードウェア構成を例示するブロック図である。 通信端末及びローカルコントローラのハードウェア構成を例示するブロック図である。 通信端末と基地局との接続手順を例示するフローチャートである。 上位システムによる通信端末の制御手順を例示するフローチャートである。 基地局の情報に基づく制御モードの変更手順を例示するフローチャートである。 ハンドオーバーの兆候に基づく制御モードの変更手順を例示するフローチャートである。 サーバ制御モードによる制御手順を例示するフローチャートである。 自律制御モードによる制御手順を例示するフローチャートである。
 以下、実施形態について、図面を参照しつつ詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。
〔マシンシステム〕
 図1は、マシンシステムを例示する模式図である。図1に示すマシンシステム1は、サーバ装置100と、複数のマシン20とを備える。複数のマシン20のそれぞれは、モーションを実施する。図1においては、3のマシン20を図示しているが、マシン20の数はこれに限られない。
 複数のマシン20のそれぞれは、本体30と、ローカルコントローラ300とを有する。本体30は、ローカルコントローラ300により制御され、複数種類のモーションを実施する機械である。本体30の種類に特に制限はない。
 一例として、図1には2種類の本体30A,30Bを示している。本体30Aは移動型のロボットであり、ワークに対し搬送、加工、組立て等を行うためのモーションを実施する。モーションの具体例としては、部品を搬送してワークに取り付けるモーション、ねじ締め工具又は溶接トーチ等の工具を搬送してワークに加工を施すモーション、又はワーク自体を搬送するモーション等が挙げられる。
 本体30は、無人搬送車31と、ロボット40とを有する。無人搬送車31は、ロボット40を支持して移動する。ロボット40は、例えば垂直多関節型の産業ロボットである。図2に示すように、ロボット40は、基部41と、旋回部42と、第1アーム43と、第2アーム44と、手首部45と、先端部46とを有する。基部41は、無人搬送車31の上に設置される。旋回部42は、鉛直な軸線51まわりに回転可能となるように基部41の上に取り付けられている。例えばロボット40は、旋回部42を軸線51まわりに回転可能となるように基部41に取り付ける関節61を有する。第1アーム43は、軸線51に交差(例えば直交)する軸線52まわりに回転可能となるように旋回部42に接続されている。例えばロボット40は、第1アーム43を軸線52まわりに回転可能となるように旋回部42に接続する関節62を有する。交差は、いわゆる立体交差のように、ねじれの関係にあることを含む。以下においても同様である。第1アーム43は、軸線52に交差(例えば直交)する一方向に沿って旋回部42から延びている。
 第2アーム44は、軸線52に平行な軸線53まわりに回転可能となるように第1アーム43の端部に接続されている。例えばロボット40は、第2アーム44を軸線53まわりに回転可能となるように第1アーム43に接続する関節63を有する。第2アーム44は、軸線53に交差(例えば直交)する一方向に沿って第1アーム43の端部から延びるアーム基部47と、同じ一方向に沿ってアーム基部47の端部から更に延びるアーム端部48とを有する。アーム端部48は、アーム基部47に対して軸線54まわりに回転可能である。軸線54は、軸線53に交差(例えば直交)する。例えばロボット40は、アーム端部48を軸線54まわりに回転可能となるようにアーム基部47に接続する関節64を有する。
 手首部45は、軸線54に交差(例えば直交)する軸線55まわりに回転可能となるようにアーム端部48の端部に接続されている。例えばロボット40は、手首部45を軸線55まわりに回転可能となるようにアーム端部48に接続する関節65を有する。手首部45は、軸線55に交差(例えば直行)する一方向に沿ってアーム端部48の端部から延びている。先端部46は、軸線55に交差(例えば直交)する軸線56まわりに回転可能となるように、手首部45の端部に接続されている。例えばロボット40は、先端部46を軸線56まわりに回転可能となるように手首部45に接続する関節66を有する。先端部46にはエンドエフェクタが設けられる。エンドエフェクタの具体例としては、ワークを把持するハンド、ワークに対し加工、組み立て等を行う作業ツール等が挙げられる。
 アクチュエータ71,72,73,74,75,76は、関節61,62,63,64,65,66を駆動する。アクチュエータ71,72,73,74,75,76のそれぞれは、例えば電動モータと、電動モータの動力を関節61,62,63,64,65,66に伝える伝達部(例えば減速機)とを有する。例えばアクチュエータ71は、軸線51まわりに旋回部42を回転させるように関節61を駆動する。アクチュエータ72は、軸線52まわりに第1アーム43を回転させるように関節62を駆動する。アクチュエータ73は、軸線53まわりに第2アーム44を回転させるように関節63を駆動する。アクチュエータ74は、軸線54まわりにアーム端部48を回転させるように関節64を駆動する。アクチュエータ75は、軸線55まわりに手首部45を回転させるように関節65を駆動する。アクチュエータ76は、軸線56まわりに先端部46を回転させるように関節66を駆動する。
 本体30は、必ずしも上述した移動型のロボットに限られず、定位置に固定されたロボットであってもよい。本体30は、ワーク等の搬送対象物を搬送するモーションを実施する無人搬送車であってもよい。
 本体30Bは、ワーク等の搬送対象物を搬送する無人搬送車である。本体30Bは、無人搬送車33と、荷置台34とを有する。無人搬送車33は、荷置台34を支持して移動する。荷置台34は、搬送対象物を支持する。
 サーバ装置100は、複数のマシン20のローカルコントローラ300と装置間通信を行い、ワークの生産等を目的とした一連のモーションを複数のマシン20の本体30に実施させる。装置間通信のために、マシンシステム1は通信システム10を備えている。
 通信システム10は、上位システム11と、通信端末400とを備える。上位システム11は、クライアント装置の一例である上記マシン20と、クライアント装置と装置間通信を行う上記サーバ装置100と、を有する。
 装置間通信は、例えば上述したように、モーションを制御するために装置間で行われる通信である。このような装置間通信は、制御指令の送受信、制御中におけるフィードバック情報の送受信、制御指令に応じた動作完了通知の送受信等を含み得る。
 通信端末400は、ローカルコントローラ300に接続され、装置間通信のための移動体無線通信をサーバ装置100に接続された基地局200と行う。移動体無線通信の一例としては、第5世代移動通信システムによる通信(5G通信)が挙げられるが、必ずしもこれに限られない。例えば通信端末400は、本体30に固定されており、本体30と共に移動する。このため、ローカルコントローラ300により通信端末400を移動させることが可能となっている。
 図3に示すように、サーバ装置100には複数の基地局200が接続され得る。サーバ装置100に複数の基地局200が接続され得るシステムにおいては、通信端末400と複数の基地局200との接続状況が装置間通信の信頼性に影響を及ぼす場合があり得る。例えば、複数の基地局200同士で互いに仕様が異なっていて、通信端末400が接続される基地局200の仕様によっては、装置間通信の要求を満たす移動体無線通信を行い得ない可能性がある。例えば、通信速度の遅い基地局200では、装置間通信を十分な速度で行うことができない可能性がある。仕様上の通信速度が十分な基地局200であっても、多くの端末により共用されるために、装置間通信を十分な速度で行うことができない可能性がある。電波強度が弱い基地局200では、装置間通信に必要な通信の信頼性を確保できない可能性がある。また、複数の基地局200間で生じるハンドオーバーによって、必要な通信サイクルで装置間通信を継続することが困難となる可能性がある。
 そこで、通信端末400は、基地局200の情報を上位システム11に通知するように構成される。このため、上位システム11において、基地局200の情報に基づいて、上述の影響への対応が可能となる。上述の影響への対応の一例としては、図3に示すように、サーバ装置100により、本体30の制御モードを変更することが挙げられる。
 通信端末400は、基地局200の情報を上位システム11に通知することの一例として、基地局200の情報をローカルコントローラ300に通知してもよく、基地局200の情報をサーバ装置100に通知してもよく、基地局200の情報をローカルコントローラ300及びサーバ装置100の両方に通知してもよい。基地局200の情報をサーバ装置100に通知することは、基地局200の情報をローカルコントローラ300に通知し、基地局200の情報をローカルコントローラ300からサーバ装置100に送信させることを含む。
 基地局200の情報は、接続済みの基地局200の情報と、未接続の基地局200の情報との両方を含み得る。基地局200の情報は、例えば基地局200の識別情報を含む。基地局200の識別情報は、例えば基地局200の個体を識別し得る情報であってもよく、基地局200の属性を識別し得る情報であってもよい。基地局200の属性を識別し得る情報の例としては、基地局200の種別を表す情報、基地局200の仕様を表す情報等が挙げられる。
 基地局200の情報は、ローカルコントローラ300と通信端末400との間における通信状態の情報を含んでもよい。通信状態の情報の例としては、基地局200から受信している電波の情報(例えば電波の強度の情報)、接続済みの基地局200から他の基地局200へのハンドオーバーの兆候を表す情報等が挙げられる。
 図4は、通信端末400及びローカルコントローラ300の機能的な構成を例示するブロック図である。図4に示すように、通信端末400は、機能上の構成要素(以下、「機能ブロック」という。)として、送受信部411と、送信バッファ412と、受信バッファ413と、基地局情報取得部414と、通知部415とを有する。送受信部411は、基地局200との間で移動体無線通信を行う。送信バッファ412は、移動体無線通信により送受信部411が基地局200に送信する情報を一時的に格納する。受信バッファ413は、移動体無線通信により送受信部411が基地局200から受信した情報を一時的に格納する。基地局情報取得部414は、送受信部411が基地局200から受信した情報から基地局200の情報を取得する。通知部415は、基地局200の情報をローカルコントローラ300に通知する。
 図4に示すように、ローカルコントローラ300は、機能ブロックとして、通信制御部311と、モーション制御部312とを有する。通信制御部311は、サーバ装置100と装置間通信を行う。例えば通信制御部311は、通信端末400から基地局200に送信させる情報を送信バッファ412に格納し、通信端末400が基地局200から受信した情報を受信バッファ413から読み出す。
 モーション制御部312は、通信制御部311がサーバ装置100から受信した制御指令に基づいて本体30を制御する。モーション制御部312は、本体30の制御の少なくとも一部を、サーバ装置100からの制御指令に基づくことなく自律的に行い得るように構成されていてもよい。この場合、ローカルコントローラ300は、例えば自身が記憶する動作プログラムに基づいて本体30を制御する。動作プログラムは、時系列に並ぶ複数の動作命令を含む。複数の動作命令のそれぞれは、本体30の動作目標位置及び動作目標速度を含む。本体30の動作目標位置の一例として、先端部46の動作目標位置が挙げられる。先端部46の動作目標位置は、先端部46の動作目標姿勢を含む。
 通信制御部311は、通知部415から基地局200の情報の通知を受ける。基地局200の情報の通知を受けた場合に、通信制御部311は、基地局200の情報を送信バッファ412に格納し、通信端末400から基地局200に送信させてもよい。これにより、基地局200の情報がサーバ装置100にも通知される。
 なお、通信端末400が、ローカルコントローラ300を経ることなく基地局200の情報をサーバ装置100に通知するように構成されていてもよい。例えば、通知部415が、基地局200の情報を送信バッファ412に格納し、通信端末400から基地局200に送信させてもよい。
 基地局200の情報が基地局200の識別情報を含む場合に、通信制御部311は、予め定められた基地局200(既定基地局)に接続されるように通信端末400を制御してもよい。例えば通信制御部311は、既定基地局に優先的に接続されるように、既定基地局を指定して、送受信部411に接続先の制限を要求する。送受信部411は、既定基地局に接続され易くなるように、ビームフォーミング等により無線信号の送受信方向を制御する。
 通信制御部311は、通信端末400が既定基地局に近付くようにモーション制御部312により本体30を移動させた後に、送受信部411に基地局200との接続(再接続を含む)を要求してもよい。通信制御部311は、通信端末400が既定基地局に近付くようにモーション制御部312により本体30を移動させることと、既定基地局に優先的に接続されるように送受信部411を制御することとの両方を実行してもよい。
 図5は、基地局200及びサーバ装置100の機能的な構成を例示するブロック図である。図5に示すように、基地局200は、機能ブロックとして、送受信部211と、送信バッファ212と、受信バッファ213と、基地局情報付加部214とを有する。送受信部211は、通信端末400との間で移動体無線通信を行う。送信バッファ212は、移動体無線通信により送受信部211が通信端末400に送信する情報を一時的に格納する。受信バッファ213は、移動体無線通信により送受信部211が通信端末400から受信した情報を一時的に格納する。基地局情報付加部214は、送受信部211が通信端末400に送信する情報に、上述の基地局200の情報を付加する。
 サーバ装置100は、機能ブロックとして、通信制御部111と、複数のコントローラ120とを有する。通信制御部111は、ローカルコントローラ300と装置間通信を行う。例えば通信制御部111は、基地局200から通信端末400に送信させる情報を送信バッファ212に格納し、基地局200が通信端末400から受信した情報を受信バッファ213から読み出す。
 上述のように、基地局200の情報が通信端末400から基地局200に送信される場合に、通信制御部111は、基地局200の情報を受信する。これにより、通信制御部111が基地局200の情報の通知を受けることとなる。既定基地局に接続されるように通信端末400を制御することを、通信制御部311の代わりに通信制御部111が行ってもよい。例えば通信制御部111は、ビームフォーミング等による接続先の制限の要求を送信バッファ212に格納する。
 通信端末400が既定基地局に近付くようにモーション制御部312により本体30を移動させた後に、送受信部411に基地局200との接続(再接続を含む)を要求することを、通信制御部311の代わりに通信制御部111が行ってもよい。例えば通信制御部111は、通信端末400が既定基地局に近付くようにモーション制御部312により本体30を移動させる指令を送信バッファ212に格納し、本体30の移動の完了通知を受信バッファ213から読み出した後に、送受信部411に対する基地局200との接続要求を送信バッファ212に格納する。
 複数のコントローラ120のそれぞれは、通信制御部111が実行する装置間通信によって、複数のマシン20をそれぞれ制御する。例えば図6に示すように、複数のコントローラ120のそれぞれは、機能ブロックとして、情報受信部121と、指令算出部122と、指令送信部123と、モード変更部124と、兆候検出部125とを有する。
 情報受信部121は、装置間通信により、対応するマシン20の状態を表すフィードバック情報を受信する。フィードバック情報の例としては、本体30の現在位置・姿勢を表す情報が挙げられる。本体30の現在位置・姿勢の例としては、本体30Aにおける無人搬送車31の現在位置・姿勢と、無人搬送車31上におけるロボット40の現在位置・姿勢等が挙げられる。ロボット40の現在位置・姿勢を表す情報は、関節61,62,63,64,65,66の現在角度であってもよい。フィードバック情報は、サーバ装置100からの指令に基づく動作が完了しているか否かを表すステータス情報であってもよい。
 指令算出部122は、フィードバック情報に基づいてモーション指令を算出する。モーション指令は、本体30にモーションを実施させることをローカルコントローラ300に実行させる指令である。モーション指令の例としては、本体30の現在位置・姿勢を目標位置・姿勢に追従させるための速度指令又は力(トルク)指令が挙げられる。モーション指令は、予め定められた一連の動作の開始指令であってもよい。
 指令送信部123は、装置間通信により、モーション指令を対応するマシン20のローカルコントローラ300に送信する。
 モード変更部124は、基地局200の情報に基づいて、コントローラ120によるマシン20の制御モードを変更する。例えばモード変更部124は、コントローラ120によるマシン20の制御モードを、予め定められた複数のモードのいずれかから他のいずれかに変更する。
 モード変更部124は、通信端末400がいずれのコントローラ120に接続されているかの影響を小さくするように制御モードを変更してもよい。例えば、複数の制御モードは、サーバ制御モードと、自律制御モードとを含んでいてもよい。サーバ制御モードは、本体30のモーションを装置間通信によってコントローラ120が制御するモードである。自律制御モードは、本体30のモーションをローカルコントローラ300が自律的に制御するモードである。この場合、コントローラ120は、例えばモーションの開始指令をローカルコントローラ300に送信し、モーションの完了通知をローカルコントローラ300から受信する。自律制御モードにおいては、サーバ制御モードに比較して装置間通信の頻度が低い。このため、自律制御モードによれば、サーバ制御モードによるのに比較して、通信端末400がいずれのコントローラ120に接続されているかの影響が小さくなる。
 サーバ制御モードの一例としては、本体30のモーションをサーバ装置100によってフィードバック制御するモードが挙げられる。この制御モードにおいて、コントローラ120は、情報受信部121によるフィードバック情報の受信と、指令算出部122によるモーション指令の生成と、指令送信部123によるモーション指令の送信とを、所定の制御サイクルで繰り返し実行する。
 例えば情報受信部121は、本体30の現在位置・姿勢を表すフィードバック情報を受信する。指令算出部122は、予め定められた動作プログラムに基づいて、制御サイクルごとの目標位置・姿勢を算出し、本体30の現在位置・姿勢を目標位置・姿勢に追従させるようにモーション指令を算出する。本体30の現在位置・姿勢を目標位置・姿勢に追従させるとは、目標位置・姿勢と現在位置・姿勢との偏差が所定範囲内に留まるように、目標位置・姿勢の推移に応じて現在位置・姿勢を推移させることを意味する。例えば指令算出部122は、目標位置・姿勢と現在位置・姿勢との偏差に比例演算、比例・積分演算、又は比例・積分・微分演算等を施してモーション指令を算出する。
 このようなサイクリックな制御を、装置間通信を介して行う場合、通信遅延によって、フィードバック情報の受信タイミングとモーション指令の受信タイミングとにばらつきが生じる可能性がある。このばらつきを抑制するために、指令送信部123は、モーション指令を読み出すべき制御サイクルを指定する第1サイクル情報を付加してモーション指令をローカルコントローラ300に送信してもよい。この場合、第1サイクル情報により指定された制御サイクルまでは受信したモーション指令を通信制御部311が記憶しておき、当該制御サイクルにてモーション指令をモーション制御部312が読み出し、読み出したモーション指令に基づいて本体30を制御する。
 同様にローカルコントローラ300の通信制御部311は、フィードバック情報を読み出すべき制御サイクルを指定する第2サイクル情報を付加してフィードバック情報をサーバ装置100に送信してもよい。この場合、第2サイクル情報により指定された制御サイクルまでは、フィードバック情報を通信制御部111が記憶しておき、当該制御サイクルにてフィードバック情報を情報受信部121が読み出し、読み出したフィードバック情報に基づいて指令算出部122がモーション指令を生成する。これらにより、フィードバック情報及びモーション指令の受信タイミングのばらつきが、本体30のモーションに及ぼす影響が抑制される。
 このようなサイクリックなサーバ制御モードを高い信頼性で行うためには、基地局200の性能に所定条件が求められる場合がある。このような場合に、所定条件を満たす基地局200が上述の既定基地局とされる。モード変更部124は、基地局200の情報に基づいて、基地局200(通信端末400が接続されている基地局200)が既定基地局であると判定した場合にはマシン20の制御モードをサーバ制御モードとし、基地局200が既定基地局ではないと判定した場合にはマシン20の制御モードを自律制御モードとする。
 例えばモード変更部124は、基地局200が既定基地局である状態から、基地局200が既定基地局ではない状態に切り替わった(既定基地局から他の基地局へのハンドオーバーが発生した)と判定した場合に、サーバ制御モードを自律制御モードに変更する。また、モード変更部124は、基地局200が既定基地局ではない状態から、基地局200が既定基地局である状態に切り替わった(他の基地局から既定基地局へのハンドオーバーが発生した)と判定した場合に、自律制御モードをサーバ制御モードに変更する。
 複数の制御モードは、本体30を停止した状態に保つ停止モードを含んでいてもよい。モード変更部124は、基地局200の情報に基づいて、基地局200が既定基地局であると判定した場合にはマシン20の制御モードをサーバ制御モードとし、基地局200が既定基地局ではないと判定した場合にはマシン20の制御モードを停止モードとしてもよい。
 例えばモード変更部124は、基地局200が既定基地局である状態から、基地局200が既定基地局ではない状態に切り替わった(既定基地局から他の基地局へのハンドオーバーが発生した)と判定した場合に、マシン20の制御モードをサーバ制御モードから停止モードに変更する。また、モード変更部124は、基地局200が既定基地局ではない状態から、基地局200が既定基地局である状態に切り替わった(他の基地局から既定基地局へのハンドオーバーが発生した)と判定した場合に、マシン20の制御モードを停止モードからサーバ制御モードに変更する。
 モード変更部124は、通信端末400が既定基地局に接続され易くなるように制御モードを変更してもよい。複数の制御モードは、本体30の移動範囲が、既定基地局から所定の基準距離よりも遠い位置に至る第1制御モードと、本体30の移動範囲が、既定基地局から基準距離以内に収まる第2制御モードとを含んでいてもよい。第2制御モードは、本体30を定位置で動作させるモードであってもよい。例えば第2制御モードは、無人搬送車31が定位置にある状態でロボット40を動作させるモードであってもよい。
 第2制御モードによれば、第1制御モードに比較して既定基地局に近い位置で本体30が動作することとなる。このため、第2制御モードによれば、第1制御モードに比較して、通信端末400が既定基地局に接続され易くなる。例えばモード変更部124は、第1制御モードにてマシン20を制御している最中に、基地局200の情報に基づいて基地局200が既定基地局ではないと判定した場合に、マシン20の制御モードを第1制御モードから第2制御モードに変更する。
 兆候検出部125は、基地局200の情報に基づいて、基地局200のハンドオーバーの兆候を検出する。例えば兆候検出部125は、通信端末400が基地局200から受信している電波の情報等に基づいて、ハンドオーバーの兆候を検出する。例えば兆候検出部125は、通信端末400が基地局200から受信している電波の強度が所定の基準強度を下回った場合に、ハンドオーバーの兆候を検出する。
 基地局200の情報は、接続中の基地局200とは別の基地局200との接続命令(以下、「ハンドオーバー命令」という。)を通信端末400が受けているか否かの情報を更に含んでいてもよい。この場合、兆候検出部125は、通信端末400がハンドオーバー命令を受けている場合に、ハンドオーバーの兆候を検出してもよい。
 兆候検出部125は、通信端末400がハンドオーバー命令を受けているか否かと、通信端末400が基地局200から受信している電波の情報との両方に基づいて、ハンドオーバーの兆候を検出してもよい。例えば兆候検出部125は、通信端末400がハンドオーバー命令を受けており、且つ通信端末400が基地局200から受信している電波の強度が基準強度を下回った場合に、ハンドオーバーの兆候を検出してもよい。
 通信端末400がハンドオーバーの兆候を検出するように構成され、ハンドオーバーの兆候の検出結果が基地局200の情報に含めて上位システム11に通知するように構成されていてもよい。この場合、兆候検出部125は、通信端末400によるハンドオーバーの兆候の検出結果に基づいて、ハンドオーバーの兆候を検出する。
 モード変更部124は、兆候検出部125がハンドオーバーの兆候を検出した場合に、ハンドオーバーの兆候に基づいて制御モードを変更してもよい。
 例えばモード変更部124は、ハンドオーバーの兆候に基づいて、ハンドオーバーの影響を小さくするように制御モードを変更してもよい。一例として、モード変更部124は、上述したサーバ制御モードの実行中に兆候検出部125がハンドオーバーの兆候を検出した場合に、サーバ制御モードを自律制御モード又は停止モードに変更してもよい。サーバ制御モードを自律制御モード又は停止モードに切り替えた後、モード変更部124は、ハンドオーバーの完了等により、兆候検出部125がハンドオーバーの兆候を検出しなくなった場合に、自律制御モードをサーバ制御モードに変更してもよい。
 モード変更部124は、ハンドオーバーの兆候に基づいて、ハンドオーバーの兆候を小さくするように制御モードを変更してもよい。複数の制御モードは、本体30の移動範囲が、接続中の基地局から所定の基準距離よりも遠い位置に至る第1制御モードと、本体30の移動範囲が、接続中の基地局から基準距離以内に収まる第2制御モードとを含んでいてもよい。第2制御モードは、本体30を定位置で動作させるモードであってもよい。
 第2制御モードによれば、第1制御モードに比較して接続中の基地局に近い位置で本体30が動作することとなる。このため、第2制御モードによれば、第1制御モードに比較して、ハンドオーバーの兆候が小さくなる。例えばモード変更部124は、第1制御モードにてマシン20を制御している最中に、兆候検出部125によりハンドオーバーの兆候が検出された場合に、マシン20の制御モードを第1制御モードから第2制御モードに変更する。
 通信制御部111は、兆候検出部125によりハンドオーバーの兆候が検出された場合に、ハンドオーバーの兆候を小さくするように通信端末400を制御してもよい。例えば通信制御部111は、ハンドオーバーの兆候を小さくするように、接続中の基地局200を指定して、接続先の制限の要求を送信バッファ212に格納する。送受信部411は、ハンドオーバーの兆候を小さくするように、ビームフォーミング等により無線信号の送受信方向を制御する。
 以上においては、モード変更部124及び兆候検出部125がサーバ装置100に設けられる構成を例示したが、これらがローカルコントローラ300に設けられていてもよい。
 図7は、サーバ装置100及び基地局200のハードウェア構成を例示するブロック図である。図7に示すように、サーバ装置100は、回路190を有する。回路190は、プロセッサ191と、メモリ192と、ストレージ193と、ユーザインタフェース195とを有する。ストレージ193は、不揮発性の記憶媒体である。ストレージ193の具体例としては、ハードディスク、フラッシュメモリ等が挙げられる。ストレージ193は、光ディスクなどの可搬型の記憶媒体であってもよい。ストレージ193は、上述した各機能ブロックをサーバ装置100に構成させるためのプログラムを記憶する。
 メモリ192は、例えばランダムアクセスメモリ等の一時記憶媒体であり、ストレージ193からロードされたプログラムを一時的に記憶する。プロセッサ191は、1以上の演算素子により構成され、メモリ192にロードされたプログラムを実行することにより、サーバ装置100に上記各機能ブロックを構成させる。通信ポート194は、プロセッサ191からの要求に応じて、基地局200と通信する。
 基地局200は、回路290を有する。回路290は、プロセッサ291と、メモリ292と、ストレージ293と、通信ポート294と、アンテナ295とを有する。ストレージ293は、不揮発性の記憶媒体である。ストレージ293の具体例としては、ハードディスク、フラッシュメモリ等が挙げられる。ストレージ293は、光ディスクなどの可搬型の記憶媒体であってもよい。ストレージ293は、上述した各機能ブロックを基地局200に構成させるためのプログラムを記憶している。
 メモリ292は、例えばランダムアクセスメモリ等の一時記憶媒体であり、ストレージ293からロードされたプログラムを一時的に記憶する。プロセッサ291は、1以上の演算素子により構成され、メモリ292にロードされたプログラムを実行することにより、基地局200に上記各機能ブロックを構成させる。通信ポート294は、プロセッサ291からの要求に応じて、通信ポート194と通信する。アンテナ295は、プロセッサ291からの要求に応じて、移動体無線通信用の信号の送受信を行う。
 図8は、ローカルコントローラ300及び通信端末400のハードウェア構成を例示するブロック図である。図8に示すように、ローカルコントローラ300は、回路390を有する。回路390は、プロセッサ391と、メモリ392と、ストレージ393と、通信ポート394と、ドライブ回路395とを有する。
 ストレージ393は、不揮発性の記憶媒体である。ストレージ393の具体例としては、ハードディスク、フラッシュメモリ等が挙げられる。ストレージ393は、光ディスクなどの可搬型の記憶媒体であってもよい。ストレージ393は、上述した各機能ブロックをローカルコントローラ300に構成させるためのプログラムを記憶している。
 メモリ392は、例えばランダムアクセスメモリ等の一時記憶媒体であり、ストレージ393からロードされたプログラムを一時的に記憶する。プロセッサ391は、1以上の演算素子により構成され、メモリ392にロードされたプログラムを実行することにより、ローカルコントローラ300に上記各機能ブロックを構成させる。通信ポート394は、プロセッサ391からの要求に応じて、通信端末400と通信する。ドライブ回路395は、プロセッサ391からの要求に応じて、本体30に駆動電力を出力し、本体30からフィードバック情報を取得する。
 通信端末400は、回路490を有する。回路490は、プロセッサ491と、メモリ492と、ストレージ493と、通信ポート494と、アンテナ495とを有する。ストレージ493は、不揮発性の記憶媒体である。ストレージ493の具体例としては、ハードディスク、フラッシュメモリ等が挙げられる。ストレージ493は、光ディスクなどの可搬型の記憶媒体であってもよい。ストレージ493は、上述した各機能ブロックを通信端末400に構成させるためのプログラムを記憶している。
 メモリ492は、例えばランダムアクセスメモリ等の一時記憶媒体であり、ストレージ493からロードされたプログラムを一時的に記憶する。プロセッサ491は、1以上の演算素子により構成され、メモリ492にロードされたプログラムを実行することにより、通信端末400に上記各機能ブロックを構成させる。通信ポート494は、プロセッサ491からの要求に応じて、通信ポート394と通信する。アンテナ495は、プロセッサ491からの要求に応じて、移動体無線通信用の信号の送受信を行う。
〔制御手順〕
 以下、制御方法の一例として、通信システム10による通信手順を含む制御手順を説明する。この制御手順は、通信端末400と基地局200との接続手順と、上位システム11による通信端末400の制御手順と、基地局200の情報に基づく制御モードの変更手順と、ハンドオーバーの兆候に基づく制御モードの変更手順と、サーバ制御モードによる制御手順と、自律制御モードによる制御手順とを含む。以下、各手順を例示する。
(通信端末と基地局との接続手順)
 図9に示すように、通信端末400は、まずステップS01,S02を実行する。ステップS01では、基地局情報取得部414が基地局200の情報を取得する。ステップS02では、通知部415が、基地局200の情報をローカルコントローラ300に通知する。
 次に、通信端末400はステップS03を実行する。ステップS03では、基地局200との接続要求をローカルコントローラ300から受けているか否かを送受信部411が確認する。ステップS03において、接続要求を受けていないと判定した場合、通信端末400はステップS04を実行する。ステップS04では、送受信部411が、ローカルコントローラ300から接続先の制限の要求(例えば上述したビームフォーミング等の要求)を受けているか否かを確認する。ステップS04において、接続先の制限の要求を受けていないと判定した場合、通信端末400は処理をステップS01に戻す。
 ステップS04において、接続先の制限の要求を受けていると判定した場合、通信端末400はステップS05を実行する。ステップS05では、送受信部411が、接続先の制限の要求において指定された基地局200に接続され易くするように、送受信部411が、無線信号の送受信方向を制御する。
 ステップS03において、接続要求を受けていると判定した場合、通信端末400はステップS06を実行する。ステップS06では、送受信部411が、基地局200との接続を確立する。
(上位システムによる通信端末の制御手順)
 以下に説明する手順は、基地局200と通信端末400との接続が確立された状態において、サーバ装置100及びローカルコントローラ300のいずれによっても実行可能である。基地局200と通信端末400との接続が確立されていない状態を想定し、以下の手順はローカルコントローラ300により実行されるものとして説明する。
 図10に示すように、ローカルコントローラ300は、まずステップS11,S12を実行する。ステップS11では、通知部415から基地局200の情報が通知されるのを通信制御部311が待機する。例えば通信制御部311は、通信端末400が接続可能な基地局200の情報が通知部415から通知されるのを待機する。以下、通信端末400が接続可能な基地局200を「候補基地局200」という。
 ステップS12では、通信制御部311が、候補基地局200の情報に基づいて、候補基地局200が既定基地局であるか否かを確認する。ステップS12において、候補基地局200が既定基地局ではないと判定した場合、通信制御部311はステップS13,S14,S15を実行する。
 ステップS13では、通信制御部311が、既定基地局を指定して、送受信部411に接続先の制限を要求する。これに応じ、既定基地局に接続され易くするように、送受信部411が、無線信号の送受信方向を制御する(上記ステップS05)。ステップS14では、通知部415から候補基地局200の情報が再度通知されるのを通信制御部311が待機する。ステップS15では、通信制御部311が、候補基地局200の情報に基づいて、候補基地局200が既定基地局であるか否かを確認する。
 ステップS15において、候補基地局200が既定基地局ではないと判定した場合、ローカルコントローラ300はステップS16を実行する。ステップS16では、通信端末400が既定基地局に近付くように、通信制御部311がモーション制御部312により本体30を移動させる。その後、ローカルコントローラ300は処理をステップS13に戻す。
 ステップS12において候補基地局200が既定基地局であると判定した場合、又はステップS15において候補基地局200が既定基地局であると判定した場合、ローカルコントローラ300はステップS17を実行する。ステップS17では、通信制御部311が、基地局200との接続を送受信部411に要求する。これに応じ、送受信部411は基地局200との接続を確立する(上記ステップS06)。以上で通信端末400の制御手順が完了する。
(基地局の情報に基づく制御モードの変更手順)
 この手順は、基地局200と通信端末400との接続が確立された後に行われる。図11に示すように、サーバ装置100は、まずステップS21,S22を実行する。ステップS21では、通知部415から基地局200の情報が通知されるのを通信制御部111が待機する。ステップS22では、通知部415から通知された基地局200の情報に基づいて、通信端末400と基地局200との接続が維持されているか否かを通信制御部111が確認する。ステップS22において、通信端末400と基地局200との接続が維持されていると判定した場合、サーバ装置100はステップS23を実行する。ステップS23では、通信制御部111が取得した基地局200の情報に基づいて、基地局200が既定基地局であるか否かをモード変更部124が確認する。
 ステップS23において、基地局200が既定基地局であると判定した場合、サーバ装置100はステップS24を実行する。ステップS24では、モード変更部124が、制御モードを上述のサーバ制御モードにする。ステップS23において、基地局200が既定基地局ではないと判定した場合、サーバ装置100はステップS25を実行する。ステップS25では、モード変更部124が、制御モードを上述の自律制御モードにする。ステップS24,S25の後、サーバ装置100は処理をステップS21に戻す。ステップS22において、通信端末400と基地局200との接続が維持されていないと判定するまで、サーバ装置100は以上の処理を繰り返し実行する。ステップS22において、通信端末400と基地局200との接続が維持されていないと判定した場合、サーバ装置100は処理を終了する。その後は、例えば、図10の手順が再度実行される。
(ハンドオーバーの兆候に基づく制御モードの変更手順)
 この手順は、基地局200と通信端末400との接続が確立され、サーバ装置100によるマシン20の制御が開始された後に実行される。図12に示すように、サーバ装置100は、まずステップS31を実行する。ステップS31では、通信制御部111が、通知部415から基地局200の情報が通知されるのを通信制御部111が待機する。
 次に、サーバ装置100はステップS32を実行する。ステップS32では、兆候検出部125が、兆候検出部125は、基地局200の情報に基づいて、基地局200のハンドオーバーの兆候があるか否かを確認する。ステップS32において、ハンドオーバーの兆候はないと判定した場合、サーバ装置100は処理をステップS31に戻す。
 ステップS32において、ハンドオーバーの兆候があると判定した場合(ハンドオーバーの兆候を検出した場合)、サーバ装置100はステップS33を実行する。ステップS33では、通信制御部111が、ハンドオーバーの兆候を小さくするように、接続中の基地局200を指定して、接続先の制限の要求を送信バッファ212に格納する。送受信部411は、ハンドオーバーの兆候を小さくするように、ビームフォーミング等により無線信号の送受信方向を制御する。
 次に、サーバ装置100はステップS34を実行する。ステップS34では、通信制御部111が、通知部415から基地局200の情報が通知されるのを通信制御部111が待機する。ステップS35では、兆候検出部125が、基地局200の情報に基づいて、基地局200のハンドオーバーの兆候が解消されたか否かを確認する。
 ステップS35において、基地局200のハンドオーバーの兆候が解消されていないと判定した場合、サーバ装置100はステップS36,S37,S38を実行する。ステップS36では、モード変更部124が、上述のサーバ制御モードを上述の自律制御モードに変更する。ステップS37では、通信制御部111が、通知部415から基地局200の情報が通知されるのを通信制御部111が待機する。ステップS38では、兆候検出部125が、基地局200の情報に基づいて、ハンドオーバーの完了等により、基地局200のハンドオーバーの兆候が解消されたか否かを確認する。
 ステップS38において、ハンドオーバーの兆候は解消されていないと判定した場合、サーバ装置100は処理をステップS37に戻す。ステップS38において、ハンドオーバーの兆候は解消されたと判定した場合、サーバ装置100はステップS39を実行する。ステップS39では、モード変更部124が、自律制御モードをサーバ制御モードに変更する。
 その後、サーバ装置100は処理をステップS31に戻す。ステップS35において、基地局200のハンドオーバーの兆候が解消されていると判定した場合、サーバ装置100はステップS36,S37,S38,S39を実行することなく処理をステップS31に戻す。サーバ装置100は以上の手順を繰り返し実行する。
(サーバ制御モードによる制御手順)
 この手順は、上述のサーバ制御モードにおいてサーバ装置100が実行する制御手順である。図13に示すように、サーバ装置100は、ステップS41,S42,S43,S44を実行する。ステップS41では、情報受信部121が上述の本体30の現在位置・姿勢を表すフィードバック情報を取得する。ステップS42では、指令算出部122が、予め定められた動作プログラムに基づいて、制御サイクルごとの目標位置・姿勢を算出し、本体30の現在位置・姿勢を目標位置・姿勢に追従させるようにモーション指令を算出する。ステップS43では、指令送信部123が、モーション指令をローカルコントローラ300に送信する。ステップS44では、ステップS41の開始直前から、制御サイクルが経過したか否かを指令算出部122が確認する。
 ステップS44において、制御サイクルは経過していないと判定した場合、サーバ装置100はステップS46を実行する。ステップS46では、制御モードがサーバ制御モードから自律制御モードに変更されたか否かを指令算出部122が確認する。ステップS46において、制御モードは変更されていないと判定した場合、サーバ装置100は処理をステップS44に戻す。その後、サーバ装置100は、制御サイクルが経過するか、制御モードが変更されるのを待機する。
 ステップS44において、制御サイクルが経過したと判定した場合、サーバ装置100はステップS45を実行する。ステップS45では、指令算出部122が、動作プログラムに基づく全動作が完了したか否かを確認する。ステップS45において、全動作が完了していないと判定した場合、サーバ装置100は処理をステップS41に戻す。ステップS45において、全動作が完了したと判定した場合、サーバ装置100はサーバ制御モードによる制御を完了する。
 ステップS46において、制御モードが変更されたと判定した場合、サーバ装置100はステップS47を実行する。ステップS47では、情報受信部121、指令算出部122、及び指令送信部123のそれぞれが、自律制御モード用の処理を開始する。これにより、サーバ制御モードによる制御が完了する。
(自律制御モードによる制御手順)
 この手順は、上述の自律制御モードにおいてサーバ装置100が実行する制御手順である。図14に示すように、サーバ装置100は、ステップS51,S52を実行する。ステップS51では、指令送信部123が、自律制御による動作命令をローカルコントローラ300に送信する。ステップS52では、情報受信部121が、自律制御における全動作の完了通知をローカルコントローラ300から受信したか否かを確認する。
 ステップS52において、全動作の完了通知を受信していないと判定した場合、サーバ装置100はステップS53を実行する。ステップS53では、制御モードが自律制御モードからサーバ制御モードに変更されたか否かを指令算出部122が確認する。ステップS53において、制御モードは変更されていないと判定した場合、サーバ装置100は処理をステップS52に戻す。その後、サーバ装置100は、全動作の完了通知を受信するか、制御モードが変更されるのを待機する。
 ステップS52において、全動作の完了通知を受信したと判定した場合、サーバ装置100は自律制御モードによる制御を完了する。ステップS53において、制御モードが変更されたと判定した場合、サーバ装置100はステップS54を実行する。ステップS54では、情報受信部121、指令算出部122、及び指令送信部123のそれぞれが、サーバ制御モード用の処理を開始する。これにより、自律制御モードによる制御が完了する。
〔まとめ〕
 以上に例示した実施形態は、以下の構成を含む。 
(1) クライアント装置20と、クライアント装置20と装置間通信を行うサーバ装置100と、を有する上位システム11と、クライアント装置20に接続され、装置間通信のための移動体無線通信をサーバ装置100に接続された基地局200と行う通信端末400と、を備え、通信端末400は、基地局200の情報を上位システム11に通知する、通信システム10。
 通信端末400の通信相手の基地局200が、上位システム11における装置間通信の信頼性に影響を及ぼす場合があり得る。この通信システム10によれば、通信端末400によって、通信相手の基地局200の情報が上位システム11に通知される。このため、上位システム11において、基地局200の情報に基づいて、上述の影響への対応が可能となる。従って、移動体無線通信による装置間通信の信頼性向上に有効である。
(2) 上位システム11は、基地局200の情報に基づいて制御モードを変更してクライアント装置20を制御する、(1)記載の通信システム10。
 基地局200の情報に基づく制御モードの変更を柔軟に行い、移動体無線通信を介した制御の信頼性を向上させることができる。
(3) 上位システム11は、基地局200の情報に基づいて、制御モードを、クライアント装置20のモーションを装置間通信によってサーバ装置100が制御するモードから、クライアント装置20が自律的にモーションを制御するモードに変更する、(2)記載の通信システム10。
 例えば、基地局200の情報に基づいて、移動体無線通信を介した制御の信頼性を期待できる場合には、サーバ装置100及びクライアント装置20の組合せにより高度な演算を必要とする制御を行い、移動体無線通信を介した制御の信頼性を期待できない場合には、クライアント装置20による演算にて実行可能な制御を行うことで、モーション制御の拡張性と信頼性との両立を図ることができる。
(4) サーバ装置100は、装置間通信により、クライアント装置20の状態を表すフィードバック情報を受信する情報受信部121と、フィードバック情報に基づいてモーション指令を算出する指令算出部122と、装置間通信により、モーション指令をクライアント装置20に送信する指令送信部123と、を有する、(2)又は(3)記載の通信システム10。
 基地局200の情報に基づく制御モードの選択によって、移動体無線通信を介したフィードバック制御を高い信頼性で実行することができる。
(5) 上位システム11は、基地局200の情報に基づいて、基地局200のハンドオーバーの兆候を検出し、ハンドオーバーの兆候に基づいて制御モードを変更する、(2)~(5)のいずれか記載の通信システム10。
 ハンドオーバーに先立って、ハンドオーバーを避ける、又はハンドオーバーの影響を受けないように制御モードを変更する等の対応を上位システム11において容易に行うことができる。
(6) 上位システム11は、第1制御モードにてクライアント装置20を制御している最中にハンドオーバーの兆候を検出した場合に、第1制御モードを、第1制御モードに比較して接続中の基地局200に近い位置でクライアント装置20を動作させる第2制御モードに変更する、(5)記載の通信システム10。
 基地局200の情報に基づく制御モードの変更を柔軟に行い、移動体無線通信を介した制御の信頼性を向上させることができる。
(7) 上位システム11は、ハンドオーバーの兆候を検出した場合に、ハンドオーバーの兆候を小さくするように通信端末400を制御する、(5)記載の通信システム10。
 通信端末400から通知されるハンドオーバー情報を、ハンドオーバーを避けることに利用することで、ハンドオーバーに起因する装置間通信の信頼性低下を抑制することができる。
(8) 通信端末400は、基地局200の情報として、基地局200の識別情報を上位システム11に通知する、(1)~(7)のいずれか記載の通信システム10。
 上述の影響(基地局200が装置間通信の信頼性に及ぼす影響)に対し、上位システム11を更に容易に対応させることができる。
(9) 上位システム11は、識別情報に基づいて、既定基地局200に接続されるように通信端末400を制御する、(8)記載の通信システム10。
 通信端末400から通知される基地局200の識別情報を、既定基地局200に接続されるように通信端末400を制御することに利用することで、装置間通信の信頼性を更に向上させることができる。更に、各基地局200に接続される通信端末400の数を制限することによって、基地局200ごとの通信負荷を調節することもできる。
(10) 上位システム11は、既定基地局200に近付くようにクライアント装置20により通信端末400を移動させた後に、通信端末400に基地局200との接続を要求する、(9)記載の通信システム10。
 通信端末400をより確実に既定基地局200に接続させることができる。
(11) 互いに装置間通信を行うクライアント装置20とサーバ装置100とを有する上位システム11のクライアント装置20に接続され、サーバ装置100に接続された基地局200との間で、装置間通信のための移動体無線通信を行う通信端末400であって、基地局200の情報を取得する基地局情報取得部414と、基地局200の情報をシステムに通知する通知部415と、を備える通信端末400。
 100…サーバ装置、20…クライアント装置、10…通信システム、200…基地局、11…上位システム、400…通信端末、414…基地局情報取得部、415…通知部、121…情報受信部、122…指令算出部、123…指令送信部。

Claims (11)

  1.  クライアント装置と、
     前記クライアント装置と装置間通信を行うサーバ装置と、
    を有する上位システムと、
     前記クライアント装置に接続され、前記装置間通信のための移動体無線通信を前記サーバ装置に接続された基地局と行う通信端末と、
    を備え、
     前記通信端末は、前記基地局の情報を前記上位システムに通知する、通信システム。
  2.  前記上位システムは、前記基地局の情報に基づいて制御モードを変更して前記クライアント装置を制御する、
    請求項1記載の通信システム。
  3.  前記上位システムは、前記基地局の情報に基づいて、前記制御モードを、前記クライアント装置のモーションを前記装置間通信によって前記サーバ装置が制御するモードから、前記クライアント装置が自律的に前記モーションを制御するモードに変更する、
    請求項2記載の通信システム。
  4.  前記サーバ装置は、
      前記装置間通信により、前記クライアント装置の状態を表すフィードバック情報を受信する情報受信部と、
      前記フィードバック情報に基づいてモーション指令を算出する指令算出部と、
      前記装置間通信により、前記モーション指令を前記クライアント装置に送信する指令送信部と、
    を有する、
    請求項2記載の通信システム。
  5.  前記上位システムは、前記基地局の情報に基づいて、前記基地局のハンドオーバーの兆候を検出し、前記ハンドオーバーの兆候に基づいて前記制御モードを変更する、
    請求項2~4のいずれか一項記載の通信システム。
  6.  前記上位システムは、第1制御モードにて前記クライアント装置を制御している最中に前記ハンドオーバーの兆候を検出した場合に、前記第1制御モードを、前記第1制御モードに比較して接続中の基地局に近い位置で前記クライアント装置を動作させる第2制御モードに変更する、
    請求項5記載の通信システム。
  7.  前記上位システムは、前記ハンドオーバーの兆候を検出した場合に、前記ハンドオーバーの兆候を小さくするように前記通信端末を制御する、
    請求項5記載の通信システム。
  8.  前記通信端末は、前記基地局の情報として、前記基地局の識別情報を前記上位システムに通知する、
    請求項1~4のいずれか一項記載の通信システム。
  9.  前記上位システムは、前記識別情報に基づいて、既定基地局に接続されるように前記通信端末を制御する、
    請求項8記載の通信システム。
  10.  前記上位システムは、前記既定基地局に近付くように前記クライアント装置により前記通信端末を移動させた後に、前記通信端末に前記基地局との接続を要求する、
    請求項9記載の通信システム。
  11.  互いに装置間通信を行うクライアント装置とサーバ装置とを有する上位システムの前記クライアント装置に接続され、前記サーバ装置に接続された基地局との間で、前記装置間通信のための移動体無線通信を行う通信端末であって、
     前記基地局の情報を取得する基地局情報取得部と、
     前記基地局の情報をシステムに通知する通知部と、
    を備える通信端末。
PCT/JP2022/029546 2022-02-22 2022-08-01 通信システム及び通信端末 WO2023162291A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280091846.3A CN118696567A (zh) 2022-02-22 2022-08-01 通信系统以及通信终端
JP2024502795A JPWO2023162291A1 (ja) 2022-02-22 2022-08-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263312391P 2022-02-22 2022-02-22
US63/312,391 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162291A1 true WO2023162291A1 (ja) 2023-08-31

Family

ID=87765331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029546 WO2023162291A1 (ja) 2022-02-22 2022-08-01 通信システム及び通信端末

Country Status (3)

Country Link
JP (1) JPWO2023162291A1 (ja)
CN (1) CN118696567A (ja)
WO (1) WO2023162291A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085010A (ja) * 2010-10-07 2012-04-26 Sony Corp 無線端末、無線通信方法、および無線通信システム
JP2019209454A (ja) 2018-06-08 2019-12-12 株式会社安川電機 加工システム及び制御方法
JP2020515425A (ja) * 2017-04-04 2020-05-28 トヨタ リサーチ インスティテュート,インコーポレイティド リモート制御可能なロボットのロボット作動制約を提供する方法およびシステム
WO2020230824A1 (ja) * 2019-05-13 2020-11-19 株式会社安川電機 マシン制御システム、プログラム、マシン、及び通信方法
JP2021077998A (ja) * 2019-11-08 2021-05-20 日本電気株式会社 制御装置、中継装置、及び制御方法
JP2021197577A (ja) * 2020-06-10 2021-12-27 ソフトバンク株式会社 管理装置、通信システム、機器、管理方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085010A (ja) * 2010-10-07 2012-04-26 Sony Corp 無線端末、無線通信方法、および無線通信システム
JP2020515425A (ja) * 2017-04-04 2020-05-28 トヨタ リサーチ インスティテュート,インコーポレイティド リモート制御可能なロボットのロボット作動制約を提供する方法およびシステム
JP2019209454A (ja) 2018-06-08 2019-12-12 株式会社安川電機 加工システム及び制御方法
WO2020230824A1 (ja) * 2019-05-13 2020-11-19 株式会社安川電機 マシン制御システム、プログラム、マシン、及び通信方法
JP2021077998A (ja) * 2019-11-08 2021-05-20 日本電気株式会社 制御装置、中継装置、及び制御方法
JP2021197577A (ja) * 2020-06-10 2021-12-27 ソフトバンク株式会社 管理装置、通信システム、機器、管理方法及びプログラム

Also Published As

Publication number Publication date
JPWO2023162291A1 (ja) 2023-08-31
CN118696567A (zh) 2024-09-24

Similar Documents

Publication Publication Date Title
US10500723B2 (en) Machining system and machine controller in which a moving robot loads and unloads an article with respect to machining device
US7208900B2 (en) Industrial robot system
US11338442B2 (en) Robot apparatus, control method for robot apparatus, article manufacturing method using robot apparatus, and storage medium
US11833687B2 (en) Robot apparatus, control method for the robot apparatus, assembly method using the robot apparatus, and recording medium
WO2023162291A1 (ja) 通信システム及び通信端末
JP5011507B2 (ja) ロボット教示システム及びロボット教示方法
US11752628B2 (en) Control method for robot, and robot system
CN114012198A (zh) 一种焊接系统、焊接电源及送丝机
US20200276716A1 (en) Robot apparatus, control method for robot apparatus, method of manufacturing article using robot apparatus, communication device, communication method, control program, and recording medium
CN111263685B (zh) 机器人方法和系统
CN114800505B (zh) 一种机器人作业控制方法及装置
US20240009868A1 (en) Robot
JP2020163498A (ja) ロボット装置、ロボット装置の制御方法、ロボット装置を用いた物品の製造方法、無線給電モジュール、制御プログラム及び記録媒体
JP7205972B2 (ja) 教示システム
KR100389010B1 (ko) 산업용 퍼스널 컴퓨터를 기반으로 하는 갠트리형 로봇 제어방법
JP2000086156A (ja) クレーン無線lanシステム
CN104169051A (zh) 作业机器人及机器人系统
US6693259B2 (en) Self-diagnosis type welding carriage control system for automatically controlling welding conditions and implementing oscillation motion
JP5347705B2 (ja) ロボット制御装置
WO2023281805A1 (ja) 通信システム、コントロールシステム、及び通信方法
US20240243894A1 (en) Wireless communication of transmission data by attribute
JP7006910B2 (ja) ロボットシステム
US20230062371A1 (en) Robot system, method for controlling robot system, method for manufacturing article using robot system, system, method for controlling system, and recording medium
JP7514887B2 (ja) 産業システム、産業機械及び制御方法
CN114872052B (zh) 一种远程自动控制智能工厂机械臂的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024502795

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022928812

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022928812

Country of ref document: EP

Effective date: 20240923