WO2023162029A1 - Drive device and air-conditioning device - Google Patents

Drive device and air-conditioning device Download PDF

Info

Publication number
WO2023162029A1
WO2023162029A1 PCT/JP2022/007354 JP2022007354W WO2023162029A1 WO 2023162029 A1 WO2023162029 A1 WO 2023162029A1 JP 2022007354 W JP2022007354 W JP 2022007354W WO 2023162029 A1 WO2023162029 A1 WO 2023162029A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
metal member
heat
substrate
driving device
Prior art date
Application number
PCT/JP2022/007354
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 小林
圭一朗 志津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/007354 priority Critical patent/WO2023162029A1/en
Priority to JP2024502282A priority patent/JPWO2023162029A1/ja
Publication of WO2023162029A1 publication Critical patent/WO2023162029A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to a driving device that includes a power module and an air conditioner that includes this driving device.
  • a power device is installed in the drive device that controls the drive of the motor. Heat is generated from the power device when it is driven. Therefore, the driving device needs means for dissipating the heat generated from the power device.
  • Patent Document 1 discloses a substrate having a metal foil attached to the surface thereof, a power module which is arranged apart from the substrate in the thickness direction of the substrate and in which a power device is sealed with resin, and a substrate with the power module sandwiched therebetween.
  • a driving device is disclosed which includes a metal member disposed on the opposite side and has heat dissipation properties, and a power module attached to the metal member.
  • the power module disclosed in Patent Document 1 has metal pins that extend toward the substrate and are electrically connected to the substrate. In the technique disclosed in Patent Document 1, the heat generated from the power module can be transferred to the metal member and radiated from the metal member.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a drive device that can improve heat dissipation performance compared to the conventional one while ensuring electrical insulation between the pins of the power module and the metal member.
  • the drive device includes a substrate having a conductor portion, and a power module arranged apart from the substrate in a first direction that is the plate thickness direction of the substrate. and a metal member having a heat dissipation property disposed on the side opposite to the substrate with the power module interposed therebetween.
  • the power module is in thermal contact with the metal member.
  • the power module has pins that extend in a second direction that intersects the first direction and then toward the substrate and are electrically connected to conductor portions of the substrate.
  • a heat dissipating member having heat dissipating properties and electrical insulation is arranged between the pin and the metal member. The heat dissipating member is in contact with at least one of the pin, conductor and metal member.
  • the driving device has the effect of ensuring electrical insulation between the pins of the power module and the metal member, while improving the heat dissipation performance compared to the conventional one.
  • FIG. 2 is a cross-sectional view showing the driving device according to the first embodiment; Sectional drawing which showed the drive device concerning Embodiment 2 Sectional view showing a driving device according to Modification 1 of Embodiment 2 Sectional view showing a drive device according to Modification 2 of Embodiment 2 Sectional drawing which showed the drive device concerning Embodiment 3
  • FIG. 1 is a schematic diagram showing a driving device 1, an external power source 60, and a motor 70 according to the first embodiment. As shown in FIG. 1 , the driving device 1 is electrically connected to an external power source 60 and a motor 70 via electric wires 80 .
  • a drive device 1 is a device that receives power from an external power source 60 and outputs power to a motor 70 .
  • a drive circuit 10 is a portion of the drive device 1 that functions as a converter and an inverter.
  • FIG. 2 is a cross-sectional view showing the driving device 1 according to the first embodiment.
  • the drive device 1 includes a substrate 2 , a power module 3 , a metal member 4 and a heat dissipation member 5 .
  • the thickness direction of the substrate 2 is defined as the first direction
  • the direction crossing the first direction is defined as the second direction.
  • the direction from the end face of the power module 3 in the second direction to the center of the power module 3 in the second direction is defined as the inner side
  • the side opposite to the inner side is defined as the outer side.
  • the board 2 has a function of controlling the driving of the power module 3.
  • the substrate 2 is a flat member having a conductor portion.
  • the cross-sectional shape of the substrate 2 is a rectangle that is longer in the second direction than in the first direction.
  • the conductor portion is a metal foil 20 attached to the surface of the substrate 2 and a through-hole conductor 21 formed in the substrate 2 .
  • the metal foil 20 is partially attached to both end surfaces of the surface of the substrate 2 in the first direction.
  • the material of the metal foil 20 is copper in this embodiment, but may be, for example, copper alloy, aluminum, aluminum alloy, nickel, or nickel alloy.
  • the through-hole conductor 21 is produced, for example, by forming a plating film on the inner wall surface of a through-hole penetrating through the substrate 2 in the first direction.
  • Metal foil 20 and through-hole conductor 21 are electrically connected.
  • Electronic components (not shown) are mounted on the substrate 2 .
  • Electronic parts are, for example, noise filters, smoothing capacitors, sensors for detecting current and voltage, microcomputers, and peripheral circuits of microcomputers.
  • Electronic components are soldered to metal foil 20 or through-hole conductors 21 .
  • the power module 3 is an electronic component in which a power device 35 is sealed with a resin 36.
  • the power module 3 is arranged apart from the substrate 2 in the first direction.
  • the power module 3 has at least one of a rectifying function of rectifying the voltage of the power supplied from the external power supply 60 and a converting function of converting the rectified power into power for driving the motor 70. .
  • Electric power converted by the power module 3 is supplied to the motor 70 .
  • the power module 3 is, for example, a discrete semiconductor element used in parallel, a power module in which a plurality of semiconductor elements are housed in one package, or a composite module in which a rectifying function and a conversion function are integrated and housed in one package. be.
  • the case where the power module 3 is a DIP (Dual Inline Package) type will be described as an example, but the type of the power module 3 is not limited.
  • the power module 3 is in thermal contact with the metal member 4.
  • thermal contact means that the power module 3 and the metal member 4 are in direct contact, and that the heat generated from the power module 3 is transferred between the power module 3 and the metal member 4. It means that the power module 3 and the metal member 4 are indirectly in contact with each other through a medium that is transmitted to the power module 3 .
  • the power module 3 is in direct contact with the metal member 4 in this embodiment.
  • the power module 3 has a power module body 30 and two pins 31 .
  • the power module body 30 includes a power device 35 and a resin 36 sealing the power device 35 .
  • the power device 35 is an electronic component that controls the rectification function or conversion function of the power module 3 . Heat is generated from the power device 35 when the power device 35 is driven.
  • the power device 35 is directly mounted on the pin 31 by soldering or the like, or electrically connected to the pin 31 via a conductive wire.
  • the power module body 30 is in thermal contact with the metal member 4 .
  • the power module body portion 30 is arranged on the metal member 4 .
  • the cross-sectional shape of the power module body portion 30 is a rectangle that is longer in the second direction than in the first direction.
  • the pin 31 is a conductive metal member.
  • the pins 31 are portions corresponding to terminals of the power module 3 .
  • the pin 31 extends in the second direction from the power module body 30 and then extends toward the substrate 2 and is electrically connected to the conductor of the substrate 2 .
  • One pin 31 is provided on each end surface of the power module main body 30 in the second direction.
  • the pin 31 has a first straight portion 32 , a second straight portion 33 , and a curved portion 34 formed between the first straight portion 32 and the second straight portion 33 .
  • the first linear portion 32 extends linearly in the second direction from the end surface of the power module main body portion 30 in the second direction, and serves as a separation portion separated from the metal member 4 in the first direction.
  • the first linear portion 32 is parallel to a mounting surface 40 of the metal member 4, which will be described later.
  • the curved portion 34 extends in a curved shape so as to approach the substrate 2 as the distance from the tip of the first straight portion 32 increases.
  • the second linear portion 33 linearly extends in the first direction from the tip of the curved portion 34 .
  • a second straight portion 33 of each pin 31 is electrically connected to the through-hole conductor 21 .
  • a second straight portion 33 of each pin 31 is soldered to the through-hole conductor 21 .
  • the power module 3 is fixed to the substrate 2 by soldering the second straight portion 33 of each pin 31 to the through-hole conductor 21 .
  • the power module 3 electrically communicates with electronic components mounted on the substrate 2 via the through-hole conductors 21 and the metal foil 20, and the substrate shown in FIG. 2 via terminals and connectors (not shown). 2 and electrically exchange with a board different from that of 2. Electrical exchange is, for example, power supply, power reception, and electrical signal transmission.
  • the metal member 4 is arranged on the side opposite to the substrate 2 with the power module 3 interposed therebetween, and is a member having conductivity and heat dissipation.
  • the metal member 4 plays a role of dissipating heat generated from the power module 3 to the outside of the driving device 1 .
  • the metal member 4 is, for example, a sheet-metal housing that forms an outer shell of a device in which the heat sink and the driving device 1 are mounted. When the metal member 4 is a sheet metal housing, the heat is transferred to the entire sheet metal housing and the heat radiation area is increased.
  • the metal member 4 is in thermal contact with the surface of the power module body 30 opposite to the surface facing the substrate 2 .
  • the surface of the metal member 4 that faces the power module 3 serves as a planar installation surface 40 along the second direction. Metal member 4 is grounded.
  • each pin 31 and the metal member 4 one heat dissipating member 5 having heat dissipation and electrical insulation is arranged.
  • the heat dissipating member 5 on the left side of the paper surface is referred to as the heat dissipating member 5a
  • the heat dissipating member 5 on the right side of the paper surface is referred to as the heat dissipating member 5b.
  • the heat dissipation member 5 has a role of dissipating heat generated from the power module 3 and a role of electrically insulating between the pin 31 and the metal member 4 .
  • a heat radiating sheet, gel, or the like having both heat radiating properties and electrical insulating properties is used.
  • the two heat radiating members 5 are separated from each other in the second direction with the power module 3 interposed therebetween.
  • the heat dissipation member 5 is arranged outside the power module 3 .
  • the heat dissipation member 5 shields between the pin 31 and the metal member 4 .
  • Heat dissipation member 5 only needs to be in contact with at least one of pin 31 , metal foil 20 and metal member 4 . there is It is preferable that the heat radiation member 5 is in contact with the metal member 4 and at least one of the pin 31 and the metal foil 20 .
  • the heat radiating member 5 has a first heat radiating portion 50 and a second heat radiating portion 51 .
  • the first heat radiating portion 50 and the second heat radiating portion 51 are integrally formed, but for convenience of explanation, FIG. Line L is shown.
  • the first heat radiation portion 50 is a portion extending in the first direction from the installation surface 40 of the metal member 4 over the metal foil 20 of the substrate 2 .
  • the first heat dissipation portion 50 is in contact with the second linear portion 33 , the metal foil 20 and the metal member 4 .
  • the cross-sectional shape of the first heat radiation part 50 is a rectangle with no curved surface.
  • the second heat radiation portion 51 is a portion of the first heat radiation portion 50 that extends in the second direction toward the power module body portion 30 from the end face facing the power module body portion 30 .
  • the second heat radiation portion 51 is in contact with the first straight portion 32 , the curved portion 34 , the metal member 4 and the power module body portion 30 .
  • the second heat radiation portion 51 is arranged between the first straight portion 32 and the metal member 4 in contact with the first straight portion 32 and the metal member 4 . That is, the second heat radiating portion 51 is sandwiched between the first linear portion 32 and the metal member 4 .
  • the second heat radiation part 51 is arranged between the curved part 34 and the metal member 4 in contact with the curved part 34 and the metal member 4 . That is, the second heat radiating portion 51 is sandwiched between the curved portion 34 and the metal member 4 .
  • the second heat radiating portion 51 is in contact with the end surface of the power module body portion 30 in the second direction.
  • the second heat radiation portion 51 of the heat radiation member 5a and the second heat radiation portion 51 of the heat radiation member 5b sandwich the power module main body portion 30 from the outside in the second direction.
  • the second heat radiation portion 51 fills the space formed by the first straight portion 32 , the curved portion 34 , the metal member 4 and the power module body portion 30 .
  • the cross-sectional shape of the second heat radiating portion 51 is a shape having a curved surface along the curved portion 34 .
  • a heat radiation member 5 having electrical insulation is arranged between the pins 31 of the power module 3 and the metal member 4, so that the pins of the power module 3 Electrical insulation between 31 and metal member 4 can be ensured.
  • the heat dissipation member 5 having heat dissipation is arranged between the pin 31 of the power module 3 and the metal member 4 . By contacting at least one of them, the heat transmitted from the power module main body 30 to the pin 31 , the metal foil 20 and the metal member 4 can be radiated by the heat radiating member 5 .
  • the power module 3 since the power module 3 is in thermal contact with the metal member 4 , the heat generated from the power module main body 30 is transmitted to the metal member 4 , thereby causing the metal member 4 to heat the driving device 1 . can dissipate heat to the outside. That is, in the present embodiment, it is possible to improve the heat radiation performance while ensuring electrical insulation between the pins 31 of the power module 3 and the metal member 4 .
  • heat dissipation member 5 is in contact with all of pin 31 , metal foil 20 and metal member 4 , so that heat transferred from power module main body 30 to pin 31 passes through heat dissipation member 5 .
  • the heat transmitted to the metal member 4 and transmitted from the pin 31 to the metal foil 20 is transmitted to the metal member 4 via the heat radiation member 5 . Therefore, heat generated from the power module body 30 can be efficiently radiated.
  • the heat radiation member 5 is in contact with the metal foil 20 and the metal member 4, the heat generated from the electronic component mounted on the substrate 2 is transmitted to the metal member 4 through the heat radiation member 5, so that the heat from the electronic component The generated heat can also be efficiently dissipated.
  • the pin 31 has a first linear portion 32 extending in the second direction and separated from the metal member 4 in the first direction. 51 is sandwiched between the first straight portion 32 and the metal member 4 .
  • the vibration to the pin 31 is damped by the heat radiation member 5 . Therefore, the movable range of the pin 31 is suppressed, and breakage of the pin 31 can be suppressed.
  • the heat dissipation member 5 is also in contact with the power module main body 30, so that the vibration to the pin 31 is further damped. Note that the heat dissipation member 5 may be separated from the power module body 30 .
  • FIG. 3 is a cross-sectional view showing a driving device 1A according to the second embodiment.
  • This embodiment differs from the first embodiment in that a heat transfer grease 6 is provided between the power module 3 and the metal member 4 .
  • symbol is attached
  • a heat transfer grease 6 that transfers heat from the power module 3 to the metal member 4 is sandwiched between the power module 3 and the metal member 4 .
  • Heat transfer grease 6 is applied to at least one of power module 3 and metal member 4 .
  • the heat transfer grease 6 is mainly composed of, for example, modified silicon whose viscosity changes little from room temperature to high temperature, and metal with high thermal conductivity or metal oxide particles with high thermal conductivity are mixed into this main component. Grease is used.
  • the power module 3 is in thermal contact with the metal member 4 via heat transfer grease 6 .
  • the second heat radiating portion 51 of the heat radiating member 5a and the second heat radiating portion 51 of the heat radiating member 5b sandwich the power module main body 30 and the heat transfer grease 6 from the outside in the second direction.
  • the second heat radiating portion 51 is in contact with the end surface of the power module main body portion 30 in the second direction and the end portion of the heat transfer grease 6 in the second direction.
  • the second heat radiating portion 51 fills the space formed by the first straight portion 32 , the curved portion 34 , the metal member 4 , the power module body portion 30 and the heat transfer grease 6 .
  • a heat transfer grease 6 that transfers heat from the power module 3 to the metal member 4 is sandwiched between the power module 3 and the metal member 4, and the power module 3 is connected to the power module 3 via the heat transfer grease 6. Since the power module 3 and the metal member 4 are in thermal contact with each other, it is possible to prevent the occurrence of a minute gap between the power module 3 and the metal member 4 . Therefore, an increase in thermal resistance due to the gap is prevented, and the heat generated from the power module 3 is more easily transferred to the metal member 4, thereby improving the heat dissipation performance.
  • the second heat radiating portions 51 of the heat radiating members 5a and 5b are in contact with the ends of the heat transfer grease 6 in the second direction.
  • the movable range of the heat transfer grease 6 is suppressed by the heat dissipation members 5a and 5b. be. Therefore, leakage of the heat transfer grease 6 from between the power module 3 and the metal member 4 can be suppressed, and the heat dissipation effect of the heat transfer grease 6 can be maintained.
  • the second heat radiating portion 51 of the heat radiating member 5 may be separated from the heat transfer grease 6 .
  • FIG. 4 is a cross-sectional view showing a driving device 1B according to Modification 1 of Embodiment 2.
  • a drive device 1B according to Modification 1 differs from the drive device 1A of the second embodiment in that a heat radiation member 5c is provided between the power module 3 and the metal member 4.
  • FIG. 1 the same reference numerals are given to the parts that overlap with the drive device 1A of the second embodiment, and the description thereof is omitted.
  • a heat dissipation member 5c that transfers heat from the power module 3 to the metal member 4 is sandwiched.
  • the cross-sectional shape of the heat radiating member 5c is a rectangle that is longer in the second direction than in the first direction.
  • a heat radiation sheet, gel, or the like having both heat radiation and electrical insulation is used for the heat radiation member 5c.
  • the power module 3 is in thermal contact with the metal member 4 via the heat radiating member 5c.
  • the second heat radiating portion 51 of the heat radiating member 5a and the second heat radiating portion 51 of the heat radiating member 5b sandwich the power module body portion 30 and the heat radiating member 5c from the outside in the second direction.
  • the second heat radiating portion 51 is in contact with the end surface of the power module body portion 30 in the second direction and the end surface of the heat radiating member 5c in the second direction.
  • the second heat dissipation portion 51 fills the space formed by the first straight portion 32, the curved portion 34, the metal member 4, the power module body portion 30, and the heat dissipation member 5c.
  • the three adjacent heat radiating members 5a, 5b, 5c are formed separately, but the three adjacent heat radiating members 5a, 5b, 5c may be integrally formed.
  • the heat radiating members 5a, 5b, and 5c may be collectively referred to as the heat radiating member 5 in some cases.
  • a heat radiation member 5c is sandwiched between the power module 3 and the metal member 4, and the power module 3 is in thermal contact with the metal member 4 via the heat radiation member 5c. , the generation of minute gaps between the power module 3 and the metal member 4 can be prevented. Therefore, an increase in thermal resistance due to the gap is prevented, and the heat generated from the power module 3 is more easily transferred to the metal member 4, thereby improving the heat dissipation performance.
  • the second heat radiating portions 51 of the heat radiating members 5a and 5b are in contact with the end face of the heat radiating member 5c in the second direction.
  • the movable range of the heat dissipation member 5c is suppressed by the heat dissipation members 5a and 5b. . Therefore, the heat dissipation member 5c is fixed between the power module 3 and the metal member 4, and the heat dissipation effect of the heat dissipation member 5c can be maintained.
  • the second heat radiation portion 51 of the heat radiation members 5a and 5b may be separated from the heat radiation member 5c. Further, when the three adjacent heat dissipating members 5a, 5b, and 5c are integrally formed, the movement of the heat dissipating member 5c due to the vibration of the substrate 2 and the metal member 4 does not occur.
  • FIG. 5 is a cross-sectional view showing a driving device 1C according to Modification 2 of Embodiment 2.
  • the driving device 1C according to Modification 2 the second heat radiation part 51 of the heat radiation members 5a and 5b is omitted, and the heat radiation member 5c is provided between the power module 3 and the metal member 4. It is different from the driving device 1A of the second embodiment.
  • the same reference numerals are given to the parts that overlap with the drive device 1A of the second embodiment, and the description thereof is omitted.
  • the heat radiating members 5a and 5b have only the first heat radiating portion 50.
  • the heat dissipation members 5 a and 5 b extend in the first direction from the installation surface 40 of the metal member 4 over the metal foil 20 of the substrate 2 .
  • the heat dissipation members 5 a and 5 b are in contact with the second straight portion 33 , the metal foil 20 and the metal member 4 .
  • the heat dissipation members 5a and 5b are not in contact with the first linear portion 32 and the curved portion 34. As shown in FIG.
  • the heat dissipation members 5 a and 5 b are not arranged between the first straight portion 32 and the curved portion 34 and the metal member 4 .
  • the cross-sectional shape of the heat radiating members 5a and 5b is a rectangle longer in the first direction than in the second direction.
  • a heat dissipation member 5c that transfers heat from the power module 3 to the metal member 4 is sandwiched.
  • the cross-sectional shape of the heat radiating member 5c is a rectangle that is longer in the second direction than in the first direction.
  • a heat radiation sheet, gel, or the like having both heat radiation and electrical insulation is used for the heat radiation member 5c.
  • the power module 3 is in thermal contact with the metal member 4 via the heat radiating member 5c.
  • Both ends of the heat radiating member 5c in the second direction protrude outward from the end face of the power module body 30 in the second direction.
  • the protruding portion 52 of the heat radiating member 5 c is arranged between the first straight portion 32 and the curved portion 34 and the metal member 4 .
  • the projecting portion 52 of the heat radiating member 5c is in contact with the metal member 4, but is separated from the first linear portion 32 and the curved portion 34 in the first direction.
  • None of the heat radiating members 5a, 5b, 5c has a portion extending along the curved portion 34. As shown in FIG. That is, the cross-sectional shapes of the heat radiating members 5a, 5b, 5c are rectangular without curved surfaces.
  • the first heat radiating portion 50 of the heat radiating member 5a and the first heat radiating portion 50 of the heat radiating member 5b sandwich the heat radiating member 5c from the outside in the second direction.
  • the first heat radiation portion 50 is in contact with the end surface of the heat radiation member 5c in the second direction. That is, the first heat radiating portion 50 of the heat radiating member 5a is in contact with the tip end surface of one projecting portion 52 of the heat radiating member 5c.
  • the first heat radiating portion 50 of the heat radiating member 5b is in contact with the tip end surface of the other projecting portion 52 of the heat radiating member 5c.
  • the three adjacent heat radiating members 5a, 5b, 5c are formed separately, but the three adjacent heat radiating members 5a, 5b, 5c may be integrally formed.
  • the heat dissipation member 5c is sandwiched between the power module 3 and the metal member 4, so that the pin 31 and the metal member 4 are separated by the thickness of the heat dissipation member 5c along the first direction. can be separated by a distance along a first direction. Therefore, electrical insulation between the pins 31 of the power module 3 and the metal member 4 can be ensured.
  • a heat radiation member 5c is sandwiched between the power module 3 and the metal member 4, and the power module 3 is in thermal contact with the metal member 4 via the heat radiation member 5c. , the generation of minute gaps between the power module 3 and the metal member 4 can be prevented. Therefore, an increase in thermal resistance due to the gap is prevented, and the heat generated from the power module 3 is more easily transferred to the metal member 4, thereby improving the heat dissipation performance. That is, in this modification, the heat dissipation performance can be improved while reducing the manufacturing cost of the heat dissipation member 5 .
  • the first heat dissipating portions 50 of the heat dissipating members 5a and 5b are in contact with the end surface of the heat dissipating member 5c in the second direction.
  • the movable range of the heat dissipation member 5c is suppressed by the heat dissipation members 5a and 5b. . Therefore, the heat dissipation member 5c is fixed between the power module 3 and the metal member 4, and the heat dissipation effect of the heat dissipation member 5c can be maintained.
  • first heat radiation portion 50 of the heat radiation members 5a and 5b may be separated from the heat radiation member 5c. Further, when the three adjacent heat dissipating members 5a, 5b, and 5c are integrally formed, the movement of the heat dissipating member 5c due to the vibration of the substrate 2 and the metal member 4 does not occur.
  • FIG. 6 is a cross-sectional view showing a driving device 1D according to the third embodiment.
  • This embodiment is different from the first embodiment in that a plurality of power modules 3 having different sizes are provided.
  • symbol is attached
  • a plurality of power modules 3 are arranged side by side in the second direction.
  • the size of some of the plurality of power modules 3 and the size of the remaining portion of the plurality of power modules 3 are different from each other.
  • the number of power modules 3 is two in this embodiment, it may be three or more.
  • the power module 3a when distinguishing between the two power modules 3, the power module 3 on the left side of the page will be referred to as the power module 3a, and the power module 3 on the right side of the page will be referred to as the power module 3b.
  • One of the power modules 3a and 3b has a rectifying function of rectifying the voltage of the power supplied from the external power supply 60 shown in FIG.
  • the other of the power modules 3a and 3b has a conversion function of converting the rectified voltage into power for driving the motor 70 shown in FIG.
  • the power modules 3a, 3b are in thermal contact with the metal member 4. As shown in FIG.
  • the power module 3a has two pins 31a. Each pin 31a is joined to the through-hole conductor 21 by soldering. The power module 3a is fixed to the substrate 2 by soldering the pins 31a to the through-hole conductors 21. FIG.
  • the power module 3b has two pins 31b. Each pin 31b is joined to the through-hole conductor 21 by soldering. The power module 3b is fixed to the substrate 2 by soldering the pins 31b to the through-hole conductors 21. FIG.
  • each pin 31a and the metal member 4 there are arranged between each pin 31a and the metal member 4, one heat dissipating member 5 having heat dissipation and electrical insulation is arranged.
  • the heat dissipating member 5a the heat dissipating member 5 on the left side of the power module 3a
  • the heat dissipating member 5 on the right side of the power module 3a is referred to as the heat dissipating member 5b.
  • the heat dissipation members 5a and 5b only need to be in contact with at least one of the pin 31a, the metal foil 20 and the metal member 4. are doing.
  • heat dissipating member 5 having heat dissipation and electrical insulation is arranged.
  • the heat radiating member 5 on the left side of the power module 3b on the page will be referred to as a heat radiating member 5d
  • the heat radiating member 5 on the right side of the power module 3b on the page will be referred to as a heat radiating member 5e.
  • the heat dissipation members 5d and 5e only need to be in contact with at least one of the pin 31b, the metal foil 20 and the metal member 4. are doing.
  • the size of the power module 3b is smaller than the size of the power module 3a.
  • the thickness of the power module body portion 30 of the power module 3b along the first direction is thinner than the thickness of the power module body portion 30 of the power module 3a along the first direction.
  • the height of the pins 31b of the power module 3b along the first direction is lower than the height of the pins 31a of the power module 3a along the first direction.
  • a heat radiating member 5f is sandwiched.
  • the second heat radiating portion 51 of the heat radiating member 5d and the second heat radiating portion 51 of the heat radiating member 5e sandwich the heat radiating member 5f from the outside in the second direction.
  • the heat dissipation members 5b, 5d, 5e, and 5f are arranged side by side in the second direction.
  • the heat dissipation member 5b and the heat dissipation member 5d are adjacent to each other.
  • the four adjacent heat dissipating members 5b, 5d, 5e, and 5f are formed separately, but the four adjacent heat dissipating members 5b, 5d, 5e, and 5f may be integrally formed.
  • the height of the pin 31a along the first direction is higher, and even if the power module main body 30 is arranged close to the metal member 4, the pin 31a and the substrate 2 are not easily separated from each other. Can connect.
  • the power module main body 30 is brought into direct contact with the metal member 4 , or the power module main body 30 is heated to the metal member 4 via the heat transfer grease 6 or the heat dissipation member 5 . can be brought into direct contact with each other.
  • the pin 31b has a lower height along the first direction. cannot connect.
  • the distance along the first direction between the power module main body 30 of the power module 3b and the metal member 4 increases, causing the power module main body 30 to come into direct contact with the metal member 4.
  • the portion 30 cannot be brought into thermal contact with the metal member 4 via the heat transfer grease 6 . Therefore, it is conceivable to raise part of the installation surface 40 of the metal member 4 so as to approach the substrate 2 and arrange the power module 3b on this raised portion. Since processing for partially changing the thickness is required, the manufacturing cost of the metal member 4 increases.
  • the heat dissipation member 5f is sandwiched between the smaller power module 3b and the metal member 4, so that the thickness of the heat dissipation member 5f along the first direction is reduced.
  • the position of the power module 3b in the first direction can be adjusted.
  • a plurality of power modules 3a and 3b having different sizes can be arranged on the same flat installation surface 40 of the metal member 4, it is not necessary to partially change the height of the installation surface 40 of the metal member 4.
  • the manufacturing cost of the metal member 4 can be reduced.
  • the metal member 4 since the metal member 4 is grounded, there is no short circuit between the pins 31a and 31b and the portion of potential to be grounded. It is possible to suppress malfunction of the power modules 3a and 3b due to a short-circuit current to.
  • FIG. 7 is a perspective view schematically showing the outdoor unit 110 of the air conditioner 100 according to the fourth embodiment.
  • FIG. 8 is a schematic diagram showing the air conditioner 100 according to the fourth embodiment.
  • the driving device 1 according to the first embodiment is applied to the outdoor unit 110 of the air conditioner 100 will be illustrated.
  • symbol is attached
  • the air conditioner 100 includes an outdoor unit 110.
  • the outdoor unit 110 includes a sheet metal housing 111 , an outdoor fan 112 , an outdoor heat exchanger 113 , a compressor 114 and a driving device 1 .
  • An arrow Y shown in FIG. 7 represents the blowing direction of the airflow generated by the outdoor fan 112 .
  • the side of the outdoor unit 110 from which the air flow generated by the outdoor fan 112 is discharged to the outside is the front side, and the opposite side of the front side is the rear side. 7 shows a state in which the front panel of the sheet metal housing 111 is removed so that the inside of the outdoor unit 110 can be seen.
  • illustration of electrical wiring, refrigerant piping, etc. is omitted.
  • the sheet metal housing 111 is a box-shaped member that forms the outer shell of the outdoor unit 110 . Metal is used as the material of the sheet metal housing 111 .
  • the sheet metal housing 111 has a separator 115 .
  • the separator 115 divides the inside of the sheet metal housing 111 into a fan room 116 and a machine room 117 .
  • the fan room 116 and the machine room 117 are formed side by side in the width direction of the outdoor unit 110 .
  • An outdoor fan 112 and an outdoor heat exchanger 113 are arranged in the fan room 116 .
  • the outdoor fan 112 is a device that generates an airflow.
  • the outdoor heat exchanger 113 is a member for exchanging heat between the refrigerant and the outdoor air. Outdoor air to be taken in by the outdoor fan 112 passes through the outdoor heat exchanger 113 .
  • a compressor 114 and a drive device 1 are arranged in the machine room 117 .
  • the compressor 114 is a device that uses the motor 70 as a drive source to compress refrigerant in a refrigeration cycle 120, which will be described later.
  • the driving device 1 shown in FIG. 7 is the driving device 1 according to the first embodiment, it may be any of the driving devices 1 to 1D according to the first to third embodiments.
  • the driving device 1 is installed on the surface of the separator 115 facing the machine room 117 .
  • the driving device 1 is installed on the separator 115 so that the first direction matches the width direction of the outdoor unit 110 and the second direction matches the height direction of the outdoor unit 110 .
  • the metal member 4 is the sheet metal housing 111 of the outdoor unit 110 of the air conditioner 100 in this embodiment. Specifically, the metal member 4 is the separator 115 of the sheet metal housing 111 . The separator 115 is in thermal contact with the surface of the power module body 30 opposite to the surface facing the substrate 2 . Separator 115 faces fan chamber 116 . The metal member 4 is arranged at a position where the air flow generated by the outdoor fan 112 hits. The metal member 4 is cooled by the airflow generated by the outdoor fan 112 .
  • the refrigeration cycle equipment of the air conditioner 100 includes a compressor 114, a four-way valve 130, an outdoor heat exchanger 113, an expansion device 140, and an indoor heat exchanger 150.
  • a refrigeration cycle 120 is performed in which refrigerant circulates through the compressor 114, the four-way valve 130, the outdoor heat exchanger 113, the expansion device 140, the indoor heat exchanger 150, the four-way valve 130, and the compressor 114 in this order.
  • Devices constituting the refrigeration cycle device are connected to each other via refrigerant pipes 160 .
  • Compressor 114 , four-way valve 130 , outdoor heat exchanger 113 and expansion device 140 are provided in outdoor unit 110 of air conditioner 100 .
  • the indoor heat exchanger 150 is provided in the indoor unit of the air conditioner 100 .
  • the refrigeration cycle 120 of the air conditioner 100 will be described using the cooling operation of the air conditioner 100 as an example. Although not described here, the same refrigeration cycle 120 can also perform the heating operation of the air conditioner 100 .
  • the four-way valve 130 directs the refrigerant discharged from the compressor 114 to the outdoor heat exchanger 113, The flow path is switched in advance so that the refrigerant flowing out of heat exchanger 150 goes to compressor 114 .
  • the drive device 1 When the drive device 1 outputs electric power supplied from the external power source 60 to the motor 70 of the compressor 114, the motor 70 is driven and the compressor 114 compresses the refrigerant.
  • the refrigerant compressed by the compressor 114 becomes a high-temperature, high-pressure refrigerant gas.
  • the high-temperature, high-pressure refrigerant gas is sent to the outdoor heat exchanger 113 via the four-way valve 130 .
  • the high-temperature and high-pressure refrigerant gas radiates heat in the outdoor heat exchanger 113, condenses, and becomes a high-pressure, normal-temperature liquid refrigerant.
  • the high-temperature, high-pressure refrigerant gas discharged from the compressor 114 is heat-exchanged with the outdoor air in the outdoor heat exchanger 113 to become a high-pressure, normal-temperature liquid refrigerant.
  • the high pressure room temperature liquid refrigerant is sent to the expansion device 140 .
  • the high-pressure, normal-temperature liquid refrigerant is expanded and decompressed by the expansion device 140 to become a low-pressure, low-temperature gas-liquid two-phase refrigerant.
  • the low-pressure low-temperature gas-liquid two-phase refrigerant is sent to the indoor heat exchanger 150 .
  • the low-pressure low-temperature gas-liquid two-phase refrigerant evaporates in the indoor heat exchanger 150 to become a low-pressure low-temperature gas refrigerant. That is, the low-pressure, low-temperature gas-liquid two-phase refrigerant flowing out of the expansion device 140 undergoes heat exchange with the air in the air-conditioned space in the indoor heat exchanger 150, and becomes low-pressure, low-temperature gas refrigerant.
  • the low-pressure low-temperature gas refrigerant is sent to compressor 114 via four-way valve 130 and compressed again in compressor 114 . Thereafter, the same operation is repeated until the air conditioner 100 stops. It should be noted that not only the outdoor unit 110 but also the indoor unit may be provided with an expansion device so that the refrigerant can be more finely controlled.
  • air conditioner 100 includes compressor 114 that compresses refrigerant in refrigerating cycle 120 using motor 70 as a drive source, drive device 1 that controls the drive of motor 70, motor 70, compressor 114 and A sheet metal housing 111 that accommodates the driving device 1 and constitutes an outer shell of the outdoor unit 110 of the air conditioner 100 is provided, and the metal member 4 is the sheet metal housing 111 .
  • the heat transferred from the power module 3 to the sheet metal housing 111 can be dissipated from the sheet metal housing 111 into the air. Since the sheet metal housing 111 has a large area in contact with the outdoor air, the heat radiation area is increased, and the heat generated from the power module 3 can be efficiently radiated.
  • the outdoor unit 110 has an outdoor fan 112 that is housed in a sheet metal housing 111 and generates an air flow. The generated airflow impinges. As a result, the separator 115 is cooled by the airflow generated by the outdoor fan 112, so that the heat transferred from the power module 3 to the separator 115 can be easily dissipated.
  • the arrangement of the driving device 1 is not limited to the illustrated example.
  • the driving device 1 may be arranged, for example, on the ceiling wall, the rear wall, or the like of the sheet metal housing 111 .
  • the metal member becomes the ceiling wall, back wall, etc. of the sheet metal housing 111 .
  • the driving devices 1 to 1D according to the first to third embodiments are applied to the outdoor unit 110 of the air conditioner 100 is exemplified. It may be applied to the device.
  • refrigeration cycle devices other than the air conditioner 100 include a heat pump device and a refrigeration device.
  • the power module 3 is of the DIP type, but the power module 3 may be of the SOP (Small Outline Package) type having gull-wing pins, for example. If the power module 3 is of the SOP type, the pins 31 are soldered to the metal foil 20 .
  • SOP Small Outline Package

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A drive device (1) comprises: a substrate (2) having a conductor portion; a power module (3) spaced apart from the substrate (2) in a first direction that is the plate thickness direction of the substrate (2); and a metal member (4) that is disposed opposite the substrate (2) with the power module (3) therebetween, and that has a heat-dissipating property. The power module (3) is in thermal contact with the metal member (4). The power module (3) includes a pin (31) that extends in a second direction intersecting with the first direction and then extends toward the substrate (2), and that is electrically connected to the conductor portion of the substrate (2). A heat-dissipating member (5) having a heat-dissipating property and an electric insulating property is disposed between the pin (31) and the metal member (4). The heat-dissipating member (5) is in contact with at least one of the pin (31), the conductor portion, and the metal member (4).

Description

駆動装置および空気調和装置Drives and air conditioners
 本開示は、パワーモジュールを備える駆動装置およびこの駆動装置を備える空気調和装置に関する。 The present disclosure relates to a driving device that includes a power module and an air conditioner that includes this driving device.
 従来、モータの駆動を制御する駆動装置には、パワーデバイスが搭載されている。パワーデバイスが駆動されたときに、パワーデバイスから熱が発生する。そのため、駆動装置には、パワーデバイスから発生した熱を放熱する手段が必要になる。 Conventionally, a power device is installed in the drive device that controls the drive of the motor. Heat is generated from the power device when it is driven. Therefore, the driving device needs means for dissipating the heat generated from the power device.
 特許文献1には、金属箔が表面に貼り付けられた基板と、基板の板厚方向に基板と離れて配置されてパワーデバイスを樹脂で封止したパワーモジュールと、パワーモジュールを挟んで基板と反対側に配置されて放熱性を有する金属部材とを備え、パワーモジュールを金属部材に取り付けた駆動装置が開示されている。特許文献1に開示されたパワーモジュールは、基板に向かって延びて基板に電気的に接続される金属製のピンを有している。特許文献1に開示された技術では、パワーモジュールから発生した熱を金属部材に伝えて、金属部材から放熱させることができる。 Patent Document 1 discloses a substrate having a metal foil attached to the surface thereof, a power module which is arranged apart from the substrate in the thickness direction of the substrate and in which a power device is sealed with resin, and a substrate with the power module sandwiched therebetween. A driving device is disclosed which includes a metal member disposed on the opposite side and has heat dissipation properties, and a power module attached to the metal member. The power module disclosed in Patent Document 1 has metal pins that extend toward the substrate and are electrically connected to the substrate. In the technique disclosed in Patent Document 1, the heat generated from the power module can be transferred to the metal member and radiated from the metal member.
特開2013-16606号公報JP 2013-16606 A
 しかしながら、特許文献1に開示された技術では、パワーモジュールのピンと金属部材とが空間を介して配置されているため、パワーモジュールのピンと金属部材との間の電気絶縁性を確保できない可能性がある。 However, in the technique disclosed in Patent Document 1, since the pins of the power module and the metal member are arranged with a space therebetween, there is a possibility that electrical insulation between the pins of the power module and the metal member cannot be ensured. .
 本開示は、上記に鑑みてなされたものであって、パワーモジュールのピンと金属部材との間の電気絶縁性を確保しつつ、従来よりも放熱性能を高めることができる駆動装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a drive device that can improve heat dissipation performance compared to the conventional one while ensuring electrical insulation between the pins of the power module and the metal member. and
 上述した課題を解決し、目的を達成するために、本開示にかかる駆動装置は、導体部を有する基板と、基板の板厚方向である第1の方向に基板と離れて配置されたパワーモジュールと、パワーモジュールを挟んで基板と反対側に配置されて、放熱性を有する金属部材と、を備えている。パワーモジュールは、金属部材に熱的に接触している。パワーモジュールは、第1の方向と交差する第2の方向に延びた後に基板に向かって延びて、基板の導体部に電気的に接続されるピンを有している。ピンと金属部材との間には、放熱性と電気絶縁性とを有する放熱部材が配置されている。放熱部材は、ピン、導体部および金属部材のうち少なくとも1つに接触している。 In order to solve the above-described problems and achieve the object, the drive device according to the present disclosure includes a substrate having a conductor portion, and a power module arranged apart from the substrate in a first direction that is the plate thickness direction of the substrate. and a metal member having a heat dissipation property disposed on the side opposite to the substrate with the power module interposed therebetween. The power module is in thermal contact with the metal member. The power module has pins that extend in a second direction that intersects the first direction and then toward the substrate and are electrically connected to conductor portions of the substrate. A heat dissipating member having heat dissipating properties and electrical insulation is arranged between the pin and the metal member. The heat dissipating member is in contact with at least one of the pin, conductor and metal member.
 本開示にかかる駆動装置は、パワーモジュールのピンと金属部材との間の電気絶縁性を確保しつつ、従来よりも放熱性能を高めることができるという効果を奏する。 The driving device according to the present disclosure has the effect of ensuring electrical insulation between the pins of the power module and the metal member, while improving the heat dissipation performance compared to the conventional one.
実施の形態1にかかる駆動装置と外部電源とモータとを示した概略図Schematic diagram showing a drive device, an external power supply, and a motor according to the first embodiment. 実施の形態1にかかる駆動装置を示した断面図FIG. 2 is a cross-sectional view showing the driving device according to the first embodiment; 実施の形態2にかかる駆動装置を示した断面図Sectional drawing which showed the drive device concerning Embodiment 2 実施の形態2の変形例1にかかる駆動装置を示した断面図Sectional view showing a driving device according to Modification 1 of Embodiment 2 実施の形態2の変形例2にかかる駆動装置を示した断面図Sectional view showing a drive device according to Modification 2 of Embodiment 2 実施の形態3にかかる駆動装置を示した断面図Sectional drawing which showed the drive device concerning Embodiment 3 実施の形態4にかかる空気調和装置の室外機を模式的に示した斜視図The perspective view which showed typically the outdoor unit of the air conditioning apparatus concerning Embodiment 4. 実施の形態4にかかる空気調和装置を示した概略図Schematic diagram showing an air conditioner according to a fourth embodiment
 以下に、実施の形態にかかる駆動装置および空気調和装置を図面に基づいて詳細に説明する。 A drive device and an air conditioner according to embodiments will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる駆動装置1と外部電源60とモータ70とを示した概略図である。図1に示すように、駆動装置1は、電線80を介して、外部電源60とモータ70とに電気的に接続されている。以下の説明においては、外部電源60から電力が入力されて、モータ70に電力を出力する装置を駆動装置1とする。また、駆動装置1の中でコンバータおよびインバータとして機能する部分を駆動回路10とする。
Embodiment 1.
FIG. 1 is a schematic diagram showing a driving device 1, an external power source 60, and a motor 70 according to the first embodiment. As shown in FIG. 1 , the driving device 1 is electrically connected to an external power source 60 and a motor 70 via electric wires 80 . In the following description, a drive device 1 is a device that receives power from an external power source 60 and outputs power to a motor 70 . A drive circuit 10 is a portion of the drive device 1 that functions as a converter and an inverter.
 図2は、実施の形態1にかかる駆動装置1を示した断面図である。駆動装置1は、基板2と、パワーモジュール3と、金属部材4と、放熱部材5とを備えている。以下、駆動装置1の各構成要素について方向を説明するときには、基板2の板厚方向を第1の方向とし、第1の方向と交差する方向を第2の方向とする。また、以下の説明において、パワーモジュール3のうち第2の方向の端面からパワーモジュール3のうち第2の方向の中心に向かう方向を内側とし、内側と反対側を外側とする。 FIG. 2 is a cross-sectional view showing the driving device 1 according to the first embodiment. The drive device 1 includes a substrate 2 , a power module 3 , a metal member 4 and a heat dissipation member 5 . Hereinafter, when describing the direction of each component of the drive device 1, the thickness direction of the substrate 2 is defined as the first direction, and the direction crossing the first direction is defined as the second direction. In the following description, the direction from the end face of the power module 3 in the second direction to the center of the power module 3 in the second direction is defined as the inner side, and the side opposite to the inner side is defined as the outer side.
 基板2は、パワーモジュール3の駆動を制御する機能を有する。基板2は、導体部を有する平板状の部材である。基板2の断面形状は、第1の方向よりも第2の方向に長い矩形である。導体部は、基板2の表面に貼り付けられた金属箔20、基板2に形成されたスルーホール導体21である。金属箔20は、基板2の表面のうち第1の方向の両端面に部分的に貼り付けられている。金属箔20の材料は、本実施の形態では銅であるが、例えば、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金でもよい。 The board 2 has a function of controlling the driving of the power module 3. The substrate 2 is a flat member having a conductor portion. The cross-sectional shape of the substrate 2 is a rectangle that is longer in the second direction than in the first direction. The conductor portion is a metal foil 20 attached to the surface of the substrate 2 and a through-hole conductor 21 formed in the substrate 2 . The metal foil 20 is partially attached to both end surfaces of the surface of the substrate 2 in the first direction. The material of the metal foil 20 is copper in this embodiment, but may be, for example, copper alloy, aluminum, aluminum alloy, nickel, or nickel alloy.
 スルーホール導体21は、例えば、第1の方向に基板2を貫通する貫通孔の内壁面に、めっき膜が形成されることで作製される。金属箔20とスルーホール導体21とは、電気的に接続されている。基板2には、図示しない電子部品が実装されている。電子部品は、例えば、ノイズフィルタ、平滑コンデンサ、電流および電圧を検出するセンサ、マイコン、マイコンの周辺回路である。電子部品は、金属箔20またはスルーホール導体21にはんだ付けされている。 The through-hole conductor 21 is produced, for example, by forming a plating film on the inner wall surface of a through-hole penetrating through the substrate 2 in the first direction. Metal foil 20 and through-hole conductor 21 are electrically connected. Electronic components (not shown) are mounted on the substrate 2 . Electronic parts are, for example, noise filters, smoothing capacitors, sensors for detecting current and voltage, microcomputers, and peripheral circuits of microcomputers. Electronic components are soldered to metal foil 20 or through-hole conductors 21 .
 パワーモジュール3は、パワーデバイス35を樹脂36で封止した電子部品である。パワーモジュール3は、第1の方向に基板2と離れて配置されている。パワーモジュール3は、外部電源60から供給される電力の電圧を整流する整流機能、および、電圧が整流された電力をモータ70を駆動するための電力に変換する変換機能のうち少なくとも1つを有する。パワーモジュール3により変換された電力は、モータ70に供給される。パワーモジュール3は、例えば、複数並べて使用されるディスクリートの半導体素子、複数の半導体素子を1つのパッケージに納めたパワーモジュール、整流機能と変換機能とを統合して1つのパッケージに納めた複合モジュールである。なお、本実施の形態では、パワーモジュール3が、DIP(Dual Inline Package)タイプである場合を例にして説明するが、パワーモジュール3の種類を限定する趣旨ではない。 The power module 3 is an electronic component in which a power device 35 is sealed with a resin 36. The power module 3 is arranged apart from the substrate 2 in the first direction. The power module 3 has at least one of a rectifying function of rectifying the voltage of the power supplied from the external power supply 60 and a converting function of converting the rectified power into power for driving the motor 70. . Electric power converted by the power module 3 is supplied to the motor 70 . The power module 3 is, for example, a discrete semiconductor element used in parallel, a power module in which a plurality of semiconductor elements are housed in one package, or a composite module in which a rectifying function and a conversion function are integrated and housed in one package. be. In this embodiment, the case where the power module 3 is a DIP (Dual Inline Package) type will be described as an example, but the type of the power module 3 is not limited.
 パワーモジュール3は、金属部材4に熱的に接触している。本明細書において「熱的に接触」とは、パワーモジュール3と金属部材4とが直接接触することと、パワーモジュール3と金属部材4との間にパワーモジュール3から発生した熱を金属部材4に伝えられる媒体を介してパワーモジュール3と金属部材4とが間接的に接触することを含む意味である。パワーモジュール3は、本実施の形態では金属部材4と直接接触している。 The power module 3 is in thermal contact with the metal member 4. In this specification, “thermal contact” means that the power module 3 and the metal member 4 are in direct contact, and that the heat generated from the power module 3 is transferred between the power module 3 and the metal member 4. It means that the power module 3 and the metal member 4 are indirectly in contact with each other through a medium that is transmitted to the power module 3 . The power module 3 is in direct contact with the metal member 4 in this embodiment.
 パワーモジュール3は、パワーモジュール本体部30と、2つのピン31とを有している。パワーモジュール本体部30は、パワーデバイス35と、パワーデバイス35を封止する樹脂36とを含んでいる。パワーデバイス35は、パワーモジュール3の整流機能または変換機能を司る電子部品である。パワーデバイス35が駆動されたときに、パワーデバイス35から熱が発生する。図示は省略するが、パワーデバイス35は、はんだ付けなどによりピン31に直接実装されるか、または、導電性のワイヤを介してピン31に電気的に接続される。パワーモジュール本体部30は、金属部材4に熱的に接触している。パワーモジュール本体部30は、金属部材4の上に配置されている。パワーモジュール本体部30の断面形状は、第1の方向よりも第2の方向に長い矩形である。 The power module 3 has a power module body 30 and two pins 31 . The power module body 30 includes a power device 35 and a resin 36 sealing the power device 35 . The power device 35 is an electronic component that controls the rectification function or conversion function of the power module 3 . Heat is generated from the power device 35 when the power device 35 is driven. Although not shown, the power device 35 is directly mounted on the pin 31 by soldering or the like, or electrically connected to the pin 31 via a conductive wire. The power module body 30 is in thermal contact with the metal member 4 . The power module body portion 30 is arranged on the metal member 4 . The cross-sectional shape of the power module body portion 30 is a rectangle that is longer in the second direction than in the first direction.
 ピン31は、導電性を有する金属製部材である。ピン31は、パワーモジュール3の端子に相当する部分である。ピン31は、パワーモジュール本体部30から第2の方向に延びた後に基板2に向かって延びて、基板2の導体部に電気的に接続されている。ピン31は、パワーモジュール本体部30のうち第2の方向の両端面に1本ずつ設けられている。ピン31は、第1の直線部32と、第2の直線部33と、第1の直線部32と第2の直線部33との間に形成された曲線部34とを有している。 The pin 31 is a conductive metal member. The pins 31 are portions corresponding to terminals of the power module 3 . The pin 31 extends in the second direction from the power module body 30 and then extends toward the substrate 2 and is electrically connected to the conductor of the substrate 2 . One pin 31 is provided on each end surface of the power module main body 30 in the second direction. The pin 31 has a first straight portion 32 , a second straight portion 33 , and a curved portion 34 formed between the first straight portion 32 and the second straight portion 33 .
 第1の直線部32は、パワーモジュール本体部30のうち第2の方向の端面から第2の方向に直線状に延びて、第1の方向に金属部材4と離れている離隔部となる。第1の直線部32は、金属部材4の後記する設置面40と平行である。曲線部34は、第1の直線部32の先端部から離れるにつれて基板2に近付くように曲線状に延びている。第2の直線部33は、曲線部34の先端部から第1の方向に直線状に延びている。 The first linear portion 32 extends linearly in the second direction from the end surface of the power module main body portion 30 in the second direction, and serves as a separation portion separated from the metal member 4 in the first direction. The first linear portion 32 is parallel to a mounting surface 40 of the metal member 4, which will be described later. The curved portion 34 extends in a curved shape so as to approach the substrate 2 as the distance from the tip of the first straight portion 32 increases. The second linear portion 33 linearly extends in the first direction from the tip of the curved portion 34 .
 各ピン31の第2の直線部33は、スルーホール導体21に電気的に接続されている。各ピン31の第2の直線部33は、スルーホール導体21にはんだ付けで接合されている。各ピン31の第2の直線部33をスルーホール導体21にはんだ付けで接合することにより、パワーモジュール3が基板2に固定される。パワーモジュール3は、スルーホール導体21および金属箔20を介して、基板2に実装されている電子部品と電気的なやり取りを行ったり、図示しない端子、コネクタなどを介して図2に示される基板2とは別の基板と電気的なやり取りを行ったりする。電気的なやり取りとは、例えば、電力の供給、電力の受給、電気信号の伝達である。 A second straight portion 33 of each pin 31 is electrically connected to the through-hole conductor 21 . A second straight portion 33 of each pin 31 is soldered to the through-hole conductor 21 . The power module 3 is fixed to the substrate 2 by soldering the second straight portion 33 of each pin 31 to the through-hole conductor 21 . The power module 3 electrically communicates with electronic components mounted on the substrate 2 via the through-hole conductors 21 and the metal foil 20, and the substrate shown in FIG. 2 via terminals and connectors (not shown). 2 and electrically exchange with a board different from that of 2. Electrical exchange is, for example, power supply, power reception, and electrical signal transmission.
 金属部材4は、パワーモジュール3を挟んで基板2と反対側に配置されて、導電性および放熱性を有する部材である。金属部材4は、パワーモジュール3から発生した熱を駆動装置1の外部に放熱する役割を果たす。金属部材4は、例えば、ヒートシンク、駆動装置1が搭載される装置の外郭を構成する板金筐体である。金属部材4が板金筐体の場合には、板金筐体全体に熱が伝わって放熱面積が増えるため、金属部材4による放熱効果が高まる。金属部材4は、パワーモジュール本体部30のうち基板2の方を向く面とは反対側の面に熱的に接触している。金属部材4のうちパワーモジュール3の方を向く面は、第2の方向に沿った平面状の設置面40となる。金属部材4は、接地されている。 The metal member 4 is arranged on the side opposite to the substrate 2 with the power module 3 interposed therebetween, and is a member having conductivity and heat dissipation. The metal member 4 plays a role of dissipating heat generated from the power module 3 to the outside of the driving device 1 . The metal member 4 is, for example, a sheet-metal housing that forms an outer shell of a device in which the heat sink and the driving device 1 are mounted. When the metal member 4 is a sheet metal housing, the heat is transferred to the entire sheet metal housing and the heat radiation area is increased. The metal member 4 is in thermal contact with the surface of the power module body 30 opposite to the surface facing the substrate 2 . The surface of the metal member 4 that faces the power module 3 serves as a planar installation surface 40 along the second direction. Metal member 4 is grounded.
 各ピン31と金属部材4との間には、放熱性と電気絶縁性とを有する放熱部材5が1つずつ配置されている。以下、2つの放熱部材5を区別する場合には、紙面左側の放熱部材5を放熱部材5aと称し、紙面右側の放熱部材5を放熱部材5bと称する。放熱部材5は、パワーモジュール3から発生した熱を放熱する役割と、ピン31と金属部材4との間を電気的に絶縁する役割を果たす。放熱部材5には、放熱性と電気絶縁性とを兼ね備えた放熱シート、ゲル、ジェルなどが使用される。 Between each pin 31 and the metal member 4, one heat dissipating member 5 having heat dissipation and electrical insulation is arranged. Hereinafter, when distinguishing between the two heat dissipating members 5, the heat dissipating member 5 on the left side of the paper surface is referred to as the heat dissipating member 5a, and the heat dissipating member 5 on the right side of the paper surface is referred to as the heat dissipating member 5b. The heat dissipation member 5 has a role of dissipating heat generated from the power module 3 and a role of electrically insulating between the pin 31 and the metal member 4 . As the heat radiating member 5, a heat radiating sheet, gel, or the like having both heat radiating properties and electrical insulating properties is used.
 2つの放熱部材5は、パワーモジュール3を挟んで、第2の方向に互いに離隔している。放熱部材5は、パワーモジュール3の外側に配置されている。放熱部材5は、ピン31と金属部材4との間を遮蔽している。放熱部材5は、ピン31、金属箔20および金属部材4のうち少なくとも1つに接触していればよいが、本実施の形態ではピン31、金属箔20および金属部材4の全部に接触している。なお、放熱部材5は、金属部材4に接触しているとともに、ピン31および金属箔20のうち少なくとも一方に接触していることが好ましい。 The two heat radiating members 5 are separated from each other in the second direction with the power module 3 interposed therebetween. The heat dissipation member 5 is arranged outside the power module 3 . The heat dissipation member 5 shields between the pin 31 and the metal member 4 . Heat dissipation member 5 only needs to be in contact with at least one of pin 31 , metal foil 20 and metal member 4 . there is It is preferable that the heat radiation member 5 is in contact with the metal member 4 and at least one of the pin 31 and the metal foil 20 .
 放熱部材5は、第1の放熱部50と、第2の放熱部51とを有している。実際には第1の放熱部50と第2の放熱部51とは一体に形成されているが、説明の便宜上、図2には第1の放熱部50と第2の放熱部51との境界線Lを図示している。第1の放熱部50は、金属部材4の設置面40から基板2の金属箔20に亘って第1の方向に延びる部分である。第1の放熱部50は、第2の直線部33、金属箔20および金属部材4に接触している。第1の放熱部50の断面形状は、曲面を有さない矩形である。 The heat radiating member 5 has a first heat radiating portion 50 and a second heat radiating portion 51 . Actually, the first heat radiating portion 50 and the second heat radiating portion 51 are integrally formed, but for convenience of explanation, FIG. Line L is shown. The first heat radiation portion 50 is a portion extending in the first direction from the installation surface 40 of the metal member 4 over the metal foil 20 of the substrate 2 . The first heat dissipation portion 50 is in contact with the second linear portion 33 , the metal foil 20 and the metal member 4 . The cross-sectional shape of the first heat radiation part 50 is a rectangle with no curved surface.
 第2の放熱部51は、第1の放熱部50のうちパワーモジュール本体部30の方を向く端面からパワーモジュール本体部30に向かって第2の方向に延びる部分である。第2の放熱部51は、第1の直線部32、曲線部34、金属部材4およびパワーモジュール本体部30に接触している。第2の放熱部51は、第1の直線部32と金属部材4とに接触して、第1の直線部32と金属部材4との間に配置されている。つまり、第2の放熱部51は、第1の直線部32と金属部材4との間に挟み込まれている。 The second heat radiation portion 51 is a portion of the first heat radiation portion 50 that extends in the second direction toward the power module body portion 30 from the end face facing the power module body portion 30 . The second heat radiation portion 51 is in contact with the first straight portion 32 , the curved portion 34 , the metal member 4 and the power module body portion 30 . The second heat radiation portion 51 is arranged between the first straight portion 32 and the metal member 4 in contact with the first straight portion 32 and the metal member 4 . That is, the second heat radiating portion 51 is sandwiched between the first linear portion 32 and the metal member 4 .
 第2の放熱部51は、曲線部34と金属部材4とに接触して、曲線部34と金属部材4との間に配置されている。つまり、第2の放熱部51は、曲線部34と金属部材4との間に挟み込まれている。第2の放熱部51は、パワーモジュール本体部30の第2の方向の端面に接触している。放熱部材5aの第2の放熱部51と放熱部材5bの第2の放熱部51とは、第2の方向の外側からパワーモジュール本体部30を挟み込んでいる。第2の放熱部51は、第1の直線部32と曲線部34と金属部材4とパワーモジュール本体部30とにより形成された空間を埋めている。第2の放熱部51の断面形状は、曲線部34に沿った曲面を有する形状である。 The second heat radiation part 51 is arranged between the curved part 34 and the metal member 4 in contact with the curved part 34 and the metal member 4 . That is, the second heat radiating portion 51 is sandwiched between the curved portion 34 and the metal member 4 . The second heat radiating portion 51 is in contact with the end surface of the power module body portion 30 in the second direction. The second heat radiation portion 51 of the heat radiation member 5a and the second heat radiation portion 51 of the heat radiation member 5b sandwich the power module main body portion 30 from the outside in the second direction. The second heat radiation portion 51 fills the space formed by the first straight portion 32 , the curved portion 34 , the metal member 4 and the power module body portion 30 . The cross-sectional shape of the second heat radiating portion 51 is a shape having a curved surface along the curved portion 34 .
 次に、実施の形態1にかかる駆動装置1の効果について説明する。 Next, the effect of the driving device 1 according to the first embodiment will be explained.
 本実施の形態では、図2に示すように、パワーモジュール3のピン31と金属部材4との間には、電気絶縁性を有する放熱部材5が配置されていることにより、パワーモジュール3のピン31と金属部材4との間の電気絶縁性を確保することができる。また、本実施の形態では、パワーモジュール3のピン31と金属部材4との間には、放熱性を有する放熱部材5が配置されて、放熱部材5がピン31、金属箔20および金属部材4のうち少なくとも1つに接触していることにより、パワーモジュール本体部30からピン31、金属箔20および金属部材4に伝わった熱を放熱部材5で放熱することができる。また、本実施の形態では、パワーモジュール3が金属部材4に熱的に接触していることにより、パワーモジュール本体部30から発生した熱を金属部材4に伝えて、金属部材4から駆動装置1の外部に放熱することができる。つまり、本実施の形態では、パワーモジュール3のピン31と金属部材4との間の電気絶縁性を確保しつつ、放熱性能を高めることができる。 In the present embodiment, as shown in FIG. 2, a heat radiation member 5 having electrical insulation is arranged between the pins 31 of the power module 3 and the metal member 4, so that the pins of the power module 3 Electrical insulation between 31 and metal member 4 can be ensured. Further, in the present embodiment, the heat dissipation member 5 having heat dissipation is arranged between the pin 31 of the power module 3 and the metal member 4 . By contacting at least one of them, the heat transmitted from the power module main body 30 to the pin 31 , the metal foil 20 and the metal member 4 can be radiated by the heat radiating member 5 . Further, in the present embodiment, since the power module 3 is in thermal contact with the metal member 4 , the heat generated from the power module main body 30 is transmitted to the metal member 4 , thereby causing the metal member 4 to heat the driving device 1 . can dissipate heat to the outside. That is, in the present embodiment, it is possible to improve the heat radiation performance while ensuring electrical insulation between the pins 31 of the power module 3 and the metal member 4 .
 本実施の形態では、放熱部材5は、ピン31、金属箔20および金属部材4の全部に接触していることにより、パワーモジュール本体部30からピン31に伝わった熱が放熱部材5を介して金属部材4に伝わるとともに、ピン31から金属箔20に伝わった熱が放熱部材5を介して金属部材4に伝わる。そのため、パワーモジュール本体部30から発生した熱を効率良く放熱することができる。さらに、放熱部材5が金属箔20および金属部材4に接触していることにより、基板2に実装された電子部品から発生した熱が放熱部材5を介して金属部材4に伝わるため、電子部品から発生した熱も効率良く放熱することができる。 In the present embodiment, heat dissipation member 5 is in contact with all of pin 31 , metal foil 20 and metal member 4 , so that heat transferred from power module main body 30 to pin 31 passes through heat dissipation member 5 . The heat transmitted to the metal member 4 and transmitted from the pin 31 to the metal foil 20 is transmitted to the metal member 4 via the heat radiation member 5 . Therefore, heat generated from the power module body 30 can be efficiently radiated. Furthermore, since the heat radiation member 5 is in contact with the metal foil 20 and the metal member 4, the heat generated from the electronic component mounted on the substrate 2 is transmitted to the metal member 4 through the heat radiation member 5, so that the heat from the electronic component The generated heat can also be efficiently dissipated.
 本実施の形態では、金属部材4が接地されていることにより、ピン31とアースとなる電位の部分との間で短絡することがないため、ピン31からアースとなる電位の部分への短絡電流によるパワーモジュール3の不具合を抑制することができる。 In the present embodiment, since the metal member 4 is grounded, there is no short circuit between the pin 31 and the ground potential portion, so the short-circuit current from the pin 31 to the ground potential portion is It is possible to suppress the malfunction of the power module 3 due to
 本実施の形態では、ピン31は、第2の方向に延びて第1の方向に金属部材4と離れる離隔部である第1の直線部32を有し、放熱部材5の第2の放熱部51は、第1の直線部32と金属部材4との間に挟み込まれている。これにより、駆動装置1の輸送時、駆動装置1への通電時などにおいて、基板2、金属部材4に振動が発生した場合に、放熱部材5によってピン31への振動が減衰される。そのため、ピン31の可動範囲が抑制されて、ピン31の折損を抑制することができる。また、本実施の形態では、放熱部材5がパワーモジュール本体部30にも接触していることにより、ピン31への振動がより一層減衰される。なお、放熱部材5は、パワーモジュール本体部30と離れていてもよい。 In the present embodiment, the pin 31 has a first linear portion 32 extending in the second direction and separated from the metal member 4 in the first direction. 51 is sandwiched between the first straight portion 32 and the metal member 4 . As a result, when the substrate 2 and the metal member 4 vibrate when the driving device 1 is transported or when the driving device 1 is energized, the vibration to the pin 31 is damped by the heat radiation member 5 . Therefore, the movable range of the pin 31 is suppressed, and breakage of the pin 31 can be suppressed. Further, in the present embodiment, the heat dissipation member 5 is also in contact with the power module main body 30, so that the vibration to the pin 31 is further damped. Note that the heat dissipation member 5 may be separated from the power module body 30 .
実施の形態2.
 次に、図3を参照して、実施の形態2にかかる駆動装置1Aについて説明する。図3は、実施の形態2にかかる駆動装置1Aを示した断面図である。本実施の形態では、パワーモジュール3と金属部材4との間に伝熱グリス6を設けた点が、前記した実施の形態1と相違する。なお、実施の形態2では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。
Embodiment 2.
Next, a driving device 1A according to the second embodiment will be described with reference to FIG. FIG. 3 is a cross-sectional view showing a driving device 1A according to the second embodiment. This embodiment differs from the first embodiment in that a heat transfer grease 6 is provided between the power module 3 and the metal member 4 . In addition, in Embodiment 2, the same code|symbol is attached|subjected about the part which overlaps with above-mentioned Embodiment 1, and description is abbreviate|omitted.
 パワーモジュール3と金属部材4との間には、パワーモジュール3から金属部材4へ伝熱する伝熱グリス6が挟み込まれている。伝熱グリス6は、パワーモジュール3および金属部材4のうち少なくとも一方に塗布される。伝熱グリス6には、例えば、常温から高温まで粘度の変化が少ない変性シリコンを主成分として、この主成分に熱伝導率の高い金属または熱伝導率の高い金属酸化物の粒子を混ぜ込んだグリスが使用される。パワーモジュール3は、伝熱グリス6を介して金属部材4に熱的に接触している。 A heat transfer grease 6 that transfers heat from the power module 3 to the metal member 4 is sandwiched between the power module 3 and the metal member 4 . Heat transfer grease 6 is applied to at least one of power module 3 and metal member 4 . The heat transfer grease 6 is mainly composed of, for example, modified silicon whose viscosity changes little from room temperature to high temperature, and metal with high thermal conductivity or metal oxide particles with high thermal conductivity are mixed into this main component. Grease is used. The power module 3 is in thermal contact with the metal member 4 via heat transfer grease 6 .
 放熱部材5aの第2の放熱部51と放熱部材5bの第2の放熱部51とは、第2の方向の外側からパワーモジュール本体部30および伝熱グリス6を挟み込んでいる。第2の放熱部51は、パワーモジュール本体部30の第2の方向の端面と伝熱グリス6の第2の方向の端部とに接触している。第2の放熱部51は、第1の直線部32と曲線部34と金属部材4とパワーモジュール本体部30と伝熱グリス6とにより形成された空間を埋めている。 The second heat radiating portion 51 of the heat radiating member 5a and the second heat radiating portion 51 of the heat radiating member 5b sandwich the power module main body 30 and the heat transfer grease 6 from the outside in the second direction. The second heat radiating portion 51 is in contact with the end surface of the power module main body portion 30 in the second direction and the end portion of the heat transfer grease 6 in the second direction. The second heat radiating portion 51 fills the space formed by the first straight portion 32 , the curved portion 34 , the metal member 4 , the power module body portion 30 and the heat transfer grease 6 .
 パワーモジュール3と金属部材4とを直接接触させた場合には、両者の間に微小な隙間が発生する可能性がある。本実施の形態では、パワーモジュール3と金属部材4との間には、パワーモジュール3から金属部材4へ伝熱する伝熱グリス6が挟み込まれて、パワーモジュール3は、伝熱グリス6を介して金属部材4に熱的に接触していることにより、パワーモジュール3と金属部材4との間に微小な隙間が発生することを防げる。そのため、隙間による熱抵抗の増加を防止して、パワーモジュール3から発生した熱が金属部材4により一層伝わりやすくなり、放熱性能を高めることができる。 When the power module 3 and the metal member 4 are brought into direct contact, there is a possibility that a minute gap will occur between them. In the present embodiment, a heat transfer grease 6 that transfers heat from the power module 3 to the metal member 4 is sandwiched between the power module 3 and the metal member 4, and the power module 3 is connected to the power module 3 via the heat transfer grease 6. Since the power module 3 and the metal member 4 are in thermal contact with each other, it is possible to prevent the occurrence of a minute gap between the power module 3 and the metal member 4 . Therefore, an increase in thermal resistance due to the gap is prevented, and the heat generated from the power module 3 is more easily transferred to the metal member 4, thereby improving the heat dissipation performance.
 本実施の形態では、放熱部材5a,5bの第2の放熱部51は、伝熱グリス6の第2の方向の端部に接触している。これにより、駆動装置1Aの輸送時、駆動装置1Aへの通電時などにおいて、基板2、金属部材4に振動が発生した場合に、放熱部材5a,5bによって伝熱グリス6の可動範囲が抑制される。そのため、パワーモジュール3と金属部材4との間からの伝熱グリス6の漏出を抑制することができ、伝熱グリス6による放熱効果を維持することができる。なお、放熱部材5の第2の放熱部51は、伝熱グリス6と離れていてもよい。 In the present embodiment, the second heat radiating portions 51 of the heat radiating members 5a and 5b are in contact with the ends of the heat transfer grease 6 in the second direction. As a result, when vibration occurs in the substrate 2 and the metal member 4 during transportation of the drive device 1A, power supply to the drive device 1A, etc., the movable range of the heat transfer grease 6 is suppressed by the heat dissipation members 5a and 5b. be. Therefore, leakage of the heat transfer grease 6 from between the power module 3 and the metal member 4 can be suppressed, and the heat dissipation effect of the heat transfer grease 6 can be maintained. In addition, the second heat radiating portion 51 of the heat radiating member 5 may be separated from the heat transfer grease 6 .
 次に、図4を参照して、実施の形態2の変形例1にかかる駆動装置1Bについて説明する。図4は、実施の形態2の変形例1にかかる駆動装置1Bを示した断面図である。変形例1にかかる駆動装置1Bは、パワーモジュール3と金属部材4との間に放熱部材5cを設けた点が、前記した実施の形態2の駆動装置1Aと相違する。変形例1では、前記した実施の形態2の駆動装置1Aと重複する部分については、同一符号を付して説明を省略する。 Next, referring to FIG. 4, a driving device 1B according to Modification 1 of Embodiment 2 will be described. FIG. 4 is a cross-sectional view showing a driving device 1B according to Modification 1 of Embodiment 2. As shown in FIG. A drive device 1B according to Modification 1 differs from the drive device 1A of the second embodiment in that a heat radiation member 5c is provided between the power module 3 and the metal member 4. FIG. In the modified example 1, the same reference numerals are given to the parts that overlap with the drive device 1A of the second embodiment, and the description thereof is omitted.
 パワーモジュール3と金属部材4との間には、パワーモジュール3から金属部材4へ伝熱する放熱部材5cが挟み込まれている。放熱部材5cの断面形状は、第1の方向よりも第2の方向に長い矩形である。放熱部材5cには、放熱性と電気絶縁性とを兼ね備えた放熱シート、ゲル、ジェルなどが使用される。パワーモジュール3は、放熱部材5cを介して金属部材4に熱的に接触している。 Between the power module 3 and the metal member 4, a heat dissipation member 5c that transfers heat from the power module 3 to the metal member 4 is sandwiched. The cross-sectional shape of the heat radiating member 5c is a rectangle that is longer in the second direction than in the first direction. A heat radiation sheet, gel, or the like having both heat radiation and electrical insulation is used for the heat radiation member 5c. The power module 3 is in thermal contact with the metal member 4 via the heat radiating member 5c.
 放熱部材5aの第2の放熱部51と放熱部材5bの第2の放熱部51とは、第2の方向の外側からパワーモジュール本体部30および放熱部材5cを挟み込んでいる。第2の放熱部51は、パワーモジュール本体部30の第2の方向の端面と放熱部材5cの第2の方向の端面とに接触している。第2の放熱部51は、第1の直線部32と曲線部34と金属部材4とパワーモジュール本体部30と放熱部材5cとにより形成された空間を埋めている。本変形例では、隣接する3つの放熱部材5a,5b,5cが別体で形成されているが、隣接する3つの放熱部材5a,5b,5cが一体に形成されてもよい。以下、放熱部材5a,5b,5cを放熱部材5と総称する場合もある。 The second heat radiating portion 51 of the heat radiating member 5a and the second heat radiating portion 51 of the heat radiating member 5b sandwich the power module body portion 30 and the heat radiating member 5c from the outside in the second direction. The second heat radiating portion 51 is in contact with the end surface of the power module body portion 30 in the second direction and the end surface of the heat radiating member 5c in the second direction. The second heat dissipation portion 51 fills the space formed by the first straight portion 32, the curved portion 34, the metal member 4, the power module body portion 30, and the heat dissipation member 5c. In this modification, the three adjacent heat radiating members 5a, 5b, 5c are formed separately, but the three adjacent heat radiating members 5a, 5b, 5c may be integrally formed. Hereinafter, the heat radiating members 5a, 5b, and 5c may be collectively referred to as the heat radiating member 5 in some cases.
 本変形例では、パワーモジュール3と金属部材4との間には、放熱部材5cが挟み込まれて、パワーモジュール3は、放熱部材5cを介して金属部材4に熱的に接触していることにより、パワーモジュール3と金属部材4との間に微小な隙間が発生することを防げる。そのため、隙間による熱抵抗の増加を防止して、パワーモジュール3から発生した熱が金属部材4により一層伝わりやすくなり、放熱性能を高めることができる。 In this modification, a heat radiation member 5c is sandwiched between the power module 3 and the metal member 4, and the power module 3 is in thermal contact with the metal member 4 via the heat radiation member 5c. , the generation of minute gaps between the power module 3 and the metal member 4 can be prevented. Therefore, an increase in thermal resistance due to the gap is prevented, and the heat generated from the power module 3 is more easily transferred to the metal member 4, thereby improving the heat dissipation performance.
 本変形例では、放熱部材5a,5bの第2の放熱部51は、放熱部材5cの第2の方向の端面に接触している。これにより、駆動装置1Bの輸送時、駆動装置1Bへの通電時などにおいて、基板2、金属部材4に振動が発生した場合に、放熱部材5a,5bによって放熱部材5cの可動範囲が抑制される。そのため、パワーモジュール3と金属部材4との間に放熱部材5cが固定されて、放熱部材5cによる放熱効果を維持することができる。なお、放熱部材5a,5bの第2の放熱部51は、放熱部材5cと離れていてもよい。また、隣接する3つの放熱部材5a,5b,5cが一体に形成された場合には、基板2、金属部材4の振動による放熱部材5cの可動が発生しない。 In this modified example, the second heat radiating portions 51 of the heat radiating members 5a and 5b are in contact with the end face of the heat radiating member 5c in the second direction. As a result, when vibration occurs in the substrate 2 and the metal member 4 during transport of the drive device 1B, power supply to the drive device 1B, etc., the movable range of the heat dissipation member 5c is suppressed by the heat dissipation members 5a and 5b. . Therefore, the heat dissipation member 5c is fixed between the power module 3 and the metal member 4, and the heat dissipation effect of the heat dissipation member 5c can be maintained. The second heat radiation portion 51 of the heat radiation members 5a and 5b may be separated from the heat radiation member 5c. Further, when the three adjacent heat dissipating members 5a, 5b, and 5c are integrally formed, the movement of the heat dissipating member 5c due to the vibration of the substrate 2 and the metal member 4 does not occur.
 次に、図5を参照して、実施の形態2の変形例2にかかる駆動装置1Cについて説明する。図5は、実施の形態2の変形例2にかかる駆動装置1Cを示した断面図である。変形例2にかかる駆動装置1Cは、放熱部材5a,5bの第2の放熱部51を省略した点と、パワーモジュール3と金属部材4との間に放熱部材5cを設けた点とが、前記した実施の形態2の駆動装置1Aと相違する。変形例1では、前記した実施の形態2の駆動装置1Aと重複する部分については、同一符号を付して説明を省略する。 Next, referring to FIG. 5, a driving device 1C according to Modification 2 of Embodiment 2 will be described. FIG. 5 is a cross-sectional view showing a driving device 1C according to Modification 2 of Embodiment 2. As shown in FIG. In the driving device 1C according to Modification 2, the second heat radiation part 51 of the heat radiation members 5a and 5b is omitted, and the heat radiation member 5c is provided between the power module 3 and the metal member 4. It is different from the driving device 1A of the second embodiment. In the modified example 1, the same reference numerals are given to the parts that overlap with the drive device 1A of the second embodiment, and the description thereof is omitted.
 放熱部材5a,5bは、第1の放熱部50のみを有している。放熱部材5a,5bは、金属部材4の設置面40から基板2の金属箔20に亘って第1の方向に延びている。放熱部材5a,5bは、第2の直線部33、金属箔20および金属部材4に接触している。放熱部材5a,5bは、第1の直線部32および曲線部34に接触していない。放熱部材5a,5bは、第1の直線部32および曲線部34と金属部材4との間に配置されていない。放熱部材5a,5bの断面形状は、第2の方向よりも第1の方向に長い矩形である。 The heat radiating members 5a and 5b have only the first heat radiating portion 50. The heat dissipation members 5 a and 5 b extend in the first direction from the installation surface 40 of the metal member 4 over the metal foil 20 of the substrate 2 . The heat dissipation members 5 a and 5 b are in contact with the second straight portion 33 , the metal foil 20 and the metal member 4 . The heat dissipation members 5a and 5b are not in contact with the first linear portion 32 and the curved portion 34. As shown in FIG. The heat dissipation members 5 a and 5 b are not arranged between the first straight portion 32 and the curved portion 34 and the metal member 4 . The cross-sectional shape of the heat radiating members 5a and 5b is a rectangle longer in the first direction than in the second direction.
 パワーモジュール3と金属部材4との間には、パワーモジュール3から金属部材4へ伝熱する放熱部材5cが挟み込まれている。放熱部材5cの断面形状は、第1の方向よりも第2の方向に長い矩形である。放熱部材5cには、放熱性と電気絶縁性とを兼ね備えた放熱シート、ゲル、ジェルなどが使用される。パワーモジュール3は、放熱部材5cを介して金属部材4に熱的に接触している。 Between the power module 3 and the metal member 4, a heat dissipation member 5c that transfers heat from the power module 3 to the metal member 4 is sandwiched. The cross-sectional shape of the heat radiating member 5c is a rectangle that is longer in the second direction than in the first direction. A heat radiation sheet, gel, or the like having both heat radiation and electrical insulation is used for the heat radiation member 5c. The power module 3 is in thermal contact with the metal member 4 via the heat radiating member 5c.
 放熱部材5cの第2の方向の両端部は、パワーモジュール本体部30の第2の方向の端面よりも外側に張り出している。放熱部材5cの張出部52は、第1の直線部32および曲線部34と金属部材4との間に配置されている。放熱部材5cの張出部52は、金属部材4に接触しているが、第1の直線部32および曲線部34と第1の方向に離れている。放熱部材5a,5b,5cは、いずれも曲線部34に沿って延びる部分を有していない。すなわち、放熱部材5a,5b,5cの断面形状は、曲面を有さない矩形である。 Both ends of the heat radiating member 5c in the second direction protrude outward from the end face of the power module body 30 in the second direction. The protruding portion 52 of the heat radiating member 5 c is arranged between the first straight portion 32 and the curved portion 34 and the metal member 4 . The projecting portion 52 of the heat radiating member 5c is in contact with the metal member 4, but is separated from the first linear portion 32 and the curved portion 34 in the first direction. None of the heat radiating members 5a, 5b, 5c has a portion extending along the curved portion 34. As shown in FIG. That is, the cross-sectional shapes of the heat radiating members 5a, 5b, 5c are rectangular without curved surfaces.
 放熱部材5aの第1の放熱部50と放熱部材5bの第1の放熱部50とは、第2の方向の外側から放熱部材5cを挟み込んでいる。第1の放熱部50は、放熱部材5cの第2の方向の端面に接触している。すなわち、放熱部材5aの第1の放熱部50は、放熱部材5cの一方の張出部52の先端面に接触している。放熱部材5bの第1の放熱部50は、放熱部材5cの他方の張出部52の先端面に接触している。本変形例では、隣接する3つの放熱部材5a,5b,5cが別体で形成されているが、隣接する3つの放熱部材5a,5b,5cが一体に形成されてもよい。 The first heat radiating portion 50 of the heat radiating member 5a and the first heat radiating portion 50 of the heat radiating member 5b sandwich the heat radiating member 5c from the outside in the second direction. The first heat radiation portion 50 is in contact with the end surface of the heat radiation member 5c in the second direction. That is, the first heat radiating portion 50 of the heat radiating member 5a is in contact with the tip end surface of one projecting portion 52 of the heat radiating member 5c. The first heat radiating portion 50 of the heat radiating member 5b is in contact with the tip end surface of the other projecting portion 52 of the heat radiating member 5c. In this modification, the three adjacent heat radiating members 5a, 5b, 5c are formed separately, but the three adjacent heat radiating members 5a, 5b, 5c may be integrally formed.
 本変形例では、パワーモジュール3と金属部材4との間には、放熱部材5cが挟み込まれていることにより、放熱部材5cの第1の方向に沿った厚さ分だけピン31と金属部材4との第1の方向に沿った距離を離すことができる。そのため、パワーモジュール3のピン31と金属部材4との間の電気絶縁性を確保することができる。これにより、ピン31の曲線部34に沿うように放熱部材5を配置する必要がなくなり、各面を平面状に加工した放熱部材5を使用できる。したがって、曲面を有する放熱部材5を使用する場合に比べて、放熱部材5の加工工程が簡略化されて放熱部材5の製造コストを低減させることができる。 In this modification, the heat dissipation member 5c is sandwiched between the power module 3 and the metal member 4, so that the pin 31 and the metal member 4 are separated by the thickness of the heat dissipation member 5c along the first direction. can be separated by a distance along a first direction. Therefore, electrical insulation between the pins 31 of the power module 3 and the metal member 4 can be ensured. This eliminates the need to dispose the heat radiating member 5 along the curved portion 34 of the pin 31, and allows the use of a heat radiating member 5 whose surfaces are processed to be planar. Therefore, compared with the case of using the heat radiating member 5 having a curved surface, the manufacturing process of the heat radiating member 5 is simplified, and the manufacturing cost of the heat radiating member 5 can be reduced.
 本変形例では、パワーモジュール3と金属部材4との間には、放熱部材5cが挟み込まれて、パワーモジュール3は、放熱部材5cを介して金属部材4に熱的に接触していることにより、パワーモジュール3と金属部材4との間に微小な隙間が発生することを防げる。そのため、隙間による熱抵抗の増加を防止して、パワーモジュール3から発生した熱が金属部材4により一層伝わりやすくなり、放熱性能を高めることができる。つまり、本変形例では、放熱部材5の製造コストを低減させつつ、放熱性能を高めることができる。 In this modification, a heat radiation member 5c is sandwiched between the power module 3 and the metal member 4, and the power module 3 is in thermal contact with the metal member 4 via the heat radiation member 5c. , the generation of minute gaps between the power module 3 and the metal member 4 can be prevented. Therefore, an increase in thermal resistance due to the gap is prevented, and the heat generated from the power module 3 is more easily transferred to the metal member 4, thereby improving the heat dissipation performance. That is, in this modification, the heat dissipation performance can be improved while reducing the manufacturing cost of the heat dissipation member 5 .
 本変形例では、放熱部材5a,5bの第1の放熱部50は、放熱部材5cの第2の方向の端面に接触している。これにより、駆動装置1Cの輸送時、駆動装置1Cへの通電時などにおいて、基板2、金属部材4に振動が発生した場合に、放熱部材5a,5bによって放熱部材5cの可動範囲が抑制される。そのため、パワーモジュール3と金属部材4との間に放熱部材5cが固定されて、放熱部材5cによる放熱効果を維持することができる。なお、放熱部材5a,5bの第1の放熱部50は、放熱部材5cと離れていてもよい。また、隣接する3つの放熱部材5a,5b,5cが一体に形成された場合には、基板2、金属部材4の振動による放熱部材5cの可動が発生しない。 In this modified example, the first heat dissipating portions 50 of the heat dissipating members 5a and 5b are in contact with the end surface of the heat dissipating member 5c in the second direction. As a result, when vibration occurs in the substrate 2 and the metal member 4 during transport of the drive device 1C, power supply to the drive device 1C, etc., the movable range of the heat dissipation member 5c is suppressed by the heat dissipation members 5a and 5b. . Therefore, the heat dissipation member 5c is fixed between the power module 3 and the metal member 4, and the heat dissipation effect of the heat dissipation member 5c can be maintained. In addition, the first heat radiation portion 50 of the heat radiation members 5a and 5b may be separated from the heat radiation member 5c. Further, when the three adjacent heat dissipating members 5a, 5b, and 5c are integrally formed, the movement of the heat dissipating member 5c due to the vibration of the substrate 2 and the metal member 4 does not occur.
実施の形態3.
 次に、図6を参照して、実施の形態3にかかる駆動装置1Dについて説明する。図6は、実施の形態3にかかる駆動装置1Dを示した断面図である。本実施の形態では、サイズが異なる複数のパワーモジュール3を設けた点が、前記した実施の形態1と相違する。なお、実施の形態3では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。
Embodiment 3.
Next, a drive device 1D according to the third embodiment will be described with reference to FIG. FIG. 6 is a cross-sectional view showing a driving device 1D according to the third embodiment. This embodiment is different from the first embodiment in that a plurality of power modules 3 having different sizes are provided. In addition, in Embodiment 3, the same code|symbol is attached|subjected about the part which overlaps with above-mentioned Embodiment 1, and description is abbreviate|omitted.
 本実施の形態では、複数のパワーモジュール3が第2の方向に並んで配置されている。複数のパワーモジュール3のうちの一部のサイズと複数のパワーモジュール3のうちの残部のサイズとは、互いに異なっている。パワーモジュール3の数は、本実施の形態では2つであるが、3つ以上でもよい。以下、2つのパワーモジュール3を区別する場合には、紙面左側のパワーモジュール3をパワーモジュール3aと称し、紙面右側のパワーモジュール3をパワーモジュール3bと称する。 In this embodiment, a plurality of power modules 3 are arranged side by side in the second direction. The size of some of the plurality of power modules 3 and the size of the remaining portion of the plurality of power modules 3 are different from each other. Although the number of power modules 3 is two in this embodiment, it may be three or more. Hereinafter, when distinguishing between the two power modules 3, the power module 3 on the left side of the page will be referred to as the power module 3a, and the power module 3 on the right side of the page will be referred to as the power module 3b.
 パワーモジュール3a,3bのうちいずれか一方は、図1に示される外部電源60から供給される電力の電圧を整流する整流機能を有する。パワーモジュール3a,3bのうちいずれか他方は、電圧が整流された電力を図1に示されるモータ70を駆動するための電力に変換する変換機能を有する。パワーモジュール3a,3bは、金属部材4に熱的に接触している。 One of the power modules 3a and 3b has a rectifying function of rectifying the voltage of the power supplied from the external power supply 60 shown in FIG. The other of the power modules 3a and 3b has a conversion function of converting the rectified voltage into power for driving the motor 70 shown in FIG. The power modules 3a, 3b are in thermal contact with the metal member 4. As shown in FIG.
 パワーモジュール3aは、2本のピン31aを有している。各ピン31aは、スルーホール導体21にはんだ付けで接合されている。各ピン31aをスルーホール導体21にはんだ付けで接合することにより、パワーモジュール3aが基板2に固定される。 The power module 3a has two pins 31a. Each pin 31a is joined to the through-hole conductor 21 by soldering. The power module 3a is fixed to the substrate 2 by soldering the pins 31a to the through-hole conductors 21. FIG.
 パワーモジュール3bは、2本のピン31bを有している。各ピン31bは、スルーホール導体21にはんだ付けで接合されている。各ピン31bをスルーホール導体21にはんだ付けで接合することにより、パワーモジュール3bが基板2に固定される。 The power module 3b has two pins 31b. Each pin 31b is joined to the through-hole conductor 21 by soldering. The power module 3b is fixed to the substrate 2 by soldering the pins 31b to the through-hole conductors 21. FIG.
 各ピン31aと金属部材4との間には、放熱性と電気絶縁性とを有する放熱部材5が1つずつ配置されている。以下、2つの放熱部材5を区別する場合には、パワーモジュール3aの紙面左側の放熱部材5を放熱部材5aと称し、パワーモジュール3aの紙面右側の放熱部材5を放熱部材5bと称する。放熱部材5a,5bは、ピン31a、金属箔20および金属部材4のうち少なくとも1つに接触していればよいが、本実施の形態ではピン31a、金属箔20および金属部材4の全部に接触している。 Between each pin 31a and the metal member 4, one heat dissipating member 5 having heat dissipation and electrical insulation is arranged. Hereinafter, when distinguishing between the two heat dissipating members 5, the heat dissipating member 5 on the left side of the power module 3a is referred to as the heat dissipating member 5a, and the heat dissipating member 5 on the right side of the power module 3a is referred to as the heat dissipating member 5b. The heat dissipation members 5a and 5b only need to be in contact with at least one of the pin 31a, the metal foil 20 and the metal member 4. are doing.
 各ピン31bと金属部材4との間には、放熱性と電気絶縁性とを有する放熱部材5が1つずつ配置されている。以下、2つの放熱部材5を区別する場合には、パワーモジュール3bの紙面左側の放熱部材5を放熱部材5dと称し、パワーモジュール3bの紙面右側の放熱部材5を放熱部材5eと称する。放熱部材5d,5eは、ピン31b、金属箔20および金属部材4のうち少なくとも1つに接触していればよいが、本実施の形態ではピン31b、金属箔20および金属部材4の全部に接触している。 Between each pin 31b and the metal member 4, one heat dissipating member 5 having heat dissipation and electrical insulation is arranged. Hereinafter, when distinguishing between the two heat radiating members 5, the heat radiating member 5 on the left side of the power module 3b on the page will be referred to as a heat radiating member 5d, and the heat radiating member 5 on the right side of the power module 3b on the page will be referred to as a heat radiating member 5e. The heat dissipation members 5d and 5e only need to be in contact with at least one of the pin 31b, the metal foil 20 and the metal member 4. are doing.
 パワーモジュール3bのサイズは、パワーモジュール3aのサイズよりも小さい。パワーモジュール3bのパワーモジュール本体部30の第1の方向に沿った厚さは、パワーモジュール3aのパワーモジュール本体部30の第1の方向に沿った厚さよりも薄い。パワーモジュール3bのピン31bの第1の方向に沿った高さは、パワーモジュール3aのピン31aの第1の方向に沿った高さよりも低い。サイズが小さい方のパワーモジュール3bと金属部材4との間には、放熱部材5fが挟み込まれている。放熱部材5dの第2の放熱部51と放熱部材5eの第2の放熱部51とは、第2の方向の外側から放熱部材5fを挟み込んでいる。放熱部材5b,5d,5e,5fは、第2の方向に並んで配置されている。放熱部材5bと放熱部材5dとは、隣接している。本変形例では、隣接する4つの放熱部材5b,5d,5e,5fが別体で形成されているが、隣接する4つの放熱部材5b,5d,5e,5fが一体に形成されてもよい。 The size of the power module 3b is smaller than the size of the power module 3a. The thickness of the power module body portion 30 of the power module 3b along the first direction is thinner than the thickness of the power module body portion 30 of the power module 3a along the first direction. The height of the pins 31b of the power module 3b along the first direction is lower than the height of the pins 31a of the power module 3a along the first direction. Between the smaller power module 3b and the metal member 4, a heat radiating member 5f is sandwiched. The second heat radiating portion 51 of the heat radiating member 5d and the second heat radiating portion 51 of the heat radiating member 5e sandwich the heat radiating member 5f from the outside in the second direction. The heat dissipation members 5b, 5d, 5e, and 5f are arranged side by side in the second direction. The heat dissipation member 5b and the heat dissipation member 5d are adjacent to each other. In this modification, the four adjacent heat dissipating members 5b, 5d, 5e, and 5f are formed separately, but the four adjacent heat dissipating members 5b, 5d, 5e, and 5f may be integrally formed.
 サイズが大きい方のパワーモジュール3aでは、ピン31aの第1の方向に沿った高さが高くなり、パワーモジュール本体部30を金属部材4に近付けて配置しても、ピン31aと基板2とを接続できる。これにより、サイズが大きい方のパワーモジュール3aでは、パワーモジュール本体部30を金属部材4に直接接触させたり、パワーモジュール本体部30を伝熱グリス6または放熱部材5を介して金属部材4に熱的に接触させたりすることができる。 In the power module 3a having a larger size, the height of the pin 31a along the first direction is higher, and even if the power module main body 30 is arranged close to the metal member 4, the pin 31a and the substrate 2 are not easily separated from each other. Can connect. As a result, in the power module 3 a having the larger size, the power module main body 30 is brought into direct contact with the metal member 4 , or the power module main body 30 is heated to the metal member 4 via the heat transfer grease 6 or the heat dissipation member 5 . can be brought into direct contact with each other.
 一方で、サイズが小さい方のパワーモジュール3bでは、ピン31bの第1の方向に沿った高さが低くなり、パワーモジュール本体部30を基板2に近付けて配置しないと、ピン31bと基板2とを接続できない。そのため、パワーモジュール3bのパワーモジュール本体部30と金属部材4との間の第1の方向に沿った距離が開いてしまい、パワーモジュール本体部30を金属部材4に直接接触させたり、パワーモジュール本体部30を伝熱グリス6を介して金属部材4に熱的に接触させたりすることができない。そこで、金属部材4の設置面40の一部を基板2に近付くように高くして、この高くした部分にパワーモジュール3bを配置する方法が考えられるが、そうすると金属部材4の設置面40の高さを部分的に変える加工が必要になるため、金属部材4の製造コストが嵩んでしまう。 On the other hand, in the smaller power module 3b, the pin 31b has a lower height along the first direction. cannot connect. As a result, the distance along the first direction between the power module main body 30 of the power module 3b and the metal member 4 increases, causing the power module main body 30 to come into direct contact with the metal member 4. The portion 30 cannot be brought into thermal contact with the metal member 4 via the heat transfer grease 6 . Therefore, it is conceivable to raise part of the installation surface 40 of the metal member 4 so as to approach the substrate 2 and arrange the power module 3b on this raised portion. Since processing for partially changing the thickness is required, the manufacturing cost of the metal member 4 increases.
 この点、本実施の形態では、サイズが小さい方のパワーモジュール3bと金属部材4との間には、放熱部材5fが挟み込まれていることにより、放熱部材5fの第1の方向に沿った厚さを変えることでパワーモジュール3bの第1の方向における位置を調整することができる。これにより、サイズが異なる複数のパワーモジュール3a,3bを金属部材4の同一平面状の設置面40に配置できるため、金属部材4の設置面40の高さを部分的に変える加工が必要なく、金属部材4の製造コストを低減させることができる。 In this regard, in the present embodiment, the heat dissipation member 5f is sandwiched between the smaller power module 3b and the metal member 4, so that the thickness of the heat dissipation member 5f along the first direction is reduced. By changing the height, the position of the power module 3b in the first direction can be adjusted. As a result, since a plurality of power modules 3a and 3b having different sizes can be arranged on the same flat installation surface 40 of the metal member 4, it is not necessary to partially change the height of the installation surface 40 of the metal member 4. The manufacturing cost of the metal member 4 can be reduced.
 本実施の形態では、金属部材4が接地されていることにより、ピン31a,31bとアースとなる電位の部分との間で短絡することがないため、ピン31a,31bからアースとなる電位の部分への短絡電流によるパワーモジュール3a,3bの不具合を抑制することができる。 In the present embodiment, since the metal member 4 is grounded, there is no short circuit between the pins 31a and 31b and the portion of potential to be grounded. It is possible to suppress malfunction of the power modules 3a and 3b due to a short-circuit current to.
実施の形態4.
 次に、図7および図8を参照して、実施の形態4にかかる空気調和装置100について説明する。図7は、実施の形態4にかかる空気調和装置100の室外機110を模式的に示した斜視図である。図8は、実施の形態4にかかる空気調和装置100を示した概略図である。本実施の形態では、前記した実施の形態1にかかる駆動装置1を、空気調和装置100の室外機110に適用した場合を例示する。なお、実施の形態4では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。
Embodiment 4.
Next, an air conditioner 100 according to Embodiment 4 will be described with reference to FIGS. 7 and 8. FIG. FIG. 7 is a perspective view schematically showing the outdoor unit 110 of the air conditioner 100 according to the fourth embodiment. FIG. 8 is a schematic diagram showing the air conditioner 100 according to the fourth embodiment. In the present embodiment, a case where the driving device 1 according to the first embodiment is applied to the outdoor unit 110 of the air conditioner 100 will be illustrated. In addition, in Embodiment 4, the same code|symbol is attached|subjected about the part which overlaps with above-described Embodiment 1, and description is abbreviate|omitted.
 図7に示すように、空気調和装置100は、室外機110を備えている。室外機110は、板金筐体111と、室外ファン112と、室外熱交換器113と、圧縮機114と、駆動装置1とを備えている。図7に示される矢印Yは、室外ファン112によって生成された空気流の送風方向を表している。本実施の形態では、室外機110のうち室外ファン112によって生成された空気流が外部へ排出される方を正面とし、正面の反対側を背面とする。なお、図7では、室外機110の内部が分かるように、板金筐体111の正面パネルを取り外した状態を図示している。また、図7では、電気配線、冷媒配管などの図示を省略している。 As shown in FIG. 7, the air conditioner 100 includes an outdoor unit 110. The outdoor unit 110 includes a sheet metal housing 111 , an outdoor fan 112 , an outdoor heat exchanger 113 , a compressor 114 and a driving device 1 . An arrow Y shown in FIG. 7 represents the blowing direction of the airflow generated by the outdoor fan 112 . In the present embodiment, the side of the outdoor unit 110 from which the air flow generated by the outdoor fan 112 is discharged to the outside is the front side, and the opposite side of the front side is the rear side. 7 shows a state in which the front panel of the sheet metal housing 111 is removed so that the inside of the outdoor unit 110 can be seen. Also, in FIG. 7, illustration of electrical wiring, refrigerant piping, etc. is omitted.
 板金筐体111は、室外機110の外郭となる箱状の部材である。板金筐体111の材料には、金属が使用される。板金筐体111は、セパレータ115を有している。セパレータ115は、板金筐体111の内部をファン室116と機械室117とに区画している。ファン室116と機械室117とは、室外機110の幅方向に並んで形成されている。 The sheet metal housing 111 is a box-shaped member that forms the outer shell of the outdoor unit 110 . Metal is used as the material of the sheet metal housing 111 . The sheet metal housing 111 has a separator 115 . The separator 115 divides the inside of the sheet metal housing 111 into a fan room 116 and a machine room 117 . The fan room 116 and the machine room 117 are formed side by side in the width direction of the outdoor unit 110 .
 ファン室116には、室外ファン112と室外熱交換器113とが配置されている。室外ファン112は、空気流を生成する機器である。室外熱交換器113は、冷媒と室外の空気との熱交換を行うための部材である。室外熱交換器113には、室外ファン112に取り込むための室外の空気が通過する。 An outdoor fan 112 and an outdoor heat exchanger 113 are arranged in the fan room 116 . The outdoor fan 112 is a device that generates an airflow. The outdoor heat exchanger 113 is a member for exchanging heat between the refrigerant and the outdoor air. Outdoor air to be taken in by the outdoor fan 112 passes through the outdoor heat exchanger 113 .
 機械室117には、圧縮機114と駆動装置1とが配置されている。圧縮機114は、モータ70を駆動源として、後記する冷凍サイクル120の冷媒を圧縮する機器である。 A compressor 114 and a drive device 1 are arranged in the machine room 117 . The compressor 114 is a device that uses the motor 70 as a drive source to compress refrigerant in a refrigeration cycle 120, which will be described later.
 図7に示された駆動装置1は、前記した実施の形態1にかかる駆動装置1であるが、前記した実施の形態1から3にかかる駆動装置1~1Dのいずれかであればよい。駆動装置1は、セパレータ115のうち機械室117に臨む面に設置されている。第1の方向が室外機110の幅方向に一致するように、かつ、第2の方向が室外機110の高さ方向に一致するように、駆動装置1がセパレータ115に設置されている。 Although the driving device 1 shown in FIG. 7 is the driving device 1 according to the first embodiment, it may be any of the driving devices 1 to 1D according to the first to third embodiments. The driving device 1 is installed on the surface of the separator 115 facing the machine room 117 . The driving device 1 is installed on the separator 115 so that the first direction matches the width direction of the outdoor unit 110 and the second direction matches the height direction of the outdoor unit 110 .
 基板2には、複数の電子部品22a,22b,22cが実装されている。金属部材4は、本実施の形態では空気調和装置100の室外機110の板金筐体111である。詳しくは、金属部材4は、板金筐体111のセパレータ115である。セパレータ115は、パワーモジュール本体部30のうち基板2の方を向く面とは反対側の面に熱的に接触している。セパレータ115は、ファン室116に面している。金属部材4は、室外ファン112により生成された空気流が当たる位置に配置されている。金属部材4は、室外ファン112が生成した空気流により冷却される。 A plurality of electronic components 22a, 22b, and 22c are mounted on the substrate 2. The metal member 4 is the sheet metal housing 111 of the outdoor unit 110 of the air conditioner 100 in this embodiment. Specifically, the metal member 4 is the separator 115 of the sheet metal housing 111 . The separator 115 is in thermal contact with the surface of the power module body 30 opposite to the surface facing the substrate 2 . Separator 115 faces fan chamber 116 . The metal member 4 is arranged at a position where the air flow generated by the outdoor fan 112 hits. The metal member 4 is cooled by the airflow generated by the outdoor fan 112 .
 次に、図8を参照して、空気調和装置100の冷凍サイクル120について説明する。 Next, the refrigeration cycle 120 of the air conditioner 100 will be described with reference to FIG.
 図8に示すように、空気調和装置100の冷凍サイクル機器は、圧縮機114、四方弁130、室外熱交換器113、膨張装置140、室内熱交換器150を含んでいる。空気調和装置100では、圧縮機114、四方弁130、室外熱交換器113、膨張装置140、室内熱交換器150、四方弁130、圧縮機114の順に冷媒が循環する冷凍サイクル120が行われる。冷凍サイクル機器を構成する機器同士は、冷媒配管160を介して接続されている。圧縮機114、四方弁130、室外熱交換器113および膨張装置140は、空気調和装置100の室外機110に備わっている。室内熱交換器150は、空気調和装置100の室内機に備わっている。 As shown in FIG. 8, the refrigeration cycle equipment of the air conditioner 100 includes a compressor 114, a four-way valve 130, an outdoor heat exchanger 113, an expansion device 140, and an indoor heat exchanger 150. In the air conditioner 100, a refrigeration cycle 120 is performed in which refrigerant circulates through the compressor 114, the four-way valve 130, the outdoor heat exchanger 113, the expansion device 140, the indoor heat exchanger 150, the four-way valve 130, and the compressor 114 in this order. Devices constituting the refrigeration cycle device are connected to each other via refrigerant pipes 160 . Compressor 114 , four-way valve 130 , outdoor heat exchanger 113 and expansion device 140 are provided in outdoor unit 110 of air conditioner 100 . The indoor heat exchanger 150 is provided in the indoor unit of the air conditioner 100 .
 次に、空気調和装置100の冷凍サイクル120について、空気調和装置100の冷房運転を例にして説明する。ここでは説明を省略するが、同じ冷凍サイクル120で空気調和装置100の暖房運転も行うことができる。空気調和装置100の冷房運転を行う際には、四方弁130は、図8の破線矢印に示すように、圧縮機114から吐出された冷媒が室外熱交換器113へ向かうように、かつ、室内熱交換器150から流出した冷媒が圧縮機114へ向かうように流路を予め切り替える。 Next, the refrigeration cycle 120 of the air conditioner 100 will be described using the cooling operation of the air conditioner 100 as an example. Although not described here, the same refrigeration cycle 120 can also perform the heating operation of the air conditioner 100 . When performing the cooling operation of the air conditioner 100, the four-way valve 130 directs the refrigerant discharged from the compressor 114 to the outdoor heat exchanger 113, The flow path is switched in advance so that the refrigerant flowing out of heat exchanger 150 goes to compressor 114 .
 駆動装置1が外部電源60から供給された電力を圧縮機114のモータ70に出力することにより、モータ70が駆動されて圧縮機114が冷媒を圧縮する。圧縮機114で圧縮された冷媒は、高温高圧の冷媒ガスとなる。高温高圧の冷媒ガスは、四方弁130を経由して、室外熱交換器113に送られる。高温高圧の冷媒ガスは、室外熱交換器113で放熱されて凝縮し、高圧常温の液冷媒となる。すなわち、圧縮機114から吐出された高温高圧の冷媒ガスは、室外熱交換器113で室外の空気との熱交換が行われて、高圧常温の液冷媒となる。高圧常温の液冷媒は、膨張装置140に送られる。 When the drive device 1 outputs electric power supplied from the external power source 60 to the motor 70 of the compressor 114, the motor 70 is driven and the compressor 114 compresses the refrigerant. The refrigerant compressed by the compressor 114 becomes a high-temperature, high-pressure refrigerant gas. The high-temperature, high-pressure refrigerant gas is sent to the outdoor heat exchanger 113 via the four-way valve 130 . The high-temperature and high-pressure refrigerant gas radiates heat in the outdoor heat exchanger 113, condenses, and becomes a high-pressure, normal-temperature liquid refrigerant. That is, the high-temperature, high-pressure refrigerant gas discharged from the compressor 114 is heat-exchanged with the outdoor air in the outdoor heat exchanger 113 to become a high-pressure, normal-temperature liquid refrigerant. The high pressure room temperature liquid refrigerant is sent to the expansion device 140 .
 高圧常温の液冷媒は、膨張装置140で膨張および減圧されて低圧低温の気液二相冷媒となる。低圧低温の気液二相冷媒は、室内熱交換器150に送られる。低圧低温の気液二相冷媒は、室内熱交換器150で蒸発して低圧低温のガス冷媒となる。すなわち、膨張装置140から流出した低圧低温の気液二相冷媒は、室内熱交換器150で空調対象空間の空気との熱交換が行われて、低圧低温のガス冷媒となる。低圧低温のガス冷媒は、四方弁130を経由して、圧縮機114に送られて、圧縮機114で再び圧縮される。以後、空気調和装置100が停止するまで同じ動作が繰り返し行われる。なお、冷媒をより細やかに制御できるように室外機110だけではなく室内機も膨張装置を備える構成にしてもよい。 The high-pressure, normal-temperature liquid refrigerant is expanded and decompressed by the expansion device 140 to become a low-pressure, low-temperature gas-liquid two-phase refrigerant. The low-pressure low-temperature gas-liquid two-phase refrigerant is sent to the indoor heat exchanger 150 . The low-pressure low-temperature gas-liquid two-phase refrigerant evaporates in the indoor heat exchanger 150 to become a low-pressure low-temperature gas refrigerant. That is, the low-pressure, low-temperature gas-liquid two-phase refrigerant flowing out of the expansion device 140 undergoes heat exchange with the air in the air-conditioned space in the indoor heat exchanger 150, and becomes low-pressure, low-temperature gas refrigerant. The low-pressure low-temperature gas refrigerant is sent to compressor 114 via four-way valve 130 and compressed again in compressor 114 . Thereafter, the same operation is repeated until the air conditioner 100 stops. It should be noted that not only the outdoor unit 110 but also the indoor unit may be provided with an expansion device so that the refrigerant can be more finely controlled.
 本実施の形態では、空気調和装置100は、モータ70を駆動源として冷凍サイクル120の冷媒を圧縮する圧縮機114と、モータ70の駆動を制御する駆動装置1と、モータ70、圧縮機114および駆動装置1を収容し空気調和装置100の室外機110の外郭を構成する板金筐体111とを備え、金属部材4が板金筐体111である。これにより、パワーモジュール3から板金筐体111に伝わった熱を、板金筐体111から空気中に放熱させることができる。板金筐体111が室外の空気に触れる面積が大きいため、放熱面積が増えて、パワーモジュール3から発生した熱を効率良く放熱させることができる。 In the present embodiment, air conditioner 100 includes compressor 114 that compresses refrigerant in refrigerating cycle 120 using motor 70 as a drive source, drive device 1 that controls the drive of motor 70, motor 70, compressor 114 and A sheet metal housing 111 that accommodates the driving device 1 and constitutes an outer shell of the outdoor unit 110 of the air conditioner 100 is provided, and the metal member 4 is the sheet metal housing 111 . As a result, the heat transferred from the power module 3 to the sheet metal housing 111 can be dissipated from the sheet metal housing 111 into the air. Since the sheet metal housing 111 has a large area in contact with the outdoor air, the heat radiation area is increased, and the heat generated from the power module 3 can be efficiently radiated.
 本実施の形態では、室外機110は、板金筐体111に収容されて空気流を生成する室外ファン112を有し、金属部材4である板金筐体111のセパレータ115には、室外ファン112により生成された空気流が当たる。これにより、室外ファン112が生成した空気流によってセパレータ115が冷却されるため、パワーモジュール3からセパレータ115に伝わった熱を放熱させやすくなる。 In this embodiment, the outdoor unit 110 has an outdoor fan 112 that is housed in a sheet metal housing 111 and generates an air flow. The generated airflow impinges. As a result, the separator 115 is cooled by the airflow generated by the outdoor fan 112, so that the heat transferred from the power module 3 to the separator 115 can be easily dissipated.
 なお、駆動装置1の配置は、図示した例に限定されない。駆動装置1は、例えば、板金筐体111の天上壁、背面壁などに配置されてもよい。このような配置の場合には、金属部材は、板金筐体111の天上壁、背面壁などになる。 The arrangement of the driving device 1 is not limited to the illustrated example. The driving device 1 may be arranged, for example, on the ceiling wall, the rear wall, or the like of the sheet metal housing 111 . In the case of such an arrangement, the metal member becomes the ceiling wall, back wall, etc. of the sheet metal housing 111 .
 また、本実施の形態では、前記した実施の形態1から3にかかる駆動装置1~1Dを、空気調和装置100の室外機110に適用した場合を例示したが、空気調和装置100以外の冷凍サイクル装置に適用してもよい。空気調和装置100以外の冷凍サイクル装置としては、例えば、ヒートポンプ装置、冷凍装置が挙げられる。 Further, in the present embodiment, a case where the driving devices 1 to 1D according to the first to third embodiments are applied to the outdoor unit 110 of the air conditioner 100 is exemplified. It may be applied to the device. Examples of refrigeration cycle devices other than the air conditioner 100 include a heat pump device and a refrigeration device.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 例えば、前記した各実施の形態では、パワーモジュール3が、DIPタイプである場合を例にしたが、パワーモジュール3は、例えば、ガルウィング型のピンを有するSOP(Small Outline Package)タイプでもよい。パワーモジュール3がSOPタイプである場合には、ピン31が金属箔20にはんだ付けで接合される。 For example, in each of the above-described embodiments, the power module 3 is of the DIP type, but the power module 3 may be of the SOP (Small Outline Package) type having gull-wing pins, for example. If the power module 3 is of the SOP type, the pins 31 are soldered to the metal foil 20 .
 1,1A,1B,1C,1D 駆動装置、2 基板、3,3a,3b パワーモジュール、4 金属部材、5,5a,5b,5c,5d,5e,5f 放熱部材、6 伝熱グリス、10 駆動回路、20 金属箔、21 スルーホール導体、22a,22b,22c 電子部品、30 パワーモジュール本体部、31,31a,31b ピン、32 第1の直線部、33 第2の直線部、34 曲線部、35 パワーデバイス、36 樹脂、40 設置面、50 第1の放熱部、51 第2の放熱部、52 張出部、60 外部電源、70 モータ、80 電線、100 空気調和装置、110 室外機、111 板金筐体、112 室外ファン、113 室外熱交換器、114 圧縮機、115 セパレータ、116 ファン室、117 機械室、120 冷凍サイクル、130 四方弁、140 膨張装置、150 室内熱交換器、160 冷媒配管。 1, 1A, 1B, 1C, 1D drive unit, 2 substrate, 3, 3a, 3b power module, 4 metal member, 5, 5a, 5b, 5c, 5d, 5e, 5f heat dissipation member, 6 heat transfer grease, 10 drive circuit, 20 metal foil, 21 through-hole conductors, 22a, 22b, 22c electronic components, 30 power module body, 31, 31a, 31b pins, 32 first straight portion, 33 second straight portion, 34 curved portion, 35 power device, 36 resin, 40 installation surface, 50 first heat dissipation part, 51 second heat dissipation part, 52 projecting part, 60 external power supply, 70 motor, 80 electric wire, 100 air conditioner, 110 outdoor unit, 111 Sheet metal housing, 112 outdoor fan, 113 outdoor heat exchanger, 114 compressor, 115 separator, 116 fan room, 117 machine room, 120 refrigeration cycle, 130 four-way valve, 140 expansion device, 150 indoor heat exchanger, 160 refrigerant piping .

Claims (9)

  1.  導体部を有する基板と、
     前記基板の板厚方向である第1の方向に前記基板と離れて配置されたパワーモジュールと、
     前記パワーモジュールを挟んで前記基板と反対側に配置されて、放熱性を有する金属部材と、を備え、
     前記パワーモジュールは、前記金属部材に熱的に接触しており、
     前記パワーモジュールは、前記第1の方向と交差する第2の方向に延びた後に前記基板に向かって延びて、前記基板の前記導体部に電気的に接続されるピンを有し、
     前記ピンと前記金属部材との間には、放熱性と電気絶縁性とを有する放熱部材が配置され、
     前記放熱部材は、前記ピン、前記導体部および前記金属部材のうち少なくとも1つに接触している駆動装置。
    a substrate having a conductor;
    a power module spaced apart from the substrate in a first direction that is the thickness direction of the substrate;
    a metal member having heat dissipation disposed on the opposite side of the substrate with the power module interposed therebetween;
    The power module is in thermal contact with the metal member,
    The power module has a pin that extends in a second direction that intersects with the first direction and then extends toward the substrate and is electrically connected to the conductor portion of the substrate;
    A heat dissipating member having heat dissipating properties and electrical insulation is arranged between the pin and the metal member,
    The driving device, wherein the heat radiating member is in contact with at least one of the pin, the conductor and the metal member.
  2.  前記放熱部材は、前記金属部材に接触しているとともに、前記ピンおよび前記導体部のうち少なくとも一方に接触している請求項1に記載の駆動装置。 The driving device according to claim 1, wherein the heat radiating member is in contact with the metal member and at least one of the pin and the conductor.
  3.  前記金属部材は、接地されている請求項1または2に記載の駆動装置。 The driving device according to claim 1 or 2, wherein the metal member is grounded.
  4.  前記ピンは、前記第2の方向に延びて、前記第1の方向に前記金属部材と離れる離隔部を有し、
     前記放熱部材は、前記離隔部と前記金属部材との間に挟み込まれている請求項1から3のいずれか1項に記載の駆動装置。
    the pin has a spaced portion extending in the second direction and separated from the metal member in the first direction;
    The driving device according to any one of claims 1 to 3, wherein the heat radiating member is sandwiched between the separating portion and the metal member.
  5.  前記パワーモジュールと前記金属部材との間には、前記パワーモジュールから前記金属部材へ伝熱する伝熱グリスが挟み込まれており、
     前記パワーモジュールは、前記伝熱グリスを介して前記金属部材に熱的に接触している請求項1から4のいずれか1項に記載の駆動装置。
    heat transfer grease is sandwiched between the power module and the metal member for transferring heat from the power module to the metal member,
    The driving device according to any one of claims 1 to 4, wherein the power module is in thermal contact with the metal member via the heat transfer grease.
  6.  前記パワーモジュールと前記金属部材との間には、前記放熱部材が挟み込まれており、
     前記パワーモジュールは、前記放熱部材を介して前記金属部材に熱的に接触している請求項1から4のいずれか1項に記載の駆動装置。
    The heat dissipation member is sandwiched between the power module and the metal member,
    The driving device according to any one of claims 1 to 4, wherein the power module is in thermal contact with the metal member via the heat dissipation member.
  7.  複数の前記パワーモジュールが前記第2の方向に並んで配置され、
     複数の前記パワーモジュールのうちの一部のサイズと複数の前記パワーモジュールのうちの残部のサイズとは、互いに異なっており、
     サイズが小さい方の前記パワーモジュールと前記金属部材との間には、前記放熱部材が挟み込まれている請求項1から4のいずれか1項に記載の駆動装置。
    a plurality of the power modules are arranged side by side in the second direction;
    the size of some of the plurality of power modules and the size of the remaining portion of the plurality of power modules are different from each other,
    The driving device according to any one of claims 1 to 4, wherein the heat radiating member is sandwiched between the smaller power module and the metal member.
  8.  モータと、
     前記モータを駆動源として、冷凍サイクルの冷媒を圧縮する圧縮機と、
     前記モータの駆動を制御する請求項1から7のいずれか1項に記載の駆動装置と、
     前記モータ、前記圧縮機および前記駆動装置を収容し、空気調和装置の室外機の外郭を構成する板金筐体と、を備え、
     前記金属部材は、前記板金筐体である空気調和装置。
    a motor;
    a compressor that uses the motor as a drive source to compress refrigerant in a refrigeration cycle;
    The driving device according to any one of claims 1 to 7, which controls driving of the motor;
    a sheet metal housing that houses the motor, the compressor, and the driving device and constitutes an outer shell of an outdoor unit of an air conditioner;
    The air conditioner, wherein the metal member is the sheet metal housing.
  9.  前記板金筐体に収容されて、空気流を生成する室外ファンを備え、
     前記金属部材には、前記室外ファンにより生成された空気流が当たる請求項8に記載の空気調和装置。
    An outdoor fan that is housed in the sheet metal housing and generates an air flow,
    The air conditioner according to claim 8, wherein an air flow generated by the outdoor fan hits the metal member.
PCT/JP2022/007354 2022-02-22 2022-02-22 Drive device and air-conditioning device WO2023162029A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/007354 WO2023162029A1 (en) 2022-02-22 2022-02-22 Drive device and air-conditioning device
JP2024502282A JPWO2023162029A1 (en) 2022-02-22 2022-02-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007354 WO2023162029A1 (en) 2022-02-22 2022-02-22 Drive device and air-conditioning device

Publications (1)

Publication Number Publication Date
WO2023162029A1 true WO2023162029A1 (en) 2023-08-31

Family

ID=87765177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007354 WO2023162029A1 (en) 2022-02-22 2022-02-22 Drive device and air-conditioning device

Country Status (2)

Country Link
JP (1) JPWO2023162029A1 (en)
WO (1) WO2023162029A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181396A (en) * 1987-01-23 1988-07-26 株式会社東芝 Method of mounting semiconductor
JP2010186907A (en) * 2009-02-13 2010-08-26 Panasonic Corp Radiator plate, module, and method of manufacturing module
JP2013255373A (en) * 2012-06-08 2013-12-19 Mitsubishi Electric Corp Motor drive and air conditioner
WO2019026902A1 (en) * 2017-08-01 2019-02-07 株式会社村田製作所 High frequency module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181396A (en) * 1987-01-23 1988-07-26 株式会社東芝 Method of mounting semiconductor
JP2010186907A (en) * 2009-02-13 2010-08-26 Panasonic Corp Radiator plate, module, and method of manufacturing module
JP2013255373A (en) * 2012-06-08 2013-12-19 Mitsubishi Electric Corp Motor drive and air conditioner
WO2019026902A1 (en) * 2017-08-01 2019-02-07 株式会社村田製作所 High frequency module

Also Published As

Publication number Publication date
JPWO2023162029A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP6701637B2 (en) Inverter device
JP4409600B2 (en) Power semiconductor circuit and manufacturing method thereof
WO2012056983A1 (en) Inverter-integrated electric compressor
JP2008121966A (en) Outdoor unit for air conditioner
WO2013157219A1 (en) Refrigeration device
CN116685134A (en) Radiator and loop device
JP4951233B2 (en) Outdoor unit for air conditioner
JP2013115410A (en) Electric power conversion apparatus and air conditioner including the same
JP7409419B2 (en) Power converter, cooling fan fixing structure, and method for manufacturing power converter
JP2005113695A (en) Compressor with electronic circuit device
WO2023162029A1 (en) Drive device and air-conditioning device
JP2018198508A (en) Power semiconductor device and electric power conversion system
JP2014093304A (en) Power conversion device
JP6471417B2 (en) Cooling jacket
JP4436192B2 (en) Control device for electric compressor
WO2024069768A1 (en) Drive device and air conditioning device
JP7438434B1 (en) Air conditioner circuit structure and air conditioner
JP2015079773A (en) Cooling device of electronic component and heat source machine of refrigeration cycle device
JP2013073949A (en) Electric power conversion apparatus and freezer including the same
WO2023157130A1 (en) Electrical equipment module
US11946657B2 (en) Electric component and refrigeration apparatus
CN212086779U (en) Electric appliance box and air conditioner that radiating efficiency is high
CN115076779B (en) Air conditioner and data processing equipment
CN218006841U (en) Outdoor energy storage equipment
WO2005002306A1 (en) Inverter device and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024502282

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE