WO2023161998A1 - 温度測定装置 - Google Patents

温度測定装置 Download PDF

Info

Publication number
WO2023161998A1
WO2023161998A1 PCT/JP2022/007243 JP2022007243W WO2023161998A1 WO 2023161998 A1 WO2023161998 A1 WO 2023161998A1 JP 2022007243 W JP2022007243 W JP 2022007243W WO 2023161998 A1 WO2023161998 A1 WO 2023161998A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
living body
sensor
measuring device
thermal resistor
Prior art date
Application number
PCT/JP2022/007243
Other languages
English (en)
French (fr)
Inventor
雄次郎 田中
大地 松永
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/007243 priority Critical patent/WO2023161998A1/ja
Publication of WO2023161998A1 publication Critical patent/WO2023161998A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the present invention relates to a temperature measuring device that non-invasively and accurately measures the internal temperature of a living body.
  • Core body temperature is known as an index for measuring circadian rhythms.
  • the most common methods of measuring core body temperature are methods such as inserting a thermometer into the rectum or measuring the temperature of the eardrum with the ear closed, and measuring core body temperature during daily activities or during sleep. It was a very stressful method.
  • Non-Patent Document 1 As a technique for non-invasively measuring the core body temperature of a living body, a technique for estimating the core body temperature of a living body by artificially replacing heat flow with a one-dimensional equivalent circuit model has been proposed (see Non-Patent Document 1). ).
  • Non-Patent Document 1 estimates the core body temperature T cbt of the living body 100 using a thermal equivalent circuit model of the living body 100 and the sensor 101 as shown in FIG. 23 .
  • the core body temperature T cbt of the living body 100 is obtained by combining the temperature T s of the skin surface of the living body 100 and the sensor 101 on the side opposite to the surface in contact with the living body 100 when the sensor 101 having thermal resistance R s is placed on the surface of the living body 100 .
  • T cbt T s + ⁇ (T s -T u ) (1)
  • the core body temperature T cbt can be estimated from the heat flux H s on the skin surface of the living body 100 as shown in Equation (2).
  • T cbt T s + ⁇ H s (2)
  • ⁇ in Equations (1) and (2) is a proportionality coefficient related to the thermal resistance R b of the living body 100 .
  • the proportionality coefficient ⁇ can be calibrated in advance by other measurement means such as eardrum temperature and rectal temperature.
  • Non-Patent Document 1 a sensor structure that allows one-dimensional heat flow even if there is a change in the surrounding environment.
  • this structure by covering the temperature sensor with a truncated cone-shaped or dome-shaped metal member made of aluminum with good thermal conductivity, the surrounding temperature rises with respect to the center where the temperature sensor is located, thereby dissipating heat to the surroundings. reduce the flow (loss) of This makes it possible to reduce the estimation error of the core body temperature T cbt .
  • Non-Patent Document 1 cannot suppress the heat flux H Loss that deviates from the central portion where the sensor 101 is located as shown in FIG. 24 .
  • the structure disclosed in Non-Patent Document 1 requires manufacturing a complicated structure inside the temperature measuring device, which poses a problem of deterioration in manufacturing tolerance and cost.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature measuring device capable of accurately measuring the internal temperature of a living body with a simple structure.
  • a temperature measuring device of the present invention comprises a sensor unit configured to measure the magnitude of heat flow transmitted from a living body, and a device configured to calculate the internal temperature of the living body based on the magnitude of the heat flow measured by the sensor unit.
  • a transmitter section configured as a transmitter section, wherein the sensor section includes a first thermal resistor arranged to be in contact with the living body; It is characterized by comprising a detection part provided in a resistor, and a second thermal resistor arranged around the first thermal resistor so as to be in contact with the living body.
  • the distortion of the temperature field in the living body is alleviated and the heat flux deviating from the central portion where the sensor is located is suppressed. Therefore, the internal temperature of the living body can be measured with high accuracy.
  • the structure of the sensor section can be made simpler than in the conventional technology in which the temperature sensor is covered with a metal member.
  • FIG. 1 is a sectional view of a sensor portion of a temperature measuring device according to the present invention.
  • FIG. 2 is a sectional view showing another configuration of the sensor section of the temperature measuring device according to the present invention.
  • FIG. 3 is a sectional view of the sensor section of the temperature measuring device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the electronic circuit section of the temperature measuring device according to the first embodiment of the present invention.
  • FIG. 5 is an external view of the temperature measuring device according to the first embodiment of the invention.
  • FIG. 6 is a flow chart explaining the operation of the temperature measuring device according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the radius of the sensor unit and the estimation error of core body temperature according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the thickness of the thermal resistor of the sensor unit and the estimation error of core body temperature according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing the core body temperature estimated by the temperature measuring device according to the first embodiment of the present invention and the eardrum temperature measured by the eardrum thermometer.
  • FIG. 10 is a cross-sectional view of the sensor section of the temperature measuring device according to the second embodiment of the present invention.
  • FIG. 11 is an external view of a temperature measuring device according to a second embodiment of the invention.
  • FIG. 12 is a diagram showing the relationship between the radius of the sensor unit and the estimation error of core body temperature according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing the relationship between the width of the gap between the sensor units and the estimation error of core body temperature according to the second embodiment of the present invention.
  • FIG. 14 is an external view of a temperature measuring device according to the second embodiment of the invention.
  • 15A-15C are a plan view and a cross-sectional view showing a specific example of a temperature measuring device according to a second embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the sensor section of the temperature measuring device according to the third embodiment of the present invention.
  • FIG. 17 is an external view of the sensor section of the temperature measuring device according to the fourth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a sensor portion of a temperature measuring device according to a fourth embodiment of the invention.
  • FIG. 19 is a diagram showing the configuration of a temperature measuring device according to the fifth embodiment of the invention.
  • FIG. 20 is a cross-sectional view of a sensor portion of a temperature measuring device according to a sixth embodiment of the invention.
  • FIG. 21 is a flow chart explaining the operation of the temperature measuring device according to the sixth embodiment of the present invention.
  • FIG. 22 is a block diagram showing a configuration example of a computer that implements the temperature measuring devices according to the first to sixth embodiments of the present invention.
  • FIG. 23 is a diagram showing a thermal equivalent circuit model of a living body and a sensor.
  • FIG. 24 is a diagram for explaining problems of the conventional temperature measuring device.
  • thermal resistor that holds a sensor that measures the temperature and heat flux of the skin surface of a living body
  • one with a thermal conductivity of about 0.05 to 0.5 W/(m ⁇ K) can be used.
  • Literature “Ming Huang, Toshiyo Tamura, Wenxi Chen, Shigehi koKanaya, “Evaluation of structural and thermophysical effects on the measure-ment accuracy of deep body thermometers based on dual-heat-flux method”, Journal of Thermal Biology, 47, pp. 26-31, 2015” describes a dual heat flow method for estimating core body temperature by measuring heat fluxes at two points. In this dual heat flow method, it is necessary to use a plurality of thermal resistors with different thermal conductivities. K)) will not be all the same. As a result, the temperature field is distorted at the part of the living body where the sensor contacts, and a two-dimensional heat flow occurs as shown in FIG. 24, resulting in heat loss.
  • a thermal resistor 11 having conductivity for smoothing heat flow is provided so as to be in contact with the thermal resistor 10 .
  • the present invention can relax the distortion of the temperature field inside the living body 100 .
  • a slight gap 12 is provided between the thermal resistor 10 and the thermal resistor 11 as shown in FIG.
  • the gap 12 is filled with a substance of very low thermal conductivity ( ⁇ 0.02 W/m/K), such as air. Accordingly, in the present invention, it is possible to suppress heat loss in the sensor unit while suppressing distortion of the temperature field inside the living body 100 .
  • FIG. 3 is a sectional view of the sensor portion of the temperature measuring device according to the first embodiment of the present invention
  • FIG. 4 is a block diagram showing the configuration of the electronic circuit portion of the temperature measuring device
  • FIG. 5 is an external view of the temperature measuring device. be.
  • the temperature measuring device 102 of this embodiment calculates the core body temperature T cbt (internal temperature) of the living body 100 based on the sensor unit 1 that measures the magnitude of the heat flow transmitted from the living body 100 and the measured magnitude of the heat flow. and a transmitter section 2 .
  • the sensor unit 1 includes a cylindrical thermal resistor 10 arranged to be in contact with the living body 100 and an annular thermal resistor arranged around the thermal resistor 10 so as to be in contact with the thermal resistor 10 and the living body 100 .
  • the temperature sensors 13 and 14 constitute a detection section 18 that measures the magnitude of heat flow transmitted from the living body 100 .
  • the transmitter unit 2 includes a storage unit 20 for storing data, a calculation unit 21 for calculating the core body temperature T cbt of the living body 100 based on the measurement results of the temperature sensors 13 and 14, and an external device for transmitting the core body temperature T cbt data.
  • a communication unit 22 that transmits data to a terminal, a control unit 23 that controls reading/writing and communication of data in the storage unit 20, and a power supply unit that supplies power to the storage unit 20, the calculation unit 21, the communication unit 22, and the control unit 23. 24.
  • the sensor unit 1 is mounted so that the thermal resistors 10 and 11 are in contact with the skin of the living body 100.
  • the temperature sensors 13 and 14 for example, a thermistor, a thermocouple, a platinum resistor, an IC (Integrated Circuit) temperature sensor, or the like can be used.
  • Thermal resistor 10 holds temperature sensors 13 and 14 and acts as a resistor against heat flowing into temperature sensors 13 and 14 .
  • the temperature sensor 14 is arranged directly above the temperature sensor 13 . If the distance between the temperature sensors 13 and 14 changes during measurement, the proportional coefficient ⁇ will change and an error will occur in estimating the core body temperature T cbt of the living body 100 . do.
  • the material for the thermal resistor 10 it is desirable to use a material with thermal conductivity similar to that of the living body 100 (0.2 to 0.6 W/(m ⁇ K)).
  • a material having thermal conductivity equivalent to that of the thermal resistor 10 or a material intermediate between that of the thermal resistor 10 and the living body 100 is used.
  • a material with good thermal conductivity can be used.
  • various resins such as silicone-based resins can be used.
  • Temperature sensors 13 and 14 and transmitter section 2 are connected by wiring 3 .
  • FIG. 6 is a flow chart for explaining the operation of the temperature measuring device 102 of this embodiment.
  • the temperature sensor 13 measures the temperature T s of the skin surface of the living body 100 .
  • the temperature sensor 14 measures the temperature Tu inside the thermal resistor 10 at a position away from the living body 100 (step S100 in FIG. 6).
  • the measurement data of the temperature sensors 13 and 14 are temporarily stored in the storage unit 20 .
  • the storage unit 20 pre-stores the proportional coefficient ⁇ .
  • the calculation unit 21 calculates the core body temperature T cbt of the living body 100 by, for example, Equation (1) based on the temperatures T s and Tu and the proportionality coefficient ⁇ (step S101 in FIG. 6).
  • the communication unit 22 transmits the data of the core body temperature T cbt to an external terminal such as a PC (Personal Computer) or a smartphone (step S102 in FIG. 6).
  • the external terminal displays the value of core body temperature T cbt received from the temperature measuring device.
  • the temperature measurement device 102 performs the above steps S100 to S102 at regular time intervals, for example, until the user gives an instruction to end the measurement (YES in step S103 in FIG. 6).
  • the diameter of the sensor section 1 (the outer diameter of the thermal resistor 11) is d
  • the thickness of the thermal resistors 10 and 11 is t.
  • FIG. 7 shows the relationship between the radius d/2 of the sensor unit 1 and the estimation error of the core body temperature T cbt under an environment where the wind is blowing at a wind speed of about 5 m/s.
  • FIG. 8 shows the relationship between the thickness t of the resistors 10 and 11 and the estimation error of the core body temperature Tcbt .
  • the thickness t of the thermal resistors 10 and 11 is 3 mm
  • the diameter d of the sensor section 1 is 30 mm.
  • the estimation error of the core body temperature Tcbt is the difference between the eardrum temperature measured by the eardrum thermometer or the rectal temperature measured by the rectal thermometer and the core body temperature Tcbt estimated by the temperature measuring device 102 of the present embodiment.
  • Polydimethylsiloxane is used as the material of the thermal resistors 10 and 11 .
  • the core body temperature T cbt can be estimated with an error of about 0.1° C. if the diameter d of the sensor section 1 is set to 30 mm or more. I understand.
  • the core body temperature T cbt can be estimated with an error of about 0.1°C. I understand.
  • FIG. 9 shows the core body temperature T cbt estimated by attaching the temperature measuring device 102 of the present embodiment to the forehead of the living body 100 and the core body temperature (eardrum temperature) T e measured by the eardrum thermometer for comparison.
  • . 90, 91, and 92 in FIG. 9 show the results for different living organisms 100, respectively. According to FIG. 9, it can be seen that the estimation result close to the eardrum temperature T e is obtained by this embodiment.
  • FIG. 10 is a sectional view of the sensor portion of the temperature measuring device according to the second embodiment of the present invention
  • FIG. 11 is an external view of the temperature measuring device.
  • a temperature measuring device 102a of this embodiment is composed of a sensor section 1a and a transmitter section 2. As shown in FIG. The configuration of the transmitter section 2 is as described in the first embodiment.
  • the sensor unit 1 a includes a cylindrical thermal resistor 10 arranged to be in contact with the living body 100 , and a circular cylinder arranged around the thermal resistor 10 so as to be in contact with the living body 100 and spaced apart from the thermal resistor 10 . It consists of an annular thermal resistor 11 and temperature sensors 13 and 14 .
  • a gap 12 is provided between the thermal resistors 10 and 11 to suppress the heat flux flowing from the living body 100 to the thermal resistor 10 from flowing out to the thermal resistor 11 .
  • the interior of the gap 12 is filled with a material having a thermal conductivity lower than that of the living body 100 ( ⁇ 0.02 W/m/K). Air is one such substance.
  • the inside of the gap 12 may be filled with decompressed air, and the structure may be cut off from the outside air.
  • D is the diameter of the thermal resistor 10
  • d is the diameter of the sensor portion 1a (the outer diameter of the thermal resistor 11)
  • t is the thickness of the thermal resistors 10 and 11
  • b is the width of the gap 12.
  • a solid line 120 in FIG. 12 shows the relationship between the radius d/2 of the sensor section 1a and the estimation error of the core body temperature Tcbt under the environment where the wind of about 5 m/s is blowing.
  • silicone resin is used as the material of the thermal resistors 10 and 11
  • the diameter D of the thermal resistor 10 is 8 mm
  • the thickness t of the thermal resistors 10 and 11 is 3 mm
  • the width b of the gap 12 is 0.5 mm.
  • a dashed line 121 indicates the relationship between the radius d/2 of the sensor portion 1a and the estimation error of the core body temperature Tcbt when the diameter D of the thermal resistor 10 is set to 14 mm and the gap 12 is eliminated. According to FIG. 12, it can be seen that the provision of the gap 12 can reduce the estimation error of the core body temperature T cbt even if the diameter of the sensor portion 1a is small.
  • FIG. 13 shows the relationship between the width b of the gap 12 and the estimation error of the core body temperature T cbt under the environment where the wind of about 5 m/s is blowing.
  • silicone resin is used as the material of the thermal resistors 10 and 11
  • the diameter D of the thermal resistor 10 is 8 mm
  • the thickness t of the thermal resistors 10 and 11 is 3 mm
  • the diameter d of the sensor portion 1a is 30 mm.
  • the estimation error of the core body temperature T cbt can be suppressed to about 0.1° C. or less by providing the gap 12 with a width of about several millimeters.
  • the outer shape of the sensor parts 1 and 1a is circular, but may be rectangular as shown in FIG.
  • FIG. 15A is a plan view showing a specific example of the temperature measurement device 102a of this embodiment
  • FIG. 15B is a cross-sectional view of the temperature measurement device 102a
  • FIG. 15C is a plan view of a substrate on which temperature sensors 13 and 14 are mounted.
  • the temperature measuring device 102a includes a housing 30 made of the same silicone resin as the thermal resistors 10 and 11 and having a thickness of about 1 mm, a battery 31 housed in the housing 30, a battery holder 32 holding the battery 31, Equipped with a knob 33 for pulling out the battery holder 32, a power switch 34 for turning ON/OFF the power, a lamp 35 for confirming ON/OFF of the power, and a lamp 36 for confirming the operating state. ing.
  • the housing 30 accommodates the sensor section 1a and the transmitter section 2 . Further, in the examples of FIGS. 5, 11 and 14, the temperature sensors 13 and 14 of the sensor units 1 and 1a and the transmitter unit 2 are connected by the wiring 3, but in the examples of FIGS. 15A to 15C , the temperature sensors 13 and 14 are provided on a substrate 37 having flexibility. Temperature sensors 13 and 14 are electrically connected to transmitter section 2 via connector 38 provided on substrate 37 .
  • the temperature sensor 14 is arranged on the upper surface of the .
  • FIG. 16 is a sectional view of the sensor portion of the temperature measuring device according to the third embodiment of the present invention.
  • the sensor unit 1b of the present embodiment includes a thermal resistor 10 arranged to be in contact with the living body 100, and arranged around the thermal resistor 10 so as to be in contact with the living body 100 and spaced apart from the thermal resistor 10. It comprises a thermal resistor 11 , temperature sensors 13 and 14 held by the thermal resistor 10 , and connecting members 15 and 16 that connect the thermal resistor 10 and the thermal resistor 11 .
  • the upper surfaces of the thermal resistors 10 and 11 are connected by a connecting member 15, and the lower surfaces of the thermal resistors 10 and 11 are connected by a connecting member 16. .
  • the connecting members 15 and 16 the same material as that of the thermal resistors 10 and 11 can be used. It is desirable that the thickness of the connecting members 15 and 16 is 1 mm or less.
  • FIG. 16 shows an example in which the connecting members 15 and 16 are applied to the second embodiment, they may be applied to the first embodiment.
  • FIG. 17 is an external view of the sensor portion of the temperature measuring device according to the fourth embodiment of the present invention
  • FIG. 18 is a sectional view of the sensor portion.
  • the sensor section 1c of this embodiment is provided with a plurality of temperature sensors 13 and 14 and a plurality of thermal resistors 10 in order to correspond to the dual heat flow method.
  • a plurality of thermal resistors 10 are arranged in a thermal resistor 11 so as to be spaced apart from each other. Note that this embodiment may be applied to the first embodiment.
  • FIG. 19 is a diagram showing the configuration of a temperature measuring device according to the fifth embodiment of the present invention.
  • the temperature measuring device 102d of this embodiment employs an integrated structure in which the transmitter section 2 is provided on the sensor section 1b.
  • FIG. 20 is a cross-sectional view of a sensor portion of a temperature measuring device according to a sixth embodiment of the present invention.
  • the sensor section 1e of this embodiment has a heat flux sensor 17 provided on the surface of the thermal resistor 10 facing the living body 100 instead of the temperature sensor 14 .
  • the temperature sensor 13 and the heat flux sensor 17 constitute a detection section 18a that measures the magnitude of the heat flow transmitted from the living body 100.
  • Other configurations of the sensor section 1e are the same as those of the sensor section 1a.
  • the configuration of the transmitter section 2 is the same as in the first to fifth embodiments.
  • FIG. 21 is a flow chart for explaining the operation of the temperature measuring device of this embodiment.
  • the temperature sensor 13 measures the temperature T s of the skin surface of the living body 100 (step S100a in FIG. 21).
  • the heat flux sensor 17 measures the heat flux H s flowing from the living body 100 to the sensor section 1e (step S104 in FIG. 21).
  • the measurement data of the temperature sensor 13 and the heat flux sensor 17 are temporarily stored in the storage section 20 of the transmitter section 2 .
  • the storage unit 20 pre-stores the proportional coefficient ⁇ .
  • the calculation unit 21 of the transmitter unit 2 calculates the core body temperature T cbt of the living body 100 by, for example, Equation (2) based on the temperature T s , the heat flux H s and the proportionality coefficient ⁇ (step S101a in FIG. 21).
  • the communication unit 22 transmits the data of the core body temperature T cbt to the external terminal (step S102 in FIG. 21).
  • the temperature measurement device performs the above steps S100a, S104, S101a, and S102 at regular time intervals, for example, until the user gives an instruction to end the measurement (YES in step S103 in FIG. 21).
  • FIG. 20 shows an example in which the heat flux sensor 17 is applied to the second embodiment, it goes without saying that it may be applied to the first, third to fifth embodiments.
  • the storage unit 20, the calculation unit 21, the communication unit 22, and the control unit 23 described in the first to sixth embodiments are a computer having a CPU (Central Processing Unit), a storage device, and an interface, and these hardware It can be implemented by a program that controls resources.
  • a configuration example of this computer is shown in FIG.
  • the computer comprises a CPU 200 , a storage device 201 and an interface device (I/F) 202 .
  • the hardware of the temperature sensors 13 and 14, the heat flux sensor 17, the communication part 22, etc. are connected to I/F202.
  • a program for implementing the temperature measurement method of the present invention is stored in storage device 201 .
  • the CPU 200 executes the processes described in the first to sixth embodiments according to the programs stored in the storage device 201. FIG.
  • the present invention can be applied to techniques for noninvasively measuring the internal temperature of a living body.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

温度測定装置は、生体(100)から伝わる熱流の大きさを測定するセンサ部(1)を備える。センサ部(1)は、生体(100)と接するように配置された熱抵抗体(10)と、生体(100)から伝わる熱流の大きさを測定するように熱抵抗体(10)に設けられた検出部(18)と、熱抵抗体(10)の周囲に、生体(100)と接するように配置された熱抵抗体(11)とを備える。

Description

温度測定装置
 本発明は、生体の内部温度を非侵襲に精度良く測定する温度測定装置に関するものである。
 人間の持つ概日リズム、いわゆる体内時計は、睡眠、運動、仕事の質だけでなく、投薬の効果や疾患の発症など我々の体に関する様々なものと密接に関連していることが近年の時間生物学の研究からわかってきた。概日リズムは、ほぼ一定に刻まれているが、生活の中で暴露される光、運動、食生活、また、年齢や性別によっても大きく変化することが知られている。
 概日リズムを測るための指標としては深部体温が知られている。しかし、一般に深部体温を測る方法は、直腸に温度計を挿入するか、あるいは耳を密閉した状態で鼓膜の温度を測るなどの方法であり、日々の活動中や睡眠中に深部体温を測る方法としては非常にストレスがかかる方法であった。
 一方、生体の深部体温を非侵襲に測定する技術として、疑似的に熱の流れを一次元等価回路モデルに置き換えて、生体の深部体温を推定する技術が提案されている(非特許文献1参照)。
 非特許文献1に開示された方法は、図23に示すように生体100とセンサ101の熱等価回路モデルを用いて、生体100の深部体温Tcbtを推定するものである。生体100の深部体温Tcbtは、生体100の表面に、熱抵抗Rsを有するセンサ101を置いたとき、生体100の皮膚表面の温度Tsと、生体100と接する面と反対側のセンサ101の上面の温度Tuとから、式(1)を用いて推定できる。
 Tcbt=Ts+α(Ts-Tu)            ・・・(1)
 あるいは、深部体温Tcbtは、生体100の皮膚表面の熱流束Hsから、式(2)のように推定できる。
 Tcbt=Ts+αHs                 ・・・(2)
 式(1)、式(2)におけるαは生体100の熱抵抗Rbに関連する比例係数である。比例係数αは、鼓膜温度や直腸温度などを測定する他の測定手段により予め校正しておくことができる。
 ただし、式(1)、式(2)による深部体温Tcbtの推定方法では、外気温が変化したり生体100に風が当たったりすると、熱の流れが1次元的でなくなり、センサ101に流入すべき熱が周囲へと流出し、本来測定されるべき熱流の大きさが減少して、深部体温Tcbtの推定に誤差が生じるという問題がある。このため、病院内の限られた環境での利用に制限され、日常生活の深部体温モニタへの応用が困難になる可能性があった。
 そこで、発明者らは、深部体温Tcbtの推定誤差を少なくするために、周囲の環境変化があっても1次元的な熱の流れとなるようなセンサ構造を非特許文献1において提案した。この構造では、熱伝導率が良いアルミニウムなどからなる円錐台状やドーム状の金属部材で温度センサを覆うことにより、温度センサがある中央部に対して周囲の温度を高めることで周囲への熱の流れ(損失)を低減する。これにより、深部体温Tcbtの推定誤差を低減することができる。
 ただし、アルミニウムなどの金属の場合は熱の伝わり方が等方的となる。このため、非特許文献1に開示された構造では、図24に示すようにセンサ101がある中央部から逸れる熱流束HLossを抑制することができない。深部体温Tcbtの推定誤差をさらに低減するためには、熱流束HLossを抑制する必要があった。また、非特許文献1に開示された構造では、温度測定装置の内部に複雑な構造を作製する必要があるため、作製公差やコストが悪化するという課題があった。
Y.Tanaka,D.Matsunaga,T.Tajima,and M.Seyama,"Robust Skin Attachable Sensor for Core Body Temperature Monitoring",IEEE SENSORS JOURNAL,VOL.21,NO.14,pp.16118-16123,JULY 15,2021
 本発明は、上記課題を解決するためになされたもので、簡単な構造で生体の内部温度を精度良く測定することができる温度測定装置を提供することを目的とする。
 本発明の温度測定装置は、生体から伝わる熱流の大きさを測定するように構成されたセンサ部と、前記センサ部によって測定された熱流の大きさに基づいて前記生体の内部温度を算出するように構成されたトランスミッタ部とを備え、前記センサ部は、前記生体と接するように配置された第1の熱抵抗体と、前記生体から伝わる熱流の大きさを測定するように前記第1の熱抵抗体に設けられた検出部と、前記第1の熱抵抗体の周囲に、前記生体と接するように配置された第2の熱抵抗体とを備えることを特徴とするものである。
 本発明によれば、第1の熱抵抗体の周囲に第2の熱抵抗体を設けることにより、生体内の温度場の歪みを緩和し、センサ部がある中央部から逸れる熱流束を抑制することができるので、生体の内部温度を精度良く測定することができる。また、本発明では、金属部材で温度センサを覆う従来技術と比較して、センサ部を簡単な構造にすることができる。
図1は、本発明に係る温度測定装置のセンサ部の断面図である。 図2は、本発明に係る温度測定装置のセンサ部の別の構成を示す断面図である。 図3は、本発明の第1の実施例に係る温度測定装置のセンサ部の断面図である。 図4は、本発明の第1の実施例に係る温度測定装置の電子回路部の構成を示すブロック図である。 図5は、本発明の第1の実施例に係る温度測定装置の外観図である。 図6は、本発明の第1の実施例に係る温度測定装置の動作を説明するフローチャートである。 図7は、本発明の第1の実施例に係るセンサ部の半径と深部体温の推定誤差との関係を示す図である。 図8は、本発明の第1の実施例に係るセンサ部の熱抵抗体の厚さと深部体温の推定誤差との関係を示す図である。 図9は、本発明の第1の実施例に係る温度測定装置によって推定した深部体温と鼓膜温度計によって計測した鼓膜温度とを示す図である。 図10は、本発明の第2の実施例に係る温度測定装置のセンサ部の断面図である。 図11は、本発明の第2の実施例に係る温度測定装置の外観図である。 図12は、本発明の第2の実施例に係るセンサ部の半径と深部体温の推定誤差との関係を示す図である。 図13は、本発明の第2の実施例に係るセンサ部の間隙の幅と深部体温の推定誤差との関係を示す図である。 図14は、本発明の第2の実施例に係る温度測定装置の外観図である。 図15A-図15Cは、本発明の第2の実施例に係る温度測定装置の具体例を示す平面図および断面図である。 図16は、本発明の第3の実施例に係る温度測定装置のセンサ部の断面図である。 図17は、本発明の第4の実施例に係る温度測定装置のセンサ部の外観図である。 図18は、本発明の第4の実施例に係る温度測定装置のセンサ部の断面図である。 図19は、本発明の第5の実施例に係る温度測定装置の構成を示す図である。 図20は、本発明の第6の実施例に係る温度測定装置のセンサ部の断面図である。 図21は、本発明の第6の実施例に係る温度測定装置の動作を説明するフローチャートである。 図22は、本発明の第1~第6の実施例に係る温度測定装置を実現するコンピュータの構成例を示すブロック図である。 図23は、生体とセンサの熱等価回路モデルを示す図である。 図24は、従来の温度測定装置の問題点を説明する図である。
[発明の原理]
 生体の深部体温を測定する温度測定装置においては、生体内の温度場を平滑にし、図23に示した熱等価回路モデルで仮定したように熱の流れが1次元的になるようにすることが求められる。
 生体の皮膚表面の温度と熱流束とを測定するセンサを保持する熱抵抗体としては、熱伝導率が0.05~0.5W/(m・K)程度のものを用いることができる。文献「Ming Huang,Toshiyo Tamura,Wenxi Chen,Shigehi koKanaya,“Evaluation of structural and thermophysical effects on the measure-ment accuracy of deep body thermometers based on dual-heat-flux method”,Journal of Thermal Biology,47,pp.26-31,2015」には、2点の熱流束を測定することで生体の深部体温を推定する双熱流法が記載されている。この双熱流法では、熱伝導率が異なる複数の熱抵抗体を用いる必要があるため、複数の熱抵抗体の熱伝導率が生体の熱伝導率(0.2~0.6W/(m・K))と全て同じになることはない。このため、センサが接触した生体の箇所において温度場が歪んで図24に示したように2次元的な熱の流れが生じ、熱損失が生じてしまう。
 そこで、本発明では、図1に示すように、熱流測定用の熱抵抗体10の周囲に、熱抵抗体10と同等の熱伝導率、あるいは熱抵抗体10と生体100との中間的な熱伝導率を有する熱流平滑化用の熱抵抗体11を熱抵抗体10と接するように設ける。これにより、本発明では、生体100内の温度場の歪みを緩和することができる。
 また、本発明では、図2に示すように熱抵抗体10と熱抵抗体11との間に僅かな間隙12を設ける。間隙12は、空気等の、非常に低い熱伝導率(<0.02W/m/K)の物質で満たされる。これにより、本発明では、生体100内の温度場の歪みを抑制しつつ、センサ部内での熱損失を抑制することができる。
[第1の実施例]
 以下、本発明の実施例について図面を参照して説明する。図3は本発明の第1の実施例に係る温度測定装置のセンサ部の断面図、図4は温度測定装置の電子回路部の構成を示すブロック図、図5は温度測定装置の外観図である。
 本実施例の温度測定装置102は、生体100から伝わる熱流の大きさを測定するセンサ部1と、測定された熱流の大きさに基づいて生体100の深部体温Tcbt(内部温度)を算出するトランスミッタ部2とから構成される。
 センサ部1は、生体100と接するように配置される円柱状の熱抵抗体10と、熱抵抗体10の周囲に、熱抵抗体10および生体100と接するように配置される円環状の熱抵抗体11と、生体100と向かい合う熱抵抗体10の面に設けられ、生体100の皮膚表面の温度Tsを計測する温度センサ13と、温度センサ13の直上の熱抵抗体10の内部の温度Tuを計測する温度センサ14とから構成される。温度センサ13,14は、生体100から伝わる熱流の大きさを測定する検出部18を構成している。
 トランスミッタ部2は、データの記憶のための記憶部20と、温度センサ13,14の測定結果に基づいて生体100の深部体温Tcbtを算出する演算部21と、深部体温Tcbtのデータを外部端末に送信する通信部22と、記憶部20へのデータの読み書きや通信を制御する制御部23と、記憶部20と演算部21と通信部22と制御部23とに電力を供給する電源部24とを備えている。
 センサ部1は、熱抵抗体10,11が生体100の皮膚と接触するように装着される。温度センサ13,14としては、例えば、サーミスタ、熱電対、白金抵抗体、IC(Integrated Circuit)温度センサなどを用いることができる。
 熱抵抗体10は、温度センサ13,14を保持し、且つ温度センサ13,14に流入する熱に対する抵抗体となる。温度センサ14は、温度センサ13の直上に配置される。温度センサ13,14の間隔が測定中に変化すると、比例係数αが変化し、生体100の深部体温Tcbtの推定に誤差が生じるため、温度センサ13,14を熱抵抗体10を用いて保持する。
 熱抵抗体10の材料としては、生体100の熱伝導率(0.2~0.6W/(m・K))と同程度の熱伝導率の材料を使用することが望ましい。生体内部の温度場を平滑にするための熱流平滑化用の熱抵抗体11の材料としては、熱抵抗体10と同等の熱伝導率の材料、あるいは熱抵抗体10と生体100との中間的な熱伝導率の材料を用いることができる。これら熱抵抗体10,11の材料としては、シリコーン系の樹脂をはじめとする各種樹脂を用いることができる。
 温度センサ13,14とトランスミッタ部2との間は配線3によって接続されている。図6は本実施例の温度測定装置102の動作を説明するフローチャートである。温度センサ13は、生体100の皮膚表面の温度Tsを計測する。温度センサ14は、生体100から遠ざかる位置の熱抵抗体10の内部の温度Tuを計測する(図6ステップS100)。温度センサ13,14の計測データは記憶部20にいったん格納される。
 記憶部20には、比例係数αが予め記憶されている。演算部21は、温度Ts,Tuと比例係数αとに基づいて、生体100の深部体温Tcbtを例えば式(1)により算出する(図6ステップS101)。
 通信部22は、深部体温Tcbtのデータを例えばPC(Personal Computer)やスマートフォン等からなる外部端末に送信する(図6ステップS102)。外部端末は、温度測定装置から受信した深部体温Tcbtの値を表示する。
 温度測定装置102は、以上のステップS100~S102の処理を、例えばユーザから計測終了の指示があるまで(図6ステップS103においてYES)、一定時間毎に実施する。
 本実施例では、センサ部1の直径(熱抵抗体11の外径)をd、熱抵抗体10,11の厚さをtとする。風速5m/s程度の風が吹いている環境下でのセンサ部1の半径d/2と深部体温Tcbtの推定誤差との関係を図7に示し、風が吹いている環境下での熱抵抗体10,11の厚さtと深部体温Tcbtの推定誤差との関係を図8に示す。図7では熱抵抗体10,11の厚さtを3mmとし、図8ではセンサ部1の直径dを30mmとしている。深部体温Tcbtの推定誤差とは、鼓膜温度計によって測定した鼓膜温度や直腸温度計によって測定した直腸温度と本実施例の温度測定装置102によって推定した深部体温Tcbtとの差である。
 熱抵抗体10,11の材料としては、ポリジメチルシロキサンを用いている。図7によれば、熱抵抗体10,11の厚さt=3mmのときに、センサ部1の直径dを30mm以上にすると、深部体温Tcbtを0.1℃程度の誤差で推定できることが分かる。また、図8によれば、センサ部1の直径d=30mmのときに熱抵抗体10,11の厚さtを3mm以下にすると、深部体温Tcbtを0.1℃程度の誤差で推定できることが分かる。
 図9に、本実施例の温度測定装置102を生体100の額に装着して推定した深部体温Tcbtと、比較のために鼓膜温度計によって計測した深部体温(鼓膜温度)Teとを示す。図9の90,91,92は、それぞれ異なる生体100を対象とする結果を示している。図9によれば、鼓膜温度Teに近い推定結果が本実施例によって得られていることが分かる。
[第2の実施例]
 図10は本発明の第2の実施例に係る温度測定装置のセンサ部の断面図、図11は温度測定装置の外観図である。本実施例の温度測定装置102aは、センサ部1aと、トランスミッタ部2とから構成される。トランスミッタ部2の構成は第1の実施例で説明したとおりである。
 センサ部1aは、生体100と接するように配置される円柱状の熱抵抗体10と、熱抵抗体10の周囲に、生体100と接し、且つ熱抵抗体10から離間するように配置される円環状の熱抵抗体11と、温度センサ13,14とから構成される。
 本実施例では、生体100から熱抵抗体10へ流入する熱流束が熱抵抗体11へ流出することを抑制するための間隙12を、熱抵抗体10と熱抵抗体11との間に設ける。間隙12の内部は、生体100の熱伝導率よりも低い熱伝導率(<0.02W/m/K)の物質で満たされる。このような物質としては空気がある。また、間隙12の内部を減圧した空気で満たし、外気と遮断された構造にしてもよい。
 本実施例では、熱抵抗体10の直径をD、センサ部1aの直径(熱抵抗体11の外径)をd、熱抵抗体10,11の厚さをt、間隙12の幅をbとする。風速5m/s程度の風が吹いている環境下でのセンサ部1aの半径d/2と深部体温Tcbtの推定誤差との関係を図12の実線120で示す。ここでは、熱抵抗体10,11の材料としてシリコーン樹脂を用い、熱抵抗体10の直径Dを8mm、熱抵抗体10,11の厚さtを3mm、間隙12の幅bを0.5mmとしている。
 比較のため、熱抵抗体10の直径Dを14mmにして、間隙12をなくした場合のセンサ部1aの半径d/2と深部体温Tcbtの推定誤差との関係を破線121で示す。図12によれば、間隙12を設けることでセンサ部1aの直径が小さくても、深部体温Tcbtの推定誤差を低減できることが分かる。
 風速5m/s程度の風が吹いている環境下での間隙12の幅bと深部体温Tcbtの推定誤差との関係を図13に示す。ここでは、熱抵抗体10,11の材料としてシリコーン樹脂を用い、熱抵抗体10の直径Dを8mm、熱抵抗体10,11の厚さtを3mm、センサ部1aの直径dを30mmとしている。図13によれば、数mm程度の幅の間隙12を設けることで深部体温Tcbtの推定誤差を0.1℃程度以下に抑制できることが分かる。
 図5、図11では、センサ部1,1aの外形を円形としたが、図14に示すように矩形にしてもよい。
 図15Aは本実施例の温度測定装置102aの具体例を示す平面図、図15Bは温度測定装置102aの断面図、図15Cは温度センサ13,14が搭載された基板の平面図である。温度測定装置102aは、熱抵抗体10,11と同じシリコーン樹脂からなる厚さ1mm程度の筐体30と、筐体30内に収容された電池31と、電池31を保持する電池ホルダ32と、電池ホルダ32を引き出すためのつまみ33と、電源のON/OFFのための電源スイッチ34と、電源のON/OFFを確認するためのランプ35と、動作状態を確認するためのランプ36とを備えている。
 筐体30内には、センサ部1aとトランスミッタ部2とが収容されている。また、図5、図11、図14の例では、センサ部1,1aの温度センサ13,14とトランスミッタ部2との間を配線3によって接続していたが、図15A~図15Cの例では、柔軟性を有する基板37上に温度センサ13,14を設けている。温度センサ13,14は、基板37に設けられたコネクタ38を介してトランスミッタ部2と電気的に接続される。
 温度測定装置102aを作製する際には、図15Bに示すように、熱抵抗体10を挟むように基板37を曲げて、熱抵抗体10の底面に温度センサ13が配置され、熱抵抗体10の上面に温度センサ14が配置されるようにする。
[第3の実施例]
 図16は本発明の第3の実施例に係る温度測定装置のセンサ部の断面図である。本実施例のセンサ部1bは、生体100と接するように配置される熱抵抗体10と、熱抵抗体10の周囲に、生体100と接し、且つ熱抵抗体10から離間するように配置される熱抵抗体11と、熱抵抗体10によって保持される温度センサ13,14と、熱抵抗体10と熱抵抗体11とを連結する連結部材15,16とから構成される。
 本実施例は、熱抵抗体10と熱抵抗体11のそれぞれの上面を連結部材15によって連結しし、熱抵抗体10と熱抵抗体11のそれぞれの下面を連結部材16によって連結したものである。連結部材15,16の材料としては、熱抵抗体10,11と同じものを用いることができる。連結部材15,16の厚さは1mm以下であることが望ましい。
 図16では、連結部材15,16を第2の実施例に適用した例を示しているが、第1の実施例に適用してもよい。
[第4の実施例]
 図17は本発明の第4の実施例に係る温度測定装置のセンサ部の外観図、図18はセンサ部の断面図である。本実施例のセンサ部1cは、双熱流法に対応するため、温度センサ13,14と熱抵抗体10とを複数設けたものである。複数の熱抵抗体10は、互いに離間するように熱抵抗体11中に配置される。なお、本実施例を第1の実施例に適用してもよい。
[第5の実施例]
 図19は本発明の第5の実施例に係る温度測定装置の構成を示す図である。本実施例の温度測定装置102dは、センサ部1bの上にトランスミッタ部2を設けた一体化構造を採用したものである。
[第6の実施例]
 図20は本発明の第6の実施例に係る温度測定装置のセンサ部の断面図である。本実施例のセンサ部1eは、温度センサ14の代わりに、生体100と向かい合う熱抵抗体10の面に熱流束センサ17を設けたものである。温度センサ13と熱流束センサ17とは、生体100から伝わる熱流の大きさを測定する検出部18aを構成している。センサ部1eの他の構成は、センサ部1aと同じである。トランスミッタ部2の構成は第1~第5の実施例と同様である。
 図21は本実施例の温度測定装置の動作を説明するフローチャートである。温度センサ13は、生体100の皮膚表面の温度Tsを計測する(図21ステップS100a)。
 熱流束センサ17は、生体100からセンサ部1eに流入する熱流束Hsを計測する(図21ステップS104)。温度センサ13と熱流束センサ17の計測データは、トランスミッタ部2の記憶部20にいったん格納される。
 記憶部20には、比例係数αが予め記憶されている。トランスミッタ部2の演算部21は、温度Tsと熱流束Hsと比例係数αとに基づいて、生体100の深部体温Tcbtを例えば式(2)により算出する(図21ステップS101a)。
 通信部22は、深部体温Tcbtのデータを外部端末に送信する(図21ステップS102)。
 温度測定装置は、以上のステップS100a,S104,S101a,S102の処理を、例えばユーザから計測終了の指示があるまで(図21ステップS103においてYES)、一定時間毎に実施する。
 図20では、熱流束センサ17を第2の実施例に適用した例を示しているが、第1、第3~第5の実施例に適用してもよいことは言うまでもない。
 第1~第6の実施例で説明した記憶部20と演算部21と通信部22と制御部23とは、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図22に示す。
 コンピュータは、CPU200と、記憶装置201と、インタフェース装置(I/F)202とを備えている。I/F202には、温度センサ13,14、熱流束センサ17、通信部22のハードウェア等が接続される。このようなコンピュータにおいて、本発明の温度測定方法を実現させるためのプログラムは、記憶装置201に格納される。CPU200は、記憶装置201に格納されたプログラムに従って第1~第6の実施例で説明した処理を実行する。
 本発明は、生体の内部温度を非侵襲に測定する技術に適用することができる。
  1,1a,1b,1c,1e…センサ部、2…トランスミッタ部、3…配線、10,11…熱抵抗体、12…間隙、13,14…温度センサ、15,16…連結部材、17…熱流束センサ、18,18a…検出部、20…記憶部、21…演算部、22…通信部、23…制御部、24…電源部、30…筐体、31…電池、32…電池ホルダ、33…つまみ、34…電源スイッチ、35,36…ランプ、37…基板、38…コネクタ、102,102a,102d…温度測定装置。

Claims (8)

  1.  生体から伝わる熱流の大きさを測定するように構成されたセンサ部と、
     前記センサ部によって測定された熱流の大きさに基づいて前記生体の内部温度を算出するように構成されたトランスミッタ部とを備え、
     前記センサ部は、
     前記生体と接するように配置された第1の熱抵抗体と、
     前記生体から伝わる熱流の大きさを測定するように前記第1の熱抵抗体に設けられた検出部と、
     前記第1の熱抵抗体の周囲に、前記生体と接するように配置された第2の熱抵抗体とを備えることを特徴とする温度測定装置。
  2.  請求項1記載の温度測定装置において、
     前記第2の熱抵抗体は、前記第1の熱抵抗体と接するように配置されることを特徴とする温度測定装置。
  3.  請求項1記載の温度測定装置において、
     前記第2の熱抵抗体は、前記第1の熱抵抗体から離間するように配置されることを特徴とする温度測定装置。
  4.  請求項1乃至3のいずれか1項に記載の温度測定装置において、
     前記センサ部は、前記第1の熱抵抗体と前記第2の熱抵抗体とを連結する連結部材をさらに備えることを特徴とする温度測定装置。
  5.  請求項1乃至4のいずれか1項に記載の温度測定装置において、
     前記センサ部は、前記第1の熱抵抗体と前記検出部とを複数備えることを特徴とする温度測定装置。
  6.  請求項1乃至5のいずれか1項に記載の温度測定装置において、
     前記トランスミッタ部は、前記センサ部の上に設けられることを特徴とする温度測定装置。
  7.  請求項1乃至6のいずれか1項に記載の温度測定装置において、
     前記検出部は、
     前記生体と向かい合う前記第1の熱抵抗体の面に設けられ、前記生体の表面の温度を計測するように構成された第1の温度センサと、
     前記第1の温度センサの直上の前記第1の熱抵抗体の内部の温度を計測するように構成された第2の温度センサとから構成され、
     前記トランスミッタ部は、前記第1、第2の温度センサの計測結果に基づいて前記生体の内部温度を算出することを特徴とする温度測定装置。
  8.  請求項1乃至6のいずれか1項に記載の温度測定装置において、
     前記検出部は、
     前記生体と向かい合う前記第1の熱抵抗体の面に設けられ、前記生体の表面の温度を計測するように構成された温度センサと、
     前記生体と向かい合う前記第1の熱抵抗体の面に設けられ、前記生体から前記センサ部に流入する熱流束を計測するように構成された熱流束センサとから構成され、
     前記トランスミッタ部は、前記温度センサと前記熱流束センサの計測結果に基づいて前記生体の内部温度を算出することを特徴とする温度測定装置。
PCT/JP2022/007243 2022-02-22 2022-02-22 温度測定装置 WO2023161998A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007243 WO2023161998A1 (ja) 2022-02-22 2022-02-22 温度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007243 WO2023161998A1 (ja) 2022-02-22 2022-02-22 温度測定装置

Publications (1)

Publication Number Publication Date
WO2023161998A1 true WO2023161998A1 (ja) 2023-08-31

Family

ID=87765183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007243 WO2023161998A1 (ja) 2022-02-22 2022-02-22 温度測定装置

Country Status (1)

Country Link
WO (1) WO2023161998A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222543A (ja) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd 体温計
JP2012500987A (ja) * 2008-08-28 2012-01-12 ケンブリッジ・テンパラチャー・コンセプツ・リミテッド 温度センサ構造体
JP2012112767A (ja) * 2010-11-24 2012-06-14 Citizen Holdings Co Ltd 温度測定装置
WO2018180800A1 (ja) * 2017-03-31 2018-10-04 日本電気株式会社 温度拡散係数計測装置、それを用いた深部体温計、深部体温計測装置、および深部体温計測方法
JP2020176934A (ja) * 2019-04-19 2020-10-29 日本電信電話株式会社 温度測定装置および温度測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222543A (ja) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd 体温計
JP2012500987A (ja) * 2008-08-28 2012-01-12 ケンブリッジ・テンパラチャー・コンセプツ・リミテッド 温度センサ構造体
JP2012112767A (ja) * 2010-11-24 2012-06-14 Citizen Holdings Co Ltd 温度測定装置
WO2018180800A1 (ja) * 2017-03-31 2018-10-04 日本電気株式会社 温度拡散係数計測装置、それを用いた深部体温計、深部体温計測装置、および深部体温計測方法
JP2020176934A (ja) * 2019-04-19 2020-10-29 日本電信電話株式会社 温度測定装置および温度測定方法

Similar Documents

Publication Publication Date Title
US11213252B2 (en) Devices and sensing methods for measuring temperature from an ear
US20170095158A1 (en) Temperature Sensor Structure
JP5648283B2 (ja) 電子体温計及び体温測定方法
JP4751386B2 (ja) 温度測定装置
US8342748B2 (en) Electronic thermometer with flex circuit location
WO2020213437A1 (ja) 温度測定装置および温度測定方法
US20100121217A1 (en) Device for measuring core temperature
JPS6358223A (ja) 体温計測装置
WO2018167765A1 (en) Method, system and device for noninvasive core body temperature monitoring
JP7073919B2 (ja) 生体内温度測定装置および生体内温度測定方法
JP5270422B2 (ja) 耳内挿入型体温計
CN109632144B (zh) 一种用于确定生物核心温度的测量探头
JP5821449B2 (ja) 温度測定システム及び温度算出方法
CN111141420A (zh) 基于热流法的物体深部温度测量方法及装置
WO2023161998A1 (ja) 温度測定装置
JP2014194365A (ja) 外耳用体温計のプローブ及び外耳用体温計
WO2023067753A1 (ja) 温度測定装置
WO2022113331A1 (ja) 温度推定方法、温度推定プログラムおよび温度推定装置
US11974831B2 (en) Apparatus and method for estimating body temperature
WO2022264271A1 (ja) 温度推定システムおよび温度推定方法
WO2023067754A1 (ja) 測定装置
EP3727142B1 (en) Temperature measurement
WO2024075281A1 (ja) 温度測定装置、方法およびプログラム
JP7351416B2 (ja) 設置状態判定方法、および設置状態判定システム
WO2023189748A1 (ja) 深部体温計測用プローブ及び深部体温計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928529

Country of ref document: EP

Kind code of ref document: A1