WO2023160718A1 - 一种深海湿法fcaw专用药芯焊丝及制备方法 - Google Patents

一种深海湿法fcaw专用药芯焊丝及制备方法 Download PDF

Info

Publication number
WO2023160718A1
WO2023160718A1 PCT/CN2023/078683 CN2023078683W WO2023160718A1 WO 2023160718 A1 WO2023160718 A1 WO 2023160718A1 CN 2023078683 W CN2023078683 W CN 2023078683W WO 2023160718 A1 WO2023160718 A1 WO 2023160718A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
welding wire
deep
welding
fcaw
Prior art date
Application number
PCT/CN2023/078683
Other languages
English (en)
French (fr)
Inventor
贾传宝
徐士昌
韩焱飞
李侃
张茂富
武传松
谢尔盖马克西莫夫
迪姆特瓦西里夫
米科拉卡霍夫斯基
阿拉拉齐耶夫斯基
丹尼斯克拉扎诺夫斯基
Original Assignee
山东大学
山东大学威海工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学, 山东大学威海工业技术研究院 filed Critical 山东大学
Publication of WO2023160718A1 publication Critical patent/WO2023160718A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0061Underwater arc welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the component design and production of a special flux-cored welding wire for deep-sea wet FCAW, and belongs to the technical field of welding wires.
  • underwater welding As an important means of construction and maintenance of marine structures, underwater welding, its welding quality directly determines the reliability of the structure. Whether it is the construction and installation of offshore oil and gas exploration platforms or the maintenance and laying of submarine pipelines, underwater welding technology plays an important role. Unlike onshore welding, underwater welded structural parts are subject to additional loads caused by storms, waves and tidal currents, as well as seawater corrosion and sand and gravel wear, in addition to working loads. Therefore, improving the quality of underwater welding and optimizing the underwater welding process is an important issue that needs to be solved at present.
  • Underwater dry welding is to completely isolate the workpiece from water through a dry atmospheric pressure or high pressure air chamber.
  • the method of welding the workpiece is very expensive, so the research on underwater dry arc welding is currently more focused on the process exploration and optimization of high-pressure dry method.
  • Underwater partial dry welding is a process of welding the workpiece by establishing a small air chamber to isolate the arc and water. At present, most of the researches focus on the process and organization.
  • Underwater wet welding is a method in which the workpiece and the welding torch are directly placed in water for welding.
  • the arc combustion and droplet transfer are carried out in the bubbles generated by water decomposition and gas generation of the flux-cored wire.
  • the bubbles separate the welding area and the water.
  • the environment is isolated to ensure the welding process.
  • Underwater wet welding has the incomparable advantages of the other two methods, such as simple operation, flexible welding position, and low construction cost, but its disadvantages are also obvious: the existence of welding bubbles will make the welding process unstable, and the water flow will continue to flow.
  • underwater wet welding can be subdivided into underwater wet electrode arc welding and underwater wet flux-cored welding, that is, underwater FCAW (Flux-cored arc welding), underwater wet welding Electrode arc welding means that the area to be welded is completely exposed to water, and the welder dives directly into the water and uses underwater special electrodes to weld the workpiece.
  • underwater FCAW Flu-cored arc welding
  • the early research on underwater wet electrode arc welding mainly controlled the quality of the weld by improving the composition of the coating.
  • the current research focuses on the influence of various physical parameters such as water depth, waterproof coating and electrode polarity on the process and performance.
  • the following design principles should be followed: in order to make the welding rods can be welded smoothly by overhead welding, more iron powder should be added to the coating to make it have better electrical conductivity , while increasing production Efficiency; In order to reduce the solubility of hydrogen in the molten pool, more oxygen must be added to the electrode coating.
  • the lower electrode is suitable for underwater welding of high-strength steel.
  • the 7018S underwater electrode is a product of the United States in the 1990s. It is equivalent to a 490MPa AC/DC dual-purpose low-hydrogen electrode. It has good moisture absorption characteristics and can be used for all-position underwater welding. Stephen Liu and others in the United States added Mn, Ti, B and rare earth elements to the electrode coating, which improved the welding performance during the welding process and refined the microstructure of the weld.
  • the underwater special electrode of the former Soviet Union has EP-55 underwater electrode, which is only suitable for underwater welding of general structural steel, and its mechanical properties are equivalent to my country's T202 underwater electrode.
  • the types of special underwater electrodes that have been developed in China include TS202, TS203, TSH-1, TS208, TS306, etc., and the maximum working water depth is generally 30m.
  • T202 titanium-calcium electrode the welding power supply adopts DC power supply
  • the coating has a water-resistant outer coating, which can be used for all-position welding.
  • Weld metal ⁇ b ⁇ 410MPa.
  • TS208 is a special underwater electrode jointly developed by Luoyang Ship Materials Research Institute and Shanghai Jinhu Underwater Engineering Co., Ltd. The main technical indicators of TS208 electrode are as follows.
  • TS306 is a waterproof and gas-proof electrode with nickel-iron alloy as the welding core and double-layer coating.
  • the outer layer is coated with slagging agent and waterproofing agent with strong sealability to ensure the welding quality of molten metal; the inner layer is coated with alloying agent and deoxidizer to ensure arc stability, weld plasticity and metal composition.
  • the special high-efficiency underwater electrode that is still in the experimental research stage includes the thick-coated gravity electrode researched by Japan and the former Soviet Union. It uses a magnetic fixed support frame to move the electrode to complete the welding.
  • underwater wet FCAW uses flux-cored welding wire.
  • the outer layer of the welding wire is a steel strip and the inner layer is a flux core.
  • the inner flux core will decompose and produce gas and slag.
  • the bubbles and arc are stable, and the slag is beneficial to protect the molten pool and prevent it from direct contact with the water environment, thereby reducing the cooling speed of the weld joint and improving the weld performance.
  • underwater manual covered electrode welding is the most commonly used at present, but divers are required to dive for welding operations, and the time for each diving welder to work underwater is very limited and decreases with the increase of water depth.
  • the welding rod needs to be replaced frequently during the welding process, which prolongs the underwater construction time, resulting in low production efficiency and difficult quality assurance.
  • solid wire gas shielded welding such as GMA welding (gas metal arc welding) will encounter the problem of arc instability when the depth exceeds 80m, mainly manifested as arc breaking and metal particle splashing.
  • GMA welding gas metal arc welding
  • the combination of metal and welding material powder is more effective in terms of heat, and the added flux can effectively improve arc ionization conditions and promote the stability of metal transition. It is used in deep sea Welding, its advantages are more prominent. Of course, its welding efficiency is also significantly improved compared with manual welding.
  • Underwater flux cored welding has been developing slowly for nearly 40 years. This is mainly because, first, before the 1980s, the development of flux-cored welding wire itself was slow and its application was not widespread. After the 1980s, it was gradually applied in some industries; second, the development of marine resources was not strong. Underwater welding is mainly used for marine engineering and ship maintenance, as well as welding of secondary parts of the structure. The welding of important parts is consciously designed to be carried out on land. The production efficiency and quality requirements of underwater welding are not high, and manual welding with coated electrodes can meet the requirements. With the development of marine resources, especially oil and natural gas resources, the large-scale construction of marine engineering has begun.
  • Underwater welding can reduce the complexity of marine engineering structure design and shorten the construction period, so its use is becoming more and more Therefore, the efficiency and quality of underwater welding are also put forward higher and higher requirements.
  • my country's underwater wet welding materials are still relatively backward compared with western developed countries. How to quickly improve the technical level and innovation ability of my country's underwater wet welding materials poses a difficult challenge to researchers.
  • the present invention is also mainly conceived and designed for this kind of welding process.
  • shallow water environment the water pressure above the workpiece is relatively small, so that the air bubble space is relatively large, so the welding process is relatively stable and the welding quality is high.
  • the above The high water pressure causes the bubbles to be compressed violently, so that the water flow continuously invades the welding area, which affects the stability of the welding arc combustion and droplet transfer, and will cause frequent arc extinguishing, which further limits the wet welding in the deep sea environment.
  • wet FCAW and process optimization for deep sea environment mainly focusing on wet flux cored welding in water depth below 80m.
  • the most important component is its internal flux core.
  • Most of the flux cores used in current research are rutile-type flux cores, and an appropriate amount of iron powder, SiO 2 , Al 2 O 3 etc. slag, this kind of flux cored wire has good adaptability in shallow water conditions, but in deep sea environment, the gas generated by the flux core can no longer compensate for the high pressure Bubble compression makes the welding unstable and frequently breaks the arc, which seriously affects the welding quality.
  • seawater is more corrosive, and certain requirements are put forward for the corrosion resistance of welded joints, because This concerns the service life of welded joints and the risk of corrosion.
  • this paper proposes a special flux-cored welding wire for deep-sea wet welding, so as to ensure that the flux core inside the wire can generate more gas during deep-sea welding. Ionization enters the plasma to maintain the arc to ensure its stable combustion, and the rest enters the inside of the bubble to maintain or even increase the size of the bubble to overcome the compression effect of the deep sea high pressure on the bubble, thereby improving welding stability and weld formation .
  • the use of this welding wire can greatly improve the corrosion resistance of the weld, prolong the service life of the welded joint in the deep sea environment, and reduce the risk of marine structure accidents and maintenance costs.
  • the components of the outer steel strip and the inner flux core of the flux-cored welding wire are respectively designed to achieve different effects.
  • the present invention does not adopt conventional low-carbon steel, but considers the use of stainless steel with good corrosion resistance.
  • the reason why it has such excellent properties is that it contains a higher content of beneficial alloying elements than ordinary low carbon steel.
  • Chromium It can improve the hardenability and wear resistance of steel; it can produce a passivation film, hinder the anode reaction, increase the electrode potential of steel, and improve the seawater corrosion resistance and oxidation resistance of steel;
  • Titanium It can refine the grain structure of steel, thereby improving the strength and toughness of steel.
  • titanium can eliminate or reduce the intergranular corrosion of steel, and when used in conjunction with other elements, it can improve the ability of steel to resist atmospheric and seawater corrosion;
  • Nickel It can improve the strength and toughness of steel and improve hardenability. When the content is high, it can significantly change some physical properties of steel and alloys, and improve the corrosion resistance of steel. Nickel makes steel not only resistant to acid, but also resistant to alkali corrosion, and has corrosion resistance to atmosphere and salt. However, the influence of nickel on the corrosion resistance of stainless steel can only be fully displayed when it is combined with chromium. This is because low-carbon nickel steel needs to contain 24% nickel to obtain pure austenite structure; to make steel in certain media The corrosion resistance of stainless steel has changed significantly, and the nickel content must be above 27%. Therefore, nickel cannot constitute stainless steel alone, but adding 9% nickel to steel containing 18% chromium can make the steel obtain a single austenitic stainless steel at room temperature. Tensitic structure, and can significantly improve the corrosion resistance of steel to non-oxidizing media (such as: dilute sulfuric acid, hydrochloric acid, phosphoric acid, etc.).
  • non-oxidizing media such as: dilute sulfuric acid, hydrochloric
  • Carbon It has duality in stainless steel --- the content of carbon in stainless steel and the form of its distribution are left to a large extent
  • the performance and structure of stainless steel on the one hand, carbon is a stable austenitic element, and its effect is very large, about 30 times that of nickel. High carbon content (martensitic) stainless steel can be quenched and strengthened completely. Therefore, its strength can be greatly improved in terms of mechanical properties; on the other hand, due to the great affinity between carbon and chromium, chromium that takes up seventeen times the amount of carbon in stainless steel is combined with it to form chromium carbide. As the carbon content in steel increases, the more chromium that forms carbides with carbon increases, which significantly reduces the corrosion resistance of steel.
  • Niobium is a strong carbide-forming element, and its affinity with carbon is much greater than that of chromium. Adding niobium to steel can make carbon in steel form carbides with niobium first, instead of forming carbides with chromium, thus ensuring There will be no intergranular corrosion due to chromium deficiency near the grain boundary. Therefore, niobium is often used to fix carbon in steel, improve the resistance of stainless steel to intergranular corrosion, and improve the weldability of steel.
  • the action mechanism of niobium is basically the same as that of titanium, and the amount of both additions depends on the carbon content. Generally speaking, the addition of titanium is 5 times the carbon content, and niobium is 8 times the carbon content.
  • Molybdenum and copper can improve the corrosion resistance of some stainless steels to certain media, and molybdenum and copper can improve the corrosion resistance of stainless steel to corrosive media such as sulfuric acid and acetic acid. Molybdenum can also significantly improve the corrosion resistance of the medium containing chloride ions (such as hydrochloric acid) and organic acids.
  • Silicon and aluminum can improve the oxidation resistance of stainless steel.
  • the composition of the flux-cored welding wire designed by the present invention is as follows:
  • a special flux-cored welding wire for deep-sea wet FCAW including an outer steel strip and an inner flux core
  • the composition of the inner drug core (characterized by mass percentage) includes: 30%-50% of gas-forming agent, 20%-30% of slagging agent, 15%-25% of heat generating agent, and 5%-25% of metal powder; among them,
  • the gas-generating agent is composed of sodium bicarbonate, calcium carbonate and basic copper carbonate, in which sodium bicarbonate accounts for 10%-30% of the gas-generating agent, calcium carbonate accounts for 60%-70%, and basic copper carbonate The proportion is 10%-30%.
  • the slagging agent includes two kinds of rutile and fluorite, and the mass ratio of the two is 1:1.
  • the heat-generating agent includes Al-NaF and silicon-carbon heat-generating agents, and the Al-NaF mixture has two strong exothermic reactions during the heating process, which occur at 300°C to 500°C and 800°C to 1150°C respectively.
  • °C temperature range The exothermic reaction at low temperature (300°C-500°C) is due to the decomposition in this temperature range, or the partial oxidation of NaF, while the exothermic reaction at high temperature (800°C-1150°C) is due to caused by the strong oxidation of Al.
  • Silicon carbon heating agent is made by mixing ferrosilicon powder and recarburizer powder and pressing balls. It is added in the early stage of converter and electric furnace smelting to provide heat and accelerate slag formation. The composition of silicon carbon heating agent ensures its heating effect, and the raw materials used in it have obvious environmental protection effect.
  • the mass fraction of Al-NaF is 60%-70%, and the rest is silicon carbon heat generating agent.
  • the metal powder includes the following elements: iron, copper, aluminum, tungsten, magnesium, and manganese, wherein iron, copper, and aluminum each account for 25%-30%, and tungsten, magnesium, and manganese each account for 5%-10%, Characterized by mass percentage.
  • the welding conditions targeted by the present invention are not only underwater, but also deep-water ocean conditions.
  • the working conditions are more complicated and the welding process is more unstable. Therefore, the requirements for the composition design of the electrodes are correspondingly higher.
  • the various components of the inner drug core are added in the form of powder.
  • the present invention proposes the following requirements for the particle size of each component: the air-generating agent, the slag-forming agent, and the metal powder are 60 -80 mesh, heat generating agent is 80-100 mesh.
  • the overall diameter of the flux-cored welding wire is 2mm-2.5mm, more preferably 2.2mm.
  • the flux core filling rate in the flux-cored wire is 35%-40%, represented by mass percentage.
  • the protective effect of the self-shielding flux-cored wire comes from the flux core, so the proportion of the flux core is set at 35-40%.
  • the outer steel strip has a width of 8.5 mm and a thickness of 0.4 mm.
  • a preparation method for preparing the above-mentioned special flux-cored welding wire for deep-sea wet FCAW comprising the following steps:
  • the present invention rationally designs the composition of the flux-cored welding wire steel strip, considers the use of stainless steel, and the stainless steel metal in the welding process As the main part of the droplet, it enters the molten pool, fuses with the metal in the molten pool, and forms a welded joint after cooling, which can greatly improve its corrosion resistance in deep ocean environments, greatly prolong the service life of marine welded structural parts, and greatly save Equipment maintenance costs.
  • the present invention rationally designs the flux core components of the flux-cored wire, mainly including gas-generating agent, slag-generating agent, heat-generating agent and metal powder.
  • gas-generating agent mainly including gas-generating agent, slag-generating agent, heat-generating agent and metal powder.
  • gas-generating agent By adding a large amount of gas-generating agent, it is ensured that the weld can be maintained or even enlarged when welding in deep sea.
  • the volume of welding bubbles makes the welding process more stable and the weld shape is better.
  • adding the heat generating agent can accelerate the melting of the welding wire, promote the process of gas and slagging, and enhance the protection of the welding process.
  • the presence of metal powder will increase the electrical conductivity and thermal conductivity of the flux core, which is of positive significance for increasing the effective heat input of welding, especially in the case of rapidly accelerating heat dissipation in the deep sea environment.
  • the special flux-cored welding wire for deep-sea wet FCAW designed by the present invention is suitable for welding in deep-sea environments, and can ensure that welding under deep-sea conditions can obtain welding with excellent mechanical properties, good corrosion resistance, and longer service life. connector.
  • a special flux-cored welding wire for deep-sea wet FCAW including an outer steel strip and an inner flux core;
  • the outer steel strip is stainless steel, characterized by mass percentage, with a carbon content of 0.025%, a chromium content of 18%, and a nickel content of
  • the content of titanium is 9.0%, the content of titanium is 0.14%, the content of niobium is 0.22%, the content of molybdenum is 2.0%, the content of copper is 2.0%, the content of silicon is 1.0%, the content of aluminum is 1.0%, and the rest is iron element;
  • the outer steel The tape width is 8.5 mm and the thickness is 0.4 mm.
  • the composition of the inner drug core is 40% of gas-generating agent, 25% of slagging agent, 20% of heat-generating agent and 15% of metal powder, characterized by mass percentage;
  • the gas-generating agent includes 20% sodium bicarbonate, 60% Calcium carbonate and 20% basic copper carbonate;
  • slagging agent includes rutile and fluorite, the ratio of the two is 1:1, characterized by mass percentage;
  • heat generating agent includes 65% Al-NaF and 35% Silicon carbon heating agent; iron, aluminum and copper each account for 25% of the metal powder, tungsten accounts for 5%, magnesium and manganese each account for 10%;
  • gas-generating agent, slagging agent, metal powder are 70 mesh, and heat-generating agent is 90 mesh ;
  • the diameter of the flux-cored welding wire is 2.2mm, and the filling rate of the flux-cored welding wire in the flux-cored welding wire is 35%.
  • a special flux-cored welding wire for deep-sea wet FCAW comprising an outer layer steel strip and an inner layer flux core; the outer layer steel strip is consistent with Example 1; 25% slagging agent, 20% heat generating agent and 25% metal powder; the gas generating agent composition is consistent with embodiment 1; the slagging agent composition is consistent with embodiment 1; the heat generating agent composition is consistent with The same as Example 1; the metal powder composition is consistent with Example 1; the flux core particle size is consistent with Example 1; the flux cored wire diameter and flux core filling rate are consistent with Example 1.
  • a special flux-cored welding wire for deep-sea wet FCAW comprising an outer layer steel strip and an inner layer flux core; the outer layer steel strip is consistent with Example 1; the composition of the inner layer flux core is 50% of gas-generating agent, and 25% of slagging agent, 20% of heat generating agent and 5% metal powder; the composition of the gas generating agent is consistent with that of Example 1; the composition of the slagging agent is consistent with that of Example 1; the composition of the heat generating agent is consistent with The same as Example 1; the metal powder composition is consistent with Example 1; the flux core particle size is consistent with Example 1; the flux cored wire diameter and flux core filling rate are consistent with Example 1.
  • a special flux-cored welding wire for deep-sea wet FCAW including an outer steel strip and an inner flux core, the outer steel strip is made of stainless steel, and the materials include: characterized by mass percentage, carbon content: 0.024%, chromium content: 17.5%, Nickel content: 8.5%, titanium content: 0.13%, niobium content: 0.2%, molybdenum content: 1.5%, copper content: 1.5%, silicon content: 0.7%, aluminum content: 0.7%, and the rest is iron element; the inner layer medicine
  • the core components include: 45% gas-generating agent, 20% slag-forming agent, 15% heat-generating agent, and 20% metal powder; among them, the gas-generating agent components are sodium bicarbonate, calcium carbonate and basic carbonic acid Copper, wherein sodium bicarbonate accounts for 15% by mass of the gas-generating agent, calcium carbonate accounts for 70%, and basic copper carbonate accounts for 15%.
  • a special flux-cored welding wire for deep-sea wet FCAW including an outer steel strip and an inner flux core, the outer steel strip is made of stainless steel, and the materials include: characterized by mass percentage, carbon content: 0.025%, chromium content: 20.5%, Nickel content: 10.5%, titanium content: 0.15%, niobium content: 0.25%, molybdenum content: 2.5%, copper content: 2.5%, silicon content: 1.2%, aluminum content: 1.2%, and the rest is iron element; the inner layer medicine
  • the core components include: 30% gas-generating agent, 30% slag-forming agent, 25% heat-generating agent, and 15% metal powder; among them, the gas-generating agent components are sodium bicarbonate, calcium carbonate and basic carbonic acid Copper, wherein sodium bicarbonate accounts for 30% by mass of the gas-generating agent, calcium carbonate accounts for 60%, and basic copper carbonate accounts for 10%.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a special flux-cored welding wire for deep-sea wet FCAW comprising an outer layer steel strip and an inner layer flux core.
  • Copper carbonate wherein the mass percentage of sodium bicarbonate is 10%, calcium carbonate is 60%, and basic copper carbonate is 30%.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • a special flux-cored welding wire for deep-sea wet FCAW comprising an outer layer steel strip and an inner layer flux core.
  • the heat generating agent is 80 mesh.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a special flux-cored welding wire for deep-sea wet FCAW comprising an outer layer steel strip and an inner layer flux core.
  • the heat generating agent is 100 mesh.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • a special flux-cored welding wire for deep-sea wet FCAW including an outer layer of steel strip and an inner layer of flux core, the composition of which is as described in Example 1, except that the diameter of the flux-cored welding wire is 2mm.
  • a special flux-cored welding wire for deep-sea wet FCAW including an outer layer steel strip and an inner layer flux core.
  • the fill rate is 40%.
  • a special flux-cored welding wire for deep-sea wet FCAW including an outer steel strip and an inner flux core; the outer steel strip is low-carbon steel with a carbon content of 0.04%, and the composition of the flux core is consistent with that of Example 1
  • the particle size of the flux core is consistent with that of Example 1; the diameter of the flux cored wire and the filling rate of the flux core are consistent with that of Example 1.
  • a special flux-cored welding wire for deep-sea wet FCAW comprising an outer steel strip and an inner flux core; the outer steel strip is consistent with Example 1; the flux core composition is no gas-generating agent, and the slagging agent is 50 %, heat generating agent 30% and 20% metal powder; the composition of the slagging agent is consistent with that of Example 1; the composition of the heat generating agent is consistent with that of Example 1; the composition of the metal powder is consistent with that of Example 1
  • the particle size of the flux core is consistent with that of Example 1; the diameter of the flux cored wire and the filling rate of the flux core are consistent with that of Example 1.
  • the present invention carried out a deep-water wet FCAW welding test.
  • the welding workpiece was AH36 special steel plate for ships and marine engineering.
  • the welding parameters are shown in Table 1.
  • the performance of the unwelded workpiece measured by the experiment is seawater corrosion resistance of 0.58mm/a, tensile strength of 540MPa, maximum elongation of 23%, and zero-degree impact toughness of 31.0J.
  • the comparison shows that the outer steel strip is replaced with ordinary low After carbon steel is used, its corrosion rate will be greatly increased, and its corrosion resistance in marine environment will be reduced, thereby shortening the service life of marine structural parts and repair welding parts.
  • the proportion of welding wire powder also has a great influence on the performance of the welded joint, especially the proportion of the gas-generating agent.
  • the proportion of the gas-generating agent When it is 40%, the overall performance of the welded joint is excellent.
  • Example 1 when the proportion is reduced to When it is 30% or increased to 50%, its performance is slightly lower than that of Example 1, but the range is not large, and both are much higher than that of the base metal, which shows that the proportion of the drug core components designed by the present invention is more reasonable.
  • the gas-generating agent is not added, that is, its ratio is set to 0, the performance of the obtained welded joint is seriously deteriorated.
  • a deep-sea wet FCAW flux-cored welding wire designed by the present invention is suitable for welding in a marine environment with high corrosiveness and high water pressure, and high-quality welded joints with strong corrosion resistance and excellent mechanical properties can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

一种深海湿法FCAW专用药芯焊丝及制备方法,药芯焊丝包括外层钢带和内层药芯,外层钢带材料为不锈钢,材料包括:碳、铬、镍、钛、铌、钼、铜、硅、铝,其余为铁元素;内层药芯成分包括:造气剂30%-50%、造渣剂20%-30%、产热剂15%-25%、金属粉末5%-25%;造气剂成分为碳酸氢钠、碳酸钙及碱式碳酸铜,其中碳酸氢钠所占造气剂质量百分比为10%-30%,碳酸钙占比为60%-70%,碱式碳酸铜占比为10%-30%。

Description

一种深海湿法FCAW专用药芯焊丝及制备方法 技术领域
本发明涉及一种深海湿法FCAW专用药芯焊丝的成分设计及制作,属于焊丝技术领域。
背景技术
随着能源资源消耗的不断增加,人们开始探索海洋中的大量自然资源,这也对海洋工程结构施工提出了更高的要求,水下焊接作为建设及维修海洋结构的重要手段,其焊接质量直接决定了结构的可靠性。无论是海上油气开采平台的建造安装还是海底管线的维修铺设,水下焊接技术无不起着重要的作用。与陆上焊接不同,水下焊接结构件除了工作载荷外还会受到风暴、波浪和潮汐流以及海水腐蚀和沙砾磨损引起的额外载荷。因此,提高水下焊接质量,优化水下焊接工艺是当前需要解决的一个重要问题。
按照焊接区域和水环境的关系,水下焊接可以分为干法焊接、局部干法焊接以及湿法焊接,水下干法焊接是通过干燥的常压或者高压气室将工件与水完全隔绝来对工件进行施焊的方法,其成本很高,因此对于水下干法电弧焊接的研究目前更集中于高压干法的工艺探索及优化上。水下局部干法焊接是通过建立微小气室来将电弧和水隔绝开对工件进行施焊的工艺,目前多集中于工艺和组织的研究。水下湿法焊接是将工件与焊枪直接置于水中进行焊接的方法,电弧燃烧和熔滴过渡均是在水分解及药芯焊丝造气所产生的气泡内进行的,气泡将焊接区域和水环境隔离开,以保证焊接过程的进行。水下湿法焊接具有操作简单、焊接位置灵活、施工成本低等其余两种方法无可比拟的优势,但是其缺点也很明显:焊接气泡的存在会使得焊接过程变得不稳定,水流不断地侵入焊接区域,影响焊接电弧的稳定性,会造成熄弧现象;水下特殊的冷却条件也使得湿法焊接具有焊缝成型差、焊接残余应力大等问题;水分解产生的氢容易使焊接接头产生大量气孔及氢致延迟裂纹。按照焊接材料的不同,又可以将水下湿法焊接细分为水下湿法焊条电弧焊接和水下湿法药芯焊丝焊接,即水下FCAW(Flux-cored arc welding),水下湿法焊条电弧焊是待焊区域完全暴露在水中,焊工直接潜入水中利用水下专用焊条对工件进行施焊,早期的水下湿法焊条电弧焊研究主要是通过改善药皮成分来调控焊缝质量,而目前的研究则集中于水深、防水涂层和电极极性等各种物性参数对工艺及性能的影响。在湿法水下焊条的制作过程,应该遵循这样的设计原则:为使焊条能够用仰焊的方法顺利进行焊接,要在药皮中加入较多的铁粉,使它具有较好的导电能力,同时得以提高生产 效率;为了减少熔池中氢的溶解度,必须在焊条药皮中加入较多的氧。
化性材料;选用钾钠水玻璃作为粘结剂,并在焊条的表面喷涂塑料粉末作为防水层。美国有获得专利的特种水下焊条,一种是在药皮焊条外表面套上有合成树脂组成的管状套管,使用时在焊条药皮外表面和套管之间通入气体,起到在电弧周围排开水的作用;另一种是7018S水下焊条,它是在药皮上涂上一薄层铝粉,水下焊接时铝粉于高温下产生大量气体,有效地排开水和保护焊缝金属物免受有害物的侵袭。铝粉颗粒尺寸近似为0.0254um,使焊条抗湿性很强。美国海军所作抗湿性试验结果表明,在湿度100%连续20天的条件下得到的焊缝金属含氢量仍保持在0.00023%(2.3ppm)低值,-30℃冲击功达到100J,所以7018S水下焊条能适用于高强度钢材的水下焊接。7018S水下焊条是美国90年代产品,它相当于490MPa级交直流两用低氢型焊条,耐吸潮特性好,可进行全位置水下焊接。美国的Stephen Liu等人在焊条药皮中加入Mn、Ti、B和稀土元素,改善了焊接过程中的焊接性能,细化了焊缝微观组织。前苏联的水下特种焊条有EP-55水下焊条,亦仅适用于一般结构钢的水下焊接,其机械性能与我国的T202水下焊条相当。国内已经完成研制的专用水下焊条型号有TS202、TS203、TSH-1、TS208、TS306等,最大工作水深一般为30m。其中,T202钛钙型焊条,焊接电源采用直流电源,药皮具有抗水外层涂料,可进行全位置焊接。焊条直径有Φ3.2、Φ4.0和Φ5.0mm三种。焊缝金属σb≥410MPa。焊缝金属化学成分(%):C≤0.12,Mn 0.30~0.60,Si≤0.25,S≤0.035,P≤0.04。其接头强度σb与J422焊条相当,冷弯角一般为90°左右。TS208为近期由洛阳船舶材料研究所和上海津沪水下工程有限公司联合研制成功的水下专用焊条,TS208焊条的主要技术指标如下。力学性能:在水深≤30m条件下,σb≥530MPa,δ≥14%;工艺性能:在海水水下焊接条件下,焊接电弧燃烧稳定,飞溅小,焊缝成型良好,并具有优良的再引弧性能,焊缝无气孔、裂纹等缺陷。TS306是一种采用镍铁合金为焊芯,双层涂药层的防水、防气的焊条。外层涂有造渣剂和防水剂具有很强的封闭性,以保证溶嗷金属的焊接质量:内层涂有合金剂和脱氧剂以保证电弧稳定和焊缝塑性及金属成分。可用于带水气或水下结构钢及铸铁管道的全位置焊接。其抗拉强度:σb>490MPa,延伸率:δ≥25%,是一种理想的防水焊条,本焊条可交直流两用,但直流更佳。另外,还处于试验研究阶段的专用高效水下焊条,有日本、前苏联研究的厚药皮重力焊条,它是采用磁性固定支撑架夹往焊条移动来完成焊接的。
水下湿法FCAW与之不同的是,其采用的为药芯焊丝,焊丝外层为钢带,内层为药芯,焊接时内部的药芯会分解产生气体以及熔渣,气体有利于维持气泡及电弧稳定,熔渣有利于保护熔池,防止其与水环境直接接触,从而降低焊缝接头冷却速度,提高焊缝性能。从焊接材 料来看,目前使用最普遍的是水下手工药皮焊条焊接,但是需要潜水员潜水进行焊接作业,每个潜水焊工在水下工作的时间很有限,并且随水深的增加而减少。另外,受焊条长度的限制,焊接过程中需要频繁更换焊条,延长了水下施工的时间,导致生产效率很低,质量也难于保证。而实心焊丝气体保护焊接如GMA焊(熔化极气体保护电弧焊)在深度大约超过80m时,就会遇到电弧不稳定的问题,主要表现为断弧和金属颗粒飞溅。与实心焊丝相比,采用药芯焊丝,其金属与焊材粉末的配合在热量上更为有效,并且加进的焊药能有效地改善电弧电离条件和促进金属过渡的稳定,用于深海中焊接,其优点更突出。当然,其焊接效率较手工焊也有明显的提高。水下药芯焊丝焊接的技术和原理最初都是由前苏联学者提出来的,巴顿焊接研究所(乌克兰)是这方面的先驱者,早在60年代就进行了药芯焊丝水下焊接与切割的研究,使用金红石药芯焊丝PPS-AN1对一般低碳钢进行了全位置焊接,所得接头的拉伸强度达到了450MPa,只要焊缝金属不是合金、不含碳元素,这个数值已经足够高了。经过对药芯焊丝PPS-AN1长时间应用表明,可以为屈服强度为350MPa的低碳钢提供足够强度的焊接接头,但是,接头塑性不能满足AWS D3.6标准对于B级接头的要求。
水下药芯焊丝焊接近40年来一直发展缓慢。这主要是因为,一是80年代以前,药芯焊丝本身的发展较慢,应用不广,在80年代以后,才逐渐在一些行业中得到了应用;二是海洋资源的开发力度不大,以往的水下焊接主要用于海洋工程和舰船的维修,以及结构次要部位的焊接,重要部位的焊接均有意识地设计成在陆上进行。对水下焊接的生产效率和质量要求不高,使用药皮焊条手工焊接即能满足要求。随着世界各国海洋资源特别是石油、天然气资源开发的不断深入,海洋工程的大规模建设已经开始,水下焊接可以减少海洋工程结构设计的复杂性,缩短工程施工周期,因而其使用越来越频繁,故对水下焊接的效率和质量也提出了越来越高的要求。我国水下湿法焊接材料较西方发达国家相比还比较落后,如何快速提升我国水下湿法焊接材料的技术水平以及创新能力,向研究人员提出了一个艰巨的挑战。
本发明也主要针对此种焊接工艺进行构思设计,在浅水环境中,工件上方水压较小,使得气泡空间相对较大,因此焊接过程较为稳定,焊接质量较高,但是在深海环境中,上方很高的水压力使得气泡被剧烈压缩,从而使得水流不断侵入焊接区域,影响了焊接电弧燃烧及熔滴过渡的稳定性,会造成频繁的熄弧现象,更加限制了湿法焊接在深海环境下的应用。目前针对深海环境开展湿法FCAW并对其进行工艺优化的研究较少,主要集中于80m以下水深的湿法药芯焊丝焊接。对于药芯焊丝,其最重要的成分为其内部的药芯,目前研究采用的药芯大多数为金红石型药芯,再加入适量的铁粉、SiO2、Al2O3等组成适当的熔渣,这种药芯焊丝在浅水工况下适应性较好,但在深海环境下,由于药芯产生的气体已经无法弥补高压导致的 气泡压缩,使得焊接不稳定,频繁产生断弧,严重影响了焊接质量,同时,在海洋深海条件下,海水具有更强的腐蚀性,对焊接接头的抗腐蚀性能也提出了一定的要求,因为这涉及到焊缝接头的使用寿命以及由于腐蚀带来的风险问题。因此要想将水下湿法FCAW工艺应用于深海环境,获得质量较好的焊接接头,增大深海焊接工况下气泡的尺寸、改善气泡稳定性、提高焊接接头的抗腐蚀性是当前面临的最重要的问题,故有必要提出一种深海湿法FCAW专用药芯焊丝来进行研究。
发明内容
针对现有技术的不足,为解决上述深海湿法FCAW存在的问题,本文提出了一种深海湿法焊接专用药芯焊丝,以保证在深海焊接时焊丝内部药芯可以产生更多的气体,一部分电离进入等离子体中维持电弧,保证其稳定燃烧,其余部分进入气泡内部,用于维持甚至增大气泡尺寸,以克服深海高压给气泡带来的压缩作用,从而提高焊接稳定性,改善焊缝成型。同时使用本焊丝能够大大提高焊缝的抗腐蚀能力,延长在深海环境下焊接接头的使用寿命,降低海洋结构事故风险及维护成本。
本发明的技术方案如下:
本发明针对药芯焊丝的外层钢带及内层药芯分别进行成分设计,以实现不同的效用。首先对于外层钢带,本发明并不采用常规的低碳钢,而考虑使用抗腐蚀性良好的不锈钢。对于不锈钢,其之所以具有如此优良的性能,是因为其相比于普通低碳钢含有更高含量的有益合金元素。如下详细说明了各种合金元素的有益效果及本发明的设计含量:
铬:能提高钢的淬透性和耐磨性;能产生钝化膜,阻碍阳极反应,提高钢的电极电位,能提高钢的抗海水腐蚀能力和抗氧化性能;
钛:能细化钢的晶粒组织,从而提高钢的强度和韧性。在不锈钢中,钛能消除或减轻钢的晶间腐蚀现象,与其它元素配合使用能提高钢抗大气、海水腐蚀的能力;
镍:能提高钢的强度和韧性,提高淬透性。含量高时,可显著改变钢和合金的一些物理性能,提高钢的抗腐蚀能力。镍使钢不仅能耐酸,而且能抗碱的腐蚀,对大气及盐都有抗蚀能力。但是镍对不锈钢耐腐蚀的影响,只有它与铬配合时才能充分显示出来,这是因为低碳镍钢要获得纯奥氏体组织,含镍量需达24%;要使钢在某些介质中的耐腐蚀性能显著改变,含镍量需在27%以上,所以,镍不能单独构成不锈钢,而在含铬18%的钢中加入9%的镍,就能使钢在常温下获得单一奥氏体组织,并可以显著提高钢对非氧化性介质(如:稀硫酸、盐酸、磷酸等)的耐蚀性。
碳:在不锈钢中具有两重性---碳在不锈钢中的含量及其分布的形式,在很大程度上左 右着不锈钢的性能和组织:一方面碳是稳定奥氏体元素,并作用的程度很大,约为镍的30倍,含碳量高的(马氏体)不锈钢,完全可以接受淬火强化,从而在机械性能方面可大大提高它的强度;另一方面由于碳和铬的亲和力很大,在不锈钢中要占用十七倍碳量的铬与它结合成碳化铬。随着钢中含碳量的增加,则与碳形成碳化物的铬越多,从而显著降低钢的耐蚀性。所以,从强度与耐腐蚀性能两方面来看,碳在不锈钢中的作用是互相矛盾的。在实际应用中,为了达到耐腐蚀的目的,不锈钢的含碳量一般较低,在大多在0.1%左右,为了进一步提高钢的耐腐蚀能力,特别是抗晶间腐蚀的能力,常采用超低碳的不锈钢,含碳量在0.03%甚至更低;
铌:铌是强碳化物形成元素,它与碳的亲和力比铬大得多,钢中加入铌,就能使钢中的碳首先与铌形成碳化物,而不与铬形成碳化物,从而保证晶界附近不致因贫铬而产生晶间腐蚀。因此,铌常用来固定钢中的碳,提高不锈钢抗晶间腐蚀的能力,并改善钢的焊接性能。铌的作用机制与钛基本一致,两者的加入量要根据含碳量而定,一般来说,钛的加入量为含碳量的5倍,铌为含碳量的8倍。
钼和铜:能提高某些不锈钢对某些介质的耐腐蚀性能,钼和铜能提高不锈钢对硫酸、醋酸等腐蚀介质的耐蚀能力。钼还能显著提高对含氯离子的介质(如盐酸)以及有机酸中的耐蚀能力。
硅和铝:能提高不锈钢的抗氧化能力。
同样的,对焊丝药芯进行成分设计:
本发明对于药芯的考虑为要使其在深海焊接过程中释放出大量的气体,以维持甚至增大电弧气泡的尺寸,同时由于海洋深水环境下水流无论是对焊丝、电弧还是熔池的冷却作用均十分强烈,因此需要加入部分产热剂来加快焊丝熔化进而促进造气造渣,基于此考虑,针对各元素的作用,本发明设计的药芯焊丝成分如下:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带和内层药芯,
外层钢带材料为不锈钢,材料包括:以质量百分比表征,碳含量:<=0.025%,铬含量:17.5%-20.5%,镍含量:8.5%-10.5%,钛含量:0.13%-0.15%,铌含量:0.2%-0.25%,钼含量:1.5%-2.5%,铜含量:1.5%-2.5%,硅含量:0.7%-1.2%,铝含量:0.7%-1.2%,其余为铁元素;
内层药芯成分(以质量百分比表征)包括:造气剂30%-50%、造渣剂20%-30%、产热剂15%-25%、金属粉末5%-25%;其中,造气剂成分为碳酸氢钠、碳酸钙及碱式碳酸铜,其中碳酸氢钠所占造气剂质量百分比为10%-30%,碳酸钙占比为60%-70%,碱式碳酸铜占比为10%-30%。
三种造气剂受热分解产生气体的化学式如下:

优选的,所述造渣剂包括金红石、萤石两种,两者质量比例为1:1。
优选的,所述产热剂包括Al-NaF及硅碳发热剂,Al-NaF混合料在加热过程中有两个较强的放热反应,分别发生在300℃~500℃及800℃~1150℃温度范围内。低温下(300℃~500℃)的放热反应,是由于在此温度范围内的分解作用,或是由于NaF部分氧化引起的,而高温下(800℃~1150℃)的放热反应是由于Al强烈氧化引起的。硅碳发热剂由硅铁粉和增碳剂粉末混合后压球制得,在转炉及电炉冶炼前期加入,以提供热量,加速成渣。硅碳发热剂的成分保证了其发热效果,而其所用原料,则具有明显的环保效果。在产热剂中,Al-NaF所占质量分数为60%-70%,其余为硅碳发热剂。
优选的,所述金属粉末包括以下元素:铁、铜、铝、钨、镁、锰,其中铁、铜、铝各占25%-30%,钨、镁、锰各占5%-10%,以质量百分比表征。
本发明所针对的焊接工况不仅为水下,还是深水海洋条件,工况更加复杂,焊接过程更加不稳定,因此对焊条成分设计的要求相应也要更高。
优选的,所述内层药芯的各种成分均以粉末形式加入,为提高焊接材料的性能,本发明对各成分的颗粒度提出如下要求:造气剂、造渣剂、金属粉末为60-80目,产热剂为80-100目。
优选的,有关于本发明所设计的深海湿法FCAW药芯焊丝的其他参数如下:药芯焊丝整体直径为2mm-2.5mm,进一步优选为2.2mm。
优选的,药芯焊丝内药芯填充率为35%-40%,以质量百分比表征。自保护药芯焊丝的保护效果均来自药芯,因此设置药芯比重为35-40%。
优选的,外层钢带宽度为8.5mm,厚度为0.4mm。
一种制备上述深海湿法FCAW专用药芯焊丝的制备方法,包括步骤如下:
(1)取相应比例的内层药芯各组分,包括造气剂、造渣剂、产热剂及金属粉末,按要求将其分别研磨至相应颗粒度,将各组分放入混粉机中6h,使其混合均匀;
(2)将外层钢带卷成U型,将药粉装入,药芯焊丝填充率为35%-40%;
(3)将填充好药芯的钢带通过拔丝模,逐渐将焊丝拔细,直至所要求的焊丝直径,为2-2.5mm。
本发明的有益效果在于:
(1)本发明合理设计了药芯焊丝钢带成分,考虑使用不锈钢,在焊接过程中不锈钢金属 作为熔滴的主要部分进入熔池,与熔池金属融合,冷却后形成焊接接头,可大幅度提高其在海洋深水环境下的抗腐蚀能力,大大延长海洋焊接结构件的使用寿命,极大节约设备维护成本。
(2)本发明合理设计了药芯焊丝药芯成分,主要包括造气剂、造渣剂、产热剂及金属粉末,通过加入大量的造气剂,保证在深海进行焊接时能够维持甚至扩大焊接气泡体积,使焊接过程更加稳定,焊缝成型更为良好。同时,加入产热剂能够加快焊丝的熔化,促进造气造渣过程的进行,增强对焊接过程的保护作用。金属粉末的存在会提高药芯的电导率及热导率,对于提高焊接有效热输入,尤其是在深海环境散热急剧加快的情况下,具有积极的意义。
综上,本发明所设计的深海湿法FCAW专用药芯焊丝适用于深海环境下的焊接,并可保证在深海条件下施焊能够得到机械性能优良、耐蚀性能好、使用寿命更长的焊接接头。
具体实施方式
下面通过实施例对本发明做进一步说明,但不限于此。
实施例1:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带和内层药芯;所述外层钢带为不锈钢,以质量百分比表征,碳含量为0.025%,铬含量为18%,镍含量为9.0%,钛含量为0.14%,铌含量为0.22%,钼含量为:2.0%,铜含量为:2.0%,硅含量为1.0%,铝含量为1.0%,其余为铁元素;外层钢带宽度为8.5mm,厚度为0.4mm。
所述内层药芯成分为造气剂40%,造渣剂25%,产热剂20%以及15%的金属粉末,以质量百分比表征;造气剂包括20%的碳酸氢钠、60%的碳酸钙以及20%的碱式碳酸铜;造渣剂包括金红石、萤石两种,两者比例为1:1,以质量百分比表征;产热剂包括65%的Al-NaF和35%的硅碳发热剂;金属粉末中铁、铝、铜各占25%,钨占5%,镁、锰各占10%;造气剂、造渣剂、金属粉末为70目,产热剂为90目;药芯焊丝直径为2.2mm,药芯焊丝内药芯填充率为35%。
实施例2:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带和内层药芯;所述外层钢带与实施例1相一致;所述内层药芯成分为造气剂30%,造渣剂25%,产热剂20%以及25%的金属粉末;所述造气剂成分与实施例1相一致;所述造渣剂成分与实施例1相一致;所述产热剂成分与实施例1相一致;所述金属粉末成分与实施例1相一致;所述药芯颗粒度与实施例1相一致;所述药芯焊丝直径与药芯填充率与实施例1相一致。
实施例3:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带和内层药芯;所述外层钢带与实施例1相一致;所述内层药芯成分为造气剂50%,造渣剂25%,产热剂20%以及5%的金属粉末;所述造气剂成分与实施例1相一致;所述造渣剂成分与实施例1相一致;所述产热剂成分与实施例1相一致;所述金属粉末成分与实施例1相一致;所述药芯颗粒度与实施例1相一致;所述药芯焊丝直径与药芯填充率与实施例1相一致。
实施例4:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带与内层药芯,外层钢带材料为不锈钢,材料包括:以质量百分比表征,碳含量:0.024%,铬含量:17.5%,镍含量:8.5%,钛含量:0.13%,铌含量:0.2%,钼含量:1.5%,铜含量:1.5%,硅含量:0.7%,铝含量:0.7%,其余为铁元素;内层药芯成分(以质量百分比表征)包括:造气剂45%、造渣剂20%、产热剂15%、金属粉末20%;其中,造气剂成分为碳酸氢钠、碳酸钙及碱式碳酸铜,其中碳酸氢钠所占造气剂质量百分比为15%,碳酸钙占比为70%,碱式碳酸铜占比为15%。
实施例5:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带与内层药芯,外层钢带材料为不锈钢,材料包括:以质量百分比表征,碳含量:0.025%,铬含量:20.5%,镍含量:10.5%,钛含量:0.15%,铌含量:0.25%,钼含量:2.5%,铜含量:2.5%,硅含量:1.2%,铝含量:1.2%,其余为铁元素;内层药芯成分(以质量百分比表征)包括:造气剂30%、造渣剂30%、产热剂25%、金属粉末15%;其中,造气剂成分为碳酸氢钠、碳酸钙及碱式碳酸铜,其中碳酸氢钠所占造气剂质量百分比为30%,碳酸钙占比为60%,碱式碳酸铜占比为10%。
实施例6:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带与内层药芯,其成分如实施例5所述,所不同的是,造气剂成分为碳酸氢钠、碳酸钙及碱式碳酸铜,其中碳酸氢钠所占造气剂质量百分比为10%,碳酸钙占比为60%,碱式碳酸铜占比为30%。
实施例7:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带与内层药芯,其成分如实施例1所述,所不同的是,造气剂、造渣剂、金属粉末为60目,产热剂为80目。
实施例8:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带与内层药芯,其成分如实施例1所述,所不同的是,造气剂、造渣剂、金属粉末为80目,产热剂为100目。
实施例9:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带与内层药芯,其成分如实施例1所述,所不同的是,药芯焊丝直径为2mm。
实施例10:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带与内层药芯,其成分如实施例1所述,所不同的是,药芯焊丝直径为2.5mm,药芯焊丝内药芯填充率为40%。
实施例11:
一种制备实施例1所述深海湿法FCAW专用药芯焊丝的制备方法,包括步骤如下:
(1)取相应比例的内层药芯各组分,包括造气剂、造渣剂、产热剂及金属粉末,按要求将其分别研磨至相应颗粒度,将各组分放入混粉机中6h,使其混合均匀;
(2)将外层钢带卷成U型,将药粉装入,药芯焊丝填充率为35%;
(3)将填充好药芯的钢带通过拔丝模,逐渐将焊丝拔细,直至所要求的焊丝直径,为2.2mm。
对比例1:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带和内部药芯;所述外层钢带为低碳钢,碳含量为0.04%,;所述药芯成分与实施例1相一致;所述药芯颗粒度与实施例1相一致;所述药芯焊丝直径与药芯填充率与实施例1相一致。
对比例2:
一种深海湿法FCAW专用药芯焊丝,包括外层钢带和内部药芯;所述外层钢带与实施例1相一致;所述药芯成分为无造气剂,造渣剂为50%,产热剂30%以及20%的金属粉末;所述造渣剂成分与实施例1相一致;所述产热剂成分与实施例1相一致;所述金属粉末成分成分与实施例1相一致;所述药芯颗粒度与实施例1相一致;所述药芯焊丝直径与药芯填充率与实施例1相一致。
以上焊丝均按照以下流程进行制作:
1、取相应比例的药芯各组分,包括造气剂(没有不加)、造渣剂、产热剂及金属粉末,按要求将其分别研磨至相应颗粒度,将各组分放入混粉机中6h,使其混合均匀;
2、将钢带卷成U型,将药粉装入;
3、将填充好药芯的钢带通过拔丝模,逐渐将焊丝拔细,直至所要求的焊丝直径。
实验例
利用上述生产的深海湿法FCAW专用药芯焊丝,本发明开展了深水湿法FCAW焊接试验,焊接工件为船舶及海洋工程专用钢板AH36,焊接参数如表1所示。
表1焊接参数汇总
焊后截取部分稳定焊缝进行性能测试,包括以下性能:耐海水腐蚀性能(3.5%NaCl溶液浸泡实验)、抗拉强度、最大延伸率、零度冲击韧性,各实施例测得性能结果如表2所示:
表2各焊丝性能对比
实验测得的未焊接工件性能为耐海水腐蚀性能0.58mm/a,抗拉强度为540MPa,最大延伸率为23%,零度冲击韧性为31.0J,对比可知,将外层钢带换为普通低碳钢后,会大大提高其腐蚀速率,降低其在海洋环境下耐蚀性能,从而缩短海洋结构件及补焊件的使用寿命。
同时,焊丝药粉比例对焊接接头性能也有很大的影响,尤其是造气剂的比例,当其为40%时,得到的焊接接头综合性能优良,如实施例1所示,当其比例降低至30%或升高至50%时,其性能较实施例1稍有降低,但幅度不大,且均远高于母材金属,说明本发明所设计的药芯成分比例较为合理。而如果不加入造气剂,即其比例设置为0,则得到的焊接接头性能严重恶化,如对比例2所示,耐蚀性方面由于焊丝外层钢带仍为不锈钢其变化不大,但其强度、塑韧性均较之前实施例发生显著降低,且均已低于母材金属,考虑其原因,由于未加入造气剂,使得在深海环境下焊接时没有气体补充到焊接气泡中,在深水的高压作用下气泡体积严重收缩,使得大量的海水进入焊接区域,导致频繁的断弧现象,同时也严重影响了熔滴过渡,使得焊接接头质量很差。可以看出,在深海焊接工况下,造气剂的加入对于焊接质量的提高具有十分积极的作用。
综上,本发明设计的一种深海湿法FCAW药芯焊丝适用于具有较高腐蚀性、高水压的海洋环境下的焊接,可以获得耐腐蚀能力强、机械性能优良的高质量焊接接头。

Claims (10)

  1. 一种深海湿法FCAW专用药芯焊丝,其特征在于,包括外层钢带和内层药芯,
    外层钢带材料为不锈钢,材料包括:以质量百分比表征,碳含量:<=0.025%,铬含量:17.5%-20.5%,镍含量:8.5%-10.5%,钛含量:0.13%-0.15%,铌含量:0.2%-0.25%,钼含量:1.5%-2.5%,铜含量:1.5%-2.5%,硅含量:0.7%-1.2%,铝含量:0.7%-1.2%,其余为铁元素;
    内层药芯成分,以质量百分比表征,包括:造气剂30%-50%、造渣剂20%-30%、产热剂15%-25%、金属粉末5%-25%;其中,造气剂成分为碳酸氢钠、碳酸钙及碱式碳酸铜,其中碳酸氢钠所占造气剂质量百分比为10%-30%,碳酸钙占比为60%-70%,碱式碳酸铜占比为10%-30%。
  2. 根据权利要求1所述的深海湿法FCAW专用药芯焊丝,其特征在于,所述造渣剂包括金红石、萤石两种,两者质量比例为1:1。
  3. 根据权利要求1所述的深海湿法FCAW专用药芯焊丝,其特征在于,所述产热剂包括Al-NaF及硅碳发热剂,硅碳发热剂由硅铁粉和增碳剂粉末混合后压球制得,Al-NaF所占质量分数为60%-70%,其余为硅碳发热剂。
  4. 根据权利要求1所述的深海湿法FCAW专用药芯焊丝,其特征在于,所述金属粉末包括以下元素:铁、铜、铝、钨、镁、锰,其中铁、铜、铝各占25%-30%,钨、镁、锰各占5%-10%,以质量百分比表征。
  5. 根据权利要求1所述的深海湿法FCAW专用药芯焊丝,其特征在于,所述内层药芯的各种成分均以粉末形式加入,造气剂、造渣剂、金属粉末为60-80目,产热剂为80-100目。
  6. 根据权利要求1所述的深海湿法FCAW专用药芯焊丝,其特征在于,药芯焊丝整体直径为2mm-2.5mm。
  7. 根据权利要求6所述的深海湿法FCAW专用药芯焊丝,其特征在于,药芯焊丝整体直径为2.2mm。
  8. 根据权利要求1所述的深海湿法FCAW专用药芯焊丝,其特征在于,药芯焊丝内药芯填充率为35%-40%,以质量百分比表征。
  9. 根据权利要求1所述的深海湿法FCAW专用药芯焊丝,其特征在于,外层钢带宽度为8.5mm,厚度为0.4mm。
  10. 一种制备权利要求1-9所述深海湿法FCAW专用药芯焊丝的制备方法,包括步骤如下:
    (1)取相应比例的内层药芯各组分,包括造气剂、造渣剂、产热剂及金属粉末,按要求将其分别研磨至相应颗粒度,将各组分放入混粉机中6h,使其混合均匀;
    (2)将外层钢带卷成U型,将药粉装入;
    (3)将填充好药芯的钢带通过拔丝模,逐渐将焊丝拔细,直至所要求的焊丝直径。
PCT/CN2023/078683 2022-02-28 2023-02-28 一种深海湿法fcaw专用药芯焊丝及制备方法 WO2023160718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210184966.X 2022-02-28
CN202210184966.XA CN114505615B (zh) 2022-02-28 2022-02-28 一种深海湿法fcaw专用药芯焊丝及制备方法

Publications (1)

Publication Number Publication Date
WO2023160718A1 true WO2023160718A1 (zh) 2023-08-31

Family

ID=81553797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078683 WO2023160718A1 (zh) 2022-02-28 2023-02-28 一种深海湿法fcaw专用药芯焊丝及制备方法

Country Status (2)

Country Link
CN (1) CN114505615B (zh)
WO (1) WO2023160718A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113967773B (zh) * 2021-10-29 2024-01-05 江苏大学 一种水下湿式环境下异种钢超声频脉冲辅助电弧焊方法
CN114505615B (zh) * 2022-02-28 2023-01-17 山东大学 一种深海湿法fcaw专用药芯焊丝及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236517A (en) * 1992-08-28 1993-08-17 Electric Power Research Institute Flux formulation for underwater wet flux-cored arc welding of nickel-based and austenitic stainless steels
CN104722960A (zh) * 2015-03-24 2015-06-24 江苏科技大学 一种用于水下湿式电弧切割的高效产热药芯割丝及其制备方法
CN110497113A (zh) * 2019-08-23 2019-11-26 哈尔滨工业大学(威海) 一种低能耗多用途的水下湿法焊接自保护药芯焊丝
CN111571066A (zh) * 2020-04-17 2020-08-25 江苏大学 一种适合水下环境的低氢型不锈钢自保护药芯焊丝
CN114505615A (zh) * 2022-02-28 2022-05-17 山东大学 一种深海湿法fcaw专用药芯焊丝及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1299755A1 (ru) * 1985-12-12 1987-03-30 Ленинградский Кораблестроительный Институт Состав наружного сло дл двухслойного электродного покрыти
JP5441497B2 (ja) * 2009-05-21 2014-03-12 株式会社ダイセル ガス発生剤組成物
CN103084761B (zh) * 2013-02-27 2015-04-15 哈尔滨工业大学(威海) 一种水下湿法焊接用自保护药芯焊丝
CN109081766A (zh) * 2018-08-29 2018-12-25 湖北航天化学技术研究所 一种Al-NaF复合燃料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236517A (en) * 1992-08-28 1993-08-17 Electric Power Research Institute Flux formulation for underwater wet flux-cored arc welding of nickel-based and austenitic stainless steels
CN104722960A (zh) * 2015-03-24 2015-06-24 江苏科技大学 一种用于水下湿式电弧切割的高效产热药芯割丝及其制备方法
CN110497113A (zh) * 2019-08-23 2019-11-26 哈尔滨工业大学(威海) 一种低能耗多用途的水下湿法焊接自保护药芯焊丝
CN111571066A (zh) * 2020-04-17 2020-08-25 江苏大学 一种适合水下环境的低氢型不锈钢自保护药芯焊丝
CN114505615A (zh) * 2022-02-28 2022-05-17 山东大学 一种深海湿法fcaw专用药芯焊丝及制备方法

Also Published As

Publication number Publication date
CN114505615B (zh) 2023-01-17
CN114505615A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023160718A1 (zh) 一种深海湿法fcaw专用药芯焊丝及制备方法
CN105269174B (zh) 一种海洋工程用460MPa级药芯焊丝及其应用
CN102233490B (zh) 奥氏体焊条
CN109623193B (zh) 具有低氢高韧性的低温钢用无缝药芯焊丝及其制备方法
CN104526188B (zh) 一种可焊后消应力热处理的无缝药芯焊丝
CN104057214B (zh) 一种用于水下湿法焊接的自保护药芯焊丝
CN108526752B (zh) 一种涉水环境下焊接用自保护药芯焊丝
CN110802342B (zh) 一种高强耐候钢Q550NQR1、Q550qNH配套电焊条
CN101367161A (zh) 一种低氢型超级双相不锈钢焊条
CN104741816A (zh) 用于x120管线钢焊接的药芯焊丝及其制备方法
CN104741834B (zh) 一种用于x90管线钢焊接的药芯焊丝及其制备方法
CN111843293B (zh) 一种氧化型自保护药芯焊丝及应用
CN104476008A (zh) 一种大热输入埋弧焊焊丝
CN112404795B (zh) 一种用于低氮无磁舰艇钢焊接的无缝自保护药芯焊丝
CN110293330B (zh) 一种类埋弧焊的自保护药芯焊丝
CN105345315A (zh) 一种适用于高钢级管道焊接的高Ni自保护药芯焊丝
JP2013000784A (ja) 低合金鋼のサブマージアーク溶接方法
CN112108791B (zh) 提高低合金高强钢焊接接头低温韧性的碱性无缝药芯焊丝
CN110497113B (zh) 一种低能耗多用途的水下湿法焊接自保护药芯焊丝
CN103192202A (zh) 一种高韧性耐腐蚀全位置气保护焊接用药芯焊丝
CN104874939A (zh) 一种高稳定性水下湿法焊条用药皮
CN105562958B (zh) 高强度超低氢药芯焊丝
CN112404793B (zh) 一种用于低氮无磁舰艇钢焊接的无缝药芯焊丝
CN112404796B (zh) 一种用于低氮无磁舰艇钢焊接的无缝金属芯药芯焊丝
CN110814577A (zh) 适用于干湿交替环境下的铜包钢接地网放热熔钎焊焊粉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759339

Country of ref document: EP

Kind code of ref document: A1