WO2023160711A1 - 组定位方法、装置及通信设备 - Google Patents

组定位方法、装置及通信设备 Download PDF

Info

Publication number
WO2023160711A1
WO2023160711A1 PCT/CN2023/078538 CN2023078538W WO2023160711A1 WO 2023160711 A1 WO2023160711 A1 WO 2023160711A1 CN 2023078538 W CN2023078538 W CN 2023078538W WO 2023160711 A1 WO2023160711 A1 WO 2023160711A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
positioning
propagation delay
group
target
Prior art date
Application number
PCT/CN2023/078538
Other languages
English (en)
French (fr)
Inventor
吴建明
袁雁南
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023160711A1 publication Critical patent/WO2023160711A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application belongs to the technical field of wireless communication, and in particular relates to a group positioning method, device and communication equipment.
  • the positioning of the communication device can be realized by sending and receiving positioning reference signals, it is difficult for the related technology to accurately locate unknown objects located around the wireless communication positioning system.
  • Embodiments of the present application provide a group positioning method, device, and communication equipment, which can solve the problem of positioning unknown objects located around a wireless communication positioning system with high positioning accuracy.
  • a group positioning method including: a first communication device acquires position-related information of each communication device in the positioning group and a first difference in propagation delay; according to the position-related information and the first propagation delay Delay difference, the first communication device determines the target position information of the target reflector; wherein, the positioning group includes M communication devices including the first communication device, and the first propagation delay difference The number of is N, one of the first propagation delay difference is the propagation delay difference of the propagation path between any two communication devices in the positioning group, and the propagation path is reflected by the target For the path of body reflection, the different first propagation delay differences correspond to the fact that the two communication devices in the positioning group are not completely the same, N and M are positive integers, and M ⁇ N ⁇ 3.
  • a group positioning method includes at least a first communication device, a second communication device, and a third communication device, and the method includes: the second communication device performs at least one of the following: The first communication device or the third communication device sends the location information of the second communication device; sends the target reference signal RS; receives the target RS sent by the first communication device, and performs the pair according to the first orthogonal modulation sequence
  • the target RS is modulated and sent to reflect; receiving the target RS sent by the first communication device and the reflected signal sent by the third communication device, the reflected signal is the third communication device according to the first quadrature modulation
  • the sequence is obtained by modulating the target RS, and sending position-related information to the first communication device; receiving a reflected signal reflected by the target reflector, the reflected signal corresponding to the target RS; and sending the first communication device to the first communication device A propagation delay difference; wherein, the first propagation delay difference is any one of the second communication device and the positioning
  • a group positioning method which is executed by a target device, the method comprising: within a first time unit, the target device acts as a first communication device, and performs any one of the first aspects of the claim
  • the steps of the group positioning method within a second time unit, the target device, as the second communication device, executes the steps of the group positioning method as described in the second aspect.
  • a group positioning device which is applied to a first communication device, and the device includes: an acquisition module, configured to acquire position-related information and a first propagation delay difference of each communication device in the positioning group; determine A module, configured to determine target position information of a target reflector according to the position-related information and the first propagation delay difference; wherein, the positioning group includes M communication devices including the first communication device , the number of the first propagation delay difference is N, one of the first propagation delay differences is the propagation delay difference of the propagation path between any two communication devices in the positioning group, and The propagation path is a path reflected by the target reflector, and the different first propagation delay differences correspond to two communication devices in the positioning group that are not completely the same, N and M are positive integers, and M ⁇ N ⁇ 3.
  • a group positioning device includes at least a first communication device, a second communication device, and a third communication device, and the device includes: a first processing module, configured to perform at least one of the following: The first communication device or the third communication device sends the location information of the second communication device; sends a target reference signal RS; receives the target RS sent by the first communication device, and transmits the target RS according to the first orthogonal modulation sequence modulate the target RS and send reflection; receive the target RS sent by the first communication device and the reflection signal sent by the third communication device, the reflection signal is the third communication device according to the first orthogonal
  • the modulation sequence is obtained by modulating the target RS, and sending position-related information to the first communication device; receiving a reflected signal reflected by a target reflector, where the reflected signal corresponds to the target RS; and, sending to the first communication device A first propagation delay difference; wherein, the first propagation delay difference is any of the second communication device and the positioning
  • a group positioning device which is applied to a target device, and the device includes: a second processing module, configured to, within a first time unit, the target device as a first communication device, perform the first The steps of the group positioning method described in the aspect; and within the second time unit, the target device, as the second communication device, executes the steps of the group positioning method described in the second aspect.
  • a communication device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor to implement the following: The steps of the method described in the first aspect or the second aspect or the third aspect.
  • a communication device including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect steps, or realize the steps of the method described in the second aspect, or realize the steps of the method described in the third aspect.
  • a wireless communication system including at least: a first communication device, a second communication device, and a third communication device, and the first communication device can be used to perform the group positioning method as described in the first aspect
  • the second communication device can be used to execute the steps of the group positioning method described in the second aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the second aspect, or the steps of implementing the method described in the third aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the method described above, or the steps of the method described in the second aspect, or the steps of the method described in the third aspect are realized.
  • the precise positioning of the target object is achieved through the combination of group positioning and signal reflection, and it can also ensure that the transceiver clock of the communication device is not calibrated. Precise positioning of target reflectors.
  • Fig. 1 is a schematic structural diagram of a wireless communication system provided by an exemplary embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a group positioning method provided by an exemplary embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a group positioning system provided by an exemplary embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a group positioning method provided by another exemplary embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a group positioning device provided by an exemplary embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a group positioning device provided by another exemplary embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a group positioning device provided by another exemplary embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a network side device provided by an exemplary embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used for both the above-mentioned system and radio technology, Can also be used in other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a WiFi node, etc., and the base station may be called a node B, an evolved node B (evolved Node B, eNB), an access point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B , Transmitting Receiving Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary.
  • FIG. 2 it is a schematic flow chart of a group positioning method 200 provided by an exemplary embodiment of the present application.
  • the method may be, but not limited to, executed by a first communication device (such as a terminal or a network-side device). Hardware and/or software implementation in a communication device.
  • the method 200 may at least include the following steps.
  • the first communication device acquires position-related information and a first propagation delay difference of each communication device in the positioning group.
  • the precise perception and positioning of target reflectors located around the communication device are realized through the positioning group without the need to calibrate the transceiver clock of the communication device.
  • the target reflector may be a building, a vehicle, etc., which is not limited here.
  • the positioning group may include M communication devices including the first communication device, wherein, according to different positioning procedures, the first communication device may be the sender, receiver, or receiver of the target reference signal in the positioning process.
  • the reflection end may also not participate in the sending, receiving or reflection of the target reference signal in the positioning process.
  • the first Rules to limit the positioning devices participating in the group positioning process in other words, the first rule is configured with relevant information of multiple positioning device pairs (such as device identifiers, reference signals that need to be sent, etc.), and each positioning device The pair includes at least one sending end, at least one reflecting end, and at least one receiving end, and one positioning device pair includes at least a part of the communication devices in the positioning group.
  • the high level decides that the group members in the positioning group are paired with each other, that is, some or all of the communication devices in the positioning group are selected to form at least one positioning device pair.
  • A, B and C are respectively less than or equal to (the number of group members in the positioning device pair - 2), that is, the communication devices included in the positioning device pair
  • S the number of sending ends, reflecting ends, and receiving ends in each positioning device pair is less than or equal to S-2, S ⁇ 3, and S is a positive integer.
  • the positioning device pair interworking principle adopted in this embodiment can reduce the delay of the positioning perception of the positioning group and reduce the overhead of the reference signal.
  • a positioning device pair may include one or more first communication devices, one or more second communication devices, and one or more third communication devices. It should be noted that in this embodiment, when there are multiple sending ends (such as the aforementioned second communication device) sending reference signals at the same time or one sending end sends multiple reference signals on different resources at the same time, each of the reference The signals are orthogonal to each other, thereby avoiding signal interference and improving positioning accuracy.
  • the position-related information of each communication device in the positioning group acquired by the first communication device is used to realize the perception and positioning of the target reflector, therefore, the position-related information may be information between communication devices
  • the relative position information may also be the absolute position information of each communication device (such as geographic location, etc.), and may also be a positioning delay parameter between communication devices, etc., which is not limited here.
  • the first communication device obtains the position-related information of each communication device in the positioning group, which may be to directly obtain the positions of at least some of the communication devices in each communication device, or to obtain information for directly or indirectly indicating the position of each communication device. location-related information.
  • the number of N first propagation delay differences obtained by the first communication device is used to locate the target reflector.
  • one of the first propagation delay differences is the propagation delay difference of the propagation path between any two communication devices in the positioning group, and the propagation path passes through the target reflector
  • the different first propagation delay differences correspond to the fact that the two communication devices in the positioning group are not completely the same
  • N is a positive integer
  • M ⁇ N ⁇ 3 and the N is configured by a high layer.
  • the propagation paths corresponding to the N first propagation delay differences may include: (first communication device 1-target reflector j-second communication device 2), (first communication device 1-target reflector j-third communication device 3), (second communication device 2-target reflector j-third communication device 3).
  • the first communication device determines target position information of a target reflector.
  • a high layer may decide when to start the positioning awareness process.
  • the start of the positioning process can be carried out according to the periodic event (Periodic-event) trigger mechanism, or according to the persistent event (Persistance-event) trigger mechanism, or according to the dynamic event (dynamic-event) trigger mechanism, here No restrictions.
  • the high layer may determine the relevant information of the communication devices participating in the group positioning through high layer signaling, such as the first communication device, the second communication device, and the third communication device. Moreover, the communication devices participating in the group positioning may alternately execute different positioning reference signal sending/receiving cycles according to the first rule, so as to realize the positioning of the target reflector.
  • the precise positioning of the target object is achieved through the combination of group positioning and signal reflection, and it is also possible to ensure that the transceiver clock of the communication device is not calibrated. Precise positioning of reflectors.
  • FIG. 4 it is a schematic flow chart of a group positioning method 400 provided by an exemplary embodiment of the present application.
  • This method may be but not limited to be executed by a first communication device (such as a terminal or a network side device), specifically, it may be installed on a second communication device. a communication device hardware and/or software implementation in the device.
  • the method 400 may at least include the following steps.
  • the first communication device acquires position-related information and a first propagation delay difference of each communication device in the positioning group.
  • the positioning group includes M communication devices including the first communication device, the number of the first propagation delay differences is N, and one of the first propagation delay differences is the positioning
  • the propagation delay difference of the propagation path between any two communication devices in the group, and the propagation path is a path reflected by the target reflector, and the different first propagation delay difference corresponds to the positioning
  • the two communication devices in the group are not exactly the same, N and M are positive integers, and M ⁇ N ⁇ 3.
  • the first communication device obtains the position-related information of each communication device in the positioning group and the first propagation There may be multiple manners for the delay difference amount, and the acquisition process thereof will be described respectively below.
  • the communication devices in the same positioning group may include mobile communication devices (such as terminals) and/or fixed communication devices (such as access network devices (such as gNB), core network equipment, etc.). Based on this, different positioning awareness scenarios are described below.
  • the group positioning method provided in this embodiment can be used in a group positioning sensing scenario of mobile communication devices with three or more group members whose location information is unknown, that is, the positioning group consists of the same mobile communication device (Mobile Equipment), then each communication device in the positioning group can first perform mutual positioning between group members to obtain position-related information of each communication device, such as the position information of each communication device in the positioning group, the positioning A second positioning delay parameter between each communication device in the group, and the like.
  • the group positioning method provided in this embodiment can be used for fixed communication devices with known location information of 3 or more group members (for example, communication devices participating in the timing process can be placed in a fixed position in advance etc.), that is, the positioning group is composed of fixed communication devices (such as gNB) in the same fixed position, then each communication device in the positioning group does not need to perform mutual positioning among group members, and the position of each communication device
  • the relevant information is known, for example, the position information of each communication device in the positioning group is known, or the second positioning delay parameter among the communication devices in the positioning group can be calculated according to the position information of each communication device.
  • the second positioning delay parameter can be calculated simply As shown in formula (0).
  • c in formula (0) represents the speed of light.
  • the group positioning method provided in this embodiment can be used in a group positioning sensing scenario where mobile communication devices with unknown location information of 3 or more group members and fixed communication devices with known location information are integrated , that is, part of the positioning group is composed of mobile communication devices, and the other part is composed of fixed communication devices. Then, the positioning of each communication device in the positioning group can refer to the position information of the fixed communication device to perform absolute positioning of the mobile communication device. location-related information, such as location information of each mobile communication device, a second positioning delay parameter between communication devices in the positioning group, and the like.
  • the acquisition of position-related information of each communication device in the positioning group will be described below by taking a positioning group of mobile communication devices including unknown position information as an example. Assuming that the position-related information includes the second positioning delay parameter, then the first communication device may obtain L second propagation delay differences corresponding to different reflection paths, and obtain L second propagation delay differences according to the L second propagation delay parameters.
  • the delay difference determines a second positioning delay parameter; wherein, one of the second propagation delay differences is the propagation delay difference of a propagation path between any two communication devices in the positioning group, and the propagation path is the path reflected by any one of the communication devices in the positioning group, and the different first propagation delay differences correspond to the three communication devices in the positioning group that are not completely the same, L is a positive integer, and L ⁇ 3 , the L is configured by higher layers.
  • the process for the first communication device to obtain the L second propagation delay differences corresponding to different reflection paths may include at least one of the following manners 1-2.
  • Way 1 In a case where the first communication device is used as the receiving end, acquire the second propagation delay difference amount according to the reference signal measurement amount acquired by itself.
  • the process of obtaining the second propagation delay difference amount according to the reference signal measurement obtained by itself may include the first communication device obtaining the first measured quantity and a second measured quantity, and then according to the first measured quantity and the second measured quantity, determine the first time delay from the second communication device to the first communication device, and determine the first time delay from the first communication device The third time delay between the transmission by the second communication device and the reflection to the first communication device by the third communication device, and finally determining the second propagation according to the third time delay and the first time delay Amount of delay variance.
  • the second communication device may send a first reference signal on the first resource, and the first reference signal may include but not limited to: a tracking reference signal (Tracking Reference Signal, TRS), a channel state information reference signal (Channel Status Information Reference Signal (CSI-RS), Positioning Reference Signal (Positioning Reference Signal, PRS), Sounding Reference Signal (Sounding Reference Signal, SRS) or other reference signals related to communication perception integration.
  • a tracking reference signal Tracking Reference Signal, TRS
  • CSI-RS Channel State Information Reference Signal
  • PRS Positioning Reference Signal
  • Sounding Reference Signal Sounding Reference Signal
  • the NR downlink (Down-Link) reference signal can include a physical downlink shared channel (Physical downlink shared channel, PDSCH-DMRS (Demodulation Reference Signal, demodulation reference signal), physical Downlink control channel (Physical downlink control channel, PDCCH)-DMRS, physical broadcast channel (Physical broadcast channel, PBCH)-DMRS, phase tracking reference signal (Phase-tracking reference signal, PT-RS), CSI-RS, remote interference management Reference signal (Remote Interference Management Reference Signal, RIM-RS), PRS, etc.; for NR uplink (Up-Link) reference signal, it may include physical uplink shared channel (Physical Uplink Shared Channel, PUSCH)-DMRS, physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH)-DMRS, PT-RS, SRS; for NR sidelink (Sidelink) reference signal, which may include physical sub-link shared channel (Physical SideLink Shared
  • the third communication device receives the first reference signal on the first resource, and performs modulation on the received first reference signal according to the first orthogonal modulation manner and then reflects it.
  • the first orthogonal modulation method includes On-Off Keying (On-Off Keying, OOK) method, Binary Phase Shift Keying (Binary Phase Shift Keying, BPSK) method, code division multiplexing (code division multiplexing) , CDM) any one of the orthogonal code modes.
  • the modulation matrix corresponding to the OOK mode may be:
  • the modulation matrix corresponding to the BPSK mode may be:
  • the modulation matrix corresponding to the Hadamard orthogonal code mode with CDM characteristics can be:
  • the M is an integer greater than or equal to 1, and the M is related to the number of communication devices participating in the modulation and coding of the reference signal in the positioning process. It should be noted that details about the first orthogonal modulation sequence will not be described later.
  • the reference signal (that is, the first measurement quantity) received by the first communication device on the first resource may include the first reference signal (that is, the diameter signal), the second reference signal (reflection signal), and the third reference signal ( Reflected signal), the first reference signal is sent by the second communication device on the first resource, and the second reference signal is the second reference signal received by the third communication device according to the first orthogonal modulation mode A reference signal is modulated, and the third reference signal is obtained by reflecting the target reflector on the received first reference signal.
  • the second communication device Similar to the sending of the first reference signal, the second communication device sends the fourth reference signal on the second resource, and the third communication device receives the first reference signal on the second resource, and performs a pair of the received reference signal according to the first orthogonal modulation method.
  • the first reference signal is modulated and then reflected.
  • the reference signal (that is, the second measurement quantity) received by the first communication device on the second resource includes the fourth reference signal (that is, the diameter signal), the fifth reference signal (reflection signal) and the sixth reference signal, so
  • the fourth reference signal is sent by the second communication device on the second resource
  • the fifth reference signal is the received fourth reference signal modulated by the third communication device according to the first orthogonal modulation mode
  • the sixth reference signal is obtained by reflecting the target reflector on the received fourth reference signal. It can be understood that, for the relevant description of the fourth reference signal, reference may be made to the foregoing description of the first reference signal, and to avoid repetition, details are not repeated here.
  • the first resource is a time-domain resource, such as symbol n in the mth time slot
  • the second resource is symbol n in the m+1th time slot
  • the third communication device according to the There is no additional processing delay time in the quadrature modulation process of a quadrature modulation method, that is, the modulation process and the reflection process belong to a simple process of power amplification and forwarding (Amplify-and-Forward, AF) for the received signal.
  • the first measurement quantity y 2,1,m [n] and the second measurement quantity y 2,1,m+1 [n] acquired by the first communication device are shown in formula (1) and formula (2) .
  • s[n] is the first reference signal or the fourth reference signal
  • h 2,1 ( ⁇ 2,1 ) is the channel correspondence between the second communication device and the first communication device
  • ⁇ 2,1 is the second The second positioning delay parameter between the communication device and the first communication device
  • h 2,3 ( ⁇ 2,3 ) is the channel response between the second communication device and the third communication device
  • ⁇ 2,3 is the second communication
  • the device communicates with the third The second positioning delay parameter between devices
  • h 3,1 ( ⁇ 3,1 ) is the channel response between the third communication device and the first communication device
  • ⁇ 3,1 is the channel response between the third communication device and the first communication device
  • the second positioning delay parameter between is the channel response between the second communication device and the target reflector
  • is the first positioning delay parameter between the second communication device and the target reflector is the channel response between the target reflector and the first communication device
  • b k,m (such as b 3,m+1 , b 3,m ) is the modulation symbol corresponding to the first orthogonal modulation mode
  • w 1,m [n] and w 1,m+1 [n] are the plus Gaussian white noise (Additive White Gaussian Noise, AWGN)
  • ⁇ ′ 3 is the coefficient of the complex number attenuated backscattered signal, including the power amplification factor of the first reference signal received by the third communication device
  • ⁇ j is the factor including the radar
  • the attenuation coefficient of the jth target reflector including the Rader Cross Section (RCS).
  • the second communication device transmits the first reference signal and the fourth reference signal, and the third communication device
  • the device is modulated by OOK or BPSK or CDM orthogonal code and performs power amplification reflection, then, the first communication device can compare the received first measurement quantity and the second The measured quantities are simply added/subtracted to obtain the following diameter signals and reflection signals respectively.
  • BPSK the first orthogonal modulation sequence
  • the process of the first communication device determining the first time delay and the third time delay according to the first measurement quantity and the second measurement quantity may be as follows.
  • the first communication device can obtain the diameter signal and the reflection signal of the jth target reflector, that is, the calculation amount of the first signal is as shown in formula (5) .
  • the first communication device can obtain The reflection signal of the communication device, that is, the calculation amount of the second signal is shown in formula (6).
  • y 2,1,m [n]-y 2,1,m+1 [n] 2 ⁇ ' 3 h 2,3 ( ⁇ 2,3 )h 3,1 ( ⁇ 3,1 )s[n]+ w” 2,1 [n] (6)
  • the first communication device can estimate the diameter of the first communication device sent from the second communication device to the first communication device by detecting the first arrival signal
  • the time delay of the signal that is, the first time delay, where the first time delay may be shown in formula (7).
  • the first communication device estimates the time delay of the reflected signal sent from the second communication device, modulated by the third communication device and reflected to the first communication device , that is, the third time delay, where the third time delay is shown in formula (8).
  • Timing Error In formula (7) and formula (8), Indicates the timing error (Timing Error) experienced by the second communication device, represents the timing error experienced by the first communications device. It should be noted that since the radio frequencies (Radio Frequency, RF) of the sending end (such as the second communication device) and the receiving end (such as the second communication device) are different, in general,
  • the delay difference between the reflected signal and the diameter signal is calculated, that is, the second propagation delay difference amount (also referred to as the first positioning equation) from the transmission from the second communication device, reflected by the third communication device, to the reception by the first communication device , which can be passed to and The method of subtraction is obtained, that is, the second propagation delay difference amount As shown in formula (9).
  • ⁇ 2,3 represents the second positioning delay parameter between the second communication device and the third communication device
  • ⁇ 2,1 represents the second positioning delay parameter between the second communication device and the first communication device
  • ⁇ 3,1 represents a second positioning delay parameter between the third communication device and the first communication device
  • the first communications device may determine whether the second propagation delay difference is greater than or equal to L in the process of obtaining the second propagation delay difference.
  • L is the minimum required propagation delay difference amount determined in advance by the upper layer. If the amount of the second propagation delay difference amount is less than L,
  • replace the first communication device, the second communication device, and the third communication device according to the order of replacement of the first communication device, the second communication device, and the third communication device (that is, the first rule) determined in advance by the high-level signaling, and again respectively Sending, receiving and reflecting the target reference signal are performed by the first communication device, the second communication device and the third communication device, so as to obtain the second propagation delay difference again until L second propagation delay differences are obtained.
  • the first communication device may mutually locate the first communication device, the second communication device, and the third communication device by using the L second propagation delay differences, so as to The position information of each communication device and the second positioning delay parameter are obtained.
  • the second positioning delay parameter vector x in the positioning group can be obtained by formula (12).
  • Mode 2 When the first communication device is not used as the receiving end, the first communication device receives the second propagation delay difference sent from other communication devices in the positioning group except the first communication device quantity.
  • the second propagation delay difference sent by other communication devices in the positioning group except the first communication device is L second propagation delay difference obtained by the first communication device
  • the part in is used for the calculation of the second timing delay parameter.
  • the process of determining the second propagation delay difference by other communication devices in the positioning group except the first communication device is similar to that of the aforementioned first communication device, and will not be repeated here to avoid repetition.
  • the step of the first communication device acquiring the N first propagation delay differences corresponding to different reflection paths may also include at least one of the following ways 1-2.
  • Manner 1 When the first communication device serves as a receiving end, it determines the first propagation delay difference according to the reference signal measurement obtained by itself.
  • the process of determining the first propagation delay difference according to the reference signal measurement obtained by itself may include: the first communication device obtains the first A measurement quantity and a second measurement quantity; then according to the first measurement quantity and the second measurement quantity, determine a first time delay from the second communication device to the first communication device, and from the The second time delay when the second communication device transmits and then reflects to the first communication device through the target reflector; finally, the first propagation delay is determined according to the second time delay and the first time delay amount of difference.
  • the acquisition of the first measurement quantity and the second measurement quantity can be as shown in (3) and (4) above, then the first communication device It can be further tested by the formula (5)
  • estimate the time delay of the reflected signal sent from the second communication device and reflected to the first communication device through the jth target reflector, that is, the second time delay The second time delay may be shown in formula (14).
  • the first communication device calculates the delay difference between the reflected signal of the target reflector and the diameter signal, that is, the first propagation delay difference between the transmission from the second communication device, the reflection by the target reflector, and the reception by the first communication device
  • the amount (that is, the second positioning equation)
  • the first propagation delay difference can be as shown in formula (15).
  • the first communications device may determine whether the number of the first propagation delay difference is greater than or equal to N during the process of obtaining the first propagation delay difference.
  • N is the minimum required propagation delay difference amount determined in advance by the upper layer. If the number of the first propagation delay difference is less than N, the first communication device, the second communication device, and the third communication device are replaced according to the high-level signaling predetermined (ie, the first rule), and the first communication device, the third communication device are again respectively The second communication device and the third communication device perform sending, receiving, and reflection of the target reference signal to obtain the first propagation delay difference again until N second propagation delay differences are obtained.
  • the first communication device uses N second propagation delay differences to locate the target reflector.
  • ⁇ 2,1 represents the difference between the second communication device and the first communication device
  • the second positioning delay parameter between, ⁇ 2,3 represents the second positioning delay parameter between the second communication device and the third communication device
  • ⁇ 1,3 represents the first communication device and the first communication device a second positioning delay parameter between three communicating devices
  • represents a first positioning delay parameter between the second communication device and the target reflector represents a first positioning delay parameter between the first communication device and the target reflector
  • the second communication device and the third communication device are communication devices in the positioning group.
  • the first reference signal and the fourth reference signal are performed in a time-division manner (in m time slot and m+1 time slot).
  • this embodiment may also send the first reference signal and the fourth reference signal based on frequency division, code division, or space domain.
  • the aforementioned first resource and the second resource are different time domain resources, or the first resource and the second resource are different frequency domain resources in the same time domain, or the No.
  • the first resource and the second resource are different air domain resources in the same time domain, or the first resource and the second resource are different code domain resources in the same time domain.
  • the first communication device receives the first propagation delay difference sent from other communication devices in the positioning group except the first communication device when it is not serving as the receiving end.
  • the first propagation delay difference sent by other communication devices in the positioning group except the first communication device may be used as the N second propagation delay difference obtained by the first communication device
  • the part in is used for the calculation of the first timing delay parameter.
  • the process of determining the second propagation delay difference by other communication devices in the positioning group except the first communication device is similar to that of the aforementioned first communication device, and will not be repeated here to avoid repetition.
  • the step of determining the target position information of the target reflector by the first communication device may include S421 and S422, the contents of which are as follows
  • the first communication device may directly calculate the position information of each communication device according to the position information of each communication device.
  • the second positioning delay parameter between the communication devices and then based on the second positioning delay parameter between the communication devices and the first propagation delay difference parameter, determine the communication between the target reflector and the positioning group The first positioning delay parameter between devices.
  • the first communication device may directly based on the The second positioning delay parameter between each communication device and the first propagation delay difference parameter determine a first positioning delay parameter between the target reflector and each communication device in the positioning group.
  • the second positioning delay parameter between the communication devices may be determined by the L second propagation delay differences acquired by the first communication device, and the specific process may refer to The related description in S410 above will not be repeated here.
  • the first communication device can not only serve as the receiving end, but also serve as the sending end, reflecting end, etc., so as to realize N and the first propagation delay
  • the acquisition of the difference amount and the L second propagation delay difference amounts realizes the mutual positioning among the communication devices and the positioning of the target reflector.
  • the positioning group includes at least the first communication device, the second communication device, and the third communication device, although this embodiment shows the implementation of the group positioning process by the first communication device, in actual location perception In the scenario, other communication devices in the positioning group except the first communication device may also execute the foregoing positioning process, which is not limited here.
  • the second communication device and the third communication device may be switched between the sending end, the receiving end, the reflection end and the positioning process end, for example, take the second communication device as an example , the second communication device may perform at least one of the following (11)-(15).
  • the second communication device sends the location information of the second communication device to the first communication device or the third communication device, so that the first communication device or the third communication device can communicate with each other positioning and/or achieve positioning of target reflectors.
  • the second communication device sends the target reference signal, that is, the second communication device, as the sending end, can send the target reference signal on different resources for the first communication device or the third communication device to perform signal measurement , and then obtain the first propagation delay difference and the second propagation delay difference used for positioning.
  • the second communication device receives the target (Reference Signal, RS) sent by the first communication device, and modulates the target RS according to the first orthogonal modulation sequence, and sends the reflection. That is, the second communication device acts as a reflection end, modulates the received target reference signal according to the first orthogonal modulation sequence, and then reflects it.
  • RS Reference Signal
  • the second communication device receives the target RS sent by the first communication device and the reflected signal sent by the third communication device, the reflected signal is the third communication device according to the first quadrature modulation sequence obtain by modulating the target RS, and send position-related information to the first communication device.
  • the second communication device acts as a receiving end, and may process the received target reference signal similarly to the aforementioned first communication device.
  • first communication device the respective roles of the aforementioned first communication device, second communication device, and third communication device can be determined according to the first rule, and details will not be repeated here.
  • the third communication device is similar to the aforementioned second communication device, and will not be repeated here.
  • a communication device in the positioning group may also perform different actions in different time units. For example, taking the target device in the positioning group as an example, then, within the first time unit, the target device may act as the first communication device, and perform the group positioning method as given in method embodiments 200-400 Step, within the second time unit, the target device may act as the second communication device, and execute the steps in the group positioning method described in (11)-(15) above.
  • the time units mentioned in the first time unit and the second time unit may be time slots, symbols, subframes, etc., which are not limited here.
  • the target device implementing the aforementioned process reference may be made to the description in the method embodiments 200-400, and achieve the same or corresponding technical effects. To avoid repetition, details are not repeated here.
  • the relative position coordinates and surrounding reflections of the communication devices in the positioning group can be accurately obtained without clock calibration of the communication devices.
  • the relative position coordinates of the body can achieve the purpose of high-precision positioning.
  • the first communication device serves as the receiving end
  • the second communication device serves as the sending end
  • the third communication device serves as the reflecting end
  • the second communication device transmits the first reference signal on time slot m
  • the first A communication device can receive the first measurement quantity, that is, the first reference signal, the second reference signal, and the third reference signal.
  • the second communication device transmits the fourth reference signal on time slot m+1
  • the first communication device may receive the second measurement quantity, that is, the fourth reference signal, the fifth reference signal, and the sixth reference signal.
  • the first communications device determines a second propagation delay difference and a first propagation delay difference according to the received first measurement quantity and the second measurement quantity.
  • the first communication device since 1 is less than N and less than L, then, according to the first rule, the first communication device continues to serve as the receiving end, the second communication device serves as the reflection end, and the third communication device serves as the sending end, then the first communication device A communication device again determines a second propagation delay difference and a first propagation delay difference according to the obtained third measurement quantity and fourth measurement quantity The amount of broadcast delay difference.
  • the third communication device determines a second propagation delay difference and a first propagation delay difference according to the acquired fifth measurement quantity and sixth measurement quantity amount of difference.
  • the third communication device sends the determined one second propagation delay difference and one first propagation delay difference to the first communication device, so that the first communication device performs communication between communication devices Mutual positioning and positioning of target reflectors.
  • the first communication device sends the determined two second propagation delay differences and the two first propagation delay differences to the third communication device, so that the third communication device performs communication between communication devices Mutual positioning and positioning of target reflectors.
  • the first communication device sends the determined 2 second propagation delay differences and the 2 first propagation delay differences to the second communication device
  • the third communication device sends the determined 1 A second difference in propagation delay and a first difference in propagation delay are sent to the first communication device, so that the second communication device performs mutual positioning between communication devices and positioning of the target reflector.
  • the positioning process given in this embodiment may include but not limited to the aforementioned S501-S505, for example, there may be more or fewer steps than the aforementioned S501-S505, which is not limited here.
  • an exemplary embodiment of the present application further provides a group positioning method, which may be but not limited to the first
  • the second communication device (such as a terminal or a network side device) executes, specifically, it may be executed by hardware and/or software installed in the second communication device.
  • the method may at least include the following steps.
  • the second communication device performs at least one of the following S601-S605.
  • S605. Receive a reflection signal reflected by the target reflector, where the reflection signal corresponds to the target RS; and, send a first difference in propagation delay to the first communication device; where the first difference in propagation delay is the The propagation delay difference of the propagation path between the second communication device and any communication device in the positioning group except the first communication device and the second communication device, and the propagation path is The path reflected by the target reflector.
  • the second communication device may perform at least one of the above S601-S602.
  • the implementation process of the second communication device performing the aforementioned S601-S605 may refer to the relevant descriptions in the aforementioned method embodiments 200-500, and achieve the same or corresponding technical effects, and to avoid repetition, details are not repeated here.
  • An exemplary embodiment of the present application also provides a group positioning method, which may be executed by but not limited to a target device (such as a terminal or a network side device), and specifically may be executed by hardware and/or software installed in the target device.
  • the method may at least include the following steps.
  • the target device executes the steps of the group positioning method described in method embodiments 200-500.
  • the target device executes the steps of the group positioning method as described in method embodiment 600.
  • the group locating method provided in the embodiment of the present application may be executed by a group locating device.
  • the group positioning device provided in the embodiment of the present application is described by taking the group positioning device executing the group positioning method as an example.
  • FIG. 5 it is a schematic structural diagram of a group positioning device 500 provided by an exemplary embodiment of the present application.
  • the device includes an acquisition module 510 for acquiring position-related information and first propagation delay of each communication device in the positioning group. Difference amount; determining module 520, configured to determine target position information of the target reflector according to the position-related information and the first propagation delay difference; wherein, the positioning group includes the first communication device M communication devices, the number of the first propagation delay difference is N, and one of the first propagation delay differences is the propagation time of the propagation path between any two communication devices in the positioning group Delay difference, and the propagation path is the path reflected by the target reflector, the different first propagation delay difference corresponds to the two communication devices in the positioning group are not completely the same, N, M are Positive integer, and M ⁇ N ⁇ 3.
  • the determining module 520 according to the location-related information and the first propagation delay difference, the step of the first communication device determining the target location information of the target reflector includes: according to the location-related information and The first A propagation delay difference parameter, determining a first positioning delay parameter between the target reflector and each communication device in the positioning group; determining the target reflector according to the first positioning delay parameter Target location information.
  • the determining module 520 determines a first positioning delay parameter between the target reflector and each communication device in the positioning group according to the position-related information and the first propagation delay difference parameter
  • the step includes: determining the target reflector and each communication device in the positioning group according to the second positioning delay parameter and the first propagation delay difference parameter between the communication devices in the positioning group A first positioning delay parameter between devices; wherein, the position-related information includes the second positioning delay parameter, or, the position-related information includes position information of each communication device in the positioning group, so The second positioning delay parameter is determined according to the location information.
  • the N first propagation delay differences are as follows: in, Indicates the first propagation delay difference when the sending end is the second communication device and the receiving end is the first communication device, Indicates the first propagation delay difference amount when the sending end is the second communication device and the receiving end is the third communication device, Indicates the first propagation delay difference when the sending end is the first communication device and the receiving end is the third communication device, ⁇ 2,1 represents the difference between the second communication device and the first communication device
  • the second positioning delay parameter between, ⁇ 2,3 represents the second positioning delay parameter between the second communication device and the third communication device, ⁇ 1,3 represents the first communication device and the first communication device a second positioning delay parameter between three communicating devices, represents a first positioning delay parameter between the second communication device and the target reflector, represents a first positioning delay parameter between the first communication device and the target reflector, represents a first positioning delay parameter between the target reflector and the third communication device, and the second communication device and the third communication device are communication devices in the positioning group.
  • the step of obtaining the first propagation delay difference by the obtaining module 510 includes at least one of the following: the first communication device, when serving as a receiving end, determines the first spread A delay difference amount: the first communication device receives a first propagation delay difference amount sent from other communication devices in the positioning group except the first communication device when it is not serving as a receiving end.
  • the step of determining the first propagation delay difference according to the reference signal measurement obtained by the acquiring module 510 includes: the first communication device acquires The first measurement quantity and the second measurement quantity; the first communication device determines the first time from the second communication device to the first communication device according to the first measurement quantity and the second measurement quantity delay, and the second time delay when it is sent from the second communication device and then reflected to the first communication device through the target reflector; the first communication device according to the second time delay and the The first time delay determines the first propagation delay difference; wherein, the first measurement quantity includes at least a first reference signal, a second reference signal, and a third reference signal, and the first reference signal is determined by the first The second communication device sends on the first resource, the second reference signal is obtained by the third communication device modulating the received first reference signal according to the first orthogonal modulation mode, and the third reference signal is the The target reflector is obtained by reflecting the received first reference signal; the second measurement quantity includes at least a fourth reference
  • the first propagation delay difference for: in, denotes the first time delay, represents the second time delay, represents a first positioning delay parameter between the second communication device and the target reflector, Represents the first positioning delay parameter between the target reflector and the first communication device, ⁇ 2,1 represents the second positioning delay parameter between the second communication device and the first communication device, represents the timing error experienced by the second communications device, represents the timing error experienced by the first communications device.
  • the step of determining the first propagation delay difference according to the reference signal measurement obtained by the determining module 520 further includes: the first In the case where the number of the first propagation delay difference does not reach the N, the communication device replaces the sending end and/or reflecting end according to the first rule, and acquires the information again based on the replaced sending end and/or reflecting end The first propagation delay difference; wherein, the first rule is configured through high-level signaling, and the first rule is configured with information about multiple positioning device pairs, and each positioning device pair includes at least one A transmitting end, at least one reflecting end, and at least one receiving end, one positioning device pair includes at least part of the communication devices in the positioning group.
  • the number of communication devices included in the positioning device pair is S
  • the number of sending ends, reflecting ends, and receiving ends in each positioning device pair is less than or equal to S-2, S ⁇ 3, S is a positive integer.
  • the first resource and the second resource are different time domain resources, or the first resource and the second resource are different frequency domain resources in the same time domain, or the first The resource and the second resource are different air domain resources in the same time domain, or the first resource and the second resource are different code domain resources in the same time domain.
  • the first reference signal or the fourth reference signal includes a tracking reference signal TRS, a channel state information reference signal CSI-RS, a positioning reference signal PRS, a positioning reference signal (UpLink-Sounding Reference Signal, UL-SRS ) in any one.
  • TRS tracking reference signal
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • UL-SRS UpLink-Sounding Reference Signal
  • the first orthogonal modulation method includes any one of an on-off keying OOK method, a binary phase shift keying BPSK method, and a code division multiplexing CDM orthogonal code method.
  • the step of acquiring position-related information of each communication device in the positioning group by the acquiring module 510 includes: when the position-related information does not include the second positioning delay parameter, the first communication The device acquires L second propagation delay differences corresponding to different reflection paths, and determines a second positioning delay parameter according to the L second propagation delay differences; wherein, one of the second propagation delay differences is the The propagation delay difference of the propagation path between any two communication devices in the positioning group, and the propagation path is a path reflected by any communication device in the positioning group, and the different first propagation delay differences
  • the quantities correspond to the three communication devices in the positioning group that are not completely the same.
  • L is a positive integer, and L ⁇ 3.
  • the N and the L are configured by a high layer.
  • the step of obtaining L second propagation delay differences corresponding to different reflection paths by the obtaining module 510 includes at least one of the following: when the first communication device acts as the receiving end, according to the obtained Obtaining the second propagation delay difference amount with reference to the signal measurement; in the case that the first communication device is not used as the receiving end, the first communication device receives information from other than the first communication device in the positioning group The second propagation delay difference amount sent by other communication devices of .
  • the step of obtaining the second propagation delay difference according to the reference signal measurement obtained by the obtaining module 510 includes: the first communication device obtains The first measurement quantity and the second measurement quantity; the first communication device determines the first time from the second communication device to the first communication device according to the first measurement quantity and the second measurement quantity delay, and a third delay between sending from the second communication device and reflecting to the first communication device through the third communication device; the first communication device according to the third delay and The first delay determines the second propagation delay difference amount.
  • the second propagation delay difference for: in, represents the third time delay, represents the first time delay, ⁇ 2,3 represents the second positioning delay parameter between the second communication device and the third communication device, ⁇ 2,1 represents the second positioning delay parameter between the second communication device and the first communication device A positioning delay parameter, ⁇ 3,1 represents a second positioning delay parameter between the third communication device and the first communication device, represents the timing error experienced by the second communications device, represents a timing error experienced by the first communication device, the second communication device and the third communication device being communication devices of the positioning group.
  • the L second propagation delay differences are: in, Indicates the second propagation delay difference when the sending end is the second communication device, the receiving end is the first communication device, and the reflection end is the third communication device, Indicates the second propagation delay difference when the sending end is the second communication device, the receiving end is the third communication device, and the reflection end is the first communication device, Indicates the second propagation delay difference when the sending end is the first communication device, the receiving end is the third communication device, and the reflection end is the second communication device.
  • the communication devices in the same positioning group include mobile communication devices and/or fixed communication devices.
  • the reference signals are mutually orthogonal.
  • the positioning group includes at least a first communication device, a second communication device and a third communication device.
  • the device 600 includes a first processing A module 610, configured to perform at least one of the following: sending the location information of the second communication device to the first communication device or the third communication device; sending a target reference signal RS; receiving the information sent by the first communication device the target RS, and modulate the target RS according to the first orthogonal modulation sequence to send a reflection; receive the target RS sent by the first communication device and the reflected signal sent by the third communication device, and the reflected signal It is obtained by the third communication device modulating the target RS according to a first orthogonal modulation sequence, and sending position-related information to the first communication device; receiving a reflected signal reflected by a target reflector, and the reflected signal is the same as Corresponding to the target RS; and, sending a first propagation delay difference
  • FIG. 7 it is a schematic structural diagram of a group positioning device 700 provided by an exemplary embodiment of the present application, which is applied to a target device.
  • the device 700 includes: a second processing module 710 configured to In a time unit, the target device acts as a first communication device, and executes the steps in method embodiment 200-400; and in a second time unit, the target device acts as a second communication device, executes the steps in method embodiment 200 Steps in -400.
  • the group positioning devices 500-700 in the embodiment of the present application may be terminals or network-side devices, the terminals may include but not limited to the types of terminals 11 listed above, and the network-side devices may include but not limited to the network-side devices listed above 12, which is not specifically limited in the embodiment of this application.
  • the group positioning devices 500-700 provided in the embodiments of the present application can implement the various processes implemented by the method embodiments in Fig. 2 to Fig. 4 and achieve the same technical effect, so details are not repeated here to avoid repetition.
  • this embodiment of the present application also provides a communication device 800, including a processor 801 and a memory 802, and the memory 802 stores programs or instructions that can run on the processor 801, for example,
  • the communication device 800 is a terminal, when the program or instruction is executed by the processor 801, each step of the above embodiment of the group positioning method can be implemented, and the same technical effect can be achieved.
  • the communication device 800 is a network-side device, when the program or instruction is executed by the processor 801, each step of the above embodiment of the group positioning method can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the communication device 800 may be a network-side device, and the network-side device may include a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, The steps of the method as described in Examples 200-400 are carried out.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network-side device embodiment , and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 900 includes: an antenna 901 , a radio frequency device 902 , a baseband device 903 , a processor 904 and a memory 905 .
  • the antenna 901 is connected to the radio frequency device 902 .
  • the radio frequency device 902 receives information through the antenna 901, and sends the received information to the baseband device 903 for processing.
  • the baseband device 903 processes the information to be sent and sends it to the radio frequency device 902
  • the radio frequency device 902 processes the received information and sends it out through the antenna 901 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 903, where the baseband device 903 includes a baseband processor.
  • the baseband device 903 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 906, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 906 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 900 in this embodiment of the present invention also includes: instructions or programs stored in the memory 905 and executable on the processor 904, and the processor 904 calls the instructions or programs in the memory 905 to execute FIGS. 5-7
  • the methods executed by each module shown in the figure achieve the same technical effect, so in order to avoid repetition, they are not repeated here.
  • the communication device 800 may be a terminal, and the terminal may include a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement methods such as Steps of the methods described in Examples 200-400.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. at least some of the components.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit (GPU) 10041 and a microphone 10042, the graphics processor 10041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or image capture mode.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 may transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 may send the uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1009 can be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or, memory 1009 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • the radio frequency unit 1001 is configured to obtain position-related information of each communication device in the positioning group and the first difference in propagation delay; the processor 1010 is configured to obtain the location-related information and the first difference in propagation delay ,
  • the first communication device determines the target position information of the target reflector; wherein, the positioning group includes M communication devices including the first communication device, and the number of the first propagation delay differences is N , one of the first propagation delay differences is a propagation delay difference of a propagation path between any two communication devices in the positioning group, and the propagation path is a path reflected by the target reflector,
  • the different first propagation delay differences correspond to the fact that the two communication devices in the positioning group are not completely the same, N and M are positive integers, and M ⁇ N ⁇ 3.
  • the precise positioning of the target object is achieved through the combination of group positioning and signal reflection, and it is also possible to ensure that the transceiver clock of the communication device is not calibrated. Precise positioning of reflectors.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, each process of the above embodiment of the group positioning method can be realized, and the same can be achieved. To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned group positioning method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above-mentioned group positioning method
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a computer program, the computer program is stored in a readable memory, and when the computer program is executed by the processor, it can realize the various processes of the above group positioning method embodiment, and can achieve the same technical effect, To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a computer program product, the computer program product includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction is executed by the
  • the above-mentioned processor is executed, each process of the above-mentioned embodiment of the group positioning method can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a wireless communication system, including: at least including a first communication device, a second communication device, and a third communication device, and the first communication device can be used to perform the method described in the method embodiments 200-400 above. described side
  • the second communication device may be used to execute the method steps described in the method embodiment 600 above.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种组定位方法、装置及通信设备,属于无线通信技术领域,本申请实施例的组定位方法包括:第一通信设备获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量;根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息;其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。

Description

组定位方法、装置及通信设备
交叉引用
本发明要求在2022年02月28日提交中国专利局、申请号为202210193682.7、发明名称为“组定位方法、装置及通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于无线通信技术领域,具体涉及一种组定位方法、装置及通信设备。
背景技术
相关通信技术提供的通信设备定位系统中,虽然可以通过定位参考信号的收发,实现对通信设备的定位,但是相关技术难以对位于无线通信定位系统周围的未知物体进行准确定位。
发明内容
本申请实施例提供一种组定位方法、装置及通信设备,能够解决实现对位于无线通信定位系统周围的未知物体的定位、且定位精度高。
第一方面,提供了一种组定位方法,包括:第一通信设备获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量;根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息;其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。
第二方面,提供了一种组定位方法,定位组至少包括第一通信设备、第二通信设备和第三通信设备,所述方法包括:所述第二通信设备执行以下至少一项:向所述第一通信设备或所述第三通信设备发送所述第二通信设备的位置信息;发送目标参考信号RS;接收所述第一通信设备发送的目标RS,并按照第一正交调制序列对 所述目标RS进行调制后发送反射;接收所述第一通信设备发送的目标RS以及所述第三通信设备发送的反射信号,所述反射信号是所述第三通信设备按照第一正交调制序列对所述目标RS进行调制得到,以及向所述第一通信设备发送位置相关信息;接收目标反射体反射的反射信号,所述反射信号与目标RS对应;以及,向第一通信设备发送第一传播时延差异量;其中,所述第一传播时延差异量为所述第二通信设备与所述定位组中除所述第一通信设备和所述第二通信设备之外的任意一个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径。
第三方面,提供了一种组定位方法,由目标设备执行,所述方法包括:在第一时间单元内,所述目标设备作为第一通信设备,执行如权利要求第一方面中任一项所述的组定位方法的步骤;在第二时间单元内,所述目标设备作为第二通信设备,执行如第二方面中所述的组定位方法的步骤。
第四方面,提供了一种组定位装置,应用于第一通信设备,所述装置包括:获取模块,用于获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量;确定模块,用于根据所述位置相关信息和所述第一传播时延差异量,确定目标反射体的目标位置信息;其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。
第五方面,提供了一种组定位装置,定位组至少包括第一通信设备、第二通信设备和第三通信设备,所述装置包括:第一处理模块,用于执行以下至少一项:向所述第一通信设备或所述第三通信设备发送所述第二通信设备的位置信息;发送目标参考信号RS;接收所述第一通信设备发送的目标RS,并按照第一正交调制序列对所述目标RS进行调制后发送反射;接收所述第一通信设备发送的目标RS以及所述第三通信设备发送的反射信号,所述反射信号是所述第三通信设备按照第一正交调制序列对所述目标RS进行调制得到,以及向所述第一通信设备发送位置相关信息;接收目标反射体反射的反射信号,所述反射信号与目标RS对应;以及,向第一通信设备发送第一传播时延差异量;其中,所述第一传播时延差异量为所述第二通信设备与所述定位组中除所述第一通信设备和所述第二通信设备之外的任意 一个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径。
第六方面,提供了一种组定位装置,应用于目标设备,所述装置包括:第二处理模块,用于在第一时间单元内,所述目标设备作为第一通信设备,执行如第一方面所述的组定位方法的步骤;以及在第二时间单元内,所述目标设备作为第二通信设备,执行如第二方面中所述的组定位方法的步骤。
第七方面,提供了一种通信设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面或第三方面所述的方法的步骤。
第八方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤,或实现如第三方面所述的方法的步骤。
第九方面,提供了一种无线通信系统,至少包括:第一通信设备、第二通信设备和第三通信设备,所述第一通信设备可用于执行如第一方面所述的组定位方法的步骤,所述第二通信设备可用于执行如第二方面所述的组定位方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十二方面,提供了一种计算机程序产品/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
在本申请实施例中,通过组定位的方式配合信号反射,实现对目标物体即目标反射体的精确定位,而且还能够保证在通信设备的收发机时钟在未进行校准的情况下,也能实现对目标反射体的精确定位。
附图说明
图1是本申请一示例性实施例提供的无线通信系统的结构示意图。
图2是本申请一示例性实施例提供的组定位方法的流程示意图。
图3是本申请一示例性实施例提供的组定位系统的结构示意图。
图4是本申请另一示例性实施例提供的组定位方法的流程示意图。
图5是本申请一示例性实施例提供的组定位装置的结构示意图。
图6是本申请另一示例性实施例提供的组定位装置的结构示意图。
图7是本申请又一示例性实施例提供的组定位装置的结构示意图。
图8是本申请一示例性实施例提供的通信设备的结构示意图。
图9是本申请一示例性实施例提供的网络侧设备的结构示意图。
图10是本申请一示例性实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术, 也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的组定位方法200的流程示意图,该方法可以但不限于由第一通信设备(如终端或网络侧设备)执行,具体可由安装于第一通信设备中的硬件和/或软件执行。本实施例中,所述方法200至少可以包括如下步骤。
S210,第一通信设备获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量。
可以理解,本实施例是在不需要对通信设备的收发机时钟进行校准的情况下,通过定位组实现对位于其周围的目标反射体的精准感知、定位。所述目标反射体可以是建筑物、车辆等,在此不做限制。
所述定位组可以包括所述第一通信设备在内的M个通信设备,其中,根据定位过程的不同,所述第一通信设备可以是定位过程中的目标参考信号的发送端、接收端或反射端,也可以不参与定位过程中目标参考信号的发送、接收或反射等。
当然,对于定位组中的M个通信设备,如果M大于3,那么,可以是所述M个通信设备中的全部或部分通信设备参与组定位过程,对此,可通过高层信令配置第一规则,以限定参与组定位过程中的定位设备,换言之,所述第一规则中配置了多个定位设备对的相关信息(如设备标识、需要发送的参考信号等),每个所述定位设备对中包括至少一个发送端、至少一个反射端以及至少一个接收端,一个所述定位设备对包括所述定位组中的至少部分通信设备。
例如,当定位组中的通信设备的数量大于3的情况下,高层决定定位组中的组成员相互配对,即选取定位组中的部分或全部通信设备形成至少一个定位设备对。一种实现方式中,可以根据A~B~C的原则,A、B和C分别小于或等于(定位设备对中的组成员数-2),即在所述定位设备对中包括的通信设备的数量为S的情况下,每个所述定位设备对中的发送端、反射端、接收端的数量均小于或等于S-2,S≥3,S为正整数。基于此,假设A=2、B=1、C=2,那么,在第一资源时间有2个通信设备发送目标参考信号,1个通信设备反射目标参考信号,有2个通信设备接收目标参考信号,本实施例中采用的定位设备对互配原则,能够降低定位组定位感知的迟延,减少参考信号的开销。
需要说明的是,一个定位设备对中可以包括一个或多个第一通信设备,一个或多个第二通信设备,以及一个或多个第三通信设备。需要注意,在本实施例中,在存在多个发送端(如前述的第二通信设备)同时发送参考信号或一个发送端在不同资源上同时发送多个参考信号的情况下,各所述参考信号之间相互正交,从而避免信号干扰,提高定位精度。
进一步,所述第一通信设备获取的定位组中的各通信设备的位置相关信息是用于实现对所述目标反射体的感知、定位,因此,所述位置相关信息可以是通信设备之间的相对位置信息,也可以是各通信设备的绝对位置信息(如地理位置等),还可以是通信设备之间的定位延迟参数等,在此不做限制。需要说明的是,第一通信设备获取定位组中各个通信设备的位置相关信息,可以是直接获取各个通信设备中至少部分通信设备的位置,也可以是获取用于直接或间接指示各个通信设备位置的与位置相关的信息。
所述第一通信设备获取的N个所述第一传播时延差异量的数量用于实现对目标反射体的定位。本实施例中,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N为正整数,且M≥N≥3,所述N由高层配置。
例如,请结合参阅图3,假设定位组中包括第一通信设备1、第二通信设备2、第三通信设备3以及位于第一通信设备1、第二通信设备2、第三通信设备3周围的目标反射体j,那么,所述N个第一传播时延差异量对应的传播路径可以包括:(第一通信设备1-目标反射体j-第二通信设备2)、(第一通信设备1-目标反射体j-第三通信设备3)、(第二通信设备2-目标反射体j-第三通信设备3)。可以理解,由于从物理信号结构来说,发射端和接收端之间信道的传播延迟具有互易性,因此,以(第一通信设备1-目标反射体j-第三通信设备3)为例,(第一通信设备1-目标反射体j-第三通信设备3)与(第二通信设备3-目标反射体j-第一通信设备1)的信道传播延迟相同。
当然,对于前述的位置相关信息以及地动仪传播时延差异量的获取方式可以由多种,可以由第一通信设备自身确定,也可以由定位组中的其他通信设备发送,在此不做限制。
S220,根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息。
可以理解,对于本实施例中提供的组定位流程,可以由高层决定何时开始定位感知流程。如定位流程的开始可以根据周期性事件(Periodic-event)触发机制进行,也可以根据持久性事件(Persistance-event)触发机制进行,还可以根据动态事件(dynamic-event)触发机制进行,在此不做限制。
值得注意的是,在定位流程开始以前,高层可通过高层信令决定参与组定位的通信设备的相关信息,如第一通信设备、第二通信设备、第三通信设备。且,参与组定位的通信设备可按照第一规则交替执行不同的定位参考信号发送/接收周期,以实现对目标反射体的定位。
本实施例中,通过组定位的方式配合信号反射,实现对目标物体即目标反射体的精确定位,而且还能够保证在通信设备的收发机时钟在未进行校准的情况下,也能实现对目标反射体的精确定位。
如图4所示,为本申请一示例性实施例提供的组定位方法400的流程示意图,该方法可以但不限于由第一通信设备(如终端或网络侧设备)执行,具体可由安装于第一通信设 备中的硬件和/或软件执行。本实施例中,所述方法400至少可以包括如下步骤。
S410,第一通信设备获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量。
其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。
可以理解,S410的实现过程除了可参照方法实施例200中的相关描述之外,作为一种可能的实现方式,所述第一通信设备获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量的方式可以有多种,下面对其获取过程分别进行说明。
(1)位置相关信息的获取
本实施例中,根据定位场景(或定位感知场景)的不同,位于同一所述定位组中的通信设备可以包括移动通信设备(如终端)和/或固定通信设备(如接入网设备(如gNB)、核心网设备等)。基于此,下面对不同的定位感知场景进行说明。
例如,假设本实施例提供的组定位方法可以用于具有3个组成员或3个组成员以上的未知位置信息的移动通信设备的组定位感知场景,即定位组由相同的移动通信设备(Mobile Equipment)组成,那么,定位组中的各通信设备可先进行组成员之间的相互定位,以获得各通信设备的位置相关信息,如所述定位组中各通信设备的位置信息、所述定位组中各通信设备之间的第二定位延迟参数等。
又例如,假设本实施例提供的组定位方法可以用于具有3个组成员或3个组成员以上的已知位置信息的固定通信设备(如,参与定时流程的通信设备可以预先放置在固定位置等)的组定位感知场景,即定位组由相同的固定位置的固定通信设备(如gNB)组成,那么,定位组中的各通信设备无需进行组成员之间的相互定位,各通信设备的位置相关信息已知,如所述定位组中各通信设备的位置信息已知,或可根据各通信设备的位置信息计算述定位组中各通信设备之间的第二定位延迟参数等。
如,假设固定通信设备1和固定通信设备2的位置信息分别为那么,可以简单地计算出第二定位延迟参数如式(0)所示。其中,式(0)中的c表示光速。
又例如,假设本实施例提供的组定位方法可以用于具有3个组成员或3个组成员以上的未知位置信息的移动通信设备以及已知位置信息的固定通信设备相融合的组定位感知场景,即定位组一部分由移动通信设备组成,另一部分由固定通信设备组成,那么,定位组中的各通信设备之间的定位可参考固定通信设备的位置信息对移动通信设备进行绝对定位移动通信设备的位置相关信息,如各移动通信设备的位置信息、所述定位组中各通信设备之间的第二定位延迟参数等。
在此情况下,下面以包括未知位置信息的移动通信设备的定位组为例,对所述定位组中各个通信设备的位置相关信息的获取进行说明。假设所述位置相关信息中包括所述第二定位时延参数,那么,所述第一通信设备可获取对应不同反射路径的L个第二传播延迟差异量,以及根据所述L个第二传播延迟差异量确定第二定位延迟参数;其中,一个所述第二传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述定位组中任意一个通信设备反射的路径,不同的所述第一传播时延差异量对应所述定位组中的三个通信设备中不完全相同,L为正整数,L≥3,所述L由高层配置。
可选的,所述第一通信设备获取对应不同反射路径的L个第二传播延迟差异量的过程,可以包括以下方式1-方式2中的至少一项。
方式1:在所述第一通信设备作为接收端的情况下,根据自身获取到的参考信号测量量获取所述第二传播延迟差异量。
一种实现方式中,在所述第一通信设备作为接收端的情况下,根据自身获取到的参考信号测量量获取所述第二传播延迟差异量的过程可以包括所述第一通信设备获取第一测量量和第二测量量,再根据所述第一测量量和第二测量量,确定从所述第二通信设备到所述第一通信设备之间的第一时延,以及从所述第二通信设备发送、再经所述第三通信设备反射到所述第一通信设备之间的第三时延,最后根据所述第三时延和所述第一时延确定所述第二传播延迟差异量。
示例性的,为描述简单起见,请再次参阅图3,假设所述定位组中仅包括3个未知位置信息的通信设备,即第一通信设备、第二通信设备、第三通信设备,那么,第二通信设备可在第一资源上发送第一参考信号,所述的第一参考信号可以包括但不限于:追踪参考信号(Tracking Reference Signal、TRS)、信道状态信息参考信号(Channel Status Information  Reference Signal,CSI-RS)、定位参考信号(Positioning Reference Signal,PRS)、探测参考信号(Sounding Reference Signal,SRS)或其它和通信感知一体化相关的参考信号。
基于此,以NR系统为例,对于NR下行链路(Down-Link)参考信号,其可以包括物理下行共享信道(Physical downlink shared channel,PDSCH-DMRS(Demodulation Reference Signal,解调参考信号)、物理下行控制信道(Physical downlink control channel,PDCCH)-DMRS、物理广播信道(Physical broadcast channel,PBCH)-DMRS、相位跟踪参考信号(Phase-tracking reference signal,PT-RS)、CSI-RS、远程干扰管理参考信号(Remote Interference Management Reference Signal,RIM-RS)、PRS等;对于NR上行链路(Up-Link)的参考信号,其可以包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)-DMRS、物理上行控制信道(Physical Uplink Control Channel,PUCCH)-DMRS、PT-RS、SRS;对于NR旁链路(Sidelink)的参考信号,其可以包括物理副链路共享信道(Physical SideLink Shared Channel,PSSCH)-DMRS、物理副链路控制信道(Physical SideLink Control Channel,PSCCH)-DMRS、PSSCH-PTRS、物理副链路广播信道(Physical SideLink Broadcast Channel,PSBCH)-DMRS、CSI-RS。
进一步,第三通信设备在第一资源上接收第一参考信号,并按照第一正交调制方式对接收到的第一参考信号进行调制后反射。其中,所述第一正交调制方式包括通断键控(On-Off Keying,OOK)方式、二进制相移键控(Binary Phase Shift Keying,BPSK)方式、码分多路复用(code division multiplexing,CDM)正交码方式中的任一项。
例如,所述OOK方式对应的调制矩阵可以为:
又例如,所述BPSK方式对应的调制矩阵可以为:
又例如,所述拥有CDM特性的Hadamard正交码方式对应的调制矩阵可以为:
其中,所述M为大于或等于1的整数,所述M与参与定位流程中参考信号调制编码的通信设备的数量相关。需要注意,后续关于所述第一正交调制序列不再赘述。
基于此,第一通信设备在第一资源上接收到的参考信号(即第一测量量)可以包括第一参考信号(即直径信号)、第二参考信号(反射信号)和第三参考信号(反射信号),所述第一参考信号是由所述第二通信设备在第一资源上发送,所述第二参考信号是所述第三通信设备根据第一正交调制方式对接收到的第一参考信号进行调制得到,所述第三参考信号是所述目标反射体对接收到的第一参考信号反射得到。
与第一参考信号的发送类似,第二通信设备在第二资源上发送第四参考信号,第三通信设备在第二资源上接收第一参考信号,并按照第一正交调制方式对接收到的第一参考信号进行调制后反射。基于此,第一通信设备在第人资源上接收到的参考信号(即第二测量量)包括第四参考信号(即直径信号)、第五参考信号(反射信号)和第六参考信号,所述第四参考信号是由所述第二通信设备在第二资源上发送,所述第五参考信号是所述第三通信设备根据第一正交调制方式对接收到的第四参考信号进行调制得到,所述第六参考信号是所述目标反射体对接收到的第四参考信号反射得到。可以理解,所述第四参考信号的相关描述可参照前述对第一参考信号的描述,为避免重复,在此不再赘述。
例如,假设所述第一资源为时域资源,如第m个时隙中的符号n、第二资源为第m+1个时隙中的符号n,且所述第三通信设备中按照第一正交调制方式进行正交调制过程中没有任何额外的处理延迟时间,即调制过程和反射过程属于一种单纯的对接收信号进行功率放大转发(Amplify-and-Forward,AF)的过程,那么所述第一通信设备获取到的第一测量量y2,1,m[n]和第二测量量y2,1,m+1[n]如式(1)和式(2)所示。

其中,s[n]为第一参考信号或第四参考信号,h2,12,1)为第二通信设备与第一通信设备之间的信道相应,τ2,1为第二通信设备与第一通信设备之间的第二定位延迟参数,h2,32,3)为第二通信设备与第三通信设备之间的信道响应,τ2,3为第二通信设备与第三通信 设备之间的第二定位延迟参数,h3,13,1)为第三通信设备与第一通信设备之间的信道响应,τ3,1为第三通信设备与第一通信设备之间的第二定位延迟参数,为第二通信设备与目标反射体之间的信道响应,为第二通信设备与目标反射体之间的第一定位延迟参数,为目标反射体之间与第一通信设备的信道响应,为目标反射体与第一通信设备之间的第一定位延迟参数。bk,m(如b3,m+1、b3,m)为第一正交调制方式对应的调制符号,w1,m[n]和w1,m+1[n]分别为加性高斯白噪声(Additive White Gaussian Noise,AWGN),α′3是复数衰减反向散射信号系数,包括第三通信设备对接收到的第一参考信号进行的功率放大系数因子,αj是包括雷达截面(Rader Cross Section,RCS)在内的第j个目标反射体的衰减系数。
基于此,假设在第m个时隙(即第一资源)和第m+1个时隙(即第二资源)中,第二通信设备发送第一参考信号和第四参考信号,第三通信设备通过OOK或BPSK或CDM正交码调制并进行功率放大反射,那么,第一通信设备可根据OOK或BPSK或CDM正交码调制的正交特性,对接收到的第一测量量和第二测量量进行简单的加/减运算,分别得到以下直径信号和反射信号。
其中,假设第三通信设备通过BPSK(即第一正交调制序列)进行模拟调制,即在第m个时隙使用调制符号bk,m=1,而在第m+1个时隙中使用调制符号bk,m+1=-1,那么,第一通信设备接收到的总信号(即第一测量量、第二测量量)可以分别如式(3)、式(4)所示。

基于此,所述第一通信设备根据所述第一测量量和第二测量量确定第一时延,以及第三时延的过程可以如下。
首先通过针对式(3)和式(4)进行加法运算,第一通信设备可以获取直径信号和第j个的目标反射体的反射信号,即,第一信号计算量如式(5)所示。
以及,通过针对式(3)和式(4)进行减法运算,第一通信设备可以获取通过第三通 信设备的反射信号,即,第二信号计算量如式(6)所示。
y2,1,m[n]-y2,1,m+1[n]=2α'3h2,32,3)h3,13,1)s[n]+w”2,1[n]    (6)
进一步,根据式(5)所示的第一信号计算量,第一通信设备通过检测第一信号计算量中第一到达的信号,可以估算出从第二通信设备发送到第一通信设备的直径信号的时延,即第一时延,其中,所述第一时延可以如式(7)所示。
对应的,根据式(6)表示的第二信号计算量,第一通信设备估算出从第二通信设备发送,并通过第三通信设备模拟调制并反射到第一通信设备的反射信号的时延,即第三时延,其中,所述第三时延如式(8)所示。
式(7)和式(8)中,表示所述第二通信设备所经历的定时误差(Timing Error),表示所述第一通信设备所经历的定时误差。需要注意,由于发送端(如第二通信设备)和接收端(如第二通信设备)的射频(Radio Frequency,RF)有所差异,因此,一般情况下,
因此,计算反射信号和直径信号延迟差,即,从第二通信设备发送,被第三通信设备反射,到第一通信设备接收的第二传播延迟差异量(也可称作第一定位方程),可以通过对进行减法运算的方法获取,即所述第二传播延迟差异量如式(9)所示。
其中,表示所述第三时延,表示所述第一时延,τ2,3表示第二通信设备与第三通信设备之间的第二定位延迟参数,τ2,1表示第二通信设备与第一通信设备之间的第二定位延迟参数,τ3,1表示第三通信设备与第一通信设备之间的第二定位延迟参数,表示所述第二通信设备所经历的定时误差,表示所述第一通信设备所经历的定时误差,所述第二通信设备和所述第三通信设备是所述定位组的通信设备。
值得注意的是,从物理信号结构来说,发射端和接收端之间信道的传播延迟是具有互易性的,即在此,根据传播延迟的互易性,可以得到
当然作为本实施例中的一种实现方式,第一通信设备在获取第二传播延迟差异量的过程中,可判断第二传播延迟差异量的数量是否大于或等于L。其中,L是由高层事先决定的最少所需传播延迟差异量。如果第二传播延迟差异量的数量小于L,
则根据由高层信令预先决定对第一通信设备、第二通信设备、第三通信设备的更换顺序(即第一规则)更换第一通信设备、第二通信设备、第三通信设备,再次分别由第一通信设备、第二通信设备、第三通信设备执行发送、接收和反射目标参考信号,以再次获取第二传播延迟差异量直到获取到L个第二传播延迟差异量。
如果第二传播延迟差异量的数量是大于或等于L,则第一通信设备可通过L个第二传播延迟差异量对第一通信设备、第二通信设备和第三通信设备进行相互定位,以得到各通信设备的位置信息以及第二定位延迟参数。
例如,延续前述例子,假设所述L个第二传播延迟差异量如式(10)所示,那么将式(10)所示的第二传播延迟差异量可通过矢量和矩阵方式表示为式(11)所示。

式(10)和式(11)中,表示所述发送端为第二通信设备、接收端为第一通信设备、反射端为第三通信设备时的第二传播延迟差异量,表示所述发送端为第二通信设备、接收端为第三通信设备、反射端为第一通信设备时的第二传播延迟差异量,表示所述发送端为第一通信设备、接收端为第三通信设备、反射端为第二通信设备时的第二传播延迟差异量。
基于此,定位组内的第二定位延迟参数矢量x可以通过式(12)得到。
其中,如果矩阵A是非正方矩阵,定位组内的各通信设备之间的所述第二定位延迟参数对应的矢量x可通过式(13)获取。
x=(ATA)-1ATy       (13)
方式2:在所述第一通信设备未作为接收端的情况下,所述第一通信设备接收来自所述定位组中除所述第一通信设备之外的其他通信设备发送的第二传播延迟差异量。
其中可以理解的是,所述定位组中除所述第一通信设备之外的其他通信设备发送的第二传播延迟差异量是作为所述第一通信设备获取的L个第二传播延迟差异量中的部分,以用于第二定时延迟参数的计算。例如,请再次参阅式(10),第二传播延迟差异量即是由第三通信设备确定后发送给所述第一通信设备进行目标反射体的定位。当然,定位组中除所述第一通信设备之外的其他通信设备确定第二传播延迟差异量的过程与前述第一通信设备类似,为避免重复,在此不再赘述。
(2)第一传播时延差异量的获取过程
与前述位置相关信息的获取类似,所述第一通信设备获取对应不同反射路径的N个第一传播延迟差异量的步骤,也可以包括以下方式1-方式2中的至少一项。
方式1:所述第一通信设备在作为接收端的情况下,根据自身获取到的参考信号测量量确定所述第一传播延迟差异量。
一种实现方式中,所述第一通信设备在作为接收端的情况下,根据自身获取到的参考信号测量量确定所述第一传播延迟差异量的过程可以包括:所述第一通信设备获取第一测量量和第二测量量;再根据所述第一测量量和第二测量量,确定从所述第二通信设备到所述第一通信设备之间的第一时延,以及从所述第二通信设备发送、再经所述目标反射体反射到所述第一通信设备时的第二时延;最后根据所述第二时延和所述第一时延确定所述第一传播延迟差异量。
其中,延用前述对位置相关信息介绍时的例子,所述第一测量量和所述第二测量量的获取可如前述(3)和(4)所示,那么,所述第一通信设备可进一步通过检测式(5)中 的第一信号计算量中的第一到达的信号,估算出从第二通信设备发送,并通过第j个的目标反射体反射到第一通信设备的反射信号时延,即第二时延,该第二时延可以如式(14)所示。
基于此,所述第一通信设备计算目标反射体的反射信号和直径信号之间延迟差,即从第二通信设备发送,被目标反射体反射,到第一通信设备接收的第一传播延迟差异量(也即第二定位方程),可以通过对第二时延和第一时延进行减法运算的方法获取,那么,所述第一传播延迟差异量可以如式(15)所示。
其中,表示第二通信设备与所述目标反射体之间的第一定位延迟参数,表示所述目标反射体与所述第一通信设备之间的第一定位延迟参数,τ2,1表示所述第二通信设备与所述第一通信设备之间的第二定位延迟参数,表示所述第二通信设备所经历的定时误差,表示所述第一通信设备所经历的定时误差。
值得注意的是,从物理信号结构来说,发射端和接收端之间信道的传播延迟是具有互易性的,即在此,根据传播延迟的互易性,可以得到
当然作为本实施例中的一种实现方式,第一通信设备在获取第一传播延迟差异量的过程中,可判断第一传播延迟差异量的数量是否大于或等于N。其中,N是由高层事先决定的最少所需传播延迟差异量。如果第一传播延迟差异量的数量小于N,则根据由高层信令预先决定(即第一规则)更换第一通信设备、第二通信设备、第三通信设备,再次分别由第一通信设备、第二通信设备、第三通信设备执行发送、接收和反射目标参考信号,以再次获取第一传播延迟差异量直到获取到N个第二传播延迟差异量。
如果第一传播延迟差异量的数量是大于或等于N,则第一通信设备通过N个第二传播延迟差异量对目标反射体进行定位。
例如,延用前述例子,假设所述N个所述第一传播延迟差异量如式(16)所示,如果将式(16)所示的第二传播延迟差异量通过矢量和矩阵方式表示,那么可如式(17)所示。

y'=A'x'            (17)
其中,表示发送端为第二通信设备、接收端为所述第一通信设备时的第一传播延迟差异量,表示所述发送端为所述第二通信设备、接收端为第三通信设备时的第一传播延迟差异量,表示所述发送端为所述第一通信设备、接收端为所述第三通信设备时的第一传播延迟差异量,τ2,1表示所述第二通信设备与所述第一通信设备之间的第二定位延迟参数、τ2,3表示所述第二通信设备与所述第三通信设备之间的第二定位延迟参数、τ1,3表示所述第一通信设备与所述第三通信设备之间的第二定位延迟参数,表示所述第二通信设备与所述目标反射体之间的第一定位延迟参数,表示所述第一通信设备与所述目标反射体之间的第一定位延迟参数,表示所述目标反射体与所述第三通信设备之间的第一定位延迟参数,所述第二通信设备和所述第三通信设备是所述定位组中的通信设备。
进一步,考虑到第一通信设备、第二通信设备和第三通信设备的位置相关信息已知,即y'是已知的,因此目标反射体对应的第一定位延迟参数矢量x'可以通过式(18)计算得到。
x'=((A')TA')-1(A')Ty'         (18)
值得注意的是,本申请中进行第一定位延迟参数可第二定位延迟参数获取时,是以时分(在m时隙和m+1时隙)的方式进行第一参考信号和第四参考信号的发送,但当定位组中的通信设备数据大于3的情况下,本实施例也可以基于频分或码分或空域的方式第一参考信号和第四参考信号的发送。换言之,前述提及的所述第一资源和所述第二资源为不同的时域资源,或所述第一资源和所述第二资源为同一时域上的不同频域资源,或所述第 一资源和所述第二资源为同一时域上的不同空域资源,或所述第一资源和所述第二资源为同一时域上的不同码域资源。
方式2:
所述第一通信设备在未作为接收端的情况下,接收来自所述定位组中除所述第一通信设备之外的其他通信设备发送的第一传播延迟差异量。
其中可以理解的是,所述定位组中除所述第一通信设备之外的其他通信设备发送的第一传播延迟差异量可以作为所述第一通信设备获取的N个第二传播延迟差异量中的部分,以用于第一定时延迟参数的计算。例如,请请再次参阅式(10),第一传播延迟差异量即是由第三通信设备确定后发送给所述第一通信设备进行目标反射体的定位。当然,定位组中除所述第一通信设备之外的其他通信设备确定第二传播延迟差异量的过程与前述第一通信设备类似,为避免重复,在此不再赘述。
S420,根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息。
可以理解,S420的实现过程除了可参照方法实施例200中的相关描述之外,作为一种可能的实现方式,请再次参阅图3,所述根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息的步骤可以包括S421和S422,内容如下
S421,根据所述位置相关信息和所述第一传播时延差异量参数,确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数。
其中,如果所述位置相关信息中包括定位组中各通信设备的位置信息(如地理坐标位置),那么,所述第一通信设备可以直接根据所述各通信设备的位置信息计算各通信设备之间的第二定位延迟参数,再基于所述各通信设备之间的第二定位延迟参数和所述第一传播时延差异量参数,确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数。
如果所述位置相关信息未包括定位组中各通信设备的位置信息,而是包括定位组中各通信设备之间的第二定位时延参数,那么,所述第一通信设备可直接基于所述各通信设备之间的第二定位延迟参数和所述第一传播时延差异量参数,确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数。当然,所述各通信设备之间的第二定位延迟参数可以是所述第一通信设备获取的L个第二传播延迟差异量确定,其具体过程可参照 前述S410中的相关描述,在此不再赘述。
S422,根据所述第一定位时延参数确定所述目标反射体的目标位置信息。
可以理解,S422的实现过程可参照方法实施例200中的相关描述,为避免重复,在此不再赘述。
进一步,在前述组定位流程中,需要注意的是,根据第一规则,所述第一通信设备除了作为接收端之外,还可以作为发送端、反射端等,以实现N和第一传播延迟差异量和L个第二传播延迟差异量的获取,进而实现各通信设备间的相互定位以及对目标反射体的定位。
此外,如果定位组至少包括第一通信设备、第二通信设备和第三通信设备,那么,本实施例中虽然给出了由第一通信设备进行组定位流程的实现,但在实际通定位感知场景中,也可以由定位组中除所述第一通信设备之外的其他通信设备执行前述定位流程,在此不做限制。
对应的,与所述第一通信设备类似,所述第二通信设备、第三通信设备可可以在发送端、接收端、反射端以及定位流程端之间切换,例如以第二通信设备为例,所述第二通信设备可以执行以下(11)-(15)中的至少一项。
(11)第二通信设备向所述第一通信设备或所述第三通信设备发送所述第二通信设备的位置信息,以用于所述第一通信设备或第三通信设备进行通信设备之间的定位和/或实现对目标反射体的定位。
(12)第二通信设备发送目标参考信号,即所述第二通信设备作为发送端,可在不同的资源上发送目标参考信号,以供所述第一通信设备或第三通信设备进行信号测量,进而得到用于定位的第一传播延迟差异量、第二传播延迟差异量。
(13)第二通信设备接收所述第一通信设备发送的目标(Reference Signal,RS),并按照第一正交调制序列对所述目标RS进行调制后发送反射。即所述第二通信设备作为反射端,按照第一正交调制序列对接收到的目标参考信号进行调制后反射。
(14)第二通信设备接收所述第一通信设备发送的目标RS以及所述第三通信设备发送的反射信号,所述反射信号是所述第三通信设备按照第一正交调制序列对所述目标RS进行调制得到,以及向所述第一通信设备发送位置相关信息。
(15)接收目标反射体反射的反射信号,所述反射信号与目标RS对应;以及,向第一通信设备发送第一传播时延差异量;其中,所述第一传播时延差异量为所述第二通信设备与所述定位组中除所述第一通信设备和所述第二通信设备之外的任意一个通信设备之 间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径。
对于(14)和(15),所述第二通信设备作为接收端,可如前述的第一通信设备类似,对接收到的目标参考信号进行处理等。
当然,前述的第一通信设备、第二通信设备、第三通信设备分别作为什么角色可根据第一规则确定,在此不再赘述。
所述第三通信设备与前述第二通新设备类似,在此不再赘述。
进一步,对于前述实施例给出的组定位方法,定位组中的一个通信设备还可以在不同的时间单元上执行不同的动作。例如,以定位组中的目标设备为例,那么,在第一时间单元内,所述目标设备可以作为所述第一通信设备,执行如方法实施例200-400中给出的组定位方法的步骤,在第二时间单元内,所述目标设备可以作为第二通信设备,执行前述的(11)-(15)中所述的组定位方法中的步骤。
可选的,所述第一时间单元、所述第二时间单元中提及的时间单元可以为时隙、符号、子帧等,在此不做限制。另外,所述目标设备实现前述过程的相关描述可参照方法实施例200-400中的描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本实施例中,通过以上定位组中各通信设备间的相互定位,可在不需要通过对通信设备时钟校准的情况下,能够精准地得到定位组中各通信设备间的相对位置坐标和周围反射体的相对位置坐标,达到高精度定位的目的。
基于前述方法实施例200-400的描述,下面假设定位组中至少包括第一通信设备、第二通信设备、第三通信设备、且第一通信设备、第二通信设备、第三通信设备的位置信息未知、N=3、L=3,那么,本申请提供的组定位流程可以包括如下S501-S505。
S501,第一通信设备作为接收端、所述第二通信设备为发送端、第三通信设备为反射端,那么,所述第二通信设备在时隙m上发射第一参考信号,那么,第一通信设备可接收到第一测量量,即第一参考信号、第二参考信号、第三参考信号,对应的,所述第二通信设备在时隙m+1上发射第四参考信号,那么,第一通信设备可接收到第二测量量,即第四参考信号、第五参考信号、第六参考信号。
S502,所述第一通信设备根据接收到第一测量量和第二测量量确定一个第二传播延迟差异量,和一个第一传播延迟差异量。
S503,由于1小于N、且小于L,那么,按照第一规则,所述第一通信设备继续作为接收端、第二通信设备作为反射端、第三通信设备作为发送端,那么,所述第一通信设备再次根据获取到的第三测量量和第四测量量确定一个第二传播延迟差异量,和一个第一传 播延迟差异量。
S504,由于获取到的第二传播延迟差异量和第一传播延迟差异量的总数量为2、且小于N、L,因此,按照第一规则,所述第一通信设备作为发送端、第二通信设备作为反射端、第三通信设备作为接收端,那么,所述第三通信设备根据获取到的第五测量量和第六测量量确定一个第二传播延迟差异量,和一个第一传播延迟差异量。
S505,所述第三通信设备将确定到的1个第二传播延迟差异量和1个第一传播延迟差异量发送给所述第一通信设备,以使得第一通信设备进行通信设备之间的相互定位以及目标反射体的定位。
或者,所述第一通信设备将确定到的2个第二传播延迟差异量和2个第一传播延迟差异量发送给所述第三通信设备,以使得第三通信设备进行通信设备之间的相互定位以及目标反射体的定位。
或者,所述第一通信设备将确定到的2个第二传播延迟差异量和2个第一传播延迟差异量发送给所述第二通信设备,以及所述第三通信设备将确定到的1个第二传播延迟差异量和1个第一传播延迟差异量发送给所述第一通信设备,以使得第二通信设备进行通信设备之间的相互定位以及目标反射体的定位。
可以理解,前述的第三测量量、第四测量量、第五测量量、第六测量量的获取过程与前述的第一测量量、第二测量量的获取过程类似,在此不再赘述。另外,S501-S505的相关实现过程可参照前述方法实施例200-400中的相关描述,为避免重复,在此不再赘述。
当然本实施例中给出的定位流程可以包括但不限于前述S501-S505,如可以具有比前述S501-S505更多或更少的步骤,在此不做限制。
进一步,在所述定位组至少包括第一通信设备、第二通信设备和第三通信设备的情况下,本申请一示例性实施例还提供一种组定位方法,该方法可以但不限于由第二通信设备(如终端或网络侧设备)执行,具体可由安装于第二通信设备中的硬件和/或软件执行。本实施例中,所述方法至少可以包括如下步骤。
所述第二通信设备执行以下S601-S605中的至少一项。
S601,向所述第一通信设备或所述第三通信设备发送所述第二通信设备的位置信息。
S602,发送目标参考信号RS。
S603,接收所述第一通信设备发送的目标RS,并按照第一正交调制序列对所述目标RS进行调制后发送反射。
S604,接收所述第一通信设备发送的目标RS以及所述第三通信设备发送的反射信号, 所述反射信号是所述第三通信设备按照第一正交调制序列对所述目标RS进行调制得到,以及向所述第一通信设备发送位置相关信息。
S605,接收目标反射体反射的反射信号,所述反射信号与目标RS对应;以及,向第一通信设备发送第一传播时延差异量;其中,所述第一传播时延差异量为所述第二通信设备与所述定位组中除所述第一通信设备和所述第二通信设备之外的任意一个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径。
可以理解,根据定位感知场景的不同,所述第二通信设备可以执行以上S601-S602中的至少一项。其中,第二通信设备执行前述S601-S605的实现过程可参照前述方法实施例200-500中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本申请一示例性实施例还提供一种组定位方法,该方法可以但不限于由目标设备(如终端或网络侧设备)执行,具体可由安装于目标设备中的硬件和/或软件执行。本实施例中,所述方法至少可以包括如下步骤。
S701,在第一时间单元内,所述目标设备作为第一通信设备,执行如方法实施例200-500中所述的组定位方法的步骤。
S702,在第二时间单元内,所述目标设备作为第二通信设备,执行如方法实施例600中所述的组定位方法的步骤。
其中,S701和S702的实现过程可参照前述方法实施例200-600中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本申请实施例提供的组定位方法,执行主体可以为组定位装置。本申请实施例中以组定位装置执行组定位方法为例,说明本申请实施例提供的组定位装置。
如图5所示,为本申请一示例性实施例提供的组定位装置500的结构示意图,该装置包括获取模块510,用于获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量;确定模块520,用于根据所述位置相关信息和所述第一传播时延差异量,确定目标反射体的目标位置信息;其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。
可选的,确定模块520根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息的步骤,包括:根据所述位置相关信息和所述第 一传播时延差异量参数,确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数;根据所述第一定位时延参数确定所述目标反射体的目标位置信息。
可选的,确定模块520根据所述位置相关信息和所述第一传播时延差异量参数,确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数的步骤,包括:根据所述定位组中的各通信设备之间的第二定位时延参数和所述第一传播时延差异量参数确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数;其中,所述位置相关信息包括所述第二定位时延参数,或者,所述位置相关信息包括所述定位组中的各通信设备的位置信息,所述第二定位时延参数是根据所述位置信息确定的。
可选的,N个所述第一传播延迟差异量如下所示:其中,表示发送端为第二通信设备、接收端为所述第一通信设备时的第一传播延迟差异量,表示所述发送端为所述第二通信设备、接收端为第三通信设备时的第一传播延迟差异量,表示所述发送端为所述第一通信设备、接收端为所述第三通信设备时的第一传播延迟差异量,τ2,1表示所述第二通信设备与所述第一通信设备之间的第二定位延迟参数、τ2,3表示所述第二通信设备与所述第三通信设备之间的第二定位延迟参数、τ1,3表示所述第一通信设备与所述第三通信设备之间的第二定位延迟参数,表示所述第二通信设备与所述目标反射体之间的第一定位延迟参数,表示所述第一通信设备与所述目标反射体之间的第一定位延迟参数,表示所述目标反射体与所述第三通信设备之间的第一定位延迟参数,所述第二通信设备和所述第三通信设备是所述定位组中的通信设备。
可选的,所述第一定位延迟参数对应的矢量x'为:x'=((A')TA')-1(A')Ty';其中,
可选的,获取模块510获取第一传播延迟差异量的步骤,包括以下至少一项:所述第一通信设备在作为接收端的情况下,根据自身获取到的参考信号测量量确定所述第一传播 延迟差异量;所述第一通信设备在未作为接收端的情况下,接收来自所述定位组中除所述第一通信设备之外的其他通信设备发送的第一传播延迟差异量。
可选的,所述第一通信设备在作为接收端的情况下,获取模块510根据自身获取到的参考信号测量量确定所述第一传播延迟差异量的步骤,包括:所述第一通信设备获取第一测量量和第二测量量;所述第一通信设备根据所述第一测量量和第二测量量,确定从所述第二通信设备到所述第一通信设备之间的第一时延,以及从所述第二通信设备发送、再经所述目标反射体反射到所述第一通信设备时的第二时延;所述第一通信设备根据所述第二时延和所述第一时延确定所述第一传播延迟差异量;其中,所述第一测量量至少包括第一参考信号、第二参考信号、第三参考信号,所述第一参考信号是由所述第二通信设备在第一资源上发送,所述第二参考信号是所述第三通信设备根据第一正交调制方式对接收到的第一参考信号进行调制得到,所述第三参考信号是所述目标反射体对接收到的第一参考信号反射得到;所述第二测量量至少包括第四参考信号、第五参考信号、第六参考信号,所述第四参考信号是由所述第二通信设备在第二资源上发送,所述第五参考信号是所述第三通信设备根据第一正交调制方式对接收到的第四参考信号进行调制得到,所述第六参考信号是所述目标反射体对接收到的第四参考信号反射得到。
可选的,所述第一传播延迟差异量为:其中,表示所述第一时延,表示所述第二时延,表示第二通信设备与所述目标反射体之间的第一定位延迟参数,表示所述目标反射体与所述第一通信设备之间的第一定位延迟参数,τ2,1表示所述第二通信设备与所述第一通信设备之间的第二定位延迟参数,表示所述第二通信设备所经历的定时误差,表示所述第一通信设备所经历的定时误差。
可选的,所述第一通信设备在作为接收端的情况下,所述确定模块520根据自身获取到的参考信号测量量确定所述第一传播延迟差异量的步骤,还包括:所述第一通信设备在所述第一传播延迟差异量的数量未达到所述N的情况下,按照第一规则更换发送端和/或反射端,以及基于更换后的发送端和/或反射端再次获取所述第一传播延迟差异量;其中,所述第一规则通过高层信令配置、且所述第一规则中配置了多个定位设备对的相关信息,每个所述定位设备对中包括至少一个发送端、至少一个反射端以及至少一个接收端,一个所述定位设备对包括所述定位组中的至少部分通信设备。
可选的,在所述定位设备对中包括的通信设备的数量为S的情况下,每个所述定位设备对中的发送端、反射端、接收端的数量均小于或等于S-2,S≥3,S为正整数。
可选的,所述第一资源和所述第二资源为不同的时域资源,或所述第一资源和所述第二资源为同一时域上的不同频域资源,或所述第一资源和所述第二资源为同一时域上的不同空域资源,或所述第一资源和所述第二资源为同一时域上的不同码域资源。
可选的,所述第一参考信号或所述第四参考信号包括追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS、定位参考信号(UpLink-Sounding Reference Signal,UL-SRS)中的任一项。
可选的,所述第一正交调制方式包括通断键控OOK方式、二进制相移键控BPSK方式、码分多路复用CDM正交码方式中的任一项。
可选的,所述获取模块510获取定位组中各个通信设备的位置相关信息的步骤,包括:在所述位置相关信息未包括所述第二定位时延参数的情况下,所述第一通信设备获取对应不同反射路径的L个第二传播延迟差异量,以及根据所述L个第二传播延迟差异量确定第二定位延迟参数;其中,一个所述第二传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述定位组中任意一个通信设备反射的路径,不同的所述第一传播时延差异量对应所述定位组中的三个通信设备中不完全相同L为正整数,L≥3。
可选的,所述N和所述L由高层配置。
可选的,所述获取模块510获取对应不同反射路径的L个第二传播延迟差异量的步骤,包括以下至少一项:在所述第一通信设备作为接收端的情况下,根据自身获取到的参考信号测量量获取所述第二传播延迟差异量;在所述第一通信设备未作为接收端的情况下,所述第一通信设备接收来自所述定位组中除所述第一通信设备之外的其他通信设备发送的第二传播延迟差异量。
可选的,在所述第一通信设备作为接收端的情况下,获取模块510根据自身获取到的参考信号测量量获取所述第二传播延迟差异量的步骤,包括:所述第一通信设备获取第一测量量和第二测量量;所述第一通信设备根据所述第一测量量和第二测量量,确定从所述第二通信设备到所述第一通信设备之间的第一时延,以及从所述第二通信设备发送、再经所述第三通信设备反射到所述第一通信设备之间的第三时延;所述第一通信设备根据所述第三时延和所述第一时延确定所述第二传播延迟差异量。
可选的,所述第二传播延迟差异量为:其中, 表示所述第三时延,表示所述第一时延,τ2,3表示第二通信设备与第三通信设备之间的第二定位延迟参数,τ2,1表示第二通信设备与第一通信设备之间的第二定位延迟参数,τ3,1表示第三通信设备与第一通信设备之间的第二定位延迟参数,表示所述第二通信设备所经历的定时误差,表示所述第一通信设备所经历的定时误差,所述第二通信设备和所述第三通信设备是所述定位组的通信设备。
可选的,所述L个所述第二传播延迟差异量为:其中,表示所述发送端为第二通信设备、接收端为第一通信设备、反射端为第三通信设备时的第二传播延迟差异量,表示所述发送端为第二通信设备、接收端为第三通信设备、反射端为第一通信设备时的第二传播延迟差异量,表示所述发送端为第一通信设备、接收端为第三通信设备、反射端为第二通信设备时的第二传播延迟差异量。
可选的,所述第二定位延迟参数对应的矢量x表示为:x=(ATA)-1ATy;其中, 表示所述发送端为第二通信设备、接收端为第一通信设备、反射端为第三通信设备时的第二传播延迟差异量,表示所述发送端为第二通信设备、接收端为第三通信设备、反射端为第一通信设备时的第二传播延迟差异量,表示所述发送端为第一通信设备、接收端为第三通信设备、反射端为第二通信设备时的第二传播延迟差异量。
可选的,位于同一所述定位组中的通信设备包括移动通信设备和/或固定通信设备。
可选的,在存在多个发送端同时发送参考信号或一个发送端在不同资源上同时发送多个参考信号的情况下,各所述参考信号之间相互正交。
如图6所示,为本申请一示例性实施例提供的组定位装置600的结构示意图,定位组至少包括第一通信设备、第二通信设备和第三通信设备,该装置600包括第一处理模块610,用于执行以下至少一项:向所述第一通信设备或所述第三通信设备发送所述第二通信设备的位置信息;发送目标参考信号RS;接收所述第一通信设备发送的目标RS,并按照第一正交调制序列对所述目标RS进行调制后发送反射;接收所述第一通信设备发送的目标RS以及所述第三通信设备发送的反射信号,所述反射信号是所述第三通信设备按照第一正交调制序列对所述目标RS进行调制得到,以及向所述第一通信设备发送位置相关信息;接收目标反射体反射的反射信号,所述反射信号与目标RS对应;以及,向第一通信设备发送第一传播时延差异量;其中,所述第一传播时延差异量为所述第二通信设备与所述定位组中除所述第一通信设备和所述第二通信设备之外的任意一个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径。
如图7所示,如图所示,为本申请一示例性实施例提供的组定位装置700的结构示意图,应用于目标设备,所述装置700包括:第二处理模块710,用于在第一时间单元内,所述目标设备作为第一通信设备,执行方法实施例200-400中的步骤;以及在第二时间单元内,所述目标设备作为第二通信设备,执行如方法实施例200-400中的步骤。
本申请实施例中的组定位装置500-700可以是终端或网络侧设备,终端可以包括但不限于上述所列举的终端11的类型,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的组定位装置500-700能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802存储有可在所述处理器801上运行的程序或指令,例如,该通信设备800为终端时,该程序或指令被处理器801执行时实现上述组定位方法实施例的各个步骤,且能达到相同的技术效果。该通信设备800为网络侧设备时,该程序或指令被处理器801执行时实现上述组定位方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
一种实现方式中,所述通信设备800可以为网络侧设备,该网络侧设备可以包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如实施例200-400中所述的方法的步骤。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例 中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:天线901、射频装置902、基带装置903、处理器904和存储器905。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收信息,将接收的信息发送给基带装置903进行处理。在下行方向上,基带装置903对要发送的信息进行处理,并发送给射频装置902,射频装置902对收到的信息进行处理后经过天线901发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置903中实现,该基带装置903包基带处理器。
基带装置903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器905连接,以调用存储器905中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口906,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备900还包括:存储在存储器905上并可在处理器904上运行的指令或程序,处理器904调用存储器905中的指令或程序执行图5-图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
另一种实现方式中,所述通信设备800可以为终端,该终端可以包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如方法实施例200-400中所述的方法的步骤。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics  Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量;处理器1010,用于根据所述位置相关信息和所述第一传播时延差异量, 所述第一通信设备确定目标反射体的目标位置信息;其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。
可以理解,本实施例提及的各实现方式的实现过程可参照前述方法实施例200-400中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本实施例中,通过组定位的方式配合信号反射,实现对目标物体即目标反射体的精确定位,而且还能够保证在通信设备的收发机时钟在未进行校准的情况下,也能实现对目标反射体的精确定位。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述组定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述组定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序,该计算机程序存储在可读存储器,所述计算机程序被处理器执行时,实现上述组定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述组定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种无线通信系统,包括:至少包括第一通信设备、第二通信设备和第三通信设备,所述第一通信设备可用于执行如上方法实施例200-400中所述的方 法的步骤,所述第二通信设备可用于执行如上方法实施例600中所述的方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种组定位方法,包括:
    第一通信设备获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量;
    根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息;
    其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。
  2. 如权利要求1所述的方法,其中,根据所述位置相关信息和所述第一传播时延差异量,所述第一通信设备确定目标反射体的目标位置信息的步骤,包括:
    根据所述位置相关信息和所述第一传播时延差异量参数,确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数;
    根据所述第一定位时延参数确定所述目标反射体的目标位置信息。
  3. 如权利要求2所述的方法,其中,根据所述位置相关信息和所述第一传播时延差异量参数,确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数的步骤,包括:
    根据所述定位组中的各通信设备之间的第二定位时延参数和所述第一传播时延差异量参数确定所述目标反射体与所述定位组中的各通信设备之间的第一定位时延参数;
    其中,所述位置相关信息包括所述第二定位时延参数,或者,所述位置相关信息包括所述定位组中的各通信设备的位置信息,所述第二定位时延参数是根据所述位置信息确定的。
  4. 如权利要求1-3中任一项所述的方法,其中,N个所述第一传播延迟差异量如下所示:
    其中,表示发送端为第二通信设备、接收端为所述第一通信设备时的第一传播 延迟差异量,表示所述发送端为所述第二通信设备、接收端为第三通信设备时的第一传播延迟差异量,表示所述发送端为所述第一通信设备、接收端为所述第三通信设备时的第一传播延迟差异量,τ2,1表示所述第二通信设备与所述第一通信设备之间的第二定位延迟参数、τ2,3表示所述第二通信设备与所述第三通信设备之间的第二定位延迟参数、τ1,3表示所述第一通信设备与所述第三通信设备之间的第二定位延迟参数,表示所述第二通信设备与所述目标反射体之间的第一定位延迟参数,表示所述第一通信设备与所述目标反射体之间的第一定位延迟参数,表示所述目标反射体与所述第三通信设备之间的第一定位延迟参数,所述第二通信设备和所述第三通信设备是所述定位组中的通信设备。
  5. 如权利要求4所述的方法,其中,所述第一定位延迟参数对应的矢量x'为:
    x'=((A')TA')-1(A')Ty';
    其中,
  6. 如权利要求1-5中任一项所述的方法,其中,第一通信设备获取第一传播延迟差异量的步骤,包括以下至少一项:
    所述第一通信设备在作为接收端的情况下,根据自身获取到的参考信号测量量确定所述第一传播延迟差异量;
    所述第一通信设备在未作为接收端的情况下,接收来自所述定位组中除所述第一通信设备之外的其他通信设备发送的第一传播延迟差异量。
  7. 如权利要求6所述的方法,其中,所述第一通信设备在作为接收端的情况下,根据自身获取到的参考信号测量量确定所述第一传播延迟差异量的步骤,包括:
    所述第一通信设备获取第一测量量和第二测量量;
    所述第一通信设备根据所述第一测量量和第二测量量,确定从所述第二通信设备到所述第一通信设备之间的第一时延,以及从所述第二通信设备发送、再经所述目标反射体反射到所述第一通信设备时的第二时延;
    所述第一通信设备根据所述第二时延和所述第一时延确定所述第一传播延迟差异量;
    其中,所述第一测量量至少包括第一参考信号、第二参考信号、第三参考信号,所述第一参考信号是由所述第二通信设备在第一资源上发送,所述第二参考信号是所述第三通信设备根据第一正交调制方式对接收到的第一参考信号进行调制得到,所述第三参考信号是所述目标反射体对接收到的第一参考信号反射得到;
    所述第二测量量至少包括第四参考信号、第五参考信号、第六参考信号,所述第四参考信号是由所述第二通信设备在第二资源上发送,所述第五参考信号是所述第三通信设备根据第一正交调制方式对接收到的第四参考信号进行调制得到,所述第六参考信号是所述目标反射体对接收到的第四参考信号反射得到。
  8. 如权利要求7所述的方法,其中,所述第一传播延迟差异量为:
    其中,表示所述第一时延,表示所述第二时延,表示第二通信设备与所述目标反射体之间的第一定位延迟参数,表示所述目标反射体与所述第一通信设备之间的第一定位延迟参数,τ2,1表示所述第二通信设备与所述第一通信设备之间的第二定位延迟参数,表示所述第二通信设备所经历的定时误差,表示所述第一通信设备所经历的定时误差。
  9. 如权利要求7所述的方法,其中,所述第一通信设备在作为接收端的情况下,根据自身获取到的参考信号测量量确定所述第一传播延迟差异量的步骤,还包括:
    所述第一通信设备在所述第一传播延迟差异量的数量未达到所述N的情况下,按照第一规则更换发送端和/或反射端,以及基于更换后的发送端和/或反射端再次获取所述第一传播延迟差异量;
    其中,所述第一规则通过高层信令配置、且所述第一规则中配置了多个定位设备对的相关信息,每个所述定位设备对中包括至少一个发送端、至少一个反射端以及至少一个接收端,一个所述定位设备对包括所述定位组中的至少部分通信设备。
  10. 如权利要求9所述的方法,其中,在所述定位设备对中包括的通信设备的数量为S的情况下,每个所述定位设备对中的发送端、反射端、接收端的数量均小于或等于S-2,S≥3,S为正整数。
  11. 如权利要求7所述的方法,其中,所述第一资源和所述第二资源为不同的时域资 源,或所述第一资源和所述第二资源为同一时域上的不同频域资源,或所述第一资源和所述第二资源为同一时域上的不同空域资源,或所述第一资源和所述第二资源为同一时域上的不同码域资源。
  12. 如权利要求7所述的方法,其中,所述第一参考信号或所述第四参考信号包括追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS、定位参考信号UL-SRS中的任一项。
  13. 如权利要求7所述的方法,其中,所述第一正交调制方式包括通断键控OOK方式、二进制相移键控BPSK方式、码分多路复用CDM正交码方式中的任一项。
  14. 如权利要求3-13中任一项所述的方法,其中,所述第一通信设备获取定位组中各个通信设备的位置相关信息的步骤,包括:
    在所述位置相关信息未包括所述第二定位时延参数的情况下,所述第一通信设备获取对应不同反射路径的L个第二传播延迟差异量,以及根据所述L个第二传播延迟差异量确定第二定位延迟参数;
    其中,一个所述第二传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述定位组中任意一个通信设备反射的路径,不同的所述第一传播时延差异量对应所述定位组中的三个通信设备中不完全相同L为正整数,L≥3。
  15. 如权利要求1-14中任一项所述的方法,其中,所述N和所述L由高层配置。
  16. 如权利要求14所述的方法,其中,所述第一通信设备获取对应不同反射路径的L个第二传播延迟差异量的步骤,包括以下至少一项:
    在所述第一通信设备作为接收端的情况下,根据自身获取到的参考信号测量量获取所述第二传播延迟差异量;
    在所述第一通信设备未作为接收端的情况下,所述第一通信设备接收来自所述定位组中除所述第一通信设备之外的其他通信设备发送的第二传播延迟差异量。
  17. 如权利要求16所述的方法,其中,在所述第一通信设备作为接收端的情况下,根据自身获取到的参考信号测量量获取所述第二传播延迟差异量的步骤,包括:
    所述第一通信设备获取第一测量量和第二测量量;
    所述第一通信设备根据所述第一测量量和第二测量量,确定从所述第二通信设备到所述第一通信设备之间的第一时延,以及从所述第二通信设备发送、再经所述第三通信设备反射到所述第一通信设备之间的第三时延;
    所述第一通信设备根据所述第三时延和所述第一时延确定所述第二传播延迟差异量。
  18. 如权利要求17所述的方法,其中,所述第二传播延迟差异量为:
    其中,表示所述第三时延,表示所述第一时延,τ2,3表示第二通信设备与第三通信设备之间的第二定位延迟参数,τ2,1表示第二通信设备与第一通信设备之间的第二定位延迟参数,τ3,1表示第三通信设备与第一通信设备之间的第二定位延迟参数,表示所述第二通信设备所经历的定时误差,表示所述第一通信设备所经历的定时误差,所述第二通信设备和所述第三通信设备是所述定位组的通信设备。
  19. 如权利要求18所述的方法,其中,所述L个所述第二传播延迟差异量为:
    其中,表示所述发送端为第二通信设备、接收端为第一通信设备、反射端为第三通信设备时的第二传播延迟差异量,表示所述发送端为第二通信设备、接收端为第三通信设备、反射端为第一通信设备时的第二传播延迟差异量,表示所述发送端为第一通信设备、接收端为第三通信设备、反射端为第二通信设备时的第二传播延迟差异量。
  20. 如权利要求17所述的方法,其中,所述第二定位延迟参数对应的矢量x表示为:
    x=(ATA)-1ATy;
    其中,表示所述发送端为第二通信设备、接收端为第一通信设备、反射端为第三通信设备时的第二传播延迟差异量,表示所述发送端为第二通信设备、接收端为第三通信设备、反射端为第一通信设备时的第二传播延迟差异量,表示所述发送端为第一通信设备、接收端为第三通信设备、反 射端为第二通信设备时的第二传播延迟差异量。
  21. 如权利要求1-20中任一项所述的方法,其中,位于同一所述定位组中的通信设备包括移动通信设备和/或固定通信设备。
  22. 如权利要求1-20中任一项所述的方法,其中,在存在多个发送端同时发送参考信号或一个发送端在不同资源上同时发送多个参考信号的情况下,各所述参考信号之间相互正交。
  23. 一种组定位方法,定位组至少包括第一通信设备、第二通信设备和第三通信设备,所述方法包括:
    所述第二通信设备执行以下至少一项:
    向所述第一通信设备或所述第三通信设备发送所述第二通信设备的位置信息;
    发送目标参考信号RS;
    接收所述第一通信设备发送的目标RS,并按照第一正交调制序列对所述目标RS进行调制后发送反射;
    接收所述第一通信设备发送的目标RS以及所述第三通信设备发送的反射信号,所述反射信号是所述第三通信设备按照第一正交调制序列对所述目标RS进行调制得到,以及向所述第一通信设备发送位置相关信息;
    接收目标反射体反射的反射信号,所述反射信号与目标RS对应;以及,向第一通信设备发送第一传播时延差异量;其中,所述第一传播时延差异量为所述第二通信设备与所述定位组中除所述第一通信设备和所述第二通信设备之外的任意一个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径。
  24. 一种组定位方法,由目标设备执行,所述方法包括:
    在第一时间单元内,所述目标设备作为第一通信设备,执行如权利要求1至22中任一项所述的组定位方法;
    在第二时间单元内,所述目标设备作为第二通信设备,执行如权利要求23中所述的组定位方法。
  25. 一种组定位装置,应用于第一通信设备,所述装置包括:
    获取模块,用于获取定位组中各个通信设备的位置相关信息以及第一传播时延差异量;
    确定模块,用于根据所述位置相关信息和所述第一传播时延差异量,确定目标反射体的目标位置信息;
    其中,所述定位组包括所述第一通信设备在内的M个通信设备,所述第一传播时延 差异量的数量为N个,一个所述第一传播时延差异量为所述定位组中任意两个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径,不同的所述第一传播时延差异量对应所述定位组中的两个通信设备不完全相同,N、M为正整数,且M≥N≥3。
  26. 一种组定位装置,定位组至少包括第一通信设备、第二通信设备和第三通信设备,所述装置包括:
    第一处理模块,用于执行以下至少一项:
    向所述第一通信设备或所述第三通信设备发送所述第二通信设备的位置信息;
    发送目标参考信号RS;
    接收所述第一通信设备发送的目标RS,并按照第一正交调制序列对所述目标RS进行调制后发送反射;
    接收所述第一通信设备发送的目标RS以及所述第三通信设备发送的反射信号,所述反射信号是所述第三通信设备按照第一正交调制序列对所述目标RS进行调制得到,以及向所述第一通信设备发送位置相关信息;
    接收目标反射体反射的反射信号,所述反射信号与目标RS对应;以及,向第一通信设备发送第一传播时延差异量;其中,所述第一传播时延差异量为所述第二通信设备与所述定位组中除所述第一通信设备和所述第二通信设备之外的任意一个通信设备之间的传播路径的传播时延差异量,且所述传播路径为经过所述目标反射体反射的路径。
  27. 一种组定位装置,应用于目标设备,所述装置包括:
    第二处理模块,用于在第一时间单元内,所述目标设备作为第一通信设备,执行如权利要求1至22中任一项所述的组定位方法;以及
    在第二时间单元内,所述目标设备作为第二通信设备,执行如权利要求23中所述的组定位方法。
  28. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至22中任一项所述的组定位方法的步骤,或者,实现如权利要求23所述的组定位方法的步骤,或实现如权利要求24所述的组定位方法的步骤。
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至22中任一项所述的组定位方法的步骤,或者,实现如权利要求23所述的组定位方法的步骤,或实现如权利要求24所述的组定位方法的步骤。
PCT/CN2023/078538 2022-02-28 2023-02-27 组定位方法、装置及通信设备 WO2023160711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210193682.7 2022-02-28
CN202210193682.7A CN116709171A (zh) 2022-02-28 2022-02-28 组定位方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2023160711A1 true WO2023160711A1 (zh) 2023-08-31

Family

ID=87764890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078538 WO2023160711A1 (zh) 2022-02-28 2023-02-27 组定位方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN116709171A (zh)
WO (1) WO2023160711A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192573A (ja) * 2006-01-17 2007-08-02 Mitsubishi Electric Corp 目標測位装置
JP2007192575A (ja) * 2006-01-17 2007-08-02 Mitsubishi Electric Corp 目標測位装置
CN103298098A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 多基站协作中调整数据同步的方法及系统
CN103379427A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 一种定位方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192573A (ja) * 2006-01-17 2007-08-02 Mitsubishi Electric Corp 目標測位装置
JP2007192575A (ja) * 2006-01-17 2007-08-02 Mitsubishi Electric Corp 目標測位装置
CN103298098A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 多基站协作中调整数据同步的方法及系统
CN103379427A (zh) * 2012-04-13 2013-10-30 华为技术有限公司 一种定位方法、设备及系统

Also Published As

Publication number Publication date
CN116709171A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US20200333427A1 (en) Method, apparatus, and system for positioning terminal device
KR20220150355A (ko) 정보 리포팅 방법, 액세스 방식 결정 방법, 단말기 및 네트워크 기기
WO2021032267A1 (en) Non-line-of-sight path detection for user equipment positioning in wireless networks
US20210058744A1 (en) Method and apparatus for localization
US20180329023A1 (en) System and method for wireless time-of-arrival localization
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
US10139484B2 (en) Apparatus and method for wireless distance measurement
WO2023160711A1 (zh) 组定位方法、装置及通信设备
WO2022179499A1 (zh) 信道信息获取方法、装置及通信设备
WO2023151590A1 (zh) 组定位方法、装置、用户设备及存储介质
WO2023138673A1 (zh) 定时校准的方法、装置及通信设备
WO2023151555A1 (zh) 定位方法、装置、用户设备及存储介质
WO2023125986A1 (zh) 定位方法、装置及通信设备
WO2023125997A1 (zh) 定位方法、装置及通信设备
WO2024131688A1 (zh) 感知方法、感知装置及通信设备
WO2023151657A1 (zh) 信息处理方法及通信设备
WO2024131689A1 (zh) 感知方法、感知装置及通信设备
WO2024027664A1 (zh) 载波相位定位方法、装置、设备及介质
WO2023125656A1 (zh) 多端口定位参考信号配置方法、装置及通信设备
WO2023088423A1 (zh) 定位方法、装置、终端及网络侧设备
WO2024131752A1 (zh) 感知方法、感知装置、通信设备及存储介质
WO2024007950A1 (zh) Sl定位方法、设备及可读存储介质
EP4387179A1 (en) Data transmission processing method and apparatus, communication device, and storage medium
WO2023185865A1 (zh) 模型有效性反馈方法、装置、终端及网络侧设备
WO2023198069A1 (zh) 定位方法、装置、终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759332

Country of ref document: EP

Kind code of ref document: A1