WO2023151555A1 - 定位方法、装置、用户设备及存储介质 - Google Patents

定位方法、装置、用户设备及存储介质 Download PDF

Info

Publication number
WO2023151555A1
WO2023151555A1 PCT/CN2023/074801 CN2023074801W WO2023151555A1 WO 2023151555 A1 WO2023151555 A1 WO 2023151555A1 CN 2023074801 W CN2023074801 W CN 2023074801W WO 2023151555 A1 WO2023151555 A1 WO 2023151555A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
wireless communication
signal
positioning
target
Prior art date
Application number
PCT/CN2023/074801
Other languages
English (en)
French (fr)
Inventor
姜大洁
吴建明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023151555A1 publication Critical patent/WO2023151555A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a positioning method, device, user equipment and storage medium.
  • the positioning system of mobile wireless communication equipment (such as mobile user equipment (Mobile User Equipment), sidelink user equipment (Sidelink UE) or source base station (gNB), etc.) has timing errors in signal transmission and signal reception (Timing Error) and mobility and other issues, and affect its positioning accuracy. Therefore, in order to improve the positioning accuracy, the mobile wireless communication device needs to regularly calibrate its own clock. In order to reduce the timing error of the mobile wireless communication device sending or receiving signals, a calibration UE or gNB with a known accurate position can be introduced. However, in When mobile wireless communication devices are constantly moving and may be out of signal coverage, it is also difficult to calibrate through the above methods. Therefore, how to accurately locate mobile wireless communication devices is an urgent problem to be solved.
  • Mobile User Equipment Mobile User Equipment
  • Sidelink UE sidelink user equipment
  • gNB source base station
  • the embodiment of the present application provides a positioning method, which can accurately locate mobile wireless communication devices.
  • a positioning method is provided, which is performed by a first wireless communication device, and the method includes: the first wireless communication device receives a target reference signal RS sent by a second wireless communication device; The communication device sends a first signal, where the first signal is a reflection signal corresponding to the target RS, and the first signal is used to indicate location-related information of the first wireless communication device and the second wireless communication device.
  • a positioning method executed by a second wireless communication device comprising: the second wireless communication device sends a first reference signal RS to a third wireless communication device, and sends a target RS to the first wireless communication device RS; wherein, the first RS and the target RS are used to indicate the location-related information of the first wireless communication device and the second wireless communication device.
  • a positioning method is provided, which is executed by a third wireless communication device, and the method includes: the third wireless communication device receives a first reference signal RS sent by the second wireless communication device; the third wireless communication device receives the first reference signal RS sent by the second wireless communication device; The first signal sent by the wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the target RS is the RS sent by the second wireless communication device to the first wireless communication device; the third wireless communication device according to the first RS and the first RS A signal for positioning the first wireless communication device and the second wireless communication device.
  • a positioning method which is performed by a target device, and the method includes: in a first time slot, the target device acts as a first wireless communication device, receives a target reference signal RS sent by a second wireless communication device, and Sending a first signal to the third wireless communication device, where the first signal is a reflected signal corresponding to the target RS; in the second time slot, the target device serves as the second wireless communication device and sends the first reference signal RS to the third wireless communication device, and sending the target RS to the first wireless communication device; in the third time slot, the target device, as the third wireless communication device, receives the first RS sent by the second wireless communication device, receives the first signal sent by the first wireless communication device, and perform positioning on the first wireless communication device and the second wireless communication device according to the first RS and the first signal; wherein, the first wireless communication device is used to perform the positioning method as described in the first aspect, and the second wireless communication device is used to The positioning method according to the second aspect is executed, and the
  • a positioning device includes: a receiving module and a sending module.
  • the receiving module is configured to receive the target reference signal RS sent by the second wireless communication device.
  • the sending module is configured to send a first signal to the third wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the first signal is used to indicate location-related information of the first wireless communication device and the second wireless communication device.
  • a positioning device in a sixth aspect, includes: a sending module.
  • a sending module configured to send a first reference signal RS to the third wireless communication device, and send a target RS to the first wireless communication device; wherein, the first RS and the target RS are used to indicate that the first wireless communication device and the second wireless communication Device location related information.
  • a positioning device in a seventh aspect, includes: a receiving module and a positioning module.
  • the receiving module is configured to receive the first reference signal RS sent by the second wireless communication device; and receive the first signal sent by the first wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the target RS is the second wireless communication
  • the positioning module is configured to locate the first wireless communication device and the second wireless communication device according to the first RS and the first signal received by the receiving module.
  • a positioning device in an eighth aspect, includes: a receiving module, a sending module, and a positioning module.
  • the receiving module is configured to, as the first wireless communication device, receive the target reference signal RS sent by the second wireless communication device in the first time slot, and send The third wireless communication device sends a first signal, where the first signal is a reflected signal corresponding to the target RS.
  • the sending module is configured to, as the second wireless communication device, send the first reference signal RS to the third wireless communication device, and send the target RS to the first wireless communication device within the second time slot.
  • the receiving module is further configured to, as the third wireless communication device, receive the first RS sent by the second wireless communication device and receive the first signal sent by the first wireless communication device in the third time slot.
  • the positioning module is configured to locate the first wireless communication device and the second wireless communication device according to the first RS and the first signal received by the receiving module.
  • the first wireless communication device is used to execute the positioning device described in the fifth aspect
  • the second wireless communication device is used to execute the positioning device described in the sixth aspect
  • the third communication device is used to execute the positioning device described in the seventh aspect. the positioning device described above.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor Realize the steps of the positioning method described in the first aspect, or realize the steps of the positioning method described in the second aspect, or realize the steps of the positioning method described in the third aspect, or realize the steps of the positioning method described in the fourth aspect The steps of the positioning method.
  • a terminal including a processor and a communication interface, wherein the processor is configured to receive a target reference signal RS sent by a second wireless communication device, and send a first signal to a third wireless communication device, the first The first signal is a reflected signal corresponding to the target RS, and the first signal is used to indicate location-related information of the first wireless communication device and the second wireless communication device.
  • the processor is configured to receive a target reference signal RS sent by a second wireless communication device, and send a first signal to a third wireless communication device, the first The first signal is a reflected signal corresponding to the target RS, and the first signal is used to indicate location-related information of the first wireless communication device and the second wireless communication device.
  • a terminal including a processor and a communication interface, wherein the processor is configured to send a first reference signal RS to a third wireless communication device, and send a target RS to the first wireless communication device; wherein , the first RS and the target RS are used to indicate location-related information of the first wireless communication device and the second wireless communication device.
  • a terminal including a processor and a communication interface, wherein the processor is configured to receive the first reference signal RS sent by the second wireless communication device; receive the first signal RS sent by the first wireless communication device , the first signal is the reflected signal corresponding to the target RS, the target RS is the RS sent by the second wireless communication device to the first wireless communication device, and according to the first RS and the first signal received by the receiving module, the first wireless communication The device and the second wireless communication device are positioned.
  • a terminal including a processor and a communication interface, wherein the processor is configured to, as a first wireless communication device, receive a target reference signal sent by a second wireless communication device in a first time slot RS, and send a first signal to the third wireless communication device, the first signal is the reflected signal corresponding to the target RS, and in the second time slot, as the second wireless communication device, send the first reference signal RS to the third wireless communication device , and send the target RS to the first wireless communication device, and in the third time slot, as the third wireless communication device, receive the first RS sent by the second wireless communication device, receive the first signal sent by the first wireless communication device, and Positioning is performed on the first wireless communication device and the second wireless communication device according to the first RS and the first signal received by the receiving module.
  • the first wireless communication device is used to execute the UE described in the tenth aspect
  • the second wireless communication device is used to execute the UE described in the eleventh aspect
  • the third communication device is used to execute the UE described in the twelfth aspect UE described above.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and the program or instruction satisfies at least one of the following: when executed by a processor of the first communication device, the following The steps of the positioning method described in one aspect; when executed by the processor of the second communication device, the steps of the positioning method described in the second aspect are realized; when executed by the processor of the third communication device, the steps described in the third aspect are realized When the steps of the positioning method are executed by the processor of the target communication device, the steps of the positioning method according to the fourth aspect are realized.
  • a chip in a fifteenth aspect, there is provided a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect
  • a computer program/program product is provided, the computer program/program product is stored in a non-volatile storage medium, and the program/program product is executed by at least one processor to implement the first
  • the steps of the positioning method described in the first aspect, or the steps of the positioning method described in the second aspect, or the steps of the positioning method described in the third aspect, or the steps of the positioning method described in the fourth aspect are executed by at least one processor to implement the first.
  • a seventeenth aspect provides a positioning system
  • the positioning system includes the first wireless communication device as described in the first aspect, the second wireless communication device as described in the second aspect, and the first wireless communication device as described in the third aspect
  • Three communication devices, and/or the target device as described in the fourth aspect the positioning system is used to execute and implement the steps of the positioning method as described in the first aspect, or implement the positioning method as described in the second aspect steps, or realize the steps of the positioning method according to the third aspect, or realize the steps of the positioning method according to the fourth aspect.
  • the first wireless communication device receives the target reference signal RS sent by the second wireless communication device; the first wireless communication device sends a first signal to the third wireless communication device, and the first signal is the RS corresponding to the target RS The reflection signal, where the first signal is used to indicate location-related information of the first wireless communication device and the second wireless communication device. Since the first wireless communication device can receive the target RS sent by the second wireless communication device, and send the reflected signal corresponding to the target RS to the third wireless wireless communication device, that is, the first signal, the first signal is used only for the first wireless communication device. location-related information of the communication device and the second wireless communication device, so that there is no need to introduce Quasi-UE or gNB can also accurately locate wireless communication devices.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a timing error of a gNB provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a precision time protocol (PTP) provided by an embodiment of the present application.
  • PTP precision time protocol
  • FIG. 4 is a schematic diagram of the principle of a precise time protocol provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a positioning model based on backscatterers provided by the embodiment of the present application.
  • Fig. 6 is one of the schematic diagrams of a positioning method provided by the embodiment of the present application.
  • Fig. 7 is the second schematic diagram of a positioning method provided by the embodiment of the present application.
  • Fig. 8 is the third schematic diagram of a positioning method provided by the embodiment of the present application.
  • Fig. 9 is the fourth schematic diagram of a positioning method provided by the embodiment of the present application.
  • Fig. 10 is the fifth schematic diagram of a positioning method provided by the embodiment of the present application.
  • Fig. 11 is the sixth schematic diagram of a positioning method provided by the embodiment of the present application.
  • Fig. 12 is the seventh schematic diagram of a positioning method provided by the embodiment of the present application.
  • Fig. 13 is one of the structural schematic diagrams of a positioning device provided by the embodiment of the present application.
  • Fig. 14 is the second structural schematic diagram of a positioning device provided by the embodiment of the present application.
  • Fig. 15 is the third structural schematic diagram of a positioning device provided by the embodiment of the present application.
  • Fig. 16 is the fourth structural schematic diagram of a positioning device provided by the embodiment of the present application.
  • FIG. 17 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the specification and claims means at least one of the connected objects, for example, A and/or B includes only A, only B, and A and B.
  • A, B, and/or C include at least one of A, B, and C, that is, include A; B; C; A and B; B and C; A and C; A, B, and C , and so on, the character "/" generally indicates that the associated objects are an "or" relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a Node B, an evolved Node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node , Transmitting Receiving Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application Only the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • gNB/UE sends Tx/receives Rx timing error (Timing Errer)
  • gNB and UE clock error there are two types of timing errors between gNB and UE: one is gNB and UE clock error, and the other is gNB and UE calibration error.
  • the user equipment side shown in FIG. 2 also has two kinds of timing errors. However, for the UE side, if the received signals arriving from different directions pass through the same radio frequency (Radio Frequency, RF) chain in the same antenna panel, these two errors can be completely eliminated.
  • Figure 2 shows the timing error of gNB.
  • Timing Calibration, TC Timing Calibration
  • TC Timing Calibration
  • FIG. 3 shows a precision time protocol PTP provided by the embodiment of the present application.
  • the master clock (Master Clock) is the provider of time
  • the slave clock (Slave Clock) is synchronized with the master clock.
  • a Grandmaster is a master clock synchronized to a time reference such as GPS or Code Division Multiple Access (CDMA).
  • Clock synchronization on the network requires at least one master clock and one slave clock, wherein multiple slave clocks can be synchronized to one master clock.
  • the principle of the precise time protocol is that the master clock terminal and the slave clock terminal send and receive calibration signals to each other to complete clock calibration.
  • the RF of the master clock terminal or the slave clock terminal is different, generally, t A ⁇ t′ A and t B ⁇ t′ B .
  • t′ ⁇ t ⁇ , then the clock calibration value t ⁇ between A and B, and the propagation delay between A and B
  • the value t d can be calculated and obtained by the following formulas respectively:
  • wireless communication devices can be positioned through Backscatter, and in the method for realizing positioning based on Backscatter, the Obtaining Backscatter provides ID (for example, EPC) and other related information, so that the receiving end can easily determine the position of the reflective object, confirm the reflective object and track the reflective object.
  • ID for example, EPC
  • FIG. 5 shows a backscatter-based positioning model provided by an embodiment of the present application.
  • the sending end is the i-th Tx UE, which transmits a positioning pilot reference signal (Positioning Reference Signal, PRS), and the k-th Backscatter is controlled by binary phase shift keying (Binary Phase Shift Keying, BPSK) or on-off keying ( On-Off Keying (OOK) or CDM orthogonal code signal modulates its own related ID information on the received signal, and reflects it to the Rx UE at the receiving end.
  • the receiving end is gNB, which can receive the Backscatter reflection signal, and simultaneously receive the reflection signal of the unknown reflector and the diameter signal of the sending end.
  • the kth Backscatter reflection signal is an effective signal, and gNB can receive it and calculate the specific coordinates of the target Backscatter, which is the same as GPS receiving signals.
  • the required number of gNBs is above 4 to ensure the relative accuracy of positioning.
  • L gNBs receive signals and simultaneously locate the i-th Tx UE and the k-th Backscatter.
  • the gNB can also receive reflection signals of other Backscatters (excluding the reflection signal of the k-th Backscatter), reflection signals of unknown reflectors, and diameter signals of the sending end.
  • these signals are interfering signals and, therefore, need to be eliminated before positioning calculations in order to ensure positioning accuracy.
  • the Tx UE sends a positioning pilot reference signal (ie, PRS) s[n] in the nth symbol, and the s[n] signal passes through the channel response in the time slot m Received directly by the lth gNB, while the s[n] signal responds via the channel Received by the kth Backscatter.
  • the received signal of the kth Backscatter is modulated by b k, m symbols in the same time slot m, and responds with the channel response Reflected to the lth gNB, ⁇ is the complex attenuation backscatter signal coefficient (Complex Attenuation of the Backscattered SignalsS).
  • ⁇ j is the attenuation coefficient of the jth unknown reflector including the radar cross section (Rader Cross Section, RCS), and are the reflected channel responses of the jth unknown reflector for the Tx UE and for the gNB, respectively.
  • w l, m [n] is the additive white Gaussian noise (Additive White Gaussian Noise, AWGN) received by the l-th gNB at the n-th symbol in time slot m.
  • the mean value of the additive white Gaussian noise is zero and the noise
  • the power spectral density is
  • the channel response may be considered as a static channel, and the channel response does not change within a certain period of time. Therefore, the channel response shown in the description has nothing to do with the time slot, but the embodiments described in this application can also be applied to the scenario of dynamic channel response.
  • the embodiment of the present application considers the problem of interference to the target Backscatter in this scenario. Through the above formula, it can be determined that there are three items that can be considered as interference items. The first item is the diameter signal from the Tx UE, the second item is the reflection signal from the Backscatter (including the target Backscatter reflection signal and the non-target Backscatter reflection signal), and the third item is the reflection signal from an unknown reflector.
  • the positioning targets are Tx UE and target Backscatter.
  • Tx UE positioning since the diameter signal from Tx UE to gNB is much larger than the reflected signal from Backscatter and unknown reflectors, the impact of this interference on Tx UE positioning performance will be relatively small.
  • the interference from the Tx UE, other Backscatters and reflected signals from unknown reflectors must be considered.
  • Backscatter modulation signals can be designed by OOK.
  • the kth Backscatter can modulate the reflected signal based on the On/Off modulation sequence B k signal, and its modulation sequence can be represented by the following matrix:
  • the received signal in order to derive the positioning signal from the kth Backscatter, the received signal can be calculated by the following method:
  • the PRS signal sent from the i-th UE is also reflected by other Backscatters (except the k-th Backscatter) and unknown reflectors, but these signals can be completely eliminated by the l-th gNB.
  • the received signal in order to derive the i-th UE positioning signal, the received signal can be calculated by the following method:
  • the Backscatter modulation signal may be designed through BPSK.
  • the kth Backscatter can modulate the reflected signal based on the BPSK modulation sequence B k signal, and its modulation sequence can be represented by the following matrix:
  • the received signal in order to derive the positioning signal from the kth tag, can be calculated by the following method:
  • the received signal can be calculated by the following method:
  • the Backscatter modulation signal may be designed by using a CDM orthogonal code method.
  • the kth Backscatter can modulate the reflected signal based on the BPSK modulation sequence B k signal, and the Hadamard code modulation sequence can be represented by the following matrix:
  • the Hadamard Code modulation sequence can be represented by the following matrix:
  • the received signal in order to derive the positioning signal from the kth tag, can be calculated by the following method:
  • k 1, 2, . . . , M-1.
  • the received signal can be calculated by the following method:
  • the maximum number of backscatters supported by the Hadamard code is 2 n -1. Therefore, the gain obtained by using the Hadamard code solution is much higher than that of the OOK or BPSK solutions, but the flexibility of the code is relatively poor.
  • the positioning signal of the kth Backscatter is relatively simple, the diameter signal from the UE to the gNB and the received signal from the UE to the gNB reflected by other Backscatters (except the kth Backscatter) can be completely eliminated; Signals from UE to gNB reflected by unknown reflectors can also be completely eliminated. Therefore, compared with the OOK scheme, the SNR gain that the BPSK scheme can achieve is 5.05dB ⁇ SNR ⁇ 6dB.
  • the SNR gain achieved by the BPSK scheme is 0dB ⁇ SNR ⁇ 3.8dB.
  • the positioning system of mobile wireless communication equipment (such as mobile communication user equipment Mobile UE, sidelink user equipment Sidelink UE, base station gNB, etc.) has the problem of Rx/Tx timing error, which affects the positioning accuracy of its mobile wireless communication equipment . Therefore, in order to improve the positioning accuracy, the wireless communication device needs to calibrate its own clock regularly.
  • a straightforward approach to overcome the Rx/Tx timing error of a wireless communication device could be to introduce a calibrated UE or gNB with a known accurate position or an accurate trajectory, however in real-world scenarios, especially when the wireless communication device is moving and may be out of coverage How to effectively set a calibration UE or gNB with an accurate location is a big problem to be solved urgently.
  • the wireless communication devices can be precisely positioned mutually without needing to calibrate the clocks of the transceivers.
  • the wireless communication device in this application can be any device with wireless transceiver function, for example, it can be a terminal, a base station, an Internet of Things device, a vehicle wireless device, a wireless identification TAG, etc., and the location of the wireless communication device Can be fixed or mobile.
  • the first wireless communication device sends a reference signal RS
  • the second wireless communication device receives the RS signal.
  • the first wireless communication device sends the RS signal again
  • the third wireless communication device receives the RS signal, and modulates and reflects the signal through the modulation sequence signal (that is, OOK or BPSK or CDM orthogonal code)
  • the second wireless communication device receives the RS signal sent by the first wireless communication device, and also receives the signal modulated and reflected by the third wireless communication device.
  • the second wireless communication device performs addition and subtraction operations on the signals according to the RS signals received at the first time and the second time, and separates the diameter signal from the first wireless communication device to the second wireless communication device, thereby The delay of the diameter signal is calculated, and at the same time, the reflection signal modulated and reflected by the third wireless communication device from the first wireless communication device to the second wireless communication device is also separated, so as to calculate the delay of the reflection path signal.
  • FIG. 6 shows a flow chart of the positioning method provided in the embodiment of the present application.
  • the positioning method provided in the embodiment of the present application may include the following steps 201 and 202 .
  • Step 201 the first wireless communication device receives the target reference signal RS sent by the second wireless communication device.
  • the above target RS includes at least one of the following: Tracking Reference Signal (Tracking Reference Signal, TRS), Channel State Information Reference Signal (Channel-State Information Reference Signal, CSI-RS), positioning reference Signal (Positioning Reference Signal, PRS) and sounding reference signal (Sounding Reference Signal, SRS).
  • Tracking Reference Signal Tracking Reference Signal
  • TRS Tracking Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PRS positioning reference Signal
  • Sounding Reference Signal Sounding Reference Signal
  • the first wireless communication device may serve as a reflection device, after receiving the target RS sent by the second wireless communication device, modulate the target RS, and reflect the modulated RS to other devices .
  • the above-mentioned first wireless communication device may be a user equipment UE, a base station, a side link device S-UE, a mobile user equipment, an Internet of Things device, a vehicle wireless device, etc.
  • the first wireless communication device is S-UE as an example, and the positioning method between mobile wireless communication devices is described. Taking other mobile wireless communication devices as an example, or the scene between the mobile wireless communication device and the source base station is also protected in Among the positioning methods provided in this application.
  • any S-UE can be considered as a fixed UE, a gNB, a Road Side Unit (RSU) or a Mobility vehicle wireless communication technology (Vehicle To Everything) UE.
  • RSU Road Side Unit
  • Mobility vehicle wireless communication technology Vehicle To Everything
  • the above-mentioned target RS may be configured, pre-configured, predefined, stipulated in a protocol, or independently determined by the S-UE, etc. by the network side device.
  • Step 202 the first wireless communication device sends a first signal to a third wireless communication device.
  • the first signal is a reflection signal corresponding to the target RS, and the first signal is used to indicate location-related information of the first wireless communication device and the second wireless communication device.
  • the first wireless communication device, the second wireless communication device, and the third wireless communication device are different communication devices in the same time slot; or, the first wireless communication device and the second wireless communication device and the third wireless communication device are different communication devices in different time slots; or, in different time slots, the first wireless communication device, the second wireless communication device, and the third wireless communication device switch between each other.
  • any S-UE can be used as the first wireless communication device, the second wireless communication device or the third wireless communication device, but in the same time slot, one S-UE - The UE cannot act as the first wireless communication device, the second wireless communication device and the third wireless communication device at the same time.
  • the position of the first wireless communication device is fixed, or the position of the first wireless communication device moves along the first trajectory; wherein, the position of the first wireless communication device is the position of the third wireless communication device known information.
  • three S-UEs are included: the first wireless communication device, the second wireless communication device, and the third wireless communication device.
  • the The propagation delay amount of the propagation path of the RS signal is used to locate all S-UEs, or to locate some S-UEs according to requirements.
  • the positioning method provided in the embodiment of the present application further includes the following step 301.
  • Step 301 the first wireless communication device modulates the target RS by modulating a sequence signal to obtain a first signal.
  • the above-mentioned modulation sequence signal is determined by any one of the following methods: on-off keying OOK method, binary phase shift keying BPSK method, code division multiplexing CDM orthogonal code method .
  • the manner in which the first wireless communication device modulates the target RS by using the modulation sequence signal may refer to the method described in the above Backscatter modulation signal design, and to avoid repetition, details are not repeated here.
  • the first wireless communication device as a reflection device, receives the target RS sent by the second wireless communication device, and modulates the target RS according to the modulation sequence to obtain the first signal, it may send the first signal to the second wireless communication device.
  • the third wireless communication device sends the first signal to indicate the location-related information of the first wireless communication device and the second wireless communication device to the third wireless communication device.
  • the present application actually provides a positioning method, which is executed by the first wireless communication device, the first wireless communication device receives the target reference signal RS sent by the second wireless communication device; the first wireless communication device sends the first signal to the third wireless communication device , the first signal is a reflection signal corresponding to the target RS, and the first signal is used to indicate location-related information of the first wireless communication device and the second wireless communication device. Since the first wireless communication device can receive the target RS sent by the second wireless communication device, and send a reflected signal corresponding to the target RS to the third wireless wireless communication device, that is, the first signal, the first signal is used to indicate that the first wireless communication device Positioning-related information of the communication device and the second wireless communication device. In this way, the wireless communication device can be precisely positioned without introducing a calibration UE or gNB.
  • FIG. 8 shows a flow chart of the positioning method provided in the embodiment of the present application.
  • the positioning method provided in the embodiment of the present application may include the following step 401 .
  • Step 401 the second wireless communication device sends a first reference signal RS to a third wireless communication device, and sends a target RS to the first wireless communication device.
  • the first RS and the target RS are used to indicate the positioning related information of the first wireless communication device and the second wireless communication device.
  • the second wireless communication device may send the first RS to the third wireless communication device at the first preset time, and send the target RS to the first wireless communication device at the second preset time, wherein the first preset time is the same as the second preset time, or the first preset time is different from the second preset time.
  • the first RS and the target RS are the same physical signal, or different physical signals.
  • the first RS and/or the target RS include at least one of the following: a tracking reference signal TRS, a channel state information reference signal CSI-RS, and a positioning reference signal PRS.
  • step 401 may be specifically implemented through the following step 401a or step 401b.
  • Step 401a the second wireless communication device sends a first RS to the third wireless communication device at a first time, and sends a target RS to the first wireless communication device at a second time.
  • the second wireless communication device may send the first RS to the third wireless communication device at the first time, and send the target RS to the first wireless communication device again at the second time, so that the second wireless communication device
  • the communication device can send a message to the third wireless communication device through two paths send signal.
  • Step 401b the second wireless communication device sends the first RS to the third wireless communication device at a third time, and simultaneously sends the target RS to the first wireless communication device.
  • the second wireless communication device may send the first RS to the third wireless communication at the third time, and at the same time send the target RS to the first wireless communication device, so that the second wireless communication device can The signal is sent to the third wireless communication device via two paths.
  • An embodiment of the present application provides a positioning method, which is executed by a second wireless communication device.
  • the second wireless communication device sends a first reference signal RS to a third wireless communication device, and sends a target RS to the first wireless communication device. Since the first The RS and the target RS include location-related information for indicating the first wireless communication device and the second wireless communication device, so that the wireless communication device can be accurately positioned without introducing a calibration UE or gNB.
  • FIG. 9 shows a flow chart of the positioning method provided in the embodiment of the present application.
  • the positioning method provided in the embodiment of the present application may include the following steps 501 to 503 .
  • Step 501 the third wireless communication device receives the first reference signal RS sent by the second wireless communication device.
  • the third wireless communication device may receive the first RS sent by the second wireless communication device through the direct path.
  • Step 502 the third wireless communication device receives the first signal sent by the first wireless communication device.
  • the first signal is a reflected signal corresponding to the target RS
  • the target RS is the RS sent by the second wireless communication device to the first wireless communication device.
  • the third wireless communication device may simultaneously receive the first signal sent by the first wireless communication device through the reflection path.
  • Step 503 the third wireless communication device locates the first wireless communication device and the second wireless communication device according to the first RS and the first signal.
  • the third wireless communication device may calculate the first RS and the first signal after receiving the first RS and the first signal, so that the first wireless communication device and the second Positioning of wireless communication devices.
  • step 503 may be specifically implemented through the following steps 503a to 503c.
  • Step 503a the third wireless communication device determines the diameter signal according to the first RS.
  • the diameter signal is:
  • a 2 is determined by the signal gain of the modulation sequence signal
  • w' 2,3 [n] are the additive white Gaussian noise AWGN received by the second wireless communication device in the nth symbol
  • AWGN includes interference signals.
  • Step 503b the third wireless communication device determines a reflection path signal according to the first signal.
  • the reflection path signal is:
  • a 1 is determined by the signal gain of the modulated sequence signal, and w" 2.3 [n] are the additive white Gaussian noise AWGN received by the second wireless communication device in the nth symbol, and AWGN includes interference signals.
  • the third wireless communication device may receive the first RS sent by the second wireless communication device through the direct path in the mth time slot, where the direct path of the first RS is: h 2,3 ( ⁇ 2,3 ), and experienced a time delay ⁇ 2,3 , in the same time slot, the third wireless communication device can receive the transmission from the second wireless communication device to the first wireless communication device, and through The modulated and reflected first signal of the first wireless communication device, wherein the reflection paths of the first signal are: h 2,1 ( ⁇ 2,1 ) and h 1,3 ( ⁇ 1,3 ), and manage Time delay ⁇ 2,1 and ⁇ 1,3 , the reflection path of the reflected signal through the unknown device j is respectively and
  • the process of dealing with delay time, modulation and reflection completion can be understood as a process of amplifying and forwarding the reception preference, that is, the process of Amplify-and-Forward (AF). Therefore, the total signal received by the third wireless communication device can be expressed as:
  • ⁇ ' is the complex attenuated backscatter signal coefficient transmitted by the first wireless communication device, including the power amplification factor of the received signal by the first wireless communication device
  • ⁇ j is the jth including the radar cross section The attenuation coefficient of the unknown reflector.
  • the third wireless communication device may separate the diameter signal and the reflection path signal from the total signal through calculation, and determine the diameter signal and the reflection path signal.
  • Step 503c the third wireless communication device locates the first wireless communication device and the second wireless communication device according to the diameter signal and the reflection path signal.
  • step 503c may be specifically implemented through the following steps 503c1 and 503c2.
  • Step 503c The third wireless communication device determines the first time delay according to the diameter signal, and determines the second time delay according to the reflection path signal.
  • the first time delay is a time delay of the diameter signal sent by the second wireless communication device to the third wireless communication device.
  • the second time delay is a time delay of a reflection path signal sent by the second wireless communication device to the third wireless communication device via the first wireless communication device.
  • the first delay is: in, for the time delay from the first, is the time offset of the diameter signal sent by the second wireless communication device, ⁇ 2,3 is the total propagation time of the diameter signal sent from the second wireless communication device to the third wireless communication device, A time offset at which the diameter signal is received by the third wireless communication device.
  • the second time delay is: in, is the second time delay, is the time offset of the second wireless communication device sending the reflection path signal, ⁇ 2,1 is the propagation time of the target RS signal sent from the second wireless communication device to the first wireless communication device, ⁇ 1,3 is the propagation time from the first wireless communication device the propagation time of the reflection path signal sent by the communication device to the third wireless communication device, It is the time offset at which the third wireless communication device receives the reflection path signal.
  • the timing errors experienced by the sending end and the receiving end are respectively and Since the radio frequency signals RF at the sending end and the receiving end are different, so
  • Step 503c2 the third wireless communication device locates the first wireless communication device and the second wireless communication device according to the first time delay and the second time delay.
  • step 503c2 may be specifically implemented through the following steps a and b.
  • Step a the third wireless communication device determines a first propagation delay difference according to the first time delay and the second time delay.
  • the first propagation delay difference is the difference between the propagation time of the first RS and the propagation time of the target RS.
  • the first propagation delay difference amount is:
  • the first difference in propagation delay is the difference in propagation delay of a signal sent from the second wireless communication device, modulated by the first wireless communication device, and reflected to the third wireless communication device. Therefore, it can be obtained from the first
  • the propagation delay difference of the signal sent by the three wireless communication devices, modulated by the first wireless communication device and reflected to the second wireless communication device is:
  • Step b The third wireless communication device locates the first wireless communication device and the second wireless communication device according to the first propagation delay difference.
  • the positioning method provided by the embodiment of the present application further includes the following steps 601 and 701 .
  • Step 601. The third wireless communication device receives second information sent by the first wireless communication device.
  • the first information includes a third time delay and a fourth time delay
  • the third time delay and the fourth time delay are when the second wireless communication device and the first wireless communication device switch between each other,
  • the third wireless communication device determines respectively according to the diameter signal and the reflection path signal.
  • the third time delay is the time delay of the diameter signal sent by the first converted second wireless communication device to the third wireless communication device; the fourth time delay is the time delay of the first converted second wireless communication device The time delay of the reflection path signal sent by the first wireless communication device to the third wireless communication device after the first conversion.
  • the third time delay and the fourth time delay are determined.
  • the delay process reference may be made to the determination process of the first time delay and the second time delay above. In order to avoid repetition, details are not repeated here.
  • Step 701 the third wireless communication device locates the first wireless communication device and the second wireless communication device according to the third time delay and the fourth time delay.
  • step 701 may be specifically implemented through the following step 701a.
  • Step 701a the third wireless communication device determines a second propagation delay difference according to the third time delay and the fourth time delay.
  • the second propagation delay difference is a difference between the propagation time of the first RS sent by the second wireless communication device after the first conversion and the propagation time of the target RS after the first conversion.
  • the second propagation delay difference is:
  • the embodiment of the present application provides that, with reference to FIG. 9 , as shown in FIG. 11 , before the above step 503 , the positioning method provided in the embodiment of the present application further includes the following steps 602 and 702 .
  • Step 602. The third wireless communication device receives third information sent by the second wireless communication device.
  • the second information includes the fifth time delay and the sixth time delay, and the fifth time delay and the sixth time delay are when the third wireless communication device and the first wireless communication device switch between each other, The second wireless communication device determines respectively according to the diameter signal and the reflection path signal.
  • the fifth time delay is the time delay of the diameter signal sent by the second converted first wireless communication device to the second converted third wireless communication device;
  • the sixth time delay is the time delay of the second converted The time delay of the reflection path signal sent by the third wireless communication device to the second converted third wireless communication device via the second wireless communication device.
  • the process of determining the fifth time delay and the sixth time delay may refer to the determination of the above-mentioned first time delay and the second time delay The process is not repeated here to avoid repetition.
  • the positioning method provided in the embodiment of the present application further includes the following step 702
  • Step 702 the third wireless communication device locates the third wireless communication device and the first wireless communication device according to the fifth time delay and the sixth time delay.
  • step 702 may be specifically implemented through the following step 702a.
  • the positioning method provided by the embodiment of the present application may both perform the above step 601 and step 602, that is, the positioning method provided by the embodiment of the present application includes steps 501 to 503, and step 601 and step 602.
  • Step 702a the third wireless communication device determines a second propagation delay difference according to the fifth time delay and the sixth time delay.
  • the third propagation delay difference is a difference between the propagation time of the second converted first RS sent by the second wireless communication device and the second converted propagation time of the target RS.
  • the third propagation delay difference is:
  • step 503c may specifically be implemented through the following step 503c3.
  • Step 503c3 the third wireless communication device determines the target distance according to the first propagation delay difference, the second propagation delay difference and the third propagation delay difference.
  • the above-mentioned target distance includes a first distance, a second distance and a third distance
  • the above-mentioned first distance is the distance between the third wireless communication device and the first wireless communication device
  • the second distance is the distance between the third wireless communication device and the second wireless communication device
  • the third distance is the distance between the first wireless communication device and the second wireless communication device.
  • the third wireless information communication device after the third wireless information communication device obtains the first propagation delay difference, the second propagation delay difference, and the third propagation delay difference, it may obtain at least three equations, and pass The at least three equations respectively obtain the propagation delay between S-UEs (that is, the positioning delay parameter), and are identified in a vector manner, so that the third wireless communication device can determine the target distance.
  • step 503c3 may specifically be implemented through the following step c.
  • Step c the third wireless communication device obtains at least three positioning equations, determines the positioning equations of the number of targets from the at least three positioning equations, and determines the distance of the targets according to the positioning equations of the number of targets.
  • the positioning equation vector y related to the difference in propagation delay can be expressed as:
  • the positioning equation matrix A can be expressed as:
  • the third wireless communication device can receive the first signal reflected by the first wireless communication device through the reflection path, and simultaneously receive the first RS sent by the second wireless communication device through the direct path, so that the third wireless communication device can receive the first signal based on the first signal and the first RS, determine the first difference in propagation delay, and then exchange it with the first wireless communication device and the second wireless communication device to determine the second difference in propagation delay, and communicate through the first wireless communication device and the third wireless communication
  • the devices exchange to determine the third propagation delay difference, so that the third wireless communication device can summarize and calculate the first propagation delay difference, the second propagation delay difference and the third propagation delay difference, and determine the third The distance between the wireless communication device and the first wireless communication device, the distance between the third wireless communication device and the second wireless communication device, and the distance between the first wireless communication device and the second wireless communication device.
  • the number of at least three positioning equations is the first number; the "determining the positioning equations of the target number from at least three positioning equations" in the above step c can be specifically performed through the following step c1 accomplish.
  • Step c1 when the position of the third wireless communication device is a fixed position, the third wireless communication device obtains the second quantity, and determines the target according to the second quantity and the quantity of positioning equations related to the reflection path of the third wireless communication device quantity.
  • the first quantity is:
  • the second quantity is: Target Quantity is less than or equal to K is the number of wireless communication devices in the positioning group.
  • the third wireless communication device can exchange with the first wireless communication device and the second wireless communication device respectively, so that at least six time delays can be obtained, and according to at least three equations, calculate The distance between the first wireless communication device, the second wireless communication device and the third wireless communication device.
  • the number of positioning equations may be reduced to a second number, and the second number of positioning equations may be used to calculate (K-1) S-UE
  • the positioning delay parameters between (all S-UEs except the third wireless communication device) if it is required to determine the positioning delay parameters between (K-1) S-UEs and the third wireless communication device, you can use the second A number of positioning equations and a positioning equation associated with the reflected path of the third wireless communication device determine the number of positioning equations for the target.
  • the third wireless communication device is responsible for summarizing and calculating all the data, when the number of S-UEs is large or the number of S-UEs increases, all S-UEs need to be located , the number of equations that need to be summarized and calculated is huge. Although a large number of equations can be more accurately positioned among all S-UEs, the resources involved are also more links. Therefore, it is possible to obtain all In the case of a required positioning delay parameter, the number of positioning equations can be reduced. In this way, the steps of the third wireless communication device for positioning the first wireless communication device and the second wireless communication device are simplified, and the third wireless communication device is also improved. Efficiency with which the device locates the first wireless communication device and the second wireless communication device.
  • the embodiment of the present application provides a positioning method, which is executed by the third wireless communication device, and the third wireless communication device receives the location information of the second wireless communication device.
  • the first reference signal RS sent by the device; the third wireless communication device receives the first signal sent by the first wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the target RS is the signal sent by the second wireless communication device to the first wireless communication device.
  • the RS sent by the communication device; the third wireless communication device locates the first wireless communication device and the second wireless communication device according to the first RS and the first signal.
  • the third wireless communication device can conduct the communication between the first wireless communication device and the second wireless communication device according to the first RS sent by the second wireless communication device through the direct path and the first signal modulated and reflected by the first wireless communication device Positioning, in this way, wireless communication devices can be accurately positioned without introducing calibration UE or gNB.
  • FIG. 12 shows a flowchart of the positioning method provided in the embodiment of the present application.
  • the positioning method provided in the embodiment of the present application may include the following steps 801 to 804 .
  • Step 801. the target device, as a first wireless communication device, receives a target reference signal RS sent by a second wireless communication device, and sends a first signal to a third wireless communication device.
  • the above-mentioned first signal is a reflection signal corresponding to the target RS.
  • Step 802. In the second time slot, the target device, as the second wireless communication device, sends the first reference signal RS to the third wireless communication device, and sends the target RS to the first wireless communication device.
  • Step 803 In the third time slot, the target device, as the third wireless communication device, receives the first RS sent by the second wireless communication device, and receives the first signal sent by the first wireless communication device.
  • Step 804 the target device locates the first wireless communication device and the second wireless communication device according to the first RS and the first signal.
  • the first wireless communication device is used to execute the positioning method in the first embodiment
  • the second wireless communication device is used to execute the positioning method in the second embodiment
  • the third communication device is used to execute the positioning method in the third embodiment.
  • FIG. 12 further illustrates a situation of the execution order of steps 801 to 803 .
  • the embodiment of the present application provides a positioning method, which is executed by the target device.
  • the target device acts as the first wireless communication device, receives the target reference signal RS sent by the second wireless communication device, and communicates to the third wireless communication
  • the device sends the first signal; in the second time slot, the target device, as the second wireless communication device, sends the first reference signal RS to the third wireless communication device, and sends the target RS to the first wireless communication device; in the third time slot Within, the target device, as the third wireless communication device, receives the first RS sent by the second wireless communication device, receives the first signal sent by the first wireless communication device, and according to the first RS and the first signal, targets the first wireless communication device Perform positioning with the second wireless communication device.
  • the first wireless communication device, the second wireless communication device, and the third wireless communication device can exchange with each other, and obtain at least one measurement quantity by sending RS, and send the obtained measurement quantity to to the third wireless communication device, so that the third wireless communication device can summarize and calculate all the data, and perform positioning for the first wireless communication device and the second wireless communication device.
  • the wireless communication device can be precisely positioned without introducing a calibration UE or gNB.
  • the positioning method provided in the embodiment of the present application may be executed by a positioning device.
  • the positioning method for performing positioning is taken as an example to illustrate the positioning device provided in the embodiment of the present application.
  • Fig. 13 shows a possible structural schematic diagram of the positioning device involved in the embodiment of the present application.
  • the positioning device 40 may include: a receiving module 41 and a sending module 42 .
  • the receiving module 41 is configured to receive the target reference signal RS sent by the second wireless communication device.
  • the sending module 42 is configured to send a first signal to the third wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the first signal is used to indicate positioning related information of the first wireless communication device and the second wireless communication device .
  • An embodiment of the present application provides a positioning device. Since the first wireless communication device can receive the target RS sent by the second wireless communication device, and send a reflected signal corresponding to the target RS to the third wireless wireless communication device, that is, the first signal, The first signal is used to indicate the location-related information of the first wireless communication device and the second wireless communication device, so that the wireless communication device can be precisely positioned without introducing a calibration UE or gNB.
  • the positioning device further includes: a modulating module.
  • the modulating module is configured to modulate the target RS by modulating the sequence signal to obtain the first signal before the sending module 42 sends the first signal to the third wireless communication device.
  • the modulation sequence signal is determined by any one of the following methods: on-off keying OOK method, binary phase shift keying BPSK method, code division multiplexing CDM orthogonal code method.
  • the first wireless communication device, the second wireless communication device and the third wireless communication device are different communication devices in the same time slot; or, the first wireless communication device, the second wireless communication device and the The third wireless communication device is a different communication device in different time slots; or, in different time slots, the first wireless communication device, the second wireless communication device, and the third wireless communication device switch among each other.
  • the target RS includes at least one of the following: a tracking reference signal TRS, a channel state information reference signal CSI-RS, and a positioning reference signal PRS.
  • the position of the first wireless communication device is fixed, or the position of the first wireless communication device moves along a first track; know information.
  • the positioning method provided in the embodiment of the present application may be executed by a positioning device.
  • the positioning device provided in the embodiment of the present application is described by taking the positioning device executing the positioning method as an example.
  • Fig. 14 shows a possible structural schematic diagram of the positioning device involved in the embodiment of the present application.
  • the positioning device 50 may include: a sending module 51 .
  • the sending module 51 is configured to send the first reference signal RS to the third wireless communication device, and send the target RS to the first wireless communication device.
  • the first RS and the target RS are used to indicate the positioning related information of the first wireless communication device and the second wireless communication device.
  • An embodiment of the present application provides a positioning device.
  • the second wireless communication device sends the first reference signal RS to the third wireless communication device, and sends the target RS to the first wireless communication device. Since the first RS and the target RS include the Positioning-related information of the first wireless communication device and the second wireless communication device is indicated, so that the wireless communication device can be accurately positioned without introducing a calibration UE or gNB.
  • the sending module 51 is specifically configured to send the first RS to the third wireless communication device at the first time, and send the target RS to the first wireless communication device at the second time. Or, send the first RS to the third wireless communication device at the third time, and send the target RS to the first wireless communication device at the same time.
  • the first RS and the target RS are the same physical signal, or different physical signals; the first RS and/or the target RS include at least one of the following: tracking reference signal TRS, channel state information reference Signal CSI-RS, positioning reference signal PRS.
  • the positioning method provided in the embodiment of the present application may be executed by a positioning device.
  • the positioning device provided in the embodiment of the present application is described by taking the positioning device executing the positioning method as an example.
  • Fig. 15 shows a possible structural schematic diagram of the positioning device involved in the embodiment of the present application.
  • the positioning device 60 may include: a receiving module 61 and a positioning module 62 .
  • the receiving module 61 is configured to receive the first reference signal RS sent by the second wireless communication device; and receive the first signal sent by the first wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the target RS is RS sent by the second wireless communication device to the first wireless communication device.
  • the positioning module 62 is configured to locate the first wireless communication device and the second wireless communication device according to the first RS and the first signal received by the receiving module 61 .
  • An embodiment of the present application provides a positioning device.
  • the third wireless communication device can target the first wireless communication device according to the first RS sent by the second wireless communication device through the direct path and the first signal modulated and reflected by the first wireless communication device.
  • the communication device and the second wireless communication device perform positioning, so that the wireless communication device can also be accurately positioned without introducing a calibration UE or gNB.
  • the positioning module 62 is specifically configured to determine the diameter signal according to the first RS; determine the reflection path signal according to the first signal; and locate the first wireless communication device according to the diameter signal and the reflection path signal and a second wireless communication device.
  • the positioning module 62 is specifically configured to determine the first time delay according to the diameter signal, and determine the second time delay according to the reflection path signal; and locate the time delay according to the first time delay and the second time delay A first wireless communication device and a second wireless communication device.
  • the first time delay is the time delay of the diameter signal sent by the second wireless communication device to the third wireless communication device; the second time delay is the reflection of the signal sent by the second wireless communication device to the third wireless communication device via the first wireless communication device The delay of the path signal.
  • the positioning module 62 is specifically configured to determine the first propagation delay difference according to the first delay and the second delay, where the propagation delay difference is the propagation time of the first RS and the propagation time of the target RS The amount of difference between propagation times, and according to the first amount of propagation delay difference, locate the first wireless communication device and the second wireless communication device.
  • the receiving module 61 is further configured to receive the first wireless communication before the positioning module 62 locates the first wireless communication device and the second wireless communication device according to the first RS and the first signal. second information sent by the device; and/or, receiving third information sent by the second wireless communication device.
  • the first information includes a third time delay and a fourth time delay, and the third time delay and the fourth time delay are when the second wireless communication device and the first wireless communication device switch between each other, the third wireless communication
  • the equipment is determined separately from the diameter signal and the reflection path signal.
  • the third time delay is the time delay of the diameter signal sent by the second wireless communication device to the third wireless communication device after the first conversion; the fourth time delay is the time delay of the second wireless communication device after the first conversion through the first conversion The time delay of the reflection path signal sent by the first wireless communication device to the third wireless communication device later.
  • the second information includes the fifth time delay and the sixth time delay. The fifth time delay and the sixth time delay are when the third wireless communication device and the first wireless communication device switch between each other, the second wireless communication The equipment is determined separately from the diameter signal and the reflection path signal.
  • the fifth time delay is the time delay of the diameter signal sent by the second converted first wireless communication device to the second converted third wireless communication device;
  • the sixth time delay is the time delay of the second converted third wireless communication device The time delay of the reflection path signal sent by the device to the second converted third wireless communication device via the second wireless communication device.
  • the positioning module 62 is further configured to locate the first wireless communication device according to the third time delay and the fourth time delay after the receiving module 61 receives the second information sent by the first wireless communication device and a second wireless communication device.
  • the locating module 62 is further configured to locate the third wireless communication device and the first wireless communication device after a fifth time delay and a sixth time delay after the receiving module 61 receives the third information sent by the first wireless communication device.
  • the positioning module 62 is specifically configured to determine the second propagation delay difference amount according to the third time delay and the fourth time delay, and the second propagation delay difference amount is the first converted second wireless A difference amount between the propagation time of the first RS transmitted by the communication device and the propagation time of the first converted target RS.
  • the positioning module 62 is specifically configured to determine a second propagation delay difference according to the fifth time delay and the sixth time delay, and the third propagation delay difference is the propagation of the first RS sent by the second wireless communication device after the second conversion The amount of difference between the time and the propagation time of the second transformed target RS.
  • the positioning module 62 is specifically configured to determine the target distance according to the first propagation delay difference, the second propagation delay difference, and the third propagation delay difference.
  • the target distance includes a first distance, a second distance and a third distance; the first distance is the distance between the third wireless communication device and the first wireless communication device, and the second distance is the distance between the third wireless communication device and the second wireless communication device.
  • the third distance is the distance between the first wireless communication device and the second wireless communication device.
  • the diameter signal is:
  • a 2 is determined by the signal gain of the modulation sequence signal
  • w' 2,3 [n] are the additive white Gaussian noise AWGN received by the second wireless communication device in the nth symbol
  • AWGN includes interference signals.
  • the reflection path signal is:
  • a 1 is determined by the signal gain of the modulated sequence signal, and w" 2.3 [n] are the additive white Gaussian noise AWGN received by the second wireless communication device in the nth symbol, and AWGN includes interference signals.
  • the first time delay is: in, for the time delay from the first, is the time offset of the diameter signal sent by the second wireless communication device, ⁇ 2,3 is the total propagation time of the diameter signal sent from the second wireless communication device to the third wireless communication device, The time offset of receiving the diameter signal for the third wireless communication device;
  • the second time delay is: in, is the second time delay, is the time offset of the second wireless communication device sending the reflection path signal, ⁇ 2,1 is the propagation time of the target RS signal sent from the second wireless communication device to the first wireless communication device, ⁇ 1,3 is the propagation time from the first wireless communication device the propagation time of the reflection path signal sent by the communication device to the third wireless communication device, is the time offset of the third wireless communication device receiving the reflection path signal; wherein, the timing errors experienced by the sending end and the receiving end are respectively and The radio frequency signal RF at the sending end and the receiving end are different,
  • the first propagation delay difference is:
  • the positioning module 62 is specifically configured to acquire at least three positioning equations, determine the positioning equations of the number of targets from the at least three positioning equations, and determine the target distance according to the positioning equations of the number of targets.
  • the quantity of at least three positioning equations is the first quantity; the positioning module 62 is specifically configured to obtain the second quantity when the position of the third wireless communication device is a fixed position, and according to The second number and the number of positioning equations associated with the reflected path of the third wireless communication device determine the number of targets.
  • the first quantity is:
  • the second quantity is: Target Quantity is less than or equal to K is the number of wireless communication devices in the positioning group.
  • the positioning method provided in the embodiment of the present application may be executed by a positioning device.
  • the positioning device provided in the embodiment of the present application is described by taking the positioning device executing the positioning method as an example.
  • Fig. 16 shows a possible structural schematic diagram of the positioning device involved in the embodiment of the present application.
  • the positioning device 70 may include: a receiving module 71 , a sending module 72 and a positioning module 73 .
  • the receiving module 71 is configured to, in the first time slot, as the first wireless communication device, receive the target reference signal RS sent by the second wireless communication device, and send the first signal to the third wireless communication device, the first signal is the reflected signal corresponding to the target RS.
  • the sending module 72 is configured to, as the second wireless communication device, send the first reference signal RS to the third wireless communication device, and send the target RS to the first wireless communication device within the second time slot.
  • the receiving module 71 is further configured to, as the third wireless communication device, receive the first RS sent by the second wireless communication device and receive the first signal sent by the first wireless communication device in the third time slot.
  • the positioning module 73 is configured to locate the first wireless communication device and the second wireless communication device according to the first RS and the first signal received by the receiving module.
  • the first wireless communication device is used to execute the positioning device such as the positioning method in step 201 and step 202
  • the second wireless communication device is used to execute the positioning device such as the positioning method in step 401
  • the third communication device is used to perform the positioning device such as the positioning method in step 401.
  • the embodiment of the present application provides a positioning device, because in different time slots, the first wireless communication device, the second wireless communication device and the third wireless communication device can exchange with each other, and obtain at least one measurement quantity by sending RS , and send the acquired measurements to the third wireless communication device, so that the third wireless communication device can summarize and calculate all the data, and perform positioning for the first wireless communication device and the second wireless communication device.
  • the wireless communication device can be precisely positioned without introducing a calibration UE or gNB.
  • the positioning device in this embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the positioning device provided in the embodiment of the present application can realize various processes realized by the positioning method embodiments in Fig. 6 to Fig. 9 and achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 1400, including a processor 1401 and a memory 1402, and the memory 1402 stores programs or instructions that can run on the processor 1401, such as
  • the communication device 1400 is a terminal, when the program or instruction is executed by the processor 1401, each step of the positioning method embodiment described above can be implemented, and the same technical effect can be achieved.
  • the communication device 1400 is a network-side device, when the program or instruction is executed by the processor 1401, each step of each embodiment of the positioning method described above can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is used to receive the target reference signal RS sent by the second wireless communication device; and send a first signal to the third wireless communication device, the first signal is related to The reflected signal corresponding to the target RS, the first signal is used to indicate the positioning related information of the first wireless communication device and the second wireless communication device.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 18 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 100 includes but not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109 and a processor 110, etc. At least some parts.
  • the terminal 100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 18 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processor 1041 is used in a video capture mode or an image capture mode by an image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes at least one of a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 101 after the radio frequency unit 101 receives the downlink data from the network side device, it can transmit it to the processor 110 for processing; in addition, the radio frequency unit 101 can send the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 109 can be used to store software programs or instructions as well as various data.
  • Memory 109 may primarily include a first A storage area and a second storage area for storing data, wherein the first storage area can store an operating system, at least one application program or instruction required by a function (such as a sound playback function, an image playback function, etc.) and the like.
  • memory 109 may include volatile memory or nonvolatile memory, or, memory 109 may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electronically programmable Erase Programmable Read-Only Memory
  • Flash Flash
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 110 may include one or more processing units; optionally, the processor 110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the radio frequency unit 101 is configured to receive the target reference signal RS sent by the second wireless communication device. And send a first signal to the third wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the first signal is used to indicate the positioning related information of the first wireless communication device and the second wireless communication device.
  • An embodiment of the present application provides a terminal. Since the first wireless communication device can receive the target RS sent by the second wireless communication device, and send a reflected signal corresponding to the target RS to the third wireless wireless communication device, that is, the first signal, the The first signal is used to indicate the location-related information of the first wireless communication device and the second wireless communication device, so that the wireless communication device can be precisely positioned without introducing a calibration UE or gNB.
  • the processor 110 is configured to, before sending the first signal to the third wireless communication device, modulate the target RS by modulating the sequence signal to obtain the first signal.
  • the radio frequency unit 101 is configured to send the first reference signal RS to the third wireless communication device, and send the target RS to the first wireless communication device.
  • the first RS and the target RS are used to indicate the positioning related information of the first wireless communication device and the second wireless communication device.
  • An embodiment of the present application provides a terminal.
  • the second wireless communication device sends the first reference signal RS to the third wireless communication device, and sends the target RS to the first wireless communication device. Since the first RS and the target RS include information for indicating Positioning-related information of the first wireless communication device and the second wireless communication device, in this way, the wireless communication device can be precisely positioned without introducing a calibration UE or gNB.
  • the radio frequency unit 101 is specifically configured to send the first RS to the third wireless communication device at the first time, and send the target RS to the first wireless communication device at the second time. Or, send the first RS to the third wireless communication device at the third time, and send the target RS to the first wireless communication device at the same time.
  • the radio frequency unit 101 is configured to receive the first reference signal RS sent by the second wireless communication device; and receive the first signal sent by the first wireless communication device, the first signal is a reflected signal corresponding to the target RS, and the target RS is RS sent by the second wireless communication device to the first wireless communication device.
  • the processor 110 is configured to perform positioning for the first wireless communication device and the second wireless communication device according to the first RS and the first signal.
  • An embodiment of the present application provides a terminal.
  • the third wireless communication device can use the first RS sent by the second wireless communication device through the direct path, and the first signal modulated and reflected by the first wireless communication device, for the first wireless communication
  • the device and the second wireless communication device are positioned, so that the wireless communication device can be accurately positioned without introducing a calibration UE or gNB.
  • the processor 110 is specifically configured to determine the diameter signal according to the first RS; determine the reflection path signal according to the first signal; and locate the first wireless communication signal according to the diameter signal and the reflection path signal. device and a second wireless communication device.
  • the processor 110 is specifically configured to determine the first time delay according to the diameter signal, and determine the second time delay according to the reflection path signal; and according to the first time delay and the second time delay, The first wireless communication device and the second wireless communication device are located.
  • the first time delay is the time delay of the diameter signal sent by the second wireless communication device to the third wireless communication device
  • the second time delay is the reflection of the signal sent by the second wireless communication device to the third wireless communication device via the first wireless communication device The delay of the path signal.
  • the processor 110 is specifically configured to determine the first propagation delay difference according to the first delay and the second delay, where the propagation delay difference is the propagation time of the first RS and the target RS
  • the first wireless communication device and the second wireless communication device are located based on the difference between the propagation times of the first and second wireless communication devices based on the first difference in propagation delay.
  • the radio frequency unit 101 is also used to target the first wireless communication device according to the first RS and the first signal Before positioning with the second wireless communication device, receiving second information sent by the first wireless communication device; and/or receiving third information sent by the second wireless communication device.
  • the first information includes a third time delay and a fourth time delay, and the third time delay and the fourth time delay are when the second wireless communication device and the first wireless communication device switch between each other, the third wireless communication
  • the equipment is determined separately from the diameter signal and the reflection path signal.
  • the third time delay is the time delay of the diameter signal sent by the second wireless communication device to the third wireless communication device after the first conversion; the fourth time delay is the time delay of the second wireless communication device after the first conversion through the first conversion The time delay of the reflection path signal sent by the first wireless communication device to the third wireless communication device later.
  • the second information includes the fifth time delay and the sixth time delay. The fifth time delay and the sixth time delay are when the third wireless communication device and the first wireless communication device switch between each other, the second wireless communication The equipment is determined separately from the diameter signal and the reflection path signal.
  • the fifth time delay is the time delay of the diameter signal sent by the second converted first wireless communication device to the second converted third wireless communication device;
  • the sixth time delay is the time delay of the second converted third wireless communication device The time delay of the reflection path signal sent by the device to the second converted third wireless communication device via the second wireless communication device.
  • the processor 110 is further configured to locate the first wireless communication device and the second wireless communication device according to the third time delay and the fourth time delay after receiving the second information sent by the first wireless communication device.
  • the processor is further configured to locate the third wireless communication device and the first wireless communication device with a fifth time delay and a sixth time delay after receiving the third information sent by the first wireless communication device.
  • the processor 110 is specifically configured to determine the second propagation delay difference according to the third time delay and the fourth time delay, and the second propagation delay difference is the first converted second The amount of difference between the propagation time of the first RS sent by the wireless communication device and the propagation time of the first converted target RS; and according to the fifth time delay and the sixth time delay, determine the second propagation delay difference amount, and the third The propagation delay difference amount is a difference amount between the second converted propagation time of the first RS sent by the second wireless communication device and the second converted target RS propagation time.
  • the processor 110 is specifically configured to determine the target distance according to the first propagation delay difference, the second propagation delay difference, and the third propagation delay difference.
  • the target distance includes a first distance, a second distance and a third distance; the first distance is the distance between the third wireless communication device and the first wireless communication device, and the second distance is the distance between the third wireless communication device and the second wireless communication device.
  • the third distance is the distance between the first wireless communication device and the second wireless communication device.
  • the processor 110 is specifically configured to acquire at least three positioning equations, determine the positioning equations of the number of targets from the at least three positioning equations, and determine the distance of the target according to the positioning equations of the number of targets.
  • y is the positioning equation vector related to the difference in propagation delay
  • the elements of the positioning equation vector are x is the positioning delay parameter vector
  • A is the positioning equation matrix, according to the first propagation delay difference, the second propagation delay difference and the third propagation The amount of delay variance is determined.
  • the number of at least three positioning equations is the first number; the processor 110 is specifically configured to obtain the second number when the position of the third wireless communication device is a fixed position, and The number of targets is determined based on the second number and the number of positioning equations associated with the reflection path of the third wireless communication device.
  • the first quantity is:
  • the second quantity is: Target Quantity is less than or equal to K is the number of wireless communication devices in the positioning group.
  • the radio frequency unit 101 is configured to, as the first wireless communication device, receive the target reference signal RS sent by the second wireless communication device in the first time slot, and send the target reference signal RS to the third wireless communication device Sending a first signal, where the first signal is the reflected signal corresponding to the target RS; in the second time slot, as the second wireless communication device, sending the first reference signal RS to the third wireless communication device, and sending the first reference signal RS to the first wireless communication device the target RS; and in the third time slot, as the third wireless communication device, receiving the first RS sent by the second wireless communication device, and receiving the first signal sent by the first wireless communication device.
  • the processor 110 is configured to perform positioning for the first wireless communication device and the second wireless communication device according to the first RS and the first signal.
  • the first wireless communication device is used to execute the terminal positioning method in step 201 and step 202
  • the second wireless communication device is used to execute the terminal positioning method in step 401
  • the third communication device is used to execute the positioning method in step 501.
  • An embodiment of the present application provides a terminal. Since the first wireless communication device, the second wireless communication device, and the third wireless communication device can exchange with each other in different time slots, and obtain at least one measurement quantity by sending RS, And the acquired measurement quantity is sent to the third wireless communication device, so that the third wireless communication device can summarize and calculate all the data, and perform positioning for the first wireless communication device and the second wireless communication device. In this way, the wireless communication device can be accurately positioned without introducing a calibration UE or gNB.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and the program or instruction is executed by the processor of the first communication device, the processor of the second communication device, and the third communication device.
  • a readable storage medium on which a program or instruction is stored, and the program or instruction is executed by the processor of the first communication device, the processor of the second communication device, and the third communication device.
  • At least one of the processor of the device and the processor of the target device implements the various processes of the above embodiments of the positioning method when executed, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement each of the above positioning method embodiments process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by the processor of the first communication device and the second communication device At least one of the processor, the processor of the third communication device, and the processor of the target device executes to implement the processes of the above embodiments of the positioning method, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present application also provides a positioning system.
  • the positioning system includes the first wireless communication device, the second wireless communication device, the third communication device, and/or the target device as described above.
  • the positioning system uses In order to avoid repetition, details will not be repeated here to avoid repetition.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种定位方法,由第一无线通信设备执行,本申请实施例的组定位方法包括:第一无线通信设备接收第二无线通信设备发送的目标参考信号RS;第一无线通信设备向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。

Description

定位方法、装置、用户设备及存储介质
相关申请的交叉引用
本申请主张在2022年2月8日在中国提交的中国专利申请号202210119393.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种定位方法、装置、用户设备及存储介质。
背景技术
在通信系统中,移动无线通信设备(例如,移动用户设备(Mobile User Equipment),旁链路用户设备(Sidelink UE)或源基站(gNB)等)的定位系统存在信号发送和信号接收的定时误差(即Timing Error)以及移动性等问题,并影响其定位精度。因此,为了提高定位精度,移动无线通信设备需要对自身的时钟进行定期校准,为了减少移动无线通信设备发送信号或接收信号定时误差,可以引入具有已知准确位置的校准UE或gNB,然而,在移动无线通信设备在不断移动,且可能会处于信号覆盖范围外的情况下,通过上述方式也较难进行校准,因此,如何精准对移动无线通信设备之间进行定位是亟待解决的问题。
发明内容
本申请实施例提供一种定位方法,能够解决精准对移动无线通信设备之间进行定位。
第一方面,提供了一种定位方法,由第一无线通信设备执行,该方法包括:第一无线通信设备接收第二无线通信设备发送的目标参考信号RS;第一无线通信设备向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
第二方面,提供了一种定位方法,由第二无线通信设备执行,该方法包括:第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;其中,第一RS和目标RS用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
第三方面,提供了一种定位方法,由第三无线通信设备执行,该方法包括:第三无线通信设备接收第二无线通信设备发送的第一参考信号RS;第三无线通信设备接收第一无线通信设备发送的第一信号,第一信号为与目标RS对应的反射信号,目标RS为第二无线通信设备向第一无线通信设备发送的RS;第三无线通信设备根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。
第四方面,提供了一种定位方法,由目标设备执行,该方法包括:在第一时隙内,目标设备作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号,第一信号为目标RS对应的反射信号;在第二时隙内,目标设备作为第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;在第三时隙内,目标设备作为第三无线通信设备接收第二无线通信设备发送的第一RS,接收第一无线通信设备发送的第一信号,并根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位;其中,第一无线通信设备用于执行如第一方面的定位方法,第二无线通信设备用于执行如第二方面的定位方法,第三通信设备用于执行如第三方面的定位方法。
第五方面,提供了一种定位装置,该定位装置包括:接收模块和发送模块。接收模块,用于接收第二无线通信设备发送的目标参考信号RS。发送模块,用于向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
第六方面,提供了一种定位装置,该定位装置包括:发送模块。发送模块,用于向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;其中,第一RS和目标RS用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
第七方面,提供了一种定位装置,该定位装置包括:接收模块和定位模块。接收模块,用于接收第二无线通信设备发送的第一参考信号RS;并接收第一无线通信设备发送的第一信号,第一信号为与目标RS对应的反射信号,目标RS为第二无线通信设备向第一无线通信设备发送的RS。定位模块,用于根据接收模块接收的第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。
第八方面,提供了一种定位装置,该定位装置包括:接收模块、发送模块和定位模块。接收模块,用于在第一时隙内,作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向 第三无线通信设备发送第一信号,第一信号为目标RS对应的反射信号。发送模块,用于在第二时隙内,作为第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS。接收模块,还用于在第三时隙内,作为第三无线通信设备接收第二无线通信设备发送的第一RS,接收第一无线通信设备发送的第一信号。定位模块,用于根据接收模块接收的第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。其中,第一无线通信设备用于执行如第五方面所述的定位装置,第二无线通信设备用于执行如第六方面所述的定位装置,第三通信设备用于执行如第七方面所述的定位装置。
第九方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的定位方法的步骤,或者实现如第二方面所述的定位方法的步骤,或者实现如第三方面所述的定位方法的步骤,或者实现如第四方面所述的定位方法的步骤。
第十方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
第十一方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;其中,第一RS和目标RS用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
第十二方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于接收第二无线通信设备发送的第一参考信号RS;接收第一无线通信设备发送的第一信号,第一信号为与目标RS对应的反射信号,目标RS为第二无线通信设备向第一无线通信设备发送的RS,并根据接收模块接收的第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。
第十三方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于在第一时隙内,作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号,第一信号为目标RS对应的反射信号,在第二时隙内,作为第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS,在第三时隙内,作为第三无线通信设备接收第二无线通信设备发送的第一RS,接收第一无线通信设备发送的第一信号,并根据接收模块接收的第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。其中,第一无线通信设备用于执行如第十方面所述的UE,第二无线通信设备用于执行如第十一方面所述的UE,第三通信设备用于执行如第十二方面所述的UE。
第十四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令满足以下至少一项:被第一通信设备的处理器执行时实现如第一方面所述的定位方法的步骤;被第二通信设备的处理器执行时实现如第二方面所述的定位方法的步骤;被第三通信设备的处理器执行时实现如第三方面所述的定位方法的步骤被目标通信设备的处理器执行时实现如第四方面所述的定位方法的步骤。
第十五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的定位方法的步骤,或者实现如第二方面所述的定位方法的步骤,或者实现如第三方面所述的定位方法的步骤,或者实现如第四方面所述的定位方法的步骤。
第十六方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的定位方法的步骤,或者实现如第二方面所述的定位方法的步骤,或者实现如第三方面所述的定位方法的步骤,或者实现如第四方面所述的定位方法的步骤。
第十七方面,提供一种定位系统,所述定位系统包括如第一方面所述的第一无线通信设备、如第二方面所述的第二无线通信设备、如第三方面所述的第三通信设备,和/或如第四方面所述的目标设备,所述定位系统用于执行并实现如第一方面所述的定位方法的步骤,或者实现如第二方面所述的定位方法的步骤,或者实现如第三方面所述的定位方法的步骤,或者实现如第四方面所述的定位方法的步骤。
在本申请实施例中,第一无线通信设备接收第二无线通信设备发送的目标参考信号RS;第一无线通信设备向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。由于第一无线通信设备可以接收第二无线通信设备发送的目标RS,并向第三无线无线通信设备发送与目标RS对应的反射信号,即第一信号,该第一信号用于只是第一无线通信设备和第二无线通信设备的定位相关信息,如此,无需引入校 准UE或gNB,也可以精准对无线通信设备进行定位。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种gNB的定时误差示意图;
图3是本申请实施例提供的一种精确时间协议PTP示意图;
图4是本申请实施例提供的一种精确时间协议的原理示意图;
图5是本申请实施例提供的一种基于后向散射体的定位模型示意图;
图6是本申请实施例提供的一种定位方法的示意图之一;
图7是本申请实施例提供的一种定位方法的示意图之二;
图8是本申请实施例提供的一种定位方法的示意图之三;
图9是本申请实施例提供的一种定位方法的示意图之四;
图10是本申请实施例提供的一种定位方法的示意图之五;
图11是本申请实施例提供的一种定位方法的示意图之六;
图12是本申请实施例提供的一种定位方法的示意图之七;
图13是本申请实施例提供的一种定位装置的结构示意图之一;
图14是本申请实施例提供的一种定位装置的结构示意图之二;
图15是本申请实施例提供的一种定位装置的结构示意图之三;
图16是本申请实施例提供的一种定位装置的结构示意图之四;
图17是本申请实施例提供的一种通信设备的硬件结构示意图;
图18是本申请实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,例如,A和/或B包括仅有A、仅有B、及A和B三种。A、B、和/或C包括A、B、C三者当中的至少一者,即包括A;B;C;A和B;B和C;A和C;A、B和C这7种,如此类推,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、 基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面对本申请实施例提供的定位方法、装置、用户设备及存储介质中涉及的一些概念和/或术语做一下解释说明。
1、gNB/UE发送Tx/接收Rx定时误差(即Timing Errer)
目前,gNB和UE的定时误差分为两种:一种是gNB和UE时钟误差,另一种是gNB和UE校准误差。
如图2所示,在gNB端,例如图2所示的网络侧设备端,其误差校准可以通过精确时间协议(Precision Time Protocol,PTP)来实现。由于主时钟和子时钟之间的通道/链路不对称,因此PTP仍然存在一些残留校准误差。进一步的,由于主时钟和子时钟之间误差是不能完全被消除的,而目前gNB残留校准误差一般为50~100ns,如此,也会导致15~30m的UE定位误差。
在UE端,例如图2所示的用户设备端也同样存在两种定时误差。然而,对UE端来说,若不同方向到达的接收信号是通过同一天线面板中的相同射频(Radio Frequency,RF)链,则这两种误差可以被完全消除。图2为gNB的定时误差。
需要说明的是,gNB的定时校准(Timing Calibration,TC)机制是无法从整体信号到达时间(Time of Arrival,TOA)或信号到达时间差(Time Difference of Arrival,TDOA)测量中区分这两种误差分量的。
2、精确时间协议
PTP主要用于定义主从时钟之间使用的同步信息,类似于网络时间协议(Network Time Protocol,NTP)中的服务器和客户端模式。图3示出了本申请实施例提供的一种精确时间协议PTP,如图3所示,主时钟(Master Clock)是时间的提供者,而从时钟(Slave Clock)与主时钟同步。例如,Grandmaster是与时间参考(例如GPS或码多分址(Code Division Multiple Access,CDMA))同步的主时钟。而网络上的时钟同步至少需要一个主时钟和一个从时钟,其中,多个从时钟可以同步到一个主时钟上。通常,可以根据在主时钟和从时钟之间捕获四个时间戳,即参考时间T1,T2,T3和T4,来计算主从时钟之间的时间偏移,从时钟可以利用时间偏移来调整其以与主时钟的差异,如图3所示,主时钟可以在参考时间T1向从时钟发送同步信息Sync Message,从时钟在参考时间T2接收到该Sync Message,以及同步后续信息Sync Follw Up Message,从而可以得到Master Clock to Slave Clock difference=T2-T1;从时钟可以在参考时间T3向主时钟发送延迟请求消息Delay Request Message,主时钟在参考时间T4接收到该Delay Request Message,从而可以得到Slave Clock to Master Clock difference=T4-T3,并且,主时钟可以向从时钟发送延迟响应消息Delay Response Message,从而可以得到Message withT4-T3;在从时钟接收到该Delay Response Message之后,可以得到偏移量Offset=((T2-T1)-(T4-T3))/2。
需要说明的是,精确时间协议的原理是,主时钟端和从时钟端相互发送和接收校准信号来完成时钟校准的。
图4示出了本申请实施例提供的一种精确时间协议的原理图,如图4所示,时钟A的时间是tA(对于发送端)和t′A(对于接收端),而时钟B的时间是tB(对于接收端)和t′B(对于发送端)。因此,tA和tB的时间差(从A到B)为tΔ=tA-tB,而t′B和t′A的时间差(从A到B)为t′Δ=t′B-t′A。然而,由于主时钟端或从时钟端的RF有所差异,因此,一般情况下,tA≠t′A和tB≠t′B
然而,对于A和B之间的时钟校准,可以通过以下公式计算:
对于A和B之间传播延迟的推导,可以通过以下公式计算:其中,td是A和B之间传播延迟时间长度。若无线通信设备在往返过程中主时钟端和从时钟端的变化可以忽略不计,即,t′Δ=tΔ,则A和B之间的时钟校准值tΔ,和A和B之间传播延迟值td,可以分别通过以下公式计算获取:
3、基于反向散射体(背反射)Backscatter的定位方法
目前,无线通信设备可以通过Backscatter进行定位,而在基于Backscatter来实现定位的方法中,可以 获取Backscatter提供ID(例如,EPC)等相关信息,从而使得接收端能够容易判断反射物体的位置,并确认反射物体以及对反射物体进行跟踪。图5示出本申请实施例提供的一种基于反向散射体Backscatter的定位模型。其中,发送端是第i个Tx UE,发射定位的导频参考信号(Positioning Reference Signal,PRS),第k个Backscatter通过二进制相移键控(Binary Phase Shift Keying,BPSK)或通断键控(On-Off Keying,OOK)或CDM正交码信号在接收信号上调制自己相关的ID信息,并反射给接收端Rx UE。其中,接收端是gNB,可以接收Backscatter反射信号,同时接收到未知反射体的反射信号和发送端的直径信号。值得注意的是,第k个Backscatter反射信号是有效信号,gNB可以通过对其接收,并计算出目标Backscatter的具体坐标,与GPS接收信号同理。但是,使用此方法,gNB的所需数量在4以上,才能保证定位的相对精度。
如图5所示,L个gNB接收信号,并对第i个Tx UE,和第k个Backscatter进行同时定位。
需要说明的是,gNB还可以接收到其他Backscatter的反射信号(不包括第k个Backscatter的反射信号),未知反射体的反射信号,发送端的直径信号。然而,这些信号为干扰信号,因此,为了确保定位精度,需要在定位计算以前被消除。
根据图5所示,在基于Backscatter来实现定位的实施例中,可以假设有I个发送端用户设Tx UE,L个网络侧设备gNB,M个后向散射Backscatter(又名Tag)和J个未知反射体Object。
在考虑未知反射体信号反射的情况下,在第m个时隙的第n个符号中由第i个UE发送并由第l个gNB接收的信号是
其中,Tx UE在第n个符号中发送定位导频参考信号(即,PRS)s[n],s[n]信号在时隙m中通过信道响应被第l个gNB直接接收,同时s[n]信号通过信道响应被第k个Backscatter接收。第k个Backscatter接收信号在相同时隙m中被bk,m符号调制,并随着信道响应反射到第l个gNB,α是复数衰减反向散射信号系数(Complex Attenuation of the Backscattered SignalsS)。αj是包括雷达横切面(Rader Cross Section,RCS)在内的第j个未知反射体的衰减系数,分别为针对Tx UE和针对gNB的第j个未知反射体的反射信道响应。wl,m[n]是在时隙m中的第n个符号被第l个gNB接收的加性高斯白噪声(Additive White Gaussian Noise,AWGN),该加性高斯白噪声均值为零且噪声功率谱密度为此外,时隙的间隔Tslot为RS符号间隔Tsym的N倍,即,Tslot=NTsym,其中,N=1,2,…。
需要说明的是,在上述实施例中,为了简单起见,信道响应可以被考虑为一种静态信道,且在一定时间内信道响应不发生变化。因此在说明中表示的信道响应和时隙无关,但是本申请所述的实施例同样也可以应用在动态信道响应的场景。本申请实施例考虑此场景下对目标Backscatter的干扰问题。通过以上公式,可以确定,有三项可以被考虑为干扰项。第一项是来自Tx UE的直径信号,第二项是来自Backscatter反射信号(其中包括目标Backscatter反射信号和非目标Backscatter反射信号),第三项是来自未知反射体的反射信号。
在本申请实施例中,定位的目标为Tx UE和目标Backscatter。针对Tx UE的定位,由于从Tx UE到gNB的直径信号远大于来自Backscatter和未知反射体的反射信号,因此此干扰对Tx UE定位性能产生影响相对会小一些。但是,针对Backscatter的定位,必须考虑来自Tx UE,其他Backscatter和未知反射体的反射信号的干扰。
4、Backscatter调制信号设计
Backscatter调制信号可以通过OOK来设计。第k个Backscatter可以基于On/Off的调制序列Bk信号调制反射信号,其调制序列可以由以下矩阵表示:
其中,bk,m是由第k个Backscatter调制并在第m时隙中传输的调制符号,k=1,2,…,M,和m=1,2,…,M+1。
本申请实施例中,为了从第k个Backscatter中导出定位信号,接收到的信号可以用以下方法计算:
需要说明的是,从第i个UE发送的PRS信号,也被其他Backscatter(除第k个Backscatter之外)和未知反射体反射,但是这些信号可以被第l个gNB完全消除。
本申请实施例中,为了导出第i个UE定位信号,接收到的信号可以用以下方法计算:
可选地,本申请实施例中,Backscatter调制信号可以通过BPSK来设计。第k个Backscatter可以基于BPSK的调制序列Bk信号调制反射信号,其调制序列可以由以下矩阵表示:
其中,bk,m是由第k个Backscatter调制并在第m时隙中传输的调制符号,k=1,2,…,M,和m=1,2,…,M+2。
本申请实施例中,为了从第k标签中导出定位信号,接收到的信号可以用以下方法计算:
本申请实施例中,为了导出UE定位信号,接收到的信号可以用以下方法计算:
可选地,本申请实施例中,Backscatter调制信号可以通过CDM正交码的方法来设计。例如,使用阿达马码(Hadamard Code)作为调制序列符号,第k个Backscatter可以基于BPSK的调制序列Bk信号调制反射信号,Hadamard码调制序列可以由以下矩阵表示:
可选地,本申请实施例中,在M=4的情况下,Hadamard Code调制序列可以由以下矩阵表示:
其中,bk,m是由第k个Backscatter调制并在第m时隙中传输的调制符号,k=1,2,…,M,和m=1,2,…,M,。
本申请实施例中,为了从第k标签中导出定位信号,接收到的信号可以用以下方法计算:
其中,k=1,2,…,M-1。
本申请实施例中,为了导出UE定位信号,接收到的信号可以用以下方法计算:
需要说明的是,由于Hadamard码最大可支持的Backscatter数为2n-1。因此,使用Hadamard码解决方案获得的增益远高于OOK或BPSK解决方案,但是其码的灵活性相对比较差。
本申请实施例中,由于第k个Backscatter定位信号相对比较单纯,因此从UE到gNB的直径信号和由其他Backscatter(第k个Backscatter除外)反射的从UE到gNB的接收信号可以被完全消除;未知反射体所反射的从UE到gNB的信号也可以被完全消除。因此,与OOK方案相比,BPSK方案能实现的SNR增益为5.05dB≤ΔSNR<6dB。由于UE定位的从UE到Backscatter,然后反射到gNB的信号可以被完全消除,因此,与OOK方案相比,BPSK方案能实现的SNR增益为0dB≤ΔSNR≤3.8dB。
目前,移动无线通信设备(如,移动通信用户设备Mobile UE,边链路用户设备Sidelink UE,基站gNB等)的定位系统存在Rx/Tx定时误差的问题,并影响其移动无线通信设备的定位精度。因此,为了提高定位精度,无线通信设备需要对其自身的时钟定期进行校准。为克服无线通信设备Rx/Tx定时误差的直接方法可以是引入具有已知准确位置或准确轨迹的校准UE或gNB,然而在现实场景中,特别在无线通信设备在移动,且可能处于覆盖范围之外的情况下,如何有效地设定具有准确位置的校准UE或gNB是亟待解决的一大难题。
本申请实施例可以通过利用无线通信设备间的相互关系,在不需要对收发机时钟进行校准的情况下,对无线通信设备进行相互精准定位。
需要说明的是,本申请中的无线通信设备,可以是任意具有无线收发功能的设备,例如可以是终端、基站、物联网设备、车载无线设备、无线标识TAG等等,且无线通信设备的位置可以是固定的,也可以是移动变化的。
具体地,在第一时间,第一无线通信设备发送参考信号RS,第二无线通信设备接收RS信号。在第二时间,第一无线通信设备再发送RS信号,第三无线通信设备接收RS信号,并通过调制序列信号(即,OOK或BPSK或CDM正交码)调制并反射信号,第二无线通信设备接收到第一无线通信设备发送的RS信号,同时也接收到第三无线通信设备调制并反射信号。
更具体地,第二无线通信设备根据在第一时间和第二时间接收到的RS信号,对信号进行加减运算,分离出从第一无线通信设备到第二无线通信设备的直径信号,从而计算出直径信号的延迟,同时也分离出从第一无线通信设备通过第三无线通信设备调制反射到第二无线通信设备的反射信号,从而计算出反射径信号的延迟。
实施例一
本申请实施例提供一种定位方法,图6示出了本申请实施例提供的一种定位方法的流程图。如图6所示,本申请实施例提供的定位方法可以包括下述的步骤201和步骤202。
步骤201、第一无线通信设备接收第二无线通信设备发送的目标参考信号RS。
可选地,本申请实施例中,上述目标RS包括以下至少一项:追踪参考信号(Tracking Reference Signal,TRS)、信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS)、定位参考信号(Positioning Reference Signal,PRS)以及探测参考信号(Sounding Reference Signal,SRS)。
可选地,本申请实施例中,第一无线通信设备可以作为反射设备,在接收到第二无线通信设备发送的目标RS之后,对目标RS进行调制,并将调制后的RS反射至其他设备。
可选地,本申请实施例中,上述第一无线通信设备可以为用户设备UE、基站、边链路设备S-UE、移动用户设备、物联网设备、车载无线设备等,本申请实施例以第一无线通信设备为S-UE为例,对移动无线通信设备间的定位方法进行说明,以其他移动无线通信设备为例的场景,或移动无线通信设备和源基站间的场景也被保护在本申请提供的定位方法中。
需要说明的是,任何S-UE都可以被考虑为固定UE、gNB、路测单元(Road Side Unit,RSU)或具有 移动性的车用无线通信技术(Vehicle To Everything)UE。
可选地,本申请实施例中,上述目标RS可以为网络侧设备配置的、预配置的、预定义的、协议约定的或S-UE自主决定的等。
步骤202、第一无线通信设备向第三无线通信设备发送第一信号。
本申请实施例中,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
可选地,本申请实施例中,第一无线通信设备、第二无线通信设备和第三无线通信设备为同一时隙内的不同通信设备;或者,第一无线通信设备、第二无线通信设备和第三无线通信设备为不同时隙内的不同通信设备;或者,在不同时隙内,第一无线通信设备、第二无线通信设备和第三无线通信设备之间相互转换。
需要说明的是,以无线通信设备是S-UE为例,任何S-UE可以作为第一无线通信设备,第二无线通信设备或第三无线通信设备,但是在同一个时隙内,一个S-UE不能同时作为第一无线通信设备,第二无线通信设备和第三无线通信设备。
可选地,本申请实施例中,第一无线通信设备的位置固定,或者,第一无线通信设备的位置沿第一轨迹运动;其中,第一无线通信设备的位置为第三无线通信设备的已知信息。
可选地,本申请实施例中,包括三个S-UE:第一无线通信设备、第二无线通信设备以及第三无线通信设备,本申请实施例可以通过获取任意两个S-UE之间的RS信号的传播路径传播延迟量,以对所有的S-UE进行定位,或根据需求,对部分S-UE进行定位。
可选地,本申请实施例中,在上述步骤202之前,结合图6,如图7所示,本申请实施例提供的定位方法还包括下述的步骤301。
步骤301、第一无线通信设备通过调制序列信号,对目标RS进行调制,得到第一信号。
可选地,本申请实施例中,上述调制序列信号由以下方式中的任一项确定:通断键控OOK方式、二进制相移键控BPSK方式、码分多路复用CDM正交码方式。
需要说明的是,第一无线通信设备通过调制序列信号对目标RS进行调制的方式可以参考上述Backscatter调制信号设计中所述的方法,为避免重复,此处不再赘述。
可选地,本申请实施例中,第一无线通信设备在作为反射设备,接收到第二无线通信设备发送的目标RS,并根据调制序列对目标RS调制,得到第一信号之后,可以向第三无线通信设备发送第一信号,以向第三无线通信设备指示第一无线通信设备和第二无线通信设备的定位相关信息。
本申请实提供一种定位方法,由第一无线同设备执行,第一无线通信设备接收第二无线通信设备发送的目标参考信号RS;第一无线通信设备向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。由于第一无线通信设备可以接收第二无线通信设备发送的目标RS,并向第三无线无线通信设备发送与目标RS对应的反射信号,即第一信号,该第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
实施例二
本申请实施例提供一种定位方法,图8示出了本申请实施例提供的一种定位方法的流程图。如图8所示,本申请实施例提供的定位方法可以包括下述的步骤401。
步骤401、第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS。
其中,第一RS和目标RS用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
可选地,本申请实施例中,第二无线通信设备可以在第一预设时间,向第三无线通信设备发送第一RS,在第二预设时间内向第一无线通信设备发送目标RS,其中第一预设时间与第二预设时间相同,或者第一预设时间与第二预设时间不同。
可选地,本申请实施例中,第一RS和目标RS为相同的物理信号,或不同的物理信号。
可选地,本申请实施例中,第一RS和/或目标RS包括以下至少一项:追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS。
可选地,本申请实施例中,上述步骤401具体可以通过下述的步骤401a或步骤401b实现。
步骤401a、第二无线通信设备在第一时间,向第三无线通信设备发送第一RS,并在第二时间向第一无线通信设备发送目标RS。
可选地,本申请实施例中,第二无线通信设备可以在第一时间向第三无线通发送第一RS,并在第二时间再次向第一无线通信设备发送目标RS,从而第二无线通信设备可以通过两条路径向第三无线通信设备发 送信号。
步骤401b、第二无线通信设备在第三时间向第三无线通信设备发送第一RS,并同时向第一无线通信设备发送目标RS。
可选地,本申请实施例中,第二无线通信设备可以在第三时间,向第三无线通发送第一RS,并同时向第一无线通信设备发送目标RS,从而第二无线通信设备可以通过两条路径向第三无线通信设备发送信号。
本申请实施例提供一种定位方法,由第二无线通信设备执行,第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS,由于第一RS和目标RS中包括用于指示第一无线通信设备和第二无线通信设备的定位相关信息,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
实施例三
本申请实施例提供一种定位方法,图9示出了本申请实施例提供的一种定位方法的流程图。如图9所示,本申请实施例提供的定位方法可以包括下述的步骤501至步骤503。
步骤501、第三无线通信设备接收第二无线通信设备发送的第一参考信号RS。
可选地,本申请实施例中,第三无线通信设备可以接收第二无线通信设备通过直射路径发送的第一RS。
步骤502、第三无线通信设备接收第一无线通信设备发送的第一信号。
本申请实施例中,第一信号为与目标RS对应的反射信号,目标RS为第二无线通信设备向第一无线通信设备发送的RS。
可选地,本申请实施例中,第三无线通信设备可以在接收到第一RS之后,同时接收到第一无线通信设备通过反射路径发送的第一信号。
步骤503、第三无线通信设备根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。
可选地,本申请实施例中,第三无线通信设备可以在接收到第一RS和第一信号之后,对第一RS和第一信号进行计算,从而可以针对第一无线通信设备和第二无线通信设备进行定位。
可选地,本申请实施例中,上述步骤503具体可以通过下述的步骤503a至步骤503c实现。
步骤503a、第三无线通信设备根据第一RS,确定直径信号。
本申请实施例中,直径信号为:
其中,A2由调制序列信号的信号增益确定,w'2,3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,AWGN中包括干扰信号。
步骤503b、第三无线通信设备根据第一信号,确定反射径信号。
本申请实施例中,反射径信号为:
其中,A1由调制序列信号的信号增益确定,和w"2.3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,AWGN中包括干扰信号。
可选地,本申请实施例中,第三无线通信设备可以在第m个时隙中,接收第二无线通信设备通过直射路径发送的第一RS,其中,该第一RS的直射路径为:h2,32,3),并经历了时间延迟τ2,3,在同一个时隙中,第三无线通信设备可以接收第二无线通信设备发送至第一无线通信设备,并经过第一无线通信设备的调制并反射的第一信号,其中,该第一信号的反射路径为:h2,12,1)和h1,31,3),并经理了时间延迟τ2,1和τ1,3,通过未知设备j反射信号的反射路径分别为
需要说明的是,在同个时隙中,由于第一无线同设备直接用调制符号bk,m对目标RS进行调制,并立即发送,因此,可以假设在该调制过程中并无任何额外的处理延迟时间,调制和反射完成的过程可以理解为一种对接收喜好进行功率放大并转发的过程,即Amplify-and-Forward(AF)的过程。因此,第三无线通信设备接收到的总信号可以表示为:
其中,α′是通过第一无线通信设备发射的复数衰减反向散射信号系数,包括第一无线通信设备对接收信号进行的功率放大系数因子,αj是包括雷达横切面在内的第j个未知反射体的衰减系数。
可选地,本申请实施例中,第三无线通信设备在获取到总信号之后,可以通过运算,将直径信号与反射径信号从总信号中分离出来,并确定直径信号和反射径信号。
步骤503c、第三无线通信设备根据直径信号和反射径信号,定位第一无线通信设备和第二无线通信设备。
可选地,本申请实施例中,上述步骤503c具体可以通过下述的步骤503c1和步骤503c2实现。
步骤503c1、第三无线通信设备根据直径信号,确定第一时延,并根据反射径信号,确定第二时延。
其中,第一时延为第二无线通信设备发送至第三无线通信设备直径信号的时延。第二时延为第二无线通信设备经由第一无线通信设备发送至第三无线通信设备的反射径信号的时延。
本申请实施例中,第一时延为:其中,为从第一时延,为第二无线通信设备发送直径信号的时间偏移,τ2,3为从第二无线通信设备发送到第三无线通信设备的直径信号的总传播时间,为第三无线通信设备接收直径信号的时间偏移。
本申请实施例中,第二时延为:其中,为第二时延,为第二无线通信设备发送反射径信号的时间偏移,τ2,1为从第二无线通信设备发送到第一无线通信设备的目标RS信号的传播时间,τ1,3为从第一无线通信设备发送到第三无线通信设备的反射径信号的传播时间,为第三无线通信设备接收反射径信号的时间偏移。
本申请实施例中,发送端和接收端经历的定时误差分别为由于发送端和接收端的射频信号RF不同,因此
步骤503c2、第三无线通信设备根据第一时延和第二时延,定位第一无线通信设备和第二无线通信设备。
可选地,本申请实施例中,上述步骤503c2具体可以通过下述的步骤a和步骤b实现。
步骤a、第三无线通信设备根据第一时延和第二时延,确定第一传播延迟差异量。
本申请实施例中,第一传播延迟差异量为第一RS的传播时间与目标RS的传播时间之间的差异量。并且,第一传播延迟差异量为:
其中,为第一传播延迟差异量,为第二时延,为第一时延。
需要说明的是,第一传播延迟差异量为从第二无线通信设备发送,并经由第一无线通信设备调制并反射至第三无线通信设备的信号的传播延迟差异量,因此,可以得到从第三无线通信设备发送,并经由第一无线通信设备调制并反射至第二无线通信设备的信号的传播延迟差异量为:
因此,根据传播延迟的互异性,可以确定
步骤b、第三无线通信设备根据第一传播延迟差异量,定位第一无线通信设备和第二无线通信设备。
可选地,本申请实施例中,结合图9,如图10所示,在上述步骤503之前,本申请实施例提供的定位方法还包括下述的步骤601和步骤701。
步骤601、第三无线通信设备接收第一无线通信设备发送的第二信息。
本申请实施例中,第一信息包括第三时延和第四时延,第三时延和第四时延是在第二无线通信设备与第一无线通信设备相互第一转换的情况下,第三无线通信设备根据直径信号和反射径信号分别确定的。
本申请实施例中,第三时延为第一转换后的第二无线通信设备发送至第三无线通信设备的直径信号的时延;第四时延为第一转换后的第二无线通信设备经由第一转换后的第一无线通信设备发送至第三无线通信设备的反射径信号的时延。
需要说明的是,第一无线通信设备和第二无线通信设备相互第一转换的情况下,确定第三时延和第四 时延的过程可以参考上述第一时延和第二时延的确定过程,为了避免重复,此处不再赘述。
步骤701、第三无线通信设备根据第三时延和第四时延,定位第一无线通信设备和第二无线通信设备。
可选地,本申请实施例中,上述步骤701具体可以通过下述的步骤701a实现。
步骤701a、第三无线通信设备根据第三时延和第四时延,确定第二传播延迟差异量。
本申请实施例中,上述第二传播延迟差异量为第一转换后的第二无线通信设备发送的第一RS的传播时间与第一转换后的目标RS的传播时间之间的差异量。
本申请实施例中,第二传播延迟差异量为:
其中,为第一传播延迟差异量,为第四时延,为第三时延。
可选地,本申请实施例提供,结合图9,如图11所示,在上述步骤503之前,本申请实施例提供的定位方法还包括下述的步骤602和步骤702。
步骤602、第三无线通信设备接收第二无线通信设备发送的第三信息。
本申请实施例中,第二信息包括第五时延和第六时延,第五时延和第六时延是在第三无线通信设备与第一无线通信设备相互第二转换的情况下,第二无线通信设备根据直径信号和反射径信号分别确定的。
本申请实施例中,第五时延为第二转换后的第一无线通信设备发送至第二转换后的第三无线通信设备的直径信号的时延;第六时延为第二转换后的第三无线通信设备经由第二无线通信设备发送至第二转换后的第三无线通信设备的反射径信号的时延。
需要说明的是,第三无线通信设备和第一无线通信设备相互第二转换的情况下,确定第五时延和第六时延的过程可以参考上述第一时延和第二时延的确定过程,为了避免重复,此处不再赘述。
可选地,本申请实施例中,在上述步骤602之后,本申请实施例提供的定位方法还包括下述的步骤702
步骤702、第三无线通信设备根据第五时延和第六时延,定位第三无线通信设备和第一无线通信设备。
可选地,本申请实施例中,上述步骤702具体可以通过下述的步骤702a实现。
需要说明的是,本申请实施例提供的定位方法还可以均执行上述步骤601和步骤602,即本申请实施例提供的定位方法包括步骤501至步骤503、步骤601和步骤602。
步骤702a、第三无线通信设备根据第五时延和第六时延,确定第二传播延迟差异量。
本申请实施例中,上述第三传播延迟差异量为第二转换后的第二无线通信设备发送的第一RS的传播时间与第二转换后的目标RS的传播时间之间的差异量。
本申请实施例中,第三传播延迟差异量为:
其中,为第一传播延迟差异量,为第六时延,为第五时延。
可选地,本申请实施例中,上述步骤503c具体可以通过下述的步骤503c3实现。
步骤503c3、第三无线通信设备根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量,确定目标距离。
本申请实施例中,上述目标距离包括第一距离、第二距离和第三距离;
本申请实施例中,上述第一距离为第三无线通信设备与第一无线通信设备之间的距离,第二距离为第三无线通信设备与第二无线通信设备之间的距离,第三距离为第一无线通信设备与第二无线通信设备之间的距离。
可选地,本申请实施例中,第三无线通信息设备在获取到第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量之后,可以获取至少三个方程,并通过该至少三个方程,分别得到S-UE之间的传播延迟(即定位延迟参数),并通过矢量方式标识,以使得第三无线通信设备可以确定目标距离。
可选地,本申请实施例中,上述步骤503c3具体可以通过下述的步骤c实现。
步骤c、第三无线通信设备获取至少三个定位方程,从至少三个定位方程中确定目标数量的定位方程,并根据目标数量的定位方程确定目标距离。
其中,定位方程为:y=Ax,y为传播延迟差异量相关的定位方程矢量,定位方程矢量的元素为x为定位延迟参数矢量,定位延迟参数矢量的元素为τ2,3=[x]2,3,A为定位方程矩阵,根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量确定。
可选地,本申请实施例中,定位延迟参数矢量通过x=(ATA)-1ATy确定,并且该定位延迟参数矢量x表示为:
可选地,本申请实施例中,传播延迟差异量相关的定位方程矢量y可以表示为:
可选地,本申请实施例中,为定位方程矩阵A可以表示为:
本申请实施例中,第三无线通信设备可以接收第一无线通信设备通过反射路径反射的第一信号,并同时接收第二无线通信设备通过直射路径发送的第一RS,从而可以根据第一信号和第一RS,确定第一传播延迟差异量,然后通过第一无线通信设备和第二无线通信设备进行交换,以确定第二传播延迟差异量,并通过第一无线通信设备和第三无线通信设备进行交换,以确定第三传播延迟差异量,从而第三无线通设备可以对第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量进行汇总和计算,并确定第三无线通信设备与第一无线通信设备之间的距离,第三无线通信设备与第二无线通信设备之间的距离,以及第一无线通信设备与第二无线通信设备之间的距离。
可选地,本申请实施例中,至少三个定位方程的数量为第一数量;上述步骤c中的“从至少三个定位方程中确定目标数量的定位方程”具体可以通过下述的步骤c1实现。
步骤c1、在第三无线通信设备的位置为固定位置的情况下,第三无线通信设备得到第二数量,并根据第二数量和与第三无线通信设备的反射路径相关的定位方程数量确定目标数量。
其中,第一数量为:第二数量为:目标数量小于或等于K为定位组中无线通信设备的数量。
可选地,本申请实施例中,第三无线通信设备可以分别与第一无线通信设备和第二无线通信设备进行交换,从而可以获取至少六个时延,并根据至少三个方程,计算出第一无线通信设备、第二无线通信设备以及第三无线通信设备之间的距离。
可选地,本申请实施例中,通过固定第三无线通信设备,定位方程的数量可以被减少至第二数量,该第二数量的定位方程可以用于计算(K-1)个S-UE间(除第三无线通信设备之外的所有S-UE)的定位延迟参数,若需求确定(K-1)个S-UE与第三无线通信设备之间的定位延迟参数,可以通过第二数量的定位方程和与第三无线通信设备反射路径相关的一个定位方程,确定目标数量的定位方程。
本申请实施例中,由于第三无线通信设备负责对所有数据进行汇总和计算,因此,在S-UE的数量较多,或S-UE的数量增加时,若需求对所有S-UE进行定位,则需要汇总和计算的方程的数量巨大,虽然数量较多的方程可以得到更为精准地在所有S-UE间进行定位,但涉及的链路的资源也较多,因此,在能够获取所有需求的定位延迟参数的情况下,可以减少定位方程的数量,如此,简化了第三无线通信设备的对第一无线通信设备和第二无线通信设备进行定位的步骤,也提升了第三无线通信设备对第一无线通信设别和第二无线通信设备进行定位的效率。
本申请实施例提供一种定位方法,由第三无线通信设备执行,第三无线通信设备接收第二无线通信设 备发送的第一参考信号RS;第三无线通信设备接收第一无线通信设备发送的第一信号,第一信号为与目标RS对应的反射信号,目标RS为第二无线通信设备向第一无线通信设备发送的RS;第三无线通信设备根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。由于第三无线通信设备可以根据第二无线通信设备通过直射路径发送的第一RS,和经由第一无线通信设备调制并反射的第一信号,针对第一无线通信设备和第二无线通信设备进行定位,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
实施例四
本申请实施例提供一种定位方法,图12示出了本申请实施例提供的一种定位方法的流程图。如图12所示,本申请实施例提供的定位方法可以包括下述的步骤801至步骤804。
步骤801、在第一时隙内,目标设备作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号。
本申请实施例中,上述第一信号为目标RS对应的反射信号。
步骤802、在第二时隙内,目标设备作为第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS。
步骤803、在第三时隙内,目标设备作为第三无线通信设备接收第二无线通信设备发送的第一RS,接收第一无线通信设备发送的第一信号。
步骤804、目标设备根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。
其中,第一无线通信设备用于执行如实施例以中的定位方法,第二无线通信设备用于执行如实施例二的定位方法,第三通信设备用于执行如实施例三的定位方法。
需要说明的是,针对上述步骤801至步骤803的执行顺序,本申请实施例不做任何限制,图12中进示意了步骤801至步骤803的执行顺序的一种情况。
本申请实施例提供一种定位方法,由目标设备执行,在第一时隙内,目标设备作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号;在第二时隙内,目标设备作为第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;在第三时隙内,目标设备作为第三无线通信设备接收第二无线通信设备发送的第一RS,接收第一无线通信设备发送的第一信号,并根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。由于,在不同时隙内,第一无线通信设备、第二无线通信设备和第三无线通信设备可以互相交换,并通过发送RS的方式,获取至少一个测量量,并将获取到的测量量发送至第三无线通信设备,从而第三无线通信设备可以对所有的数据进行汇总和计算,并针对第一无线通信设备和第二无线通信设备进行定位。如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
本申请实施例提供的定位方法,执行主体可以为定位装置。本申请实施例中以定位执行定位方法为例,说明本申请实施例提供的定位装置。
图13示出了本申请实施例中涉及的定位装置的一种可能的结构示意图。如图13所示,该定位装置40可以包括:接收模块41和发送模块42。
其中,接收模块41,用于接收第二无线通信设备发送的目标参考信号RS。发送模块42,用于向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
本申请实施例提供一种定位装置,由于第一无线通信设备可以接收第二无线通信设备发送的目标RS,并向第三无线无线通信设备发送与目标RS对应的反射信号,即第一信号,该第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
在一种可能实现的方式中,所述定位装置还包括:调制模块。调制模块,用于在发送模块42向第三无线通信设备发送第一信号之前,通过调制序列信号,对目标RS进行调制,得到第一信号。
在一种可能实现的方式中,调制序列信号由以下方式中的任一项确定:通断键控OOK方式、二进制相移键控BPSK方式、码分多路复用CDM正交码方式。
在一种可能实现的方式中,第一无线通信设备、第二无线通信设备和第三无线通信设备为同一时隙内的不同通信设备;或者,第一无线通信设备、第二无线通信设备和第三无线通信设备为不同时隙内的不同通信设备;或者,在不同时隙内,第一无线通信设备、第二无线通信设备和第三无线通信设备之间相互转换。
在一种可能实现的方式中,目标RS包括以下至少一项:追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS。
在一种可能实现的方式中,第一无线通信设备的位置固定,或者,第一无线通信设备的位置沿第一轨迹运动;其中,第一无线通信设备的位置为第三无线通信设备的已知信息。
本申请实施例提供的定位方法,执行主体可以为定位装置。本申请实施例中以定位装置执行定位方法为例,说明本申请实施例提供的定位装置。
图14示出了本申请实施例中涉及的定位装置的一种可能的结构示意图。如图14所示,该定位装置50可以包括:发送模块51。
其中,发送模块51,用于向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS。其中,第一RS和目标RS用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
本申请实施例提供一种定位装置,第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS,由于第一RS和目标RS中包括用于指示第一无线通信设备和第二无线通信设备的定位相关信息,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
在一种可能实现的方式中,发送模块51,具体用于在第一时间,向第三无线通信设备发送第一RS,并在第二时间向第一无线通信设备发送目标RS。或者,在第三时间向第三无线通信设备发送第一RS,并同时向第一无线通信设备发送目标RS。
在一种可能实现的方式中,第一RS和目标RS为相同的物理信号,或不同的物理信号;第一RS和/或目标RS包括以下至少一项:追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS。
本申请实施例提供的定位方法,执行主体可以为定位装置。本申请实施例中以定位装置执行定位方法为例,说明本申请实施例提供的定位装置。
图15示出了本申请实施例中涉及的定位装置的一种可能的结构示意图。如图15所示,该定位装置60可以包括:接收模块61和定位模块62。
其中,接收模块61,用于接收第二无线通信设备发送的第一参考信号RS;并接收第一无线通信设备发送的第一信号,第一信号为与目标RS对应的反射信号,目标RS为第二无线通信设备向第一无线通信设备发送的RS。定位模块62,用于根据接收模块61接收的第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。
本申请实施例提供一种定位装置,第三无线通信设备可以根据第二无线通信设备通过直射路径发送的第一RS,和经由第一无线通信设备调制并反射的第一信号,针对第一无线通信设备和第二无线通信设备进行定位,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
在一种可能实现的方式中,定位模块62,具体用于根据第一RS,确定直径信号;根据第一信号,确定反射径信号;并根据直径信号和反射径信号,定位第一无线通信设备和第二无线通信设备。
在一种可能实现的方式中,定位模块62,具体用于根据直径信号,确定第一时延,根据反射径信号,确定第二时延;并根据第一时延和第二时延,定位第一无线通信设备和第二无线通信设备。其中,第一时延为第二无线通信设备发送至第三无线通信设备直径信号的时延;第二时延为第二无线通信设备经由第一无线通信设备发送至第三无线通信设备的反射径信号的时延。
在一种可能实现的方式中,定位模块62,具体用于根据第一时延和第二时延,确定第一传播延迟差异量,传播延迟差异量为第一RS的传播时间与目标RS的传播时间之间的差异量,并根据第一传播延迟差异量,定位第一无线通信设备和第二无线通信设备。
在一种可能实现的方式中,接收模块61,还用于在定位模块62根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位之前,接收第一无线通信设备发送的第二信息;和/或,接收第二无线通信设备发送的第三信息。其中,第一信息包括第三时延和第四时延,第三时延和第四时延是在第二无线通信设备与第一无线通信设备相互第一转换的情况下,第三无线通信设备根据直径信号和反射径信号分别确定的。其中,第三时延为第一转换后的第二无线通信设备发送至第三无线通信设备的直径信号的时延;第四时延为第一转换后的第二无线通信设备经由第一转换后的第一无线通信设备发送至第三无线通信设备的反射径信号的时延。其中,第二信息包括第五时延和第六时延,第五时延和第六时延是在第三无线通信设备与第一无线通信设备相互第二转换的情况下,第二无线通信设备根据直径信号和反射径信号分别确定的。其中,第五时延为第二转换后的第一无线通信设备发送至第二转换后的第三无线通信设备的直径信号的时延;第六时延为第二转换后的第三无线通信设备经由第二无线通信设备发送至第二转换后的第三无线通信设备的反射径信号的时延。
在一种可能实现的方式中,定位模块62,还用于在接收模块61接收第一无线通信设备发送的第二信息之后,根据第三时延和第四时延,定位第一无线通信设备和第二无线通信设备。定位模块62,还用于在接收模块61接收第一无线通信设备发送的第三信息之后,第五时延和第六时延,定位第三无线通信设备和第一无线通信设备。
在一种可能实现的方式中,定位模块62,具体用于根据第三时延和第四时延,确定第二传播延迟差异量,第二传播延迟差异量为第一转换后的第二无线通信设备发送的第一RS的传播时间与第一转换后的目标RS的传播时间之间的差异量。定位模块62,具体用于根据第五时延和第六时延,确定第二传播延迟差异量,第三传播延迟差异量为第二转换后的第二无线通信设备发送的第一RS的传播时间与第二转换后的目标RS的传播时间之间的差异量。
在一种可能实现的方式中,定位模块62,具体用于根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量,确定目标距离。目标距离包括第一距离、第二距离和第三距离;第一距离为第三无线通信设备与第一无线通信设备之间的距离,第二距离为第三无线通信设备与第二无线通信设备之间的距离,第三距离为第一无线通信设备与第二无线通信设备之间的距离。
在一种可能实现的方式中,直径信号为:
其中,A2由调制序列信号的信号增益确定,w'2,3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,AWGN中包括干扰信号。
在一种可能实现的方式中,反射径信号为:
其中,A1由调制序列信号的信号增益确定,和w"2.3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,AWGN中包括干扰信号。
在一种可能实现的方式中,第一时延为:其中,为从第一时延,为第二无线通信设备发送直径信号的时间偏移,τ2,3为从第二无线通信设备发送到第三无线通信设备的直径信号的总传播时间,为第三无线通信设备接收直径信号的时间偏移;第二时延为:其中,为第二时延,为第二无线通信设备发送反射径信号的时间偏移,τ2,1为从第二无线通信设备发送到第一无线通信设备的目标RS信号的传播时间,τ1,3为从第一无线通信设备发送到第三无线通信设备的反射径信号的传播时间,为第三无线通信设备接收反射径信号的时间偏移;其中,发送端和接收端经历的定时误差分别为发送端和接收端的射频信号RF不同,
在一种可能实现的方式中,第一传播延迟差异量为:
其中,为传播延迟差异量,为第二时延,为第一时延。
在一种可能实现的方式中,定位模块62,具体用于获取至少三个定位方程,从至少三个定位方程中确定目标数量的定位方程,并根据目标数量的定位方程确定目标距离。其中,定位方程为:y=Ax,y为传播延迟差异量相关的定位方程矢量,定位方程矢量的元素为x为定位延迟参数矢量,定位延迟参数矢量的元素为τ2,3=[x]2,3,A为定位方程矩阵,根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量确定。
在一种可能实现的方式中,定位延迟参数矢量通过x=(ATA)-1ATy确定。
在一种可能实现的方式中,至少三个定位方程的数量为第一数量;定位模块62,具体用于在第三无线通信设备的位置为固定位置的情况下,得到第二数量,并根据第二数量和与第三无线通信设备的反射路径相关的定位方程数量确定目标数量。其中,第一数量为:第二数量为: 目标数量小于或等于K为定位组中无线通信设备的数量。
本申请实施例提供的定位方法,执行主体可以为定位装置。本申请实施例中以定位装置执行定位方法为例,说明本申请实施例提供的定位装置。
图16示出了本申请实施例中涉及的定位装置的一种可能的结构示意图。如图16所示,该定位装置70可以包括:接收模块71、发送模块72和定位模块73。
其中,接收模块71,用于在第一时隙内,作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号,第一信号为目标RS对应的反射信号。发送模块72,用于在第二时隙内,作为第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS。接收模块71,还用于在第三时隙内,作为第三无线通信设备接收第二无线通信设备发送的第一RS,接收第一无线通信设备发送的第一信号。定位模块73,用于根据接收模块接收的第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。其中,第一无线通信设备用于执行如步骤201和步骤202中定位方法的定位装置,第二无线通信设备用于执行如步骤401中的定位方法的定位装置,第三通信设备用于执行如步骤501至步骤503中的定位方法的定位装置。
本申请实施例提供一种定位装置,由于在不同时隙内,第一无线通信设备、第二无线通信设备和第三无线通信设备可以互相交换,并通过发送RS的方式,获取至少一个测量量,并将获取到的测量量发送至第三无线通信设备,从而第三无线通信设备可以对所有的数据进行汇总和计算,并针对第一无线通信设备和第二无线通信设备进行定位。如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
本申请实施例中的定位装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的定位装置能够实现图6至图9的定位方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图17所示,本申请实施例还提供一种通信设备1400,包括处理器1401和存储器1402,存储器1402上存储有可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为终端时,该程序或指令被处理器1401执行时实现上述定位方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1400为网络侧设备时,该程序或指令被处理器1401执行时实现上述定位方法各个实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于接收第二无线通信设备发送的目标参考信号RS;并向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图18为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109以及处理器110等中的至少部分部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图18中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理单元(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072中的至少一种。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101接收来自网络侧设备的下行数据后,可以传输给处理器110进行处理;另外,射频单元101可以向网络侧设备发送上行数据。通常,射频单元101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令的第一 存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括易失性存储器或非易失性存储器,或者,存储器109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器109包括但不限于这些和任意其它适合类型的存储器。
处理器110可包括一个或多个处理单元;可选的,处理器110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
在终端100为实施例一中所述的终端的情况下,
其中,射频单元101,用于接收第二无线通信设备发送的目标参考信号RS。并向第三无线通信设备发送第一信号,第一信号为与目标RS对应的反射信号,第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
本申请实施例提供一种终端,由于第一无线通信设备可以接收第二无线通信设备发送的目标RS,并向第三无线无线通信设备发送与目标RS对应的反射信号,即第一信号,该第一信号用于指示第一无线通信设备和第二无线通信设备的定位相关信息,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
可选地,本申请实施例中,处理器110,用于在向第三无线通信设备发送第一信号之前,通过调制序列信号,对目标RS进行调制,得到第一信号。
在终端100为实施例二中所述的终端的情况下,
其中,射频单元101,用于向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS。其中,第一RS和目标RS用于指示第一无线通信设备和第二无线通信设备的定位相关信息。
本申请实施例提供一种终端,第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS,由于第一RS和目标RS中包括用于指示第一无线通信设备和第二无线通信设备的定位相关信息,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
可选地,本申请实施例中,射频单元101,具体用于在第一时间,向第三无线通信设备发送第一RS,并在第二时间向第一无线通信设备发送目标RS。或者,在第三时间向第三无线通信设备发送第一RS,并同时向第一无线通信设备发送目标RS。
在终端100为实施例三中所述的终端的情况下,
其中,射频单元101,用于接收第二无线通信设备发送的第一参考信号RS;并接收第一无线通信设备发送的第一信号,第一信号为与目标RS对应的反射信号,目标RS为第二无线通信设备向第一无线通信设备发送的RS。处理器110,用于根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。
本申请实施例提供一种终端,第三无线通信设备可以根据第二无线通信设备通过直射路径发送的第一RS,和经由第一无线通信设备调制并反射的第一信号,针对第一无线通信设备和第二无线通信设备进行定位,如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
可选地,本申请实施例中,处理器110,具体用于根据第一RS,确定直径信号;根据第一信号,确定反射径信号;并根据直径信号和反射径信号,定位第一无线通信设备和第二无线通信设备。
可选地,本申请实施例中,处理器110,具体用于根据直径信号,确定第一时延,根据反射径信号,确定第二时延;并根据第一时延和第二时延,定位第一无线通信设备和第二无线通信设备。其中,第一时延为第二无线通信设备发送至第三无线通信设备直径信号的时延;第二时延为第二无线通信设备经由第一无线通信设备发送至第三无线通信设备的反射径信号的时延。
可选地,本申请实施例中,处理器110,具体用于根据第一时延和第二时延,确定第一传播延迟差异量,传播延迟差异量为第一RS的传播时间与目标RS的传播时间之间的差异量,并根据第一传播延迟差异量,定位第一无线通信设备和第二无线通信设备。
可选地,本申请实施例中,射频单元101,还用于在根据第一RS和第一信号,针对第一无线通信设备 和第二无线通信设备进行定位之前,接收第一无线通信设备发送的第二信息;和/或,接收第二无线通信设备发送的第三信息。其中,第一信息包括第三时延和第四时延,第三时延和第四时延是在第二无线通信设备与第一无线通信设备相互第一转换的情况下,第三无线通信设备根据直径信号和反射径信号分别确定的。其中,第三时延为第一转换后的第二无线通信设备发送至第三无线通信设备的直径信号的时延;第四时延为第一转换后的第二无线通信设备经由第一转换后的第一无线通信设备发送至第三无线通信设备的反射径信号的时延。其中,第二信息包括第五时延和第六时延,第五时延和第六时延是在第三无线通信设备与第一无线通信设备相互第二转换的情况下,第二无线通信设备根据直径信号和反射径信号分别确定的。其中,第五时延为第二转换后的第一无线通信设备发送至第二转换后的第三无线通信设备的直径信号的时延;第六时延为第二转换后的第三无线通信设备经由第二无线通信设备发送至第二转换后的第三无线通信设备的反射径信号的时延。
可选地,本申请实施例中,处理器110,还用于在接收第一无线通信设备发送的第二信息之后,根据第三时延和第四时延,定位第一无线通信设备和第二无线通信设备。处理器,还用于在接收第一无线通信设备发送的第三信息之后,第五时延和第六时延,定位第三无线通信设备和第一无线通信设备。
可选地,本申请实施例中,处理器110,具体用于根据第三时延和第四时延,确定第二传播延迟差异量,第二传播延迟差异量为第一转换后的第二无线通信设备发送的第一RS的传播时间与第一转换后的目标RS的传播时间之间的差异量;并根据第五时延和第六时延,确定第二传播延迟差异量,第三传播延迟差异量为第二转换后的第二无线通信设备发送的第一RS的传播时间与第二转换后的目标RS的传播时间之间的差异量。
可选地,本申请实施例中,处理器110,具体用于根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量,确定目标距离。目标距离包括第一距离、第二距离和第三距离;第一距离为第三无线通信设备与第一无线通信设备之间的距离,第二距离为第三无线通信设备与第二无线通信设备之间的距离,第三距离为第一无线通信设备与第二无线通信设备之间的距离。
可选地,本申请实施例中,处理器110,具体用于获取至少三个定位方程,从至少三个定位方程中确定目标数量的定位方程,并根据目标数量的定位方程确定目标距离。其中,定位方程为:y=Ax,y为传播延迟差异量相关的定位方程矢量,定位方程矢量的元素为x为定位延迟参数矢量,定位延迟参数矢量的元素为τ2,3=[x]2,3,A为定位方程矩阵,根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量确定。
可选地,本申请实施例中,至少三个定位方程的数量为第一数量;处理器110,具体用于在第三无线通信设备的位置为固定位置的情况下,得到第二数量,并根据第二数量和与第三无线通信设备的反射路径相关的定位方程数量确定目标数量。其中,第一数量为:第二数量为:目标数量小于或等于K为定位组中无线通信设备的数量。
在终端100为实施例四中所述的终端的情况下,
可选地,本申请实施例中,射频单元101,用于在第一时隙内,作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号,第一信号为目标RS对应的反射信号;在第二时隙内,作为第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;并在第三时隙内,作为第三无线通信设备接收第二无线通信设备发送的第一RS,接收第一无线通信设备发送的第一信号。处理器110,用于根据第一RS和第一信号,针对第一无线通信设备和第二无线通信设备进行定位。其中,第一无线通信设备用于执行如步骤201和步骤202中定位方法的终端,第二无线通信设备用于执行如步骤401中的定位方法的终端,第三通信设备用于执行如步骤501至步骤503中的定位方法的终端。
本申请实施例提供一种终端,由于在不同时隙内,第一无线通信设备、第二无线通信设备和第三无线通信设备可以互相交换,并通过发送RS的方式,获取至少一个测量量,并将获取到的测量量发送至第三无线通信设备,从而第三无线通信设备可以对所有的数据进行汇总和计算,并针对第一无线通信设备和第二无线通信设备进行定位。如此,无需引入校准UE或gNB,也可以精准对无线通信设备进行定位。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被第一通信设备的处理器、第二通信设备的处理器、第三通信设备的处理器以及目标设备的处理器中的至少一项执行时实现上述定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被第一通信设备的处理器、第二通信设备的处理器、第三通信设备的处理器以及目标设备的处理器中的至少一项执行以实现上述定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种定位系统,所述定位系统包括如上文所述的第一无线通信设备、第二无线通信设备、第三通信设备,和/或目标设备,所述定位系统用于执行并实现本申请中的各定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (55)

  1. 一种定位方法,所述方法包括:
    第一无线通信设备接收第二无线通信设备发送的目标参考信号RS;
    所述第一无线通信设备向第三无线通信设备发送第一信号,所述第一信号为与所述目标RS对应的反射信号,所述第一信号用于指示所述第一无线通信设备和所述第二无线通信设备的定位相关信息。
  2. 根据权利要求1所述的方法,其中,所述第一无线通信设备向第三无线通信设备发送第一信号之前,所述方法还包括:
    所述第一无线通信设备通过调制序列信号,对所述目标RS进行调制,得到所述第一信号。
  3. 根据权利要求2所述的方法,其中,所述调制序列信号由以下方式中的任一项确定:通断键控OOK方式、二进制相移键控BPSK方式、码分多路复用CDM正交码方式。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一无线通信设备、所述第二无线通信设备和所述第三无线通信设备为同一时隙内的不同通信设备;
    或者,所述第一无线通信设备、所述第二无线通信设备和所述第三无线通信设备为不同时隙内的不同通信设备;
    或者,在不同时隙内,所述第一无线通信设备、所述第二无线通信设备和所述第三无线通信设备之间相互转换。
  5. 根据权利要求1所述的方法,其中,所述目标RS包括以下至少一项:追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述第一无线通信设备的位置固定,或者,所述第一无线通信设备的位置沿第一轨迹运动;其中,所述第一无线通信设备的位置为所述第三无线通信设备的已知信息。
  7. 一种定位方法,所述方法包括:
    第二无线通信设备向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;
    其中,所述第一RS和所述目标RS用于指示所述第一无线通信设备和所述第二无线通信设备的定位相关信息。
  8. 根据权利要求7所述的方法,其中,
    所述第二无线通信设备向第三无线通信设备发送第一RS,并向第一无线通信设备发送目标RS,包括:
    所述第二无线通信设备在第一时间,向所述第三无线通信设备发送所述第一RS,并在第二时间向所述第一无线通信设备发送所述目标RS;
    或者,
    所述第二无线通信设备在第三时间向所述第三无线通信设备发送所述第一RS,并同时向所述第一无线通信设备发送所述目标RS。
  9. 根据权利要求7或8所述的方法,其中,所述第一RS和所述目标RS为相同的物理信号,或不同的物理信号;
    所述第一RS和/或目标RS包括以下至少一项:追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS。
  10. 一种定位方法,所述方法包括:
    第三无线通信设备接收第二无线通信设备发送的第一参考信号RS;
    所述第三无线通信设备接收第一无线通信设备发送的第一信号,所述第一信号为与所述目标RS对应的反射信号,所述目标RS为所述第二无线通信设备向所述第一无线通信设备发送的RS;
    所述第三无线通信设备根据所述第一RS和所述第一信号,针对所述第一无线通信设备和所述第二无线通信设备进行定位。
  11. 根据权利要求10所述的方法,其中,所述第三无线通信设备根据所述第一RS和所述第一信号,定位所述第一无线通信设备和所述第二无线通信设备,包括:
    所述第三无线通信设备根据所述第一RS,确定直径信号;
    所述第三无线通信设备根据所述第一信号,确定反射径信号;
    所述第三无线通信设备根据所述直径信号和所述反射径信号,定位所述第一无线通信设备和所述 第二无线通信设备。
  12. 根据权利要求11所述的方法,其中,所述第三无线通信设备根据所述直径信号和所述反射径信号,定位所述第一无线通信设备和所述第二无线通信设备,包括:
    所述第三无线通信设备根据所述直径信号,确定第一时延,并根据所述反射径信号,确定第二时延;
    其中,所述第一时延为所述第二无线通信设备发送至所述第三无线通信设备所述直径信号的时延;
    所述第二时延为所述第二无线通信设备经由第一无线通信设备发送至第三无线通信设备的所述反射径信号的时延;
    所述第三无线通信设备根据所述第一时延和所述第二时延,定位所述第一无线通信设备和所述第二无线通信设备。
  13. 根据权利要求12所述的方法,其中,所述第三无线通信设备根据所述第一时延和所述第二时延,定位所述第一无线通信设备和所述第二无线通信设备,包括:
    所述第三无线通信设备根据所述第一时延和所述第二时延,确定第一传播延迟差异量,所述第一传播延迟差异量为所述第一RS的传播时间与所述目标RS的传播时间之间的差异量;
    所述第三无线通信设备根据第一传播延迟差异量,定位所述第一无线通信设备和所述第二无线通信设备。
  14. 根据权利要求10至13任一项所述的方法,其中,在所述第三无线通信设备根据所述第一RS和所述第一信号,针对所述第一无线通信设备和所述第二无线通信设备进行定位之前,所述方法还包括:
    所述第三无线通信设备接收所述第一无线通信设备发送的第二信息;和/或,
    所述第三无线通信设备接收所述第二无线通信设备发送的第三信息;
    其中,所述第一信息包括第三时延和第四时延,所述第三时延和所述第四时延是在所述第二无线通信设备与所述第一无线通信设备相互第一转换的情况下,所述第三无线通信设备根据直径信号和所述反射径信号分别确定的;
    其中,所述第三时延为第一转换后的第二无线通信设备发送至所述第三无线通信设备的直径信号的时延;所述第四时延为所述第一转换后的第二无线通信设备经由所述第一转换后的第一无线通信设备发送至所述第三无线通信设备的所述反射径信号的时延;
    其中,所述第二信息包括第五时延和第六时延,所述第五时延和所述第六时延是在所述第三无线通信设备与所述第一无线通信设备相互第二转换的情况下,所述第二无线通信设备根据直径信号和所述反射径信号分别确定的;
    其中,所述第五时延为第二转换后的第一无线通信设备发送至所述第二转换后的第三无线通信设备的直径信号的时延;所述第六时延为所述第二转换后的第三无线通信设备经由所述第二无线通信设备发送至所述第二转换后的第三无线通信设备的所述反射径信号的时延。
  15. 根据权利要求14所述的方法,其中,所述第三无线通信设备接收所述第一无线通信设备发送的第二信息之后,所述方法还包括:
    所述第三无线通信设备根据所述第三时延和所述第四时延,定位所述第一无线通信设备和所述第二无线通信设备;
    所述第三无线通信设备接收所述第一无线通信设备发送的第三信息之后,所述方法还包括:
    所述第三无线通信设备根据所述第五时延和所述第六时延,定位所述第三无线通信设备和所述第一无线通信设备。
  16. 根据权利要求15所述的方法,其中,所述第三无线通信设备根据所述第三时延和所述第四时延,定位所述第一无线通信设备和所述第二无线通信设备,包括:
    所述第三无线通信设备根据所述第三时延和所述第四时延,确定第二传播延迟差异量,所述第二传播延迟差异量为所述第一转换后的第二无线通信设备发送的第一RS的传播时间与所述第一转换后的目标RS的传播时间之间的差异量;
    所述第三无线通信设备根据所述第五时延和所述第六时延,定位所述第三无线通信设备和所述第一无线通信设备,包括:
    所述第三无线通信设备根据所述第五时延和所述第六时延,确定第二传播延迟差异量,所述第三传播延迟差异量为所述第二转换后的第二无线通信设备发送的第一RS的传播时间与所述第二转换后的目标RS的传播时间之间的差异量。
  17. 根据权利要求13至16中任一项所述的方法,其中,所述第三无线通信设备根据所述直径信号和所述反射径信号,定位所述第一无线通信设备和所述第二无线通信设备,包括:
    所述第三无线通信设备根据所述第一传播延迟差异量、所述第二传播延迟差异量和所述第三传播延迟差异量,确定目标距离;
    所述目标距离包括第一距离、第二距离和第三距离;
    所述第一距离为所述第三无线通信设备与所述第一无线通信设备之间的距离,所述第二距离为所述第三无线通信设备与所述第二无线通信设备之间的距离,所述第三距离为所述第一无线通信设备与所述第二无线通信设备之间的距离。
  18. 根据权利要求11至17任一项所述的方法,其中,所述直径信号为:
    其中,A2由调制序列信号的信号增益确定,w'2,3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,所述AWGN中包括干扰信号。
  19. 根据权利要求11至17任一项所述的方法,其中,所述反射径信号为:
    其中,A1由调制序列信号的信号增益确定,和w″2.3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,所述AWGN中包括干扰信号。
  20. 根据权利要求12至19任一项所述的方法,其特征在于,
    所述第一时延为:
    其中,为从第一时延,为第二无线通信设备发送直径信号的时间偏移,τ2,3为从第二无线通信设备发送到第三无线通信设备的直径信号的总传播时间,为第三无线通信设备接收直径信号的时间偏移;
    所述第二时延为:
    其中,为第二时延,为第二无线通信设备发送反射径信号的时间偏移,τ2,1为从第二无线通信设备发送到第一无线通信设备的目标RS信号的传播时间,τ1,3为从第一无线通信设备发送到第三无线通信设备的反射径信号的传播时间,为第三无线通信设备接收反射径信号的时间偏移;
    其中,发送端和接收端经历的定时误差分别为
    所述发送端和所述接收端的射频信号RF不同,
  21. 根据权利要求13至20任一项所述的方法,其中,
    所述第一传播延迟差异量为:
    其中,为所述传播延迟差异量,为所述第二时延,为所述第一时延。
  22. 根据权利要求16至21中任一项所述的方法,其中,
    所述第三无线通信设备根据所述第一传播延迟差异量、所述第二传播延迟差异量和所述第三传播延迟差异量,确定目标距离,包括:
    所述第三无线通信设备获取至少三个定位方程,从所述至少三个定位方程中确定目标数量的定位方程,并根据所述目标数量的定位方程确定目标距离;
    其中,定位方程为:y=Ax,y为所述传播延迟差异量相关的定位方程矢量,所述定位方程矢量的元素为x为所述定位延迟参数矢量,所述定位延迟参数矢量的元素为 A为所述定位方程矩阵,根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量确定。
  23. 根据权利要求22所述的方法,其中,
    所述定位延迟参数矢量通过x=(ATA)-1ATy确定。
  24. 根据权利要求22所述的方法,其中,所述至少三个定位方程的数量为第一数量;
    所述从所述至少三个定位方程中确定目标数量的定位方程,包括:
    在所述第三无线通信设备的位置为固定位置的情况下,所述第三无线通信设备得到第二数量,并根据所述第二数量和与所述第三无线通信设备的反射路径相关的定位方程数量确定所述目标数量;
    其中,所述第一数量为:所述第二数量为:所述目标数量小于或等于K为所述定位组中无线通信设备的数量。
  25. 一种定位方法,由目标设备执行,所述方法包括:
    在第一时隙内,所述目标设备作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号,所述第一信号为所述目标RS对应的反射信号;
    在第二时隙内,所述目标设备作为所述第二无线通信设备向所述第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送所述目标RS;
    在第三时隙内,所述目标设备作为所述第三无线通信设备接收所述第二无线通信设备发送的所述第一RS,接收所述第一无线通信设备发送的所述第一信号;
    根据所述第一RS和所述第一信号,针对所述第一无线通信设备和所述第二无线通信设备进行定位;
    其中,所述第一无线通信设备用于执行如权利要求1至6中任一项所述的定位方法,所述第二无线通信设备用于执行如7至9中任一项所述的定位方法,所述第三通信设备用于执行如10至24中任一项所述的定位方法。
  26. 一种定位装置,所述装置包括:接收模块和发送模块;
    所述接收模块,用于接收第二无线通信设备发送的目标参考信号RS;
    所述发送模块,用于向第三无线通信设备发送第一信号,所述第一信号为与所述目标RS对应的反射信号,所述第一信号用于指示所述第一无线通信设备和所述第二无线通信设备的定位相关信息。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:调制模块;
    所述调制模块,用于在所述发送模块向第三无线通信设备发送第一信号之前,通过调制序列信号,对所述目标RS进行调制,得到所述第一信号。
  28. 根据权利要求27所述的装置,其中,所述调制序列信号由以下方式中的任一项确定:通断键控OOK方式、二进制相移键控BPSK方式、码分多路复用CDM正交码方式。
  29. 根据权利要求26至28中任一项所述的装置,其中,所述第一无线通信设备、所述第二无线通信设备和所述第三无线通信设备为同一时隙内的不同通信设备;
    或者,所述第一无线通信设备、所述第二无线通信设备和所述第三无线通信设备为不同时隙内的不同通信设备;
    或者,在不同时隙内,所述第一无线通信设备、所述第二无线通信设备和所述第三无线通信设备之间相互转换。
  30. 根据权利要求26所述的装置,其中,所述目标RS包括以下至少一项:追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS。
  31. 根据权利要求26至30中任一项所述的装置,其中,所述第一无线通信设备的位置固定,或者,所述第一无线通信设备的位置沿第一轨迹运动;其中,所述第一无线通信设备的位置为所述第三无线通信设备的已知信息。
  32. 一种定位装置,所述装置包括:发送模块;
    所述发送模块,用于向第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送目标RS;
    其中,所述第一RS和所述目标RS用于指示所述第一无线通信设备和所述第二无线通信设备的定位相关信息。
  33. 根据权利要求32所述的装置,其中,
    所述发送模块,具体用于在第一时间,向所述第三无线通信设备发送所述第一RS,并在第二时 间向所述第一无线通信设备发送所述目标RS;
    或者,在第三时间向所述第三无线通信设备发送所述第一RS,并同时向所述第一无线通信设备发送所述目标RS。
  34. 根据权利要求31或32所述的装置,其中,所述第一RS和所述目标RS为相同的物理信号,或不同的物理信号;
    所述第一RS和/或目标RS包括以下至少一项:追踪参考信号TRS、信道状态信息参考信号CSI-RS、定位参考信号PRS。
  35. 一种定位装置,所述装置包括:接收模块和定位模块;
    所述接收模块,用于接收第二无线通信设备发送的第一参考信号RS;并接收第一无线通信设备发送的第一信号,所述第一信号为与所述目标RS对应的反射信号,所述目标RS为所述第二无线通信设备向所述第一无线通信设备发送的RS;
    所述定位模块,用于根据所述接收模块接收的所述第一RS和所述第一信号,针对所述第一无线通信设备和所述第二无线通信设备进行定位。
  36. 根据权利要求35所述的装置,其中,
    所述定位模块,具体用于根据所述第一RS,确定直径信号;根据所述第一信号,确定反射径信号;并根据所述直径信号和所述反射径信号,定位所述第一无线通信设备和所述第二无线通信设备。
  37. 根据权利要求36所述的装置,其中,
    所述定位模块,具体用于根据所述直径信号,确定第一时延,根据所述反射径信号,确定第二时延;并根据所述第一时延和所述第二时延,定位所述第一无线通信设备和所述第二无线通信设备
    其中,所述第一时延为所述第二无线通信设备发送至所述第三无线通信设备所述直径信号的时延;
    所述第二时延为所述第二无线通信设备经由第一无线通信设备发送至第三无线通信设备的所述反射径信号的时延。
  38. 根据权利要求37所述的装置,其中,
    所述定位模块,具体用于根据所述第一时延和所述第二时延,确定第一传播延迟差异量,所述第一传播延迟差异量为所述第一RS的传播时间与所述目标RS的传播时间之间的差异量;并根据第一传播延迟差异量,定位第一无线通信设备和第二无线通信设备。
  39. 根据权利要求35至38中任一项所述的装置,其中,
    所述接收模块,还用于在所述定位模块根据所述第一RS和所述第一信号,针对所述第一无线通信设备和所述第二无线通信设备进行定位之前,接收所述第一无线通信设备发送的第二信息;和/或,
    接收所述第二无线通信设备发送的第三信息;
    其中,所述第一信息包括第三时延和第四时延,所述第三时延和所述第四时延是在所述第二无线通信设备与所述第一无线通信设备相互第一转换的情况下,所述第三无线通信设备根据直径信号和所述反射径信号分别确定的;
    其中,所述第三时延为第一转换后的第二无线通信设备发送至所述第三无线通信设备的直径信号的时延;所述第四时延为所述第一转换后的第二无线通信设备经由所述第一转换后的第一无线通信设备发送至所述第三无线通信设备的所述反射径信号的时延;
    其中,所述第二信息包括第五时延和第六时延,所述第五时延和所述第六时延是在所述第三无线通信设备与所述第一无线通信设备相互第二转换的情况下,所述第二无线通信设备根据直径信号和所述反射径信号分别确定的;
    其中,所述第五时延为第二转换后的第一无线通信设备发送至所述第二转换后的第三无线通信设备的直径信号的时延;所述第六时延为所述第二转换后的第三无线通信设备经由所述第二无线通信设备发送至所述第二转换后的第三无线通信设备的所述反射径信号的时延。
  40. 根据权利要求39所述的装置,其中,所述定位模块,还用于在所述接收模块接收所述第一无线通信设备发送的第二信息之后,根据所述第三时延和所述第四时延,定位所述第一无线通信设备和所述第二无线通信设备;
    所述定位模块,还用于在所述接收模块接收所述第一无线通信设备发送的第三信息之后,所述第五时延和所述第六时延,定位所述第三无线通信设备和所述第一无线通信设备。
  41. 根据权利要求40所述的装置,其中,
    所述定位模块,具体用于根据所述第三时延和所述第四时延,确定第二传播延迟差异量,所述第二传播延迟差异量为所述第一转换后的第二无线通信设备发送的第一RS的传播时间与所述第一转换 后的目标RS的传播时间之间的差异量;
    所述定位模块,具体用于根据所述第五时延和所述第六时延,确定第二传播延迟差异量,所述第三传播延迟差异量为所述第二转换后的第二无线通信设备发送的第一RS的传播时间与所述第二转换后的目标RS的传播时间之间的差异量。
  42. 根据权利要求38至41中任一项所述的装置,其中,
    所述定位模块,具体用于根据所述第一传播延迟差异量、所述第二传播延迟差异量和所述第三传播延迟差异量,确定目标距离;
    所述目标距离包括第一距离、第二距离和第三距离;
    所述第一距离为所述第三无线通信设备与所述第一无线通信设备之间的距离,所述第二距离为所述第三无线通信设备与所述第二无线通信设备之间的距离,所述第三距离为所述第一无线通信设备与所述第二无线通信设备之间的距离。
  43. 根据权利要求36至42中任一项所述的装置,其中,所述直径信号为:
    其中,A2由调制序列信号的信号增益确定,w'2,3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,所述AWGN中包括干扰信号。
  44. 根据权利要求36至42中任一项所述的装置,其中,所述反射径信号为:
    其中,A1由调制序列信号的信号增益确定,和w″2.3[n]分别为在第n个符号中被第二无线通信设备接收的加性高斯白噪声AWGN,所述AWGN中包括干扰信号。
  45. 根据权利要求37至44中任一项所述的装置,其中,
    所述第一时延为:
    其中,为从第一时延,为第二无线通信设备发送直径信号的时间偏移,τ2,3为从第二无线通信设备发送到第三无线通信设备的直径信号的总传播时间,为第三无线通信设备接收直径信号的时间偏移;
    所述第二时延为:
    其中,为第二时延,为第二无线通信设备发送反射径信号的时间偏移,τ2,1为从第二无线通信设备发送到第一无线通信设备的目标RS信号的传播时间,τ1,3为从第一无线通信设备发送到第三无线通信设备的反射径信号的传播时间,为第三无线通信设备接收反射径信号的时间偏移;
    其中,发送端和接收端经历的定时误差分别为
    所述发送端和所述接收端的射频信号RF不同,
  46. 根据权利要求38至45中任一项所述的装置,其中,
    所述第一传播延迟差异量为:
    其中,为所述传播延迟差异量,为所述第二时延,为所述第一时延。
  47. 根据权利要求41至46中任一项所述的装置,其中,
    所述定位模块,具体用于获取至少三个定位方程,从所述至少三个定位方程中确定目标数量的定位方程,并根据所述目标数量的定位方程确定目标距离;
    其中,定位方程为:y=Ax,y为所述传播延迟差异量相关的定位方程矢量,所述定位方程矢量的元素为x为所述定位延迟参数矢量,所述定位延迟参数矢量的元素为τ2,3=[x]2,3, A为所述定位方程矩阵,根据第一传播延迟差异量、第二传播延迟差异量和第三传播延迟差异量确定。
  48. 根据权利要求47所述的装置,其中,
    所述定位延迟参数矢量通过x=(ATA)-1ATy确定。
  49. 根据权利要求47所述的装置,其中,所述至少三个定位方程的数量为第一数量;
    所述定位模块,具体用于在所述第三无线通信设备的位置为固定位置的情况下,得到第二数量,并根据所述第二数量和与所述第三无线通信设备的反射路径相关的定位方程数量确定所述目标数量;
    其中,所述第一数量为:所述第二数量为:所述目标数量小于或等于K为所述定位组中无线通信设备的数量。
  50. 一种定位装置,所述装置包括:接收模块、发送模块和定位模块;
    所述接收模块,用于在第一时隙内,作为第一无线通信设备,接收第二无线通信设备发送的目标参考信号RS,并向第三无线通信设备发送第一信号,所述第一信号为所述目标RS对应的反射信号;
    所述发送模块,用于在第二时隙内,作为所述第二无线通信设备向所述第三无线通信设备发送第一参考信号RS,并向第一无线通信设备发送所述目标RS;
    所述接收模块,还用于在第三时隙内,作为所述第三无线通信设备接收所述第二无线通信设备发送的所述第一RS,接收所述第一无线通信设备发送的所述第一信号;
    所述定位模块,用于根据所述接收模块接收的所述第一RS和所述第一信号,针对所述第一无线通信设备和所述第二无线通信设备进行定位;
    其中,所述第一无线通信设备用于执行如权利要求26至31中任一项所述的定位装置,所述第二无线通信设备用于执行如32至34中任一项所述的定位装置,所述第三通信设备用于执行如35至49中任一项所述的定位装置。
  51. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至25任一项所述的定位方法的步骤。
  52. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令满足以下至少一项:
    被第一通信设备的处理器执行时实现如权利要求1至6任一项所述的定位方法的步骤;
    被第二通信设备的处理器执行时实现如权利要求7至9任一项所述的定位方法的步骤;
    被第三通信设备的处理器执行时实现如权利要求10至24任一项所述的定位方法的步骤;
    被目标设备的处理器执行时实现如权利要求25所述的定位方法的步骤。
  53. 一种计算机程序产品,所述程序产品被至少一个处理器满足以下至少一项:
    被第一通信设备的处理器执行时实现如权利要求1至6任一项所述的定位方法的步骤;
    被第二通信设备的处理器执行时实现如权利要求7至9任一项所述的定位方法的步骤;
    被第三通信设备的处理器执行时实现如权利要求10至24任一项所述的定位方法的步骤;
    被目标设备的处理器执行时实现如权利要求25所述的定位方法的步骤。
  54. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,满足以下至少一项:
    被第一通信设备的处理器执行时实现如权利要求1至6任一项所述的定位方法的步骤;
    被第二通信设备的处理器执行时实现如权利要求7至9任一项所述的定位方法的步骤;
    被第三通信设备的处理器执行时实现如权利要求10至24任一项所述的定位方法的步骤;
    被目标设备的处理器执行时实现如权利要求25所述的定位方法的步骤。
  55. 一种电子设备,其特征在于,包括所述电子设备被配置成用于执行如权利要求1至25任一项所述的定位方法的步骤。
PCT/CN2023/074801 2022-02-08 2023-02-07 定位方法、装置、用户设备及存储介质 WO2023151555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210119393.2A CN116614876A (zh) 2022-02-08 2022-02-08 定位方法、装置、用户设备及存储介质
CN202210119393.2 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023151555A1 true WO2023151555A1 (zh) 2023-08-17

Family

ID=87563610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074801 WO2023151555A1 (zh) 2022-02-08 2023-02-07 定位方法、装置、用户设备及存储介质

Country Status (2)

Country Link
CN (1) CN116614876A (zh)
WO (1) WO2023151555A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012536A (zh) * 2018-01-05 2019-07-12 华为技术有限公司 用于终端设备的定位方法、装置及系统
CN112673269A (zh) * 2018-09-28 2021-04-16 苹果公司 用于改善新无线电(nr)定位性能的技术
US20210385784A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Systems and methods for bi-static radio-based object location detection
US20210389407A1 (en) * 2020-06-11 2021-12-16 Qualcomm Incorporated Additional feedback for location detection of device-free objects using wireless communication signals
WO2022001624A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Configuration sharing for multi-node passive sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012536A (zh) * 2018-01-05 2019-07-12 华为技术有限公司 用于终端设备的定位方法、装置及系统
CN112673269A (zh) * 2018-09-28 2021-04-16 苹果公司 用于改善新无线电(nr)定位性能的技术
US20210385784A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Systems and methods for bi-static radio-based object location detection
US20210389407A1 (en) * 2020-06-11 2021-12-16 Qualcomm Incorporated Additional feedback for location detection of device-free objects using wireless communication signals
WO2022001624A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Configuration sharing for multi-node passive sensing

Also Published As

Publication number Publication date
CN116614876A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
US11009582B2 (en) Method, apparatus, and system for positioning terminal device
WO2020073644A1 (en) Method and device for user equipment positioning
US9907042B2 (en) Apparatus, system and method of determining a time synchronization function (TSF) based on fine time measurement (FTM) messages
US9720070B2 (en) Communication device and method for controlling the same
JP2017506325A (ja) モバイルデバイスの位置を推定する装置、システム及び方法
KR101836837B1 (ko) 측위 시스템 내 시간 차이 보상 방법 및 그에 따른 측위 시스템
CN105284167A (zh) 位置定位系统架构:对等测量模式
US20180329023A1 (en) System and method for wireless time-of-arrival localization
CN113655437A (zh) 测距方法、测距装置和存储介质
US10048352B2 (en) Determination of location of a mobile device having time-stamping capability
Neuhold et al. HiPR: High-precision UWB ranging for sensor networks
WO2023151555A1 (zh) 定位方法、装置、用户设备及存储介质
WO2022194203A1 (zh) 定位方法、装置、通信设备及网络侧设备
WO2023151590A1 (zh) 组定位方法、装置、用户设备及存储介质
WO2022063319A1 (zh) 定位测量的方法、装置、设备及可读存储介质
CN115119256A (zh) 时间误差组指示方法、装置、终端及网络侧设备
GB2597728A (en) Transmitting data over a radio network
WO2023138673A1 (zh) 定时校准的方法、装置及通信设备
WO2023160711A1 (zh) 组定位方法、装置及通信设备
KR101547825B1 (ko) RTT(round trip time)를 이용한 위치측위 방법 및 장치
WO2024131688A1 (zh) 感知方法、感知装置及通信设备
WO2024131689A1 (zh) 感知方法、感知装置及通信设备
WO2023193710A1 (zh) 信号极化处理方法、设备及可读存储介质
WO2023133828A1 (en) Joint communication and sensing mechanism
WO2023231842A1 (zh) 感知方式切换方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752335

Country of ref document: EP

Kind code of ref document: A1