WO2023138673A1 - 定时校准的方法、装置及通信设备 - Google Patents

定时校准的方法、装置及通信设备 Download PDF

Info

Publication number
WO2023138673A1
WO2023138673A1 PCT/CN2023/073266 CN2023073266W WO2023138673A1 WO 2023138673 A1 WO2023138673 A1 WO 2023138673A1 CN 2023073266 W CN2023073266 W CN 2023073266W WO 2023138673 A1 WO2023138673 A1 WO 2023138673A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
timing calibration
total delay
delay information
information
Prior art date
Application number
PCT/CN2023/073266
Other languages
English (en)
French (fr)
Inventor
姜大洁
吴建明
黄伟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023138673A1 publication Critical patent/WO2023138673A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a timing calibration method, device and communication equipment.
  • the network-side equipment such as the base station (the next Generation Node B, gNB) participating in the positioning needs to calibrate its own clock.
  • the calibration accuracy cannot be guaranteed.
  • Embodiments of the present application provide a timing calibration method, device, and communication device, which can improve clock timing calibration accuracy.
  • a method for timing calibration including: a second communication device receives a first target signal; the second communication device determines first total delay information according to the first target signal; the second communication device sends the first total delay information to a location management server; wherein the first target signal includes at least a first signal sent by the first communication device and a second signal sent by a backscatter terminal, the second signal is obtained by the backscatter terminal modulating the first signal according to a first orthogonal modulation sequence, and the position of the backscatter terminal is known to the second communication device.
  • a timing calibration method including: a location management server receives first total delay information, the first total delay information is total delay information corresponding to a target communication device, and the clock used by the target communication device is a sub-clock, and the target communication device is a first communication device or the second communication device; the location management server determines the target timing error corresponding to the target communication device according to the first total delay information and the second total delay information; the location management server sends the target timing error; wherein the second total delay information is the total delay information corresponding to the third communication device, the clock used by the third communication device is the main clock, and the backscatter terminal that assists the target communication device in timing calibration uses a first orthogonal modulation sequence for signal modulation, and the position of the backscatter terminal is known to the location management server.
  • a third aspect provides an apparatus for timing calibration, including: a first receiving module, configured to receive a first target signal; a first determining module, configured for the second communication device to determine first total delay information according to the first target signal; a first sending module, configured to send the first total delay information to a location management server; wherein the first target signal includes at least a first signal sent by the first communication device and a second signal sent by a backscatter terminal, the second signal is obtained by the backscatter terminal modulating the first signal according to a first orthogonal modulation sequence, and the position of the backscatter terminal is known to the second communication device.
  • an apparatus for timing calibration including: a second receiving module, configured to receive first total delay information, the first total delay information being total delay information corresponding to a target communication device, and the clock used by the target communication device is a sub-clock, and the target communication device is a first communication device or a second communication device; a second determination module, configured to determine a target timing error corresponding to the target communication device according to the first total delay information and second total delay information; a second sending module, configured to send the target timing error; For total delay information, the clock used by the third communication device is the main clock, and the backscatter terminal that assists the target communication device in timing calibration uses a first orthogonal modulation sequence to perform signal modulation, and the position of the backscatter terminal is known to the location management server.
  • a communication device includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the steps of the method described in the first aspect or the second aspect are implemented.
  • a terminal including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the steps of the method described in the first aspect, or implement the steps of the method described in the second aspect.
  • a timing calibration system including: a second communication device and a position management A management server, the second communication device may be used to perform the steps of the timing calibration method described in the first aspect, and the location management server may be used to perform the steps of the timing calibration method described in the second aspect.
  • a readable storage medium on which a program or instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the second aspect are realized.
  • a chip in a ninth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the steps of the method as described in the first aspect, or implement the steps of the method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect or the second aspect.
  • the backscatter terminal to participate in the timing calibration process, the precise timing calibration of the network side equipment is realized, the calibration accuracy of the clock timing is improved, and the problem that the timing calibration accuracy cannot be guaranteed due to the mobility or location uncertainty of the terminal can be effectively avoided.
  • Fig. 1a is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • Fig. 1b is one of the structural schematic diagrams of the timing calibration system provided by the embodiment of the present application.
  • Fig. 1c is the second structural schematic diagram of the timing calibration system provided by the embodiment of the present application.
  • Fig. 1d is the third structural schematic diagram of the timing calibration system provided by the embodiment of the present application.
  • Fig. 2 is one of the schematic flowcharts of the timing calibration method provided by the embodiment of the present application.
  • Fig. 3a is the second schematic flow diagram of the timing calibration method provided by the embodiment of the present application.
  • Fig. 3b is a fourth structural schematic diagram of the timing calibration system provided by the embodiment of the present application.
  • Fig. 3c is a schematic diagram of a delay model provided by an embodiment of the present application.
  • FIG. 4 is a third schematic flowchart of the timing calibration method provided by the embodiment of the present application.
  • Fig. 5a is one of the interactive flowcharts of the timing calibration method provided by the embodiment of the present application.
  • Fig. 5b is the second schematic diagram of the interaction process of the timing calibration method provided by the embodiment of the present application.
  • FIG. 6 is the third schematic flowchart of the timing calibration method provided by the embodiment of the present application.
  • FIG. 7 is one of the structural schematic diagrams of the timing calibration device provided by the embodiment of the present application.
  • FIG. 8 is the second structural schematic diagram of the timing calibration device provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network-side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It should be understood that the terms used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first” and “second” are usually of one type, and the number of objects is not limited. For example, there can be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-A
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for example purposes, and uses NR terminology in most of the following description, but these techniques can also be applied to applications other than NR system applications, such as Gen 6 ( 6th Generation, 6G) communication system.
  • Gen 6 6th Generation, 6G
  • Fig. 1a shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR )/virtual reality (virtual reality, VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment VUE, pedestrian terminal PUE, smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service machines and other terminal-side devices.
  • PDA Personal Digital Assistant
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or a radio access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point, or a wireless fidelity (Wireless Fidelity, WiFi) node, etc., and the base station may be called a node B, an evolved node B (Evolved NodeB, eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example, and the specific type of the base station is not limited.
  • an embodiment of the present application also provides a system for timing calibration (Timing Calibration), which includes a first communication device, a second communication device, K backscatter (Backscatter) terminals, J unknown reflectors (Object), and a location management server (also referred to as a location management function (Location Management Function, LMF)).
  • Timing Calibration includes a first communication device, a second communication device, K backscatter (Backscatter) terminals, J unknown reflectors (Object), and a location management server (also referred to as a location management function (Location Management Function, LMF)).
  • LMF Location Management Function
  • the first communication device serves as a signal sending end
  • the second communication device serves as a signal receiving end and a positioning/measurement end.
  • the device types of the first communication device and the second communication device are different.
  • the first communication device may be a terminal, such as a vehicle as shown in Figure 1b
  • the second communication device is a network side device, such as gNB as shown in Figure 1b.
  • the first communication device may be a network side device, such as a gNB as shown in Figure 1c
  • the second communication device is a terminal, such as a vehicle as shown in Figure 1c.
  • both the first communication device and the second communication device may be terminals, such as a vehicle as shown in FIG. 1d.
  • the timing calibration system may further include a network-side device to at least serve the first communication device, the second communication device and K backscatter terminals.
  • the location of the first communication device and/or the second communication device is known.
  • the backscatter terminal (also referred to as a tag) is used to modulate the signal from the first communication device before sending (such as reflection).
  • the second communication device may perform timing calibration on itself or the first communication device or the backscatter terminal according to the received signal sent by the backscatter terminal and/or the signal sent by the first communication device.
  • the device type of the backscatter terminal may be different, for example, for Vehicle-to-Everything (V2 X)
  • the backscattering end may be a Vehicle-to-Everything (V2X) terminal (User Equipment, UE), a tag (Tag) set on the V2X UE, etc., which is not limited here.
  • the unknown reflector may be any signal capable of being present in the timing calibration scenario Reflective objects, such as buildings, vehicles, smart devices, etc., are not limited here.
  • the location management server is used for configuration of positioning reference signals, configuration of timing calibration parameters, calculation of calibration values, and the like.
  • the location management server may summarize the total delay information acquired by different communication devices, and realize the calculation of the calibration value according to the aggregated total delay information.
  • the backscatter terminal is used instead of the terminal as the calibration object to achieve the effect of timing calibration of the network side equipment (such as gNB).
  • the position of the backscatter end used to assist in timing calibration is known to the second communication device and the location management server, for example, the movement track of the backscatter end is pre-configured by the second communication device, or the backscatter end is fixed at a designated position, etc., and no limitation is set here.
  • timing calibration scheme can be applied to, but not limited to, Monostatic Backscatter Communication System (MBCS), Bistatic Backscatter Communication System (BBCS), and Ambient Backscatter Communication System (ABCS).
  • MBCS Monostatic Backscatter Communication System
  • BBCS Bistatic Backscatter Communication System
  • ABCS Ambient Backscatter Communication System
  • FIG. 2 it is a schematic flowchart of a timing calibration method 200 provided by an exemplary embodiment of the present application.
  • the method 200 may be, but not limited to, executed by a second communication device (such as a terminal or a network-side device), and specifically may be executed by hardware and/or software installed in the second communication device.
  • the method 200 may at least include the following steps.
  • the second communication device receives the first target signal.
  • the second communication device may obtain the first total delay information by measuring the first target signal, and report the first total delay information to the location management server to determine the target timing error. It should be noted that according to different timing calibration scenarios, the second communication device may directly Or indirectly report the first total delay information to the location management server.
  • the first target signal may at least include a first signal (which may be called a diameter signal) sent by the first communication device and a second signal (which may also be called a reflected signal) sent by a backscattering end.
  • the first signal may be a modulation sequence of the first communication device according to a positioning reference signal (Positioning Reference Signal, PRS), a sounding reference signal (Sounding Reference Signal, SRS), a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) modulation sequence, a demodulation reference signal (Demodulation Reference Signal, DMRS) sequence, a phase reference signal (tracking reference signal, TRS) and so on to obtain.
  • PRS Positioning Reference Signal
  • SRS Sounding Reference Signal
  • CSI-RS channel state information reference signal
  • CSI-RS demodulation reference signal
  • DMRS demodulation Reference Signal
  • TRS phase reference signal
  • the first signal may be PRS, SRS, CSI-RS, DMRS, TRS and so
  • the second signal is obtained by the backscatter end modulating the received first signal according to a first quadrature modulation sequence. Then, corresponding to the first signal, the second signal may also be PRS, SRS, CSI-RS, DMRS, TRS, etc., which is not limited here.
  • the second communication device can use its orthogonality to eliminate interference items by performing addition/subtraction operations on the received first target signals in different time units (such as time slots, frames, etc.).
  • the second communication device determines first total delay information according to the first target signal.
  • the first total delay information may be total delay information for the first communication device, or may be total delay information for the second communication device, for example, in a downlink timing calibration scenario, the first communication device is a network side device and the second communication device is a terminal, then the first total delay information obtained by the second communication device according to the first target signal is for the first communication device.
  • the first communication device is a terminal and the second communication device is a network side device, then the first total delay information obtained by the second communication device according to the first target signal is for itself (that is, the second communication device).
  • the device that needs to perform timing calibration may or may not be the service device of the terminal participating in the timing calibration process, and there is no limitation here.
  • the second communication device sends the first total delay information to a location management server.
  • each of the second communication devices participating in the timing calibration can summarize the determined total delay information to the location management server, and then the location management server uniformly calibrates the total delay information on the communication device using the sub-clock according to the total delay information on the communication device using the master clock. Ensure calibration accuracy.
  • the location management server may determine the target timing error corresponding to the target communication device according to the first total delay information and the second total delay information, and send the target timing error to the target communication device.
  • the first total delay information is the total delay information corresponding to the target communication device, and the clock used by the target communication device is a sub-clock, and the target communication device is the first communication device or the second communication device;
  • the second total delay information is the total delay information corresponding to the third communication device, the clock used by the third communication device is the master clock, and the backscatter terminal that assists the target communication device in timing calibration uses a first orthogonal modulation sequence for signal modulation, and the position of the backscatter terminal is known to the location management server.
  • the backscattering terminal instead of the terminal to realize the timing calibration of the network-side device (such as the first communication device or the second communication device, etc.), it can effectively avoid the problem of low timing calibration accuracy caused by the mobility or location of the terminal.
  • FIG. 3a it is a schematic flowchart of a timing calibration method 300 provided by an exemplary embodiment of the present application.
  • the method may be, but not limited to, executed by a second communication device (such as a terminal or a network-side device), and specifically may be executed by hardware and/or software installed in the second communication device.
  • the method 300 may at least include the following steps.
  • the second communication device receives the first target signal.
  • the first target signal includes at least a first signal sent by the first communication device and a second signal sent by the backscatter terminal
  • the second signal is obtained by the backscatter terminal modulating the first signal according to a first orthogonal modulation sequence
  • the position of the backscatter terminal is known by the second communication device or the first communication device.
  • the first orthogonal modulation sequence may include a binary amplitude keying (On-Off Keying, OOK) modulation sequence or a binary phase shift keying (Binary Phase Shift Keying, BPSK) modulation sequence or a binary phase shift keying (Code Division Multiplexing, CDM) orthogonal code sequence.
  • OOK On-Off Keying
  • BPSK Binary Phase Shift Keying
  • CDM Code Division Multiplexing
  • the OOK modulation sequence when the first orthogonal modulation sequence is the OOK modulation sequence, the OOK modulation sequence can be determined according to a first modulation matrix, the first modulation matrix can be as shown in formula (1), the M is an integer greater than or equal to 1, and the M is related to the number of backscattering terminals participating in the timing calibration process.
  • the BPSK modulation sequence is determined according to a second modulation matrix, and the second modulation matrix is shown in formula (2).
  • the M is an integer greater than or equal to 1
  • the M is related to the number of backscatter terminals participating in the timing calibration process.
  • the CDM orthogonal code sequence may be a Hadamard code or an equivalent orthogonal code.
  • the CDM orthogonal code sequence may be determined according to a third modulation matrix, and the third modulation matrix is shown in formula (3), wherein the M is an integer greater than or equal to 1, and the M is related to the number of backscattering terminals participating in the timing calibration process.
  • the method of determining the first orthogonal modulation sequence in the present application is the same. Based on this, the first quadrature modulation sequence is based on The determination of the first modulation matrix is taken as an example, and the process of determining the first orthogonal modulation sequence is described.
  • the first orthogonal modulation sequence may be randomly selected by the backscatter end from a first modulation matrix; or, the first orthogonal modulation sequence may be selected by the backscatter end from the first modulation matrix according to its own identification information; or, the first orthogonal modulation sequence is selected from the first modulation matrix by a network-side device serving the backscatter end and sent to the backscatter end, etc.
  • the first orthogonal modulation sequence may be ⁇ B 1 ⁇ , ⁇ B 2 ⁇ , ⁇ B 3 ⁇ ...etc., which is not limited here.
  • the second communication device can use ⁇ B 1 ⁇ to calculate the diameter signal from the first communication device to the second communication device, and use it when locating the first communication device or the second communication device.
  • the second communication device determines first total delay information according to the first target signal.
  • the second communication device sends the first total delay information to the location management server.
  • the process of the second communication device sending the first total delay information is different, for example, as shown in the following manner 1 and manner 2.
  • the second communication device may send the first total delay information to the location management server through a network side device, and the network side device is a serving base station that provides services for the terminal, or, the network side device is a base station participating in a timing calibration process. It can be understood that the serving base station serving the terminal and the base station participating in the timing calibration process may be the same or different.
  • the second communication device When the second communication device is a network side device, that is, the timing calibration scenario is an uplink timing calibration scenario, the second communication device directly sends the first total delay information to the location management server.
  • the location management server receives the first In the case of the total delay information, when the second communication device is a terminal, the location management server receives the first total delay information sent by a network-side device, and the network-side device is a serving base station that provides services to the terminal, or, the network-side device is a base station participating in a timing calibration process; or, when the second communication device is a network-side device, the location management server receives the first total delay information sent by the second communication device.
  • the following takes the timing calibration scenario on the uplink shown in FIG. 3b (ie, the uplink timing calibration scenario) and the first orthogonal modulation sequence is a BPSK modulation sequence as an example to illustrate the process of assisting timing calibration through the backscatter terminal.
  • the first orthogonal modulation sequence is a BPSK modulation sequence as an example to illustrate the process of assisting timing calibration through the backscatter terminal.
  • this application is not only effective in the uplink, but also in the downlink or sidelink, and the process of using OOK modulation sequence or CDM orthogonal code sequence to assist timing calibration at the backscattering end is also effective.
  • the first target signal y i,l,m [n] sent by the i-th TX UE (ie, UE-i in FIG. 3b ) and received by the l-th gNB in the n-th symbol of the m-th time slot can be as shown in formula (4).
  • the i-th Tx UE sends the first signal s[n] (also referred to as a positioning pilot reference signal) in the n-th symbol, and the first signal s[n] responds through the channel Received directly by the lth gNB. At the same time the first signal s[n] responds through the channel Received by the kth backscatter port.
  • the k-th backscatter terminal modulates the first signal s[n] received in time slot m by modulation symbol b k,m , and responds with the channel response Reflected to the lth gNB, ⁇ is the complex attenuation backscatter signal coefficient (Complex Attenuation of the Backscattered Signals).
  • ⁇ j is the attenuation coefficient of the th unknown reflector including the radar cross section (RaderCross Section, RCS), and are the reflected channel responses of the jth unknown reflector for Tx UE and for gNB, respectively.
  • w l,m [n] is the additive white Gaussian noise (AWGN) received by the l-th gNB at the n-th symbol in slot m, with a mean value of zero and a noise power spectral density of
  • AWGN additive white Gaussian noise
  • the channel response mentioned above is considered as a static channel, that is, the channel response does not change within a certain period of time, so the channel response shown in the description has nothing to do with the time slot.
  • the technology provided by this application The technical solution can also be applied to the scenario of dynamic channel response.
  • the timing calibration signal y'i ,l,k [n] for timing calibration of the kth backscattering terminal auxiliary gNB (that is, gNB-l in Figure 3b) can be obtained , and y'i,l,k [n] can be shown in formula (5).
  • the first total delay information (also referred to as the total PRS delay) corresponding to the first target signal received at the lth gNB after being transmitted from the i-th TX UE and modulated/reflected by the k-th backscattering terminal can be shown in formula (6).
  • the gNB In formula (6), is the timing error of the i-th TX UE, is the wireless signal propagation delay from the i-th TX UE to the k-th backscattering end, is the processing time of the k-th backscatter terminal (including backscatter terminal modulation, switching time and backscatter terminal synchronization error, etc.), and the aforementioned three parameters are delay-related parameters, namely And the It is related to the i-th TXUE and the k-th backscattering end, and has nothing to do with the reception of the l-th gNB. Therefore, in the calculation of the time difference (Time of Arrival, ToA) or the time difference of arrival (Time Difference of Arrival, TDoA), the gNB can completely eliminate it.
  • ToA Time of Arrival
  • TDoA Time Difference of Arrival
  • the wireless signal propagation delay reflected from the kth backscattering end to the lth gNB Since the position coordinates of the kth backscattering end and the lth gNB are fixed, the propagation delay is certain (or known) and will not be affected by other factors. Generally, the propagation delay is calculated in each gNB and reported to the location management server. That is to say, if the position coordinates of the backscatter terminal and the gNB are fixed, the location management server knows the propagation delay of the relevant backscatter terminal and the gNB in advance. but considering is the timing error of the lth gNB, which cannot be eliminated by the gNB itself.
  • the gNB sends the first total delay information to the location management server,
  • the target timing error used for timing calibration is determined by the location management server according to the first delay information.
  • the location management server determines the target timing error, it can uniformly compare the first total on the gNB-1 (ie the target communication device) using the sub clock according to the second total delay information on the gNB-1 (ie the third communication device) using the master clock.
  • the calibration accuracy can be ensured by calibrating the time delay information.
  • the location management server when the location management server receives the first total delay information sent by the second communication device and the clock used by the second communication device is a sub-clock, it may determine the target timing error according to the second total delay information sent by the third communication device, and send the target timing error to the second communication device.
  • the clock adopted by the third communication device is the main clock.
  • the process of determining the target timing error by the location management server according to the first total delay information and the second total delay information may include: assuming that the second total delay information is as shown in formula (7), then the location management server may calculate the difference between the TX/RX timing errors between the second communication device and the third communication device (that is, the target timing error ), as shown in formula (8).
  • the position tube The management server can obtain the location coordinates of the backscatter terminal and the gNB in advance.
  • the backscatter terminals involved in gNB timing calibration can be pre-placed, and it should be ensured that there is a line of sight (LOS) transmission path between at least one backscatter terminal and the calibration gNB, so as to ensure gNB calibration accuracy.
  • LOS line of sight
  • timing calibration procedure provided in this application can be used for uplink, downlink, or sidelink
  • the timing calibration procedure implemented in the uplink is different from the timing calibration procedure implemented in the downlink and SL link.
  • the i-th UE participating in downlink positioning and timing calibration receives the diameter signal sent by the l-th gNB, and also receives signals reflected from backscattering terminals and unknown reflectors.
  • the i-th UE calculates the first total delay information reflected by the l-th gNB through the k-th backscattering end.
  • the i-th UE feeds back the first total delay information to its serving gNB through a Uu link (such as a Physical Uplink Control Channel (PUCCH) or a Medium Access Control Control Element (MAC-CE) channel), and the serving gNB summarizes the first total delay information to the location management server, and then the location management server calculates the distance between the lth gNB (using the master clock) and the lth gNB. The difference of the Tx/Rx timing error (ie, the target timing error). Finally, the location management server will directly send the calibration value (that is, the target timing error) to the corresponding gNB for timing calibration.
  • a Uu link such as a Physical Uplink Control Channel (PUCCH) or a Medium Access Control Element (MAC-CE) channel
  • PUCCH Physical Uplink Control Channel
  • MAC-CE Medium Access Control Element
  • the serving gNB for the i-th UE may be a timing alignment gNB (ie, the lth gNB), or other non-timing alignment gNBs. That is, the timing calibrating gNB is not necessarily the serving gNB of the UE.
  • FIG. 4 it is a schematic flowchart of a timing calibration method 400 provided by an exemplary embodiment of the present application.
  • the method may be but not limited to be performed by a second communication device (such as a terminal or a network side device)
  • the execution can be specifically executed by hardware and/or software installed in the second communication device.
  • the method 400 may at least include the following steps.
  • the second communication device receives first information sent by the location management server.
  • the second communication device may receive the first information sent by the location management server through a network-side device (such as gNB) that provides services for it. Or, when the second communication device is a network side device (such as gNB), the second communication device determines reference signal configuration information according to the first information; the second communication device sends second information to the first communication device, and the second information includes at least the reference signal configuration information.
  • a network-side device such as gNB
  • the second communication device determines reference signal configuration information according to the first information; the second communication device sends second information to the first communication device, and the second information includes at least the reference signal configuration information.
  • the location management server may determine the first information according to third information, where the third information includes at least one of the following (21)-(24).
  • the distance between the first communication device and the backscattering end is less than a predetermined value, thereby reducing the signal attenuation between the first communication device and the backscattering end, wherein the predetermined value can be agreed by agreement or high-level configuration, etc., and is not limited here.
  • the position of the backscattering end participating in the timing calibration process is known, for example, the backscattering end participating in the timing calibration process can be placed in a fixed position in advance, or the moving track of the backscattering end is known.
  • timing calibration it can be ensured that there is an LOS path between at least one backscattering end and the device (for example, the second communication device) that requires timing calibration.
  • the location management server can determine the relevant information of the first communication device and the backscatter terminal participating in the timing calibration according to the location information of the second communication device, such as location information, quantity information, etc., which are not limited here.
  • the first information includes at least one of the following (31)-(33).
  • the configuration information related to the reference signal used in the timing calibration process such as the first orthogonal modulation sequence used by the backscattering end, the first signal to be sent by the first communication device, etc., whether the first signals generated between each of the first communication devices need to be orthogonal, etc., the configuration method of the transmission resources corresponding to each of the first signals (for example, the transmission resources corresponding to each of the first signals are configured in the time domain, frequency domain, code domain, or air domain), etc.
  • the first signals sent by the multiple first communication devices are orthogonal to each other, so as to ensure that there is no interference between the first signals sent by the first communication devices.
  • the second communication device receives the first target signal.
  • the first target signal includes at least a first signal sent by the first communication device and a second signal sent by the backscatter terminal
  • the second signal is obtained by the backscatter terminal modulating the first signal according to a first orthogonal modulation sequence
  • the position of the backscatter terminal is known to the second communication device.
  • the second communications device determines first total delay information according to the first target signal.
  • the second communication device sends the first total delay information to the location management server.
  • the implementation process of S430 and S440 can refer to the relevant description in the method embodiment 200, as a possible implementation, in the case where the first total delay information is multiple, if the second communication device receives multiple first target signals, such as the second signal sent/reflected by multiple backscatter terminals, then the second communication device can send multiple pieces of the first total delay information to the location management server (that is, report all measurement information to the location management server); or, the second communication device can send the third total time to the location management server For delay information (that is, report measurement information to the location management server according to reliability), the third total delay information is delay information whose reliability meets a predetermined requirement among the plurality of first total delay information.
  • the reliability when the second communication device reports the third total delay information according to the reliability, the reliability may be determined according to the distance between the backscatter terminal and the second communication device, for example, the reliability of the first total delay information corresponding to the backscatter terminal with a short distance is high, and there is no limitation here.
  • the location management server determines the target timing error corresponding to the second communication device according to the first total delay information and the second total delay information, if multiple pieces of the first total delay information are received, then the location management server determines the target timing error according to the fourth total delay information and the second total delay information.
  • the second total delay information determines the target timing error corresponding to the second communication device; wherein, the fourth total delay information is delay information whose reliability meets a predetermined requirement among the plurality of first total delay information.
  • the second communication device when the second communication device is a network-side device and performs timing calibration for the network-side device, the second communication device receives the target timing error sent by the location management server; the second communication device performs timing calibration according to the target timing error.
  • timing calibration can be performed on the clock of the target communication device (such as the second communication device in the uplink timing calibration scenario or the first communication device in the downlink timing calibration scenario) within a certain time interval. sexual trigger or trigger by the second communication device, etc.
  • the triggering process may include: the second communication device sends a first request message to the location management server, the first request message is used to request the location management server to perform timing calibration-related operations, such as requesting the location management server to send relevant configuration information of the timing calibration process to the second communication device, and the location management server determines the first communication device and the backscatter terminal participating in the timing calibration according to the geographic location of the second communication device that needs timing calibration.
  • its sending method may also include any one of the following (11)-(13).
  • the second communication device and the backscatter terminal participating in the timing calibration are allowed to access the network through high-level signaling in advance; that is, the location management server knows the approximate position coordinates of all the first communication devices and the precise position coordinates of the backscatter terminal in advance.
  • the location management server will know the modulation sequence (that is, the first orthogonal modulation sequence) used by each backscatter terminal through signaling interaction with the backscatter terminal.
  • the first orthogonal modulation sequence used by the backscatter end may be obtained by the location management server through the method notified by the gNB or UE in advance, or it may be based on the requirements of the location management server (for example, to make the modulation sequence between the backscatter ends orthogonal) It is obtained through a simple method of short-term notification through signaling, and there is no limitation here.
  • the location management server (such as LMF) can select one or more UEs (ie, the second communication device) from one UE to participate in the timing calibration of the l-th gNB (ie, the first communication device) according to the geographic location information of the K backscatter terminals (ie, the first communication device).
  • the timing calibration process may include the following steps S501-S513.
  • the LMF provides network authorization and parameter setting services for the backscatter end through the gNB or UE.
  • the gNB sends a first request message to the LMF to request the LMF to perform timing calibration. Wherein, if the gNB requires the LMF to perform timing calibration periodically or semi-periodically, S502 can be omitted.
  • the LMF selects one or more UEs from one UE to participate in the timing calibration of the lth gNB according to the geographic location information of the K backscatter terminals.
  • the LMF selects the i-th UE to participate in the timing calibration of the l-th gNB according to the geographic location information of the K backscatter terminals.
  • the LMF sends first information to the serving gNB of the i-th UE.
  • the serving gNB for the i-th UE may or may not be a timing alignment gNB.
  • the timing calibrating gNB and the serving gNB are the same gNB.
  • the l-th gNB performs reference signal related configuration according to the first information, such as related time domain and frequency domain resource configuration of PRS.
  • the l'th gNB notifies the i'th UE of the configuration information related to the reference signal.
  • the lth gNB sends the first signal according to the configured reference signal, and the first to Kth backscattering terminals perform OOK or BPSK or CDM orthogonal code modulation on the received first signal according to its modulation sequence to obtain a second signal and reflect it to the i-th UE.
  • the i-th UE respectively calculates the first total delay information reflected to the UE after being modulated by each backscatter port from the l-th gNB. S509, the i-th UE feeds back the first total delay information for each backscattering end to the l-th gNB.
  • the lth gNB reports to the LMF the first total delay information for each backscattering end.
  • the LMF calculates the target timing error for the lth gNB according to the total delay information (such as the first total delay information and the second total delay information) reported by the first and lth gNB for each backscattering end, that is, the timing calibration value.
  • the total delay information such as the first total delay information and the second total delay information
  • the LMF sends the target timing error to the lth gNB.
  • the lth gNB performs timing calibration according to the received target timing error.
  • the LMF (such as the LMF) can select one or more UEs (ie, the first communication device) from one UE to participate in the timing calibration of the l-th gNB (ie, the second communication device) according to the geographic location information of the K backscatter terminals.
  • the uplink timing calibration procedure may include the following steps S521-S532. S521. If the backscatter end has not obtained network authorization, the LMF provides network authorization and parameter setting services for the backscatter end through the gNB or UE.
  • the gNB sends a first request message to the LMF to request the LMF to perform timing calibration. Wherein, if the gNB requires the LMF to perform timing calibration periodically or semi-periodically, S522 can be omitted.
  • the LMF selects one or more UEs from one UE to participate in the timing calibration of the lth gNB according to the geographic location information of the K backscatter terminals.
  • the LMF selects the i-th UE to participate in the timing calibration of the gNB according to the geographic location information of the K backscatter terminals.
  • the LMF sends the first information to the serving gNB of the i-th UE.
  • the serving gNB for the i-th UE may or may not be a timing alignment gNB.
  • the timing calibrating gNB and the serving gNB are the same gNB.
  • the first gNB performs reference signal related configuration according to the first information, such as related time domain and frequency domain resource configuration of PRS.
  • the l'th gNB configures reference signals for the i'th UE.
  • the i-th UE sends the first signal according to the configured reference signal information, and the first to K-th backscatter terminals perform OOK or BPSK or CDM orthogonal code sequence modulation on the received first signal according to its modulation sequence to obtain a second signal and reflect it to the l-th gNB.
  • the l-th gNB calculates respectively the backscatter The first total delay information transmitted to the l-th gNB.
  • the lth gNB sends the first total delay information to the LMF.
  • the LMF calculates the target timing error for the lth gNB according to the total delay information reported by the first gNB and the lth gNB for each backscattering end, that is, the timing calibration value.
  • the LMF sends the target timing error to the lth gNB.
  • the lth gNB performs timing calibration according to the received target timing error.
  • S501-S513 and S521 and S532 may be the same or different.
  • timing calibration procedure given in this application may be but not limited to the steps given in the foregoing example 1 and example 2, for example, may include more or less steps than the foregoing example 1 or example 2.
  • FIG. 6 it is a schematic flow chart of a timing calibration method 600 provided by an exemplary embodiment of the present application.
  • the method may be executed by, but not limited to, a location management server, and specifically may be executed by hardware and/or software installed in the location management server.
  • the method 600 may at least include the following steps.
  • the location management server receives first total delay information, where the first total delay information is total delay information corresponding to a target communication device, and the clock used by the target communication device is a sub-clock, and the target communication device is the first communication device or the second communication device.
  • the location management server determines a target timing error corresponding to the target communication device according to the first total delay information and the second total delay information.
  • the location management server sends the target timing error.
  • the second total delay information is the total delay information corresponding to the third communication device
  • the clock used by the third communication device is the master clock
  • the backscatter terminal that assists the target communication device in timing calibration uses a first orthogonal modulation sequence to perform signal modulation, and the position of the backscatter terminal is known to the location management server.
  • the first orthogonal modulation sequence includes a binary amplitude keying OOK modulation sequence, a binary phase shift keying BPSK modulation sequence, or a binary phase shift keying CDM orthogonal code sequence.
  • the OOK modulation sequence is determined according to a first modulation matrix, and the first modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M is related to the number of backscatter terminals participating in the timing calibration process.
  • the BPSK modulation sequence is determined according to a second modulation matrix, and the second modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M is related to the number of backscatter terminals participating in the timing calibration process.
  • the CDM orthogonal code sequence is determined according to a third modulation matrix, and the third modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M-1 is related to the number of backscatter terminals participating in the timing calibration process.
  • the target timing error of the target communication device for: in, Indicates the first total delay information, represents the second total delay information, Represents the delay time between the kth backscattering end and the target communication device, Indicates the delay time between the kth backscattering end and the third communication device, Indicates the delay time of the target communication device, Indicates the delay time of the third communication device.
  • the step of determining, by the location management server, the target timing error corresponding to the target communication device according to the first total delay information and the second total delay information includes: when there are multiple first total delay information, the location management server according to the fourth total delay information and The second total delay information determines the target timing error corresponding to the target communication device; wherein, the fourth total delay information is delay information whose reliability meets a predetermined requirement among the plurality of first total delay information.
  • the second communication device is a terminal or a network side device.
  • the timing calibration process is an uplink timing calibration process
  • the first communication device is a terminal
  • the second communication device is a network-side device
  • the timing calibration process is a downlink timing calibration process
  • the first communication device is a network-side device
  • the second communication device is a terminal
  • both the first communication device and the second communication device are terminals, and the positions of the first communication device and/or the second communication device are known
  • Reference signal sender when the timing calibration process is an uplink timing calibration process, the first communication device is a terminal, and the second communication device is a network-side device; when the timing calibration process is a downlink timing calibration process, the first communication device is a network-side device, and the second communication device is a terminal; when the timing calibration process is a sidelink timing calibration process, both the first communication device and the second communication device are terminals, and the positions of the first communication device and/or the second communication device are known; Reference signal sender.
  • the step of the location management server receiving the first total delay information includes any of the following: when the second communication device is a terminal, the location management server receives the first total delay information sent by a network-side device, and the network-side device is a serving base station providing services to the terminal, or the network-side device is a base station participating in a timing calibration process; when the second communication device is a network-side device, the location management server receives the first total delay information sent by the second communication device.
  • the method further includes: the location management server determines first information; the location management server sends the first information; wherein the first information includes at least one of the following: information of at least one first communication device participating in the timing calibration process; information of at least one backscatter terminal participating in the timing calibration process; reference signal-related configuration information used in the timing calibration process.
  • the first signals sent by each of the first communication devices are orthogonal to each other.
  • the sending resource of each first signal is configured in a time domain, a frequency domain, a code domain or an air domain.
  • the first signal includes at least one of a positioning reference signal PRS, a channel state information reference signal CSI-RS, a phase reference signal TRS, and a sounding reference signal SRS.
  • the step of determining the first information by the location management server includes: the location management server determines the first information according to third information; the third information includes at least one of the following: each backscatter terminal participating in the timing calibration process uses a mutually orthogonal modulation sequence; the The distance between the first communication device and the backscattering end is less than a predetermined value; the position of the backscattering end participating in the timing calibration process is known; the location information of the second communication device.
  • the method further includes: the location management server receiving a first request message sent by the second communication device; wherein the first request message is used to request the location management server to perform operations related to timing calibration.
  • the sending manner of the first request message includes any of the following: periodic sending; semi-periodic sending; triggered sending.
  • the timing calibration method provided in the embodiment of the present application may be executed by a timing calibration device.
  • the method for performing the timing calibration by the timing calibration device is taken as an example to illustrate the timing calibration device provided in the embodiment of the present application.
  • FIG. 7 it is a schematic structural diagram of a timing calibration device 700 provided in an exemplary embodiment of the present application.
  • the device 700 includes a first receiving module 710 for receiving a first target signal; a first determination module 720 for the second communication device to determine first total time delay information according to the first target signal; a first sending module 730 for sending the first total time delay information to a location management server;
  • the first signal is modulated by an orthogonal modulation sequence, and the position of the backscattering end is known by the second communication device.
  • the first orthogonal modulation sequence includes a binary amplitude keying OOK modulation sequence, a binary phase shift keying BPSK modulation sequence, or a binary phase shift keying CDM orthogonal code sequence.
  • the OOK modulation sequence is determined according to a first modulation matrix, and the first modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M is related to the number of backscatter terminals participating in the timing calibration process.
  • the BPSK modulation sequence is determined according to a second modulation matrix
  • the second modulation matrix Arrays include: Wherein, the M is an integer greater than or equal to 1, and the M is related to the number of backscatter terminals participating in the timing calibration process.
  • the CDM orthogonal code sequence is determined according to a third modulation matrix, and the third modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M-1 is related to the number of backscatter terminals participating in the timing calibration process.
  • the step of the first sending module 730 sending the first total delay information includes any of the following: when the second communication device is a terminal, the second communication device sends the first total delay information to the location management server through a network-side device, and the network-side device is a serving base station providing services for the terminal, or the network-side device is a base station participating in a timing calibration process; when the second communication device is a network-side device, the second communication device directly sends the first total delay information to the location management server.
  • the step of the first sending module 730 sending the first total delay information to the location management server includes: in the case of multiple first total delay information, the first sending module 730 performs at least one of the following: sending a plurality of the first total delay information to the location management server; sending third total delay information to the location management server, the third total delay information is delay information whose reliability reaches a predetermined requirement among the plurality of first total delay information.
  • the first communication device is a terminal or a network side device
  • the second communication device is a terminal or a network side device.
  • the timing calibration process is an uplink timing calibration process
  • the first communication device is a terminal
  • the second communication device is a network side device
  • the timing calibration process is a downlink timing calibration process
  • the first communication device is a network side device
  • the second communication device is a network side device.
  • the communication device is a terminal; when the timing calibration process is a side link timing calibration process, both the first communication device and the second communication device are terminals, and the positions of the first communication device and/or the second communication device are known.
  • the first receiving module 710 is further configured to receive a target timing error sent by the location management server when the second communication device is a network-side device and timing calibration is performed for the network-side device; the first determining module 720 is further configured to perform timing calibration according to the target timing error.
  • the first receiving module 710 is further configured to receive first information sent by the location management server; when the second communication device is a network-side device, the first determining module 720 is further configured to determine reference signal configuration information according to the first information; the first sending module 730 is further configured to send second information to the first communication device, the second information at least including the reference signal configuration information.
  • the first information includes at least one of the following: information of at least one first communication device participating in the timing calibration procedure; information of at least one backscattering terminal participating in the timing calibration procedure; configuration information related to reference signals used in the timing calibration procedure.
  • the first signals sent by the multiple first communication devices are orthogonal to each other.
  • the sending resource corresponding to each of the first signals is configured in a time domain, a frequency domain, a code domain or an air domain.
  • the first signal includes at least one of a positioning reference signal PRS, a channel state information reference signal CSI-RS, a phase reference signal TRS, and a sounding reference signal SRS.
  • the first sending module 730 is further configured to send a first request message to the location management server; wherein the first request message is used to request the location management server to perform operations related to timing calibration.
  • the sending manner of the first request message includes any of the following: periodic sending; semi-periodic sending; triggered sending.
  • the apparatus 800 includes a second receiving module 810 for receiving first total delay information.
  • the first total delay information is the total delay information corresponding to the target communication device, and the target communication device
  • the clock to be used is a sub-clock, and the target communication device is the first communication device or the second communication device;
  • the second determination module 820 is configured to determine the target communication device corresponding to the target communication device according to the first total delay information and the second total delay information;
  • the second sending module 830 is used to send the target timing error;
  • the second total delay information is the total delay information corresponding to the third communication device, and the clock used by the third communication device is a master clock, and the backscatter terminal that assists the target communication device in timing calibration uses a first orthogonal modulation sequence for signal modulation, and the reverse reverse The location of the scatterer is known to the location management server.
  • the first orthogonal modulation sequence includes a binary amplitude keying OOK modulation sequence, a binary phase shift keying BPSK modulation sequence, or a binary phase shift keying CDM orthogonal code sequence.
  • the OOK modulation sequence is determined according to a first modulation matrix, and the first modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M is related to the number of backscatter terminals participating in the timing calibration process.
  • the BPSK modulation sequence is determined according to a second modulation matrix, and the second modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M is related to the number of backscatter terminals participating in the timing calibration process.
  • the CDM orthogonal code sequence is determined according to a third modulation matrix, and the third modulation matrix includes: Wherein, the M is an integer greater than or equal to 1, and the M-1 is related to the number of backscatter terminals participating in the timing calibration process.
  • the target timing error of the target communication device for: in, Indicates the first total delay information, represents the second total delay information, Represents the delay time between the kth backscattering end and the target communication device, Indicates the delay time between the kth backscattering end and the third communication device, Indicates the delay time of the target communication device, Indicates the delay time of the third communication device.
  • the step of the second determining module 820 determining the target timing error corresponding to the target communication device according to the first total delay information and the second total delay information includes: when there are multiple first total delay information, the location management server determines the target timing error corresponding to the target communication device according to the fourth total delay information and the second total delay information; wherein the fourth total delay information is delay information whose reliability reaches a predetermined requirement among the plurality of first total delay information.
  • the second communication device is a terminal or a network side device.
  • the timing calibration process is an uplink timing calibration process
  • the first communication device is a terminal
  • the second communication device is a network-side device
  • the timing calibration process is a downlink timing calibration process
  • the first communication device is a network-side device
  • the second communication device is a terminal
  • both the first communication device and the second communication device are terminals, and the positions of the first communication device and/or the second communication device are known
  • the first communication device participates in the timing calibration The reference signal sender of the process.
  • the step of the second receiving module 810 receiving the first total delay information includes any of the following: when the second communication device is a terminal, receiving the first total delay information sent by a network-side device, the network-side device is a serving base station providing services to the terminal, or the network-side device is a base station participating in a timing calibration process; when the second communication device is a network-side device, receiving the first total delay information sent by the second communication device.
  • the second determination module 820 is further configured to determine first information; the location management server sends the first information; wherein, the first information includes at least one of the following: information of at least one first communication device participating in the timing calibration process; information of at least one backscatter terminal participating in the timing calibration process; reference signal-related configuration information used in the timing calibration process.
  • each of the first communication devices is orthogonal to each other.
  • the sending resource of each first signal is configured in a time domain, a frequency domain, a code domain or an air domain.
  • the first signal includes at least one of a positioning reference signal PRS, a channel state information reference signal CSI-RS, a phase reference signal TRS, and a sounding reference signal SRS.
  • the step of determining the first information by the second determination module 820 includes: the location management server determines the first information according to third information; the third information includes at least one of the following: each backscatter terminal participating in the timing calibration process uses a mutually orthogonal modulation sequence; the distance between the first communication device and the backscatter terminal is less than a predetermined value; the position of the backscatter terminal participating in the timing calibration process is known; and the location information of the second communication device.
  • the second receiving module 810 is further configured to receive a first request message sent by the second communication device; wherein the first request message is used to request the location management server to perform operations related to timing calibration.
  • the sending manner of the first request message includes any of the following: periodic sending; semi-periodic sending; triggered sending.
  • the timing calibration apparatus 700-800 in the embodiment of the present application may be a communication device, such as a communication device with an operating system, or a component in the communication device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal or a network side device.
  • the terminal may include but not limited to the types of terminal 11 listed above
  • the network side device may include but not limited to the type of network side device 12 listed above, which is not specifically limited in this embodiment of the present application.
  • the timing calibration device 700 provided in the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 2 to FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the timing calibration device 800 provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 6 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 900, including a processor 901 and a memory 902.
  • the memory 902 stores programs or instructions that can run on the processor 901.
  • the communication device 900 is a terminal
  • the program or instructions are executed by the processor 901
  • the steps of the above-mentioned timing calibration method embodiment are implemented, and the same technical effect can be achieved.
  • the communication device 900 is a network side device
  • the program or instruction is executed by the processor 901
  • the above Each step of the method embodiment of the timing calibration described above can achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the terminal when the communication device 900 is a terminal, the terminal may include a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the steps of the methods described in method embodiments 200-500.
  • This terminal embodiment corresponds to the above-mentioned method embodiment on the second communication device side, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this second communication device embodiment, and can achieve the same technical effect.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes, but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and at least some components in a processor 1010, etc.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to implement functions such as management of charging, discharging, and power consumption management through the power management system.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 10042, and the graphics processor 10041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 may transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 may send the uplink data to the network side device.
  • the radio frequency unit 1001 includes but not limited to antenna, amplifier, transceiver, Couplers, Low Noise Amplifiers, Duplexers, etc.
  • the memory 1009 can be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • memory 1009 may include volatile memory or nonvolatile memory, or, memory 1009 may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or a flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM) RAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDR SDRAM
  • Enhanced SDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM, SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • the radio frequency unit 1001 is used to receive the first target signal; the processor 1010 is used for the second communication device to determine the first total delay information according to the first target signal; the radio frequency unit 1001 is also used to send the first total delay information to the location management server; wherein the first target signal includes at least a first signal sent by the first communication device and a second signal sent by the backscatter terminal, the second signal is obtained by the backscatter terminal modulating the first signal according to a first orthogonal modulation sequence, and the position of the backscatter terminal is known to the second communication device.
  • the radio frequency unit 1001 is configured to receive first total delay information, and the first total delay
  • the information is the total delay information corresponding to the target communication device, and the clock used by the target communication device is a sub-clock, and the target communication device is the first communication device or the second communication device;
  • the processor 1010 is used for determining the target timing error corresponding to the target communication device according to the first total delay information and the second total delay information;
  • the backscatter end performing timing calibration uses a first quadrature modulation sequence to perform signal modulation, and the location of the backscatter end is known to the location management server.
  • the network-side device when the communication device 900 is a network-side device, the network-side device includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the steps of the method described in embodiments 200-600.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present invention also provides a network side device.
  • the network side device 1100 includes: an antenna 1101 , a radio frequency device 1102 , a baseband device 1103 , a processor 1104 and a memory 1105 .
  • the antenna 1101 is connected to the radio frequency device 1102 .
  • the radio frequency device 1102 receives information through the antenna 1101, and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102
  • the radio frequency device 1102 processes the received information and sends it out through the antenna 1101 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 1103, where the baseband device 1103 includes a baseband processor.
  • the baseband device 1103 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG. 11 , wherein one chip is, for example, a baseband processor, connected to the memory 1105 through a bus interface, to call a program in the memory 1105, and execute the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1106, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 1106 such as a common public radio interface (common public radio interface, CPRI).
  • the network side device 1100 in the embodiment of the present application further includes: stored in the memory 1105 Instructions or programs that can be run on the processor 1104, the processor 1104 calls the instructions or programs in the memory 1105 to execute the method performed by each module shown in Figure 7 or Figure 8, and achieves the same technical effect. To avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores a program or an instruction.
  • the program or instruction is executed by a processor, each process of the above timing calibration method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run network-side device programs or instructions to implement the various processes of the above-mentioned timing calibration method embodiment, and can achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a computer program/program product, the computer program/program product is stored in a storage medium, and when the computer program/program product is executed by a processor, each process of the above-mentioned timing calibration method embodiment can be realized, and the same technical effect can be achieved, so to avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a timing calibration system, including a second communication device and a location management server, the terminal can be used to perform the steps of the timing calibration method described in method embodiments 200-400, and the network side device can be used to perform the steps of the timing calibration method described in method embodiment 600.
  • a timing calibration system including a second communication device and a location management server
  • the terminal can be used to perform the steps of the timing calibration method described in method embodiments 200-400
  • the network side device can be used to perform the steps of the timing calibration method described in method embodiment 600.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product in essence or the part that contributes to the prior art.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes several instructions to make a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) execute the method described in each embodiment of the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种定时校准的方法、装置及通信设备,属于通信技术领域,本申请实施例的定时校准的方法包括:第二通信设备接收第一目标信号;所述第二通信设备根据所述第一目标信号确定第一总时延信息;所述第二通信设备向位置管理服务器发送所述第一总时延信息;其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。

Description

定时校准的方法、装置及通信设备
交叉引用
本发明要求在2022年01月21日提交中国专利局、申请号为202210073058.3、发明名称为“定时校准的方法、装置及通信设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信技术领域,具体涉及一种定时校准的方法、装置及通信设备。
背景技术
在相关通信技术中,为了提高定位精度,参与定位的网络侧设备(如基站(the next Generation Node B,gNB))需要对自身的时钟进行定时校准。但是,在校准过程中,由于终端可能会发生移动,且也可能存在一定的不确定性,导致校准精度无法保障。
发明内容
本申请实施例提供一种定时校准的方法、装置及通信设备,能够提升时钟定时的校准精度。
第一方面,提供了一种定时校准的方法,包括:第二通信设备接收第一目标信号;所述第二通信设备根据所述第一目标信号确定第一总时延信息;所述第二通信设备向位置管理服务器发送所述第一总时延信息;其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。
第二方面,提供了一种定时校准的方法,包括:位置管理服务器接收第一总时延信息,所述第一总时延信息是目标通信设备对应的总时延信息、且所述目标通信设备采用的时钟为子时钟,所述目标通信设备为第一通信设备 或第二通信设备;所述位置管理服务器根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;所述位置管理服务器发送所述目标定时误差;其中,所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
第三方面,提供了一种定时校准的装置,包括:第一接收模块,用于接收第一目标信号;第一确定模块,用于所述第二通信设备根据所述第一目标信号确定第一总时延信息;第一发送模块,用于向位置管理服务器发送所述第一总时延信息;其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。
第四方面,提供了一种定时校准的装置,包括:第二接收模块,用于接收第一总时延信息,所述第一总时延信息是目标通信设备对应的总时延信息、且所述目标通信设备采用的时钟为子时钟,所述目标通信设备为第一通信设备或第二通信设备;第二确定模块,用于根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;第二发送模块,用于发送所述目标定时误差;其中,所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
第五方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第七方面,提供了一种定时校准的系统,包括:第二通信设备及位置管 理服务器,所述第二通信设备可用于执行如第一方面所述的定时校准的方法的步骤,所述位置管理服务器可用于执行如第二方面所述的定时校准的方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十方面,提供了一种计算机程序产品/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。
在本申请实施例中,通过引入反向散射端参与定时校准过程,从而实现对网络侧设备的精确定时校准,提升时钟定时的校准精度,能够有效避免由于终端的移动性或位置不确定而导致的定时校准精度无法保障的问题。
附图说明
图1a是本申请实施例提供的无线通信系统的结构示意图。
图1b是本申请实施例提供的定时校准的系统的结构示意图之一。
图1c是本申请实施例提供的定时校准的系统的结构示意图之二。
图1d是本申请实施例提供的定时校准的系统的结构示意图之三。
图2是本申请实施例提供的定时校准的方法的流程示意图之一。
图3a是本申请实施例提供的定时校准的方法的流程示意图之二。
图3b是本申请实施例提供的定时校准的系统的结构示意图之四。
图3c是本申请实施例提供的时延模型的示意图。
图4是本申请实施例提供的定时校准的方法的流程示意图之三。
图5a是本申请实施例提供的定时校准的方法的交互流程示意图之一。
图5b是本申请实施例提供的定时校准的方法的交互流程示意图之二。
图6是本申请实施例提供的定时校准的方法的流程示意图之三。
图7是本申请实施例提供的定时校准的装置的结构示意图之一。
图8是本申请实施例提供的定时校准的装置的结构示意图之二。
图9是本申请实施例提供的通信设备的结构示意图。
图10是本申请实施例提供的终端的结构示意图。
图11是本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代 (6th Generation,6G)通信系统。
图1a示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备VUE、行人终端PUE、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(Evolved NodeB,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
基于前述无线通信系统的描述,如图1b所示,本申请实施例还提供一种定时校准(Timing Calibration)的系统,该定时校准的系统包括第一通信设备、第二通信设备、K个反向散射(Backscatter)端、J个未知反射体(Object)、位置管理服务器(也可以称作位置管理功能(Location Management Function, LMF))。需要注意,所述位置管理服务器在图1b中未示出、且所述定时校准的系统中包括但不限于图1b所示的对象,例如,所述定时校准系统可以包括比图1b所示更多或更少的对象,如所述定时校准系统可以包括多个第二通信设备等,也即,参与定时校准的第二通信设备可以为多个,在此不做限制。
基于此,所述第一通信设备作为信号发送端,所述第二通信设备作为信号接收端以及定位/测量端。本申请中,根据定时校准场景/流程的不同,所述第一通信设备和所述第二通信设备的设备类型不同。
例如,假设定时校准场景为图1b所示的上行定时校准场景,那么,所述第一通信设备可以为终端,如图1b中所示的车辆等,所述第二通信设备为网络侧设备,如图1b中所示的gNB。
又例如,假设定时校准场景为下行定时校准场景,那么,所述第一通信设备可以为网络侧设备,如图1c所示的gNB等,所述第二通信设备为终端,如图1c中所示的车辆。
又例如,假设定时校准场景为侧链路(Sidelink,SL)定时校准场景,那么,所述第一通信设备和所述第二通信设备均可以为终端,如图1d中所示的车辆等。此外需要注意,请再次参阅图1d,如果所述定时校准场景为SL定时校准场景,那么,所述定时校准系统还可以包括网络侧设备,以至少服务于所述第一通信设备、第二通信设备和K个所述反向散射端等。当然,对于所述SL定时校准场景而言,所述第一通信设备和/或所述第二通信设备的位置为已知的。
所述反向散射端(也可称作标签(Tag),其用于对来自所述第一通信设备的信号进行调制后发送(如反射)。相应的,所述第二通信设备可根据接收到的反向散射端发送的信号和/或第一通信设备发送的信号,对自身或第一通信设备或反向散射端进行定时校准。本实施例中,根据定时校准场景的不同,所述反向散射端的设备类型可以不同,例如,如对于车联万物(Vehicle-to-Everything,V2X)应用场景,所述反向散射端可以为车联万物(Vehicle-to-Everything,V2X)终端(User Equipment,UE)、设置于所述V2X UE上的标签(Tag)等,在此不做限制。
所述未知反射体可以是存在于所述定时校准场景中的任何能够实现信号 反射的对象,如建筑物、车辆、智能设备等,在此不做限制。
所述位置管理服务器用于定位参考信号的配置、定时校准参数的配置、校准值的计算等。例如,位置管理服务器可以对不同通信设备获取的总时延信息进行汇总,并根据汇总到的总时延信息实现校准值的计算。
可以理解的是,本申请中是根据Backscatter的特性,利用反向散射端代替终端作为校准对象以达到对网络侧设备(如gNB)进行定时校准的效果。基于此,在本申请中,用于辅助进行定时校准的反向散射端的位置是第二通信设备和位置管理服务器已知的,如所述反向散射端的移动轨迹是所述第二通信设备预先配置的,或者,所述反向散射端是固定在指定位置处的等,在此不做限制。
需要注意,无论是前述哪个定时校准场景,所述终端的类型均可以参照前述终端11中的相关描述,所述网络侧设备可以参照前述网络侧设备12的相关描述,在此不再赘述。另外,本申请中提供的定时校准方案可以应用但不限于单站反向散射通信系统(Monostatic Backscatter Communication System,MBCS)、双基地反向散射通信系统(Bistatic Backscatter Communication System,BBCS)、环境后向散射通信系统(Ambient Backscatter Communication System,ABCS)。为描述清楚起见,后续实施例中是在以Bistatic Backscatter定时校准场景为例、并假设每个反向散射端和第一通信设备、第二通信设备之间完全同步前提下,对本申请给出的实施例提供的技术方案进行介绍。
基于此,下面将结合附图,通过一些实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的定时校准的方法200的流程示意图,该方法200可以但不限于由第二通信设备(如终端或网络侧设备)执行,具体可由安装于第二通信设备中的硬件和/或软件执行。本实施例中,所述方法200至少可以包括如下步骤。
S210,第二通信设备接收第一目标信号。
其中,所述第二通信设备可通过对所述第一目标信号的测量,得到第一总时延信息,并上报该第一总时延信息给位置管理服务器实现目标定时误差的确定。需要注意,根据定时校准场景的不同,所述第二通信设备可以直接 或间接的上报第一总时延信息给位置管理服务器。
当然在本实施例中,所述第一目标信号至少可以包括第一通信设备发送的第一信号(可称为直径信号)以及反向散射端发送的第二信号(也可称作反射信号)。其中,所述第一信号可以是所述第一通信设备根据定位参考信号(Positioning Reference Signal,PRS)调制序列、探测参考信号(Sounding Reference Signal,SRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)调制序列、解调参考信号(Demodulation Reference Signal,DMRS)序列、相位参考信号(tracking reference signal,TRS)等进行调制得到。对应的,所述第一信号可以为PRS、SRS、CSI-RS、DMRS、TRS等。
所述第二信号是所述反向散射端根据第一正交调制序列对接收到的所述第一信号进行调制得到。那么,与所述第一信号对应,所述第二信号也可以为PRS、SRS、CSI-RS、DMRS、TRS等,在此不做限制。
可以理解,所述反向反射端通过采用第一正交调制序列对所述第一信号进行调制,能够使得第二通信设备利用其正交性,通过对接收到的不同时间单元(如时隙、帧等)上的第一目标信号进行加/减运算实现干扰项的消除,如不但能够消除反向散射端之间的反射信号干扰,而且能够消除发送端(即第一通信设备)的直径信号和未知反射体的反射信号干扰等。
S220,所述第二通信设备根据所述第一目标信号确定第一总时延信息。
其中,根据定时校准场景的不同,所述第一总时延信息可以是针对第一通信设备的总时延信息,也可以是针对第二通信设备的总时延信息,例如,在下行定时校准场景中,所述第一通信设备为网络侧设备、所述第二通信设备为终端,那么,所述第二通信设备根据所述第一目标信号得到的第一总时延信息是针对所述第一通信设备的。又例如,在上行定时校准场景中,所述第一通信设备为终端、所述第二通信设备为网络侧设备,那么,所述第二通信设备根据所述第一目标信号得到的第一总时延信息是针对自身(即所述第二通信设备)的。
当然,需要注意的是,在本申请中,需要进行定时校准的设备可以是参与定时校准流程的终端的服务设备,也可以不是,在此不做限制。
S230,所述第二通信设备向位置管理服务器发送所述第一总时延信息。
可以理解,考虑到在定时校准过程中,只要确保参与定时校准的目标通信设备(如第一通信设备或第二通信设备)之间不存在相对定时误差即可,基于此,参与定时校准的各所述第二通信设备可将确定的总时延信息汇总到所述位置管理服务器,进而由位置管理服务器统一根据采用主时钟的通信设备上的总时延信息对采用子时钟的通信设备上的总时延信息进行校准,即可得到采用子时钟的通信设备对应的定时误差(也可称作校准值),进而确保校准精度。
也就是,所述位置管理服务器在接收到第一总时延信息后,可根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差,并发送所述目标定时误差给所述目标通信设备。其中,所述第一总时延信息是目标通信设备对应的总时延信息、且所述目标通信设备采用的时钟为子时钟,所述目标通信设备为第一通信设备或第二通信设备;所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
本实施例中,根据反向散射端的特性,通过利用反向散射端来代替终端实现对网络侧设备(如第一通信设备或第二通信设备等)的定时校准,能够有效避免由于终端的移动性或位置不确定而导致的定时校准精度低的问题。
如图3a所示,为本申请一示例性实施例提供的定时校准的方法300的流程示意图,该方法可以但不限于由第二通信设备(如终端或网络侧设备)执行,具体可由安装于第二通信设备中的硬件和/或软件执行。本实施例中,所述方法300至少可以包括如下步骤。
S310,第二通信设备接收第一目标信号。
其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备或第一通信设备已知的。
可以理解,S310的实现过程除了可参照方法实施例200中的相关描述之外,作为一种可能的实现方式,所述第一正交调制序列可以包括二进制振幅键控(On-Off Keying,OOK)调制序列或二进制相移键控(Binary Phase Shift Keying,BPSK)调制序列或二进制相移键控(Code Division Multiplexing,CDM)正交码序列。
其中,在所述第一正交调制序列为所述OOK调制序列时,所述OOK调制序列可以根据第一调制矩阵确定,所述第一调制矩阵可以如式(1)所示,所述M为大于或等于1的整数,所述M与参与定时校准流程的反向散射端的数量相关。
或者,在所述第一正交调制序列为所述BPSK调制序列时,所述BPSK调制序列根据第二调制矩阵确定,所述第二调制矩阵如式(2)所示。其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
或者,在所述第一正交调制序列为所述CDM正交码序列时,所述CDM正交码序列可以是Hadamard码或等同的正交码。一种实现方式中,所述CDM正交码序列可以根据第三调制矩阵确定,所述第三调制矩阵如式(3)所示,其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
对于前述第一调制矩阵、第二调制矩阵和第三调制矩阵,本申请确定第一正交调制序列的方式相同。基于此,在此以所述第一正交调制序列是根据 所述第一调制矩阵确定为例,对所述第一正交调制序列的确定过程进行说明。
示例性,所述第一正交调制序列可以是所述反向散射端从第一调制矩阵中随机选取;或者,所述第一正交调制序列可以是所述反向散射端根据自身的标识信息从第一调制矩阵中选取;或者,所述第一正交调制序列是由服务所述反向散射端的网络侧设备从第一调制矩阵中选取后发送给所述反向散射端等。当然,无论采用哪种确定方式,所述第一正交调制序列可以是{B1}、{B2}、{B3}……等,在此不做限制。
值得注意的是,对于第三调制矩阵,由于其中的行向量{B1}中的元素均为1,如果反向散射端采用该{B1}进行第一信号的调制,会导致由第一通信设备发送的直径信号无法被消除,因此,在基于该第三调制矩阵确定第一正交调制序列时,该第一正交调制序列不为{B1},即反向散射端使用的第一正交调制序列中的元素不能全部为1。但所述第二通信设备可利用{B1}计算从第一通信设备到第二通信设备的直径信号,在对第一通信设备或第二通信设备定位时使用。
S320,所述第二通信设备根据所述第一目标信号确定第一总时延信息。
S330,所述第二通信设备向位置管理服务器发送所述第一总时延信息。
其中,S320-S330的实现过程除了可参照方法实施例200中的相关描述之外,作为一种实现方式,根据定时校准场景的不同,所述第二通信设备发送所述第一总时延信息的过程不同,例如以下方式1和方式2所示。
方式1:在所述第二通信设备为终端的情况下,即所述定时校准场景为侧链路定时校准场景或下行定时校准场景,所述第二通信设备可通过网络侧设备向所述位置管理服务器发送所述第一总时延信息,所述网络侧设备是为所述终端提供服务的服务基站,或,所述网络侧设备是参与定时校准流程的基站。可以理解,为所述终端提供服务的服务基站和参与定时校准流程的基站可以相同或不同。
方式2:在所述第二通信设备为网络侧设备的情况下,即所述定时校准场景为上行定时校准场景,所述第二通信设备直接向所述位置管理服务器发送所述第一总时延信息。
与前述第一总时延信息的上报对应,所述位置管理服务器接收所述第一 总时延信息时,也可以是在所述第二通信设备为终端的情况下,所述位置管理服务器接收网络侧设备发送的第一总时延信息,所述网络侧设备为向所述终端提供服务的服务基站,或,所述网络侧设备是参与定时校准流程的基站;或者,在所述第二通信设备为网络侧设备的情况下,所述位置管理服务器接收所述第二通信设备发送的所述第一总时延信息。
基于此,下面以图3b所示的上行链路上的定时校准场景(即上行定时校准场景)、且第一正交调制序列为BPSK调制序列为例,来对通过反向散射端辅助定时校准的过程进行说明。但是需要注意,本申请不但在上行链路有效,在下行链路或侧链路同样有效,而且使用OOK调制序列或CDM正交码序列对反向散射端辅助定时校准的过程也同样有效。
其中,如图3b所示,假设有I个Tx UE(即第一通信设备)、L个gNB(即第二通信设备)、M个反向散射端和J个未知反射体,那么,在考虑未知反射体信号反射的情况下,在第m个时隙的第n个符号中由第i个TX UE(即图3b中UE-i)发送并由第l个gNB接收的第一目标信号yi,l,m[n]可以如式(4)所示。
式(4)中,第i个Tx UE在第n个符号中发送第一信号s[n](也可称作定位导频参考信号),该第一信号s[n]通过信道响应被第l个gNB直接接收。同时第一信号s[n]通过信道响应被第k个反向散射端接收。第k个反向散射端通过调制符号bk,m对在时隙m中接收到的第一信号s[n]进行调制,并随着信道响应反射到第l个gNB,α是复数衰减反向散射信号系数(Complex Attenuation of the Backscattered Signals)。另外,αj是包括雷达截面(RaderCross Section,RCS)在内的第个未知反射体的衰减系数,分别是针对Tx UE和针对gNB的第j个未知反射体的反射信道响应。wl,m[n]是在时隙m中的第n个符号被第l个gNB接收的加性高斯白噪声(Additive white Gaussian noise,AWGN),均值为零且噪声功率谱密度为为简单起见,前述提及的信道响应均被考虑为一种静态信道,即在一定时间内信道响应不发生变化,因此在说明中表示的信道响应和时隙无关。但是本申请提供的技 术方案也同样可以应用在动态信道响应的场景。
基于此,通过对第k+1个时隙和第1个时隙中接收到的第一目标信号进行减法运算可以得到相关第k个反向散射端辅助gNB(即图3b中gNB-l)进行定时校准的定时校准信号y'i,l,k[n],y'i,l,k[n]可以如式(5)所示。
由式(5)可知,反向散射端使用BPSK调制序列后,第i个TX UE发来的直径信号,其他反向散射端(第k个反向散射端除外)的反射信号以及未知反射体的反射信号均被完全消除。因此,根据第i个TX UE发送的第一信号、第k个反向散射端的反射信号可以得到如图3c所示的模型。
在此情况下,来自第i个TX UE发送、由第k个反向散射端调制/反射后,在第l个gNB接收的第一目标信号对应的第一总时延信息(也可以称作PRS总时延)可以如式(6)所示。
式(6)中,是第i个TX UE的定时误差,是第i个TX UE到第k个反向散射端的无线信号传播时延,是第k个反向散射端的处理时间(包括反向散射端调制、切换时间及反向散射端同步误差等),前述三个是与时延相关的参数,即而该与第i个TXUE和第k个反向散射端相关,与第l个gNB的接收无关。因此,在时间差(Time of Arrival,ToA)或到达时间差(Time Difference of Arrival,TDoA)的计算中,gNB可以将其完全消除。
另外,是从第k个反向散射端反射到第l个gNB的无线信号传播时延。由于第k个反向散射端和第l个gNB的位置坐标是固定的,所以此传播时延是一定(或已知),不会受到其他因素的影响。一般情况下,此传播时延的计算是在各个gNB算出,并汇报给位置管理服务器。也就是说,如果反向散射端和gNB的位置坐标固定,位置管理服务器是事先知道相关反向散射端和gNB的传播时延的。但考虑到是第l个gNB的定时误差,gNB自身是无法将其消除。
在此情况下,所述gNB将所述第一总时延信息发送给位置管理服务器, 以通过位置管理服务器根据第一时延信息确定用于定时校准的目标定时误差。
基于此,考虑到在定时校准过程中,只要确保参与定时校准的gNB(如图3b中gNB-1、gNB-2、……、gNB-l、……、gNB-L)之间不存在相对定时误差即可,那么在此情况下,所述位置管理服务器在确定目标定时误差时,可统一根据采用主时钟的gNB-1(即第三通信设备)上的第二总时延信息对采用子时钟的gNB-l(即目标通信设备)上的第一总时延信息进行校准,即可确保校准精度。
也就是,假设目标通信设备为第二通信设备,那么,位置管理服务器在接收到所述第二通信设备发送的第一总时延信息、且所述第二通信设备采用的时钟为子时钟时,可根据第三通信设备发送的第二总时延信息确定目标定时误差,并发送所述目标定时误差给所述第二通信设备。其中,所述第三通信设备采用的时钟为主时钟。
一种实现方式中,所述位置管理服务器根据所述第一总时延信息和所述第二总时延信息确定目标定时误差的过程可以包括:假设第二总时延信息如式(7)所示,那么,所述位置管理服务器可以计算出第二通信设备与所述第三通信设备之间的TX/RX定时误差的差(即目标定时误差),如式(8)所示。

其中,表示所述第一总时延信息,表示所述第二总时延信息,表示第k个反向散射端与所述第二通信设备之间的延迟时间,表示第k个反向散射端与所述第三通信设备之间的延迟时间,表示所述第二通信设备的延迟时间,表示所述第三通信设备的延迟时间。另外,由于位置管理服务器已知第k个反向散射端和第l个第二通信设备的位置坐标,即那么,位置管理服务器可以简单地计算出如式(9)所示。其中,式(6)中的c表示光速,而l=1,2,…,L。
值得注意的是,为支持反向散射端辅助gNB Tx/Rx的定时校准,位置管 理服务器可以事先获取反向散射端和gNB的位置坐标。另外,gNB定时校准中涉及的反向散射端可以预先放置,其中应确保至少一个反向散射端和校准gNB之间存在视线(line of sight,LOS)传输路径,以便确保gNB校准精度。
可以理解,本实施例中,由于UE定位和gNB校准可以同时执行,无需任何额外的无线资源成本,因此本申请提供的定时校准流程不会增加额外的资源开销。
进一步需要说明的是,虽然本申请中提供的定时校准流程可以用于上行链路、也可以用于下行链路,还可以用于侧链路,但是上行链路中所实现定时校准流程与在下行链路以及SL链路中所实现定时校准流程有所区别。
例如,如果定时校准均在下行链路进行,至少需要4个以上的gNB(即第一通信设备)发送相互正交的第一信号,参与下行链路定位和定时校准的第i个UE接收第l个gNB发来的直径信号,同时也接收从反向散射端和未知反射体反射的信号。第i个UE通过消除对第l个gNB发来的直径信号、其他反向散射端以及未知反射体反射的信号后,第i个UE计算出第l个gNB通过第k个反向散射端反射的第一总时延信息。接着,第i个UE通过Uu链路(如物理上行控制信道(Physical Uplink Control Channel,PUCCH)或媒体接入控制控制单元(Medium Access Control Control Element,MAC-CE)信道),把第一总时延信息反馈到自己的服务gNB,而服务gNB将第一总时延信息汇总到位置管理服务器,然后由位置管理服务器计算出第l个gNB(采用主时钟)和第l个gNB之间的Tx/Rx定时误差的差(即目标定时误差)。最后位置管理服务器会将校准值(即目标定时误差)直接发给相应的gNB进行定时校准。
值得注意的是,针对第i个UE的服务gNB可以是定时校准gNB(即第l个gNB),也可以其他非定时校准gNB。也就是说,定时校准gNB不一定是该UE的服务gNB。
本实施例中,通过引入反向散射端,还可在不产生PRS额外开销的情况下,既能够实现对UE的定位,同时还能实现对网络侧设备的定时校准。
如图4所示,为本申请一示例性实施例提供的定时校准的方法400的流程示意图,该方法可以但不限于由第二通信设备(如终端或网络侧设备)执 行,具体可由安装于第二通信设备中的硬件和/或软件执行。本实施例中,所述方法400至少可以包括如下步骤。
S410,所述第二通信设备接收所述位置管理服务器发送的第一信息。
其中,如果所述第二通信设备为终端,那么所述第二通信设备可通过为其提供服务的网络侧设备(如gNB)接收所述位置管理服务器发送的第一信息。或者,在所述第二通信设备为网络侧设备(如gNB)的情况下,所述第二通信设备根据所述第一信息确定参考信号配置信息;所述第二通信设备发送第二信息给所述第一通信设备,所述第二信息中至少包括所述参考信号配置信息。
其中,为了提高定时校准精度,所述位置管理服务器可根据第三信息确定所述第一信息,其中,所述第三信息包括以下(21)-(24)中的至少一项。
(21)参与所述定时校准流程的各反向散射端之间使用相互正交的调制序列,由此,可使得各反向散射端间的干扰可以被基本消除。
(22)所述第一通信设备和所述反向散射端之间的距离小于预定值,由此可减少第一通信设备与反向散射端间的信号衰减,其中,所述预定值可以协议约定或高层配置等,在此不做限制。
(23)参与定时校准流程的反向散射端的位置已知,如,参与定时校准流程的反向散射端可以预先放置在固定位置、或所述反向散射端的移动轨迹时已知的等。
需要注意,在定时校准中,可以确保至少一个反向散射端与需要进行定时校准的设备之间(如第二通信设备)之间存在LOS路径。
(24)所述第二通信设备的位置信息。其中,所述位置管理服务器根据所述第二通信设备的位置信息可确定参与定时校准的第一通信设备和反向散射端的相关信息,如位置信息、数量信息等,在此不做限制。
基于此,所述第一信息包括以下(31)-(33)中的至少一项。
(31)参与所述定时校准流程的至少一个第一通信设备的信息,如所述第一通信设备的位置信息、标识信息等。
(32)参与所述定时校准流程的至少一个反向散射端的信息,如所述反向散射端的位置信息、标识信息等。
(33)所述定时校准流程中所采用的参考信号相关配置信息,如所述反向散射端所采用的第一正交调制序列、第一通信设备需要发送的第一信号等,各所述第一通信设备之间发生的第一信号是否需要正交等、各所述第一信号对应的发送资源的配置方式(如各所述第一信号对应的发送资源通过时域、频域、码域或空域进行配置)等。
需要注意,在参与定时校准流程的第一通信设备的数量为多个的情况下,多个所述第一通信设备发送的第一信号相互正交,以确保所述第一通信设备发送的第一信号之间没有干扰。
S420,第二通信设备接收第一目标信号。
其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。
S430,所述第二通信设备根据所述第一目标信号确定第一总时延信息。
S440,所述第二通信设备向位置管理服务器发送所述第一总时延信息。
可以理解,S430和S440的实现过程除了可参照方法实施例200中的相关描述之外,作为一种可能实现方式,在所述第一总时延信息为多个的情况下,如所述第二通信设备接收到多个第一目标信号,如多个反向散射端发送/反射的第二信号,那么,所述第二通信设备可以向所述位置管理服务器发送多个所述第一总时延信息(即向位置管理服务器上报全部测量信息);或者,所述第二通信设备向所述位置管理服务器发送第三总时延信息(即根据信赖度向位置管理服务器上报测量信息),所述第三总时延信息是多个所述第一总时延信息中信赖度达到预定要求的时延信息。其中,所述第二通信设备在根据信赖度上报第三总时延信息时,所述信赖度可以根据所述反向散射端与第二通信设备之间的距离确定,如距离近的反向散射端对应的第一总时延信息的信赖度高等,在此不做限制。
对应的,所述位置管理服务器根据所述第一总时延信息和第二总时延信息确定所述第二通信设备对应的目标定时误差时,如果接收到的所述第一总时延信息为多个,那么,所述位置管理服务器根据所述第四总时延信息和第 二总时延信息确定所述第二通信设备对应的目标定时误差;其中,所述第四总时延信息是多个所述第一总时延信息中信赖度达到预定要求的时延信息。
当然,在所述第二通信设备为网络侧设备、且针对所述网络侧设备进行定时校准的情况下,所述第二通信设备接收所述位置管理服务器发送的目标定时误差;所述第二通信设备根据所述目标定时误差进行定时校准。
进一步,在本实施例中,除前述S410-S440之外,为了保障第二通信设备的相对时钟精度,可在一定时间间隔内对目标通信设备(如上行定时校准场景的第二通信设备或下行定时校准场景中的第一通信设备)的时钟进行定时校准,基于此,本实施例中给出的定时校准流程的触发方式可以有多种,例如,所述定时校准流程可以周期性(Periodic)触发、半周期性(Semi-persistent)、非周期性触发或由第二通信设备进行触发等。
在此假设所述定时校准流程是由第二通信设备进行触发的,那么,其触发过程可以包括:所述第二通信设备向所述位置管理服务器发送第一请求消息,所述第一请求消息用于请求所述位置管理服务器执行定时校准相关操作,如请求位置管理服务器向所述第二通信设备发送定时校准流程的相关配置信息、位置管理服务器根据需要定时校准的第二通信设备的地理位置决定参与定时校准的第一通信设备和反向散射端等。
当然,所述第二通信设备在发送第一请求消息时,其发送方式也可以包括以下(11)-(13)中的任一项。
(11)周期性发送。
(12)半周期性发送。
(13)触发性(Event-trigger)发送。
此外,值得注意的是,参与定时校准的第二通信设备和反向散射端是事先通过高层信令被允许接入到网络中的;也就是说,位置管理服务器事先知道所有第一通信设备的大概的位置坐标和反向散射端精确的位置坐标的。同时位置管理服务器会通过和反向散射端的信令交互,知道每个反向散射端所使用的调制序列(即第一正交调制序列)。反向散射端使用的第一正交调制序列可以是事先由位置管理服务器通过gNB或UE通知的方法获取,也可以根据位置管理服务器的需求(如,为了使反向散射端间的调制序列正交化) 通过简单的信令临时通知的方法获取,在此不做限制。
基于前述方法实施例200-400的描述,下面结合示例1和示例2对本申请给出的定时校准流程做进一步示例性说明,内容如下。
示例1
请结合参阅图5a,假设定时校准流程为在下行链路(即下行定时校准流程)中进行,那么,位置管理服务器(如LMF)可根据K个反向散射端(反向散射端)的地理位置信息从I个UE中挑选参与第l个gNB(即第一通信设备)定时校准的一个或多个UE(即第二通信设备)。基于此,定时校准流程可以包括如下S501-S513。
S501,如果反向散射端尚未获得网络授权,LMF通过gNB或UE为反向散射端提供网络授权和参数设定服务。
S502,gNB向LMF发送第一请求消息,以请求LMF对其进行定时校准。其中,如果gNB是周期性或半周期性地要求LMF对其进行定时校准的话,S502可以略去。
S503,LMF根据K个反向散射端的地理位置信息从I个UE中挑选参与第l个gNB定时校准的一个或多个UE。同时,LMF根据K个反向散射端的地理位置信息挑选第i个UE参与第l个gNB的定时校准。
S504,LMF向第i个UE的服务gNB发送第一信息。值得注意的是,针对第i个UE的服务gNB可以是定时校准gNB也可以不是。为了简单起见,在此实施例中,定时校准gNB和服务gNB是同一个gNB。
S505,第l个gNB根据第一信息进行参考信号相关配置,如PRS的相关时域和频域资源等配置。
S506,第l个gNB通知参考信号相关配置信息给第i个UE。
S507,第l个gNB根据配置的参考信号发送第一信号,第1到第K个反向散射端将接收到的第一信号,根据其调制序列,对其进行OOK或BPSK或CDM正交码调制后得到第二信号并反射给第i个UE。
S508,第i个UE分别计算从第l个gNB并通过每个反向散射端调制后反射到UE的第一总时延信息。S509,第i个UE反馈给第l个gNB针对每个反向散射端的第一总时延信息。
S510,第l个gNB汇报给LMF针对每个反向散射端的第一总时延信息。
S511,LMF根据第1个和第l个gNB汇报的针对每个反向散射端的总时延信息(如第一总时延信息、第二总时延信息),计算出针对第l个gNB的目标定时误差,即定时校准值。
S512,LMF发送目标定时误差给第l个gNB。
S513,第l个gNB根据接收到的目标定时误差进行定时校准。
示例2
请结合参阅图5b,假设定时校准流程为在上行链路(即上行定时校准流程)中进行,那么,LMF(如LMF)可根据K个反向散射端的地理位置信息从I个UE中挑选参与第l个gNB(即第二通信设备)定时校准的一个或多个UE(即第一通信设备)。基于此,上行定时校准流程可以包括如下S521-S532。S521,如果反向散射端尚未获得网络授权,LMF通过gNB或UE为反向散射端提供网络授权和参数设定服务。
S522,gNB向LMF发送第一请求消息,以请求LMF对其进行定时校准。其中,如果gNB是周期性或半周期性地要求LMF对其进行定时校准的话,S522可以略去。
S523,LMF根据K个反向散射端的地理位置信息从I个UE中挑选参与第l个gNB定时校准的一个或多个UE。同时,LMF根据K个反向散射端的地理位置信息挑选第i个UE参与gNB的定时校准。
S524,LMF向第i个UE的服务gNB发送第一信息。值得注意的是,针对第i个UE的服务gNB可以是定时校准gNB也可以不是。为了简单起见,在此实施例中,定时校准gNB和服务gNB是同一个gNB。
S525,第l个gNB根据第一信息进行参考信号相关配置,如PRS的相关时域和频域资源等配置。
S526,第l个gNB为第i个UE进行参考信号配置。
S527,第i个UE根据配置的参考信号信息发送第一信号,第1到第K个反向散射端将接收到的第一信号,根据其调制序列,对其进行OOK或BPSK或CDM正交码序列调制后得到第二信号后并反射给第l个gNB。
S528,第l个gNB分别计算从第i个UE并通过每个反向散射端调制后反 射到第l个gNB的第一总时延信息。
S529,第l个gNB发送第一总时延信息给LMF。
S530,LMF根据第1个gNB和第l个gNB汇报的针对每个反向散射端的总时延信息,计算出针对第l个gNB的目标定时误差,即,即定时校准值。
S531,LMF发送目标定时误差给第l个gNB。
S532,第l个gNB根据接收到的目标定时误差进行定时校准。
值得注意的是,针对前述示例1和示例2中给出的上行链路或下行链路中定时校准相关的过程,S501-S513与S521与S532可以相同也可以不同。
可以理解,对于前述示例1和示例2的实现过程可参照前述方法实施例200-400中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。另外。本申请给出的定时校准流程可以是但不限于前述示例1和示例2中所给出的步骤,例如,可以包括比前述示例1或示例2更多或更少的步骤。
如图6所示,为本申请一示例性实施例提供的定时校准的方法600的流程示意图,该方法可以但不限于由位置管理服务器执行,具体可由安装于位置管理服务器中的硬件和/或软件执行。本实施例中,所述方法600至少可以包括如下步骤。
S610,位置管理服务器接收第一总时延信息,所述第一总时延信息是目标通信设备对应的总时延信息、且所述目标通信设备采用的时钟为子时钟,所述目标通信设备为第一通信设备或第二通信设备。
S620,所述位置管理服务器根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差。
S630,所述位置管理服务器发送所述目标定时误差。
其中,所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
可选的,所述第一正交调制序列包括二进制振幅键控OOK调制序列或二进制相移键控BPSK调制序列或二进制相移键控CDM正交码序列。
可选的,所述OOK调制序列根据第一调制矩阵确定,所述第一调制矩阵包括:其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
可选的,所述BPSK调制序列根据第二调制矩阵确定,所述第二调制矩阵包括:其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
可选的,所述CDM正交码序列根据第三调制矩阵确定,所述第三调制矩阵包括:其中,所述M为大于或等于1的整数,且所述M-1与参与定时校准流程的反向散射端的数量相关。
可选的,所述目标通信设备的目标定时误差为:其中,表示所述第一总时延信息,表示所述第二总时延信息,表示第k个反向散射端与所述目标通信设备之间的延迟时间,表示第k个反向散射端与所述第三通信设备之间的延迟时间,表示所述目标通信设备的延迟时间,表示所述第三通信设备的延迟时间。
可选的,所述位置管理服务器根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差的步骤,包括:在所述第一总时延信息为多个的情况下,所述位置管理服务器根据所述第四总时延信息和 第二总时延信息确定所述目标通信设备对应的目标定时误差;其中,所述第四总时延信息是多个所述第一总时延信息中信赖度达到预定要求的时延信息。
可选的,所述第二通信设备为终端或网络侧设备。
可选的,在所述定时校准流程为上行定时校准流程的情况下,所述第一通信设备为终端,所述第二通信设备为网络侧设备;在所述定时校准流程为下行定时校准流程的情况下,所述第一通信设备为网络侧设备,所述第二通信设备为终端;在所述定时校准流程为侧链路定时校准流程的情况下,所述第一通信设备和所述第二通信设备均为终端、且所述第一通信设备和/或所述第二通信设备的位置已知;其中,所述第一通信设备为参与所述定时校准流程的参考信号发送端。
可选的,位置管理服务器接收第一总时延信息的步骤,包括以下任一项:在所述第二通信设备为终端的情况下,所述位置管理服务器接收网络侧设备发送的第一总时延信息,所述网络侧设备为向所述终端提供服务的服务基站,或,所述网络侧设备是参与定时校准流程的基站;在所述第二通信设备为网络侧设备的情况下,所述位置管理服务器接收所述第二通信设备发送的所述第一总时延信息。
可选的,所述方法还包括:所述位置管理服务器确定第一信息;所述位置管理服务器发送所述第一信息;其中,所述第一信息包括以下至少一项:参与定时校准流程的至少一个第一通信设备的信息;参与定时校准流程的至少一个反向散射端的信息;定时校准流程中所采用的参考信号相关配置信息。
可选的,在参与定时校准的第一通信设备为多个的情况下,每个所述第一通信设备发送的第一信号相互正交。
可选的,各所述第一信号的发送资源通过时域、频域、码域或空域进行配置。
可选的,所述第一信号包括定位参考信号PRS、信道状态信息参考信号CSI-RS、相位参考信号TRS、探测参考信号SRS中的至少一项。
可选的,所述位置管理服务器确定第一信息的步骤,包括:所述位置管理服务器根据第三信息确定所述第一信息;所述第三信息包括以下至少一项:参与所述定时校准流程的各反向散射端之间使用相互正交的调制序列;所述 第一通信设备和所述反向散射端之间的距离小于预定值;参与定时校准流程的反向散射端的位置已知;所述第二通信设备的位置信息。
可选的,所述方法还包括:所述位置管理服务器接收所述第二通信设备发送的第一请求消息;其中,所述第一请求消息用于请求所述位置管理服务器执行定时校准相关操作。
可选的,所述第一请求消息的发送方式包括以下任一项:周期性发送;半周期性发送;触发性发送。
可以理解,方法实施例600中的各实现方式的实现过程可参照前述方法实施例200-500中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本申请实施例提供的定时校准的方法,执行主体可以为定时校准的装置。本申请实施例中以定时校准的装置执行定时校准的方法为例,说明本申请实施例提供的定时校准的装置。
如图7所示,为本申请一示例性实施例提供的定时校准的装置700的结构示意图,该装置700包括第一接收模块710,用于接收第一目标信号;第一确定模块720,用于所述第二通信设备根据所述第一目标信号确定第一总时延信息;第一发送模块730,用于向位置管理服务器发送所述第一总时延信息;其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。
可选的,所述第一正交调制序列包括二进制振幅键控OOK调制序列或二进制相移键控BPSK调制序列或二进制相移键控CDM正交码序列。
可选的,所述OOK调制序列根据第一调制矩阵确定,所述第一调制矩阵包括:其中,所述M为大于或等于1的整数,所述M与参与定时校准流程的反向散射端的数量相关。
可选的,所述BPSK调制序列根据第二调制矩阵确定,所述第二调制矩 阵包括:其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
可选的,所述CDM正交码序列根据第三调制矩阵确定,所述第三调制矩阵包括:其中,所述M为大于或等于1的整数,且所述M-1与参与定时校准流程的反向散射端的数量相关。
可选的,所述第一发送模块730发送所述第一总时延信息的步骤,包括以下任一项:在所述第二通信设备为终端的情况下,所述第二通信设备通过网络侧设备向所述位置管理服务器发送所述第一总时延信息,所述网络侧设备是为所述终端提供服务的服务基站,或,所述网络侧设备是参与定时校准流程的基站;在所述第二通信设备为网络侧设备的情况下,所述第二通信设备直接向所述位置管理服务器发送所述第一总时延信息。
可选的,所述第一发送模块730向位置管理服务器发送所述第一总时延信息的步骤,包括:在所述第一总时延信息为多个的情况下,所述第一发送模块730执行以下至少一项:向所述位置管理服务器发送多个所述第一总时延信息;向所述位置管理服务器发送第三总时延信息,所述第三总时延信息是多个所述第一总时延信息中信赖度达到预定要求的时延信息。
可选的,所述第一通信设备为终端或网络侧设备,所述第二通信设备为终端或网络侧设备。
可选的,在所述定时校准流程为上行定时校准流程的情况下,所述第一通信设备为终端,所述第二通信设备为网络侧设备;在所述定时校准流程为下行定时校准流程的情况下,所述第一通信设备为网络侧设备,所述第二通 信设备为终端;在所述定时校准流程为侧链路定时校准流程的情况下,所述第一通信设备和所述第二通信设备均为终端、且所述第一通信设备和/或所述第二通信设备的位置已知。
可选的,第一接收模块710还用于在所述第二通信设备为网络侧设备、且针对所述网络侧设备进行定时校准的情况下,接收所述位置管理服务器发送的目标定时误差;所述第一确定模块720还用于根据所述目标定时误差进行定时校准。
可选的,所述第一接收模块710还用于接收所述位置管理服务器发送的第一信息;在所述第二通信设备为网络侧设备的情况下,所述第一确定模块720还用于根据所述第一信息确定参考信号配置信息;所述第一发送模块730还用于发送第二信息给所述第一通信设备,所述第二信息中至少包括所述参考信号配置信息。
可选的,所述第一信息包括以下至少一项:参与所述定时校准流程的至少一个第一通信设备的信息;参与所述定时校准流程的至少一个反向散射端的信息;所述定时校准流程中所采用的参考信号相关配置信息。
可选的,在参与定时校准流程的第一通信设备的数量为多个的情况下,多个所述第一通信设备发送的第一信号相互正交。
可选的,各所述第一信号对应的发送资源通过时域、频域、码域或空域进行配置。
可选的,所述第一信号包括定位参考信号PRS、信道状态信息参考信号CSI-RS、相位参考信号TRS、探测参考信号SRS中的至少一项。
可选的,所述第一发送模块730还用于向所述位置管理服务器发送第一请求消息;其中,所述第一请求消息用于请求所述位置管理服务器执行定时校准相关操作。
可选的,所述第一请求消息的发送方式包括以下任一项:周期性发送;半周期性发送;触发性发送。
如图8所示,为本申请一示例性实施例提供的定时校准的装置800的结构示意图,该装置800包括第二接收模块810,用于接收第一总时延信息,所述第一总时延信息是目标通信设备对应的总时延信息、且所述目标通信设 备采用的时钟为子时钟,所述目标通信设备为第一通信设备或第二通信设备;第二确定模块820,用于根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;第二发送模块830,用于发送所述目标定时误差;其中,所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
可选的,所述第一正交调制序列包括二进制振幅键控OOK调制序列或二进制相移键控BPSK调制序列或二进制相移键控CDM正交码序列。
可选的,所述OOK调制序列根据第一调制矩阵确定,所述第一调制矩阵包括:其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
可选的,所述BPSK调制序列根据第二调制矩阵确定,所述第二调制矩阵包括:其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
可选的,所述CDM正交码序列根据第三调制矩阵确定,所述第三调制矩阵包括:其中,所述M为大于或等于1的整数,且所述M-1与参与定时校准流程的反向散射端的数量相关。
可选的,所述目标通信设备的目标定时误差为:其中,表示所述第一总时延信息,表示所述第二总时延信息,表示第k个反向散射端与所述目标通信设备之间的延迟时间,表示第k个反向散射端与所述第三通信设备之间的延迟时间,表示所述目标通信设备的延迟时间,表示所述第三通信设备的延迟时间。可选的,所述第二确定模块820根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差的步骤,包括:在所述第一总时延信息为多个的情况下,所述位置管理服务器根据所述第四总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;其中,所述第四总时延信息是多个所述第一总时延信息中信赖度达到预定要求的时延信息。
可选的,所述第二通信设备为终端或网络侧设备。
可选的,在所述定时校准流程为上行定时校准流程的情况下,所述第一通信设备为终端,所述第二通信设备为网络侧设备;在所述定时校准流程为下行定时校准流程的情况下,所述第一通信设备为网络侧设备,所述第二通信设备为终端;在所述定时校准流程为侧链路sidelink定时校准流程的情况下,所述第一通信设备和所述第二通信设备均为终端、且所述第一通信设备和/或所述第二通信设备的位置已知;其中,所述第一通信设备为参与所述定时校准流程的参考信号发送端。
可选的,第二接收模块810接收第一总时延信息的步骤,包括以下任一项:在所述第二通信设备为终端的情况下,接收网络侧设备发送的第一总时延信息,所述网络侧设备为向所述终端提供服务的服务基站,或,所述网络侧设备是参与定时校准流程的基站;在所述第二通信设备为网络侧设备的情况下,接收所述第二通信设备发送的所述第一总时延信息。
可选的,所述第二确定模块820还用于确定第一信息;所述位置管理服务器发送所述第一信息;其中,所述第一信息包括以下至少一项:参与定时校准流程的至少一个第一通信设备的信息;参与定时校准流程的至少一个反向散射端的信息;定时校准流程中所采用的参考信号相关配置信息。
可选的,在参与定时校准的第一通信设备为多个的情况下,每个所述第 一通信设备发送的第一信号相互正交。
可选的,各所述第一信号的发送资源通过时域、频域、码域或空域进行配置。
可选的,所述第一信号包括定位参考信号PRS、信道状态信息参考信号CSI-RS、相位参考信号TRS、探测参考信号SRS中的至少一项。
可选的,所述第二确定模块820确定第一信息的步骤,包括:所述位置管理服务器根据第三信息确定所述第一信息;所述第三信息包括以下至少一项:参与所述定时校准流程的各反向散射端之间使用相互正交的调制序列;所述第一通信设备和所述反向散射端之间的距离小于预定值;参与定时校准流程的反向散射端的位置已知;所述第二通信设备的位置信息。
可选的,所述第二接收模块810还用于接收所述第二通信设备发送的第一请求消息;其中,所述第一请求消息用于请求所述位置管理服务器执行定时校准相关操作。
可选的,所述第一请求消息的发送方式包括以下任一项:周期性发送;半周期性发送;触发性发送。
本申请实施例中的定时校准的装置700-800可以是通信设备,例如具有操作系统的通信设备,也可以是通信设备中的部件,例如集成电路或芯片。该电子设备可以是终端或网络侧设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的定时校准的装置700能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。以及,本申请实施例提供的定时校准的装置800能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述定时校准的方法实施例的各个步骤,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上 述定时校准的方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
一种实现方式中,在所述通信设备900为终端时,该终端可以包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如方法实施例200-500中所述的方法的步骤。该终端实施例是与上述第二通信设备侧的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该第二通信设备实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)1041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、 耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于接收第一目标信号;处理器1010,用于所述第二通信设备根据所述第一目标信号确定第一总时延信息;射频单元1001,还用于向位置管理服务器发送所述第一总时延信息;其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。
或者,所述射频单元1001,用于接收第一总时延信息,所述第一总时延 信息是目标通信设备对应的总时延信息、且所述目标通信设备采用的时钟为子时钟,所述目标通信设备为第一通信设备或第二通信设备;处理器1010用于器根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;所述射频单元1001,还用于发送所述目标定时误差;其中,其中,所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
另一种实现方式中,在所述通信设备900为网络侧设备时,该网络侧设备包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如实施例200-600中所述的方法的步骤。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本发明实施例还提供了一种网络侧设备。如图11所示,该网络侧设备1100包括:天线1101、射频装置1102、基带装置1103、处理器1104和存储器1105。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1103中实现,该基带装置1103包基带处理器。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1105连接,以调用存储器1105中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1106,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1100还包括:存储在存储器1105 上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图7或图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述定时校准的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述定时校准的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序/程序产品,该计算机程序/程序产品存储在存储介质,所述计算机程序/程序产品被处理器执行时,实现上述定时校准的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种定时校准的系统,包括第二通信设备及位置管理服务器,所述终端可用于执行方法实施例200-400中所述的定时校准的方法的步骤,所述网络侧设备可用于执行方法实施例600中所述的定时校准的方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请 实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种定时校准的方法,包括:
    第二通信设备接收第一目标信号;
    所述第二通信设备根据所述第一目标信号确定第一总时延信息;
    所述第二通信设备向位置管理服务器发送所述第一总时延信息;
    其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。
  2. 如权利要求1所述的方法,其中,所述第一正交调制序列包括二进制振幅键控OOK调制序列或二进制相移键控BPSK调制序列或二进制相移键控CDM正交码序列。
  3. 如权利要求2所述的方法,其中,所述OOK调制序列根据第一调制矩阵确定,所述第一调制矩阵包括:
    其中,所述M为大于或等于1的整数,所述M与参与定时校准流程的反向散射端的数量相关。
  4. 如权利要求2所述的方法,其中,所述BPSK调制序列根据第二调制矩阵确定,所述第二调制矩阵包括:
    其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
  5. 如权利要求2所述的方法,其中,所述CDM正交码序列根据第三调制矩阵确定,所述第三调制矩阵包括:
    其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
  6. 如权利要求1-5中任一项所述的方法,其中,所述第二通信设备发送所述第一总时延信息的步骤,包括以下任一项:
    在所述第二通信设备为终端的情况下,所述第二通信设备通过网络侧设备向所述位置管理服务器发送所述第一总时延信息,所述网络侧设备是为所述终端提供服务的服务基站,或,所述网络侧设备是参与定时校准流程的基站;
    在所述第二通信设备为网络侧设备的情况下,所述第二通信设备直接向所述位置管理服务器发送所述第一总时延信息。
  7. 如权利要求1-6中任一项所述的方法,其中,所述第二通信设备向位置管理服务器发送所述第一总时延信息的步骤,包括:
    在所述第一总时延信息为多个的情况下,所述第二通信设备执行以下至少一项:
    向所述位置管理服务器发送多个所述第一总时延信息;
    向所述位置管理服务器发送第三总时延信息,所述第三总时延信息是多个所述第一总时延信息中信赖度达到预定要求的时延信息。
  8. 如权利要求1-7中任一项所述的方法,其中,所述第一通信设备为终端或网络侧设备,所述第二通信设备为终端或网络侧设备。
  9. 如权利要求8所述的方法,其中,
    在所述定时校准流程为上行定时校准流程的情况下,所述第一通信设备为终端,所述第二通信设备为网络侧设备;
    在所述定时校准流程为下行定时校准流程的情况下,所述第一通信设备为网络侧设备,所述第二通信设备为终端;
    在所述定时校准流程为侧链路定时校准流程的情况下,所述第一通信设备和所述第二通信设备均为终端、且所述第一通信设备和/或所述第二通信设 备的位置已知。
  10. 如权利要求1-9中任一项所述的方法,其中,所述方法还包括:
    在所述第二通信设备为网络侧设备、且针对所述网络侧设备进行定时校准的情况下,所述第二通信设备接收所述位置管理服务器发送的目标定时误差;
    所述第二通信设备根据所述目标定时误差进行定时校准。
  11. 如权利要求1-10中任一项所述的方法,其中,所述方法还包括:
    所述第二通信设备接收所述位置管理服务器发送的第一信息;
    在所述第二通信设备为网络侧设备的情况下,所述第二通信设备根据所述第一信息确定参考信号配置信息;
    所述第二通信设备发送第二信息给所述第一通信设备,所述第二信息中至少包括所述参考信号配置信息。
  12. 如权利要求11所述的方法,其中,所述第一信息包括以下至少一项:
    参与所述定时校准流程的至少一个第一通信设备的信息;
    参与所述定时校准流程的至少一个反向散射端的信息;
    所述定时校准流程中所采用的参考信号相关配置信息。
  13. 如权利要求12所述的方法,其中,在参与定时校准流程的第一通信设备的数量为多个的情况下,多个所述第一通信设备发送的第一信号相互正交。
  14. 如权利要求12所述的方法,其中,各所述第一信号对应的发送资源通过时域、频域、码域或空域进行配置。
  15. 如权利要求1-14中任一项所述的方法,其中,所述第一信号包括定位参考信号PRS、信道状态信息参考信号CSI-RS、相位参考信号TRS、探测参考信号SRS中的至少一项。
  16. 如权利要求1-15中任一项所述的方法,其中,所述方法还包括:
    所述第二通信设备向所述位置管理服务器发送第一请求消息;
    其中,所述第一请求消息用于请求所述位置管理服务器执行定时校准相关操作。
  17. 如权利要求16所述的方法,其中,所述第一请求消息的发送方式包 括以下任一项:
    周期性发送;
    半周期性发送;
    触发性发送。
  18. 一种定时校准的方法,包括:
    位置管理服务器接收第一总时延信息,所述第一总时延信息是目标通信设备对应的总时延信息、且所述目标通信设备采用的时钟为子时钟,所述目标通信设备为第一通信设备或第二通信设备;
    所述位置管理服务器根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;
    所述位置管理服务器发送所述目标定时误差;
    其中,所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
  19. 如权利要求18所述的方法,其中,所述第一正交调制序列包括二进制振幅键控OOK调制序列或二进制相移键控BPSK调制序列或二进制相移键控CDM正交码序列。
  20. 如权利要求19所述的方法,其中,所述OOK调制序列根据第一调制矩阵确定,所述第一调制矩阵包括:
    其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
  21. 如权利要求19所述的方法,其中,所述BPSK调制序列根据第二调制矩阵确定,所述第二调制矩阵包括:
    其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
  22. 如权利要求19所述的方法,其中,所述CDM正交码序列根据第三调制矩阵确定,所述第三调制矩阵包括:
    其中,所述M为大于或等于1的整数,且所述M与参与定时校准流程的反向散射端的数量相关。
  23. 如权利要求18-22中任一项所述的方法,其中,所述目标通信设备的目标定时误差为:
    其中,表示所述第一总时延信息,表示所述第二总时延信息,表示第k个反向散射端与所述目标通信设备之间的延迟时间,表示第k个反向散射端与所述第三通信设备之间的延迟时间,表示所述目标通信设备的延迟时间,表示所述第三通信设备的延迟时间。
  24. 如权利要求18-23中任一项所述的方法,其中,所述位置管理服务器根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差的步骤,包括:
    在所述第一总时延信息为多个的情况下,所述位置管理服务器根据所述第四总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;
    其中,所述第四总时延信息是多个所述第一总时延信息中信赖度达到预定要求的时延信息。
  25. 如权利要求18-24中任一项所述的方法,其中,所述第二通信设备为终端或网络侧设备。
  26. 如权利要求25所述的方法,其中,
    在所述定时校准流程为上行定时校准流程的情况下,所述第一通信设备为终端,所述第二通信设备为网络侧设备;
    在所述定时校准流程为下行定时校准流程的情况下,所述第一通信设备为网络侧设备,所述第二通信设备为终端;
    在所述定时校准流程为侧链路定时校准流程的情况下,所述第一通信设备和所述第二通信设备均为终端、且所述第一通信设备和/或所述第二通信设备的位置已知;
    其中,所述第一通信设备为参与所述定时校准流程的参考信号发送端。
  27. 如权利要求18-26中任一项所述的方法,其中,位置管理服务器接收第一总时延信息的步骤,包括以下任一项:
    在所述第二通信设备为终端的情况下,所述位置管理服务器接收网络侧设备发送的第一总时延信息,所述网络侧设备为向所述终端提供服务的服务基站,或,所述网络侧设备是参与定时校准流程的基站;
    在所述第二通信设备为网络侧设备的情况下,所述位置管理服务器接收所述第二通信设备发送的所述第一总时延信息。
  28. 如权利要求18-27中任一项所述的方法,其中,所述方法还包括:
    所述位置管理服务器确定第一信息;
    所述位置管理服务器发送所述第一信息;
    其中,所述第一信息包括以下至少一项:
    参与定时校准流程的至少一个第一通信设备的信息;
    参与定时校准流程的至少一个反向散射端的信息;
    定时校准流程中所采用的参考信号相关配置信息。
  29. 如权利要求28所述的方法,其中,在参与定时校准的第一通信设备为多个的情况下,每个所述第一通信设备发送的第一信号相互正交。
  30. 如权利要求29所述的方法,其中,各所述第一信号的发送资源通过时域、频域、码域或空域进行配置。
  31. 如权利要求18-30中任一项所述的方法,其中,所述第一信号包括定位参考信号PRS、信道状态信息参考信号CSI-RS、相位参考信号TRS、探测 参考信号SRS中的至少一项。
  32. 如权利要求28所述的方法,其中,所述位置管理服务器确定第一信息的步骤,包括:
    所述位置管理服务器根据第三信息确定所述第一信息;
    所述第三信息包括以下至少一项:
    参与所述定时校准流程的各反向散射端之间使用相互正交的调制序列;
    所述第一通信设备和所述反向散射端之间的距离小于预定值;
    参与定时校准流程的反向散射端的位置已知;
    所述第二通信设备的位置信息。
  33. 如权利要求18-32中任一项所述的方法,其中,所述方法还包括:
    所述位置管理服务器接收所述第二通信设备发送的第一请求消息;
    其中,所述第一请求消息用于请求所述位置管理服务器执行定时校准相关操作。
  34. 如权利要求33所述的方法,其中,所述第一请求消息的发送方式包括以下任一项:
    周期性发送;
    半周期性发送;
    触发性发送。
  35. 一种定时校准的装置,包括:
    第一接收模块,用于接收第一目标信号;
    第一确定模块,用于所述第二通信设备根据所述第一目标信号确定第一总时延信息;
    第一发送模块,用于向位置管理服务器发送所述第一总时延信息;
    其中,所述第一目标信号至少包括第一通信设备发送的第一信号以及反向散射端发送的第二信号,所述第二信号是所述反向散射端根据第一正交调制序列对所述第一信号进行调制得到,所述反向散射端的位置是所述第二通信设备已知的。
  36. 一种定时校准的装置,包括:
    第二接收模块,用于接收第一总时延信息,所述第一总时延信息是目标 通信设备对应的总时延信息、且所述目标通信设备采用的时钟为子时钟,所述目标通信设备为第一通信设备或第二通信设备;
    第二确定模块,用于根据所述第一总时延信息和第二总时延信息确定所述目标通信设备对应的目标定时误差;
    第二发送模块,用于发送所述目标定时误差;
    其中,所述第二总时延信息是第三通信设备对应的总时延信息,所述第三通信设备所采用的时钟为主时钟,辅助所述目标通信设备进行定时校准的反向散射端采用第一正交调制序列进行信号调制,所述反向散射端的位置是所述位置管理服务器已知的。
  37. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17任一项所述定时校准的方法的步骤,或者,实现如权利要求18至34中任一项所述定时校准的方法的步骤。
  38. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-17任一项所述的定时校准的方法的步骤,或者,实现如权利要求18至34中任一项所述定时校准的方法的步骤。
PCT/CN2023/073266 2022-01-21 2023-01-19 定时校准的方法、装置及通信设备 WO2023138673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210073058.3A CN116528345A (zh) 2022-01-21 2022-01-21 定时校准的方法、装置及通信设备
CN202210073058.3 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023138673A1 true WO2023138673A1 (zh) 2023-07-27

Family

ID=87347909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073266 WO2023138673A1 (zh) 2022-01-21 2023-01-19 定时校准的方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN116528345A (zh)
WO (1) WO2023138673A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105198A (zh) * 2014-07-30 2014-10-15 北京智谷睿拓技术服务有限公司 信号处理方法、装置及设备
CN111983560A (zh) * 2020-08-05 2020-11-24 北京理工大学 一种双可重构智能表面辅助的毫米波单基站定位方法
CN112073082A (zh) * 2019-05-22 2020-12-11 成都华为技术有限公司 反向散射通信方法、激励设备、反射设备以及接收设备
CN112147643A (zh) * 2020-08-24 2020-12-29 西安空间无线电技术研究所 一种gnss-r系统成像预处理的方法及装置
US20220015051A1 (en) * 2020-07-13 2022-01-13 Qualcomm Incorporated Reference device hardware group delay calibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105198A (zh) * 2014-07-30 2014-10-15 北京智谷睿拓技术服务有限公司 信号处理方法、装置及设备
CN112073082A (zh) * 2019-05-22 2020-12-11 成都华为技术有限公司 反向散射通信方法、激励设备、反射设备以及接收设备
US20220015051A1 (en) * 2020-07-13 2022-01-13 Qualcomm Incorporated Reference device hardware group delay calibration
CN111983560A (zh) * 2020-08-05 2020-11-24 北京理工大学 一种双可重构智能表面辅助的毫米波单基站定位方法
CN112147643A (zh) * 2020-08-24 2020-12-29 西安空间无线电技术研究所 一种gnss-r系统成像预处理的方法及装置

Also Published As

Publication number Publication date
CN116528345A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US20230319771A1 (en) Positioning measurement window indication method, terminal, and network side device
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
US20240137989A1 (en) Transmission processing method, terminal and network side device
WO2023138673A1 (zh) 定时校准的方法、装置及通信设备
WO2022063319A1 (zh) 定位测量的方法、装置、设备及可读存储介质
WO2023151590A1 (zh) 组定位方法、装置、用户设备及存储介质
CN116156605A (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023151555A1 (zh) 定位方法、装置、用户设备及存储介质
WO2023160711A1 (zh) 组定位方法、装置及通信设备
WO2023125986A1 (zh) 定位方法、装置及通信设备
WO2023246919A1 (zh) 信道估计方法、装置、通信设备、系统及存储介质
WO2023109763A1 (zh) Prach传输方法、装置及终端
WO2022179499A1 (zh) 信道信息获取方法、装置及通信设备
WO2023125311A1 (zh) 信道估计方法、装置、终端、网络侧设备及介质
WO2024027664A1 (zh) 载波相位定位方法、装置、设备及介质
WO2023193684A1 (zh) 验证终端位置的方法、终端及网络侧设备
WO2023133828A1 (en) Joint communication and sensing mechanism
WO2023202505A1 (zh) 信道状态信息测量和上报方法、终端及网络侧设备
US20240080114A1 (en) Positioning accuracy enhancements
CN114978443B (zh) 信道信息获取方法、装置及通信设备
WO2023125997A1 (zh) 定位方法、装置及通信设备
WO2023207998A1 (zh) 旁链路sl上的资源选择方法、终端
WO2024017190A1 (zh) 感知信号的路径确定方法、装置、通信设备、系统及存储介质
WO2023109759A1 (zh) Prach传输方法、装置及终端
WO2023185921A1 (zh) 信息指示方法、指示获取方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742988

Country of ref document: EP

Kind code of ref document: A1