WO2023160460A1 - 一种频域密度确定方法、装置、芯片及模组设备 - Google Patents

一种频域密度确定方法、装置、芯片及模组设备 Download PDF

Info

Publication number
WO2023160460A1
WO2023160460A1 PCT/CN2023/076568 CN2023076568W WO2023160460A1 WO 2023160460 A1 WO2023160460 A1 WO 2023160460A1 CN 2023076568 W CN2023076568 W CN 2023076568W WO 2023160460 A1 WO2023160460 A1 WO 2023160460A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical channel
rbs
subband
scheduling resource
scheduling
Prior art date
Application number
PCT/CN2023/076568
Other languages
English (en)
French (fr)
Inventor
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023160460A1 publication Critical patent/WO2023160460A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the communication field, in particular to a frequency domain density determination method, device, chip and module equipment.
  • Phase noise refers to the random change in the phase of the system output signal caused by radio frequency devices under the action of various noises (such as random white noise, flicker noise). Phase noise will cause a large number of bit errors at the receiving end, which limits the use of high-order modulation and seriously affects the capacity of the system.
  • phase noise has less influence on the low frequency band.
  • the high-frequency band millimeter wave
  • the impact of phase noise is also greatly increased.
  • the 5G new air interface introduces a phase tracking reference signal (PT-RS), and the receiving end can estimate and compensate the phase noise based on the PT-RS.
  • PT-RS phase tracking reference signal
  • the receiving end needs to determine the time-frequency resources of the PT-RS based on the frequency domain density and time domain density of the PT-RS.
  • full-duplex communication may be supported in the future.
  • the PT-RS can be carried in a physical downlink shared channel (physical downlink shared channel, PDSCH)/physical uplink shared channel (physical uplink shared channel, PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • This application provides a frequency domain density determination method, device, chip and module equipment, which can determine the frequency of PT-RS when the scheduling bandwidth of PDSCH/PUSCH spans multiple subbands in the scenario of full-duplex communication. domain density.
  • the present application provides a method for determining a frequency domain density, the method comprising: determining a first number of resource blocks RB based on a scheduling resource of a first physical channel, and the scheduling resource of the first physical channel spans multiple subbands ; Determine the frequency domain density of the phase tracking reference signal PT-RS in the first subband based on the first number of RBs; wherein the first physical channel is a physical downlink shared channel PDSCH, and the first subband is the Any downlink subband spanned by the scheduling resource of the first physical channel; or, the first physical channel is a physical uplink shared channel PUSCH, and the first subband is the span of the scheduling resource of the first physical channel Any uplink subband of .
  • the scheduling bandwidth of PDSCH/PUSCH can span When there are multiple subbands, determine the frequency domain density of the PT-RS.
  • the first number of RBs is the number of RBs overlapping between subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel, specifically: The first number of RBs is the number of RBs overlapping between all subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • the first physical channel is a physical downlink shared channel PDSCH; the first number of RBs is the subband spanned by the scheduling resources of the first physical channel and the first physical channel
  • the number of overlapping RBs between the scheduling resources is specifically: the first number of RBs is the overlap between all downlink subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel The number of RBs.
  • the first physical channel is a physical uplink shared channel PUSCH; the first number of RBs is the subband spanned by the scheduling resources of the first physical channel and the first physical channel
  • the number of overlapping RBs between the scheduling resources is specifically: the first number of RBs is the overlap between all uplink subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel The number of RBs.
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel, specifically: The first number of RBs is the number of RBs overlapping between the first subband and the scheduling resource of the first physical channel.
  • the first number of RBs is the total number of RBs included in the scheduling resources of the first physical channel.
  • the present application provides an apparatus for determining frequency domain density, and the apparatus includes a unit for performing the method in the above first aspect or any possible implementation manner thereof.
  • the present application provides a chip, the chip includes a processor and a communication interface, and the processor is configured to enable the chip to implement the method in the above first aspect or any possible implementation thereof.
  • the present application provides a module device, which includes a communication module, a power module, a storage module, and a chip, wherein: the power module is used to provide power for the module device; the The storage module is used to store data and instructions; the communication module is used for internal communication of the module device, or for the module device to communicate with external devices; the chip is used to implement the above-mentioned first aspect or any one thereof method in a possible implementation.
  • the embodiment of the present invention discloses a frequency domain density determination device, the frequency domain density determination device includes a memory and a processor, the memory is used to store a computer program, the computer program includes program instructions, and the processor is configured used to invoke the program instruction, Execute the method in the above first aspect or any possible implementation manner thereof.
  • the present application provides a computer-readable storage medium, in which computer-readable instructions are stored, and when the computer-readable instructions are run on a communication device, the communication device is made to execute the above-mentioned first aspect or a method in any of its possible implementations.
  • the present application provides a computer program or a computer program product, including codes or instructions, which, when the codes or instructions are run on a computer, cause the computer to execute the method in the first aspect or any possible implementation thereof .
  • FIG. 1 is a schematic diagram of a full-duplex provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for determining frequency domain density provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a device for determining frequency domain density provided by an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of another device for determining frequency domain density provided by an embodiment of the present application.
  • Terminal equipment includes equipment that provides voice and/or data connectivity to users.
  • terminal equipment is a device with wireless transceiver capabilities that can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed in On the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal can be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, or a wireless terminal in industrial control (industrial control) , vehicle terminal equipment, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, Wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal may sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminals can also be fixed or mobile.
  • the device used to realize the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system or a combined device or component that can realize the function of the terminal device. Can be installed in terminal equipment.
  • the network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and a next-generation base station (next station) in the fifth generation (5th generation, 5G) mobile communication system generation NodeB, gNB), a next-generation base station in a sixth generation (6th generation, 6G) mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system, etc.
  • the network device may also be a module or unit that completes some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and can also complete the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part or all of the physical layer.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP.
  • the network equipment may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node.
  • the device for implementing the function of the network device may be the network device itself, or a device capable of supporting the network device to realize the function, such as a chip system or a combined device or component that can realize the function of the access network device,
  • the device can be installed in network equipment prepare.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device configures PDSCH scheduling resources for terminal device 1, and the PDSCH scheduling resources in each time slot are continuous in the frequency domain.
  • the PDSCH scheduling resources all span sub-band 1 to sub-band 3, that is, the PDSCH scheduling resources overlap with sub-band 1 to sub-band 3.
  • the network device configures PUSCH scheduling resources for the terminal device 2, and the PUSCH scheduling resources in each time slot are continuous in the frequency domain.
  • the scheduling resources of the PUSCH all span the sub-band 2, that is, the scheduling resources of the PUSCH and the sub-band 2 overlap.
  • guard band There is also a guard band (Guard-band) between the two sub-bands.
  • One or more RBs are included in the guard band.
  • Guard bands are used to avoid interference between two adjacent subbands. For example, as shown in FIG. 1 , there is a guard band between sub-band 1 and sub-band 2 , and there is also a guard band between sub-band 2 and sub-band 3 .
  • the guard band is not used to transmit PDSCH or PUSCH.
  • the network device may configure the transmission type of each subband to the terminal device 1 and the terminal device 2 in advance. For example, the network device may indicate to terminal device 1 and terminal device 2 that in time slot 1 to time slot 3, subband 1 and subband 3 are used for downlink transmission, subband 2 is used for uplink transmission, and in time slot 4, subband Band 1 to sub-band 3 are all used for downlink transmission. In this way, in time slot 1 to time slot 3, even if the scheduling resource of PDSCH spans sub-band 1 to sub-band 3, terminal device 1 only uses the overlapping resources between the scheduling resource of PDSCH and sub-band 1 and sub-band 3 Receive PDSCH.
  • the terminal device 1 receives the PDSCH on the overlapping resource between the scheduling resource of the PDSCH and the subband 1-subband 3. Similarly, in time slot 1 to time slot 3, terminal device 2 only transmits PDSCH on the overlapping resource between the scheduling resource of PUSCH and subband 2.
  • the PT-RS is used to estimate and compensate the phase noise.
  • the PT-RS can be carried in a physical downlink shared channel (physical downlink shared channel, PDSCH)/physical uplink shared channel (physical uplink shared channel, PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the method of determining the frequency domain density of PT-RS in the existing protocol is shown in Table 1, and the frequency domain density of PT-RS is determined according to the bandwidth of the scheduled frequency domain resource of PDSCH or PUSCH.
  • N RB in the existing protocol is the total number of RBs in the frequency domain resource bandwidth for scheduling PDSCH or PUSCH.
  • the present application provides a frequency domain density determination method, device, and chip and module equipment.
  • the method, device, chip and module device for determining the frequency domain density provided by the embodiments of the present application will be further described in detail below.
  • Fig. 2 is a schematic flowchart of a method for determining frequency domain density provided by an embodiment of the present application.
  • the random access method includes steps 201 to 202 as follows.
  • the execution body of the method shown in FIG. 2 may be a terminal device or a network device.
  • the subject of executing the method shown in FIG. 2 may be a chip in a terminal device or a chip in a network device.
  • the first physical channel is the PDSCH
  • the first subband is any downlink subband spanned by the scheduling resources of the first physical channel.
  • the first physical channel is the PUSCH
  • the first subband is any uplink subband spanned by the scheduling resource of the first physical channel.
  • the downlink subband refers to a subband used for downlink transmission
  • the uplink subband refers to a subband used for uplink transmission
  • the frequency domain density of the PT-RS in the first subband may be determined according to Table 1 and the first number of RBs.
  • N RB is the first number of RBs.
  • step 201 and step 202 may be performed for one time slot.
  • the first number of RBs may be determined respectively, and the first numbers of RBs corresponding to different time slots may be the same or different. Then determine the frequency domain density of the PT-RS in the time slot and the first subband based on the first number of RBs corresponding to the time slot.
  • the scheduling resources of PDSCH all span subbands 1 to 3, that is, there is overlap between the scheduling resources of PDSCH and subbands 1 to 3.
  • subband 1 and subband 3 are downlink subbands, that is, subband 1 and subband 3 are used for downlink transmission
  • subband 2 is an uplink subband, that is, subband 2 is used for for uplink transmission.
  • subbands 1 to 3 are all downlink subbands.
  • the PDSCH is transmitted in the part where the scheduling resource of the PDSCH overlaps with sub-band 1 and sub-band 3 .
  • the PDSCH is transmitted in a portion where the PDSCH scheduling resource overlaps with subbands 1 to 3.
  • the first number 1 of RBs may be determined based on the scheduling resource of the PDSCH in slot 1, and the frequency domain of the PT-RS in subband 1 or subband 3 may be determined based on the first number 1 of RBs density.
  • the same principle applies to time slot 2 and time slot 3, which will not be repeated here.
  • the first number 4 of RBs may be determined based on the scheduling resources of the PDSCH in slot 4, and based on the first number 4 of RBs, in subband 1 or subband 2 or subband 3, PT- Frequency domain density of RS.
  • the first physical channel is the PUSCH
  • determining the frequency domain density of the PT-RS in the first subband is the same, and details are not repeated here.
  • the first number of RBs is the number of RBs that overlap between subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • RBs overlapping between the scheduling resources of the first physical channel and the guard frequency band may be excluded, that is, the RBs in the guard band will not be counted into the first number of RBs. This helps to make the determined frequency domain density of the PT-RS in the first subband more accurate.
  • the first number of RBs is the number of overlapping RBs between the subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • the first number of RBs is specifically the number of RBs that overlap between all subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • the first physical channel may be PDSCH or PUSCH.
  • the first physical channel is the PDSCH as an example.
  • the scheduling resource of PDSCH spans subband 1 to subband 3.
  • the number of overlapping RBs between the scheduling resources of PDSCH and subband 1 is 2
  • the number of RBs overlapping between scheduling resources of PDSCH and subband 2 is 3, and the scheduling resources of PDSCH and subband
  • the number of overlapping RBs between 3 is 2, then for time slot 1, it can be determined that the first number of RBs is 7, that is, 2+2+3.
  • the frequency domain density of PT-RSs in slot 1 and subband 1 or subband 3 may be determined based on the first number of RBs.
  • the principle of determining the first number of RBs for other time slots is the same, and will not be repeated here.
  • the principle of determining the first number of RBs for the PUSCH is the same, and will not be repeated here.
  • Embodiment 1 by default, in a time slot, the frequency domain density of each PT-RS used to transmit the subband of the first physical channel is the same, so for the same time slot, only one PT-RS used to transmit the first physical channel needs to be calculated.
  • the frequency domain density of the PT-RS of a subband of a physical channel is sufficient, which is beneficial to reduce the complexity of calculation.
  • the first physical channel is the physical downlink shared channel PDSCH; the first number of RBs is specifically the number of RBs that overlap between all downlink subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel quantity.
  • the PDSCH scheduling resource spans downlink sub-band 1 and downlink sub-band 3 .
  • the number of overlapping RBs between the PDSCH scheduling resource and subband 1 is 2, and the number of overlapping RBs between the PDSCH scheduling resource and subband 3 is 2, then for time slot 1, It is determined that the first number of RBs is 4, that is, 2+2.
  • the frequency domain density of PT-RSs in slot 1 and subband 1 or subband 3 may be determined based on the first number of RBs. The principle of determining the first number of RBs for the other time slots 2 and 3 is the same, and will not be repeated here.
  • the scheduling resource of PDSCH spans downlink subband 1, downlink subband 2 and downlink subband 3.
  • the number of overlapping RBs between the PDSCH scheduling resource and subband 1 is 2
  • the number of overlapping RBs between the PDSCH scheduling resource and subband 2 is 3, and the PDSCH scheduling resource and subband
  • the number of overlapping RBs between 3 is 2, then for the time slot 4, it can be determined that the first number of RBs is 7, that is, 2+2+3.
  • the frequency domain density of PT-RSs in slot 4 and subband 1 or subband 2 or subband 3 may be determined based on the first number of RBs.
  • the frequency domain density of the PT-RS of each subband used to transmit the first physical channel is the same, so for the same time slot, only one PT-RS used to transmit the first physical channel needs to be calculated.
  • the frequency domain density of the PT-RS of a subband of a physical channel is sufficient, which is beneficial to reduce the complexity of calculation.
  • the RBs overlapping between the uplink subband and the scheduling resource of the first physical channel will not be calculated into the first number of RBs. Therefore, based on the first number of RBs in Embodiment 2, the first number of RBs can be determined more accurately. Frequency domain density of PT-RS in subbands.
  • the first physical channel is the physical uplink shared channel PUSCH; the first number of RBs is specifically the number of RBs that overlap between all uplink subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel quantity.
  • the implementation principle of the third embodiment is similar to that of the second embodiment, and will not be repeated here.
  • Embodiment 3 by default, in a time slot, the frequency domain density of each PT-RS used to transmit the subband of the first physical channel is the same, so for the same time slot, only one PT-RS used to transmit the first physical channel needs to be calculated.
  • the frequency domain density of the PT-RS of a subband of a physical channel is sufficient, which is beneficial to reduce the complexity of calculation.
  • the RBs that overlap between the downlink subband and the scheduling resource of the first physical channel will not be calculated into the first number of RBs. Therefore, based on the first number of RBs in Embodiment 3, the first number of RBs can be more accurately determined. Frequency domain density of PT-RS in subbands.
  • the first number of RBs is specifically the number of RBs that overlap between the first subband and the scheduling resource of the first physical channel.
  • the first physical channel may be PDSCH or PUSCH.
  • the first physical channel as the PDSCH as an example.
  • the frequency domain density of PT-RS in time slot 1 and subband 1 needs to be determined, it is necessary to determine based on the number of overlapping RBs between the scheduling resources of PDSCH in time slot 1 and subband 1 Frequency domain density of PT-RS in slot 1 and subband 1.
  • the frequency domain density of PT-RS in time slot 1 and subband 3 needs to be determined, it needs to be based on the scheduling resources of PDSCH in time slot 1
  • the number of RBs overlapped between the source and subband 3 determines the frequency domain density of PT-RS in slot 1 as well as in subband 3.
  • the first number of RBs is determined only according to the number of overlapping RBs between the first subband and the scheduling resource of the first physical channel, and the other subbands and the scheduling resource of the first physical channel are not combined.
  • the overlapping RBs are counted into the first number of RBs. Therefore, based on the first number of RBs in Embodiment 4, the frequency domain density of PT-RSs in the first subband can be more accurately determined.
  • the first number of RBs may also be the total number of all RBs included in the scheduling resources of the first physical channel. That is to say, in this possible implementation, the overlapping RBs between the scheduling resource of the first physical channel and the guard frequency band are also calculated into the first number of RBs.
  • the first number of RBs may also be the total number of all RBs included in the scheduling resources of the first physical channel minus the total number of RBs of all guard frequency bands that overlap the first physical channel. That is to say, in this possible implementation, RBs overlapping between the scheduling resource of the first physical channel and the guard frequency band will not be counted into the first number of RBs.
  • the first number of RBs may also be the total number of RBs in the scheduling resources of the first physical channel except the RBs in the uplink subband. That is to say, in this possible implementation, the overlapping RB between the scheduling resource of the first physical channel and the guard frequency band will also be calculated into the first number of RBs, and the overlapping of the scheduling resource of the first physical channel and the uplink subband Part will not be counted into the first amount of RB.
  • the first number of RBs may also be the total number of RBs in the scheduling resources of the first physical channel except RBs in the downlink subband.
  • the overlapping RB between the scheduling resource of the first physical channel and the guard frequency band will also be calculated into the first number of RBs, and the overlapping part of the scheduling resource of the first physical channel and the downlink subband will not be calculated into the first amount of RB.
  • the embodiment of the present invention also provides a frequency domain density determination device
  • the frequency domain density determination device can be a terminal device or a device with a terminal device function (such as a chip) or a network device or a device with a network device function (such as a chip) .
  • the frequency domain density determination device may include:
  • a determining unit configured to determine a first number of resource blocks RB based on scheduling resources of a first physical channel, where the scheduling resources of the first physical channel span multiple subbands;
  • the determining unit is further configured to determine the frequency domain density of the phase tracking reference signal PT-RS in the first subband based on the first number of RBs;
  • the first physical channel is a physical downlink shared channel PDSCH, and the first subband is any downlink subband spanned by the scheduling resource of the first physical channel; or, the first physical channel is a physical The uplink shared channel PUSCH, the first subband It is any uplink subband spanned by the scheduling resource of the first physical channel.
  • the first number of RBs is the number of RBs overlapping between subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel, specifically: The first number of RBs is the number of RBs overlapping between all subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • the first physical channel is a physical downlink shared channel PDSCH;
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel. Specifically, the first number of RBs is The number of overlapping RBs between all downlink subbands spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel.
  • the first physical channel is a physical uplink shared channel PUSCH
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel. Specifically, the first number of RBs is The number of overlapping RBs between all uplink subbands spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel.
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel, specifically: The first number of RBs is the number of RBs overlapping between the first subband and the scheduling resource of the first physical channel.
  • the first number of RBs is the total number of RBs included in the scheduling resources of the first physical channel.
  • the embodiment of the present application also provides a chip, which can execute the relevant steps of the terminal device or the network device in the foregoing method embodiments.
  • the chip includes a processor and a communication interface, the processor is configured to cause the chip to perform the following operations:
  • the first physical channel is a physical downlink shared channel PDSCH, and the first subband is any downlink subband spanned by the scheduling resource of the first physical channel; or, the first physical channel is a physical In the uplink shared channel PUSCH, the first subband is any uplink subband spanned by the scheduling resource of the first physical channel.
  • the first number of RBs is equal to the subbands spanned by the scheduling resources of the first physical channel and the second The number of overlapping RBs between scheduling resources of a physical channel.
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel, specifically: The first number of RBs is the number of RBs overlapping between all subbands spanned by the scheduling resources of the first physical channel and the scheduling resources of the first physical channel.
  • the first physical channel is a physical downlink shared channel PDSCH;
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel. Specifically, the first number of RBs is The number of overlapping RBs between all downlink subbands spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel.
  • the first physical channel is a physical uplink shared channel PUSCH
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel. Specifically, the first number of RBs is The number of overlapping RBs between all uplink subbands spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel.
  • the first number of RBs is the number of overlapping RBs between the subband spanned by the scheduling resource of the first physical channel and the scheduling resource of the first physical channel, specifically: The first number of RBs is the number of RBs overlapping between the first subband and the scheduling resource of the first physical channel.
  • the first number of RBs is the total number of RBs included in the scheduling resources of the first physical channel.
  • FIG. 3 is a schematic structural diagram of an apparatus for determining frequency domain density provided by an embodiment of the present invention.
  • the device for determining the frequency domain density may be a terminal device or a network device.
  • the frequency domain density determination apparatus 300 may include a memory 301 and a processor 302 .
  • a communication interface 303 is also included.
  • the memory 301, the processor 302 and the communication interface 303 are connected by one or more communication buses. Wherein, the communication interface 303 is controlled by the processor 302 for sending and receiving information.
  • the memory 301 may include read-only memory and random-access memory, and provides instructions and data to the processor 302 .
  • a portion of memory 301 may also include non-volatile random access memory.
  • the communication interface 303 is used to receive or send data.
  • the processor 302 can be a central processing unit (Central Processing Unit, CPU), and the processor 302 can also be other general-purpose processors, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC ), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor, and optionally, the processor 302 is also Can be any conventional processor or the like. in:
  • the memory 301 is used for storing program instructions.
  • the processor 302 is configured to call the program instructions stored in the memory 301 .
  • the processor 302 invokes the program instructions stored in the memory 301 to make the frequency domain density determining apparatus 300 execute the method executed by the terminal device or the network device in the above method embodiments.
  • FIG. 4 is a schematic structural diagram of a module device provided in an embodiment of the present application.
  • the module device 400 can perform related steps of the terminal device or network device in the foregoing method embodiments, and the module device 400 includes: a communication module 401 , a power module 402 , a storage module 403 and a chip 404 .
  • the power supply module 402 is used to provide electric energy for the module equipment;
  • the storage module 403 is used to store data and instructions;
  • the communication module 401 is used for internal communication of the module equipment, or for communication between the module equipment and external equipment ;
  • the chip 404 is used to execute the method executed by the terminal device or the network device in the above method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instruction is run on a processor, the method flow of the above-mentioned method embodiment is implemented.
  • the embodiment of the present application further provides a computer program product.
  • the computer program product is run on a processor, the method flow of the above method embodiment is realized.
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit contained in the product may be realized by hardware such as a circuit, or at least part of the modules/units may be realized by a software program, and the software program runs
  • the processor is integrated inside the chip, and the remaining (if any) modules/units can be realized by hardware such as circuits; Realized by means of hardware such as circuits, different modules/units can be located in the same part of the chip module (such as chips, circuit modules, etc.) or in different components, or at least part of the modules/units can be implemented in the form of software programs, the software program Running on the integrated processor inside the chip module, the remaining (if any) modules/units can be realized by hardware such as circuits; It is implemented by means of hardware such as circuits, and different modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种频域密度确定方法、装置、芯片及模组设备,其中,该方法包括:基于第一物理信道的调度资源确定资源块RB的第一数量,第一物理信道的调度资源横跨多个子带;基于该RB的第一数量确定第一子带中相位跟踪参考信号PT-RS的频域密度;其中,第一物理信道为物理下行共享信道PDSCH,第一子带为第一物理信道的调度资源横跨的任意一个下行子带;或者,第一物理信道为物理上行共享信道PUSCH,第一子带为第一物理信道的调度资源横跨的任意一个上行子带。基于本申请提供的方法,能够在全双工通信的场景下,在PDSCH/PUSCH的调度带宽横跨了多个子带时,确定PT-RS的频域密度。

Description

一种频域密度确定方法、装置、芯片及模组设备 技术领域
本发明涉及通信领域,尤其涉及一种频域密度确定方法、装置、芯片及模组设备。
背景技术
相位噪声是指射频器件在各种噪声(如随机性白噪声、闪烁噪声)的作用下引起的系统输出信号相位的随机变化。相位噪声会造成接收端大量的误码,这样就限制了高阶调制的使用,会严重影响系统的容量。
相对来说,相位噪声对低频段的影响较小。而在高频段(毫米波)下,由于参考时钟源的倍频次数大幅增加以及器件的工艺水平和功耗等各方面的原因,相位噪声的影响也是大幅增加。为了应对高频段下的相位噪声,5G新空口引入了相位跟踪参考信号(phase tracking reference signal,PT-RS),接收端可以基于PT-RS对相位噪声进行估计和补偿。
接收端需要基于PT-RS的频域密度和时域密度来确定PT-RS的时频资源。为了适应灵活多变的上下行业务场景,未来可能支持全双工通信形式。在全双工通信的场景下,在相同的时间单元存在有多个子带(subband),不同子带的类型可以是上行或者下行。PT-RS可承载于物理下行共享信道(physical downlink shared channel,PDSCH)/物理上行共享信道(physical uplink shared channel,PUSCH)中。在全双工通信的场景下,当PDSCH/PUSCH的调度带宽横跨了多个子带时,如何确定PT-RS的频域密度是目前亟待解决的问题。
发明内容
本申请提供一种频域密度确定方法、装置、芯片及模组设备,能够在全双工通信的场景下,在PDSCH/PUSCH的调度带宽横跨了多个子带时,确定PT-RS的频域密度。
第一方面,本申请提供一种频域密度确定方法,该方法包括:基于第一物理信道的调度资源确定资源块RB的第一数量,所述第一物理信道的调度资源横跨多个子带;基于所述RB的第一数量确定第一子带中相位跟踪参考信号PT-RS的频域密度;其中,所述第一物理信道为物理下行共享信道PDSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个下行子带;或者,所述第一物理信道为物理上行共享信道PUSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个上行子带。
基于第一方面所描述的方法,能够在全双工通信的场景下,在PDSCH/PUSCH的调度带宽横跨了 多个子带时,确定PT-RS的频域密度。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:RB的第一数量为所述第一物理信道的调度资源横跨的所有子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述第一物理信道为物理下行共享信道PDSCH;所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有下行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述第一物理信道为物理上行共享信道PUSCH;所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有上行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源中包括的RB的总数量。
第二方面,本申请提供了一种频域密度确定装置,该装置包括用于执行上述第一方面或其任一种可能的实现方式中的方法的单元。
第三方面,本申请提供了一种芯片,该芯片包括处理器和通信接口,处理器被配置用于使芯片上述第一方面或其任一种可能的实现方式中的方法。
第四方面,本申请提供了一种模组设备,该模组设备包括通信模组、电源模组、存储模组以及芯片,其中:该电源模组用于为该模组设备提供电能;该存储模组用于存储数据和指令;该通信模组用于进行模组设备内部通信,或者用于该模组设备与外部设备进行通信;该芯片用于执行上述第一方面或其任一种可能的实现方式中的方法。
第五方面,本发明实施例公开了一种频域密度确定装置,该频域密度确定装置包括存储器和处理器,该存储器用于存储计算机程序,该计算机程序包括程序指令,该处理器被配置用于调用该程序指令, 执行上述第一方面或其任一种可能的实现方式中的方法。
第六方面,本申请提供了一种计算机可读存储介质,该计算机存储介质中存储有计算机可读指令,当该计算机可读指令在通信装置上运行时,使得该通信装置执行上述第一方面或其任一种可能的实现方式中的方法。
第七方面,本申请提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行如第一方面或其任一种可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的全双工的示意图;
图2是本申请实施例提供的一种频域密度确定方法的流程示意图;
图3是本申请实施例提供的一种频域密度确定装置的结构示意图;
图4是本申请实施例提供的另一种频域密度确定装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
需要说明的是,本申请的说明书和权利要求书中及上述附图中的属于“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述以外的顺序实施。此外,术语“包括”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些 过程、方法、产品或设备固有的其它步骤或单元。
为了便于理解本申请实施例提供的方案,下面先对本申请实施例涉及的一些术语进行介绍:
一、终端设备
终端设备包括向用户提供语音和/或数据连通性的设备,例如终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(VR)终端设备、增强现实(AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。
二、网络设备
网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等。网络设备也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和媒体接入控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能。有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请实施例中,用于实现网络设备功能的装置可以是网络设备本身,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或可实现接入网设备功能的组合器件、部件,该装置可以被安装在网络设 备中。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
三、全双工通信
目前的无线通信系统,例如WiFi,长期演进(long term evolution,LTE)都是基于半双工传输,即同一个设备在同一个载波或相同的时频资源上不允许同时进行收发操作。近期,第三代合作伙伴计划(3rd generation partnership project,3GPP)全会提出将工作于半双工的终端设备进行联合调度,使得网络设备(如基站)能同时进行收发,在网络设备侧实现全双工,即网络设备在同一载波的不同子带上同时进行发送和接收。网络设备侧进行的全双工可以称为全双工或子带全双工或时频分双工(X division duplex,XDD)等。
例如,如图1所示,在时隙1~时隙4中,网络设备为终端设备1配置了PDSCH的调度资源,在每个时隙中PDSCH的调度资源在频域是连续的。在时隙1~时隙4中,PDSCH的调度资源均横跨子带1~子带3,即PDSCH的调度资源与子带1~子带3均具有重叠。为了实现全双工通信,在时隙1~时隙3中,网络设备为终端设备2配置了PUSCH的调度资源,在每个时隙中PUSCH的调度资源在频域是连续的。在时隙1~时隙3中,PUSCH的调度资源均横跨子带2,即PUSCH的调度资源与子带2均具有重叠。
在两个子带之间还具有保护频带(Guard-band)。保护频带中包括一个或多个RB。保护频带用于避免两个相邻子带之间的干扰。例如,如图1所示,子带1和子带2之间具有保护频带,子带2和子带3之间也具有保护频带。保护频带上不用于传输PDSCH或PUSCH。
网络设备可预先向终端设备1和终端设备2配置各子带的传输类型。例如,网络设备可以向终端设备1和终端设备2指示在时隙1~时隙3中,子带1和子带3用于下行传输,子带2用于上行传输,在时隙4中,子带1~子带3均用于下行传输。这样在时隙1~时隙3中,即使PDSCH的调度资源横跨子带1~子带3,终端设备1也只在PDSCH的调度资源与子带1、子带3之间的重叠资源上接收PDSCH。在时隙4中,终端设备1在PDSCH的调度资源与子带1~子带3之间的重叠资源上接收PDSCH。同理,终端设备2在时隙1~时隙3中,只在PUSCH的调度资源与子带2之间的重叠资源上发送PDSCH。
四、相位跟踪参考信号(phase tracking reference signal,PT-RS)
PT-RS用于对相位噪声进行估计和补偿。PT-RS可承载于物理下行共享信道(physical downlink shared channel,PDSCH)/物理上行共享信道(physical uplink shared channel,PUSCH)中。
现有协议中确定PT-RS频域密度的方式如表1,根据PDSCH或PUSCH的调度频域资源带宽来确定PT-RS的频域密度。其中,区间数值NRB,i,i=0,1由高层信令配置。现有协议中的NRB为PDSCH或PUSCH的调度频域资源带宽中总的RB个数。
表1.PT-RS频域密度确定表格
在全双工通信的场景下,当PDSCH/PUSCH的调度带宽横跨了多个子带时,如何确定PT-RS的频域密度是目前亟待解决的问题。例如,如图1所示,在时隙1~时隙4,PDSCH均横跨子带1~子带3,此时,如何确定各子带中PT-RS的频域密度是目前亟待解决的问题。
为了能够在全双工通信的场景下,在PDSCH/PUSCH的调度带宽横跨了多个子带时,确定PT-RS的频域密度,本申请提供了一种频域密度确定方法、装置、芯片及模组设备。下面进一步对本申请实施例提供的频域密度确定方法、装置、芯片及模组设备进行详细描述。
图2是本申请实施例提供的一种频域密度确定方法的流程示意图。如图2所示,该随机接入方法包括如下步骤201~步骤202。图2所示的方法执行主体可以为终端设备或网络设备。或者,图2所示的方法执行主体可以为终端设备中的芯片或网络设备中的芯片。
201、基于第一物理信道的调度资源确定资源块RB的第一数量,该第一物理信道的调度资源横跨多个子带。
202、基于RB的第一数量确定第一子带中PT-RS的频域密度。
其中,第一物理信道为PDSCH,第一子带为第一物理信道的调度资源横跨的任意一个下行子带。或者,第一物理信道为PUSCH,第一子带为第一物理信道的调度资源横跨的任意一个上行子带。
其中,下行子带是指用于进行下行传输的子带,上行子带是指用于进行上行传输的子带。
可选的,可以根据表1以及RB的第一数量确定第一子带中PT-RS的频域密度。其中,NRB为RB的第一数量。
可选的,步骤201和步骤202可以是针对一个时隙执行的操作。可选的,针对不同的时隙,可以分别确定RB的第一数量,不同时隙对应的RB的第一数量可以相同或不相同。再基于时隙对应的RB的第一数量确定该时隙和第一子带中PT-RS的频域密度。
举例来说,以第一物理信道为PDSCH为例。如图1所示,在时隙1~时隙4,PDSCH的调度资源均横跨子带1~子带3,即PDSCH的调度资源与子带1~子带3之间具有重叠。其中,在时隙1~时隙3,子带1和子带3为下行子带,即子带1和子带3用于进行下行传输,子带2为上行子带,即子带2用于 进行上行传输。在时隙4,子带1~子带3均为下行子带。因此,在时隙1~时隙3中,PDSCH在PDSCH的调度资源与子带1和子带3重叠的部分传输。在时隙4中,PDSCH在PDSCH的调度资源与子带1~子带3重叠的部分传输。
针对时隙1,可以基于时隙1中的PDSCH的调度资源来确定RB的第一数量1,并基于RB的第一数量1确定在子带1或子带3中,PT-RS的频域密度。时隙2和时隙3同理,在此不赘述。
针对时隙4,可以基于时隙4中的PDSCH的调度资源来确定RB的第一数量4,并基于RB的第一数量4确定在子带1或子带2或子带3中,PT-RS的频域密度。
第一物理信道为PUSCH时确定第一子带中PT-RS的频域密度同理,在此不赘述。
在一种可能的实现中,RB的第一数量为第一物理信道的调度资源横跨的子带与第一物理信道的调度资源之间重叠的RB的数量。
也就是说,计算RB的第一数量时,可以排除第一物理信道的调度资源和保护频带之间重叠的RB,即保护频带中的RB不会计算到RB的第一数量中。这样有利于使确定的第一子带中的PT-RS的频域密度更加准确。
下面对RB的第一数量为第一物理信道的调度资源横跨的子带与第一物理信道的调度资源之间重叠的RB的数量时,RB的第一数量的几种实施方式进行介绍:
实施方式一、RB的第一数量具体为第一物理信道的调度资源横跨的所有子带与第一物理信道的调度资源之间重叠的RB的数量。
在实施方式一中,第一物理信道可以是PDSCH或PUSCH。
举例来说,如图1所示,以第一物理信道为PDSCH为例。在时隙1中,PDSCH的调度资源横跨子带1~子带3。假设在时隙1中,PDSCH的调度资源与子带1之间重叠的RB的数量为2,PDSCH的调度资源与子带2之间重叠的RB的数量为3,PDSCH的调度资源与子带3之间重叠的RB的数量为2,那么针对时隙1,可以确定RB的第一数量为7,即2+2+3。基于该RB的第一数量可以确定在时隙1以及子带1或子带3中的PT-RS的频域密度。针对其他时隙确定RB的第一数量的原理相同,在此不赘述。针对PUSCH确定RB的第一数量的原理相同,在此不赘述。
在实施方式一中,默认在一个时隙中,每个用于传输第一物理信道的子带的PT-RS的频域密度相同,这样针对同一个时隙,只需要计算一个用于传输第一物理信道的子带的PT-RS的频域密度即可,有利于减小计算的复杂度。
实施方式二、第一物理信道为物理下行共享信道PDSCH;RB的第一数量具体为第一物理信道的调度资源横跨的所有下行子带与第一物理信道的调度资源之间重叠的RB的数量。
举例来说,如图1所示,在时隙1中,PDSCH的调度资源横跨下行子带1和下行子带3。假设在时隙1中,PDSCH的调度资源与子带1之间重叠的RB的数量为2,PDSCH的调度资源与子带3之间重叠的RB的数量为2,那么针对时隙1,可以确定RB的第一数量为4,即2+2。基于该RB的第一数量可以确定在时隙1以及子带1或子带3中的PT-RS的频域密度。针对其他时隙2和时隙3确定RB的第一数量的原理相同,在此不赘述。
在时隙4中,PDSCH的调度资源横跨下行子带1、下行子带2和下行子带3。假设在时隙4中,PDSCH的调度资源与子带1之间重叠的RB的数量为2,PDSCH的调度资源与子带2之间重叠的RB的数量为3,PDSCH的调度资源与子带3之间重叠的RB的数量为2,那么针对时隙4,可以确定RB的第一数量为7,即2+2+3。基于该RB的第一数量可以确定在时隙4以及子带1或子带2或子带3中的PT-RS的频域密度。
在实施方式二中,默认在一个时隙中,每个用于传输第一物理信道的子带的PT-RS的频域密度相同,这样针对同一个时隙,只需要计算一个用于传输第一物理信道的子带的PT-RS的频域密度即可,有利于减小计算的复杂度。并且不会将上行子带与第一物理信道的调度资源之间重叠的RB计算到RB的第一数量中,因此,基于实施方式二中的RB的第一数量,可以更加准确地确定第一子带中PT-RS的频域密度。
实施方式三、第一物理信道为物理上行共享信道PUSCH;RB的第一数量具体为第一物理信道的调度资源横跨的所有上行子带与第一物理信道的调度资源之间重叠的RB的数量。实施方式三与实施方式二的实现原理相似,在此不赘述。
在实施方式三中,默认在一个时隙中,每个用于传输第一物理信道的子带的PT-RS的频域密度相同,这样针对同一个时隙,只需要计算一个用于传输第一物理信道的子带的PT-RS的频域密度即可,有利于减小计算的复杂度。并且不会将下行子带与第一物理信道的调度资源之间重叠的RB计算到RB的第一数量中,因此,基于实施方式三中的RB的第一数量,可以更加准确地确定第一子带中PT-RS的频域密度。
实施方式四、RB的第一数量具体为第一子带与第一物理信道的调度资源之间重叠的RB的数量。
在实施方式四中,第一物理信道可以是PDSCH或PUSCH。
举例来说,以第一物理信道为PDSCH为例。如图1所示,假设需要确定时隙1以及子带1中PT-RS的频域密度,就需要基于时隙1中的PDSCH的调度资源与子带1之间重叠的RB的数量,确定在时隙1以及子带1中PT-RS的频域密度。
假设需要确定时隙1以及子带3中PT-RS的频域密度,就需要基于时隙1中的PDSCH的调度资 源与子带3之间重叠的RB的数量,确定在时隙1以及子带3中PT-RS的频域密度。
在实际应用中,有可能不同的子带中PT-RS的频域密度不相同。在实施方式四中,只根据第一子带与第一物理信道的调度资源之间重叠的RB的数量,来确定RB的第一数量,不会将其他子带与第一物理信道的调度资源之间重叠的RB计算到RB的第一数量中,因此,基于实施方式四中的RB的第一数量,可以更加准确地确定第一子带中PT-RS的频域密度。
在另一种可能的实现中,RB的第一数量也可以为第一物理信道的调度资源中所包括的所有RB的总数量。也就是说,在该可能的实现中,第一物理信道的调度资源和保护频带之间重叠的RB也会计算到RB的第一数量中。
在另一种可能的实现中,RB的第一数量也可以为第一物理信道的调度资源中所包括的所有RB的总数量减去第一物理信道所重叠的所有保护频带的RB总数量。也就是说,在该可能的实现中,第一物理信道的调度资源和保护频带之间重叠的RB不会计算到RB的第一数量中。
在另一种可能的实现中,如果第一物理信道为PDSCH,RB的第一数量也可以为第一物理信道的调度资源中除上行子带中的RB之外的RB的总数量。也就是说,在该可能的实现中,第一物理信道的调度资源和保护频带之间重叠的RB也会计算到RB的第一数量中,第一物理信道的调度资源与上行子带重叠的部分不会计算到RB的第一数量中。
在另一种可能的实现中,如果第一物理信道为PUSCH,RB的第一数量也可以为第一物理信道的调度资源中除下行子带中的RB之外的RB的总数量。在该可能的实现中,第一物理信道的调度资源和保护频带之间重叠的RB也会计算到RB的第一数量中,第一物理信道的调度资源与下行子带重叠的部分不会计算到RB的第一数量中。
本发明实施例还提供了一种频域密度确定装置,该频域密度确定装置可以为终端设备或具有终端设备功能的装置(例如芯片)或网络设备或具有网络设备功能的装置(例如芯片)。具体的,该频域密度确定装置,可以包括:
确定单元,用于基于第一物理信道的调度资源确定资源块RB的第一数量,所述第一物理信道的调度资源横跨多个子带;
所述确定单元,还用于基于所述RB的第一数量确定第一子带中相位跟踪参考信号PT-RS的频域密度;
其中,所述第一物理信道为物理下行共享信道PDSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个下行子带;或者,所述第一物理信道为物理上行共享信道PUSCH,所述第一子带 为所述第一物理信道的调度资源横跨的任意一个上行子带。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:RB的第一数量为所述第一物理信道的调度资源横跨的所有子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述第一物理信道为物理下行共享信道PDSCH;
所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有下行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述第一物理信道为物理上行共享信道PUSCH;
所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有上行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源中包括的RB的总数量。
本申请实施例还提供了一种芯片,该芯片可以执行前述方法实施例中终端设备或网络设备的相关步骤。该芯片,包括处理器和通信接口,该处理器被配置用于使芯片执行如下操作:
基于第一物理信道的调度资源确定资源块RB的第一数量,所述第一物理信道的调度资源横跨多个子带;
基于所述RB的第一数量确定第一子带中相位跟踪参考信号PT-RS的频域密度;
其中,所述第一物理信道为物理下行共享信道PDSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个下行子带;或者,所述第一物理信道为物理上行共享信道PUSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个上行子带。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第 一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:RB的第一数量为所述第一物理信道的调度资源横跨的所有子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述第一物理信道为物理下行共享信道PDSCH;
所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有下行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述第一物理信道为物理上行共享信道PUSCH;
所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有上行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一子带与所述第一物理信道的调度资源之间重叠的RB的数量。
在一种可能的实现中,所述RB的第一数量为所述第一物理信道的调度资源中包括的RB的总数量。
请参阅图3,图3是本发明实施例提供的一种频域密度确定装置的结构示意图。该频域密度确定装置可以是终端设备或网络设备。该频域密度确定装置300可以包括存储器301、处理器302。可选的,还包括通信接口303。存储器301、处理器302和通信接口303通过一条或多条通信总线连接。其中,通信接口303受处理器302的控制用于收发信息。
存储器301可以包括只读存储器和随机存取存储器,并向处理器302提供指令和数据。存储器301的一部分还可以包括非易失性随机存取存储器。
通信接口303用于接收或发送数据。
处理器302可以是中央处理单元(Central Processing Unit,CPU),该处理器302还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,可选的,该处理器302也 可以是任何常规的处理器等。其中:
存储器301,用于存储程序指令。
处理器302,用于调用存储器301中存储的程序指令。
处理器302调用存储器301中存储的程序指令,使该频域密度确定装置300执行上述方法实施例中终端设备或网络设备所执行的方法。
如图4所示,图4是本申请实施例提供的一种模组设备的结构示意图。该模组设备400可以执行前述方法实施例中终端设备或网络设备的相关步骤,该模组设备400包括:通信模组401、电源模组402、存储模组403以及芯片404。
其中,电源模组402用于为模组设备提供电能;存储模组403用于存储数据和指令;通信模组401用于进行模组设备内部通信,或者用于模组设备与外部设备进行通信;芯片404用于执行上述方法实施例中终端设备或网络设备所执行的方法。
需要说明的是,图3和图4对应的实施例中未提及的内容以及各个步骤的具体实现方式可参见图1所示实施例以及前述内容,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同模块/单元可以位于芯片模组的同一件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分 模块/单元可以采用电路等硬件方式实现。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些操作可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的操作可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (21)

  1. 一种频域密度确定方法,其特征在于,所述方法包括:
    基于第一物理信道的调度资源确定资源块RB的第一数量,所述第一物理信道的调度资源横跨多个子带;
    基于所述RB的第一数量确定第一子带中相位跟踪参考信号PT-RS的频域密度;
    其中,所述第一物理信道为物理下行共享信道PDSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个下行子带;或者,所述第一物理信道为物理上行共享信道PUSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个上行子带。
  2. 根据权利要求1所述的方法,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  3. 根据权利要求2所述的方法,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  4. 根据权利要求2所述的方法,其特征在于,所述第一物理信道为物理下行共享信道PDSCH;
    所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有下行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  5. 根据权利要求2所述的方法,其特征在于,所述第一物理信道为物理上行共享信道PUSCH;
    所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有上行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  6. 根据权利要求2所述的方法,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  7. 根据权利要求1所述的方法,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源中包括的RB的总数量。
  8. 根据权利要求1所述的方法,其特征在于,所述RB的第一数量也可以为所述第一物理信道的调度资源中所包括的所有RB的总数量减去与所述第一物理信道重叠的所有保护频带的RB总数量。
  9. 一种频域密度确定装置,其特征在于,所述装置包括:
    确定单元,用于基于第一物理信道的调度资源确定资源块RB的第一数量,所述第一物理信道的调度资源横跨多个子带;
    所述确定单元,还用于基于所述RB的第一数量确定第一子带中相位跟踪参考信号PT-RS的频域密度;
    其中,所述第一物理信道为物理下行共享信道PDSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个下行子带;或者,所述第一物理信道为物理上行共享信道PUSCH,所述第一子带为所述第一物理信道的调度资源横跨的任意一个上行子带。
  10. 根据权利要求9所述的频域密度确定装置,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  11. 根据权利要求10所述的频域密度确定装置,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  12. 根据权利要求10所述的频域密度确定装置,其特征在于,所述第一物理信道为物理下行共享信道PDSCH;
    所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有下行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  13. 根据权利要求10所述的频域密度确定装置,其特征在于,所述第一物理信道为物理上行共享信道PUSCH;
    所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一物理信道的调度资源横跨的所有上行子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  14. 根据权利要求10所述的频域密度确定装置,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源横跨的子带与所述第一物理信道的调度资源之间重叠的RB的数量具体为:所述RB的第一数量为所述第一子带与所述第一物理信道的调度资源之间重叠的RB的数量。
  15. 根据权利要求9所述的频域密度确定装置,其特征在于,所述RB的第一数量为所述第一物理信道的调度资源中包括的RB的总数量。
  16. 根据权利要求9所述的频域密度确定装置,其特征在于,所述RB的第一数量也可以为所述第一物理信道的调度资源中所包括的所有RB的总数量减去与所述第一物理信道重叠的所有保护频带的RB总数量。
  17. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器被配置用于使所述芯片执行如权利要求1~8中任一项所述的方法。
  18. 一种模组设备,其特征在于,所述模组设备包括通信模组、电源模组、存储模组以及芯片,其中:
    所述电源模组用于为所述模组设备提供电能;
    所述存储模组用于存储数据和指令;
    所述通信模组用于进行模组设备内部通信,或者用于所述模组设备与外部设备进行通信;
    所述芯片用于执行如权利要求1~8中任一项所述的方法。
  19. 一种频域密度确定装置,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序, 所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,使所述随机接入装置执行如权利要求1~8中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行权利要求1~8中任一项所述的方法。
  21. 一种计算机程序或计算机程序产品,其特征在于,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行权利要求1~8中任一项所述的方法。
PCT/CN2023/076568 2022-02-28 2023-02-16 一种频域密度确定方法、装置、芯片及模组设备 WO2023160460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210191950.1 2022-02-28
CN202210191950.1A CN116723576A (zh) 2022-02-28 2022-02-28 一种频域密度确定方法、装置、芯片及模组设备

Publications (1)

Publication Number Publication Date
WO2023160460A1 true WO2023160460A1 (zh) 2023-08-31

Family

ID=87764688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076568 WO2023160460A1 (zh) 2022-02-28 2023-02-16 一种频域密度确定方法、装置、芯片及模组设备

Country Status (2)

Country Link
CN (1) CN116723576A (zh)
WO (1) WO2023160460A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200295893A1 (en) * 2017-06-12 2020-09-17 Panasonic Intellectual Property Corporation Of America Transmitter, receiver, transmission method, and reception method
CN111713061A (zh) * 2018-02-16 2020-09-25 高通股份有限公司 相位跟踪参考信号码元映射
US20210067293A1 (en) * 2019-04-11 2021-03-04 Shanghai Langbo Communication Technology Company Limited Method and device used in ue and base station for wireless communication
WO2021066630A1 (ko) * 2019-10-03 2021-04-08 엘지전자 주식회사 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
WO2021087975A1 (en) * 2019-11-08 2021-05-14 Lenovo (Beijing) Limited Method and apparatus for pt-rs mapping
WO2021091449A1 (en) * 2019-11-08 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Determining phase tracking reference signals in multiple transmission points
WO2021212396A1 (en) * 2020-04-23 2021-10-28 Qualcomm Incorporated Phase tracking reference signal density selection in a multiuser superposition transmission configuration

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200295893A1 (en) * 2017-06-12 2020-09-17 Panasonic Intellectual Property Corporation Of America Transmitter, receiver, transmission method, and reception method
CN111713061A (zh) * 2018-02-16 2020-09-25 高通股份有限公司 相位跟踪参考信号码元映射
US20210067293A1 (en) * 2019-04-11 2021-03-04 Shanghai Langbo Communication Technology Company Limited Method and device used in ue and base station for wireless communication
WO2021066630A1 (ko) * 2019-10-03 2021-04-08 엘지전자 주식회사 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
WO2021087975A1 (en) * 2019-11-08 2021-05-14 Lenovo (Beijing) Limited Method and apparatus for pt-rs mapping
WO2021091449A1 (en) * 2019-11-08 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Determining phase tracking reference signals in multiple transmission points
WO2021212396A1 (en) * 2020-04-23 2021-10-28 Qualcomm Incorporated Phase tracking reference signal density selection in a multiuser superposition transmission configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining issues on PT-RS", 3GPP DRAFT; R1-1802755 REMAINING ISSUES ON PTRS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180230, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051398187 *

Also Published As

Publication number Publication date
CN116723576A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN111602445B (zh) 通信的方法、网络设备和终端设备
WO2020221321A1 (zh) 通信方法以及通信装置
CN110868277B (zh) 信号传输方法、相关装置及系统
WO2017139969A1 (zh) 频带配置装置、方法以及通信系统
WO2018228177A1 (zh) 一种调度请求的传输方法及相关设备
WO2021207959A1 (zh) 重复传输方法、装置及可读存储介质
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2023160460A1 (zh) 一种频域密度确定方法、装置、芯片及模组设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
WO2021237751A1 (zh) 数据传输方法、终端设备和网络设备
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
CN115004828A (zh) 通信方法和通信装置
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
CN112771963B (zh) 一种信息通知的方法和装置
WO2023236959A1 (zh) 一种通信方法、装置、芯片及模组设备
WO2024022488A1 (zh) 一种感知信号的处理方法、装置、芯片及模组设备
WO2024067539A1 (zh) 一种通信方法和装置
WO2023109790A1 (zh) 通信方法和通信装置
WO2022011711A1 (zh) 通信方法、通信设备、电子设备及计算机存储介质
WO2022160355A1 (zh) 无线通信方法和设备
WO2022088188A1 (zh) 通信的方法、装置
WO2024008096A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2022237763A1 (zh) 信道监听方法与装置、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759085

Country of ref document: EP

Kind code of ref document: A1