WO2022160355A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2022160355A1
WO2022160355A1 PCT/CN2021/074732 CN2021074732W WO2022160355A1 WO 2022160355 A1 WO2022160355 A1 WO 2022160355A1 CN 2021074732 W CN2021074732 W CN 2021074732W WO 2022160355 A1 WO2022160355 A1 WO 2022160355A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
control information
group
information
physical channel
Prior art date
Application number
PCT/CN2021/074732
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21921955.7A priority Critical patent/EP4287743A4/en
Priority to CN202180092504.9A priority patent/CN116803182A/zh
Priority to PCT/CN2021/074732 priority patent/WO2022160355A1/zh
Publication of WO2022160355A1 publication Critical patent/WO2022160355A1/zh
Priority to US18/227,564 priority patent/US20230371020A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to wireless communication methods and devices.
  • each time slot occupies a relatively short length of time. If the method of scheduling the Physical Downlink Shared Channel (PDSCH) based on each time slot in the low-frequency system is extended, the terminal device will be required to detect the Physical Downlink Control Channel (Physical Downlink Control Channel) in each time slot. PDCCH), thus requiring the terminal equipment to have strong processing capability.
  • PDSCH Physical Downlink Shared Channel
  • Embodiments of the present application provide a wireless communication method and device. For a high-frequency system, by improving the PDSCH scheduling method, system performance can be improved.
  • a wireless communication method including:
  • the first device receives first control information sent by the second device, where the first control information is used to schedule transmission of S physical channels, and at least one physical channel in the S physical channels corresponds to the first physical channel group or the first physical channel.
  • a feedback bit group, the first physical channel group or the first feedback bit group corresponds to the first HARQ-ACK codebook for HARQ-ACK request acknowledgement, the first HARQ-ACK codebook corresponds to the first feedback resource, so
  • the first control information corresponds to a first control information format, and the maximum number of physical channel transmissions scheduled by the first control information format is M, where M is a positive integer greater than or equal to 2, and S is greater than or equal to 1 and less than or a positive integer equal to M;
  • the first device sends the first HARQ-ACK codebook through the first feedback resource.
  • a wireless communication method including:
  • the second device sends first control information to the first device, where the first control information is used to schedule transmission of S physical channels, and at least one physical channel in the S physical channels corresponds to the first physical channel group or the first feedback A bit group, the first physical channel group or the first feedback bit group corresponds to a first HARQ-ACK codebook for HARQ-ACK acknowledgement, the first HARQ-ACK codebook corresponds to a first feedback resource, the The first control information corresponds to the first control information format, and the maximum number of physical channel transmissions scheduled by the first control information format is M, where M is a positive integer greater than or equal to 2, and S is greater than or equal to 1 and less than or A positive integer equal to M;
  • the first device receives the first HARQ-ACK codebook through the first feedback resource.
  • a first device for executing the method in the above-mentioned first aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • a second device for executing the method in the second aspect or each of its implementations.
  • the network device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • a first device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a second device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to second aspects or each of its implementations method in .
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each implementation manner thereof.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • the format of the first control information corresponding to the first control information is constructed such that the maximum number of scheduled physical channel transmissions is M, which improves the way of scheduling PDSCH and can improve system performance. Especially for high-frequency systems, the capability requirements for terminal equipment can be reduced.
  • the first control information is used to schedule transmission of the S physical channels, at least one physical channel in the S physical channels corresponds to the first physical channel group or the first feedback bit group, the first physical channel group or The first feedback bit group corresponds to the first HARQ-ACK codebook, and then the first HARQ-ACK codebook is sent through the first feedback resource, which can ensure that the first device schedules the first control information HARQ-ACK feedback is carried out on the physical channel, which ensures the communication quality.
  • FIG. 1 is an example of a communication system architecture to which the embodiments of the present application are applied.
  • FIG. 2 is an example of C-DAI information under Type-2 HARQ-ACK codebook feedback provided by an embodiment of the present application.
  • FIG. 3 is an example of scheduling multiple physical channels with one control information provided in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 5 is an example of a physical channel scheduled by multiple control information in a single-carrier scenario provided by an embodiment of the present application.
  • FIG. 6 is an example of a physical channel scheduled by multiple control information in a multi-carrier scenario provided by an embodiment of the present application.
  • FIG. 7 is an example of feedback of control information corresponding to the first DCI format without scheduling a physical channel provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a first device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a second device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STATION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • an augmented reality (Augmented Reality, AR) terminal equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the indication information or configuration information includes physical layer signaling such as downlink control information (Downlink Control Information, DCI), system information (System Information, SI), radio resource control (Radio Resource Control, RRC) signaling and at least one of Media Access Control Control Element (Media Access Control Control Element, MAC CE).
  • DCI Downlink Control Information
  • SI System Information
  • RRC Radio Resource Control
  • the high-layer parameter or high-layer signaling includes at least one of radio resource control RRC signaling and medium access control unit MAC CE.
  • presetting may be implemented by pre-saving corresponding codes, forms, or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • the application does not limit its specific implementation.
  • the preset may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied in future communication systems, and this application does not do this. limited.
  • NR system mainly considers two frequency bands, frequency range 1 (Frequency range 1, FR1) and frequency range 2 (Frequency range 2, FR2). Among them, the frequency domain ranges included in FR1 and FR2 are shown in Table 1.
  • FRX can be FR3.
  • the FRX frequency band includes licensed spectrum as well as unlicensed spectrum.
  • the FRX frequency band includes both non-shared spectrum and shared spectrum.
  • Unlicensed spectrum is the spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is generally considered to be shared spectrum, that is, communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum license from the government.
  • the communication device follows the principle of "listen before talk (LBT)", that is, before the communication device transmits signals on the unlicensed spectrum channel, it needs to perform channel listening first, and only when the channel listening result is that the channel is idle, the Only the communication device can send the signal; if the channel detection result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot send the signal.
  • LBT listen before talk
  • the duration of signal transmission by the communication device using the channel of the unlicensed spectrum cannot exceed a certain duration.
  • the communication device needs to follow the maximum power spectrum when using the channel of the unlicensed spectrum for signal transmission. Density limit.
  • the subcarrier spacing considered in the FRX frequency band may be larger than the subcarrier spacing in FR2, and the current candidate subcarrier spacing includes at least one of the following: 240 kHz, 480 kHz, and 960 kHz.
  • the corresponding parameter sets (Numerology) under these candidate subcarrier intervals are shown in Table 3 below.
  • Table 3 Parameter sets corresponding to candidate subcarrier spacing
  • subcarrier spacing symbol length NCP length ECP length Symbol Band NCP Length slot length 240kHz 4.16 ⁇ s 0.292 ⁇ s 1.04 ⁇ s 4.452 ⁇ s 62.5 ⁇ s 480kHz 2.08 ⁇ s 0.146 ⁇ s 0.52 ⁇ s 2.226 ⁇ s 31.25 ⁇ s 960kHz 1.04 ⁇ s 0.073 ⁇ s 0.26 ⁇ s 1.113 ⁇ s 15.625 ⁇ s
  • the dynamic codebook feedback in the NR system is introduced below.
  • the network device may schedule PDSCH transmission for the terminal device through the DCI carrying the downlink grant.
  • the downlink grant DCI includes indication information of PUCCH resources
  • the terminal equipment feeds back the decoding result (ACK or NACK information) of the PDSCH to the network equipment through the PUCCH resources.
  • ACK or NACK information decoding result of the PDSCH to the network equipment through the PUCCH resources.
  • dynamic determination of HARQ feedback timing is supported in the NR system.
  • the network device schedules the terminal device to perform PDSCH reception through the DCI, where the DCI includes indication information of the PUCCH resource used to transmit the HARQ-ACK corresponding to the PDSCH.
  • the indication information may include:
  • PUCCH resource indicator used to determine PUCCH resources
  • the HARQ feedback timing indication information is used to indicate the value in the HARQ feedback timing set.
  • the HARQ feedback timing set may be preset or configured by the network device.
  • the HARQ feedback timing indication information includes 3 bits. When the HARQ feedback timing indication information is 000, it indicates the first value in the HARQ feedback timing set. When the HARQ feedback timing indication information is 001, it indicates that the HARQ feedback timing set is in the HARQ feedback timing set. the second value of , and so on.
  • the HARQ feedback timing indication information indicates an invalid K1 in the HARQ feedback timing set (for example, the indicated K1 value is -1), it means that the time slot where the PUCCH resource is located is temporarily uncertain.
  • the terminal equipment includes semi-static codebook feedback and dynamic codebook feedback when performing HARQ-ACK feedback.
  • the semi-static codebook feedback can be Type-1 HARQ-ACK codebook feedback or Type-3 HARQ-ACK codebook feedback
  • the dynamic codebook feedback can be Type-2 or eType-2 HARQ-ACK codebook feedback.
  • the Type-2 HARQ-ACK codebook includes HARQ-ACK information corresponding to the scheduled PDSCH within a HARQ-ACK feedback window.
  • the DCI format for scheduling PDSCH includes a downlink assignment indicator (Downlink assignment index, DAI) information field:
  • the C-DAI information is used to indicate that the downlink transmission scheduled by the current DCI is the number of downlink transmissions in the HARQ feedback window, where the C-DAI information is sorted according to the PDCCH The detection opportunities are sorted in order.
  • the DCI may also include:
  • Total DAI (total DAI, T-DAI) information where the T-DAI information is used to indicate how many downlink transmissions are included in the HARQ feedback window up to the current DCI scheduling.
  • the HARQ feedback window is determined according to the HARQ feedback timing set.
  • the eType-2 HARQ-ACK codebook at least includes HARQ-ACK information corresponding to the PDSCH in one scheduled group.
  • the network device may group the scheduled PDSCH, and indicate PDSCH grouping information through explicit signaling, so that the terminal device can perform corresponding HARQ-ACK feedback according to different groups after receiving the PDSCH.
  • a terminal device can be configured with at most two PDSCH groups.
  • the DCI format for scheduling PDSCH includes the following information fields:
  • PDSCH group identification indication used to indicate the channel group to which the PDSCH scheduled by the current DCI belongs.
  • the PDSCH group indicated by the PDSCH group identifier is called a scheduling group, and another PDSCH group not indicated by the PDSCH group identifier is called a non-scheduling group.
  • New feedback indicator used to indicate the starting position of the HARQ-ACK information corresponding to the scheduling group. If the NFI information is flipped, it means that the HARQ-ACK codebook corresponding to the current scheduling group is reset (or corresponds to the starting point of the HARQ feedback window).
  • C-DAI information used to indicate that the current DCI scheduled downlink transmission is the number of downlink transmissions in the corresponding scheduling group in the HARQ feedback window, where the C-DAI information is sorted according to the order of PDCCH detection opportunities.
  • carrier aggregation scenarios it can also include:
  • T-DAI information used to indicate how many downlink transmissions of the corresponding scheduling group are included in the HARQ feedback window up to the current DCI scheduling.
  • Feedback request group number indication used to indicate that HARQ-ACK information corresponding to one PDSCH group or two PDSCH groups needs to be fed back. Among them, if the information field of the number of feedback request groups is set to 0, the terminal equipment needs to perform HARQ-ACK feedback of the current scheduling group; if the information field of the number of feedback request groups is set to 1, then the terminal equipment needs to perform two groups, namely scheduling HARQ-ACK feedback for groups and non-scheduled groups.
  • the network device can also pass high-level parameters in the DCI format.
  • the NFI of the non-scheduled group is used to jointly indicate the HARQ-ACK codebook corresponding to the non-scheduled group in the HARQ feedback window with the PDSCH group identifier of the non-scheduled group.
  • T-DAI of non-scheduled group used to indicate the total number of HARQ-ACK information included in the non-scheduled group within the HARQ feedback window.
  • the HARQ feedback window is determined according to at least one of NFI information, HARQ feedback timing set and PUCCH resources.
  • the terminal device can dynamically generate an eType-2 codebook and transmit HARQ-ACK information.
  • FIG. 2 is an example of a C-DAI indication under a Type-2 HARQ-ACK codebook feedback provided by an embodiment of the present application.
  • the HARQ feedback timing indication information K1 included in the above-mentioned DCI all indicates that the feedback time unit is time slot n, and the terminal device can determine that PDSCH1, PDSCH2 and PDSCH3 are the first, 2, 3 downlink transmissions.
  • the HARQ-ACK codebook fed back by the terminal device on PUCCH1 on time slot n sequentially includes the decoding result of PDSCH1, the decoding result of PDSCH2, and the decoding result of PDSCH3.
  • Table 4 shows a schematic table indicating the number of downlink transmissions or the number of downlink transmissions when the C-DAI information or T-DAI information in the scheduled downlink DCI includes 2 bits.
  • Table 5 shows a schematic table indicating the number of downlink transmissions or the number of downlink transmissions when the C-DAI information in the DCI for scheduling downlink includes 1 bit.
  • LSB represents a low-order bit (Least Significant Bit, LSB)
  • MSB represents a high-order bit (most significant bits, MSB).
  • the value range of the C-DAI information is 1 to 4, and the terminal device determines the number of downlink transmissions corresponding to the value of C-DAI according to the C-DAI information and the reception of the downlink transmission.
  • mod means remainder.
  • each time slot occupies a relatively short length of time. If the PDSCH scheduling method in each time slot in the low-frequency system is extended, the terminal device will be required to detect the PDCCH in each time slot, thus requiring the terminal device to have a strong processing capability. In order to reduce the requirement on the processing capability of the terminal equipment, it may be considered to introduce a scheduling method in which one DCI schedules multiple physical channels.
  • the network device may use one DCI to schedule at least two physical channels such as PDSCH transmission, or use one DCI to activate at least two downlink resources for at least two physical channel transmission (wherein the at least two downlink resources may be belong to the same SPS resource configuration, or may belong to different SPS resource configurations).
  • the at least two physical channels include a first physical channel and a second physical channel. The first physical channel and the second physical channel may be used to transmit different transport blocks TB, or the first physical channel and the second physical channel may be used to transmit the same TB.
  • FIG. 3 is an example of scheduling multiple physical channels with one control information provided in an embodiment of the present application.
  • the network device may use DCI0 to schedule 4 PDSCH transmissions, and the 4 PDSCHs include PDSCH0, PDSCH1, PDSCH2 and PDSCH3.
  • PDSCH0, PDSCH1, PDSCH2 and PDSCH3 are respectively used to transmit different TBs.
  • FIG. 4 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 may be executed interactively by a first device and a second device.
  • the method 200 may include:
  • the first device receives first control information sent by the second device, where the first control information is used to schedule transmission of S physical channels, and at least one physical channel in the S physical channels corresponds to the first physical channel group or The first feedback bit group, the first physical channel group or the first feedback bit group corresponds to the first HARQ-ACK codebook for HARQ-ACK acknowledgement, and the first HARQ-ACK codebook corresponds to the first feedback resource , the first control information corresponds to the first control information format, and the maximum number of physical channel transmissions scheduled by the first control information format is M, where M is a positive integer greater than or equal to 2, and S is greater than or equal to 1 A positive integer less than or equal to M;
  • the first device sends the first HARQ-ACK codebook through the first feedback resource.
  • the maximum number of physical channel transmissions supported by the first control information format corresponding to the first control information is M, so that the terminal device can ensure that the PDCCH is not monitored in every time slot.
  • the downlink transmission of the terminal equipment can be scheduled on each time slot, which improves the way of scheduling PDSCH and can improve system performance. Especially for high-frequency systems, it can reduce the capability requirement for terminal equipment to monitor PDCCH.
  • the first control information is used to schedule transmission of the S physical channels
  • at least one physical channel in the S physical channels corresponds to the first physical channel group or the first feedback bit group
  • the first physical channel group or The first feedback bit group corresponds to the first HARQ-ACK codebook
  • the first HARQ-ACK codebook is sent through the first feedback resource, which can ensure that the first device schedules the first control information HARQ-ACK feedback is carried out on the physical channel, which ensures the communication quality.
  • the at least one physical channel includes a Physical Downlink Shared Channel (PDSCH)
  • the first device includes a terminal device
  • the second device includes a network device
  • the first control information includes downlink Control information (Downlink Control Information, DCI).
  • PDSCH Physical Downlink Shared Channel
  • DCI Downlink Control Information
  • the at least one physical channel includes a lateral physical channel
  • the first device includes a first terminal device
  • the second device includes a second terminal device or a network device.
  • the first control information includes sideline control information or DCI.
  • the first control information is used to schedule the transmission of the S physical channels, including: the first control information is grant information, the grant information dynamically schedules the transmission of the S physical channels, or the first control information is semi-persistent scheduling (Semi-Persistent Scheduling, SPS) configuration activation information, the activation information activates the transmission of S physical channels.
  • the first feedback resources include uplink resources.
  • the first feedback resource includes a physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource or a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) resource.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the first feedback resources include sideline resources.
  • the first feedback resource includes a physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) resource.
  • PSFCH Physical Sidelink Feedback Channel
  • At least one physical channel in the S physical channels corresponds to a first physical channel group or a first feedback bit group, including: all physical channels in the S physical channels correspond to the first physical channel group or the first feedback bit group.
  • At least one physical channel in the S physical channels corresponds to the first physical channel group or the first feedback bit group, including: the first physical channel in the S physical channels corresponds to the first physical channel group or A first feedback bit group, wherein the time interval between the first physical channel and the first feedback resource satisfies the processing timing.
  • At least one physical channel in the S physical channels includes all physical channels in the S physical channels; or at least one physical channel in the S physical channels includes among the S physical channels.
  • the first physical channel wherein the time interval between the first physical channel and the first feedback resource satisfies the processing sequence.
  • the time interval between the first physical channel and the first feedback resource satisfies the processing sequence, including: between the end position of the first physical channel and the start position of the first feedback resource The time interval satisfies the processing sequence, or the time interval between the end position of the first physical channel and the start position of the first feedback resource is greater than or equal to a preset value.
  • the first physical channel group or the first feedback bit group corresponds to a first HARQ-ACK codebook, including: the first HARQ-ACK codebook includes the first HARQ-ACK codebook corresponding to the first physical channel group.
  • the HARQ-ACK information or the first HARQ-ACK codebook includes the HARQ-ACK information corresponding to the first feedback bit group.
  • At least one physical channel in the S physical channels corresponds to a first physical channel group or a first feedback bit group
  • the first physical channel group or the first feedback bit group corresponds to a first HARQ-ACK
  • the codebook includes: the first HARQ-ACK codebook includes HARQ-ACK information corresponding to at least one physical channel of the S physical channels.
  • all physical channels in the S physical channels correspond to a first physical channel group or a first feedback bit group
  • the first physical channel group or the first feedback bit group corresponds to a first HARQ-ACK code
  • the first HARQ-ACK codebook includes HARQ-ACK information corresponding to all physical channels in the S physical channels.
  • the first control information includes a first DCI
  • the first DCI corresponds to a first DCI format.
  • the first DCI format includes DCI format 1_1 and/or DCI format 1_2.
  • the first DCI format includes other DCI formats that can use one DCI to schedule multiple PDSCHs. For example, DCI format 1_x.
  • the network device may use one control information such as DCI to schedule at least two physical channels such as PDSCH transmission, or may use one control information such as DCI to activate at least two preconfigured resources such as downlink resources for at least two physical channels For example SPS PDSCH transmission.
  • DCI scheduling at least two physical channels
  • DCI to activate at least two preconfigured resources such as downlink resources for at least two physical channels For example SPS PDSCH transmission.
  • dynamic codebook feedback such as Type-2 or eType-2
  • how does the terminal device generate the first HARQ-ACK codebook including the HARQ-ACK information corresponding to the at least one physical channel, so as to respond to the received multiple How to perform HARQ-ACK feedback for each physical channel is a further technical problem to be solved in this application.
  • the at least two preconfigured resources may belong to the same SPS resource configuration, or may belong to different SPS resource configurations.
  • the first physical channel group includes N physical channels, where N is a positive integer greater than or equal to 1; and/or, N is a positive integer less than or equal to M.
  • the first feedback bit group includes feedback bits of N physical channels, where N is a positive integer greater than or equal to 1; and/or, N is a positive integer less than or equal to M .
  • each physical channel corresponds to 1 bit of feedback information
  • the first feedback bit group includes N bits.
  • each physical channel corresponds to 2 bits of feedback information
  • the first feedback bit group includes 2N bits.
  • the first device is configured in a space division bundling feedback manner, and each physical channel in the N physical channels corresponds to 1 bit of feedback information.
  • the HARQ-ACK information corresponding to the two TBs is bundled into 1-bit feedback information.
  • the 1-bit feedback information is ACK; otherwise, the 1-bit feedback information is NACK.
  • the value of N is predefined, or the value of N is determined according to a predefined rule, or the value of N is configured by the second device.
  • S is less than or equal to N; the feedback bit positions of the first S physical channels in the feedback bit positions corresponding to the first physical channel group are respectively the feedback bit positions of the S physical channels or, the feedback bit positions of the first S physical channels in the feedback bit positions of the first feedback bit group are respectively the feedback bit positions of the S physical channels.
  • S is greater than N; the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is the binding of at least two physical channels in the S physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the feedback bit position after bundling at least two physical channels in the S physical channels .
  • S is greater than (K-1)*N and less than or equal to K*N, and K is a positive integer; the feedback of one physical channel in the feedback bit positions corresponding to the first physical channel group The bit position is the feedback bit position after binding of K physical channels in the S physical channels; or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the S The feedback bit positions of the K physical channels in the physical channels after bundling.
  • the K physical channels are adjacent K physical channels.
  • the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is the feedback bit position after binding of adjacent K physical channels in the S physical channels; or, the The feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the feedback bit position after binding of adjacent K physical channels in the S physical channels.
  • the feedback information after the binding of the K physical channels includes: when the feedback information of all physical channels in the K physical channels is ACK feedback information, the The feedback information of the K physical channels is ACK information; and/or, when there is a physical channel whose feedback information is a negative acknowledgement NACK in the K physical channels, the feedback information of the K physical channels is NACK.
  • the value of K is predefined, or the value of K is determined according to a predefined rule, or the value of K is configured by the second device.
  • the second device configuration K is 2.
  • the value of K is determined to be 1 according to a predefined rule.
  • the value of N is M.
  • M is greater than N; the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is the binding of at least two physical channels in the M physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the feedback bit position after bundling at least two physical channels in the M physical channels .
  • M is an integer multiple of N.
  • the feedback bit position of one physical channel in the feedback bit positions of the N physical channels corresponding to the first feedback bit group is the feedback bit position of (M/N) physical channels in the M physical channels.
  • the feedback manner of the (M/N) physical channels is a bonded feedback manner.
  • the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is Ceil (M/N) physical channel bonding among the M physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is after Ceil (M/N) physical channels in the M physical channels are bound
  • Ceil() means round up.
  • the feedback information after the Ceil(M/N) physical channels are bound includes: the feedback information of all physical channels in the Ceil(M/N) physical channels is: In the case of acknowledging the ACK feedback information, the feedback information of the Ceil(M/N) physical channels is ACK information; and/or, the feedback information in the Ceil(M/N) physical channels is a negative acknowledgment In the case of NACK physical channels, the feedback information of the Ceil(M/N) physical channels is NACK.
  • the at least two physical channels are K physical channels, and the value of K is predefined, or the value of K is determined according to a predefined rule, or the The value of K is configured by the second device.
  • the feedback information of all the physical channels in the at least two physical channels is ACK feedback information
  • the feedback information of the at least two physical channels is ACK information
  • the feedback information of the at least two physical channels is NACK.
  • the value of N is predefined, or the value of N is determined according to a predefined rule, or the value of N is configured by the second device .
  • the method 200 may further include:
  • the first device receives second control information sent by the second device, the second control information is not used for scheduling physical channel transmission; the second control information corresponds to a second feedback bit group and the second feedback bit The group corresponds to the first HARQ-ACK codebook; and/or the second control information corresponds to the first control information format and the second control information corresponds to the first HARQ-ACK codebook.
  • the second control information is used to release the semi-persistent scheduling configuration, or the second control information is used to activate or deactivate the dormant state of the secondary cell.
  • a scheduling corresponds to a fixed number of physical channels or a fixed number of feedback bits (ie, a physical channel group or a feedback bit group in this application).
  • the first A device can assume that the number of physical channels lost is the fixed number of physical channels, thereby avoiding ambiguity about the size of the codebook by the transceiver device.
  • the scheduling number counting information is C-DAI information, and the C-DAI information is used to indicate the number of physical channel groups in the HARQ feedback window corresponding to the downlink transmission currently scheduled by the first DCI.
  • the first control information includes first scheduling count information, and the first scheduling count information is used to indicate:
  • the first physical channel group in this embodiment of the present application may be understood as a virtualized physical channel group of the S physical channels, that is, the S physical channels are virtualized into a virtualized physical channel group including N physical channels. Physical channel group.
  • the first scheduling count information is associated with at least one of the following information: a first physical channel group, the first feedback bit group, or the first control information.
  • the first scheduling count information is used to determine the first HARQ-ACK codebook.
  • the first scheduling count information is used to determine a position of at least one of the S physical channels in the first HARQ-ACK codebook.
  • the first scheduling count information is further used to determine the size of the first HARQ-ACK codebook.
  • the first device determines the first HARQ-ACK codebook according to the first scheduling count information. For example, the first device sorts the physical channel groups received in the HARQ feedback window according to the first scheduling count information, and determines that the HARQ-ACK information corresponding to the physical channels is in the first HARQ according to the sorting of the physical channel groups in ascending order. - Position in the ACK codebook.
  • the ordering of the first physical channel group in the physical channel group sent by the second device in the HARQ feedback window can be understood as: the first physical channel group is the physical channel transmitted in the HARQ feedback window.
  • the number of physical channel groups in the group can be understood as: the first physical channel group is the physical channel transmitted in the HARQ feedback window.
  • the order of the first feedback bit group in the feedback bit group in the HARQ feedback window can be understood as: the first feedback bit group is the number of the feedback bit group transmitted in the HARQ feedback window. Feedback bit group.
  • the order of the first control information in the control information sent by the second device in the HARQ feedback window can be understood as: the first control information is sent by the second device in the HARQ feedback window.
  • the number of control information in the control information can be understood as: the first control information is sent by the second device in the HARQ feedback window.
  • the first control information includes first scheduling count information, where the first scheduling count information is used to indicate:
  • the first physical channel group is the number of physical channel groups in the physical channel groups transmitted in the HARQ feedback window; or the first feedback bit group is the number of feedback bit groups in the feedback bit group transmitted in the HARQ feedback window. ; or the first control information is the number of control information in the control information sent by the second device in the HARQ feedback window.
  • the sorting method of the physical channel groups corresponding to the first scheduling count information is sorted according to the order of detection opportunities of the control channels. For example, it is consistent with the ordering of PDCCH detection opportunities in the prior art.
  • the number of bits corresponding to the first scheduling count information is greater than or equal to 2 bits.
  • the first control information is the first DCI
  • the first scheduling count information is C-DAI information
  • the C-DAI information corresponds to 2 bits
  • the C-DAI information is used to indicate that the first physical channel group is HARQ feedback
  • the physical channel group includes N physical channels. The value of N is fixed.
  • a physical channel group may also be called a downlink transmission group, that is, a downlink transmission group includes N downlink transmissions.
  • the value range of C-DAI information is 1 to 4, and the terminal device determines which physical channel group the value of C-DAI corresponds to according to the C-DAI information and the reception of downlink transmission.
  • the terminal equipment needs to feed back the feedback information corresponding to 2*N downlink transmissions;
  • the first control information includes first scheduling count information and first indication information; wherein the first scheduling count information is used to indicate:
  • the first indication information is used to indicate the ordering of the first control information in the control information sent by the second device within the HARQ feedback window.
  • the first control information includes first scheduling total information; the first scheduling total information is used to indicate:
  • the first scheduling total number information is associated with at least one of the following information: a first physical channel group, the first feedback bit group, or the first control information.
  • the first scheduling total number information is used to determine the first HARQ-ACK codebook.
  • the first scheduling total number information is used to determine the size of the first HARQ-ACK codebook.
  • the first device determines the first HARQ-ACK codebook according to the first scheduling total number information. For example, the first device determines how many physical channel groups have been received in total according to the first scheduling total number information, and determines the size of the first HARQ-ACK codebook according to the number of physical channel groups.
  • the number of bits corresponding to the first total scheduling information is greater than or equal to 2 bits.
  • the first scheduling total number information is T-DAI information
  • the T-DAI information corresponds to 2 bits
  • the T-DAI information is used to indicate the total number of physical channel groups transmitted in the HARQ feedback window up to the first physical channel group .
  • the first physical channel group includes N physical channels. The value of N is fixed.
  • the value range of T-DAI information is 1 to 4, and the terminal device determines the total number of physical channel groups corresponding to the value of T-DAI according to the T-DAI information and the reception of downlink transmission.
  • the first device is a terminal device.
  • a physical channel group corresponding to a DCI includes N physical channels, or a feedback bit group corresponding to a DCI includes feedback bits corresponding to N physical channels. If the terminal device determines that the number of received DCIs is Q, the terminal device determines that the size of the HARQ-ACK codebook corresponding to the Q DCIs is determined according to N and Q.
  • the one DCI is a DCI corresponding to the first DCI format.
  • the terminal device determines that the size of the HARQ-ACK codebook corresponding to the Q DCIs is N*Q.
  • the terminal device determines that the size of the HARQ-ACK codebook corresponding to the Q pieces of DCI is 2*N*Q.
  • the terminal device determines the number of received DCIs according to the DAI information.
  • the terminal device determines the number of received DCIs according to the C-DAI information.
  • the terminal device determines the number of received DCIs according to the T-DAI information.
  • the first control information includes first scheduling count information and first scheduling total information; the first scheduling count information and the first scheduling total information are used to jointly indicate:
  • the first control information includes first scheduling count information, first scheduling total information, and first indication information; wherein the first scheduling count information and the first scheduling total information For joint instructions:
  • the first indication information is used to indicate the ordering of the first control information in the control information sent by the second device within the HARQ feedback window.
  • the first control information includes a first group of identification indication information, and the first group of identification indication information indicates the first group, wherein all physical channels in the S physical channels correspond to the first group; or at least one physical channel in the S physical channels corresponds to the first group.
  • the number of physical channels included in the first physical channel group corresponding to different PDSCH group identifiers is the same.
  • the sizes of the number of feedback bits included in the first feedback bit groups corresponding to different PDSCH group identifiers are the same.
  • the first device is a terminal device.
  • a physical channel group corresponding to one DCI includes N physical channels, or a feedback bit group corresponding to one DCI includes feedback bits corresponding to N physical channels;
  • the second PDSCH group identifier one DCI corresponds to The physical channel group includes N physical channels, or a feedback bit group corresponding to a DCI includes feedback bits corresponding to N physical channels.
  • the terminal equipment determines that the number of DCIs corresponding to the first PDSCH group identifier is Q1, and the number of DCIs corresponding to the second PDSCH group identifier is Q2, the terminal equipment determines the HARQ-ACK corresponding to the first PDSCH group identifier
  • the size of the codebook is determined according to N and Q1
  • the size of the HARQ-ACK codebook corresponding to the second PDSCH group identifier is determined according to N and Q2.
  • the one DCI is a DCI corresponding to the first DCI format.
  • the terminal device determines that the size of the HARQ-ACK codebook corresponding to the first PDSCH group identifier is N*Q1, and the size of the HARQ-ACK codebook corresponding to the second PDSCH group identifier is N*Q2.
  • the terminal device determines that the size of the HARQ-ACK codebook corresponding to the first PDSCH group identifier is 2*N*Q1, and the HARQ-ACK codebook corresponding to the second PDSCH group identifier is 2*N*Q1.
  • the size is 2*N*Q2.
  • the number of physical channels included in the first physical channel group corresponding to different PDSCH group identifiers is independently configured by the second device.
  • the size of the number of feedback bits included in the first feedback bit group corresponding to different PDSCH group identifiers is independently configured by the second device.
  • a physical channel group corresponding to a DCI includes N1 physical channels, or a feedback bit group corresponding to a DCI includes feedback bits corresponding to N1 physical channels;
  • a physical channel group corresponding to a DCI includes N2 physical channels, or a feedback bit group corresponding to a DCI includes feedback bits corresponding to N2 physical channels.
  • the terminal equipment determines that the number of DCIs corresponding to the first PDSCH group identifier is Q1, and the number of DCIs corresponding to the second PDSCH group identifier is Q2, the terminal equipment determines the HARQ-ACK corresponding to the first PDSCH group identifier
  • the size of the codebook is determined according to N1 and Q1
  • the size of the HARQ-ACK codebook corresponding to the second PDSCH group identifier is determined according to N2 and Q2.
  • the one DCI is a DCI corresponding to the first DCI format.
  • the terminal device determines that the size of the HARQ-ACK codebook corresponding to the first PDSCH group identifier is N1*Q1, and the size of the HARQ-ACK codebook corresponding to the second PDSCH group identifier is N2*Q2.
  • the terminal device determines that the size of the HARQ-ACK codebook corresponding to the first PDSCH group identifier is 2*N1*Q1, and the HARQ-ACK codebook corresponding to the second PDSCH group identifier is 2*N1*Q1.
  • the size of is 2*N2*Q2.
  • the terminal device determines the number of DCIs corresponding to the first PDSCH group identifier according to the DAI information, and/or determines the number of DCIs corresponding to the second PDSCH group identifier according to the DAI information.
  • the terminal device determines the number of DCIs corresponding to the first PDSCH group identifier according to the C-DAI information, and determines the number of DCIs corresponding to the second PDSCH group identifier according to the T-DAI information of the non-scheduled group.
  • the terminal device determines the number of DCIs corresponding to the first PDSCH group identifier according to the T-DAI information, and determines the number of DCIs corresponding to the second PDSCH group identifier according to the T-DAI information of the non-scheduling group. .
  • At least one physical channel in the S physical channels corresponds to the first group, including: a first physical channel in the S physical channels corresponds to the first group, wherein the first physical channel corresponds to the first group.
  • the time interval between the physical channel and the first feedback resource satisfies the processing timing.
  • the first group of identification indication information is used to determine the first HARQ-ACK codebook.
  • the first control information further includes NFI information, and the NFI information and the first group of identification indication information are used to jointly determine the first HARQ-ACK codebook.
  • the first device determines the HARQ-ACK codebook corresponding to the first group in the first HARQ-ACK codebook according to the first group identification indication information ACK codebook.
  • the first group of identification indication information indicates the first group of physical channels
  • the first HARQ-ACK codebook includes HARQ-ACK information corresponding to the first group of physical channels.
  • the first control information further includes first scheduling count information; the first scheduling count information is used to indicate:
  • the first scheduling count information is used to determine the first HARQ-ACK codebook.
  • the first scheduling count information is used to determine at least one of the S physical channels in the HARQ-ACK codebook corresponding to the first group included in the first HARQ-ACK codebook. Location.
  • the first scheduling count information is further used to determine the size of the HARQ-ACK codebook corresponding to the first group.
  • the first device determines the The first HARQ-ACK codebook. For example, the first device sorts the physical channel groups belonging to the first group received in the HARQ feedback window according to the first scheduling count information, and determines the HARQ-ACK information corresponding to each physical channel group according to the order from small to large The position in the HARQ-ACK codebook corresponding to the first group included in the first HARQ-ACK codebook.
  • the order of the first physical channel group in the physical channel group corresponding to the first group transmitted in the HARQ feedback window can be understood as: the first physical channel group is transmitted in the HARQ feedback window.
  • the order of the first feedback bit group in the feedback bit group corresponding to the first group transmitted in the HARQ feedback window can be understood as: the first feedback bit group is transmitted in the HARQ feedback window.
  • the number of the feedback bit group in the feedback bit group corresponding to the first group can be understood as: the first feedback bit group is transmitted in the HARQ feedback window.
  • the order of the first control information in the control information corresponding to the first group sent by the second device in the HARQ feedback window can be understood as: the first control information is in the HARQ feedback window.
  • the first control information further includes first scheduling count information and first indication information; wherein the first scheduling count information is used to indicate:
  • the first indication information is used to indicate the ordering of the first control information in the control information corresponding to the first group sent by the second device in the HARQ feedback window.
  • the first control information further includes first scheduling total information; the first scheduling total information is used to indicate:
  • the first scheduling total number information is used to determine the first HARQ-ACK codebook.
  • the first scheduling total number information is used to determine the size of the HARQ-ACK codebook corresponding to the first group in the first HARQ-ACK codebook.
  • the first device may use the first scheduled total information and the first group of identification indication information according to the The first HARQ-ACK codebook is determined. For example, the first device determines how many physical channel groups belonging to the first group have been received in total according to the first scheduling total number information, and determines the HARQ-ACK corresponding to the first group in the first HARQ-ACK codebook according to the number of physical channel groups The size of the ACK codebook.
  • the first control information further includes second scheduling total information; the second scheduling total information is used to indicate the corresponding second scheduling information transmitted up to the first control information within the HARQ feedback window The total number of physical channel groups of a group, wherein the second group is a different group from the first group.
  • the second scheduling total number information is used to determine the HARQ-ACK codebook of the second group.
  • the second scheduling total number information is used to determine the size of the HARQ-ACK codebook corresponding to the second group in the first HARQ-ACK codebook.
  • the first device determines the HARQ-ACK codebook of the non-scheduling group according to the second total number of scheduling information . For example, the first device determines how many physical channel groups belonging to the second group have been received according to the second scheduling total number information, and determines the HARQ-ACK corresponding to the second group in the first HARQ-ACK codebook according to the number of physical channel groups. The size of the ACK codebook.
  • the number of bits corresponding to the second total scheduling information is greater than or equal to 2 bits.
  • first group and the second group are used to distinguish different objects, and are not used to indicate a specific group identifier.
  • the terminal device is configured with two groups, namely group 1 and group 2, the first group may refer to group 1 or group 2, and correspondingly the second group may refer to group 2 or group 1.
  • the first control information further includes first scheduling count information and first scheduling total information; the first scheduling count information and the first scheduling total information are used to jointly indicate:
  • the first control information further includes first scheduling count information, first scheduling total number information, and first indication information; wherein the first scheduling count information and the first scheduling total number The information is used to jointly indicate: the total number of physical channel groups corresponding to the first group transmitted in the HARQ feedback window up to the first physical channel group; or up to the first feedback bit group in the HARQ feedback window The total number of feedback bit groups corresponding to the first group; the first indication information is used to indicate that the first control information is in the control information corresponding to the first group sent by the second device in the HARQ feedback window sorting.
  • the method 200 may further include:
  • the first device receives third control information sent by the second device, the third control information corresponds to a second control information format, and the second control information format is different from the first control information format, or The maximum number of physical channel transmissions scheduled by the second control information format is not M; the first device determines that the third control information corresponds to a second HARQ-ACK codebook, and the second HARQ-ACK codebook and The first HARQ-ACK codebooks are different.
  • the first control information format includes DCI format 1_1.
  • the first control information format does not include DCI format 1_0. That is, the first device receives scheduling of DCI format 1_1 and DCI format 1_0, and when the first device prepares feedback, DCI format 1_1 and DCI format 1_0 are fed back independently.
  • FIG. 5 is an example of a physical channel scheduled by multiple control information in a single-carrier scenario provided by an embodiment of the present application.
  • the network device uses DCI0 to schedule 6 PDSCH transmissions, uses DCI1 to schedule 3 PDSCH transmissions, and uses DCI2 to schedule 4 PDSCH transmissions.
  • DCI0, DCI1 and DCI2 all correspond to the first DCI format.
  • the DCI includes 2-bit C-DAI information, where the C-DAI information is used to indicate the PDSCH group in the HARQ feedback window corresponding to the PDSCH currently scheduled by the DCI.
  • the C-DAI information in DCI0 indicates 1
  • the C-DAI information in DCI1 indicates 2
  • the C-DAI information in DCI2 indicates 3. If the terminal device receives the three DCIs, namely DCI0, DCI1 and DCI2, the terminal device may determine that the feedback information corresponding to the 3*N PDSCHs needs to be fed back.
  • the HARQ-ACK information corresponding to the feedback bit group is determined according to the scheduled number S of physical channels. If S is less than or equal to N, each physical channel performs feedback independently; if S is greater than N and S is less than or equal to 2*N, feedback is performed after every two adjacent physical channels are bound; if S is greater than 2*N and If S is less than or equal to 3*N, feedback is performed after every three adjacent physical channels are bound; if S is greater than 3*N and S is less than or equal to 4*N, feedback is performed after every four adjacent physical channels are bound. , etc., and so on.
  • the HARQ-ACK codebook fed back by the terminal device includes the information shown in Table 8:
  • the HARQ-ACK information corresponding to the feedback bit group is determined according to the maximum value M of the scheduled physical channels.
  • feedback is performed after each adjacent K physical channels are bound, and the value of K is predefined or configured by a network device or determined according to a predefined rule.
  • K Ceil(M/N)
  • Ceil() means round up.
  • the HARQ-ACK codebook fed back by the terminal device includes the information shown in Table 9:
  • FIG. 6 is an example of a physical channel scheduled by multiple control information in a multi-carrier scenario provided by an embodiment of the present application.
  • the network device uses DCI0 to schedule 8 PDSCH transmissions on CC0, and uses DCI1 to schedule 6 PDSCH transmissions on CC1.
  • the network device uses DCI2 to schedule 4 PDSCH transmissions on CC0, and uses DCI3 to schedule 8 PDSCH transmissions on CC1.
  • the network device uses DCI4 to schedule 8 PDSCH transmissions on CC0, and uses DCI5 to schedule 2 PDSCH transmissions on CC1.
  • DCI0, DCI1, DCI2, DCI3, DCI4 and DCI5 all correspond to the first DCI format.
  • the DCI includes 2-bit C-DAI information and 2-bit T-DAI information, where the C-DAI information is used to indicate that the current DCI is the number of times the current DCI is sent by the network device within the HARQ feedback window.
  • the T-DAI information is used to indicate the total number of DCIs sent by the network device up to the current DCI within the HARQ feedback window.
  • C-DAI information in DCI0 indicates 1, T-DAI information indicates 2; C-DAI information in DCI1 indicates 2, T-DAI information indicates 2; C-DAI information in DCI2 indicates 3, T-DAI Information indication 4; C-DAI information indication 4 in DCI3, T-DAI information indication 4; C-DAI information indication 5 in DCI4, T-DAI information indication 6; C-DAI information indication 6 in DCI5, T-DAI information indication 6 DAI information indicates 6.
  • the terminal device continuously loses four or more DCIs, it may occur that the terminal device and the network device have inconsistent understandings of the size of the HARQ-ACK codebook.
  • the HARQ-ACK information corresponding to the feedback bit group is determined according to the scheduled number S of physical channels. If S is less than or equal to N, each physical channel performs feedback independently; if S is greater than N and S is less than or equal to 2*N, feedback is performed after every two adjacent physical channels are bound; if S is greater than 2*N and If S is less than or equal to 3*N, feedback is performed after every three adjacent physical channels are bound; if S is greater than 3*N and S is less than or equal to 4*N, feedback is performed after every four adjacent physical channels are bound. , etc., and so on.
  • the HARQ-ACK codebook fed back by the terminal device includes the information shown in Table 10:
  • the HARQ-ACK information corresponding to the feedback bit group is determined according to the maximum value M of the scheduled physical channels.
  • feedback is performed after each adjacent K physical channels are bound, and the value of K is predefined or configured by a network device or determined according to a predefined rule.
  • K Ceil(M/N)
  • Ceil() means round up.
  • the HARQ-ACK codebook fed back by the terminal device includes the information shown in Table 11:
  • FIG. 7 is an example of feedback of control information corresponding to the first DCI format without scheduling a physical channel provided by an embodiment of the present application.
  • the network device uses DCI0 to schedule 6 PDSCH transmissions, uses DCI1 to release the SPS configuration or indicates the dormancy or de-sleep state of the secondary cell, and uses DCI2 to schedule 4 PDSCH transmissions.
  • DCI0, DCI1 and DCI2 all correspond to the first DCI format.
  • the DCI includes 2-bit C-DAI information, where the C-DAI information is used to indicate the PDSCH group within the HARQ feedback window corresponding to the PDSCH scheduled by the current DCI.
  • the C-DAI information in DCI0 indicates 1
  • the C-DAI information in DCI1 indicates 2
  • the C-DAI information in DCI2 indicates 3. If the terminal device receives the three DCIs, namely DCI0, DCI1 and DCI2, it needs to feed back the feedback information corresponding to 3*N downlink transmissions.
  • the HARQ-ACK information corresponding to the feedback bit group is determined according to the maximum value M of the number of scheduled physical channels.
  • feedback is performed after each adjacent K physical channels are bound, and the value of K is predefined or configured by a network device or determined according to a predefined rule.
  • K Ceil(M/N)
  • Ceil() means round up.
  • the terminal device may determine that the feedback information corresponding to DCI1 is ACK information.
  • the HARQ-ACK information corresponding to the control information of the unscheduled physical channel occupies the feedback position of the first physical channel among the N physical channels.
  • the HARQ-ACK codebook fed back by the terminal device includes the information shown in Table 12:
  • the HARQ-ACK information corresponding to the control information of the unscheduled physical channel is repeatedly sent at the feedback position corresponding to each of the N physical channels.
  • the HARQ-ACK codebook fed back by the terminal device includes the information shown in Table 13:
  • the solutions provided by the embodiments of the present application can make the terminal device and the network device as consistent as possible in understanding the size of the HARQ-ACK codebook and the ordering of the HARQ-ACK codebook.
  • the method of bundling the feedback of HARQ-ACK information corresponding to the physical channel the overhead of the HARQ-ACK feedback can be reduced.
  • the implementation manner of the first scheduling count information and the first scheduling total number information will be exemplarily described below.
  • the first scheduling count information includes downlink assignment indication count (counter DAI, C-DAI) information and/or sidelink assignment indication count (counter sidelink assignment index, C-SAI) information.
  • the total number of physical channels counted by the first scheduling total number information is determined according to the order of detection opportunities of control channels. For example, it is consistent with the ordering of PDCCH detection opportunities in the prior art.
  • the total number of physical channels counted by the first scheduling total number information is determined according to the time slot where the last physical channel of the S physical channels scheduled by the first control information is located.
  • the total number of physical channels counted by the first scheduling total number information is determined according to the time slot where the first physical channel of the S physical channels scheduled by the first control information is located.
  • the M value is configured by the second device or the network device, or the M value is determined according to a high-level parameter configured by the second device or the network device, or The M value is preset.
  • the maximum number of physical channels that can be scheduled by one control information is configured by the second device or the network device, or the maximum number of physical channels that can be scheduled by one control information is preset.
  • the first control information format corresponds to a first time domain resource assignment (Time domain resource assignment, TDRA) table, and the maximum number of schedulable physical channels included in the first TDRA table is M.
  • TDRA Time domain resource assignment
  • the interpretation mode of the information field in the first control information is determined according to high-level parameters configured by the network device, or the interpretation mode of the information field in the first control information is preset , or the interpretation method of the information field in the first control information is associated with the format of the first control information, or the interpretation method of the information field in the first control information is related to the physical The maximum number of channels to associate with.
  • the first control information corresponds to a first control information format, and the maximum number of physical channel transmissions scheduled by the first control information format is M, where M is a positive integer greater than or equal to 2.
  • M is a positive integer greater than or equal to 2.
  • the interpretation method of the information field can be determined according to the embodiment of the present application; or, the first control information corresponds to the second control information format, and the maximum number of physical channel transmissions scheduled by the second control information format is 1.
  • the way of interpreting the information field in a control message can be determined according to the prior art.
  • the time domain position of the first feedback resource is determined according to a first value in a HARQ feedback timing set, wherein the HARQ feedback timing set includes at least two values and the The HARQ feedback timing indication information included in the first control information indicates the first value; or the HARQ feedback timing set only includes the first value and the first control information does not include the HARQ feedback timing indication information.
  • the time domain position of the first feedback resource is determined according to the HARQ feedback timing indication information in the first control information, where the HARQ feedback timing indication information is used to indicate the value in the HARQ feedback timing set;
  • the time domain position of the first feedback resource is determined according to the HARQ feedback timing set, wherein the first control information does not include HARQ feedback timing indication information, and/or, only the HARQ feedback timing set is included in the HARQ feedback timing set. Include a value.
  • the HARQ feedback timing set is configured by high-layer parameters, or the HARQ feedback timing set is preset.
  • the K1 value in the HARQ feedback timing set is associated with the M value, or the K1 value in the HARQ feedback timing set is determined according to the M value.
  • the M value also needs to be considered.
  • the HARQ feedback timing set includes at least one K1 value. If only one K1 value is included in the HARQ feedback timing set, the HARQ feedback timing indication information may not be included in the DCI, and the time domain position of the HARQ feedback resource is determined according to the K1 value in the HARQ feedback timing set; If multiple K1 values are included, the number of bits corresponding to the HARQ feedback timing indication information included in the DCI is determined according to the number of K1 values included in the HARQ feedback timing set.
  • the first value is K1 (that is, the HARQ feedback timing indication information in the first control information is used to indicate the K1 included in the HARQ feedback timing set, or the HARQ feedback timing set includes only one K1. value and the first control information does not include HARQ feedback timing indication information), K1 is greater than or equal to 0, and the time slot where the first feedback resource is located is determined based on one of the following methods:
  • the end position of the last physical channel in the S physical channels is in time slot n, and the first feedback resource is in time slot n+K1;
  • the first feedback resource is in time slot n+K1;
  • the end position of the first control information is in time slot n, and the first feedback resource is in time slot n+K1.
  • the first value is K1, where K1 is greater than or equal to 0, and the time slot where the first feedback resource is located is determined based on one of the following methods:
  • the end position of the last physical channel in the S physical channels is in time slot n, and the first feedback resource is in time slot n+K1;
  • the first feedback resource is in time slot n+K1;
  • the end position of the first control information is in time slot n, and the first feedback resource is in time slot n+K1;
  • the end position of the first physical channel in the S physical channels is in the time slot n, and the first feedback resource is in the time slot n+K1, wherein the first physical channel includes the s physical channels. a physical channel whose time interval with the first feedback resource satisfies the processing timing;
  • the end position of the second physical channel in the S physical channels is in time slot n, and the first feedback resource is in time slot n+K1, where the second physical channel is the second physical channel in the S physical channels. the latest physical channel whose time interval with the first feedback resource satisfies the processing sequence;
  • the S physical channels include at least two physical channels, the at least two physical channels are used to transmit the same transmission fast TB, and the end position of the last physical channel in the at least two physical channels is time slot n,
  • the first feedback resource is located in time slot n+K1; or
  • the S physical channels include at least two physical channels, and the at least two physical channels are used to transmit different transmission fast TBs, and the end position of the last physical channel in the at least two physical channels is time slot n,
  • the first feedback resource is located in time slot n+K1.
  • the network device schedules 4 PDSCH transmissions using DCI0, the 4 PDSCHs including PDSCH0, PDSCH1, PDSCH2 and PDSCH3.
  • DCI0 and PDSCH0 are on time slot n
  • PDSCH1 is on time slot n+1
  • PDSCH2 is on time slot n+2
  • PDSCH3 is on time slot n+3.
  • the decoding results of PDSCH0, PDSCH1, PDSCH2 and PDSCH3 correspond to the first HARQ-ACK codebook
  • the first HARQ-ACK codebook corresponds to the first feedback resource.
  • the terminal device determines that the end position of the last physical channel among the four physical channels scheduled by DCI0 is in time slot n+3, and determines that the first feedback resource is in time slot n+8.
  • the terminal device determines that the end position of the first physical channel among the four physical channels scheduled by DCI0 is in time slot n, and determines that the first feedback resource is located in time slot n+5.
  • the terminal device determines that the first feedback resource is located in time slot n+5 according to the end position of DCI0 in time slot n.
  • At least two of the M physical channels correspond to different transport blocks TB;
  • At least two of the S physical channels correspond to different TBs.
  • the first device includes a terminal device
  • the second device includes a network device
  • the first device includes a first terminal device
  • the second device includes a second terminal device.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell In the first direction, “uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 8 is a schematic block diagram of a first device 300 according to an embodiment of the present application.
  • the first device 300 may include:
  • a receiving unit 310 configured to receive first control information sent by a second device, where the first control information is used to schedule transmission of S physical channels, and at least one physical channel in the S physical channels corresponds to the first physical channel group or the first feedback bit group, the first physical channel group or the first feedback bit group corresponds to the first HARQ-ACK codebook for HARQ-ACK, and the first HARQ-ACK codebook corresponds to the first feedback resource, the first control information corresponds to the first control information format, and the maximum number of physical channel transmissions scheduled by the first control information format is M, where M is a positive integer greater than or equal to 2, and S is greater than or equal to 1 and a positive integer less than or equal to M;
  • the sending unit 320 is configured to send the first HARQ-ACK codebook through the first feedback resource.
  • the first physical channel group includes N physical channels, where N is a positive integer greater than or equal to 1; and/or, N is a positive integer less than or equal to M.
  • the first feedback bit group includes feedback bits of N physical channels, where N is a positive integer greater than or equal to 1; and/or, N is a positive integer less than or equal to M .
  • the first device is configured in a space division bundling feedback manner, and each of the N physical channels corresponds to 1 bit of feedback information.
  • S is less than or equal to N; the feedback bit positions of the first S physical channels in the feedback bit positions corresponding to the first physical channel group are respectively the feedback bit positions of the S physical channels or, the feedback bit positions of the first S physical channels in the feedback bit positions of the first feedback bit group are respectively the feedback bit positions of the S physical channels.
  • S is greater than N; the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is the binding of at least two physical channels in the S physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the feedback bit position after bundling at least two physical channels in the S physical channels .
  • S is greater than (K-1)*N and less than or equal to K*N, and K is a positive integer; the feedback of one physical channel in the feedback bit positions corresponding to the first physical channel group The bit position is the feedback bit position after binding of K physical channels in the S physical channels; or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the S The feedback bit positions of the K physical channels in the physical channels after bundling.
  • M is greater than N; the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is the binding of at least two physical channels in the M physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the feedback bit position after bundling at least two physical channels in the M physical channels .
  • the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is Ceil (M/N) physical channel bonding among the M physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is after Ceil (M/N) physical channels in the M physical channels are bound
  • Ceil() means round up.
  • the at least two physical channels are K physical channels, and the value of K is predefined, or the value of K is determined according to a predefined rule, or the The value of K is configured by the second device.
  • the feedback information of all the physical channels in the at least two physical channels is ACK feedback information
  • the feedback information of the at least two physical channels is ACK information
  • the feedback information of the at least two physical channels is NACK.
  • the value of N is predefined, or the value of N is determined according to a predefined rule, or the value of N is configured by the second device .
  • the receiving unit 310 is further configured to:
  • Receive second control information sent by the second device the second control information is not used for scheduling physical channel transmission; the second control information corresponds to a second feedback bit group and the second feedback bit group corresponds to the first A HARQ-ACK codebook; and/or, the second control information corresponds to the first control information format and the second control information corresponds to the first HARQ-ACK codebook.
  • the second control information is used to release the semi-persistent scheduling configuration, or the second control information is used to activate or deactivate the dormant state of the secondary cell.
  • the first control information includes first scheduling count information; the first scheduling count information is used to indicate:
  • the first control information includes first scheduling total information; the first scheduling total information is used to indicate:
  • the first control information includes a first group of identification indication information, and the first group of identification indication information indicates the first group, wherein all physical channels in the S physical channels correspond to the first group; or at least one physical channel in the S physical channels corresponds to the first group.
  • the first control information further includes first scheduling count information; the first scheduling count information is used to indicate:
  • the first control information further includes first scheduling total information; the first scheduling total information is used to indicate:
  • the first control information further includes second scheduling total information; the second scheduling total information is used to indicate the corresponding first control information transmitted within the HARQ feedback window up to the first control information.
  • the first scheduling count information includes downlink allocation indication count C-DAI information and/or sideline allocation indication count C-SAI information.
  • the first scheduling total number information includes downlink allocation indication total number T-DAI information and/or sideline allocation indication total number T-SAI information.
  • the receiving unit 310 is further configured to:
  • the maximum number of physical channel transmissions scheduled by the information format is not M;
  • the third control information corresponds to a second HARQ-ACK codebook, and the second HARQ-ACK codebook is different from the first HARQ-ACK codebook.
  • the interpretation mode of the information field in the first control information is determined according to high-level parameters configured by the network device, or the interpretation mode of the information field in the first control information is preset , or the interpretation method of the information field in the first control information is associated with the format of the first control information, or the interpretation method of the information field in the first control information is related to the physical The maximum number of channels to associate with.
  • At least one physical channel in the S physical channels includes all physical channels in the S physical channels; or at least one physical channel in the S physical channels includes the The first physical channel among the S physical channels, wherein the time interval between the first physical channel and the first feedback resource satisfies the processing sequence.
  • the time interval between the first physical channel and the first feedback resource satisfying the processing sequence includes: an end position of the first physical channel and a start of the first feedback resource.
  • the time interval between the start positions satisfies the processing sequence, or the time interval between the end position of the first physical channel and the start position of the first feedback resource is greater than or equal to a preset value.
  • the time domain position of the first feedback resource is determined according to a first value in a HARQ feedback timing set, wherein the HARQ feedback timing set includes at least two values and the The HARQ feedback timing indication information included in the first control information indicates the first value; or the HARQ feedback timing set only includes the first value and the first control information does not include the HARQ feedback timing indication information.
  • the first value is K1, where K1 is greater than or equal to 0, and the time slot where the first feedback resource is located is determined based on one of the following methods:
  • the end position of the last physical channel in the S physical channels is in time slot n, and the first feedback resource is in time slot n+K1;
  • the first feedback resource is in time slot n+K1;
  • the end position of the first control information is in time slot n, and the first feedback resource is in time slot n+K1.
  • At least two physical channels in the M physical channels correspond to different transport blocks TB; or when S is greater than or equal to 2, at least two physical channels in the S physical channels Channels correspond to different TBs.
  • the first device includes a terminal device, and the second device includes a network device; or, the first device includes a first terminal device, and the second device includes a second terminal device .
  • FIG. 9 is a schematic block diagram of a second device 400 according to an embodiment of the present application.
  • the second device 400 may include:
  • the sending unit 410 is configured to send first control information to the first device, where the first control information is used to schedule transmission of S physical channels, and at least one physical channel in the S physical channels corresponds to the first physical channel group or The first feedback bit group, the first physical channel group or the first feedback bit group corresponds to the first HARQ-ACK codebook for HARQ-ACK acknowledgement, and the first HARQ-ACK codebook corresponds to the first feedback resource , the first control information corresponds to the first control information format, and the maximum number of physical channel transmissions scheduled by the first control information format is M, where M is a positive integer greater than or equal to 2, and S is greater than or equal to 1 A positive integer less than or equal to M;
  • a receiving unit 420 configured to receive the first HARQ-ACK codebook through the first feedback resource.
  • the first physical channel group includes N physical channels, where N is a positive integer greater than or equal to 1; and/or, N is a positive integer less than or equal to M.
  • the first feedback bit group includes feedback bits of N physical channels, where N is a positive integer greater than or equal to 1; and/or, N is a positive integer less than or equal to M .
  • the first device is configured in a space division bundling feedback manner, and each of the N physical channels corresponds to 1 bit of feedback information.
  • S is less than or equal to N; the feedback bit positions of the first S physical channels in the feedback bit positions corresponding to the first physical channel group are respectively the feedback bit positions of the S physical channels or, the feedback bit positions of the first S physical channels in the feedback bit positions of the first feedback bit group are respectively the feedback bit positions of the S physical channels.
  • S is greater than N; the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is the binding of at least two physical channels in the S physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the feedback bit position after bundling at least two physical channels in the S physical channels .
  • S is greater than (K-1)*N and less than or equal to K*N, and K is a positive integer; the feedback of one physical channel in the feedback bit positions corresponding to the first physical channel group The bit position is the feedback bit position after binding of K physical channels in the S physical channels; or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the S The feedback bit positions of the K physical channels in the physical channels after bundling.
  • M is greater than N; the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is the binding of at least two physical channels in the M physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is the feedback bit position after bundling at least two physical channels in the M physical channels .
  • the feedback bit position of one physical channel in the feedback bit positions corresponding to the first physical channel group is Ceil (M/N) physical channel bonding among the M physical channels or, the feedback bit position of one physical channel in the feedback bit positions in the first feedback bit group is after Ceil (M/N) physical channels in the M physical channels are bound
  • Ceil() means round up.
  • the at least two physical channels are K physical channels, and the value of K is predefined, or the value of K is determined according to a predefined rule, or the The value of K is configured by the second device.
  • the feedback information of all the physical channels in the at least two physical channels is ACK feedback information
  • the feedback information of the at least two physical channels is ACK information
  • the feedback information of the at least two physical channels is NACK.
  • the value of N is predefined, or the value of N is determined according to a predefined rule, or the value of N is configured by the second device .
  • the sending unit 410 is further configured to:
  • the second control information is not used for scheduling physical channel transmission;
  • the second control information corresponds to a second feedback bit group and the second feedback bit group corresponds to the first HARQ-ACK codebook; and/or, the second control information corresponds to the first control information format and the second control information corresponds to the first HARQ-ACK codebook.
  • the second control information is used to release the semi-persistent scheduling configuration, or the second control information is used to activate or deactivate the dormant state of the secondary cell.
  • the first control information includes first scheduling count information; the first scheduling count information is used to indicate:
  • the first control information includes first scheduling total information; the first scheduling total information is used to indicate:
  • the first control information includes a first group of identification indication information, and the first group of identification indication information indicates the first group, wherein all physical channels in the S physical channels correspond to the first group; or at least one physical channel in the S physical channels corresponds to the first group.
  • the first control information further includes first scheduling count information; the first scheduling count information is used to indicate:
  • the first control information further includes first scheduling total information; the first scheduling total information is used to indicate:
  • the first control information further includes second scheduling total information; the second scheduling total information is used to indicate the corresponding first control information transmitted within the HARQ feedback window up to the first control information.
  • the first scheduling count information includes downlink allocation indication count C-DAI information and/or sideline allocation indication count C-SAI information.
  • the first scheduling total number information includes downlink allocation indication total number T-DAI information and/or sideline allocation indication total number T-SAI information.
  • the sending unit 410 is further configured to:
  • the maximum number of format scheduling physical channel transmissions is not M;
  • the third control information corresponds to a second HARQ-ACK codebook, and the second HARQ-ACK codebook is different from the first HARQ-ACK codebook.
  • the interpretation mode of the information field in the first control information is determined according to high-level parameters configured by the network device, or the interpretation mode of the information field in the first control information is preset , or the interpretation method of the information field in the first control information is associated with the format of the first control information, or the interpretation method of the information field in the first control information is related to the physical The maximum number of channels to associate with.
  • At least one physical channel in the S physical channels includes all physical channels in the S physical channels; or at least one physical channel in the S physical channels includes the The first physical channel among the S physical channels, wherein the time interval between the first physical channel and the first feedback resource satisfies the processing sequence.
  • the time interval between the first physical channel and the first feedback resource satisfying the processing sequence includes: an end position of the first physical channel and a start of the first feedback resource.
  • the time interval between the start positions satisfies the processing sequence, or the time interval between the end position of the first physical channel and the start position of the first feedback resource is greater than or equal to a preset value.
  • the time domain position of the first feedback resource is determined according to a first value in a HARQ feedback timing set, wherein the HARQ feedback timing set includes at least two values and the The HARQ feedback timing indication information included in the first control information indicates the first value; or the HARQ feedback timing set only includes the first value and the first control information does not include the HARQ feedback timing indication information.
  • the first value is K1, where K1 is greater than or equal to 0, and the time slot where the first feedback resource is located is determined based on one of the following methods:
  • the end position of the last physical channel in the S physical channels is in time slot n, and the first feedback resource is in time slot n+K1;
  • the first feedback resource is in time slot n+K1;
  • the end position of the first control information is in time slot n, and the first feedback resource is in time slot n+K1.
  • At least two physical channels in the M physical channels correspond to different transport blocks TB; or when S is greater than or equal to 2, at least two physical channels in the S physical channels Channels correspond to different TBs.
  • the first device includes a terminal device, and the second device includes a network device; or, the first device includes a first terminal device, and the second device includes a second terminal device .
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the first device 300 shown in FIG. 8 may correspond to a corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the units in the first device 300 are for the purpose of realizing the Corresponding processes in each method in 2.
  • the second device 400 shown in FIG. 9 may correspond to the corresponding subject in executing the method 200 of the embodiments of the present application, and the foregoing and Other operations and/or functions are to implement the corresponding processes in each method in FIG. 2 ; for brevity, details are not described here.
  • the steps of the method embodiments in the embodiments of the present application may be completed by an integrated logic circuit of hardware in the processor and/or instructions in the form of software, and the steps of the methods disclosed in combination with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 10 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 may include a processor 510 .
  • the processor 510 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 500 may further include a memory 520 .
  • the memory 520 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530 .
  • the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of the antennas may be one or more.
  • each component in the communication device 500 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 500 may be the first device of this embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first device in each method of the embodiments of the present application, that is, the present application implements
  • the communication device 500 of the example may correspond to the first device 300 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method according to the embodiment of the present application, wherein the transceiver 503 may correspondingly implement the first device 300 at this time.
  • the communication device 500 may be the second device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the second device in each method of the embodiment of the present application. That is to say, the communication device 500 in the embodiment of the present application may correspond to the second device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method according to the embodiment of the present application, wherein the transceiver 530 at this time.
  • the operations and/or functions implemented by the sending unit 410 and the receiving unit 420 in the second device 400 may be correspondingly implemented, and for the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of a chip 600 according to an embodiment of the present application.
  • the chip 600 includes a processor 610 .
  • the processor 610 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be used to store instruction information, and may also be used to store codes, instructions and the like executed by the processor 610 .
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip 600 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods in the embodiments of the present application, and can also implement the various methods in the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or rewritable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs comprising instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the methods of the method embodiments .
  • the computer-readable storage medium can be applied to the first device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the second device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiments of the present application. For brevity, It is not repeated here.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the first device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first device in each method of the embodiments of the present application.
  • the computer program product can be applied to the second device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiments of the present application. For brevity, here No longer.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When executed by a computer, it enables the computer to perform the method of the method embodiment.
  • the computer program can be applied to the first device in the embodiment of the present application, and when the computer program is run on the computer, the computer is made to execute the corresponding processes implemented by the first device in each method of the embodiment of the present application, For brevity, details are not repeated here.
  • the computer program can be applied to the second device in the embodiments of the present application, and when the computer program is run on the computer, the computer is made to execute the corresponding processes implemented by the second device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • an embodiment of the present application also provides a communication system, and the communication system may include the above-mentioned first device and second device to form a communication system as shown in FIG. 1 , which is not repeated here for brevity .
  • the terms “system” and the like herein may also be referred to as “network management architecture” or “network system” and the like.
  • a software functional unit If implemented in the form of a software functional unit and sold or used as a stand-alone product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , which includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法和设备。方法包括:第一设备接收第一控制信息,第一控制信息用于调度S个物理信道传输,S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,第一物理信道组或第一反馈比特组对应第一HARQ-ACK码本,第一HARQ-ACK码本对应第一反馈资源,第一控制信息对应第一控制信息格式,第一控制信息格式调度物理信道传输的最大个数为M,M≥2,1≤S≤M;第一设备通过第一反馈资源发送第一HARQ-ACK码本。将第一控制信息对应的第一控制信息格式构造为调度物理信道传输的最大个数为M,完善了调度PDSCH的方式,能够提升系统性能。此外,能够降低对终端设备的能力要求。

Description

无线通信方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和设备。
背景技术
在高频系统中,由于子载波间隔较大,因此每个时隙占用的时间长度较短。如果延用低频系统中的基于每个时隙调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的方式,会要求终端设备在每个时隙都要检测物理下行控制信道(Physical Downlink Control Channel,PDCCH),从而要求终端设备具有较强的处理能力。
因此,本领域急需针对高频系统完善调度PDSCH的方式,以提升系统性能。
发明内容
本申请实施例提供一种无线通信方法和设备,针对高频系统,通过完善调度PDSCH的方式,能够提升系统性能。
第一方面,提供了一种无线通信方法,包括:
第一设备接收第二设备发送的第一控制信息,所述第一控制信息用于调度S个物理信道传输,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本对应第一反馈资源,所述第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,S为大于或等于1且小于或等于M的正整数;
所述第一设备通过所述第一反馈资源发送所述第一HARQ-ACK码本。
第二方面,提供了一种无线通信方法,包括:
第二设备向第一设备发送第一控制信息,所述第一控制信息用于调度S个物理信道传输,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本对应第一反馈资源,所述第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,S为大于或等于1且小于或等于M的正整数;
所述第一设备通过所述第一反馈资源接收所述第一HARQ-ACK码本。
第三方面,提供了一种第一设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种第二设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种第一设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种第二设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,将所述第一控制信息对应的第一控制信息格式构造为调度物理信道传输的最大个数为M,完善了调度PDSCH的方式,能够提升系统性能。特别是针对高频系统,能够降低对终端设备的能力要求。此外,由于第一控制信息用于调度S个物理信道传输,将所述S个物理信道中的 至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一HARQ-ACK码本,进而通过所述第一反馈资源发送所述第一HARQ-ACK码本,能够确保所述第一设备对所述第一控制信息调度的物理信道进行HARQ-ACK反馈,保证了通信质量。
附图说明
图1是本申请实施例应用的一种通信系统架构的示例。
图2是本申请实施例提供的Type-2 HARQ-ACK码本反馈下的C-DAI信息的示例。
图3是本申请实施例提供的一个控制信息调度多个物理信道的示例。
图4是本申请实施例提供的无线通信方法的示意性流程图。
图5是本申请实施例提供的单载波场景下多个控制信息调度的物理信道的示例。
图6是本申请实施例提供的多载波场景下多个控制信息调度的物理信道的示例。
图7是本申请实施例提供的对应第一DCI格式且不调度物理信道的控制信息的反馈的示例。
图8是本申请实施例提供的第一设备的示意性框图。
图9是本申请实施例提供的第二设备的示意性框图。
图10是本申请实施例提供的通信设备的示意性框图。
图11是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、 工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
可选地,在本申请实施例中,指示信息或配置信息包括物理层信令例如下行控制信息(Downlink Control Information,DCI)、系统消息(System Information,SI)、无线资源控制(Radio Resource Control, RRC)信令和媒体接入控制控制单元(Media Access Control Control Element,MAC CE)中的至少一种。
可选地,在本申请实施例中,高层参数或高层信令包括无线资源控制RRC信令和媒体接入控制单元MAC CE中的至少一种。
可选地,在本申请实施例中,"预设"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预设的可以是指协议中定义的。
可选地,在本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
NR系统的研究目前主要考虑两个频段,频率范围1(Frequency range 1,FR1)和频率范围2(Frequency range 2,FR2),其中,FR1和FR2包括的频域范围如表1所示。
表1:频段定义
频段定义 对应频段范围
FR1 410MHz–7.125GHz
FR2 24.25GHz–52.6GHz
随着NR系统的演进,新的频段即高频上的技术也开始进行研究。新频段包括的频域范围如表2所示,为便于描述,本申请中用FRX表示,应理解,该频段名称不应构成任何限定。例如,FRX可以为FR3。
表2:新频段范围
频段定义 对应频段范围
FRX 52.6GHz–71GHz
FRX频段中包括授权频谱,也包括非授权频谱。或者说,FRX频段中包括非共享频谱,也包括共享频谱。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。又例如,为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过一定时间长度。又例如,为了避免在非授权频谱的信道上传输的信号的功率太大,影响该信道上的其他重要信号的传输,通信设备使用非授权频谱的信道进行信号传输时需要遵循不超过最大功率谱密度的限制。
FRX频段考虑的子载波间隔可以比FR2的子载波间隔更大,目前的候选子载波间隔包括以下几种中的至少一种:240kHz、480kHz、960kHz。作为示例,这些候选子载波间隔下对应的参数集(Numerology)如下表3所示。
表3:候选子载波间隔对应的参数集
子载波间隔 符号长度 NCP长度 ECP长度 符号带NCP长度 时隙长度
240kHz 4.16μs 0.292μs 1.04μs 4.452μs 62.5μs
480kHz 2.08μs 0.146μs 0.52μs 2.226μs 31.25μs
960kHz 1.04μs 0.073μs 0.26μs 1.113μs 15.625μs
下面对NR系统中的动态码本反馈进行介绍。
对于有下行业务的终端设备,网络设备可以通过携带下行授权的DCI为终端设备调度PDSCH的传输。其中,该下行授权DCI中包括PUCCH资源的指示信息,终端设备在收到PDSCH后,将该PDSCH的译码结果(ACK或NACK信息)通过该PUCCH资源反馈给网络设备。其中,在NR系统中支持动态确定HARQ反馈时序。网络设备通过DCI调度终端设备进行PDSCH接收,其中,该DCI中包括用于传输该PDSCH对应的HARQ-ACK的PUCCH资源的指示信息。
具体地,该指示信息可以包括:
PUCCH资源指示(PUCCH resource indicator):用于确定PUCCH资源;
HARQ反馈时序指示(PDSCH-to-HARQ_feedback timing indicator):用于动态确定HARQ反馈资源的时域位置例如HARQ反馈资源的时隙,通常用K1表示。其中,该HARQ反馈时序指示信息用于指示HARQ反馈时序集合中的取值。HARQ反馈时序集合可以是预设的或网络设备配置的。作 为示例,HARQ反馈时序指示信息包括3比特,该HARQ反馈时序指示信息为000时,指示HARQ反馈时序集合中的第一个值,该HARQ反馈时序指示信息为001时,指示HARQ反馈时序集合中的第二个值,等等。其中,如果HARQ反馈时序指示信息指示HARQ反馈时序集合中的无效K1(例如指示的K1值为-1),则表示PUCCH资源所在的时隙暂不确定。
终端设备在进行HARQ-ACK反馈时包括半静态码本反馈和动态码本反馈。例如半静态码本反馈可以是Type-1 HARQ-ACK码本反馈或Type-3 HARQ-ACK码本反馈,动态码本反馈可以是Type-2或eType-2 HARQ-ACK码本反馈。
如果终端设备被配置了Type-2 HARQ-ACK码本反馈,Type-2 HARQ-ACK码本中包括一个HARQ-ACK反馈窗口内的被调度的PDSCH对应的HARQ-ACK信息。其中,调度PDSCH的DCI格式中包括下行分配指示(Downlink assignment index,DAI)信息域:
DAI计数(counter DAI,C-DAI)信息,该C-DAI信息用于指示当前DCI调度的下行传输是HARQ反馈窗口内的第几个下行传输,其中,C-DAI信息的排序方式是根据PDCCH的检测机会顺序排序的。
在一些情况下,例如载波聚合的场景,DCI中还可以包括:
DAI总数(total DAI,T-DAI)信息,该T-DAI信息用于指示HARQ反馈窗口内截止到当前DCI调度为止一共包括多少个下行传输。
其中,HARQ反馈窗口是根据HARQ反馈时序集合确定的。
如果终端设备被配置了eType-2 HARQ-ACK码本反馈(enhanced Dynamic HARQ-ACK codebook),eType-2 HARQ-ACK码本中至少包括被调度的一个组内的PDSCH对应的HARQ-ACK信息。网络设备可以对调度的PDSCH进行分组,并通过显式信令指示PDSCH的分组信息,以使终端设备在接收到PDSCH后根据不同的分组进行对应的HARQ-ACK反馈。在eType-2码本反馈中,终端设备最多可以被配置两个PDSCH组。
为了支持eType-2码本生成和反馈,调度PDSCH的DCI格式中包括如下信息域:
PDSCH组标识指示:用于指示当前DCI调度的PDSCH所属的信道组。其中,该PDSCH组标识指示的PDSCH组称为调度组,不是该PDSCH组标识指示的另一个PDSCH组称为非调度组。
新反馈指示(New feedback indicator,NFI):用于指示调度组对应的HARQ-ACK信息的起始位置。如果NFI信息发生翻转,则表示当前调度组对应的HARQ-ACK码本重置(或者说对应HARQ反馈窗口的起点)。
C-DAI信息:用于指示当前DCI调度的下行传输是HARQ反馈窗口内对应调度组的第几个下行传输,其中,C-DAI信息的排序方式是根据PDCCH的检测机会顺序排序的。
在一些情况下,例如载波聚合的场景,还可以包括:
T-DAI信息:用于指示HARQ反馈窗口内截止到当前DCI调度为止一共包括多少个对应调度组的下行传输。
反馈请求组个数指示:用于指示需要反馈一个PDSCH组或两个PDSCH组对应的HARQ-ACK信息。其中,如果反馈请求组个数信息域设置为0,那么终端设备需要进行当前调度组的HARQ-ACK反馈;如果反馈请求组个数信息域设置为1,那么终端设备需要进行两个组即调度组和非调度组的HARQ-ACK反馈。
在终端设备被配置eType-2码本反馈方式下,由于终端设备最多可以反馈两个PDSCH组对应的HARQ-ACK信息,为了使反馈的码本更准确,网络设备还可以通过高层参数在DCI格式中为终端设备配置用于生成非调度组的HARQ-ACK码本的指示信息:
非调度组的NFI:用于和非调度组的PDSCH组标识联合指示HARQ反馈窗口内非调度组对应的HARQ-ACK码本。
非调度组的T-DAI:用于指示HARQ反馈窗口内非调度组中包括的HARQ-ACK信息的总数。
其中,HARQ反馈窗口是根据NFI信息、HARQ反馈时序集合和PUCCH资源中的至少一项确定的。
基于上述DCI中的信息域,终端设备可以动态生成eType-2码本并进行HARQ-ACK信息的传输。
图2是本申请实施例提供的一个Type-2 HARQ-ACK码本反馈下C-DAI指示的示例。
如图2所示,如果终端设备在时隙n-3上收到的DCI中的K1为3且C-DAI=1且该DCI调度PDSCH1;在时隙n-2上收到的DCI中的K1为2且C-DAI=2且该DCI调度PDSCH2;在时隙n-1上收到的DCI中的K1为1且C-DAI=3且该DCI调度PDSCH3。即上述DCI中包括的HARQ反馈时序指示信息K1均指示反馈时间单元为时隙n,终端设备根据收到的C-DAI信息,可以确定PDSCH1、PDSCH2和PDSCH3分别是HARQ反馈窗口内的第1、2、3个下行传输。相应地,终端设备在时隙n上的PUCCH1上反馈的HARQ-ACK码本中依次包括PDSCH1的译码结果、PDSCH2的译码结果和 PDSCH3的译码结果。
下面结合表4和表5对下行传输个数进行说明。其中,表4示出了调度下行的DCI中的C-DAI信息或T-DAI信息包括2比特时,指示第几个下行传输或指示下行传输个数的示意表格。表5示出了调度下行的DCI中的C-DAI信息包括1比特时,指示第几个下行传输或指示下行传输个数的示意表格。其中,LSB表示低位比特(Least Significant Bit,LSB),MSB表示高位比特(most significant bits,MSB)。
表4
Figure PCTCN2021074732-appb-000001
如表4所示,C-DAI信息的取值范围为1到4,该终端设备根据该C-DAI信息和下行传输的接收情况确定C-DAI的取值对应第几个下行传输。例如,第1个下行传输,C-DAI=1;第2个下行传输,C-DAI=2;第3个下行传输,C-DAI=3;第4个下行传输,C-DAI=4;第5个下行传输,C-DAI=1;第6个下行传输,C-DAI=2;第7个下行传输,C-DAI=3;第8个下行传输,C-DAI=4;以此类推。其中,mod表示求余。
表5
Figure PCTCN2021074732-appb-000002
如表5所示,C-DAI信息的取值范围为0到1,该终端设备根据该C-DAI信息和下行传输的接收情况确定C-DAI的取值对应第几个下行传输。例如,第1个下行传输,C-DAI=1;第2个下行传输,C-DAI=2;第3个下行传输,C-DAI=1;第4个下行传输,C-DAI=2;以此类推。
在高频系统中,由于子载波间隔较大,因此每个时隙占用的时间长度较短。如果延用低频系统中每个时隙进行PDSCH调度的方式,会要求终端设备在每个时隙都要检测PDCCH,从而要求终端设备具有较强的处理能力。为了减少对终端设备的处理能力要求,可以考虑引入一个DCI调度多个物理信道的调度方式。
以下行传输为例,网络设备可以使用一个DCI调度至少两个物理信道例如PDSCH传输,或使用一个DCI激活至少两个下行资源用于至少两个物理信道传输(其中,该至少两个下行资源可以属于相同的SPS资源配置,也可以属于不同的SPS资源配置)。该至少两个物理信道包括第一物理信道和第二物理信道。第一物理信道和第二物理信道可以用于传输不同的传输块TB,或第一物理信道和第二物理信道可以用于传输相同的TB。
图3是本申请实施例提供的一个控制信息调度多个物理信道的示例。
如图3所示,网络设备可以使用DCI0调度4个PDSCH传输,该4个PDSCH包括PDSCH0、PDSCH1、PDSCH2和PDSCH3。PDSCH0、PDSCH1、PDSCH2和PDSCH3分别用于传输不同的TB。
在高频系统中,如果引入一个DCI调度多个物理信道的调度方式,当终端设备收到调度多个物理信道的DCI时,如何理解DCI中的收到的信息,以及如何根据该DCI对收到的该多个物理信道进行HARQ-ACK反馈,也是本申请要解决的问题。
图4示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由第一设备和第二设备交互执行。
如图4所示,所述方法200可包括:
S210,第一设备接收第二设备发送的第一控制信息,所述第一控制信息用于调度S个物理信道传输,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本对应第一反馈资源,所述第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,S为大于或等于1且小于或等于M的正整数;
S220,所述第一设备通过所述第一反馈资源发送所述第一HARQ-ACK码本。
基于以上技术方案,所述第一控制信息对应的第一控制信息格式支持调度物理信道传输的最大个 数为M,可以使终端设备在不是每个时隙都监测PDCCH的情况下,也能保证每个时隙上都可以被调度该终端设备的下行传输,完善了调度PDSCH的方式,能够提升系统性能。特别是针对高频系统,能够降低对终端设备监测PDCCH的能力要求。此外,由于第一控制信息用于调度S个物理信道传输,将所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一HARQ-ACK码本,进而通过所述第一反馈资源发送所述第一HARQ-ACK码本,能够确保所述第一设备对所述第一控制信息调度的物理信道进行HARQ-ACK反馈,保证了通信质量。
可选地,所述至少一个物理信道包括物理下行共享信道(Physical Downlink Shared Channel,PDSCH),所述第一设备包括终端设备,所述第二设备包括网络设备,所述第一控制信息包括下行控制信息(Downlink Control Information,DCI)。
可选地,所述至少一个物理信道包括侧行物理信道,所述第一设备包括第一终端设备,所述第二设备包括第二终端设备或网络设备。可选地,所述第一控制信息包括侧行控制信息或DCI。
可选地,所述第一控制信息用于调度S个物理信道传输,包括:第一控制信息为授权信息,该授权信息动态调度S个物理信道传输,或者,第一控制信息为半持续调度(Semi-Persistent Scheduling,SPS)配置激活信息,该激活信息激活S个物理信道传输。可选地,第一反馈资源包括上行资源。
例如,第一反馈资源包括物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源。
可选地,第一反馈资源包括侧行资源。例如,第一反馈资源包括物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)资源。
可选地,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,包括:所述S个物理信道中的所有物理信道对应所述第一物理信道组或第一反馈比特组。
可选地,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,包括:所述S个物理信道中的第一物理信道对应第一物理信道组或第一反馈比特组,其中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序。
可选地,所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的所有物理信道;或所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的第一物理信道,其中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序。
可选地,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序,包括:所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔满足处理时序,或者,所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔大于或等于预设值。
可选地,所述第一物理信道组或所述第一反馈比特组对应第一HARQ-ACK码本,包括:所述第一HARQ-ACK码本中包括所述第一物理信道组对应的HARQ-ACK信息或所述第一HARQ-ACK码本中包括所述第一反馈比特组对应的HARQ-ACK信息。
可选地,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一HARQ-ACK码本,包括:所述第一HARQ-ACK码本中包括所述S个物理信道中的至少一个物理信道对应的HARQ-ACK信息。
可选地,所述S个物理信道中的所有物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一HARQ-ACK码本,包括:所述第一HARQ-ACK码本中包括所述S个物理信道中的所有物理信道对应的HARQ-ACK信息。
可选地,所述第一控制信息包括第一DCI,所述第一DCI对应第一DCI格式。可选地,所述第一DCI格式包括DCI格式1_1和/或DCI格式1_2。可选地,所述第一DCI格式包括其他可以使用一个DCI调度多个PDSCH的DCI格式。例如DCI格式1_x。
本申请实施例中,网络设备可以使用一个控制信息例如DCI调度至少两个物理信道例如PDSCH传输,或可以使用一个控制信息例如DCI激活至少两个预配置资源例如下行资源用于至少两个物理信道例如SPS PDSCH传输。在配置动态码本反馈例如Type-2或eType-2的情况下,终端设备如何生成包括该至少一个物理信道对应的HARQ-ACK信息的第一HARQ-ACK码本,以对收到的该多个物理信道如何进行HARQ-ACK反馈,是本申请进一步要解决的技术问题。
可选的,所述至少两个预配置资源可以属于相同的SPS资源配置,也可以属于不同的SPS资源配置。
在本申请的一些实施例中,所述第一物理信道组包括N个物理信道,其中,N为大于或等于1的正整数;和/或,N为小于或等于M的正整数。
在本申请的一些实施例中,所述第一反馈比特组包括N个物理信道的反馈比特,其中,N为大于 或等于1的正整数;和/或,N为小于或等于M的正整数。例如,每个物理信道对应1比特反馈信息,则第一反馈比特组包括N个比特。又例如,每个物理信道对应2比特反馈信息,则第一反馈比特组包括2N个比特。
可选的,所述第一设备被配置为空分绑定反馈方式,所述N个物理信道中的每一个物理信道对应1比特反馈信息。例如,对于传输两个TB的一个物理信道,该两个TB对应的HARQ-ACK信息绑定为1比特反馈信息。具体地,如果两个TB均正确译码,则该1比特反馈信息为ACK;否则,该1比特反馈信息为NACK。
可选地,所述N的取值是预定义的,或所述N的取值是根据预定义规则确定的,或所述N的取值是所述第二设备配置的。
在本申请的一些实施例中,S小于或等于N;所述第一物理信道组对应的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置;或者,所述第一反馈比特组的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置。
在本申请的一些实施例中,S大于N;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,S大于(K-1)*N且小于或等于K*N,K为正整数;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置。
可选的,所述K个物理信道为相邻的K个物理信道。例如,所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的相邻K个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的相邻K个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,所述K个物理信道绑定后的反馈信息,包括:在所述K个物理信道中的所有物理信道的反馈信息为肯定应答ACK反馈信息的情况下,所述K个物理信道的反馈信息为ACK信息;和/或,在所述K个物理信道中存在反馈信息为否定应答NACK的物理信道的情况下,所述K个物理信道的反馈信息为NACK。
可选地,所述K的取值是预定义的,或所述K的取值是根据预定义规则确定的,或所述K的取值是所述第二设备配置的。例如,第二设备配置K为2。又例如,根据预定义规则确定K取值为1。
在本申请的一些实施例中,N的取值为M。
在本申请的一些实施例中,M大于N;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置。
可选地,M为N的整数倍。例如,M=8,N=4。又例如,M=16,N=4。所述第一反馈比特组对应的N个物理信道的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的(M/N)个物理信道的反馈比特位置。可选地,所述(M/N)个物理信道的反馈方式为绑定的反馈方式。
在本申请的一些实施例中,所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置,其中,Ceil()表示向上取整。
在本申请的一些实施例中,所述Ceil(M/N)个物理信道绑定后的反馈信息,包括:在所述Ceil(M/N)个物理信道中的所有物理信道的反馈信息为肯定应答ACK反馈信息的情况下,所述Ceil(M/N)个物理信道的反馈信息为ACK信息;和/或,在所述Ceil(M/N)个物理信道中存在反馈信息为否定应答NACK的物理信道的情况下,所述Ceil(M/N)个物理信道的反馈信息为NACK。
在本申请的一些实施例中,所述至少两个物理信道为K个物理信道,所述K的取值是预定义的,或所述K的取值是根据预定义规则确定的,或所述K的取值是所述第二设备配置的。
在本申请的一些实施例中,在所述至少两个物理信道中的所有物理信道的反馈信息为肯定应答ACK反馈信息的情况下,所述至少两个物理信道的反馈信息为ACK信息;和/或,在所述至少两个物理信道中存在反馈信息为否定应答NACK的物理信道的情况下,所述至少两个物理信道的反馈信 息为NACK。
在本申请的一些实施例中,所述N的取值是预定义的,或所述N的取值是根据预定义规则确定的,或所述N的取值是所述第二设备配置的。
在本申请的一些实施例中,所述方法200还可包括:
所述第一设备接收所述第二设备发送的第二控制信息,所述第二控制信息不用于调度物理信道传输;所述第二控制信息对应第二反馈比特组且所述第二反馈比特组对应所述第一HARQ-ACK码本;和/或,所述第二控制信息对应所述第一控制信息格式且所述第二控制信息对应所述第一HARQ-ACK码本。
可选的,所述第二控制信息用于释放半持续调度配置,或所述第二控制信息用于激活或去激活辅小区的休眠状态。
应理解,在一个控制信息可以动态调度多个物理信道的情况下,如果第一设备没有成功接收某个控制信息,由于第一设备不知道该被丢失的控制信息调度了几个物理信道,则该第一设备不能确定到底丢失了几个物理信道。因此,现有技术中的计数方式不再适用该新场景。需要进一步进行增强。在本申请中,将一次调度对应固定的物理信道个数或对应固定的反馈比特数(即本申请中的一个物理信道组或一个反馈比特组),当第一设备丢失了一次调度时,第一设备可以假设丢掉的物理信道个数为该固定的物理信道个数,从而可以避免收发设备对码本的大小产生歧义。作为示例,调度个数计数信息为C-DAI信息,C-DAI信息用于指示当前第一DCI调度的下行传输对应HARQ反馈窗口内的第几个物理信道组。
在本申请的一些实施例中,所述第一控制信息包括第一调度计数信息,所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内所述第二设备发送的物理信道组中的排序;或
所述第一反馈比特组在HARQ反馈窗口内的反馈比特组中的排序;或
所述第一控制信息在HARQ反馈窗口内所述第二设备发送的控制信息中的排序。
需要说明的是,本申请实施例中的所述第一物理信道组可以理解为所述S个物理信道虚拟化的物理信道组,即将所述S个物理信道虚拟化为包括N个物理信道的物理信道组。
可选的,所述第一调度计数信息与以下信息中的至少一种关联:第一物理信道组、所述第一反馈比特组或所述第一控制信息。
可选的,所述第一调度计数信息用于确定所述第一HARQ-ACK码本。
可选的,所述第一调度计数信息用于确定所述S个物理信道中的至少一个物理信道在所述第一HARQ-ACK码本中的位置。
可选的,在单载波情况下,所述第一调度计数信息还用于确定所述第一HARQ-ACK码本的大小。
换言之,可选地,在第一控制信息中包括第一调度计数信息的情况下,所述第一设备根据所述第一调度计数信息确定所述第一HARQ-ACK码本。例如,第一设备根据第一调度计数信息对HARQ反馈窗口内收到的物理信道组进行排序,并根据物理信道组的排序从小到大的顺序确定物理信道对应的HARQ-ACK信息在第一HARQ-ACK码本中的位置。
可选的,所述第一物理信道组在HARQ反馈窗口内所述第二设备发送的物理信道组中的排序,可以理解为:所述第一物理信道组是HARQ反馈窗口内传输的物理信道组中的第几个物理信道组。
可选的,所述第一反馈比特组在HARQ反馈窗口内的反馈比特组中的排序,可以理解为:所述第一反馈比特组是HARQ反馈窗口内传输的反馈比特组中的第几个反馈比特组。
可选的,所述第一控制信息在HARQ反馈窗口内所述第二设备发送的控制信息中的排序,可以理解为:所述第一控制信息是HARQ反馈窗口内所述第二设备发送的控制信息中的第几个控制信息。
作为示例,所述第一控制信息包括第一调度计数信息,所述第一调度计数信息用于指示:
第一物理信道组是HARQ反馈窗口内传输的物理信道组中的第几个物理信道组;或所述第一反馈比特组是HARQ反馈窗口内传输的反馈比特组中的第几个反馈比特组;或所述第一控制信息是HARQ反馈窗口内所述第二设备发送的控制信息中的第几个控制信息。
可选地,所述第一调度计数信息对应的物理信道组的排序方式是根据控制信道的检测机会顺序排序的。例如,和现有技术中PDCCH检测机会的排序方式一致。
可选地,第一调度计数信息对应的比特数大于或等于2比特。
作为示例,所述第一控制信息为第一DCI,所述第一调度计数信息为C-DAI信息,C-DAI信息对应2比特,C-DAI信息用于指示第一物理信道组是HARQ反馈窗口内传输的物理信道组中的第几个物理信道组。其中,物理信道组中包括N个物理信道。N取值是固定的。物理信道组也可称为下行传输组,即下行传输组包括N个下行传输。下面结合表6对所述第一DCI中的C-DAI信息进行说明。
表6
Figure PCTCN2021074732-appb-000003
如表6所示,C-DAI信息的取值范围为1到4,该终端设备根据该C-DAI信息和下行传输的接收情况确定C-DAI的取值对应第几个物理信道组。例如,当前第一DCI调度的下行传输对应第1个物理信道组,C-DAI=1,终端设备需要反馈N个下行传输对应的反馈信息;当前第一DCI调度的下行传输对应第2个物理信道组,C-DAI=2,终端设备需要反馈2*N个下行传输对应的反馈信息;当前第一DCI调度的下行传输对应第3个物理信道组,C-DAI=3,终端设备需要反馈3*N个下行传输对应的反馈信息;当前第一DCI调度的下行传输对应第4个物理信道组,C-DAI=4,终端设备需要反馈4*N个下行传输对应的反馈信息;当前第一DCI调度的下行传输对应第5个物理信道组,C-DAI=1,终端设备需要反馈5*N个下行传输对应的反馈信息;当前第一DCI调度的下行传输对应第6个物理信道组,C-DAI=2,终端设备需要反馈6*N个下行传输对应的反馈信息;等等,以此类推。
在本申请的一些实施例中,所述第一控制信息包括第一调度计数信息和第一指示信息;其中,所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内所述第二设备发送的物理信道组中的排序;或
所述第一反馈比特组在HARQ反馈窗口内的反馈比特组中的排序;
所述第一指示信息用于指示所述第一控制信息在HARQ反馈窗口内所述第二设备发送的控制信息中的排序。
在本申请的一些实施例中,所述第一控制信息包括第一调度总数信息;所述第一调度总数信息用于指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的物理信道组的总数;或
HARQ反馈窗口内截止到所述第一反馈比特组为止对应的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止所述第二设备发送的控制信息的总数。
可选地,所述第一调度总数信息与以下信息中的至少一种关联:第一物理信道组、所述第一反馈比特组或所述第一控制信息。
可选的,所述第一调度总数信息用于确定所述第一HARQ-ACK码本。
可选的,所述第一调度总数信息用于确定所述第一HARQ-ACK码本的大小。
换言之,在第一控制信息中包括第一调度总数信息的情况下,所述第一设备根据所述第一调度总数信息确定所述第一HARQ-ACK码本。例如,第一设备根据第一调度总数信息确定一共收到了多少个物理信道组,并根据物理信道组的个数确定第一HARQ-ACK码本的大小。
可选地,第一调度总数信息对应的比特数大于或等于2比特。
作为示例,第一调度总数信息为T-DAI信息,T-DAI信息对应2比特,T-DAI信息用于指示HARQ反馈窗口内截止到所述第一物理信道组为止传输的物理信道组的总数。其中,第一物理信道组中包括N个物理信道。N取值是固定的。
表7
Figure PCTCN2021074732-appb-000004
如表7所示,T-DAI信息的取值范围为1到4,该终端设备根据该T-DAI信息和下行传输的接收情况确定T-DAI的取值对应的物理信道组的总数。例如,截止到当前第一DCI调度的下行传输为止包括1个物理信道组,T-DAI=1,终端设备需要反馈N个下行传输对应的反馈信息;截止到当前第一DCI调度的下行传输为止包括2个物理信道组,T-DAI=2,终端设备需要反馈2*N个下行传输对应的反馈信息;截止到当前第一DCI调度的下行传输为止包括3个物理信道组,T-DAI=3,终端设备需要反馈3*N个下行传输对应的反馈信息;截止到当前第一DCI调度的下行传输为止包括4个下行传输,T-DAI=4,终端设备需要反馈4*N个下行传输对应的反馈信息;截止到当前第一DCI调度的下行传输 为止包括5个物理信道组,T-DAI=1,终端设备需要反馈5*N个下行传输对应的反馈信息;截止到当前第一DCI调度的下行传输为止包括6个下行传输,T-DAI=2,终端设备需要反馈6*N个下行传输对应的反馈信息;等等,以此类推。
在一些实施例中,以第一设备是终端设备为例。一个DCI对应的物理信道组中包括N个物理信道,或一个DCI对应的反馈比特组中包括N个物理信道对应的反馈比特。如果终端设备确定收到的DCI的个数为Q个,则终端设备确定该Q个DCI对应的HARQ-ACK码本的大小根据N和Q确定。可选地,所述一个DCI为一个对应第一DCI格式的DCI。
例如,如果一个物理信道对应1比特反馈信息,则终端设备确定该Q个DCI对应的HARQ-ACK码本的大小为N*Q。
又例如,如果一个物理信道对应2比特反馈信息,则终端设备确定该Q个DCI对应的HARQ-ACK码本的大小为2*N*Q。
在一些实施例中,终端设备根据DAI信息确定收到的DCI的个数。
例如,在单载波场景下,终端设备根据C-DAI信息确定收到的DCI的个数。
又例如,在多载波场景下,终端设备根据T-DAI信息确定收到的DCI的个数。
在本申请的一些实施例中,所述第一控制信息包括第一调度计数信息和第一调度总数信息;所述第一调度计数信息和所述第一调度总数信息用于联合指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的物理信道组的总数;或
HARQ反馈窗口内截止到所述第一反馈比特组为止对应的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止所述第二设备发送的控制信息的总数。
在本申请的一些实施例中,所述第一控制信息包括第一调度计数信息、第一调度总数信息和第一指示信息;其中,所述第一调度计数信息和所述第一调度总数信息用于联合指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的物理信道组的总数;或
HARQ反馈窗口内截止到所述第一反馈比特组为止对应的反馈比特组的总数;
所述第一指示信息用于指示所述第一控制信息在HARQ反馈窗口内所述第二设备发送的控制信息中的排序。
在本申请的一些实施例中,所述第一控制信息包括第一组标识指示信息,所述第一组标识指示信息指示第一组,其中,所述S个物理信道中的所有物理信道对应所述第一组;或所述S个物理信道中的至少一个物理信道对应所述第一组。
可选地,不同PDSCH组标识对应的第一物理信道组中包括的物理信道的个数是相同的。
可选地,不同PDSCH组标识对应的第一反馈比特组中包括的反馈比特数的大小是相同的。
在一些实施例中,以第一设备是终端设备为例。对于第一PDSCH组标识,一个DCI对应的物理信道组中包括N个物理信道,或一个DCI对应的反馈比特组中包括N个物理信道对应的反馈比特;对于第二PDSCH组标识,一个DCI对应的物理信道组中包括N个物理信道,或一个DCI对应的反馈比特组中包括N个物理信道对应的反馈比特。其中,如果终端设备确定第一PDSCH组标识对应的DCI的个数为Q1个,第二PDSCH组标识对应的DCI的个数为Q2个,则终端设备确定第一PDSCH组标识对应的HARQ-ACK码本的大小根据N和Q1确定,第二PDSCH组标识对应的HARQ-ACK码本的大小根据N和Q2确定。可选地,所述一个DCI为一个对应第一DCI格式的DCI。
例如,如果一个物理信道对应1比特反馈信息,则终端设备确定第一PDSCH组标识对应的HARQ-ACK码本的大小为N*Q1,第二PDSCH组标识对应的HARQ-ACK码本的大小为N*Q2。
又例如,如果一个物理信道对应2比特反馈信息,则终端设备确定第一PDSCH组标识对应的HARQ-ACK码本的大小为2*N*Q1,第二PDSCH组标识对应的HARQ-ACK码本的大小为2*N*Q2。
可选地,不同PDSCH组标识对应的第一物理信道组中包括的物理信道的个数是第二设备独立配置的。
可选地,不同PDSCH组标识对应的第一反馈比特组中包括的反馈比特数的大小是第二设备独立配置的。
在一些实施例中,对于第一PDSCH组标识,一个DCI对应的物理信道组中包括N1个物理信道,或一个DCI对应的反馈比特组中包括N1个物理信道对应的反馈比特;对于第二PDSCH组标识,一个DCI对应的物理信道组中包括N2个物理信道,或一个DCI对应的反馈比特组中包括N2个物理信道对应的反馈比特。其中,如果终端设备确定第一PDSCH组标识对应的DCI的个数为Q1个,第二PDSCH组标识对应的DCI的个数为Q2个,则终端设备确定第一PDSCH组标识对应的HARQ-ACK码本的大小根据N1和Q1确定,第二PDSCH组标识对应的HARQ-ACK码本的大小根据N2和Q2确定。可选地,所述一个DCI为一个对应第一DCI格式的DCI。
例如,如果一个物理信道对应1比特反馈信息,则终端设备确定第一PDSCH组标识对应的HARQ-ACK码本的大小为N1*Q1,第二PDSCH组标识对应的HARQ-ACK码本的大小为N2*Q2。
又例如,如果一个物理信道对应2比特反馈信息,则终端设备确定第一PDSCH组标识对应的HARQ-ACK码本的大小为2*N1*Q1,第二PDSCH组标识对应的HARQ-ACK码本的大小为2*N2*Q2。
在一些实施例中,终端设备根据DAI信息确定第一PDSCH组标识对应的DCI的个数,和/或,根据DAI信息确定第二PDSCH组标识对应的DCI的个数。
例如,在单载波场景下,终端设备根据C-DAI信息确定第一PDSCH组标识对应的DCI的个数,根据非调度组的T-DAI信息确定第二PDSCH组标识对应的DCI的个数。
又例如,在多载波场景下,终端设备根据T-DAI信息确定第一PDSCH组标识对应的DCI的个数,根据非调度组的T-DAI信息确定第二PDSCH组标识对应的DCI的个数。
可选地,所述S个物理信道中的至少一个物理信道对应所述第一组,包括:所述S个物理信道中的第一物理信道对应所述第一组,其中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序。
可选的,所述第一组标识指示信息用于确定所述第一HARQ-ACK码本。
可选的,所述第一控制信息中还包括NFI信息,所述NFI信息和所述第一组标识指示信息用于联合确定所述第一HARQ-ACK码本。
换言之,在第一控制信息中包括PDSCH组标识指示信息的情况下,所述第一设备根据所述第一组标识指示信息确定所述第一HARQ-ACK码本中对应第一组的HARQ-ACK码本。例如,第一组标识指示信息指示第一组物理信道,第一HARQ-ACK码本中包括第一组物理信道对应的HARQ-ACK信息。
在一种实现方式中,所述第一控制信息还包括第一调度计数信息;所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内传输的对应所述第一组的物理信道组中的排序;
所述第一反馈比特组在HARQ反馈窗口内传输的对应所述第一组的反馈比特组中的排序;或
所述第一控制信息在HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的排序。
可选的,所述第一调度计数信息用于确定所述第一HARQ-ACK码本。
可选的,所述第一调度计数信息用于确定所述S个物理信道中的至少一个物理信道在所述第一HARQ-ACK码本包括的对应第一组的HARQ-ACK码本中的位置。
可选的,在单载波情况下,所述第一调度计数信息还用于确定所述对应第一组的HARQ-ACK码本的大小。
换言之,在第一控制信息中包括第一调度计数信息和第一组标识指示信息的情况下,所述第一设备根据所述第一调度计数信息和所述第一组标识指示信息确定所述第一HARQ-ACK码本。例如,第一设备根据第一调度计数信息对HARQ反馈窗口内收到的属于第一组的物理信道组进行排序,并根据从小到大的顺序确定其中每个物理信道组对应的HARQ-ACK信息在第一HARQ-ACK码本包括的对应该第一组的HARQ-ACK码本中的位置。
可选的,所述第一物理信道组在HARQ反馈窗口内传输的对应所述第一组的物理信道组中的排序,可以理解为:所述第一物理信道组是HARQ反馈窗口内传输的对应所述第一组的物理信道组中的第几个物理信道组。
可选的,所述第一反馈比特组在HARQ反馈窗口内传输的对应所述第一组的反馈比特组中的排序,可以理解为:所述第一反馈比特组是HARQ反馈窗口内传输的对应所述第一组的反馈比特组中的第几个反馈比特组。
可选的,所述第一控制信息在HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的排序,可以理解为:所述第一控制信息是HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的第几个控制信息。
在另一种实现方式中,所述第一控制信息还包括第一调度计数信息和第一指示信息;其中,所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内传输的对应所述第一组的物理信道组中的排序;或
所述第一反馈比特组在HARQ反馈窗口内传输的对应所述第一组的反馈比特组中的排序;
所述第一指示信息用于指示所述第一控制信息在HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的排序。
在另一种实现方式中,所述第一控制信息还包括第一调度总数信息;所述第一调度总数信息用于 指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的对应所述第一组的物理信道组的总数;
HARQ反馈窗口内截止到所述第一反馈比特组为止对应所述第一组的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的对应所述第一组的控制信息的总数。
可选的,所述第一调度总数信息用于确定所述第一HARQ-ACK码本。
可选的,所述第一调度总数信息用于确定所述第一HARQ-ACK码本中对应第一组的HARQ-ACK码本的大小。
换言之,在第一控制信息中包括所述第一调度总数信息和所述第一组标识指示信息情况下,所述第一设备根据所述第一调度总数信息和所述第一组标识指示信息确定所述第一HARQ-ACK码本。例如,第一设备根据第一调度总数信息确定一共收到了属于第一组的多少个物理信道组,并根据物理信道组的个数确定第一HARQ-ACK码本中对应第一组的HARQ-ACK码本的大小。
在另一种实现方式中,所述第一控制信息还包括第二调度总数信息;所述第二调度总数信息用于指示HARQ反馈窗口内截止到所述第一控制信息为止传输的对应第二组的物理信道组的总数,其中,所述第二组与所述第一组为不同的组。
可选的,所述第二调度总数信息用于确定所述第二组的HARQ-ACK码本。
可选的,所述第二调度总数信息用于确定所述第一HARQ-ACK码本中对应第二组的HARQ-ACK码本的大小。
换言之,在所述第一控制信息中包括对应非调度组的第二调度总数信息的情况下,所述第一设备根据所述第二调度总数信息确定所述非调度组的HARQ-ACK码本。例如,第一设备根据第二调度总数信息确定一共收到了属于第二组的多少个物理信道组,并根据物理信道组的个数确定第一HARQ-ACK码本中对应第二组的HARQ-ACK码本的大小。
可选地,第二调度总数信息对应的比特数大于或等于2比特。
需要说明的是,这里的第一组和第二组是用于区别不同对象,不用于指示具体的组标识。例如,终端设备被配置两个组,分别为组1和组2,则第一组可以指组1或组2,对应地第二组可以指组2或组1。
在本申请的一些实施例中,所述第一控制信息还包括第一调度计数信息和第一调度总数信息;所述第一调度计数信息和所述第一调度总数信息用于联合指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的对应所述第一组的物理信道组的总数;
HARQ反馈窗口内截止到所述第一反馈比特组为止对应所述第一组的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的对应所述第一组的控制信息的总数。
在本申请的一些实施例中,所述第一控制信息还包括第一调度计数信息、第一调度总数信息和第一指示信息;其中,所述第一调度计数信息和所述第一调度总数信息用于联合指示:HARQ反馈窗口内截止到所述第一物理信道组为止传输的对应所述第一组的物理信道组的总数;或HARQ反馈窗口内截止到所述第一反馈比特组为止对应所述第一组的反馈比特组的总数;所述第一指示信息用于指示所述第一控制信息在HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的排序。
在本申请的一些实施例中,所述方法200还可包括:
所述第一设备接收所述第二设备发送的第三控制信息,所述第三控制信息对应第二控制信息格式,所述第二控制信息格式和所述第一控制信息格式不相同,或所述第二控制信息格式调度物理信道传输的最大个数不为M;所述第一设备确定所述第三控制信息对应第二HARQ-ACK码本,所述第二HARQ-ACK码本和所述第一HARQ-ACK码本不同。
在一些实施例中,所述第一控制信息格式包括DCI格式1_1。
在一些实施例中,所述第一控制信息格式不包括DCI格式1_0。也就是说,所述第一设备收到DCI格式1_1和DCI格式1_0的调度,所述第一设备在准备反馈时,DCI格式1_1和DCI格式1_0是独立反馈的。
下面结合具体示例进行说明。
假设对应第一DCI格式的一个DCI最多可以调度终端设备接收M=8个PDSCH。一个DCI关联4个PDSCH,其中每个PDSCH对应1比特HARQ-ACK信息,或者,一个DCI关联4比特HARQ-ACK信息。也就是说,N=4,或者,一个反馈比特组包括4比特HARQ-ACK信息。
图5是本申请实施例提供的单载波场景下多个控制信息调度的物理信道的示例。
如图5所示,针对单载波场景,假设网络设备使用DCI0调度6个PDSCH传输,使用DCI1调度 3个PDSCH传输,使用DCI2调度4个PDSCH传输。其中,DCI0、DCI1和DCI2均对应第一DCI格式。
在一种可选的实施例中,DCI中包括2比特的C-DAI信息,该C-DAI信息用于指示当前DCI调度的PDSCH对应HARQ反馈窗口内的第几个PDSCH组。相应地,DCI0中的C-DAI信息指示1,DCI1中的C-DAI信息指示2,DCI2中的C-DAI信息指示3。如果终端设备收到该3个DCI即DCI0,DCI1和DCI2,则该终端设备可以确定需要反馈3*N个PDSCH对应的反馈信息。
在一种可选的实施例中,反馈比特组对应的HARQ-ACK信息是根据调度的物理信道个数S确定的。如果S小于或等于N,则每个物理信道独立进行反馈;如果S大于N且S小于或等于2*N,则每相邻两个物理信道绑定后进行反馈;如果S大于2*N且S小于或等于3*N,则每相邻三个物理信道绑定后进行反馈;如果S大于3*N且S小于或等于4*N,则每相邻四个物理信道绑定后进行反馈,等等,以此类推。在该示例下,终端设备反馈的HARQ-ACK码本中包括如表8所示的信息:
表8
Figure PCTCN2021074732-appb-000005
在一种可选的实施例中,反馈比特组对应的HARQ-ACK信息是根据调度的物理信道个数的最大值M确定的。其中,每相邻K个物理信道绑定后进行反馈,K的取值是预定义的或网络设备配置的或根据预定义的规则确定的。例如,K=Ceil(M/N),Ceil()表示向上取整。在该示例下,终端设备反馈的HARQ-ACK码本包括如表9所示的信息:
表9
Figure PCTCN2021074732-appb-000006
图6是本申请实施例提供的多载波场景下多个控制信息调度的物理信道的示例。
如图6所示,针对多载波场景,假设在第一个PDCCH检测时隙上,网络设备在CC0上使用DCI0调度8个PDSCH传输,在CC1上使用DCI1调度6个PDSCH传输。在第二个PDCCH检测时隙上,网络设备在CC0上使用DCI2调度4个PDSCH传输,在CC1上使用DCI3调度8个PDSCH传输。在第三个PDCCH检测时隙上,网络设备在CC0上使用DCI4调度8个PDSCH传输,在CC1上使用DCI5调度2个PDSCH传输。其中,DCI0、DCI1、DCI2、DCI3、DCI4和DCI5均对应第一DCI格式。
在一种可选的实施例中,DCI中包括2比特的C-DAI信息和2比特T-DAI信息,该C-DAI信息用于指示当前DCI是HARQ反馈窗口内网络设备发送的第几个DCI,该T-DAI信息用于指示HARQ反馈窗口内截止到当前DCI为止网络设备发送的DCI的总数。相应地,DCI0中的C-DAI信息指示1,T-DAI信息指示2;DCI1中的C-DAI信息指示2,T-DAI信息指示2;DCI2中的C-DAI信息指示3,T-DAI信息指示4;DCI3中的C-DAI信息指示4,T-DAI信息指示4;DCI4中的C-DAI信息指示5,T-DAI信息指示6;DCI5中的C-DAI信息指示6,T-DAI信息指示6。在该示例中,如果终端设备连续丢掉4个及以上的DCI,则可能出现终端设备和网络设备对HARQ-ACK码本大小的理解不一致。
在一种可选的实施例中,反馈比特组对应的HARQ-ACK信息是根据调度的物理信道个数S确定的。如果S小于或等于N,则每个物理信道独立进行反馈;如果S大于N且S小于或等于2*N,则每相邻两个物理信道绑定后进行反馈;如果S大于2*N且S小于或等于3*N,则每相邻三个物理信 道绑定后进行反馈;如果S大于3*N且S小于或等于4*N,则每相邻四个物理信道绑定后进行反馈,等等,以此类推。在该示例下,终端设备反馈的HARQ-ACK码本包括如表10所示的信息:
表10
Figure PCTCN2021074732-appb-000007
在一种可选的实施例中,反馈比特组对应的HARQ-ACK信息是根据调度的物理信道个数的最大值M确定的。其中,每相邻K个物理信道绑定后进行反馈,K的取值是预定义的或网络设备配置的或根据预定义的规则确定的。例如,K=Ceil(M/N),Ceil()表示向上取整。在该示例下,终端设备反馈的HARQ-ACK码本包括如表11所示的信息:
表11
Figure PCTCN2021074732-appb-000008
图7是本申请实施例提供的对应第一DCI格式且不调度物理信道的控制信息的反馈的示例。
如图7所示的场景。网络设备使用DCI0调度6个PDSCH传输,使用DCI1释放SPS配置或指示辅小区的休眠或去休眠状态,使用DCI2调度4个PDSCH传输。其中,DCI0、DCI1和DCI2均对应第一DCI格式。
在一种可选的实施例中,DCI中包括2比特的C-DAI信息,该C-DAI信息用于指示当前DCI调 度的PDSCH对应HARQ反馈窗口内的第几个PDSCH组。相应地,DCI0中的C-DAI信息指示1,DCI1中的C-DAI信息指示2,DCI2中的C-DAI信息指示3。如果终端设备收到该3个DCI即DCI0,DCI1和DCI2,则需要反馈3*N个下行传输对应的反馈信息。
这里假设反馈比特组对应的HARQ-ACK信息是根据调度的物理信道个数的最大值M确定的。其中,每相邻K个物理信道绑定后进行反馈,K的取值是预定义的或网络设备配置的或根据预定义的规则确定的。例如,K=Ceil(M/N),Ceil()表示向上取整。
应理解,如果终端设备接收到DCI1,则终端设备可以确定DCI1对应的反馈信息为ACK信息。
在一种可选的实施例中,不调度物理信道的控制信息对应的HARQ-ACK信息占用N个物理信道中的第一个物理信道的反馈位置。在该示例下,终端设备反馈的HARQ-ACK码本包括如表12所示的信息:
表12
Figure PCTCN2021074732-appb-000009
在一种可选的实施例中,不调度物理信道的控制信息对应的HARQ-ACK信息在N个物理信道中的每个物理信道对应的反馈位置上重复发送。在该示例下,终端设备反馈的HARQ-ACK码本包括如表13所示的信息:
表13
Figure PCTCN2021074732-appb-000010
基于图5、图6和图7分析可见,本申请实施例提供的方案,能够尽可能的使得终端设备和网络设备对HARQ-ACK码本大小和HARQ-ACK码本排序的理解保持一致。另外,通过采用物理信道对应的HARQ-ACK信息绑定反馈的方法,可以减小HARQ-ACK反馈的开销。
下面对第一调度计数信息和第一调度总数信息的实现方式进行示例性说明。
在本申请的一些实施例中,所述第一调度计数信息包括下行分配指示计数(counter DAI,C-DAI)信息和/或侧行分配指示计数(counter sidelink assignment index,C-SAI)信息。
可选地,所述第一调度总数信息统计的物理信道总数是根据控制信道的检测机会顺序排序确定的。例如,和现有技术中PDCCH检测机会的排序方式一致。
可选地,所述第一调度总数信息统计的物理信道总数是根据所述第一控制信息调度的所述S个物理信道中的最后一个物理信道所在的时隙确定的。
可选地,所述第一调度总数信息统计的物理信道总数是根据所述第一控制信息调度的所述S个物理信道中的第一个物理信道所在的时隙确定的。
在本申请的一些实施例中,所述M值是所述第二设备或网络设备配置的,或所述M值是根据所述第二设备或所述网络设备配置的高层参数确定的,或所述M值是预设的。
换言之,一个控制信息可以调度的物理信道的最大个数是第二设备或网络设备配置的,或一个控制信息可以调度的物理信道的最大个数是预设的。例如,第一控制信息格式对应第一时域资源分配(Time domain resource assignment,TDRA)表格,第一TDRA表格中包括的可调度的物理信道的最大个数为M。
在本申请的一些实施例中,所述第一控制信息中的信息域的解读方式是根据网络设备配置的高层参数确定的,或所述第一控制信息中的信息域的解读方式是预设的,或所述第一控制信息中的信息域 的解读方式与所述第一控制信息格式关联,或所述第一控制信息中的信息域的解读方式与所述第一控制信息调度的物理信道的最大个数关联。
例如,第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,这时第一控制信息中的信息域的解读方式可以根据本申请中的实施例确定;或者,第一控制信息对应第二控制信息格式,所述第二控制信息格式调度物理信道传输的最大个数为1,这时第一控制信息中的信息域的解读方式可以根据现有技术确定。
在本申请的一些实施例中,所述第一反馈资源的时域位置是根据HARQ反馈时序集合中的第一值确定的,其中,所述HARQ反馈时序集合中包括至少两个值且所述第一控制信息中包括的HARQ反馈时序指示信息指示所述第一值;或所述HARQ反馈时序集合中只包括所述第一值且所述第一控制信息中不包括所述HARQ反馈时序指示信息。
换言之,所述第一反馈资源的时域位置是根据所述第一控制信息中的HARQ反馈时序指示信息确定的,其中,该HARQ反馈时序指示信息用于指示HARQ反馈时序集合中的取值;或者,所述第一反馈资源的时域位置是根据所述HARQ反馈时序集合确定的,其中,所述第一控制信息中不包括HARQ反馈时序指示信息,和/或,HARQ反馈时序集合中只包括一个值。
可选地,HARQ反馈时序集合是高层参数配置的,或HARQ反馈时序集合是预设的。
可选地,HARQ反馈时序集合中的K1值与所述M值相关联,或者,HARQ反馈时序集合中的K1值是根据所述M值确定的。例如,网络设备在通过高层参数配置HARQ反馈时序集合中包括的值时,还需要考虑所述M值。
可选地,HARQ反馈时序集合中包括至少一个K1值。如果HARQ反馈时序集合中只包括一个K1值,则DCI中可以不包括HARQ反馈时序指示信息,HARQ反馈资源的时域位置根据该HARQ反馈时序集合中的该K1值确定;如果HARQ反馈时序集合中包括多个K1值,则DCI中包括的HARQ反馈时序指示信息对应的比特数是根据HARQ反馈时序集合中包括的K1值的个数确定的。
可选的,所述第一值为K1(即,所述第一控制信息中的HARQ反馈时序指示信息用于指示HARQ反馈时序集合中包括的K1,或者,HARQ反馈时序集合中只包括一个K1值且所述第一控制信息中不包括HARQ反馈时序指示信息),K1大于或等于0,所述第一反馈资源所在的时隙基于以下中的一种方式确定:
所述S个物理信道中的最后一个物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1;
所述S个物理信道中的第一个物理信道的结束位置在时隙n,则所述第一反馈资源位于时隙n+K1;
所述第一控制信息的结束位置在时隙n,所述第一反馈资源位于时隙n+K1。
可选的,所述第一值为K1,K1大于或等于0,所述第一反馈资源所在的时隙基于以下中的一种方式确定:
所述S个物理信道中的最后一个物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1;
所述S个物理信道中的第一个物理信道的结束位置在时隙n,则所述第一反馈资源位于时隙n+K1;
所述第一控制信息的结束位置在时隙n,所述第一反馈资源位于时隙n+K1;
所述S个物理信道中的第一物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1,其中,所述第一物理信道包括所述s个物理信道中的与所述第一反馈资源之间的时间间隔满足处理时序的物理信道;
所述S个物理信道中的第二物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1,其中,所述第二物理信道为所述S个物理信道中的与所述第一反馈资源之间的时间间隔满足处理时序的最晚的一个物理信道;
所述S个物理信道包括至少两个物理信道,所述至少两个物理信道用于传输相同的传输快TB,所述至少两个物理信道中的最后一个物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1;或者
所述S个物理信道包括至少两个物理信道,所述至少两个物理信道用于传输不同的传输快TB,所述至少两个物理信道中的最后一个物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1。
作为示例,网络设备使用DCI0调度4个PDSCH传输,该4个PDSCH包括PDSCH0、PDSCH1、PDSCH2和PDSCH3。其中DCI0和PDSCH0在时隙n上,PDSCH1在时隙n+1上,PDSCH2在时隙 n+2上,PDSCH3在时隙n+3上。DCI0中的HARQ反馈时序指示信息指示HARQ反馈时序集合中包括的5,即K1=5。PDSCH0、PDSCH1、PDSCH2和PDSCH3的译码结果对应第一HARQ-ACK码本,第一HARQ-ACK码本对应第一反馈资源。
在一些可选的实施例中,终端设备根据DCI0调度的4个物理信道中的最后一个物理信道的结束位置在时隙n+3,确定所述第一反馈资源位于时隙n+8上。
在一些可选的实施例中,终端设备根据DCI0调度的4个物理信道中的第一个物理信道的结束位置在时隙n,确定所述第一反馈资源位于时隙n+5上。
在一些可选的实施例中,终端设备根据DCI0的结束位置在时隙n,确定所述第一反馈资源位于时隙n+5上。
在本申请的一些实施例中,所述M个物理信道中的至少两个物理信道对应不同的传输块TB;或
当S大于或等于2时,所述S个物理信道中的至少两个物理信道对应不同的TB。
在本申请的一些实施例中,所述第一设备包括终端设备,所述第二设备包括网络设备;或者,
所述第一设备包括第一终端设备,所述第二设备包括第二终端设备。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下文结合图8至图11,详细描述本申请的装置实施例。
图8是本申请实施例的第一设备300的示意性框图。
如图8所示,所述第一设备300可包括:
接收单元310,用于接收第二设备发送的第一控制信息,所述第一控制信息用于调度S个物理信道传输,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本对应第一反馈资源,所述第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,S为大于或等于1且小于或等于M的正整数;
发送单元320,用于通过所述第一反馈资源发送所述第一HARQ-ACK码本。
在本申请的一些实施例中,所述第一物理信道组包括N个物理信道,其中,N为大于或等于1的正整数;和/或,N为小于或等于M的正整数。
在本申请的一些实施例中,所述第一反馈比特组包括N个物理信道的反馈比特,其中,N为大于或等于1的正整数;和/或,N为小于或等于M的正整数。
在本申请的一些实施例中,所述第一设备被配置为空分绑定反馈方式,所述N个物理信道中的每一个物理信道对应1比特反馈信息。
在本申请的一些实施例中,S小于或等于N;所述第一物理信道组对应的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置;或者,所述第一反馈比特组的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置。
在本申请的一些实施例中,S大于N;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,S大于(K-1)*N且小于或等于K*N,K为正整数;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,M大于N;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置,其中,Ceil()表示向上取整。
在本申请的一些实施例中,所述至少两个物理信道为K个物理信道,所述K的取值是预定义的,或所述K的取值是根据预定义规则确定的,或所述K的取值是所述第二设备配置的。
在本申请的一些实施例中,在所述至少两个物理信道中的所有物理信道的反馈信息为肯定应答ACK反馈信息的情况下,所述至少两个物理信道的反馈信息为ACK信息;和/或,在所述至少两个物理信道中存在反馈信息为否定应答NACK的物理信道的情况下,所述至少两个物理信道的反馈信息为NACK。
在本申请的一些实施例中,所述N的取值是预定义的,或所述N的取值是根据预定义规则确定的,或所述N的取值是所述第二设备配置的。
在本申请的一些实施例中,所述接收单元310还用于:
接收所述第二设备发送的第二控制信息,所述第二控制信息不用于调度物理信道传输;所述第二控制信息对应第二反馈比特组且所述第二反馈比特组对应所述第一HARQ-ACK码本;和/或,所述第二控制信息对应所述第一控制信息格式且所述第二控制信息对应所述第一HARQ-ACK码本。
在本申请的一些实施例中,所述第二控制信息用于释放半持续调度配置,或所述第二控制信息用于激活或去激活辅小区的休眠状态。
在本申请的一些实施例中,所述第一控制信息包括第一调度计数信息;所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内所述第二设备发送的物理信道组中的排序;或
所述第一反馈比特组在HARQ反馈窗口内的反馈比特组中的排序;或
所述第一控制信息在HARQ反馈窗口内所述第二设备发送的控制信息中的排序。
在本申请的一些实施例中,所述第一控制信息包括第一调度总数信息;所述第一调度总数信息用于指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的物理信道组的总数;
HARQ反馈窗口内截止到所述第一反馈比特组为止对应的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的控制信息的总数。
在本申请的一些实施例中,所述第一控制信息包括第一组标识指示信息,所述第一组标识指示信息指示第一组,其中,所述S个物理信道中的所有物理信道对应所述第一组;或所述S个物理信道中的至少一个物理信道对应所述第一组。
在本申请的一些实施例中,所述第一控制信息还包括第一调度计数信息;所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内传输的对应所述第一组的物理信道组中的排序;
所述第一反馈比特组在HARQ反馈窗口内传输的对应所述第一组的反馈比特组中的排序;或
所述第一控制信息在HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的排序。
在本申请的一些实施例中,所述第一控制信息还包括第一调度总数信息;所述第一调度总数信息用于指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的对应所述第一组的物理信道组的总数;
HARQ反馈窗口内截止到所述第一反馈比特组为止对应所述第一组的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的对应所述第一组的控制信息的总数。
在本申请的一些实施例中,所述第一控制信息还包括第二调度总数信息;所述第二调度总数信息 用于指示HARQ反馈窗口内截止到所述第一控制信息为止传输的对应第二组的物理信道组的总数,其中,所述第二组与所述第一组为不同的组。
在本申请的一些实施例中,所述第一调度计数信息包括下行分配指示计数C-DAI信息和/或侧行分配指示计数C-SAI信息。
在本申请的一些实施例中,所述第一调度总数信息包括下行分配指示总数T-DAI信息和/或侧行分配指示总数T-SAI信息。
在本申请的一些实施例中,所述接收单元310还用于:
接收所述第二设备发送的第三控制信息,所述第三控制信息对应第二控制信息格式,所述第二控制信息格式和所述第一控制信息格式不相同,或所述第二控制信息格式调度物理信道传输的最大个数不为M;
确定所述第三控制信息对应第二HARQ-ACK码本,所述第二HARQ-ACK码本和所述第一HARQ-ACK码本不同。
在本申请的一些实施例中,所述第一控制信息中的信息域的解读方式是根据网络设备配置的高层参数确定的,或所述第一控制信息中的信息域的解读方式是预设的,或所述第一控制信息中的信息域的解读方式与所述第一控制信息格式关联,或所述第一控制信息中的信息域的解读方式与所述第一控制信息调度的物理信道的最大个数关联。
在本申请的一些实施例中,所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的所有物理信道;或所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的第一物理信道,其中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序。
在本申请的一些实施例中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序包括:所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔满足处理时序,或所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔大于或等于预设值。
在本申请的一些实施例中,所述第一反馈资源的时域位置是根据HARQ反馈时序集合中的第一值确定的,其中,所述HARQ反馈时序集合中包括至少两个值且所述第一控制信息中包括的HARQ反馈时序指示信息指示所述第一值;或所述HARQ反馈时序集合中只包括所述第一值且所述第一控制信息中不包括所述HARQ反馈时序指示信息。
在本申请的一些实施例中,所述第一值为K1,K1大于或等于0,所述第一反馈资源所在的时隙基于以下中的一种方式确定:
所述S个物理信道中的最后一个物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1;
所述S个物理信道中的第一个物理信道的结束位置在时隙n,则所述第一反馈资源位于时隙n+K1;
所述第一控制信息的结束位置在时隙n,所述第一反馈资源位于时隙n+K1。
在本申请的一些实施例中,所述M个物理信道中的至少两个物理信道对应不同的传输块TB;或当S大于或等于2时,所述S个物理信道中的至少两个物理信道对应不同的TB。
在本申请的一些实施例中,所述第一设备包括终端设备,所述第二设备包括网络设备;或者,所述第一设备包括第一终端设备,所述第二设备包括第二终端设备。
图9是本申请实施例的第二设备400的示意性框图。
如图9所示,所述第二设备400可包括:
发送单元410,用于向第一设备发送第一控制信息,所述第一控制信息用于调度S个物理信道传输,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本对应第一反馈资源,所述第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,S为大于或等于1且小于或等于M的正整数;
接收单元420,用于通过所述第一反馈资源接收所述第一HARQ-ACK码本。
在本申请的一些实施例中,所述第一物理信道组包括N个物理信道,其中,N为大于或等于1的正整数;和/或,N为小于或等于M的正整数。
在本申请的一些实施例中,所述第一反馈比特组包括N个物理信道的反馈比特,其中,N为大于或等于1的正整数;和/或,N为小于或等于M的正整数。
在本申请的一些实施例中,所述第一设备被配置为空分绑定反馈方式,所述N个物理信道中的每一个物理信道对应1比特反馈信息。
在本申请的一些实施例中,S小于或等于N;所述第一物理信道组对应的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置;或者,所述第一反馈比特组的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置。
在本申请的一些实施例中,S大于N;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,S大于(K-1)*N且小于或等于K*N,K为正整数;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,M大于N;所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置。
在本申请的一些实施例中,所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置;或者,所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置,其中,Ceil()表示向上取整。
在本申请的一些实施例中,所述至少两个物理信道为K个物理信道,所述K的取值是预定义的,或所述K的取值是根据预定义规则确定的,或所述K的取值是所述第二设备配置的。
在本申请的一些实施例中,在所述至少两个物理信道中的所有物理信道的反馈信息为肯定应答ACK反馈信息的情况下,所述至少两个物理信道的反馈信息为ACK信息;和/或,在所述至少两个物理信道中存在反馈信息为否定应答NACK的物理信道的情况下,所述至少两个物理信道的反馈信息为NACK。
在本申请的一些实施例中,所述N的取值是预定义的,或所述N的取值是根据预定义规则确定的,或所述N的取值是所述第二设备配置的。
在本申请的一些实施例中,所述发送单元410还用于:
向所述第一设备发送第二控制信息,所述第二控制信息不用于调度物理信道传输;所述第二控制信息对应第二反馈比特组且所述第二反馈比特组对应所述第一HARQ-ACK码本;和/或,所述第二控制信息对应所述第一控制信息格式且所述第二控制信息对应所述第一HARQ-ACK码本。
在本申请的一些实施例中,所述第二控制信息用于释放半持续调度配置,或所述第二控制信息用于激活或去激活辅小区的休眠状态。
在本申请的一些实施例中,所述第一控制信息包括第一调度计数信息;所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内所述第二设备发送的物理信道组中的排序;或
所述第一反馈比特组在HARQ反馈窗口内的反馈比特组中的排序;或
所述第一控制信息在HARQ反馈窗口内所述第二设备发送的控制信息中的排序。
在本申请的一些实施例中,所述第一控制信息包括第一调度总数信息;所述第一调度总数信息用于指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的物理信道组的总数;
HARQ反馈窗口内截止到所述第一反馈比特组为止对应的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的控制信息的总数。
在本申请的一些实施例中,所述第一控制信息包括第一组标识指示信息,所述第一组标识指示信息指示第一组,其中,所述S个物理信道中的所有物理信道对应所述第一组;或所述S个物理信道中的至少一个物理信道对应所述第一组。
在本申请的一些实施例中,所述第一控制信息还包括第一调度计数信息;所述第一调度计数信息用于指示:
所述第一物理信道组在HARQ反馈窗口内传输的对应所述第一组的物理信道组中的排序;
所述第一反馈比特组在HARQ反馈窗口内传输的对应所述第一组的反馈比特组中的排序;或
所述第一控制信息在HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的排序。
在本申请的一些实施例中,所述第一控制信息还包括第一调度总数信息;所述第一调度总数信息用于指示:
HARQ反馈窗口内截止到所述第一物理信道组为止传输的对应所述第一组的物理信道组的总数;
HARQ反馈窗口内截止到所述第一反馈比特组为止对应所述第一组的反馈比特组的总数;或
HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的对应所述第一组的控制信息的总数。
在本申请的一些实施例中,所述第一控制信息还包括第二调度总数信息;所述第二调度总数信息用于指示HARQ反馈窗口内截止到所述第一控制信息为止传输的对应第二组的物理信道组的总数,其中,所述第二组与所述第一组为不同的组。
在本申请的一些实施例中,所述第一调度计数信息包括下行分配指示计数C-DAI信息和/或侧行分配指示计数C-SAI信息。
在本申请的一些实施例中,所述第一调度总数信息包括下行分配指示总数T-DAI信息和/或侧行分配指示总数T-SAI信息。
在本申请的一些实施例中,所述发送单元410还用于:
向所述第一设备发送第三控制信息,所述第三控制信息对应第二控制信息格式,所述第二控制信息格式和所述第一控制信息格式不相同,或所述第二控制信息格式调度物理信道传输的最大个数不为M;
确定所述第三控制信息对应第二HARQ-ACK码本,所述第二HARQ-ACK码本和所述第一HARQ-ACK码本不同。
在本申请的一些实施例中,所述第一控制信息中的信息域的解读方式是根据网络设备配置的高层参数确定的,或所述第一控制信息中的信息域的解读方式是预设的,或所述第一控制信息中的信息域的解读方式与所述第一控制信息格式关联,或所述第一控制信息中的信息域的解读方式与所述第一控制信息调度的物理信道的最大个数关联。
在本申请的一些实施例中,所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的所有物理信道;或所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的第一物理信道,其中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序。
在本申请的一些实施例中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序包括:所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔满足处理时序,或所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔大于或等于预设值。
在本申请的一些实施例中,所述第一反馈资源的时域位置是根据HARQ反馈时序集合中的第一值确定的,其中,所述HARQ反馈时序集合中包括至少两个值且所述第一控制信息中包括的HARQ反馈时序指示信息指示所述第一值;或所述HARQ反馈时序集合中只包括所述第一值且所述第一控制信息中不包括所述HARQ反馈时序指示信息。
在本申请的一些实施例中,所述第一值为K1,K1大于或等于0,所述第一反馈资源所在的时隙基于以下中的一种方式确定:
所述S个物理信道中的最后一个物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1;
所述S个物理信道中的第一个物理信道的结束位置在时隙n,则所述第一反馈资源位于时隙n+K1;
所述第一控制信息的结束位置在时隙n,所述第一反馈资源位于时隙n+K1。
在本申请的一些实施例中,所述M个物理信道中的至少两个物理信道对应不同的传输块TB;或当S大于或等于2时,所述S个物理信道中的至少两个物理信道对应不同的TB。
在本申请的一些实施例中,所述第一设备包括终端设备,所述第二设备包括网络设备;或者,所述第一设备包括第一终端设备,所述第二设备包括第二终端设备。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图8所示的第一设备300可以对应于执行本申请实施例的方法200中的相应主体,并且第一设备300中的各个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程,类似的,图9所示的第二设备400可以对应于执行本申请实施例的方法200中的相应主体,并且第二设备400中的各个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程;为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图10是本申请实施例的通信设备500示意性结构图。
如图10所示,所述通信设备500可包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图10,通信设备500还可以包括存储器520。
其中,该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
请继续参见图10,通信设备500还可以包括收发器530。
其中,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备500可为本申请实施例的第一设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的第一设备300,并可以对应于执行根据本申请实施例的方法中的相应主体,其中,收发器503此时可以对应实现第一设备300中的接收单元310和发送单元320实现的操作和/或功能,为了简洁,在此不再赘述。类似地,该通信设备500可为本申请实施例的第二设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二设备实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的第二设备400,并可以对应于执行根据本申请实施例的方法中的相应主体,其中,收发器530此时可以对应实现第二设备400中的发送单元410和接收单元420实现的操作和/或功能,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图11是根据本申请实施例的芯片600的示意性结构图。
如图11所示,所述芯片600包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图11,所述芯片600还可以包括存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
请继续参见图11,所述芯片600还可以包括输入接口630。
其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图11,所述芯片600还可以包括输出接口640。
其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片600可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法实施例的方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。
可选的,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法实施例的方法。
可选的,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的第一设备和第二设备,以形成如图1所示的通信系统,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实 施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (37)

  1. 一种无线通信方法,其特征在于,包括:
    第一设备接收第二设备发送的第一控制信息,所述第一控制信息用于调度S个物理信道传输,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本对应第一反馈资源,所述第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,S为大于或等于1且小于或等于M的正整数;
    所述第一设备通过所述第一反馈资源发送所述第一HARQ-ACK码本。
  2. 根据权利要求1所述的方法,其特征在于,所述第一物理信道组包括N个物理信道,其中,N为大于或等于1的正整数;和/或,N为小于或等于M的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一反馈比特组包括N个物理信道的反馈比特,其中,N为大于或等于1的正整数;和/或,N为小于或等于M的正整数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一设备被配置为空分绑定反馈方式,所述N个物理信道中的每一个物理信道对应1比特反馈信息。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,S小于或等于N;
    所述第一物理信道组对应的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置;或者,
    所述第一反馈比特组的反馈比特位置中的前S个物理信道的反馈比特位置分别为所述S个物理信道的反馈比特位置。
  6. 根据权利要求2至4中任一项所述的方法,其特征在于,S大于N;
    所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,
    所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的至少两个物理信道绑定后的反馈比特位置。
  7. 根据权利要求2至4中任一项所述的方法,其特征在于,S大于(K-1)*N且小于或等于K*N,K为正整数;
    所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置;或者,
    所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述S个物理信道中的K个物理信道绑定后的反馈比特位置。
  8. 根据权利要求2至4中任一项所述的方法,其特征在于,M大于N;
    所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置;或者,
    所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的至少两个物理信道绑定后的反馈比特位置。
  9. 根据权利要求2至4中任一项所述的方法,其特征在于,
    所述第一物理信道组对应的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置;或者,
    所述第一反馈比特组中的反馈比特位置中的一个物理信道的反馈比特位置为所述M个物理信道中的Ceil(M/N)个物理信道绑定后的反馈比特位置,其中,Ceil()表示向上取整。
  10. 根据权利要求6或8所述的方法,其特征在于,所述至少两个物理信道为K个物理信道,所述K的取值是预定义的,或所述K的取值是根据预定义规则确定的,或所述K的取值是所述第二设备配置的。
  11. 根据权利要求6、8或10所述的方法,其特征在于,在所述至少两个物理信道中的所有物理信道的反馈信息为肯定应答ACK反馈信息的情况下,所述至少两个物理信道的反馈信息为ACK信息;和/或,在所述至少两个物理信道中存在反馈信息为否定应答NACK的物理信道的情况下,所述至少两个物理信道的反馈信息为NACK。
  12. 根据权利要求2至11中任一项所述的方法,其特征在于,所述N的取值是预定义的,或所述N的取值是根据预定义规则确定的,或所述N的取值是所述第二设备配置的。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二控制信息,所述第二控制信息不用于调度物理信道传 输;所述第二控制信息对应第二反馈比特组且所述第二反馈比特组对应所述第一HARQ-ACK码本;和/或,所述第二控制信息对应所述第一控制信息格式且所述第二控制信息对应所述第一HARQ-ACK码本。
  14. 根据权利要求13所述的方法,其特征在于,所述第二控制信息用于释放半持续调度配置,或所述第二控制信息用于激活或去激活辅小区的休眠状态。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一控制信息包括第一调度计数信息;所述第一调度计数信息用于指示:
    所述第一物理信道组在HARQ反馈窗口内所述第二设备发送的物理信道组中的排序;或
    所述第一反馈比特组在HARQ反馈窗口内的反馈比特组中的排序;或
    所述第一控制信息在HARQ反馈窗口内所述第二设备发送的控制信息中的排序。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一控制信息包括第一调度总数信息;所述第一调度总数信息用于指示:
    HARQ反馈窗口内截止到所述第一物理信道组为止传输的物理信道组的总数;
    HARQ反馈窗口内截止到所述第一反馈比特组为止对应的反馈比特组的总数;或
    HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的控制信息的总数。
  17. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一控制信息包括第一组标识指示信息,所述第一组标识指示信息指示第一组,其中,所述S个物理信道中的所有物理信道对应所述第一组;或所述S个物理信道中的至少一个物理信道对应所述第一组。
  18. 根据权利要求17所述的方法,其特征在于,所述第一控制信息还包括第一调度计数信息;所述第一调度计数信息用于指示:
    所述第一物理信道组在HARQ反馈窗口内传输的对应所述第一组的物理信道组中的排序;
    所述第一反馈比特组在HARQ反馈窗口内传输的对应所述第一组的反馈比特组中的排序;或
    所述第一控制信息在HARQ反馈窗口内所述第二设备发送的对应所述第一组的控制信息中的排序。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一控制信息还包括第一调度总数信息;所述第一调度总数信息用于指示:
    HARQ反馈窗口内截止到所述第一物理信道组为止传输的对应所述第一组的物理信道组的总数;
    HARQ反馈窗口内截止到所述第一反馈比特组为止对应所述第一组的反馈比特组的总数;或
    HARQ反馈窗口内截止到所述第一控制信息为止第二设备发送的对应所述第一组的控制信息的总数。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第一控制信息还包括第二调度总数信息;所述第二调度总数信息用于指示HARQ反馈窗口内截止到所述第一控制信息为止传输的对应第二组的物理信道组的总数,其中,所述第二组与所述第一组为不同的组。
  21. 根据权利要求15或18所述的方法,其特征在于,所述第一调度计数信息包括下行分配指示计数C-DAI信息和/或侧行分配指示计数C-SAI信息。
  22. 根据权利要求16或19所述的方法,其特征在于,所述第一调度总数信息包括下行分配指示总数T-DAI信息和/或侧行分配指示总数T-SAI信息。
  23. 根据权利要求1至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第三控制信息,所述第三控制信息对应第二控制信息格式,所述第二控制信息格式和所述第一控制信息格式不相同,或所述第二控制信息格式调度物理信道传输的最大个数不为M;
    所述第一设备确定所述第三控制信息对应第二HARQ-ACK码本,所述第二HARQ-ACK码本和所述第一HARQ-ACK码本不同。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述第一控制信息中的信息域的解读方式是根据网络设备配置的高层参数确定的,或所述第一控制信息中的信息域的解读方式是预设的,或所述第一控制信息中的信息域的解读方式与所述第一控制信息格式关联,或所述第一控制信息中的信息域的解读方式与所述第一控制信息调度的物理信道的最大个数关联。
  25. 根据权利要求1至24中任一项所述的方法,其特征在于,所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的所有物理信道;或所述S个物理信道中的至少一个物理信道包括所述S个物理信道中的第一物理信道,其中,所述第一物理信道与所述第一反馈资源之间的时间间隔满足处理时序。
  26. 根据权利要求25所述的方法,其特征在于,所述第一物理信道与所述第一反馈资源之间的 时间间隔满足处理时序包括:所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔满足处理时序,或所述第一物理信道的结束位置与所述第一反馈资源的起始位置之间的时间间隔大于或等于预设值。
  27. 根据权利要求1至26中任一项所述的方法,其特征在于,所述第一反馈资源的时域位置是根据HARQ反馈时序集合中的第一值确定的,其中,所述HARQ反馈时序集合中包括至少两个值且所述第一控制信息中包括的HARQ反馈时序指示信息指示所述第一值;或
    所述HARQ反馈时序集合中只包括所述第一值且所述第一控制信息中不包括所述HARQ反馈时序指示信息。
  28. 根据权利要求27所述的方法,其特征在于,所述第一值为K1,K1大于或等于0,所述第一反馈资源所在的时隙基于以下中的一种方式确定:
    所述S个物理信道中的最后一个物理信道的结束位置在时隙n,所述第一反馈资源位于时隙n+K1;
    所述S个物理信道中的第一个物理信道的结束位置在时隙n,则所述第一反馈资源位于时隙n+K1;
    所述第一控制信息的结束位置在时隙n,所述第一反馈资源位于时隙n+K1。
  29. 根据权利要求1至28中任一项所述的方法,其特征在于,所述M个物理信道中的至少两个物理信道对应不同的传输块TB;或
    当S大于或等于2时,所述S个物理信道中的至少两个物理信道对应不同的TB。
  30. 根据权利要求1至29中任一项所述的方法,其特征在于,所述第一设备包括终端设备,所述第二设备包括网络设备;或者,
    所述第一设备包括第一终端设备,所述第二设备包括第二终端设备。
  31. 一种无线通信方法,其特征在于,包括:
    第二设备向第一设备发送第一控制信息,所述第一控制信息用于调度S个物理信道传输,所述S个物理信道中的至少一个物理信道对应第一物理信道组或第一反馈比特组,所述第一物理信道组或所述第一反馈比特组对应第一混合自动重传请求确认HARQ-ACK码本,所述第一HARQ-ACK码本对应第一反馈资源,所述第一控制信息对应第一控制信息格式,所述第一控制信息格式调度物理信道传输的最大个数为M,其中,M为大于或等于2的正整数,S为大于或等于1且小于或等于M的正整数;
    所述第一设备通过所述第一反馈资源接收所述第一HARQ-ACK码本。
  32. 一种第一设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至30中任一项所述的方法。
  33. 一种第二设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求31所述的方法。
  34. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法或如权利要求31所述的方法。
  35. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法或如权利要求31所述的方法。
  36. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法或如权利要求31所述的方法。
  37. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法或如权利要求31所述的方法。
PCT/CN2021/074732 2021-02-01 2021-02-01 无线通信方法和设备 WO2022160355A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21921955.7A EP4287743A4 (en) 2021-02-01 2021-02-01 WIRELESS COMMUNICATION METHOD AND DEVICE
CN202180092504.9A CN116803182A (zh) 2021-02-01 2021-02-01 无线通信方法和设备
PCT/CN2021/074732 WO2022160355A1 (zh) 2021-02-01 2021-02-01 无线通信方法和设备
US18/227,564 US20230371020A1 (en) 2021-02-01 2023-07-28 Wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074732 WO2022160355A1 (zh) 2021-02-01 2021-02-01 无线通信方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/227,564 Continuation US20230371020A1 (en) 2021-02-01 2023-07-28 Wireless communication method and device

Publications (1)

Publication Number Publication Date
WO2022160355A1 true WO2022160355A1 (zh) 2022-08-04

Family

ID=82654139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074732 WO2022160355A1 (zh) 2021-02-01 2021-02-01 无线通信方法和设备

Country Status (4)

Country Link
US (1) US20230371020A1 (zh)
EP (1) EP4287743A4 (zh)
CN (1) CN116803182A (zh)
WO (1) WO2022160355A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149717A (zh) * 2018-02-14 2019-08-20 华为技术有限公司 码本的传输方法、装置及系统
CN110875814A (zh) * 2018-09-03 2020-03-10 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置
WO2020059671A1 (ja) * 2018-09-20 2020-03-26 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN111092697A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质
CN111865512A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种混合自动重传请求反馈处理方法、装置及设备
CN111954307A (zh) * 2019-05-17 2020-11-17 北京三星通信技术研究有限公司 无线通信网络中的通信方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975341B1 (ko) * 2017-06-15 2019-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 확인 응답 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2020204561A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR102610857B1 (ko) * 2019-07-19 2023-12-06 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149717A (zh) * 2018-02-14 2019-08-20 华为技术有限公司 码本的传输方法、装置及系统
CN110875814A (zh) * 2018-09-03 2020-03-10 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置
WO2020059671A1 (ja) * 2018-09-20 2020-03-26 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN111865512A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种混合自动重传请求反馈处理方法、装置及设备
CN111954307A (zh) * 2019-05-17 2020-11-17 北京三星通信技术研究有限公司 无线通信网络中的通信方法和设备
CN111092697A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on multi-carrier scheduling using single PDCCH", 3GPP DRAFT; R1-2007580, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946427 *
See also references of EP4287743A4 *

Also Published As

Publication number Publication date
EP4287743A1 (en) 2023-12-06
CN116803182A (zh) 2023-09-22
EP4287743A4 (en) 2024-03-27
US20230371020A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2018171605A1 (zh) 接收信息的方法及其装置和发送信息的方法及其装置
WO2022110233A1 (zh) 无线通信的方法、终端设备和网络设备
TWI718240B (zh) 用於傳輸業務的方法、移動台和網絡設備
CN110474736B (zh) 通信方法和通信装置
WO2021237721A1 (zh) Harq-ack码本的反馈方法和终端设备
WO2020220359A1 (zh) 确定harq码本的方法和设备
WO2021237702A1 (zh) Harq-ack码本的反馈方法和终端设备
WO2020220253A1 (zh) 一种信息传输方法和通信设备
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2022134076A1 (zh) 无线通信的方法和终端设备
WO2022061661A1 (zh) 无线通信的方法、终端设备和网络设备
US20230412319A1 (en) Wireless communication method, terminal device and network device
WO2020098801A1 (zh) 使用资源的方法和通信设备
WO2020087541A1 (zh) 下行控制信息的传输方法和设备
WO2022160355A1 (zh) 无线通信方法和设备
WO2022188081A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2021226850A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2021227142A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
WO2022021312A1 (zh) 无线通信方法、终端设备和网络设备
WO2022056725A1 (zh) 信道反馈方法、终端设备和网络设备
WO2022141649A1 (zh) 无线通信方法和设备
WO2022141652A1 (zh) 无线通信的方法和设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921955

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092504.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021921955

Country of ref document: EP

Effective date: 20230901