WO2023109790A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023109790A1
WO2023109790A1 PCT/CN2022/138563 CN2022138563W WO2023109790A1 WO 2023109790 A1 WO2023109790 A1 WO 2023109790A1 CN 2022138563 W CN2022138563 W CN 2022138563W WO 2023109790 A1 WO2023109790 A1 WO 2023109790A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch resource
time
resource set
terminal
frequency
Prior art date
Application number
PCT/CN2022/138563
Other languages
English (en)
French (fr)
Inventor
刘云峰
郭志恒
马蕊香
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023109790A1 publication Critical patent/WO2023109790A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the communication field, in particular to a communication method and a communication device.
  • a subband full duplex (SBFD) scheme is proposed.
  • a component carrier (component carrier, CC) (may be referred to as a carrier for short) may include multiple subbands, and the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resources of the carrier, and there is one or Symbols in multiple time units have different symbol categories on the multiple subbands.
  • the same symbol is configured as an uplink (uplink, U) symbol in some subbands, and is configured as a downlink (downlink, D) symbol in another part of the subbands.
  • subband U and subband D may exist in the same CC at the same time, that is, simultaneous transmission and reception can be realized on one CC.
  • the present application provides a communication method and a communication device, with a view to rationally utilizing resources and realizing normal transmission of a HARQ-ACK codebook in an application scenario of the SBFD scheme.
  • the present application provides a communication method, which may be executed by a terminal, or may also be executed by a component configured in the terminal (such as a chip, a chip system, etc.), or may also be implemented by a Or a logic module or software implementation of some terminal functions, which is not limited in this application.
  • the method includes: the terminal determines a target candidate physical downlink shared channel (physical downlink shared channel, PDSCH) reception occasion (occasion for candidate PDSCH reception) from the first time-frequency resource, and the target candidate PDSCH reception occasion includes at least one symbol , the target candidate PDSCH receiving opportunity is used to receive the PDSCH, the first time-frequency resource corresponds to the first time unit in the time domain, the first time unit includes one or more symbols, and the frequency domain resources corresponding to the first time-frequency resource include A plurality of subbands, the plurality of subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the first time-frequency resource, the plurality of subbands are on one carrier, and one or Multiple symbols have different symbol categories on the multiple subbands, and each symbol included in the target candidate PDSCH receiving opportunity satisfies: the symbol category on at least one subband in the multiple subbands is downlink or flexible (flexible, F ) or full duplex (full duplex, FD), or, the symbol
  • the first time-frequency resource corresponds to a first time unit in the time domain, and the first time unit includes one or more symbols.
  • the frequency domain resource corresponding to the first time-frequency resource includes multiple subbands, and the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the first time-frequency resource.
  • one or more symbols in the first time unit have different symbol types on the multiple subbands, it can be understood as a subband full-duplex scenario.
  • One symbol category on one subband is full duplex, which can be understood as, on the frequency domain resource corresponding to the subband, within the symbol, uplink transmission and downlink transmission can be performed simultaneously.
  • the terminal can determine the target candidate PDSCH reception opportunity from multiple candidate PDSCH reception opportunities based on the definition of the target candidate PDSCH candidate opportunity, and then determine the HARQ-ACK codebook; the network device also The receiving opportunity of the target candidate PDSCH can be determined based on the same method, and then the payload size (payload size) of the HARQ-ACK codebook can be determined, so that the correct reception of the HARQ-ACK codebook can be realized.
  • the payload size payload size
  • symbol Category is uplink.
  • network devices can schedule downlink data on the downlink subband of the same CC as much as possible, and receive uplink data on the uplink subband, that is, uplink and downlink transmission can be performed on the same CC at the same time, so resource utilization rate is improved.
  • the first subband is a subband with the highest priority among the multiple subbands.
  • the subbands are divided into different priorities, and the resources in the subbands of different priorities can be reasonably utilized, only considering that each symbol included in the candidate PDSCH reception opportunity is in the subband with the highest priority Whether the symbol type is downlink, flexible, or full-duplex, the utilization rate of resources in the high-priority subband can be guaranteed.
  • the first subband is a subband designated by the network device among the multiple subbands.
  • the terminal does not need to do additional calculation or judgment processing, and only needs to determine the first subband according to the indication information of the network device, and then determine the receiving opportunity of the target candidate PDSCH according to the above-mentioned determination process of determining the target candidate PDSCH.
  • the power consumption of the terminal is reduced to a certain extent.
  • the present application provides a communication method, which can be performed by a network device, or can also be performed by a component (such as a chip, a chip system, etc.) configured in the network device, or can also be performed by Logic modules or software implementations that realize all or part of the network device functions are not limited in this application.
  • the method includes: the network device determines a target candidate PDSCH receiving opportunity from the first time-frequency resource configured for the terminal, the target candidate PDSCH receiving opportunity includes at least one symbol, and the target candidate PDSCH receiving opportunity is used for the terminal to receive the PDSCH,
  • the first time-frequency resource corresponds to a first time unit in the time domain, and the first time unit includes one or more symbols
  • the frequency domain resource corresponding to the first time-frequency resource includes multiple subbands
  • the multiple subbands are the Continuous non-overlapping frequency domain resources on the frequency domain resources corresponding to the first time-frequency resource, the multiple subbands are on one carrier, and one or more symbols in the first time unit are on the multiple subbands
  • the symbol types are different, and each symbol contained in the target candidate PDSCH receiving opportunity satisfies: the symbol type on at least one subband in the multiple subbands is downlink or flexible or full-duplex, or, in the multiple subbands
  • the symbol category on the first subband is downlink or flexible or full-du
  • the network device can configure the first time-frequency resource configured to the terminal, and the symbol category of each symbol included in at least one subband among the plurality of subbands is
  • the downlink or flexible or full-duplex candidate PDSCH reception timing is determined as the target candidate PDSCH reception, or the network device may allocate each symbol included in the first time-frequency resource configured to the terminal in the first of the plurality of subbands.
  • the symbol type on the subband is downlink or flexible or full-duplex candidate PDSCH reception opportunity is determined as the target candidate PDSCH reception, so that the load of the HARQ-ACK codebook that the terminal may generate can be determined based on multiple target candidate PDSCH reception opportunities size, and receive the HARQ-ACK codebook from the terminal based on the payload size of the HARQ-ACK codebook.
  • subbands whose symbol type is downlink, flexible, or full-duplex within the first time unit can also be reasonably utilized to receive feedback information from the terminal.
  • the first subband is a subband with the highest priority among the multiple subbands.
  • the subbands are divided into different priorities, and the resources in the subbands of different priorities can be reasonably utilized, only considering that each symbol included in the candidate PDSCH reception opportunity is in the subband with the highest priority Whether the symbol type is downlink, flexible, or full-duplex, the utilization rate of resources in the high-priority subband can be guaranteed.
  • the first subband is a subband designated by the network device among the multiple subbands.
  • the network device indicates the first subband to the terminal through the indication information, and the terminal does not need to do additional calculation or judgment processing, but only needs to determine the first subband according to the indication information of the network device, and then determine the target candidate PDSCH according to the above-mentioned determination process It only needs to select the target candidate PDSCH receiving opportunity, which can reduce the power consumption of the terminal to a certain extent.
  • the present application provides a communication method, which can be performed by a terminal, or can also be performed by a component configured in the terminal (such as a chip, a chip system, etc.), or can also be implemented by all Or a logic module or software implementation of some terminal functions, which is not limited in this application.
  • the method includes: the terminal determines from multiple physical uplink control channel (physical uplink control channel, PUCCH) resource sets (resource sets) the first PUCCH resource set and the first PUCCH resource set corresponding to the load size of the HARQ-ACK codebook Two PUCCH resource sets; the frequency domains where all the PUCCH resources included in each PUCCH resource set in the multiple PUCCH resource sets are located in the frequency domain resources of the second time-frequency resource, and the second time-frequency resource corresponds to the time domain A second time unit, the second time unit includes one or more symbols, the frequency domain resource corresponding to the second time-frequency resource includes a plurality of subbands, and the plurality of subbands are on the frequency domain resource corresponding to the second time-frequency resource Continuous non-overlapping frequency domain resources, the multiple subbands are on one carrier, and one or more symbols in the second time unit have different symbol types on the multiple subbands; the first PUCCH resource set includes at least A resource set of the first PUCCH resource, the first PUCCH resource, the
  • the second time-frequency resource corresponds to a second time unit in the time domain
  • the second time unit includes one or more symbols
  • the frequency domain resource corresponding to the second time-frequency resource includes a plurality of subbands
  • the plurality of subbands are Continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource
  • the multiple subbands are on one carrier
  • one or more symbols in the second time unit are on the multiple subbands
  • the symbol category is different, and it can also be understood as a sub-band full-duplex scenario.
  • some PUCCH resource sets in the multiple PUCCH resource sets configured by the network device for the terminal include at least one PUCCH resource that does not cross subbands.
  • the terminal can flexibly select PUCCH resources to transmit the HARQ-ACK codebook, avoiding the situation that there is no PUCCH resource to transmit the HARQ-ACK codebook due to the fact that all PUCCH resources cross sub-bands, so that the HARQ-ACK codebook can be guaranteed
  • the normal transmission of the book guarantees the reliability of the transmission.
  • the terminal can use the uplink sub-band to transmit the HARQ-ACK codebook, and can also use the full-band resource to transmit the HARQ-ACK codebook, so it is beneficial to improve resource utilization.
  • the resources included in the first PUCCH resource set are all first PUCCH resources; and the terminal determines the target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set, including : The terminal determines the first PUCCH resource set as the target PUCCH resource set.
  • the network device and the terminal can determine the target PUCCH resource set based on the same rule, and can determine the target PUCCH resource set without additional signaling interaction.
  • the terminal determines the target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set, including: the terminal receives first indication information from the network device, and the first indication The information includes a bitmap of N bits, the N bits correspond to N time units, and the value of the nth bit in the bitmap is used to indicate the first PUCCH resource corresponding to the nth time unit in the N time units set and a PUCCH resource set in the second PUCCH resource set, where 1 ⁇ n ⁇ N, N and n are integers; the terminal determines the target PUCCH resource set according to the value of the bit corresponding to the second time unit in the bitmap .
  • the terminal can determine the target PUCCH resource set in multiple time units including the second time unit in each cycle, which can avoid excessive information Excessive power consumption brought by interaction between network devices and terminals.
  • the terminal determines the target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set, including: the terminal receives second indication information from the network device, and the second indication The information includes an identifier of a PUCCH resource set; the terminal determines the PUCCH resource set corresponding to the identifier in the first PUCCH resource set and the second PUCCH resource set as the target PUCCH resource set.
  • the present application provides a communication method, which may be performed by a network device, or may also be performed by a component (such as a chip, a chip system, etc.) configured in the network device, or may also be performed by a capable Logic modules or software implementations that realize all or part of the network device functions are not limited in this application.
  • the method includes: the network device configures multiple PUCCH resource sets for the terminal, and the frequency domains of all the PUCCH resources included in each PUCCH resource set of the multiple PUCCH resource sets are in the frequency domain of the second time-frequency resource
  • the second time-frequency resource corresponds to a second time unit in the time domain
  • the second time unit includes one or more symbols
  • the frequency domain resource corresponding to the second time-frequency resource includes multiple subbands, which The multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource, the multiple subbands are on one carrier, and one or more symbols in the second time unit are within this multiple The symbol categories on the subbands are different
  • the network device determines the first PUCCH resource set and the second PUCCH resource set corresponding to the load size of the HARQ-ACK codebook from these multiple PUCCH resource sets, and the first PUCCH resource set includes at least one The resource set of the first PUCCH resource, the first PUCCH resource satisfie
  • the network device can configure multiple PUCCH resource sets for the terminal, and some of the PUCCH resource sets in these resource sets include at least one PUCCH resource that does not cross subbands.
  • the network device can flexibly select PUCCH resources to receive the HARQ-ACK codebook, avoiding the situation that there is no PUCCH resource to receive the HARQ-ACK codebook due to the fact that all PUCCH resources cross subbands, so that HARQ-ACK can be guaranteed
  • the normal transmission of the codebook ensures transmission reliability.
  • the terminal can use the uplink sub-band to transmit the HARQ-ACK codebook, and can also use the full-band resource to transmit the HARQ-ACK codebook, so it is beneficial to improve resource utilization.
  • the resources included in the first PUCCH resource set are all first PUCCH resources; and the network device determines the target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set, It includes: the network device determines the first PUCCH resource set as the target PUCCH resource set.
  • the network device and the terminal can determine the target PUCCH resource set based on the same rule, and can determine the target PUCCH resource set without additional signaling interaction.
  • the method further includes: the network device sends first indication information to the terminal, where the first indication information includes an N-bit bitmap, and the N bits correspond to N time units , the value of the nth bit in the bitmap is used to indicate the target PUCCH resource set corresponding to the nth time unit in the N time units, where 1 ⁇ n ⁇ N, N and n are integers; and the network The device determining the target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set includes: the network device determines the target PUCCH resource set according to the value of the bit corresponding to the second time unit in the bitmap.
  • the terminal can determine the target PUCCH resource set in multiple time units including the second time unit in each cycle, which can avoid excessive information Excessive power consumption brought by interaction between network devices and terminals.
  • the method further includes: the network device sends second indication information to the terminal, where the second indication information includes an identifier of a PUCCH resource set; Determining the target PUCCH resource set in the first PUCCH resource set and the second PUCCH resource set includes: determining, by the network device, the PUCCH resource set corresponding to the identifier in the first PUCCH resource set and the second PUCCH resource set as the target PUCCH resource set.
  • the present application provides a communication method, which may be performed by a network device, or may also be performed by a component (such as a chip, a chip system, etc.) configured in the network device, or may also be performed by a capable Logic modules or software implementations that realize all or part of the network device functions are not limited in this application.
  • the method includes: the network device configures multiple PUCCH resource sets for the terminal, each PUCCH resource set in the multiple PUCCH resource sets includes at least one first PUCCH resource; each of the multiple PUCCH resource sets The frequency domains of all the PUCCH resources included in the PUCCH resource set are within the frequency domain resources of the second time-frequency resource, and the second time-frequency resource corresponds to the second time unit in the time domain, and the second time unit includes one or more symbols, the frequency domain resource corresponding to the second time-frequency resource includes a plurality of subbands, and the plurality of subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource, and the plurality of subbands are in On one carrier, and one or more symbols in the second time unit have different symbol types on the multiple subbands; the first PUCCH resource satisfies: the frequency domain resource of the first PUCCH resource is located in one of the multiple subbands In the subband, the symbol type of the time domain resource corresponding
  • each PUCCH resource set configured by the network device it is only necessary to restrict each PUCCH resource set configured by the network device to the terminal to include at least one first PUCCH resource, without making major changes to the behavior of the terminal.
  • the implementation method is simple to avoid the problem that all the PUCCH resources in the resource set configured by the terminal are located on at least two subbands with different symbol types, and these PUCCH resources cannot be used to continuously send and receive the HARQ-ACK codebook.
  • the present application provides a communications device that can implement the method in any possible implementation manner of the first aspect to the fifth aspect and any possible implementation manner of the first aspect to the fifth aspect.
  • the device includes corresponding modules for performing the above method.
  • the modules included in the device can be realized by software and/or hardware.
  • the present application provides a communication device, where the communication device includes a processor.
  • the processor is coupled with the memory, and can be used to execute the computer program in the memory, so as to realize the above-mentioned first aspect to the fifth aspect and any possible implementation manner of the first aspect to the fifth aspect in any possible implementation manner method.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the present application provides a system-on-a-chip, which includes at least one processor, configured to support the implementation of any possible implementation manners from the first aspect to the fifth aspect and any possible implementation manners from the first aspect to the fifth aspect.
  • the functions involved in a possible implementation manner for example, receiving or processing the data and/or indication information involved in the above method.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located inside or outside the processor.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer-readable storage medium, where a computer program (also referred to as code, or instruction) is stored on the computer storage medium, and when the computer program is run by a processor, the The method in any possible implementation manner of the first aspect to the fifth aspect and any possible implementation manner of the first aspect to the fifth aspect is executed.
  • a computer program also referred to as code, or instruction
  • the present application provides a computer program product, the computer program product including: a computer program (also referred to as code, or instruction), when the computer program is executed, the above-mentioned first to the first aspect
  • a computer program also referred to as code, or instruction
  • the method in the fifth aspect and any possible implementation manner of the first aspect to any possible implementation manner of the fifth aspect is executed.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of comparison of different carriers
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time range and a feedback time slot for receiving PDSCH
  • FIG. 5 is a schematic diagram of comparison of resources on different carriers
  • FIG. 6 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a configuration format of time slots in a cycle
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of comparison before and after target PUCCH resource translation
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural block diagram of a terminal provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first time-frequency resource and the second time-frequency resource are only for distinguishing different time-frequency resources
  • the first time unit and the second time unit are only for distinguishing different time units
  • the first indication information and the second indication information It is only for distinguishing different instruction information, and the sequence thereof is not limited.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: a fifth generation (5th generation, 5G) mobile communication system or a new radio access technology (new radio access technology, NR).
  • 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or standalone networking (standalone, SA).
  • the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device-to-device (device-to-device, D2D) A network, a machine to machine (M2M) network, an Internet of things (IoT) network, or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • device-to-device device-to-device
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as the vehicle to other equipment (vehicle to X, V2X, X can represent anything) system
  • the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle Communication with infrastructure (vehicle to infrastructure, V2I), communication between vehicles and pedestrians (vehicle to pedestrian, V2P) or communication between vehicles and networks (vehicle to network, V2N), etc.
  • the network device can be any device with a transceiver function or a chip that can be set on the network device, and the network device includes but is not limited to: a base station (for example, Node B (Node B, NodeB), Evolved Node B (eNB), radio network controller (radio network controller, RNC), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP) in the wireless network system, wireless relay node (radio relay node, RRN), wireless back Transmission node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), 5G One or a group (including multiple antenna panels)
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU can be responsible for processing non-real-time protocols and services, for example, it can implement the radio resource control (radio resource control, RRC) layer, service data adaptive protocol (service data) Adaptation protocol (SDAP) layer and/or packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • DU can be responsible for handling physical layer protocols and real-time services.
  • a DU can be connected to only one CU or multiple CUs, and one CU can be connected to multiple DUs, and CUs and DUs can communicate through the F1 interface.
  • the AAU can realize some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • high-level signaling such as RRC layer signaling, also It can be considered as sent by the DU, or sent by the DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • the network device provides services for the cell, and the terminal communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network device.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.), It may also belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, a pico cell, a femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. If there are multiple network devices in the communication system, the multiple network devices can be base stations of the same type or different types of base stations; these multiple base stations can support the network of the same technology mentioned above, or can support Networks of the different technologies mentioned above.
  • a terminal may also be referred to as a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal , wireless communication device, user agent, or user device.
  • Terminals can be fixed or mobile.
  • Terminals can communicate with different network devices.
  • the terminal can communicate with multiple base stations of different technologies.
  • the terminal can communicate with the base station supporting the LTE network, and can also communicate with the base station supporting the 5G network. It can also support dual connection with the base station of the LTE network and the base station of the 5G network .
  • a terminal may be a device with a sending and receiving function.
  • Terminals can be deployed on land, including indoor or outdoor, handheld devices, wearable devices or vehicle-mounted devices; terminals can also be deployed on water (such as ships, etc.); terminals can also be deployed in the air (such as aircraft, balloons and satellites, etc.) .
  • examples of some terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), wireless in remote medical (remote medical) Terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless Telephones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or connected Other processing devices to wireless modems, vehicle-mounted devices, wearable devices, terminals in the 5G network or terminals in the future evolution of the public land mobile network (PLMN), etc.
  • PLMN public land mobile network
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal may also be a terminal in an internet of things (internet of things, IoT) system.
  • IoT internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminals can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (some terminals), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment.
  • FIG. 1 shows a schematic diagram of a communication system 100 applicable to the method provided by the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in the 5G system shown in Figure 1; the communication system 100 may also include at least one terminal, such as the terminal shown in Figure 1 102 to 107. Wherein, the terminals 102 to 107 may be mobile or fixed. Each of the network device 101 and one or more of the terminals 102 to 107 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area, and can communicate with terminals located within the coverage area. For example, the network device may send configuration information to the terminal, and the terminal may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal. Therefore, the network device 101 and the terminals 102 to 107 in FIG. 1 constitute a communication system.
  • terminals can communicate directly with each other.
  • a device to device (device to device, D2D) technology may be used to realize direct communication between terminals.
  • the terminals 105 and 106 and between the terminals 105 and 107 can communicate directly by using the D2D technology.
  • Terminal 106 and terminal 107 may communicate with terminal 105 individually or simultaneously.
  • the terminals 105 to 107 can also communicate with the network device 101 respectively. For example, it can directly communicate with the network device 101, as shown in the figure, the terminals 105 and 106 can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, as shown in the figure, the terminal 107 communicates with the network device 101 via the terminal 106.
  • FIG. 1 exemplarily shows a network device, multiple terminals, and communication links between communication devices.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals, such as more or fewer terminals. This application does not limit this.
  • Each of the aforementioned communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, and those of ordinary skill in the art can understand that they all include a plurality of components related to signal transmission and reception (such as processors, modulators, multiplexers, etc.) , demodulator, demultiplexer or antenna, etc.). Therefore, the network device and the terminal can communicate through the multi-antenna technology.
  • the wireless communication system 100 may further include other network entities such as a network controller and a mobility management entity, to which this embodiment of the present application is not limited.
  • network entities such as a network controller and a mobility management entity, to which this embodiment of the present application is not limited.
  • a network controller and a mobility management entity, to which this embodiment of the present application is not limited.
  • Time unit It can be a subframe, or a slot, or a wireless frame, a mini slot or a sub slot, multiple aggregated slots, multiple
  • the aggregated subframe and the like may even be a transmission time interval (transmission time interval, TTI), which is not particularly limited in this embodiment of the present application.
  • TTI transmission time interval
  • Symbol the smallest unit of time domain resources.
  • the embodiment of the present application does not limit the time length of a symbol. For different subcarrier intervals, the length of one symbol may be different.
  • Symbol categories may include uplink, downlink, flexible, or full duplex, by way of example and not limitation. Symbol categories can also be understood as orientations of symbols.
  • An uplink signal refers to a signal whose transmission direction is uplink, for example, it may be a signal sent by a terminal to a network device.
  • a downlink signal refers to a signal whose transmission direction is downlink, for example, it may be a signal sent by a network device to a terminal.
  • the direction of a symbol is flexible, it means that the transmission direction of the corresponding signal on the symbol has not been determined.
  • the flexible symbol may be used for the transmission of uplink signals or downlink signals. This The application embodiment does not limit this.
  • the direction of a symbol is full-duplex, it can be understood that downlink signal transmission and uplink signal transmission can be performed on this symbol.
  • a time slot may include 14 symbols, or a time slot may include 12 symbols. This application takes a time slot including 14 symbols as an example, but this application does not make any limitation on the number of symbols included in a time slot.
  • Carrier Indicates a segment of continuous frequency domain resources, which may correspond to a cell configuration.
  • Subbands It is designed that the frequency domain resources occupied by a subband can be smaller than the frequency domain resources occupied by a CC.
  • the frequency domain resources of a subband are continuous, and the frequency domain resources of different subbands do not overlap.
  • Multiple subbands may be continuous or discontinuous in the frequency domain. For example, in a design in which multiple subbands are discontinuous in subbands, a guard interval may exist between every two subbands in the multiple subbands. Similarly, in a design in which multiple subbands are continuous in the frequency domain, there may be no guard interval between every two subbands in the multiple subbands.
  • HARQ-ACK codebook It can be understood as a HARQ-ACK codebook generated according to ACK and negative acknowledgment (NACK) information that needs to be fed back within one or more time units.
  • the HARQ-ACK codebook can be divided into a dynamic codebook and a semi-static codebook.
  • the semi-static codebook can refer to generating the HARQ-ACK codebook in a semi-static manner.
  • the load size of the codebook changes semi-statically, that is, it remains unchanged for a period of time.
  • the reliability of the semi-static codebook is relatively high.
  • the semi-static codebook is determined according to the set of candidate PDSCH receiving opportunities, the maximum number of codewords and other HARQ configurations, and the size of the codebook will not change dynamically with the actual data scheduling situation.
  • the terminal can be based on whether the terminal supports multiple PDSCH transmissions in one time slot, the number of serving cells configured by RRC layer signaling, and the HARQ spatial bundling parameter (harq-ACK-SpatialBundlingPUCCH) of each serving cell configured by RRC layer signaling , PDSCH-code block group (code block group, CBG) configuration parameters (PDSCH-CodeBlockGroupTransmission) of each serving cell configured by RRC layer signaling, and the maximum codeword (codeword) parameter supported by each serving cell configured by RRC layer signaling to determine a
  • the number of bits (bits) that need to be fed back in a time unit is used to determine the semi-static HARQ-ACK codebook.
  • the dynamic codebook is based on the count downlink assignment index (C-DAI) and the total downlink assignment index (T-DAI) in the downlink control information (downlink control indicator, DCI) in the time domain and other information and other HARQ configurations, the size of the codebook will change dynamically according to the actual data scheduling situation.
  • High-level signaling it may refer to the signaling sent by the high-level protocol layer, and the high-level protocol layer is the protocol layer above the physical layer.
  • the high-level protocol layer may include at least one of the following protocol layers: a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a non-access stratum (non access stratum, NAS).
  • network devices can implement the configuration of symbol categories on a CC in the following two ways: high-level configuration/RRC layer signaling configuration, downlink control indicator 2-0 (downlink control indicator 2-0, DCI 2-0) Dynamic indication, DCI 2-0 dynamic indication is also called slot format indicator (SFI).
  • high-level configuration/RRC layer signaling configuration downlink control indicator 2-0 (downlink control indicator 2-0, DCI 2-0) Dynamic indication
  • DCI 2-0 dynamic indication is also called slot format indicator (SFI).
  • the network device can notify the terminal device through the RRC layer signaling to realize the configuration of the symbol category within a certain period.
  • This scheme may also be referred to as an RRC-configured slot format.
  • the configuration parameters in the high-level configuration scheme can be further divided into: cell-level configuration parameters, such as TDD-Config Common (TDD-ConfigCommon), and terminal-level configuration parameters, such as TDD-specific configuration (TDD-ConfigDedicated).
  • TDD-ConfigCommon supports both single-cycle configuration and double-cycle configuration.
  • TDD-ConfigDedicated is a configuration parameter at the terminal level, each terminal can be configured individually, and each terminal can modify the direction of the flexible symbol in TDD-ConfigCommon.
  • the information contained in the TDD-ConfigDedicated includes: the identification (identity, ID) of the time slot, the number of uplink symbols of the time slot, the number of downlink symbols of the time slot, and the like.
  • the high-level configuration scheme there may be only cell-level configuration parameters, or there may be cell-level configuration parameters and terminal-level configuration parameters at the same time.
  • the high-level configuration scheme may be called RRC time slot in the embodiment of this application format configuration.
  • the time-frequency resource configured by the network device for the terminal is configured for the entire CC, that is, the symbol type of a symbol is configured for the entire CC, as shown in (a) of Figure 2, the time slot
  • the symbol categories on carrier 1 and slot 2 are configured for the entire CC, where the 14 symbols included in slot 1 are all D on carrier 1, and the 14 symbols included in slot 2 are on carrier
  • the symbol categories on 1 include 7 Ds, 5 Fs, and 2 Us as shown in Figure 2(a).
  • one CC may include multiple subbands that are continuous in the frequency domain and do not overlap, and symbols in one or more time units have different symbol types on the multiple subbands.
  • the same symbol is configured as an uplink symbol in some subbands, and is configured as a downlink symbol in another part of the subbands.
  • the symbol categories of timeslot 3 and timeslot 4 on carrier 2 as shown in (b) of Figure 2 are configured for subbands, and the symbol categories of one symbol may be different on different subbands within the same CC, That is, simultaneous sending and receiving can be realized on one CC.
  • one CC contains multiple subbands.
  • the following definitions are first made:
  • Full-band D time slot A CC is divided into multiple sub-bands, and on this CC, the symbol category of all symbols on these multiple sub-bands in a time slot is D, then this time slot can be called a full-band D time slot.
  • Full-band U time slot A CC is divided into multiple sub-bands, and on this CC, the symbol category of all symbols in a time slot on these multiple sub-bands is U, then this time slot can be called full-band U time slot.
  • Full-band FD time slot A CC is divided into multiple sub-bands, and on this CC, the symbol category of all symbols on these multiple sub-bands in a time slot is FD, then this time slot can be called a full-band FD time slot.
  • Full-band F time slot A CC is divided into multiple sub-bands, and on this CC, the symbol category of all symbols in a time slot on these multiple sub-bands is F, then this time slot can be called a full-band F time slot.
  • Full-band D and FD time slots A CC is divided into multiple sub-bands, and on this CC, the symbol types of a time slot on these multiple sub-bands only include D and FD, and this time slot is not full-band D If it is not a full-band FD time slot, then this time slot can be called a full-band D and FD time slot.
  • Full-band U and FD time slot A CC is divided into multiple sub-bands, and on this CC, the symbol category of a time slot on these multiple sub-bands only includes U and FD, and this time slot is not full-band U If it is not a full-band FD time slot, then this time slot can be called a full-band U and FD time slot.
  • Subband D slot/subband U slot one CC is divided into multiple subbands, and on this CC, one or more symbols in one slot have different symbol types on the multiple subbands, and Not full-band D and FD time slots, and not full-band U and FD time slots.
  • all symbols corresponding to different sub-bands can simultaneously transmit uplink signals and downlink signals.
  • all symbols corresponding to different sub-bands can transmit uplink signals or downlink signals.
  • all symbols corresponding to different subbands can transmit downlink signals, and some symbols corresponding to some subbands can simultaneously transmit uplink signals and downlink signals.
  • Subband D time slot/subband U time slot According to the symbol category corresponding to different subbands, it is determined that the symbol can transmit uplink signals and/or downlink signals.
  • a time unit is used as an example for a time slot.
  • time slot 4 can be called a full-band U time slot at this time; as shown in (c) of Figure 2
  • all symbols of carrier 3 in time slot 5 on all subbands are D, at this time, time slot 3 can be called a full-band D time slot, and all subbands of carrier 3 in time slot 6
  • the time slot 3 shown in (b) of FIG. 2 , and the time slot 7 and the time slot 8 shown in (d) of FIG. 2 may be referred to as subband D/subband U time slots.
  • a time slot is a full-band D and FD time slot or a full-band U and FD time slot or a sub-band D/sub-band U time slot. In this case, how to send and receive the HARQ-ACK codebook remains to be resolved.
  • the terminal can determine the target candidate PDSCH receiving opportunity in the candidate PDSCH receiving opportunity of a time slot, the determination of the target candidate PDSCH receiving opportunity and the time slot configured by RRC layer signaling Format related.
  • the candidate PDSCH reception opportunity is not a target candidate PDSCH reception opportunity.
  • the terminal determines the number of bits of the HARQ-ACK fed back by one time unit according to the method in chapter 9.1.2 of the technical specification (TS) 38.213 version G60, and then determines the number of bits according to the actually received PDSCH HARQ-ACK codebook.
  • the target candidate PDSCH reception timing is also determined according to this method, some resources may be idle.
  • the symbol type of a candidate PDSCH receiving opportunity is D, F or FD in the slot format configured by RRC on the first subband
  • the candidate PDSCH receiving opportunity is located
  • the symbol category of the symbol in the slot format configured by RRC on the second subband is U, and this candidate PDSCH receiving opportunity may not be selected as the target candidate PDSCH receiving opportunity.
  • the network device may not perform downlink transmission on this candidate PDSCH receiving opportunity.
  • the network device can perform downlink transmission on the first subband at the candidate PDSCH receiving opportunity. Therefore, resources are not properly utilized, and the resource utilization rate needs to be improved.
  • the embodiment of the present application proposes a communication method.
  • the terminal and the network device can determine the receiving opportunity of the target candidate PDSCH based on the same rule, and then realize HARQ - Normal transmission of ACK.
  • each symbol in the target candidate PDSCH receiving opportunity satisfies that the symbol category on at least one subband is downlink, flexible or full-duplex, so that the network device can perform uplink and downlink transmission on the same CC as much as possible, Thereby improving resource utilization.
  • Fig. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • step 310 the terminal determines a target candidate PDSCH receiving opportunity from the first time-frequency resource.
  • the first time-frequency resource corresponds to a time unit in the time domain.
  • the time unit corresponding to the first time-frequency resource is recorded as the first time unit.
  • a time unit consists of one or more symbols.
  • the frequency domain resource corresponding to the first time-frequency resource includes multiple subbands, and the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the first time-frequency resource, and the multiple subbands are in one on the carrier.
  • one or more symbols in the first time unit have different symbol types on the multiple subbands, that is, the first time-frequency resource is applicable to the SBFD scheme.
  • the multiple subbands may refer to subbands included in a bandwidth part (bandwidth part, BWP) activated by the terminal.
  • BWP bandwidth part
  • the block of time-frequency resources corresponding to time slot 3 on carrier 2 shown in (b) in FIG. 2 , the time-frequency resource of time slot 6 corresponding to carrier 3 shown in (c) of FIG. 2 , and The time-frequency resource corresponding to time slot 7 of carrier 4 shown in (d) of FIG. 2 and the time-frequency resource of time slot 8 corresponding to carrier 4 are both examples of the first time-frequency resource.
  • Slot 6, slot 7, and slot 8 are all examples of first time units.
  • the time-frequency resource configured by the network device for the terminal may include one or more time units in the time domain, and the terminal may determine the first time-frequency resource based on the above characteristics of the first time-frequency resource in the time domain and frequency domain time-frequency resources. If the first time unit is used as the granularity, and the time-frequency resources configured by the network device for the terminal meet the above characteristics, and the resource corresponding to a first time unit is recorded as a first time resource, then the network device is configured for the terminal
  • the time-frequency resources may include one or more first time-frequency resources.
  • the target candidate PDSCH receiving opportunity includes at least one symbol, and each symbol contained in the target candidate PDSCH receiving opportunity satisfies: the symbol type on at least one subband among the plurality of subbands is D or flexible F or FD, or, the symbol type on the first subband among the multiple subbands is downlink or flexible or full duplex.
  • the first subband is a specific subband among the plurality of subbands, that is, only the symbol type on this specific subband needs to be considered when determining the target candidate PDSCH receiving opportunity.
  • the symbol category is full-duplex (FD), which can be understood as uplink transmission and downlink transmission can be performed simultaneously on one subband and within one symbol.
  • the symbol category of each symbol included in the candidate PDSCH receiving opportunity 1 shown in (b) of FIG. receive timing.
  • the symbol type of each symbol included in the candidate PDSCH receiving opportunity 2 on at least one of the three subbands is D or F, so the candidate PDSCH receiving opportunity 2 is the target candidate PDSCH receiving opportunity.
  • the symbol type of the last symbol of candidate PDSCH receiving opportunity 3 on these three subbands is U, so candidate PDSCH receiving opportunity 3 does not meet the characteristics of the target candidate PDSCH receiving opportunity, so candidate PDSCH receiving opportunity 3 is not the target candidate PDSCH receiving opportunity .
  • the symbol category above is D or F
  • the candidate PDSCH receiving opportunity 1 and the candidate PDSCH receiving opportunity 2 are the target candidate PDSCH receiving occasions
  • the last symbol of the candidate PDSCH receiving opportunity 3 on this first subband has a symbol category of U
  • the candidate PDSCH receiving opportunity 3 does not meet the characteristics of the target candidate PDSCH receiving opportunity, so the candidate PDSCH receiving opportunity 3 is not the target candidate PDSCH receiving opportunity.
  • the following exemplarily gives several possible designs of the target candidate PDSCH receiving occasions.
  • the first subband is a subband with the highest priority among the multiple subbands.
  • multiple subbands included in a CC can define different priorities, and the priorities of different subbands can be configured by the network device to the terminal, or can be predefined, which is not limited in this application .
  • the first subband may be a subband with the highest priority among multiple subbands included in one CC.
  • it can only consider whether the symbol type of each symbol included in the candidate PDSCH receiving opportunity on the first subband is downlink, flexible or full-duplex. If this feature is satisfied, the candidate The PDSCH receiving timing is the target candidate PDSCH receiving timing.
  • the subbands are defined as different priorities, and the resources in the subbands of different priorities can be reasonably utilized, only considering that each symbol included in the candidate PDSCH reception opportunity is in the subband with the highest priority Whether the symbol type is downlink, flexible, or full-duplex, the utilization rate of resources in the high-priority subband can be guaranteed.
  • the first subband is a subband designated by the network device among the multiple subbands.
  • the network device may specify that when the terminal determines the target candidate PDSCH receiving candidate opportunity, it may only consider whether the symbol type of each symbol included in the candidate PDSCH receiving opportunity on a certain subband is downlink, flexible or full-duplex.
  • a possible implementation manner is that the network device directly indicates a subband ID to the terminal, and the terminal can determine the subband corresponding to the ID as the first subband according to the subband ID indicated by the network device.
  • the target candidate PDSCH receiving candidate opportunity only consider whether the symbol category of each symbol included in the candidate PDSCH receiving opportunity on the subband specified by the network device is downlink, flexible or full-duplex, if this feature is satisfied, then The candidate PDSCH receiving timing is the target candidate PDSCH receiving timing.
  • the terminal may implicitly determine which subband is the first subband according to other configuration information configured to it by the network device. For example, when configuring the time slot format through RRC layer signaling in a cell, considering that there will be legacy (legacy) terminals and new (new) terminals in the cell at the same time, when configuring the time slot format through RRC layer signaling, you can first configure a CC
  • the time slot format above can be called CC level time slot format configuration, and the CC level time slot format can be recognized and used by legacy terminals.
  • the time slot format of each subband can be further configured through RRC layer signaling, It may be referred to as subband-level time slot format configuration, and the sub-band level time slot format may be recognized and used by the New terminal.
  • the subband-level slot format there is a subband slot format that is the same as the CC-level slot format, that is, on the same symbol, the symbol category on the subband and the CC-level slot format configuration
  • the symbol categories of the subbands are the same, and the slot format configuration of the subbands may be called legacy configuration, and the terminal may determine the subband adopting the legacy configuration as the first subband.
  • the terminal does not need to do additional calculation or judgment processing, and only needs to determine the first subband according to the indication information of the network device, and then determine the receiving opportunity of the target candidate PDSCH according to the above-mentioned determination process of determining the target candidate PDSCH.
  • the power consumption of the terminal is reduced to a certain extent.
  • time slot as an example of the first time unit to describe in detail the specific process for the terminal to determine the first time-frequency resource from the time-frequency resources configured by the network device, and then determine the receiving opportunity of the target candidate PDSCH.
  • the terminal can first determine the first time-frequency resource from the time-frequency resources configured by the network device, and then determine the candidate PDSCH receiving opportunity for each first time-frequency resource, and then determine the target candidate PDSCH receiving opportunity from the candidate PDSCH receiving opportunity opportunity.
  • An implementation manner of determining a receiving time unit of a PDSCH in which a network device can configure time-frequency resources for a terminal through DCI.
  • the network device can determine the uplink time unit for transmitting the HARQ-ACK codebook through the value m of the first field in the DCI (m is a binary number) and the set K1.
  • the uplink time unit may be, for example, a full-band U time slot, or a sub-band U time slot, or a full-band FD time slot, or a full-band F time slot, or a full-band D and FD time slot, or a full-band U and FD time slot.
  • the time slot in which the terminal transmits the HARQ-ACK codebook is recorded as the feedback time slot.
  • the value m of the first field may be used to indicate a value k m in K1.
  • the set K1 is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇
  • "1" in this set can be recorded as the 0th number
  • "2" can be recorded as the 1st number
  • "8” can be recorded as the seventh number.
  • the value m of the first field in the DCI issued by the network device to the terminal device is "001"
  • the time slot in which the terminal receives downlink data and the time slot in which the terminal feeds back ACK/NACK to the base station satisfy the timing relationship of n+k m , where n may represent the time slot in which the terminal receives downlink data, and km may represent the time slot in which the terminal receives downlink data
  • n may represent the time slot in which the terminal receives downlink data
  • km may represent the time slot in which the terminal receives downlink data
  • the time slot that differs from the corresponding ACK/NACK feedback time slot, that is, the time slot for feeding back ACK/NACK is time slot n+k m .
  • Another way to determine the receiving time unit of the PDSCH is that the network device can configure the uplink time unit for transmitting the HARQ-ACK codebook for the terminal through RRC layer signaling, that is, determine the feedback time slot of the terminal's HARQ-ACK.
  • the network device can configure the uplink time unit for transmitting the HARQ-ACK codebook for the terminal through MAC control element (MAC control element, MAC CE) signaling, that is, determine the terminal's Feedback time slot of HARQ-ACK.
  • MAC control element MAC control element, MAC CE
  • the terminal can determine according to the set K1 the feedback of the PDSCH received on which time slots before the feedback time slot the HARQ-ACK codebook is used for.
  • km may represent the offset between the time slot for receiving the PDSCH and the feedback time slot, and km may be any element in the set K1.
  • K1 The default configuration of K1 is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • the terminal can determine the time range within which the PDSCH can be received according to the feedback time slot, K1 and whether there is a BWP switch.
  • K1 can be from the downlink (downlink, DL) data in the RRC layer signaling to the uplink (uplink, UL) confirmation (DL-DataToUL-ACK)", or "version 16 (release 16, r16) downlink data To uplink acknowledgment (DL-DataToUL-ACK-r16)" or "DCI-1-2 (DL-DataToUL-ACK-DCI-1-2-r16) of version 16 downlink data to uplink acknowledgment", or you can Determined according to the default configuration.
  • Embodiments of this application include but are not limited to this.
  • the terminal may separately determine a time range within which the PDSCH can be received in each serving cell, and each time range may include at least one first time unit. It should be understood that the specific implementation manner for the terminal to determine the time range in which the PDSCH can be received can refer to relevant descriptions in chapter 9 of G60 of version 38.213 of the technical specification (technical specification, TS), and details will not be described here.
  • time slot i is a feedback time slot.
  • the network device configuration K1 ⁇ 1, 2, 3, 4 ⁇ , that is, the terminal needs to check the PDSCH received on the time slot i-4, the time slot i-3, the time slot i-2 and the time slot i-1
  • the feedback is performed on the time slot i, that is, the HARQ-ACK information fed back on the time slot i is the feedback information that the terminal in the time slot i-4 to the time slot i-1 may receive the PDSCH.
  • the terminal may further determine the candidate PDSCH reception opportunities that may be used to transmit the PDSCH in these time slots.
  • the terminal can determine the start symbol and symbol length of the candidate PDSCH receiving opportunity in a slot according to the table configured by the RRC layer or the table predefined by the protocol, and exclude one or more symbols in the symbols where the candidate PDSCH receiving opportunity is located.
  • the multiple subbands are those candidate PDSCH receiving occasions whose symbol category is U configured by the RRC slot format. Since the excluded candidate PDSCH receiving opportunities cannot transmit downlink data, there is no need to send corresponding feedback information.
  • the terminal can also exclude the full-band U time slots. Since these time slots cannot transmit downlink data, there is no need to send corresponding feedback information.
  • the terminal can first exclude the time slots configured as full-band U by the parameters TDD-ConfigCommon and TDD-ConfigDedicated, and then, the terminal can determine the target candidate PDSCH receiving opportunity among the candidate PDSCH receiving opportunities that are not excluded.
  • the terminal can also use the full-band The target candidate PDSCH receiving opportunity is determined in the D slot, the full-band FD slot or the full-band F slot.
  • step 320 the terminal determines a HARQ-ACK codebook based on multiple target candidate PDSCH receiving opportunities.
  • the terminal After the terminal determines the receiving opportunity of the target candidate PDSCH, it can determine the payload size of the HARQ-ACK codebook according to the multiple target candidate PDSCH receiving occasions, that is, the number of bits in the HARQ-ACK codebook, and whether each bit needs to feed back NACK or ACK to generate a HARQ-ACK codebook.
  • the terminal can receive the target candidate PDSCH according to each serving cell in each time unit within a time range, and whether the terminal supports the transmission of multiple PDSCHs in one time slot, and the number of serving cells configured by RRC layer signaling Number, harq-ACK-SpatialBundlingPUCCH of each serving cell, PDSCH-CodeBlockGroupTransmission of each serving cell, maximum codeword parameters supported by each serving cell, etc., follow the relevant instructions in TS 38.213, and will not be described in detail here.
  • step 330 the terminal sends a HARQ-ACK codebook.
  • the network device receives the HARQ-ACK codebook from the terminal.
  • the terminal After the terminal generates the HARQ-ACK codebook, it can send the HARQ-ACK codebook to the network device, and accordingly, the network device can receive the HARQ-ACK codebook from the terminal.
  • the terminal can configure multiple PUCCH resources in the range corresponding to the load sizes of multiple HARQ-ACK codebooks configured by the network device to the terminal according to the load size of the HARQ-ACK codebook, according to The payload size of the generated HARQ-ACK codebook determines the PUCCH resource set that can be used to send the HARQ-ACK codebook.
  • the terminal can The ACK/NCK resource indicator (resource indicator) (ARI) field in the DCI determines the index of the PUCCH resource in the PUCCH resource set, and the size of the value of the ARI field is equal to the index size of the PUCCH resource carrying the HARQ-ACK information;
  • the terminal can carry the control channel element (control channel element, CCE) contained in the control resource set (control resource set, CORESET) where a PDCCH resource is located according to the ARI field
  • the index of the PUCCH resource in the PUCCH resource set is determined by the number and the index of the first CCE in the CCE where the PDCCH is located.
  • the index of the PUCCH resource is determined, that is, the PUCCH resource used to send the HARQ-ACK codebook is determined, so that the terminal can send the HARQ-ACK codebook to the network device on the PUCCH resource.
  • the network device can receive the HARQ-ACK codebook from the terminal on the PUCCH resource.
  • the network device needs to determine the PUCCH resource for receiving the HARQ-ACK codebook, the PUCCH resource is related to the payload size of the HARQ-ACK codebook, and the payload size of the HARQ-ACK codebook is related to the receiving opportunity of the target candidate PDSCH.
  • the network device also needs to predetermine the payload size of the HARQ-ACK codebook. Therefore, before receiving the HARQ-ACK codebook, the network device may execute step 340 to determine the target candidate PDSCH candidate opportunity from the first time-frequency resource, and then execute step 350 to determine the payload size of the HARQ-ACK codebook. In this way, correct reception of the HARQ-ACK codebook can be guaranteed.
  • the specific implementation manner in which the network device determines the target candidate PDSCH candidate timing and the load size of the HARQ-ACK codebook from the first time-frequency resource is the same as the terminal determining the target candidate PDSCH candidate from the first time-frequency resource in step 310 above.
  • the timing is similar to the specific implementation manner in which the terminal determines the payload size of the HARQ-ACK codebook based on multiple target candidate PDSCH receiving timings in step 320, and will not be repeated here.
  • step 330 the terminal has performed step 310 and step 320, and the network device has performed step 340 and step 350.
  • the terminal can determine the target candidate PDSCH reception opportunity from multiple candidate PDSCH reception opportunities based on the definition of the target candidate PDSCH candidate opportunity, and then determine the HARQ-ACK codebook; the network device also The receiving opportunity of the target candidate PDSCH can be determined based on the same method, and then the payload size of the HARQ-ACK codebook can be determined, so that the correct reception of the HARQ-ACK codebook can be realized.
  • the normal transmission of the HARQ-ACK codebook is realized.
  • symbol Category is uplink.
  • network devices can schedule downlink data on the downlink subband of the same CC as much as possible, and receive uplink data on the uplink subband, that is, uplink and downlink transmission can be performed on the same CC at the same time, so resource utilization rate is improved.
  • the terminal and the network device can use the generated HARQ-ACK codebook load size, in the multiple PUCCH resource sets configured by the network device to the terminal corresponding to the load size range of multiple HARQ-ACK codebooks, determine the PUCCH resource set that can be used to send the HARQ-ACK codebook, and in One PUCCH resource is determined in this resource set to send the HARQ-ACK codebook.
  • the PUCCH resources determined by the terminal may cross subbands, such as PUCCH resource 1, PUCCH resource 3 on time slot 10 in (b) in Figure 5, and time slot PUCCH resource 3 on 11, if the resource used to transmit the HARQ-ACK codebook is determined according to the existing technology, PUCCH resource 1 and PUCCH resource 3 in time slot 10 shown in (b) in FIG.
  • the symbol types of the time-domain resources of PUCCH resource 1 and PUCCH resource 2 shown in slot 12 include D, and cannot be used to transmit the HARQ-ACK codebook, which not only affects the transmission of the HARQ-ACK codebook and Receiving also causes some resources to be idle, and the resource utilization rate is not high. If all PUCCH resources span sub-bands, and the symbol types of time-domain resources of all PUCCH resources include D, there will be no resources for transmitting the HARQ-ACK codebook, resulting in reduced transmission reliability.
  • the embodiment of the present application proposes a communication method.
  • each two of the multiple PUCCH resource sets configured by the network device for the terminal are limited.
  • the PUCCH resource set corresponds to the payload size range of a HARQ-ACK codebook, and at least one of the two PUCCH resource sets includes at least one PUCCH resource that does not cross subbands, so that the transmission of the HARQ-ACK codebook is reasonable. Determining PUCCH resources accurately, on the one hand, can ensure the normal transmission of the HARQ-ACK codebook and ensure transmission reliability, and on the other hand, can also improve resource utilization.
  • the following provides two possible designs of the PUCCH resource set with reference to the embodiments of FIG. 6 and FIG. 8 .
  • the load size range of each HARQ-ACK codebook can correspond to two PUCCH resource sets, and one PUCCH resource set in the two PUCCH resource sets ( That is, none of the PUCCH resources included in the first PUCCH resource set described below spans sub-bands.
  • the network device configures the PUCCH resource set for the terminal, each PUCCH resource set corresponds to the payload size range of a HARQ-ACK codebook, and each PUCCH resource set includes at least one For the PUCCH resource, refer to the method 800 shown in FIG. 8 for details.
  • Fig. 6 is a schematic flowchart of a communication method 600 provided by another embodiment of the present application. As shown in FIG. 6 , method 600 includes steps 610 to 680 . Steps 610 to 680 will be described in detail below with reference to the accompanying drawings.
  • step 610 the network device configures multiple PUCCH resource sets for the terminal.
  • the second time-frequency resource corresponds to a time unit in the time domain.
  • the time unit corresponding to the second time-frequency resource is recorded as the second time unit in this application.
  • Two time units consist of one or more symbols.
  • the frequency domain resource corresponding to the second time-frequency resource includes multiple subbands, and the multiple subbands
  • the band is a continuous non-overlapping frequency domain resource on the frequency domain resource corresponding to the second time-frequency resource, and the multiple subbands are on one carrier, and one or more symbols in the second time unit are in the multiple subbands
  • the types of symbols on the bands are different, that is, the second time-frequency resource is applicable to the SBFD scheme.
  • the time-frequency resource of slot 11 can be regarded as the second time-frequency resource, and both time slot 10 and time slot 11 can be the second time unit.
  • the frequency domain of all the PUCCH resources included in each of the multiple PUCCH resource sets configured by the network device for the terminal is within the frequency domain resource of the second time-frequency resource.
  • every two PUCCH resource sets correspond to the payload size range of one HARQ-ACK codebook, and the two PUCCH resource sets corresponding to the payload size range of one HARQ-ACK codebook can be regarded as a group of PUCCH resource sets.
  • the following two PUCCH resource sets corresponding to the payload size range of one HARQ-ACK codebook are respectively marked as the first PUCCH resource set and the second PUCCH resource set.
  • the time slot format configured by the RRC layer is periodic, including two configurations of single cycle and double cycle.
  • the duration of a single cycle can be defined as T (T ⁇ 0) seconds or the sum of the duration of the two cycles of a double cycle is T seconds, within T seconds, including M (M ⁇ 1, M is an integer) second time units, according to the configuration of symbol categories on multiple subbands on M second time units and the definition of second time-frequency resources, Determine a second time unit where N (N ⁇ 1, N is an integer) second time-frequency resources among the M time units are located.
  • N1 (N1 ⁇ 1, N1 is an integer, N1 ⁇ N) second time-frequency resources are used to bear HARQ-ACK information.
  • the network device can indicate the time-frequency resource where the terminal sends the HARQ-ACK information through the DCI indication or the RRC configuration information or the MAC CE, and N1 second time-frequency resources can be determined accordingly.
  • the second time-frequency resource corresponding to the second time unit satisfies: the time domain corresponding to the second time-frequency resource is the second time unit, and the frequency domain corresponding to the second time-frequency resource is the terminal The frequency domain where the active BWP is located.
  • the first PUCCH resource set is a resource set including at least one first PUCCH resource, and the first PUCCH resource satisfies: the frequency domain resource of the first PUCCH resource is located in one of the multiple subbands In one band or multiple subbands, the first PUCCH resource in at least one of the N1 second time units corresponds to a time domain resource whose symbol type on the subband where the first PUCCH resource is located is U or F or FD .
  • PUCCH resource 2 in slot 10 and slot 11 shown in (b) of FIG. 5 is the first PUCCH resource.
  • the first PUCCH resource on a second time-frequency resource may be referred to as a candidate first PUCCH resource, and the candidate first PUCCH resource satisfies: the first PUCCH resource corresponds to the second time-frequency resource
  • the symbol type of the corresponding time-domain resource in the second time unit on the subband where the first PUCCH resource is located is U, F, or FD. At this time, it may also be referred to as having candidate first PUCCH resources on the second time-frequency resources.
  • this possible manner A2 is a further limitation on the first PUCCH resource set in the foregoing possible implementation manner A1.
  • the PUCCH resource included in the first PUCCH resource set is at least one of the N1 second time-frequency resources. Both time-frequency resources are candidate first PUCCH resources. It can be understood that this possible manner A3 is a further limitation on the first PUCCH resource set in the foregoing possible implementation manner A1.
  • the PUCCH resource included in the first PUCCH resource set is at least one of the N1 second time-frequency resources. Both time-frequency resources are candidate first PUCCH resources. It can be understood that this possible manner A4 is a further limitation on the first PUCCH resource set in the foregoing possible implementation manner A2.
  • the PUCCH resources included in the first PUCCH resource set are candidate first PUCCH resources among the N1 second time-frequency resources. It can be understood that this possible manner A5 is a further limitation on the first PUCCH resource set in the foregoing possible implementation manner A4.
  • the second PUCCH resource set may or may not include the first PUCCH resource, which is not limited in this application.
  • the corresponding relationship between the load size range of the HARQ-ACK codebook and the first PUCCH resource set and the second PUCCH resource set can be expressed in the form of a table or in other forms, which is not limited in this application.
  • the third time-frequency resource may also correspond to a second time unit in the time domain
  • the frequency domain resource corresponding to the third time-frequency resource includes multiple subbands
  • the multiple subbands are the Continuous non-overlapping frequency domain resources on the frequency domain resources corresponding to the three time-frequency resources
  • the multiple subbands are on one carrier
  • each symbol in the second time unit has the same symbol type on the multiple subbands
  • the symbol type of one or more symbols in the second time unit on the multiple subbands is U or FD or F, that is, the second time unit can also be a full-band U time slot, or a full-band F slots, or full band FD slots.
  • One piece of time-frequency resource can be regarded as the third time-frequency resource.
  • the second time unit may include full-band U sub-slots, full-band F sub-slots, full-band FD sub-slots, or full-band D sub-slots. It should be understood that a sub-slot is smaller than a time slot, and one time slot may include multiple sub-slots.
  • one sub-slot can include 7 symbols, that is, one time slot can include two sub-slots, as shown in Figure 5 (c), the time slot 12 can include the first sub-slot (the first symbol to The 7th symbol) and the second sub-slot (the 8th symbol to the 14th symbol), then, this piece of time-frequency resource of carrier 7 corresponding to the second sub-slot of time slot 12 can be considered as the third time-frequency resource audio resources.
  • the third time-frequency resource corresponding to the second time unit satisfies: the time domain corresponding to the third time-frequency resource is the second time unit, and the frequency domain corresponding to the third time-frequency resource is the terminal The frequency domain where the active BWP is located.
  • the network device and the terminal may determine J (J ⁇ 0, J is an integer) third time-frequency resources within the time T seconds, and among the J third time-frequency resources, there are J1 (J1 ⁇ 0, J1 is an integer, J1 ⁇ J) third time-frequency resources are used to carry HARQ-ACK information.
  • the network device can indicate the time-frequency resource where the terminal sends the HARQ-ACK information through the DCI indication or the RRC configuration information or the MAC CE, and thus the J1 third time-frequency resources can be determined.
  • step 620 the terminal determines a first PUCCH resource set and a second PUCCH resource set corresponding to the payload size of the HARQ-ACK codebook from multiple PUCCH resource sets.
  • the HARQ-ACK codebook may be a dynamic codebook or a semi-static codebook, which is not limited in this embodiment of the present application.
  • the terminal can determine which HARQ-ACK codebook the payload size of the HARQ-ACK codebook belongs to according to the payload size of the HARQ-ACK codebook, and then determine the relationship between the multiple PUCCH resource sets and the HARQ-ACK codebook.
  • step 630 the terminal determines a target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set.
  • the terminal After the terminal determines the first PUCCH resource set and the second PUCCH resource set corresponding to the load size of the HARQ-ACK codebook, the terminal can determine a target PUCCH resource set from these two PUCCH resource sets for subsequent further determination
  • the PUCCH resource that can be used to send the HARQ-ACK codebook is output.
  • the following exemplarily shows several possible implementation manners of determining a target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set.
  • the terminal determines the first PUCCH resource set as the target PUCCH resource set.
  • the network device performs resource scheduling, the network device and the terminal know the symbol category on each time slot on each subband, and the network device can indicate the symbol category included in each time slot to the terminal through indication information, For example, the network device may indicate to the terminal the type of symbols on each time slot through TDD-ConfigCommon and TDD-ConfigDedicated.
  • the network device can also use DCI 2-0 to indicate the terminal's symbol category on each time slot.
  • the terminal can also know which time slot to send the HARQ-ACK codebook on which time slot is sent according to the DCI delivered to the terminal by the network device.
  • the terminal can know the type of symbols on the time slot that needs to send the HARQ-ACK codebook according to the information indicated by the network device. That is, in the case of using the SBFD scheme, the terminal can know the symbol category of each subband of the multiple subbands included in the entire CC in this time slot.
  • the terminal knows that each of the multiple subbands included in the entire CC is at this time In the case of the symbol type on the slot, the first PUCCH resource set may be determined as the target PUCCH resource set.
  • the terminal may determine the second PUCCH resource set as the target PUCCH resource set.
  • constraint condition C1 is a subset of constraint condition C, and constraint condition C can be:
  • the symbol type on the subband where the second time-frequency resource corresponding to the second time unit is located is U or FD; or,
  • the symbol type on the subband where the second time-frequency resource corresponding to the second time unit is located is U or F; or,
  • the symbol type on the subband where the second time-frequency resource corresponding to the second time unit is located is F or FD; or,
  • the symbol type on the subband where the second time-frequency resource corresponding to the second time unit is located is U, FD, or F, and includes three symbol types of U, FD, and F.
  • the terminal may determine the first PUCCH resource set as the target PUCCH resource set.
  • the terminal may determine the second PUCCH resource set as the target PUCCH resource set.
  • the terminal may determine the first PUCCH resource set as the target PUCCH resource set.
  • the constraint condition E1 is a subset of the constraint condition E, and the constraint condition E can be:
  • the symbol type on the subband where the third time-frequency resource corresponding to the second time unit is located is F; or,
  • the symbol type on the subband where the third time-frequency resource corresponding to the second time unit is located is F or DL, and includes two symbol types of F and FD;
  • the terminal may determine the second PUCCH resource set as the target PUCCH resource set.
  • the definition of the first PUCCH resource set can be any one of the implementations A1, A2, A3, A4 and A5, and the second PUCCH Resource sets are not limited.
  • the network device and the terminal can determine the target PUCCH resource set based on the same rule, and can determine the target PUCCH resource set without additional signaling interaction.
  • the terminal may determine the target PUCCH resource according to the instruction of the network device.
  • the terminal receives first indication information from the network device, where the first indication information includes a bitmap of N+J (N ⁇ 1, J ⁇ 0, N and J are integer) bits , for the convenience of description, the bitmap of N+J bits is recorded as the first bitmap in the embodiment of the present application, and the N+J bits of the first bitmap and N+J second time units
  • the value of the nth (1 ⁇ n ⁇ N+J, n is an integer) bit in the first bitmap is used to indicate the nth second time unit among the N+J second time units
  • the network device sends the first indication information to the terminal.
  • the time-frequency resources corresponding to the N+J second time units in the BWP may include at least one second time-frequency resource, that is, N ⁇ 1.
  • the time slot format configured by the RRC for the terminal is a double period, and the duration of the two periods is 5 time slots, and T seconds includes a total of 10 time slots, as shown in the figure.
  • the first indication information may be RRC layer signaling
  • the network device indicates to use the first PUCCH resource set and the second PUCCH resource in each time unit of the N+J time units through the RRC layer signaling Which PUCCH resource set is concentrated, that is, the network device indicates through RRC layer signaling that in each of the N+J time units, the first PUCCH resource set is the target PUCCH resource set or the second PUCCH resource set is the target PUCCH resource set.
  • the second PUCCH resource set is used as the target PUCCH resource set, and the number of N+J bits
  • the value is "0110111", which means that the first PUCCH resource set is used as the target PUCCH resource set in the 1st and 4th of the 7 time slots, and in the 2nd time slot of the 7 time slots From slot 3 to slot 3 and from slot 5 to slot 7, the second PUCCH resource set is used as the target PUCCH resource set, combined with Figure 7, that is, the first PUCCH in slot 3 and slot 7
  • the resource set is a target PUCCH resource set
  • the second PUCCH resource set in slot 4 and slot 5 and slot 8 to slot 10 is a target PUCCH resource set.
  • the bitmap only indicates the PUCCH resource set used by the second time-frequency resource; and the PUCCH resource set used by the third time-frequency resource can be realized according to possible implementation methods D1 or D2, etc., in This is not limited in this implementation manner.
  • the terminal may receive the first indication information from the network device, the first indication information includes an N-bit bitmap, for the convenience of description, the N-bit bitmap is marked as the second bitmap in this embodiment of the present application , N bits of the second bitmap correspond to N second time units, and the value of the nth bit in the second bitmap is used to indicate the nth of the N second time units
  • the value of the corresponding bit in determines the target PUCCH resource set, and the detailed implementation process is similar to the relevant description in the possible implementation mode F1, and will not be repeated here for brevity.
  • the network device sends the first indication information to the terminal.
  • the bitmap only indicates the PUCCH resource set used by the third time-frequency resource
  • the PUCCH resource set used by the second time-frequency resource can be implemented according to possible implementation manners B1 or B2, etc., which is not limited in this implementation manner.
  • the terminal may receive the first indication information from the network device, the first indication information includes a J-bit bitmap, for the convenience of description, the J-bit bitmap is recorded as the third bitmap in this embodiment of the present application , J bits of the third bitmap correspond to J second time units, and the value of the jth bit in the third bitmap is used to indicate the jth of the J second time units
  • the value of the corresponding bit in determines the target PUCCH resource set, and the detailed implementation process is similar to the relevant description in the possible implementation mode F1, and will not be repeated here for brevity.
  • the network device sends the first indication information to the terminal.
  • the definition of the first PUCCH resource set can be any one of the implementations A1, A2, A3, A4 and A5, and the second PUCCH resource set Not limited. For the sake of brevity, details are not repeated here.
  • the terminal may receive second indication information from the network device, where the second indication information includes an identifier of a PUCCH resource set; the terminal combines the first PUCCH resource set and the second PUCCH resource set with this The PUCCH resource set corresponding to the identifier is determined as the target PUCCH resource set.
  • the network device sends second indication information to the terminal, where the second indication information includes an identifier of a PUCCH resource set, and the network device gathers the first PUCCH resource set and the second PUCCH resource into the PUCCH resource set corresponding to the identifier Determined as the target PUCCH resource set.
  • the second indication information may be DCI
  • the network device may directly indicate to the terminal the ID of a PUCCH resource set through the DCI, and the terminal may directly gather the first PUCCH resource set and the second PUCCH resource into the PUCCH resource corresponding to this ID
  • the set is determined as the target PUCCH resource set, which does not require additional calculation or judgment by the terminal, and does not bring additional power consumption to the terminal.
  • the first PUCCH resource set may be defined by any one of the implementation manners A1, A2, A3, A4, and A5, and the second PUCCH resource set is not limited.
  • the terminal can first select a PUCCH resource from the default PUCCH resource set, and if the selected PUCCH resource cannot be used to send the HARQ-ACK codebook, then determine another PUCCH resource set as the target PUCCH resource set.
  • the terminal can first determine a PUCCH resource for sending the HARQ-ACK codebook from the second PUCCH resource set in combination with currently known technologies.
  • the PUCCH resource cannot be used to send the HARQ-ACK codebook, then it can be considered that the symbol category of the symbol where the PUCCH resource is located includes at least one D, so it cannot be used to send the HARQ-ACK codebook.
  • the terminal can directly send the first PUCCH
  • the resource set serves as the target PUCCH resource set.
  • the first PUCCH resource set may be defined by any one of the implementation manners A1, A2, A3, A4, and A5, and the second PUCCH resource set is not limited.
  • step 640 the terminal determines one PUCCH resource in the target PUCCH resource set as the target PUCCH resource.
  • the terminal After determining the target PUCCH resource set, the terminal can determine the target PUCCH resource set according to the known technology.
  • the index of the PUCCH resource in the above PUCCH resource set, the size of the value of the ARI field is equal to the index size of the PUCCH resource carrying the HARQ-ACK information; when the number of PUCCH resources in the target PUCCH resource set is greater than 8, the terminal can use the ARI field, the number of CCEs included in the control resource set that bears a PDCCH resource, and the index of the first CCE in the CCE where the PDCCH is located to determine the index of the PUCCH resource in the PUCCH resource set.
  • the index of the PUCCH resource is determined, that is, the target PUCCH resource for sending the HARQ-ACK codebook is determined, which is not limited in this application.
  • step 650 the terminal sends the HARQ-ACK codebook on the target PUCCH resource.
  • the network device can receive the HARQ-ACK codebook from the terminal on the target PUCCH resource.
  • the terminal After determining the target PUCCH resource for sending the HARQ-ACK codebook, the terminal can send the HARQ-ACK codebook to the network device on the PUCCH resource.
  • the network device determines the target PUCCH resource for receiving the HARQ-ACK codebook of the terminal, it can receive the HARQ-ACK codebook from the terminal on the target PUCCH resource.
  • the network device needs to determine in advance which PUCCH resource to receive the HARQ-ACK codebook, and which PUCCH resource to receive the HARQ-ACK codebook is related to the payload size of the HARQ-ACK codebook, so the network device in Before receiving the HARQ-ACK codebook, the target PUCCH resource can be determined first.
  • the specific process for the network device to determine the target PUCCH resource will be described in detail below.
  • the network device determines a first PUCCH resource set and a second PUCCH resource set corresponding to the payload size of the HARQ-ACK codebook from multiple PUCCH resource sets.
  • the network device may determine target candidate PDSCH receiving opportunities of the terminal in a certain time-frequency domain, and determine the payload size of the terminal's HARQ-ACK codebook based on these target candidate PDSCH receiving opportunities. Afterwards, the network device can determine a group of first PUCCH resource sets and second PUCCH resource sets corresponding to the load size of the HARQ-ACK codebook from the multiple PUCCH resource sets configured for the terminal according to the load size of the HARQ-ACK codebook of the terminal. The PUCCH resource set, furthermore, the network device can determine a target PUCCH resource set from these two resource sets, so as to further determine the PUCCH resource that can be used to receive the HARQ-ACK codebook of the terminal.
  • the specific method for the network device to determine the receiving opportunity of the target candidate PDSCH may be the same as the method for determining the receiving opportunity of the target candidate PDSCH described in the method 300 above, or may be the same as the method for determining the receiving opportunity of the target candidate PDSCH in the prior art The manner is the same, which is not limited in this embodiment of the present application.
  • the network device After the network device determines the first PUCCH resource set and the second PUCCH resource set corresponding to the load size of the HARQ-ACK codebook, it can continue to perform step 670 to determine the target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set.
  • the resource set further executes step 680 to determine a PUCCH resource in the target PUCCH resource set as the target PUCCH resource. In this way, correct reception of the HARQ-ACK codebook can be guaranteed.
  • the network device determines the first PUCCH resource set and the second PUCCH resource set corresponding to the load size of the HARQ-ACK codebook from multiple PUCCH resource sets, and determines the target from the first PUCCH resource set and the second PUCCH resource set.
  • the PUCCH resource set and the specific implementation manner of determining a PUCCH resource in the target PUCCH resource set as the target PUCCH resource are the same as in step 620 above.
  • a PUCCH resource set and a second PUCCH resource set and in step 630, the terminal determines a target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set, and in step 640, the terminal determines a PUCCH resource in the target PUCCH resource set
  • the specific implementation manner of the target PUCCH resource is similar and will not be repeated here.
  • some of the multiple PUCCH resource sets configured by the network device for the terminal include at least one PUCCH resource that does not cross subbands.
  • the terminal can flexibly select PUCCH resources to transmit the HARQ-ACK codebook, avoiding the situation that there is no PUCCH resource to transmit the HARQ-ACK codebook due to the fact that all PUCCH resources cross sub-bands, so that the HARQ-ACK codebook can be guaranteed
  • the normal transmission of the book guarantees the reliability of the transmission.
  • the terminal can use the uplink sub-band to transmit the HARQ-ACK codebook, and can also use the full-band resource to transmit the HARQ-ACK codebook, so it is beneficial to improve resource utilization.
  • Fig. 8 is a schematic flow chart of a communication method 800 provided in yet another embodiment of the present application. As shown in FIG. 8, the method 800 may include steps 810 to 860, and the method 800 will be described below.
  • the network device configures multiple PUCCH resource sets for the terminal, and each PUCCH resource set in the multiple PUCCH resource sets includes at least one first PUCCH resource.
  • each PUCCH resource set in the multiple PUCCH resource sets corresponds to a payload size range of a HARQ-ACK codebook.
  • the definition of the second time-frequency resource in this method 800 is the same as the definition of the second time-frequency resource in method 600, that is, the second time-frequency resource corresponds to a time unit in the time domain, and in this method 800 will also be A time unit corresponding to the second time-frequency resource is recorded as a second time unit, and the second time unit includes one or more symbols.
  • the frequency domain resource corresponding to the second time-frequency resource includes multiple subbands, and the multiple subbands A band is a continuous non-overlapping frequency domain resource on the frequency domain resource corresponding to the second time-frequency resource, and the multiple subbands are on one carrier.
  • one or more symbols in the second time unit have different symbol types on the multiple subbands, that is, the second time-frequency resource is applicable to the SBFD scheme.
  • the time-frequency resource of slot 11 can be regarded as the second time-frequency resource, and both time slot 10 and time slot 11 can be the second time unit.
  • the frequency domain of all the PUCCH resources included in each of the multiple PUCCH resource sets configured by the network device for the terminal is within the frequency domain resource of the second time-frequency resource.
  • every two PUCCH resource sets correspond to the payload size range of one HARQ-ACK codebook, and the two PUCCH resource sets corresponding to the payload size range of one HARQ-ACK codebook can be regarded as a group of PUCCH resource sets.
  • the time slot format configured by the RRC layer is periodic, including single-cycle and double-cycle configurations, and the duration of a single cycle can be defined as T (T ⁇ 0) seconds or the duration of two cycles of a double cycle.
  • the sum is T seconds, within the time T seconds, including M (M ⁇ 1, M is an integer) second time units, according to the configuration of symbol types on multiple subbands on M second time units and the second time-frequency resources is defined to determine a second time unit where N (N ⁇ 1, N is an integer) second time-frequency resources among the M time units are located.
  • N1 (N1 ⁇ 1, N1 is an integer, N1 ⁇ N) second time-frequency resources are used to bear HARQ-ACK information.
  • the network device can indicate the time-frequency resource where the terminal sends the HARQ-ACK information through the DCI indication or the RRC configuration information or the MAC CE, and N1 second time-frequency resources can be determined accordingly.
  • the second time-frequency resource corresponding to the second time unit satisfies: the time domain corresponding to the second time-frequency resource is the second time unit, and the frequency domain corresponding to the second time-frequency resource is the terminal The frequency domain where the active BWP is located.
  • the network device configures each PUCCH resource set in multiple PUCCH resource sets for the terminal to be a resource set including at least one first PUCCH resource, and the first PUCCH resource satisfies: the frequency of the first PUCCH resource
  • the domain resource is located in one subband or multiple subbands among the plurality of subbands, and the time domain resource corresponding to the first PUCCH resource in at least one second time unit among the N1 second time units is in the subband where the first PUCCH resource is located.
  • the symbol category on the belt is U or F or FD.
  • PUCCH resource 2 in slot 10 and slot 11 shown in (b) of FIG. 5 is the first PUCCH resource.
  • the first PUCCH resource on a second time-frequency resource may be referred to as a candidate first PUCCH resource, and the candidate first PUCCH resource satisfies: the first PUCCH resource corresponds to the second time-frequency resource
  • the symbol type of the corresponding time-domain resource in the second time unit on the subband where the first PUCCH resource is located is U, F, or FD. At this time, it may also be referred to as having candidate first PUCCH resources on the second time-frequency resources.
  • the network device configures for the terminal that the PUCCH resources included in each of the multiple PUCCH resource sets have at least one candidate first PUCCH resource on the N1 second time-frequency resources . It can be understood that this possible manner H2 is a further limitation on each of the multiple PUCCH resource sets in the above possible implementation manner H1.
  • a possible implementation manner H3 when the restriction on each PUCCH resource set in the multiple PUCCH resource sets in the implementation manner H1 is met, the PUCCH resources included in each PUCCH resource set in the multiple PUCCH resource sets are included in the At least one second time-frequency resource among the N1 second time-frequency resources is a candidate first PUCCH resource. It can be understood that this possible manner H3 is a further limitation on each of the multiple PUCCH resource sets in the above possible implementation manner H1.
  • a possible implementation manner H4 when the restriction on each PUCCH resource set in the multiple PUCCH resource sets in the implementation manner H2 is satisfied, the PUCCH resources included in each PUCCH resource set in the multiple PUCCH resource sets are included in the At least one second time-frequency resource among the N1 second time-frequency resources is a candidate first PUCCH resource. It can be understood that this possible manner H4 is a further limitation on each PUCCH resource set in the multiple PUCCH resource sets in the above possible implementation manner H2.
  • the network device configures for the terminal that the PUCCH resources included in each of the multiple PUCCH resource sets are candidate first PUCCH resources among the N1 second time-frequency resources. It can be understood that this possible manner H5 is a further limitation on each PUCCH resource set in the multiple PUCCH resource sets in the above possible implementation manner H4.
  • the third time-frequency resource may also correspond to a second time unit in the time domain
  • the frequency domain resource corresponding to the third time-frequency resource includes multiple subbands
  • the multiple subbands are the third Continuous non-overlapping frequency domain resources on the frequency domain resources corresponding to the time-frequency resources
  • the multiple subbands are on one carrier
  • the symbols in the second time unit have the same symbol type on the multiple subbands
  • the symbol category of one or more symbols in the two time units on the multiple subbands is U or FD or F, that is, the second time unit can also be a full-band U time slot, or a full-band F time slot, Or full band FD slots.
  • One piece of time-frequency resource can be regarded as the third time-frequency resource.
  • the second time unit may include full-band U sub-slots, full-band F sub-slots, full-band FD sub-slots, or full-band D sub-slots. It should be understood that a sub-slot is smaller than a time slot, and one time slot may include multiple sub-slots.
  • one sub-slot can include 7 symbols, that is, one time slot can include two sub-slots, as shown in Figure 5 (c), the time slot 12 can include the first sub-slot (the first symbol to The 7th symbol) and the second sub-slot (the 8th symbol to the 14th symbol), then, this piece of time-frequency resource of carrier 7 corresponding to the second sub-slot of time slot 12 can be considered as the third time-frequency resource audio resources.
  • the third time-frequency resource corresponding to the second time unit satisfies: the time domain corresponding to the third time-frequency resource is the second time unit, and the frequency domain corresponding to the third time-frequency resource is the terminal The frequency domain where the active BWP is located.
  • the network device and the terminal may determine J (J ⁇ 0, J is an integer) third time-frequency resources within the time T seconds, and among the J third time-frequency resources, there are J1 (J1 ⁇ 0, J1 is an integer, J1 ⁇ J) third time-frequency resources are used to carry HARQ-ACK information.
  • the network device can indicate the time-frequency resource where the terminal sends the HARQ-ACK information through the DCI indication or the RRC configuration information or the MAC CE, thereby determining the first 1 third time-frequency resources.
  • the possible implementations H1, H2, H3, H4, and H5 in the above 5 are also applicable to the situation of the third time-frequency resource. For details, please refer to the above-mentioned possible implementations H1, H2, H3, H4, and H5. I won't repeat them here.
  • step 820 the terminal determines a PUCCH resource set corresponding to the load size of the HARQ-ACK codebook from the multiple PUCCH resource sets as the target resource set, and in step 850, the network device determines from the multiple PUCCH resource sets A PUCCH resource set corresponding to the payload size of the HARQ-ACK codebook is the target resource set.
  • the HARQ-ACK codebook is generated by the terminal.
  • step 830 the terminal determines one PUCCH resource in the target PUCCH resource set as the target PUCCH resource, and in step 860, the network device determines one PUCCH resource in the target PUCCH resource set as the target PUCCH resource.
  • step 840 the terminal sends the HARQ-ACK codebook to the network device on the target PUCCH resource.
  • the network device receives the HARQ-ACK codebook from the terminal on the target PUCCH resource.
  • the network device and the terminal can determine a target PUCCH resource set among the multiple PUCCH resource sets according to the load size of the HARQ-ACK codebook, and the target PUCCH resource set corresponds to the range of the load size of a HARQ-ACK codebook, The payload size of the HARQ-ACK codebook is within this range.
  • the terminal can determine the PUCCH resource used to send the HARQ-ACK codebook from the target PUCCH resource set. For example, if the second time unit is a subband U time slot, the network device and the terminal may determine one of the one or more first PUCCH resources as the target PUCCH resource. This application will not go into details here.
  • step 840 the terminal has performed step 820 and step 830, and the network device has performed step 850 and step 860.
  • each PUCCH resource set configured by the network device it is only necessary to restrict each PUCCH resource set configured by the network device to the terminal to include at least one first PUCCH resource, without making major changes to the behavior of the terminal.
  • the implementation method is simple to avoid the problem that all the PUCCH resources in the resource set configured by the terminal are located on at least two subbands with different symbol types, and these PUCCH resources cannot be used to receive, transmit and receive the HARQ-ACK codebook.
  • the method 300 described above can be recorded as the first method
  • the method 600 described above can be recorded as the second method
  • the method 800 described above can be recorded as the third method .
  • the fourth and fifth methods are described next.
  • the fourth method which is different from the above method 600, is that in the case of using the SBFD scheme, each PUCCH resource set in multiple PUCCH resource sets configured by the network device for the terminal includes the first PUCCH resource subset and the second PUCCH resource set A subset of resources.
  • the first PUCCH resource subset may correspond to the first PUCCH resource set in method 600
  • the second PUCCH resource subset may correspond to the second PUCCH resource set in method 600 .
  • the definition of the second time-frequency resource is the same as the definition of the second time-frequency resource in method 600, that is, the second time-frequency resource corresponds to a time unit in the time domain, in this implementation
  • a time unit corresponding to the second time-frequency resource is also recorded as a second time unit, and the second time unit includes one or more symbols.
  • the frequency domain resource corresponding to the second time-frequency resource includes multiple subbands, and the multiple subbands A band is a continuous non-overlapping frequency domain resource on the frequency domain resource corresponding to the second time-frequency resource, and the multiple subbands are on one carrier.
  • one or more symbols in the second time unit have different symbol types on the multiple subbands, that is, the second time-frequency resource is applicable to the SBFD scheme.
  • the time-frequency resource of slot 11 can be regarded as the second time-frequency resource, and both time slot 10 and time slot 11 can be the second time unit.
  • the frequency domain of all the PUCCH resources included in each of the multiple PUCCH resource sets configured by the network device for the terminal is within the frequency domain resource of the second time-frequency resource.
  • each PUCCH resource set corresponds to the payload size range of a HARQ-ACK codebook, that is, the first PUCCH resource subset and the second PUCCH resource subset included in each PUCCH resource set correspond to the same HARQ-ACK codebook.
  • the payload size range of the ACK codebook is, the first PUCCH resource subset and the second PUCCH resource subset included in each PUCCH resource set correspond to the same HARQ-ACK codebook.
  • the time slot format configured by the RRC layer is periodic, including single-cycle and double-cycle configurations, and the duration of a single cycle can be defined as T (T ⁇ 0) seconds or the duration of two cycles of a double cycle.
  • the sum is T seconds, within the time T seconds, including M (M ⁇ 1, M is an integer) second time units, according to the configuration of symbol types on multiple subbands on M second time units and the second time-frequency resources is defined to determine a second time unit where N (N ⁇ 1, N is an integer) second time-frequency resources among the M time units are located.
  • N1 (N1 ⁇ 1, N1 is an integer
  • N1 ⁇ N) second time-frequency resources are used to bear HARQ-ACK information.
  • the network device can indicate the time-frequency resource where the terminal sends the HARQ-ACK information through the DCI indication or the RRC configuration information or the MAC CE, and N1 second time-frequency resources can be determined accordingly. It can be understood that the second time-frequency resource corresponding to the second time unit satisfies: the time domain corresponding to the second time-frequency resource is the second time unit, and the frequency domain corresponding to the second time-frequency resource is the terminal The frequency domain where the active BWP is located.
  • the first PUCCH resource subset is a resource set including at least one first PUCCH resource, and the first PUCCH resource satisfies: the frequency domain resource of the first PUCCH resource is located in one of the multiple subbands In a subband or multiple subbands, the symbol type of the time domain resource corresponding to the first PUCCH resource in at least one of the N1 second time units in the subband where the first PUCCH resource is located is U or F or FD.
  • PUCCH resource 2 in slot 10 and slot 11 shown in (b) of FIG. 5 is the first PUCCH resource.
  • the first PUCCH resource on a second time-frequency resource may be referred to as a candidate first PUCCH resource, and the candidate first PUCCH resource satisfies: the first PUCCH resource corresponds to the second time-frequency resource
  • the symbol type of the corresponding time-domain resource in the second time unit on the subband where the first PUCCH resource is located is U, F, or FD. At this time, it may also be referred to as having candidate first PUCCH resources on the second time-frequency resources.
  • a possible implementation manner L2 there is at least one candidate first PUCCH resource on each of the N1 second time-frequency resources.
  • the at least one candidate first PUCCH resource belongs to the first PUCCH resource subset. It can be understood that this possible manner L2 is a further limitation on the first PUCCH resource subset in the foregoing possible implementation manner L1.
  • the PUCCH resources included in the first PUCCH resource subset are at least A second time-frequency resource is a first PUCCH resource candidate. It can be understood that this possible manner L3 is a further limitation on the first PUCCH resource subset in the foregoing possible implementation manner L1.
  • the PUCCH resources included in the first PUCCH resource subset are at least A second time-frequency resource is a first PUCCH resource candidate. It can be understood that this possible manner L4 is a further limitation on the first PUCCH resource subset in the foregoing possible implementation manner L2.
  • the PUCCH resources included in the first PUCCH resource subset are candidate first PUCCH resources among the N1 second time-frequency resources. It can be understood that this possible manner L5 is a further limitation on the first PUCCH resource subset in the foregoing possible implementation manner L4.
  • the second PUCCH resource subset may or may not include the first PUCCH resource, which is not limited in this application.
  • the corresponding relationship between the load size range of the HARQ-ACK codebook and the first PUCCH resource subset and the second PUCCH resource subset can be expressed in the form of a table or in other forms, which is not limited in this application.
  • the third time-frequency resource may also correspond to a second time unit in the time domain
  • the frequency domain resource corresponding to the third time-frequency resource includes multiple subbands
  • the multiple subbands are the Continuous non-overlapping frequency domain resources on the frequency domain resources corresponding to the three time-frequency resources, and the multiple subbands are on one carrier
  • the symbols in the second time unit are of the same symbol type on the multiple subbands
  • in the multiple subbands The symbol category of one or more symbols in the second time unit on the multiple subbands is U or FD or F, that is, the second time unit can also be a full-band U time slot, or a full-band F time slot , or full band FD slots.
  • One piece of time-frequency resource can be regarded as the third time-frequency resource.
  • the second time unit may include full-band U sub-slots, full-band F sub-slots, full-band FD sub-slots, or full-band D sub-slots. It should be understood that a sub-slot is smaller than a time slot, and one time slot may include multiple sub-slots.
  • one sub-slot can include 7 symbols, that is, one time slot can include two sub-slots, as shown in Figure 5 (c), the time slot 12 can include the first sub-slot (the first symbol to The 7th symbol) and the second sub-slot (the 8th symbol to the 14th symbol), then, this piece of time-frequency resource of carrier 7 corresponding to the second sub-slot of time slot 12 can be considered as the third time-frequency resource audio resources.
  • the third time-frequency resource corresponding to the second time unit satisfies: the time domain corresponding to the third time-frequency resource is the second time unit, and the frequency domain corresponding to the third time-frequency resource is the terminal The frequency domain where the active BWP is located.
  • the network device and the terminal may determine J (J ⁇ 0, J is an integer) third time-frequency resources within the time T seconds, and among the J third time-frequency resources, there are J1 (J1 ⁇ 0, J1 is an integer, J1 ⁇ J) third time-frequency resources are used to carry HARQ-ACK information.
  • the network device can indicate the time-frequency resource where the terminal sends the HARQ-ACK information through the DCI indication or the RRC configuration information or the MAC CE, and thus the J1 third time-frequency resources can be determined.
  • L1, L2, L3, L4, and L5 in the above 5 are also applicable to the situation of the third time-frequency resource.
  • the terminal and the network device determine the target PUCCH resource subset from the first PUCCH resource subset and the second PUCCH resource subset.
  • the terminal After the terminal determines the first PUCCH resource subset and the second PUCCH resource subset corresponding to the load size of the HARQ-ACK codebook, the terminal can determine a target PUCCH resource subset from the two PUCCH resource subsets for use in The PUCCH resource that can be used to send the HARQ-ACK codebook is further determined later.
  • the following exemplarily shows several possible implementation manners of determining the target PUCCH resource subset from the first PUCCH resource subset and the second PUCCH resource subset.
  • the terminal determines the first PUCCH resource subset as the target PUCCH resource subset.
  • the network device performs resource scheduling, the network device and the terminal know the symbol category on each time slot on each subband, and the network device can indicate the symbol category included in each time slot to the terminal through indication information, For example, the network device may indicate to the terminal the type of symbols on each time slot through TDD-ConfigCommon and TDD-ConfigDedicated.
  • the network device can also use DCI 2-0 to indicate the terminal's symbol category on each time slot.
  • the terminal can also know which time slot to send the HARQ-ACK codebook on which time slot is sent according to the DCI delivered to the terminal by the network device.
  • the terminal can know the type of symbols on the time slot that needs to send the HARQ-ACK codebook according to the information indicated by the network device. That is, in the case of using the SBFD scheme, the terminal can know the symbol category of each subband of the multiple subbands included in the entire CC in this time slot.
  • the terminal may determine the second PUCCH resource subset as the target PUCCH resource subset.
  • the constraint condition C1 is a subset of the constraint condition C, and the definition of the constraint condition C can refer to the relevant description in the method 600, and for the sake of brevity, details are not repeated here.
  • the terminal may determine the first PUCCH resource subset as the target PUCCH resource subset.
  • the terminal may determine the second PUCCH resource subset as the target PUCCH resource subset.
  • the terminal may determine the first PUCCH resource subset as the target PUCCH resource subset.
  • the constraint condition E1 is a subset of the constraint condition E, and the definition of the constraint condition E can refer to the relevant description in the method 600 , and for the sake of brevity, details are not repeated here.
  • the terminal may determine the second PUCCH resource subset as the target PUCCH resource subset.
  • the definition of the first PUCCH resource subset can be any one of the implementations L1, L2, L3, L4, and L5.
  • the definition of the first PUCCH resource subset is not limited.
  • the network device and the terminal can determine the target PUCCH resource subset based on the same rule, and can determine the target PUCCH resource subset without additional signaling interaction.
  • the terminal may determine the target PUCCH resource according to the instruction of the network device.
  • the terminal receives first indication information from the network device, where the first indication information includes a bitmap of N+J (N ⁇ 1, J ⁇ 0, N and J are integer) bits , for the convenience of description, the bitmap of N+J bits is recorded as the first bitmap in the embodiment of the present application, and the N+J bits of the first bitmap and N+J second time units
  • the value of the nth (1 ⁇ n ⁇ N+J, n is an integer) bit in the first bitmap is used to indicate the nth second time unit among the N+J second time units
  • the terminal determines the target PUCCH resource subset according to the value of the bit corresponding to the second time unit in the first bit map.
  • the network device sends the first indication information to the terminal.
  • the time-frequency resources corresponding to the N+J second time units in the BWP may include at least one second time-frequency resource, that is, N ⁇ 1.
  • the time slot format configured by the RRC for the terminal is a double period, and the duration of the two periods is 5 time slots, and T seconds includes a total of 10 time slots, as shown in the figure.
  • the first indication information may be RRC layer signaling
  • the network device indicates to use the first PUCCH resource subset and the second PUCCH resource subset respectively in each time unit of the N+J time units through the RRC layer signaling Which PUCCH resource subset in the resource subset, that is, the network device indicates through RRC layer signaling that the first PUCCH resource subset in each of the N+J time units is the target PUCCH resource subset, or The second subset of PUCCH resources is the target subset of PUCCH resources.
  • N+J 7
  • N+J The value of each bit is "0110111", which means that the first PUCCH resource subset is used as the target PUCCH resource subset in the 1st and 4th of the 7 time slots, and in these 7 time slots
  • the second PUCCH resource subset is used as the target PUCCH resource subset, combined with FIG. 7, that is, in time slot 3 and the first PUCCH resource subset in slot 7 is the target PUCCH resource subset, and the second PUCCH resource subset in slots 4 and 5, and slots 8 to 10 is the target PUCCH resource subset.
  • the bitmap only indicates the PUCCH resource subset used by the second time-frequency resource; and the PUCCH resource subset used by the third time-frequency resource can be realized according to possible implementation manners O3 or O4, etc. , which is not limited in this implementation.
  • the terminal may receive the first indication information from the network device, the first indication information includes an N-bit bitmap, for the convenience of description, the N-bit bitmap is marked as the second bitmap in this embodiment of the present application , N bits of the second bitmap correspond to N second time units, and the value of the nth bit in the second bitmap is used to indicate the nth of the N second time units
  • the first PUCCH resource subset corresponding to two time units and one PUCCH resource subset in the second PUCCH resource subset, where 1 ⁇ n ⁇ N, N and n are integers;
  • the value of the corresponding bit in the bitmap determines the target PUCCH resource subset, and the detailed implementation process is similar to the relevant description in possible implementation mode O5, and will not be repeated here for brevity.
  • the network device sends the first indication information to the terminal.
  • the bitmap only indicates the PUCCH resource subset used by the third time-frequency resource
  • the PUCCH resource subset used by the second time-frequency resource may be implemented according to possible implementation manners O1 or O2, which are not limited in this implementation manner.
  • the terminal may receive the first indication information from the network device, the first indication information includes a J-bit bitmap, for the convenience of description, the J-bit bitmap is recorded as the third bitmap in this embodiment of the present application , J bits of the third bitmap correspond to J second time units, and the value of the jth bit in the third bitmap is used to indicate the jth of the J second time units
  • the first PUCCH resource subset corresponding to two time units and one PUCCH resource subset in the second PUCCH resource subset, wherein, 1 ⁇ j ⁇ J, J and j are integers;
  • the value of the corresponding bit in the bitmap determines the target PUCCH resource subset, and the detailed implementation process is similar to the relevant description in possible implementation mode O5, and will not be repeated here for brevity.
  • the network device sends the first indication information to the terminal.
  • the definition of the first PUCCH resource subset can be any one of the implementations L1, L2, L3, L4, and L5, and the second PUCCH resource Subsets are not limited. For the sake of brevity, details are not repeated here.
  • the terminal may receive second indication information from the network device, where the second indication information includes an identifier of a PUCCH resource subset; the terminal uses the first PUCCH resource subset and the second PUCCH resource subset The PUCCH resource subset corresponding to this identifier is determined as the target PUCCH resource subset.
  • the network device sends second indication information to the terminal, where the second indication information includes an identifier of a PUCCH resource subset, and the network device assigns the first PUCCH resource subset and the second PUCCH resource subset corresponding to the identifier The PUCCH resource set is determined as the target PUCCH resource subset.
  • the second indication information may be DCI
  • the network device may directly indicate to the terminal an ID of a PUCCH resource subset through DCI, and the terminal may directly associate the first PUCCH resource subset and the second PUCCH resource subset with this ID
  • the PUCCH resource subset determined as the target PUCCH resource subset does not require additional calculation or judgment by the terminal, and does not bring additional power consumption to the terminal.
  • the limitation of the first PUCCH resource subset can be any one of the implementation modes L1, L2, L3, L4 and L5, and there is no limitation on the second PUCCH resource subset .
  • the terminal can first select the PUCCH resource from the default PUCCH resource subset, and if the selected PUCCH resource cannot be used to send the HARQ-ACK codebook, then determine another PUCCH resource subset as the target PUCCH resource subset.
  • the terminal can first determine a PUCCH resource for sending the HARQ-ACK codebook from the second PUCCH resource subset in combination with currently known technologies, if If the selected PUCCH resource cannot be used to send the HARQ-ACK codebook, it can be considered that the symbol category of the symbol where the PUCCH resource is located includes at least one D, so it cannot be used to send the HARQ-ACK codebook. At this time, the terminal can directly use the The first PUCCH resource subset is used as the target PUCCH resource subset.
  • the terminal and the network device may determine a target PUCCH resource for sending the HARQ-ACK codebook from the target PUCCH resource subset according to known technologies. For the sake of brevity, no more details are given here.
  • the limitation of the first PUCCH resource subset can be any one of the implementation modes L1, L2, L3, L4 and L5, and there is no limitation on the second PUCCH resource subset .
  • the fifth method which is different from the above method 600, is that the network device can configure a PUCCH resource set for the terminal according to the currently known scheme (the range of the load size of a HARQ-ACK codebook corresponds to a PUCCH resource set), and through the DCI Or RRC layer signaling indicates a target PUCCH resource to the terminal.
  • the terminal also determines the target PUCCH resource set and the target PUCCH resource according to currently known solutions.
  • the terminal can use the determined target PUCCH resource in the second Translate within the time unit so that it can be used to send the HARQ-ACK codebook.
  • the target PUCCH resource is sequentially shifted from the symbol with the smallest symbol index in the time unit where it is located to the direction of the symbol with the largest symbol index, and it is tried on each symbol whether the target PUCCH can be used to send HARQ-ACK codebook, and, when tried on each symbol, start from the position with the smallest starting resource block index of the target PUCCH resource.
  • the target PUCCH resource indicated before shifting cannot be used to send the HARQ-ACK codebook.
  • FIG. 9 is only an example, and should not impose any limitation on this application.
  • the embodiment of the present application proposes multiple communication methods, such as method 300, method 600, and method 800, as well as the fourth method and the fifth method, and so on.
  • method 300, method 600 and method 800, as well as the fourth method and the fifth method can be used alone or in combination.
  • method 300 can be used in combination with method 600.
  • the HARQ - After the ACK codebook the target resource set and the target resource can be determined according to the load size of the HARQ-ACK codebook in method 600; for another example, method 300 can be used in combination with method 800, and HARQ-ACK is determined in method 300 After the codebook, the target resource set and the target resource can be determined according to the payload size of the HARQ-ACK codebook in method 800 .
  • This application is not limited to this.
  • Fig. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include: a processing module 1010 and a transceiver module 1020 .
  • the communication apparatus 1000 may be used to execute the execution steps of the terminal or the network device in the communication method proposed in the embodiment of the present application.
  • the processing module 1010 can be used to determine the target candidate PDSCH reception timing from the first time-frequency resource, and the target candidate PDSCH reception
  • the opportunity includes at least one symbol
  • the target candidate PDSCH receiving opportunity is used to receive the PDSCH
  • the first time-frequency resource corresponds to a first time unit in the time domain
  • the first time unit includes one or more symbols
  • the The frequency domain resource corresponding to the first time-frequency resource includes multiple subbands
  • the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the first time-frequency resource, and the multiple subbands are in one on the carrier, and one or more symbols in the first time unit have different symbol types on the multiple subbands
  • each symbol contained in the target candidate PDSCH receiving opportunity satisfies: in the multiple subbands
  • the symbol category on at least one of the subbands is downlink or flexible or full-duplex, or the symbol category on the first subband among
  • the first subband is a subband with the highest priority among the multiple subbands.
  • the first subband is a subband specified by the network device among the multiple subbands.
  • the processing module 1010 can be used to determine the target candidate PDSCH receiving opportunity from the first time-frequency resources configured for the terminal, the The target candidate PDSCH receiving opportunity includes at least one symbol, the target candidate PDSCH receiving opportunity is used for the terminal to receive the PDSCH, the first time-frequency resource corresponds to a first time unit in the time domain, and the first time unit includes One or more symbols, the frequency domain resource corresponding to the first time-frequency resource includes multiple subbands, and the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the first time-frequency resource , the multiple subbands are on one carrier, and one or more symbols in the first time unit have different symbol types on the multiple subbands, and each symbol included in the target candidate PDSCH receiving opportunity Satisfied: the symbol type on at least one subband among the plurality of subbands is downlink or flexible or full-duplex, or the symbol type on the first
  • the first subband is a subband with the highest priority among the multiple subbands.
  • the first subband is a subband specified by the network device among the multiple subbands.
  • the processing module 1010 may be used to determine from multiple PUCCH resource sets the first The PUCCH resource set and the second PUCCH resource set; the frequency domains where all the PUCCH resources included in each PUCCH resource set in the multiple PUCCH resource sets are located in the frequency domain resources of the second time-frequency resources, and the second time-frequency resources
  • the frequency resource corresponds to a second time unit in the time domain, and the second time unit includes one or more symbols, and the frequency domain resource corresponding to the second time-frequency resource includes a plurality of subbands, and the plurality of subbands are the Continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource, the multiple subbands are on one carrier, and one or more symbols in the second time unit are in the multiple subbands different symbol types;
  • the first PUCCH resource set includes at least one first PUCCH resource, and the first PUCCH resource satisfies: the frequency domain resource
  • the resources included in the first PUCCH resource set are all first PUCCH resources; and the processing module 1010 may be configured to determine the first PUCCH resource set as a target PUCCH resource set.
  • the transceiver module 1020 may be configured to receive first indication information from the network device, where the first indication information includes an N-bit bitmap, the N bits correspond to N time units, and the bitmap The value of the nth bit is used to indicate the first PUCCH resource set and one PUCCH resource set in the second PUCCH resource set corresponding to the nth time unit in the N time units, where 1 ⁇ n ⁇ N, where N and n are integers; the processing module 1010 may be configured to determine a target PUCCH resource set according to a value of a bit corresponding to the second time unit in the bitmap.
  • the transceiver module 1020 may be configured to receive second indication information from the network device, where the second indication information includes an identifier of a PUCCH resource set; the processing module 1010 may be configured to combine the first PUCCH resource set and the set The PUCCH resource set corresponding to the identifier in the second PUCCH resource set is determined as the target PUCCH resource set.
  • the processing module 1010 may be used to configure multiple PUCCH resource sets for the terminal, and each of the multiple PUCCH resource sets The frequency domains where all the PUCCH resources included in the PUCCH resource set are located in the frequency domain resources of the second time-frequency resource, the second time-frequency resource corresponds to the second time unit in the time domain, and the second time unit includes a or multiple symbols, the frequency domain resource corresponding to the second time-frequency resource includes multiple subbands, and the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource, The multiple subbands are on one carrier, and the symbol types of one or more symbols in the second time unit are different on the multiple subbands; the processing module 1010 can also be used to select from the multiple PUCCH resources Centrally determine the first PUCCH resource set and the second PUCCH resource set corresponding to the load size of the HARQ-ACK codebook, the first P
  • the resources included in the first PUCCH resource set are all first PUCCH resources; and the processing module 1010 may be configured to determine the first PUCCH resource set as a target PUCCH resource set.
  • the transceiver module 1020 may be configured to send first indication information to the terminal, where the first indication information includes an N-bit bitmap, the N bits correspond to N time units, and the nth time unit in the bitmap The value of bits is used to indicate the first PUCCH resource set and one PUCCH resource set in the second PUCCH resource set corresponding to the nth time unit in the N time units, where 1 ⁇ n ⁇ N, N and n are integers; the processing module 1010 may be configured to determine the target PUCCH resource set according to the value of the bit corresponding to the second time unit in the bitmap.
  • the transceiver module 1020 may be configured to send second indication information to the terminal, where the second indication information includes an identifier of a PUCCH resource set; the processing module 1010 may be configured to combine the first PUCCH resource set and the second PUCCH resource set The PUCCH resource set corresponding to the identifier in the two PUCCH resource sets is determined as the target PUCCH resource set.
  • the processing module 1010 can be used to determine the payload size of the HARQ-ACK codebook from a plurality of PUCCH resources configured by the network device
  • a corresponding PUCCH resource set is a target resource set
  • the HARQ-ACK codebook is generated by the terminal
  • each PUCCH resource set in the multiple PUCCH resource sets includes at least one first PUCCH resource;
  • the multiple PUCCH The frequency domains where all the PUCCH resources included in each PUCCH resource set in the resource set are located in the frequency domain resources of the second time-frequency resource, the second time-frequency resource corresponds to the second time unit in the time domain, and the second time-frequency resource corresponds to the second time unit in the time domain.
  • Two time units include one or more symbols
  • the frequency domain resource corresponding to the second time-frequency resource includes multiple subbands
  • the multiple subbands are continuous non-overlapping frequency domain resources corresponding to the second time-frequency resource frequency domain resources
  • the multiple subbands are on one carrier
  • the symbol types of one or more symbols in the second time unit are different on the multiple subbands
  • the first PUCCH resource satisfies:
  • the frequency domain resource of the first PUCCH resource is located in one of the plurality of subbands, and the time domain resource corresponding to the first PUCCH resource in the second time unit is located in the first PUCCH resource.
  • the symbol category on the subband is uplink or flexible or full-duplex; the processing module 1010 can also be used to determine a PUCCH resource in the target PUCCH resource set as the target PUCCH resource; The HARQ-ACK codebook is sent on resources.
  • the processing module 1010 can be used to configure multiple PUCCH resource sets for the terminal, and each of the multiple PUCCH resource sets
  • the PUCCH resource set includes at least one first PUCCH resource; the frequency domains of all the PUCCH resources included in each PUCCH resource set in the plurality of PUCCH resource sets are all within the frequency domain resources of the second time-frequency resource, and the second The time-frequency resource corresponds to a second time unit in the time domain, and the second time unit includes one or more symbols, and the frequency domain resource corresponding to the second time-frequency resource includes multiple subbands, and the multiple subbands are all Continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource, the multiple subbands are on one carrier, and one or more symbols in the second time unit are on the multiple subbands The symbol types on the bands are different; the first PUCCH resource satisfies: the frequency domain resource of the first PUCCH
  • Fig. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication apparatus 1100 may be used to realize the functions of a terminal or a network device in the foregoing method.
  • the communication device 1100 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communications apparatus 1100 may include at least one processor 1110 configured to implement functions of a terminal or a network device in the method provided by the embodiment of the present application.
  • the processor 1110 can be used to determine the target candidate PDSCH receiving timing from the first time-frequency resource, and the target candidate PDSCH receiving timing includes at least One symbol, the target candidate PDSCH receiving opportunity is used to receive the PDSCH, the first time-frequency resource corresponds to the first time unit in the time domain, the first time unit includes one or more symbols, and the frequency domain corresponding to the first time-frequency resource
  • the resources include multiple subbands, the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resources corresponding to the first time-frequency resource, the multiple subbands are on one carrier, and the first time unit in the One or more symbols have different symbol types on the multiple subbands, and each symbol contained in the target candidate PDSCH receiving opportunity satisfies: the symbol type on at least one subband among the multiple subbands is downlink or flexible or full Duplex, or, the symbol type on the first subband among the multiple subbands
  • the processor 1110 can be used to determine the target candidate PDSCH receiving opportunity from the first time-frequency resources configured for the terminal, and the target candidate The PDSCH receiving opportunity includes at least one symbol, the target candidate PDSCH receiving opportunity is used for the terminal to receive the PDSCH, the first time-frequency resource corresponds to a first time unit in the time domain, and the first time unit includes one or more symbols.
  • the frequency domain resource corresponding to a time-frequency resource includes multiple subbands, and the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the first time-frequency resource, and the multiple subbands are on one carrier, And one or more symbols in the first time unit have different symbol types on the multiple subbands, and each symbol contained in the target candidate PDSCH receiving opportunity satisfies: on at least one subband among the multiple subbands
  • the symbol type is downlink or flexible or full-duplex, or the symbol type on the first subband among the multiple subbands is downlink or flexible or full-duplex; based on multiple target candidate PDSCH receiving opportunities of the terminal
  • the processor 1110 can be used to determine from a plurality of PUCCH resource sets configured by the network device that the payload size of the HARQ-ACK codebook corresponds to The first PUCCH resource set and the second PUCCH resource set; the frequency domains of all the PUCCH resources included in each PUCCH resource set in the multiple PUCCH resource sets are all within the frequency domain resources of the second time-frequency resources, and the second The time-frequency resource corresponds to a second time unit in the time domain, and the second time unit includes one or more symbols.
  • the frequency domain resource corresponding to the second time-frequency resource includes a plurality of subbands, and the plurality of subbands are the second time unit. Continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the frequency resource, the multiple subbands are on one carrier, and one or more symbols in the second time unit have different symbol types on the multiple subbands;
  • the first PUCCH resource set is a resource set including at least one first PUCCH resource, and the first PUCCH resource satisfies: the frequency domain resource of the first PUCCH resource is located in a subband among the plurality of subbands, and the first PUCCH resource is in the first PUCCH resource.
  • the symbol type of the corresponding time domain resource in the subband where the first PUCCH resource is located in the two time units is uplink or flexible or full duplex; determine the target PUCCH resource set from the first PUCCH resource set and the second PUCCH resource set; One PUCCH resource in the target PUCCH resource set is determined as the target PUCCH resource; the HARQ-ACK codebook is sent on the target PUCCH resource.
  • the processor 1110 can be used to configure multiple PUCCH resource sets for the terminal, and each PUCCH resource in the multiple PUCCH resource sets The frequency domains where all the PUCCH resources included in the set are located in the frequency domain resources of the second time-frequency resource, the second time-frequency resource corresponds to the second time unit in the time domain, and the second time unit includes one or more symbols, the frequency domain resource corresponding to the second time-frequency resource includes a plurality of subbands, and the plurality of subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource, and the plurality of subbands are in On one carrier, and one or more symbols in the second time unit have different symbol types on the multiple subbands; the network device determines from the multiple PUCCH resource sets the first symbol corresponding to the load size of the HARQ-ACK codebook A PUCCH resource set and a second P
  • the processor 1110 can be used to determine from a plurality of PUCCH resource sets configured by the network device that corresponds to the load size of the HARQ-ACK codebook
  • the target PUCCH resource set, each PUCCH resource set in the plurality of PUCCH resource sets includes at least one first PUCCH resource; the frequency domains where all the PUCCH resources included in each PUCCH resource set in the plurality of PUCCH resource sets are equal
  • the frequency domain resource of the second time-frequency resource corresponds to a second time unit in the time domain, and the second time unit includes one or more symbols, and the frequency domain corresponding to the second time-frequency resource
  • the resources include multiple subbands, the multiple subbands are continuous non-overlapping frequency domain resources on the frequency domain resource corresponding to the second time-frequency resource, the multiple subbands are on one carrier, and one of the second time units or the symbol types of multiple symbols on the multiple sub
  • the processor 1110 can be used to configure multiple PUCCH resource sets for the terminal, and each PUCCH in the multiple PUCCH resource sets
  • the resource set includes at least one first PUCCH resource; the frequency domains of all the PUCCH resources included in each PUCCH resource set in the plurality of PUCCH resource sets are all within the frequency domain resources of the second time-frequency resource, and the second time-frequency
  • the resource corresponds to a second time unit in the time domain, and the second time unit includes one or more symbols, and the frequency domain resource corresponding to the second time-frequency resource includes a plurality of subbands, and the plurality of subbands are the second time-frequency resource Continuous non-overlapping frequency domain resources on the corresponding frequency domain resources, the multiple subbands are on one carrier, and one or more symbols in the second time unit have different symbol types on the multiple subbands; the first The PUCCH resource satisfies: the frequency domain resource
  • the communication device 1100 may also include at least one memory 1120 for storing program instructions and/or data.
  • the memory 1120 is coupled to the processor 1110 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1110 may cooperate with memory 1120 .
  • Processor 1110 may execute program instructions stored in memory 1120 . At least one of the at least one memory may be included in the processor.
  • the communication device 1100 may also include a communication interface 1130 for communicating with other devices through a transmission medium, so that devices used in the communication device 1100 can communicate with other devices.
  • the other device when the communication device 1100 is used to realize the function of the network device in the method provided by the embodiment of the present application, the other device may be a terminal; when the communication device 1100 is used to realize the function of the terminal in the method provided by the embodiment of the present application function, the other device may be a network device.
  • the communication interface 1130 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing a transceiver function.
  • the processor 1110 can use the communication interface 1130 to send and receive data and/or information, and be used to implement the method performed by the network device or the terminal described in the corresponding embodiments in FIG. 3 or FIG. 6 or FIG. 8 .
  • a specific connection medium among the processor 1110, the memory 1120, and the communication interface 1130 is not limited.
  • the processor 1110 , the memory 1120 and the communication interface 1130 are connected through a bus 1140 .
  • the bus 1140 is represented by a thick line in FIG. 11 , and the connection manner between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 11 , but it does not mean that there is only one bus or one type of bus.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 1200 has the functions of the terminal shown in FIG. 3 , FIG. 6 or FIG. 8 , and the terminal 1200 can be applied to the communication system 100 shown in FIG. 1 .
  • the terminal 1200 includes a processor 1201 and a transceiver 1202 .
  • the terminal 1200 further includes a memory 1203 .
  • the processor 1201, the transceiver 1202 and the memory 1203 can communicate with each other through an internal connection path, and transmit control and/or data signals. Call and run the computer program to control the transceiver 1202 to send and receive signals.
  • the terminal 1200 may further include an antenna 1204, configured to send the uplink data or uplink control signaling output by the transceiver 1202 through wireless signals.
  • the terminal 1200 further includes a wireless fidelity (wireless fidelity, Wi-Fi) module 1211, configured to access a wireless network.
  • wireless fidelity wireless fidelity, Wi-Fi
  • the processor 1201 and the memory 1203 may be combined into a processing device, and the processor 1201 is configured to execute the program codes stored in the memory 1203 to realize the above functions.
  • the memory 1203 may also be integrated in the processor 1201 , or be independent of the processor 1201 .
  • the processor 1201 may correspond to the processing module 1010 in FIG. 10 or the processor 1110 in FIG. 11 .
  • the above-mentioned transceiver 1202 may correspond to the transceiver module 1020 in FIG. 10 or the communication interface 1130 in FIG. 11 .
  • the transceiver 1202 may include a receiver (or called a receiver, a receiving circuit) and a transmitter (or called a transmitter, a transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal 1200 may further include a power supply 1205 for providing power to various devices or circuits in the terminal 1200 .
  • the terminal 1200 may also include one or more of an input unit 1206, a display unit 1207, an audio circuit 1208, a camera 1209, and a sensor 1210.
  • the circuitry may also include a speaker 1208a, a microphone 1208b, and the like.
  • the terminal 1200 shown in FIG. 12 can implement various procedures related to the terminal in the method embodiments shown in FIG. 3 , FIG. 6 or FIG. 8 .
  • the operations and/or functions of the various modules in the terminal 1200 are respectively for realizing the corresponding processes in the above method embodiments.
  • the processor 1201 can be used to execute the actions described in the above method embodiments implemented by the terminal, and the transceiver 1202 can be used to execute the above methods
  • the actions described in the embodiments are actions that a terminal sends to or receives from a network device. For details, please refer to the description in the foregoing method embodiments, and details are not repeated here.
  • FIG. 13 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • the base station 1300 has the functions of the network equipment shown in FIG. 3 , FIG. 6 or FIG. 8 , and the base station 1300 may be applied to the communication system 100 shown in FIG. 1 .
  • the base station 1300 may include one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU) 1310 and one or more baseband units (BBU) (also referred to as distributed units ( distributed unit, DU)) 1320.
  • the RRU 1310 may be called a transceiver unit, and may correspond to the transceiver module 1020 in FIG. 10 or the communication interface 1130 in FIG. 11 .
  • the RRU 1310 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 1311 and a radio frequency unit 1312.
  • the RRU 1310 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called receiver, receiving circuit), and the sending unit may correspond to a transmitter (or called transmitter, sending circuit).
  • the RRU 1310 part is mainly used for transmitting and receiving radio frequency signals and conversion between radio frequency signals and baseband signals, for example, for performing the operation process of the network equipment in the above method embodiments, such as sending the first instruction information, the second instruction information to the terminal Instructions etc.
  • the BBU 1320 part is mainly used for baseband processing, controlling the base station, and the like.
  • the RRU 1310 and the BBU 1320 may be physically set together, or physically separated, that is, a distributed base station.
  • the BBU 1320 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing module 1010 in Figure 10 or the processor 1110 in Figure 11, and is mainly used to complete baseband processing functions, such as channel coding and multiplexing , modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure related to the network device in the above method embodiment, for example, to generate the above first information, third information or fourth information and so on.
  • the BBU (processing unit) may be used to control the base station to execute the operation process related to the network device in the above method embodiment.
  • the BBU 1320 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may separately support wireless access networks of different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1320 also includes a memory 1321 and a processor 1322.
  • the memory 1321 is used to store necessary instructions and data.
  • the processor 1322 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation process related to the network device in the above method embodiment.
  • the memory 1321 and the processor 1322 may serve one or more boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the base station 1300 shown in FIG. 13 can implement various processes involving network devices in the method embodiments shown in FIG. 3 , FIG. 6 , or FIG. 8 .
  • the operations and/or functions of the various modules in the base station 1300 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the BBU 1320 can be used to execute actions implemented internally by the network device, and the RRU 1310 can be used to perform actions such as sending and receiving by the network device.
  • the RRU 1310 can be used to perform actions such as sending and receiving by the network device.
  • the base station 1300 shown in FIG. 13 is only a possible form of an access network device, and should not constitute any limitation to this application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes an active antenna unit (active antenna unit, AAU), and may also include a centralized unit (centralized, CU) and/or DU, or include a BBU and an adaptive radio unit (adaptive radio unit, ARU), or a BBU.
  • AAU active antenna unit
  • CU centralized unit
  • DU centralized, CU
  • BBU adaptive radio unit
  • ARU adaptive radio unit
  • the present application also provides a chip system, the chip system includes at least one processor, configured to implement the functions involved in the method performed by the network device or the terminal in the embodiment shown in FIG. 3 , FIG. 6 or FIG. 8 , For example, receiving or processing data and/or information involved in the above methods.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located inside or outside the processor.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application also provides a communication system, including the aforementioned network device and terminal.
  • the present application also provides a computer-readable storage medium, on which a computer program (also referred to as code, or instruction) is stored.
  • a computer program also referred to as code, or instruction
  • the computer program is run by a processor, the above-mentioned Figure 3
  • the method performed by the network device or the terminal in the embodiment shown in FIG. 6 or FIG. 8 is executed.
  • the present application also provides a computer program product, the computer program product including: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the program shown in FIG. 3 , FIG. 6 or FIG. 8 .
  • a computer program also referred to as code, or an instruction
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • unit may be used to denote a computer-related entity, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each functional unit may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • aforementioned storage medium comprises: various mediums that can store program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了通信方法和通信装置,该方法包括:终端从第一时频资源中确定用于接收PDSCH的目标候选PDSCH接收时机,第一时频资源的时域对应包括一个或多个符号的第一时间单元,第一时频资源的频域资源包括连续的不重叠的在一个载波上的多个子带,第一时间单元中的一个或多个符号在这多个子带上的符号类别不同,目标候选PDSCH接收时机中包含至少一个符号且每个符号满足:在上述多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工,或者,在上述多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;基于多个目标候选PDSCH接收时机确定HARQ-ACK码本;发送该HARQ-ACK码本。以实现码本的发送和接收。

Description

通信方法和通信装置
本申请要求于2021年12月13日提交中国国家知识产权局、申请号为202111516823.6、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信方法和通信装置。
背景技术
为了提高上行覆盖,子带全双工(subband full duplex,SBFD)方案被提出。基于SBFD方案,一个分量载波(component carrier,CC)(可简称为载波)可以包括多个子带,所述多个子带为载波的频域资源上连续的不重叠的频域资源,且存在一个或多个时间单元中的符号(symbol)在这多个子带上的符号类别不同。比如,同一个符号在部分子带被配置为上行(uplink,U)符号,在另一部分子带被配置为下行(downlink,D)符号。如此,在同一个CC内可能同时存在子带U和子带D,也即,在一个CC上可以实现同时收发。
然而,在使用SBFD方案的情况下,如何进行混合自动重传请求(hybrid automatic repeat request)-确认应答(acknowledgment)(HARQ-ACK)码本的发送与接收,是一项亟待解决的技术问题。
发明内容
本申请提供了通信方法和通信装置,以期在SBFD方案的使用场景下,合理地利用资源,实现HARQ-ACK码本的正常传输。
第一方面,本申请提供了一种通信方法,该方法可以由终端来执行,或者,也可以由配置在终端中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分终端功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:终端从第一时频资源中确定目标候选物理下行共享信道(physical downlink shared channel,PDSCH)接收时机(occasion for candidate PDSCH reception),目标候选PDSCH接收时机包含至少一个符号,目标候选PDSCH接收时机用于接收PDSCH,第一时频资源在时域上对应第一时间单元,该第一时间单元包括一个或多个符号,该第一时频资源对应的频域资源包括多个子带,这多个子带为该第一时频资源上对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第一时间单元中的一个或多个符号在这多个子带上的符号类别不同,目标候选PDSCH接收时机中包含的每个符号满足:在这多个子带中的至少一个子带上的符号类别为下行或者灵活(flexible,F)或者全双工(full duplex,FD),或者,在这多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;终端基于多个目标候选 PDSCH接收时机HARQ-ACK码本;终端发送HARQ-ACK码本。
其中,第一时频资源在时域上对应第一时间单元,该第一时间单元包括一个或多个符号。该第一时频资源对应的频域资源包括多个子带,这多个子带是该第一时频资源上对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第一时间单元中的一个或多个符号在这多个子带上的符号类别不同,可以理解为子带全双工的场景。
在一个子带上的一个符号类别为全双工,可以理解为,在所述子带对应的频域资源上,在所述符号内,可以同时进行上行传输和下行传输。
基于上述方案,在SBFD方案的使用场景下,终端可以基于目标候选PDSCH候选时机的定义,从多个候选PDSCH接收时机中确定出目标候选PDSCH接收时机,进而确定HARQ-ACK码本;网络设备也可以基于相同的方法确定目标候选PDSCH接收时机,进而确定HARQ-ACK码本的载荷大小(payload size),从而可以实现对HARQ-ACK码本的正确接收。由此实现了HARQ-ACK码本的正常传输。
此外,由于目标候选PDSCH接收时机中的每个符号满足在至少一个子带上的符号类别为下行、灵活或全双工,这就意味着在同一个符号上还可能存在至少一个子带,符号类别是上行。如此一来,网络设备可以尽可能地在同一CC的下行子带上调度下行数据,并在上行子带上接收上行数据,即,可以同时在同一CC上进行上行和下行传输,因此资源的利用率得以提高。
结合第一方面,在某些可能的实现方式中,第一子带是这多个子带中优先级最高的子带。
这样一来,将子带划分为不同的优先级,可以对不同优先级的子带中的资源进行合理地资源利用,只考虑候选PDSCH接收时机包括的每个符号在优先级最高的子带中的符号类别是否是下行、灵活或者全双工,可以保证高优先级的子带中的资源的利用率。
结合第一方面,在某些可能的实现方式中,第一子带是这多个子带中网络设备指定的子带。
由此,终端无需做额外的计算或判断处理,只需要根据网络设备的指示信息确定出第一子带,再根据上述确定目标候选PDSCH的确定过程来确定出目标候选PDSCH接收时机即可,可以在一定程度上减小终端的功率消耗。
第二方面,本申请提供了一种通信方法,该方法可以由网络设备来执行,或者,也可以由配置在网络设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:网络设备从配置给终端的第一时频资源中确定目标候选PDSCH接收时机,目标候选PDSCH接收时机包含至少一个符号,目标候选PDSCH接收时机用于该终端接收PDSCH,该第一时频资源在时域上对应第一时间单元,该第一时间单元包括一个或多个符号,该第一时频资源对应的频域资源包括多个子带,这多个子带为该第一时频资源上对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第一时间单元中的一个或多个符号在这多个子带上的符号类别不同,目标候选PDSCH接收时机中包含的每个符号满足:在这多个子带中的至少一 个子带上的符号类别为下行或者灵活或者全双工,或者,在这多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;网络设备基于该终端的多个所述目标候选PDSCH接收时机确定该终端的HARQ-ACK码本的载荷大小;网络设备基于HARQ-ACK码本的载荷大小接收来自该终端的这个HARQ-ACK码本。
基于上述方案,在子带全双工的场景下,网络设备可以将配置给终端的第一时频资源中,包括的每个符号在这多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工的候选PDSCH接收时机确定为目标候选PDSCH接收,或者,网络设备可以将配置给终端的第一时频资源中,包括的每个符号在这多个子带中的第一子带上的符号类别为下行或者灵活或者全双工的候选PDSCH接收时机确定为目标候选PDSCH接收,从而可以再基于多个目标候选PDSCH接收时机确定终端可能会生成的HARQ-ACK码本的载荷大小,并基于HARQ-ACK码本的载荷大小接收来自终端的HARQ-ACK码本。由此一来,还可以合理利用在第一时间单元内符号类别为下行或者灵活或者全双工的子带接收来自终端的反馈信息。
结合第二方面,在某些可能的实现方式中,第一子带是这多个子带中优先级最高的子带。
这样一来,将子带划分为不同的优先级,可以对不同优先级的子带中的资源进行合理地资源利用,只考虑候选PDSCH接收时机包括的每个符号在优先级最高的子带中的符号类别是否是下行、灵活或者全双工,可以保证高优先级的子带中的资源的利用率。
结合第二方面,在某些可能的实现方式中,第一子带是这多个子带中网络设备指定的子带。
网络设备通过指示信息向终端指示第一子带,终端无需做额外的计算或判断处理,只需要根据网络设备的指示信息确定出第一子带,再根据上述确定目标候选PDSCH的确定过程来确定出目标候选PDSCH接收时机即可,可以在一定程度上减小终端的功率消耗。
第三方面,本申请提供了一种通信方法,该方法可以由终端来执行,或者,也可以由配置在终端中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分终端功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:终端从多个物理上行控制信道(physical uplink control channel,PUCCH)资源集(resource set)中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集;这多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,该第二时频资源在时域上对应第二时间单元,该第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同;第一PUCCH资源集是包括至少一个第一PUCCH资源的资源集,第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带内,第一PUCCH资源在该第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工,该 HARQ-ACK码本由终端生成;终端从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集;终端将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;终端在该目标PUCCH资源上发送该HARQ-ACK码本。
其中,第二时频资源在时域上对应第二时间单元,该第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同,也可以理解为子带全双工的场景。
基于上述方案,在SBFD方案的使用场景下,网络设备为终端配置的多个PUCCH资源集中的一些PUCCH资源集中包括至少一个不跨子带的PUCCH资源。如此以来,终端可以灵活地选择PUCCH资源来传输HARQ-ACK码本,避免因PUCCH资源全部跨子带而导致的没有PUCCH资源来传输HARQ-ACK码本的情况发生,从而可以保证HARQ-ACK码本的正常传输,保障传输可靠性。另外,终端既可以使用上行子带传输HARQ-ACK码本,也可以使用全带资源传输HARQ-ACK码本,因此有利于提高资源的利用率。
结合第三方面,在某些可能的实现方式中,第一PUCCH资源集中包括的资源均为第一PUCCH资源;以及终端从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,包括:终端将第一PUCCH资源集确定为目标PUCCH资源集。
网络设备与终端可以基于相同的规则来确定目标PUCCH资源集,而无需通过额外的信令交互,便可以确定出目标PUCCH资源集。
结合第三方面,在某些可能的实现方式中,终端从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,包括:终端接收来自网络设备的第一指示信息,该第一指示信息包括N比特的位图,这N比特与N个时间单元对应,位图中的第n个比特位的值用于指示这N个时间单元中的第n个时间单元对应的第一PUCCH资源集和第二PUCCH资源集中的一个PUCCH资源集,其中,1≤n≤N,N和n为整数;终端根据该第二时间单元在该位图中对应的比特位的值确定目标PUCCH资源集。
网络设备和终端之间通过一次第一指示信息的交互,终端便可以确定在每个周期内的包括第二时间单元在内的多个时间单元中的目标PUCCH资源集,可以避免过多的信令交互给网路设备和终端带来的过多的功率消耗。
结合第三方面,在某些可能的实现方式中,终端从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,包括:终端接收来自网络设备的第二指示信息,该第二指示信息包括一个PUCCH资源集的标识;终端将第一PUCCH资源集和第二PUCCH资源集中与这个标识对应的PUCCH资源集确定为目标PUCCH资源集。
通过网络设备向终端指定一个PUCCH资源集作为目标PUCCH资源集,无需终端做额外的计算或判断,不会给终端带来额外的功率消耗。
第四方面,本申请提供了一种通信方法,该方法可以由网络设备来执行,或者,也可以由配置在网络设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:网络设备为终端配置多个PUCCH资源集,这多个PUCCH 资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同;网络设备从这多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集,第一PUCCH资源集是包括至少一个第一PUCCH资源的资源集,第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带内,第一PUCCH资源在该第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工,该HARQ-ACK码本由终端生成;网络设备从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集;网络设备将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;网络设备在该目标PUCCH资源上接收该HARQ-ACK码本。
基于上述方案,在SBFD方案的使用场景下,网络设备可以为终端配置多个PUCCH资源集,这些资源集中的一些PUCCH资源集中包括至少一个不跨子带的PUCCH资源。如此以来,网络设备可以灵活地选择PUCCH资源来接收HARQ-ACK码本,避免因PUCCH资源全部跨子带而导致的没有PUCCH资源来接收HARQ-ACK码本的情况发生,从而可以保证HARQ-ACK码本的正常传输,保障传输可靠性。另外,终端既可以使用上行子带传输HARQ-ACK码本,也可以使用全带资源传输HARQ-ACK码本,因此有利于提高资源的利用率。
结合第四方面,在某些可能的实现方式中,第一PUCCH资源集包括的资源均为第一PUCCH资源;以及网络设备从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,包括:网络设备将第一PUCCH资源集确定为目标PUCCH资源集。
网络设备与终端可以基于相同的规则来确定目标PUCCH资源集,而无需通过额外的信令交互,便可以确定出目标PUCCH资源集。
结合第四方面,在某些可能的实现方式中,该方法还包括:网络设备向终端发送第一指示信息,该第一指示信息包括N比特的位图,这N比特与N个时间单元对应,位图中的第n个比特位的值用于指示这N个时间单元中的第n个时间单元对应的目标PUCCH资源集,其中,1≤n≤N,N和n为整数;以及网络设备从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,包括:网络设备根据该第二时间单元在该位图中对应的比特位的值确定目标PUCCH资源集。
网络设备和终端之间通过一次第一指示信息的交互,终端便可以确定在每个周期内的包括第二时间单元在内的多个时间单元中的目标PUCCH资源集,可以避免过多的信令交互给网路设备和终端带来的过多的功率消耗。
结合第四方面,在某些可能的实现方式中,该方法还包括:网络设备向终端发送第二指示信息,该第二指示信息包括一个PUCCH资源集的标识;以及网络设备从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,包括:网络设备将第一PUCCH资源集和第二PUCCH资源集中与该标识对应的PUCCH资源集确定为 目标PUCCH资源集。
通过网络设备向终端指定一个PUCCH资源集作为目标PUCCH资源集,无需终端做额外的计算或判断,不会给终端带来额外的功率消耗。
第五方面,本申请提供了一种通信方法,该方法可以由网络设备来执行,或者,也可以由配置在网络设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:网络设备为终端配置多个PUCCH资源集,所述多个PUCCH资源集中的每个PUCCH资源集包括至少一个第一PUCCH资源;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,该第二时频资源在时域上对应第二时间单元,该第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同;第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带内,第一PUCCH资源在该第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;网络设备从这多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集,该HARQ-ACK码本由终端生成;网络设备将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;网络设备在该目标PUCCH资源上接收该HARQ-ACK码本。
基于上述方案,在子带全双工的场景下,只需要限制网络设备配置给终端的每个PUCCH资源集中包括至少一个第一PUCCH资源,不需要对终端的行为做较大的改变,便可以避免因为终端配置的资源集中的全部PUCCH资源位于至少两个符号类别不同的子带上,而导致无法使用这些PUCCH资源接发送和接收HARQ-ACK码本的问题,实现方式简单。
第六方面,本申请提供了一种通信装置,可以实现上述第一方面至第五方面和第一方面任一种可能的实现方式至第五方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的模块。该装置包括的模块可以通过软件和/或硬件方式实现。
第七方面,本申请提供了一种通信装置,该通信装置包括处理器。该处理器与存储器耦合,可用于执行存储器中的计算机程序,以实现上述第一方面至第五方面和第一方面任一种可能的实现方式至第五方面任一种可能的实现方式中的方法。
可选地,该通信装置还包括存储器。
可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第八方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持实现上述第一方面至第五方面和第一方面任一种可能的实现方式至第五方面任一种可能的实现方式中所涉及的功能,例如,接收或处理上述方法中所涉及的数据和/或指示信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请提供了一种计算机可读存储介质,所述计算机存储介质上存储有计算机程序(也可以称为代码,或指令),当所述计算机程序在被处理器运行时,使得上述第一方面至第五方面和第一方面任一种可能的实现方式至第五方面任一种可能的实现方式中的方法被执行。
第十方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得上述第一方面至第五方面和第一方面任一种可能的实现方式至第五方面任一种可能的实现方式中的方法被执行。
应当理解的是,本申请的第六方面至第十方面与本申请的第一方面至第五方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是适用于本申请实施例的通信系统的示意图;
图2是不同的载波的对比示意图;
图3是本申请实施例提供的一种通信方法的示意性流程图;
图4是接收PDSCH的时间范围和反馈时隙的示意图;
图5是资源在不同的载波上的对比示意图;
图6是本申请实施例提供的另一种通信方法的示意性流程图;
图7是一个周期内的时隙的配置格式的示意图;
图8是本申请实施例提供的又一种通信方法的示意性流程图;
图9是目标PUCCH资源平移前后的对比示意图;
图10是本申请实施例提供的通信装置的示意性框图;
图11是本申请实施例提供的通信装置的另一示意性框图;
图12是本申请实施例提供的终端的结构示意性框图;
图13是本申请实施例提供的基站的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一时频资源和第二时频资源仅仅是为了区分不同的时频资源,第一时间单元和第二时间单元仅仅是为了区分不同的时间单元,第一指示信息和第二指示信息仅仅是为了区分不同的指示信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单 数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物)系统,例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
在本申请实施例中,网络设备可以是任意一种具有收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:基站(例如,节点B(Node B,NodeB)、演进型节点(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU)、无线网络系统中的接入点(access point,AP)、无线中继节点(radio relay node,RRN)、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或者,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。可以理解,本申请中的网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU可以负责处理非实时协议和服务,如,可以实现无线资源控制(radio resource control,RRC)层、业务数据自适应协议(service data adaptation protocol,SDAP)层和/或分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU可以负责可以处理物理层协议和实时服务。例如可以实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。一个DU可以仅连接到一个CU或者连 接到多个CU,而一个CU可以连接到多个DU,CU与DU之间可以通过F1接口进行通信。AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会被递交至PHY层从而变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。
可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低等特点,适用于提供高速率的数据传输服务。
基站可以是:宏基站、微基站、微微基站、小站、中继站、或气球站等。若通信系统中存在多个网络设备,则这多个网络设备可以为同一类型的基站,也可以为不同类型的基站;这多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。
在本申请实施例中,终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端可以是固定的,也可以是移动的。
终端可以与不同的网络设备通信。终端可以与不同技术的多个基站进行通信,例如,终端可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
在本申请实施例中,终端可以是一种具有收发功能的设备。终端可以部署在陆地上,包括室内或室外,手持设备、穿戴设备或车载设备;终端也可以部署在水面上(如轮船等);终端还可以部署在空中(例如飞机、气球和卫星上等)。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端还可以是物联网(internet of things,IoT)系统中的终端。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
应理解,本申请对于网络设备和终端的具体形式均不作限定。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的通信方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的5G系统中的网络设备101;该通信系统100还可以包括至少一个终端,如图1中所示的终端102至107。其中,该终端102至107可以是移动的或固定的。网络设备101和终端102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端通信。例如,网络设备可以向终端发送配置信息,终端可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端发送下行数据。因此,图1中的网络设备101和终端102至107构成一个通信系统。
可选地,终端之间可以直接通信。例如可以利用设备到设备(device to device,D2D)技术等实现终端之间的直接通信。如图中所示,终端105与106之间、终端105与107之间,可以利用D2D技术直接通信。终端106和终端107可以单独或同时与终端105通信。
终端105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端107经由终端106与网络设备101通信。
应理解,图1示例性地示出了一个网络设备和多个终端,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端,例如更多或更少的终端。本申请对此不做限定。
上述各个通信设备,如图1中的网络设备101和终端102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调 制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。为便于理解本申请实施例,以下对本申请中涉及到的一些术语或词汇作简单说明。
1、时间单元:可以是子帧,也可以是时隙(slot),还可以是无线帧、微时隙(mini slot)或子时隙(sub slot)、多个聚合的时隙、多个聚合的子帧等等,甚至还可以是传输时间间隔(transmission time interval,TTI),本申请实施例对此并未特别限定。
2、符号:时域资源的最小单位。本申请实施例对一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。
符号类别可包括上行、下行、灵活或者全双工,作为示例而非限定。符号类别也可以被理解为符号的方向。一个符号的方向为上行时,表示在该符号上可以进行上行信号的传输。上行信号,指传输方向为上行的信号,例如可以是终端向网络设备发送的信号。一个符号的方向为下行时,表示在该符号上可以进行下行信号的传输。下行信号,指传输方向为下行的信号,例如可以是网络设备向终端发送的信号。一个符号的方向为灵活时,表示该符号上对应信号的传输方向并未确定,此时结合相关定义或配置,灵活的符号可能用于上行信号的传输,也可能用于下行信号的传输,本申请实施例对此不予限制。一个符号的方向为全双工时,可以理解为,在该符号上可以进行下行信号传输,且可以进行上行信号传输。
一个时隙可以包括14个符号,或者,一个时隙可以包括12个符号,本申请以一个时隙包括14个符号为例,但本申请对一个时隙包括的符号的个数不作任何限定。
3、载波(CC):指示一段连续的频域资源,可以对应一个小区配置。
4、子带:设计上一个子带所占的频域资源可以小于一个CC所占的频域资源,一个子带所在的频域资源连续,不同子带的频域资源无重叠。多个子带在频域上可以连续或者不连续,例如,一种多个子带在子带不连续的设计,可以是多个子带中每两个子带之间可以存在保护间隔。类似地,一种多个子带在频域上连续的设计,可以是多个子带中每两个子带之间不存在保护间隔。
5、HARQ-ACK码本:可以理解为根据一个或多个时间单元内需要反馈的ACK、否认应答(negative acknowledgement,NACK)信息而生成的HARQ-ACK码本。
HARQ-ACK码本可以分为动态码本和半静态码本。
半静态码本可以指用半静态的方式生成HARQ-ACK码本,在半静态码本模式下,码本的载荷大小是半静态变化的,也就是在一段时间内会维持不变。半静态码本的可靠性比较高。半静态码本根据候选PDSCH接收时机集合、最大码字数和其他HARQ配置确定,码本大小不会随着实际的数据调度情况动态改变。例如,可以根据终端是否支持一个时隙内存在多个PDSCH传输、RRC层信令配置的服务小区个数、RRC层信令配置的各个服务小区的HARQ空间绑定参数(harq-ACK-SpatialBundlingPUCCH)、RRC层信令配置的各个服务小区PDSCH-码块组(code block group,CBG)配置参数(PDSCH-CodeBlockGroupTransmission)、RRC层信令配置各个服务小区支持的最大码字(codeword)参数等确定一个时间单元需要反馈的比特(bit)数,进而确定半静 态HARQ-ACK码本。
动态码本根据下行控制信息(downlink control indicator,DCI)中的时域的计数下行配置索引值(count downlink assignment index,C-DAI)和总下行配置索引值(total downlink assignment index,T-DAI)等信息和其他HARQ配置确定,码本大小会随着实际的数据调度情况动态改变。
6、高层信令:可以是指高层协议层发出的信令,高层协议层为物理层以上的协议层。其中,高层协议层可以包括以下协议层中的至少一个:MAC层、RLC层、PDCP层、RRC层和非接入层(non access stratum,NAS)。
5G NR中,网络设备可以通过如下2种方式实现1个CC上符号类别的配置:高层配置/RRC层信令配置、下行控制信息2-0(downlink control indicator 2-0,DCI 2-0)动态指示,DCI 2-0动态指示也称为时隙格式指示(slot format indicator,SFI)。
在高层配置方案中,网络设备可以通过RRC层信令通知终端设备,实现一定周期内符号类别的配置。该方案也可称为RRC配置的时隙格式。高层配置的方案中的配置参数可进一步分为:小区级的配置参数,如TDD公共配置(TDD-ConfigCommon),和终端级的配置参数,如TDD专用配置(TDD-ConfigDedicated)。
TDD-ConfigCommon中包含的信息有:TDD-ConfigCommon的周期、周期下行时隙数、周期上行时隙数、周期下行符号数和周期上行符号数等。TDD-ConfigCommon既支持单周期的配置,又支持双周期的配置。
TDD-ConfigDedicated是终端级别的配置参数,每个终端可单独配置,每个终端可以修改TDD-ConfigCommon中灵活符号的方向。TDD-ConfigDedicated的中包含的信息有:时隙的标识(identity,ID)、时隙的上行符号数和时隙的下行符号数等。
在高层配置方案中,可以只有小区级的配置参数,或者,同时存在小区级的配置参数和终端级的配置参数,为了避免后续引起误解,本申请实施例中可以称高层配置方案为RRC时隙格式配置。
下面将结合附图,对本申请提出的通信方法和通信装置进行说明。
在上述通信系统中,网络设备为终端配置的时频资源是针对整个CC配置的,也就是说,一个符号的符号类别是针对整个CC配置的,如图2的(a)所示,时隙1和时隙2在载波1上符号类别都是针对整个CC配置的,其中,时隙1包括的14个符号在载波1上的符号类别均为D,时隙2包括的14个符号在载波1上的符号类别如图2的(a)所示包括7个D、5个F和2个U。
为了提高上行覆盖,SBFD方案被提出。基于SBFD方案,一个CC可以包括多个频域连续且不重叠的子带,且存在一个或多个时间单元中的符号在这多个子带上的符号类别不同。比如,同一个符号在部分子带被配置为上行符号,在另一部分子带被配置为下行符号。如图2的(b)中示出的时隙3和时隙4在载波2上的符号类别是针对子带配置的,一个符号的符号类别在同一个CC内的不同子带上可能不同,也即,在一个CC上可以实现同时收发。
在SBFD场景下,一个CC上包含多个子带,为便于区分和说明,首先做出如下定义:
全带D时隙:一个CC被划分为多个子带,且在该CC上,一个时隙在这多个子 带上的所有符号的符号类别均为D,则这个时隙可以称为是全带D时隙。
全带U时隙:一个CC被划分为多个子带,且在该CC上,一个时隙在这多个子带上的所有符号的符号类别均为U,则这个时隙可以称为是全带U时隙。
全带FD时隙:一个CC被划分为多个子带,且在该CC上,一个时隙在这多个子带上的所有符号的符号类别均为FD,则这个时隙可以称为是全带FD时隙。
全带F时隙:一个CC被划分为多个子带,且在该CC上,一个时隙在这多个子带上的所有符号的符号类别均为F,则这个时隙可以称为是全带F时隙。
全带D及FD时隙:一个CC被划分为多个子带,且在该CC上,一个时隙在这多个子带上的符号类别只包括D和FD,并且这个时隙不是全带D时隙,也不是全带FD时隙,则这个时隙可以称为全带D及FD时隙。
全带U及FD时隙:一个CC被划分为多个子带,且在该CC上,一个时隙在这多个子带上的符号类别只包括U和FD,并且这个时隙不是全带U时隙,也不是全带FD时隙,则这个时隙可以称为全带U及FD时隙。
子带D时隙/子带U时隙:一个CC被划分为多个子带,且在该CC上,在一个时隙的一个或多个符号在所述多个子带上的符号类别不同,且非全带D及FD时隙,且非全带U及FD时隙。
在全带D时隙中,不同子带对应的所有符号均可传输下行信号,且不同子带对应的所有符号均不可传输上行信号。
在全带U时隙中,不同子带对应的所有符号均可传输上行信号,且不同子带对应的所有符号均不可传输下行信号。
在全带FD时隙中,不同子带对应的所有符号均可同时传输上行信号和下行信号。
在全带F时隙中,不同子带对应的所有符号可传输上行信号或者下行信号。
在全带D及FD时隙中,不同子带对应的所有符号均可传输下行信号,部分子带对应的部分符号可同时传输上行信号和下行信号。
在全带U及FD时隙中,不同子带对应的所有符号均可传输上行信号,部分子带对应的部分符号可同时传输上行信号和下行信号;
子带D时隙/子带U时隙:根据不同子带对应的符号类别决定该符号可传输上行信号和/或下行信号。
类似地,可以定义全带D时间单元、全带U时间单元、全带FD时间单元、全单F时间单元、全带D及FD时间单元、全带U及FD时间单元、子带D时间单元和子带U时间单元等。在本申请实施例中,以时间单元为时隙作为示例。
如图2的(b)所示,载波2的所有子带上在时隙4内的所有符号类别均为U,此时时隙4可以称为全带U时隙;如图2的(c)所示,载波3的在所有子带上在时隙5内的所有符号类别均为D,此时时隙3可以称为全带D时隙,载波3的所有子带上在时隙6内的所有符号类别只包括D和FD,此时时隙6可称为全带D及FD时隙。如图2的(b)所示的时隙3,以及图2的(d)所示的时隙7和时隙8,可以称为子带D/子带U时隙。
在SBFD的方案下,在一些可能的配置中,一个时隙为全带D及FD时隙或者全带U及FD时隙或者子带D/子带U时隙。在这种情况下,如何进行HARQ-ACK码本 的发送与接收,还有待解决。
此外,针对图2的(a)所示出的情况,终端可以在一个时隙的候选PDSCH接收时机中确定目标候选PDSCH接收时机,目标候选PDSCH接收时机的确定和RRC层信令配置的时隙格式有关。当一个候选PDSCH接收时机所在的符号中的至少一个符号在RRC配置的时隙格式中的符号类别为U时,该候选PDSCH接收时机不是目标候选PDSCH接收时机。终端根据目标候选PDSCH接收时机,按照技术规范(technical specification,TS)38.213版本G60中的章节9.1.2中的方式确定一个时间单元反馈的HARQ-ACK的比特数,进而根据实际接收到的PDSCH确定HARQ-ACK码本。
然而,在使用SBFD方案的情况下,如果也按照这种方法来确定目标候选PDSCH接收时机,就可能会存在一些资源被闲置。比如,一个子带D时隙中,若一个候选PDSCH接收时机所在的符号在第一个子带上RRC配置的时隙格式中的符号类别为D或者F或者FD,该候选PDSCH接收时机所在的符号在第二个子带上RRC配置的时隙格式中的符号类别为U,此候选PDSCH接收时机可能不会被选作目标候选PDSCH接收时机。换句话说,网络设备可能不会在此候选PDSCH接收时机上进行下行传输。实际上,在不考虑第二个子带的情况下,网络设备可以在第一个子带上在此候选PDSCH接收时机上进行下行传输,因此,资源未得以合理利用,资源利用率有待提高。
因此,本申请实施例提出一种通信方法,在使用SBFD方案的情况下,通过对目标候选PDSCH接收时机的定义,使得终端和网络设备可以基于相同的规则确定目标候选PDSCH接收时机,进而实现HARQ-ACK的正常传输。此外,由于该目标候选PDSCH接收时机中的每个符号满足在至少一个子带上的符号类别为下行、灵活或全双工,使得网络设备可以尽可能地在同一CC上进行上行和下行传输,从而提高资源的利用率。
图3是本申请实施例提供的一种通信方法的示意性流程图。
在步骤310中,终端从第一时频资源中确定目标候选PDSCH接收时机。
在本申请实施例中,第一时频资源在时域上对应一个时间单元,为便于区分和说明,本申请中将与第一时频资源对应的时间单元记为第一时间单元,该第一时间单元包括一个或多个符号。该第一时频资源对应的频域资源包括多个子带,这多个子带是该第一时频资源上对应的频域资源上连续的不重叠的频域资源,且这多个子带在一个载波上。在本申请实施例中,该第一时间单元中的一个或多个符号在这多个子带上的符号类别不同,也即,该第一时频资源可适用于SBFD方案。
本申请中的实施例中,所述多个子带可以指终端激活的带宽部分(bandwidth part,BWP)中所包含的子带。
例如,图2中的(b)示出的载波2上对应于时隙3的这一块时频资源、图2的(c)示出的载波3对应的时隙6这一块时频资源,以及图2的(d)示出的载波4对应的时隙7这一块时频资源和载波4对应的时隙8这一块时频资源,都是第一时频资源的示例,时隙3、时隙6、时隙7和时隙8都是第一时间单元的示例。
应注意,网络设备为终端配置的时频资源在时域上可以包括一个或多个时间单元,终端可以基于上文中对第一时频资源在时域上和频域上的特点,确定第一时频资源。若以第一时间单元为粒度来划分,将网络设备为终端配置的时频资源中满足上述特点, 且对应于一个第一时间单元的资源记为一个第一时间资源,则网络设备为终端配置的时频资源可以包括一个或多个第一时频资源。
在本申请实施例中,目标候选PDSCH接收时机包含至少一个符号,且目标候选PDSCH接收时机中包含的每个符号满足:在这多个子带中的至少一个子带上的符号类别为D或者灵活F或者FD,或者,在这多个子带中的第一子带上的符号类别为下行或者灵活或者全双工。其中,第一子带是这多个子带中的一个特定的子带,也即,确定目标候选PDSCH接收时机时只需要考虑这个特定的子带上的符号类别。符号类别为全双工(FD),可以理解为,在一个子带上,一个符号内,可以同时进行上行传输和下行传输。
例如,图2的(b)中示出的候选PDSCH接收时机1包括的每个符号在这3个子带中的至少一个子带上的符号类别为D,所以候选PDSCH接收时机1为目标候选PDSCH接收时机。候选PDSCH接收时机2中包括的每个符号在这3个子带中的中的至少一个子带上的符号类别为D或者F,所以候选PDSCH接收时机2是目标候选PDSCH接收时机。候选PDSCH接收时机3的最后一个符号在这3个子带上的符号类别都是U,因此候选PDSCH接收时机3不满足目标候选PDSCH接收时机的特征,所以候选PDSCH接收时机3不是目标候选PDSCH接收时机。
又例如,假设,图2的(b)中示出的载波2的子带2为第一子带,候选PDSCH接收时机1和候选PDSCH接收时机2中包括的每个符号在这个第一子带上的符号类别为D或者F,所以候选PDSCH接收时机1和候选PDSCH接收时机2是目标候选PDSCH接收时机,而候选PDSCH接收时机3的最后一个符号在这个第一子带上的符号类别是U,因此候选PDSCH接收时机3不满足目标候选PDSCH接收时机的特征,所以候选PDSCH接收时机3不是目标候选PDSCH接收时机。
下文示例性地给出了对目标候选PDSCH接收时机的几种可能的设计。
可选地,第一子带是这多个子带中优先级最高的子带。
在SBFD方案的使用场景下,一个CC包括的多个子带可以定义不同的优先级,不同子带的优先级可以是网络设备配置给终端的,也可以是预定义的,本申请对此不作限定。
第一子带可以是一个CC包括的多个子带中优先级最高的子带。在确定目标候选PDSCH接收候选时机时,可以只考虑候选PDSCH接收时机包括的每个符号在这个第一子带上的符号类别是否是下行、灵活或者全双工,如果满足这个特征,则这个候选PDSCH接收时机即为目标候选PDSCH接收时机。
这样一来,将子带定义为不同的优先级,可以对不同优先级的子带中的资源进行合理地资源利用,只考虑候选PDSCH接收时机包括的每个符号在优先级最高的子带中的符号类别是否是下行、灵活或者全双工,可以保证高优先级的子带中的资源的利用率。
可选地,第一子带是这多个子带中网络设备指定的子带。
网络设备可以指定终端在确定目标候选PDSCH接收候选时机时,可以只考虑候选PDSCH接收时机包括的每个符号在某一个子带上的符号类别是否是下行、灵活或者全双工。
一种可能的实现方式是,网络设备直接指示给终端一个子带的ID,终端可以根据网络设备指示的这个子带的ID,与这个ID对应的子带即为第一子带。在确定目标候选PDSCH接收候选时机时,可以只考虑候选PDSCH接收时机包括的每个符号在这个网络设备指定的子带上的符号类别是否是下行、灵活或者全双工,如果满足这个特征,则这个候选PDSCH接收时机即为目标候选PDSCH接收时机。
另一种可能的实现方式是,终端可以根据网络设备向其配置的其他配置信息来隐式确定哪个子带为第一子带。例如,在小区中通过RRC层信令配置时隙格式时,考虑到小区中会同时存在传统(legacy)终端和新(new)终端,RRC层信令配置时隙格式时,可先配置一个CC上的时隙格式,可称为CC级别时隙格式配置,所述CC级别时隙格式可被legacy终端识别并使用,此外,还可进一步通过RRC层信令配置每个子带的时隙格式,可称为子带级别的时隙格式配置,所述子带级别时隙格式可被New终端识别并使用。在子带级别的时隙格式中,存在一个子带的时隙格式和CC级别的时隙格式相同,即在相同的符号上,所述子带上的符号类别和CC级别的时隙格式配置的符号类别相同,所述子带的时隙格式配置可称为legacy配置,则终端可以将采用legacy配置的子带确定为第一子带。
由此,终端无需做额外的计算或判断处理,只需要根据网络设备的指示信息确定出第一子带,再根据上述确定目标候选PDSCH的确定过程来确定出目标候选PDSCH接收时机即可,可以在一定程度上减小终端的功率消耗。
为方便理解和说明,下面将以时隙作为第一时间单元的一例,详细说明终端从网络设备配置的时频资源中确定第一时频资源,进而确定目标候选PDSCH接收时机的具体过程。
首先,终端可以先从网络设备配置的时频资源中确定第一时频资源,然后针对每个第一时频资源,确定出候选PDSCH接收时机,进而从候选PDSCH接收时机中确定目标候选PDSCH接收时机。
一种确定PDSCH的接收时间单元的实现方式,网络设备可通过DCI为终端配置时频资源。网络设备可以通过DCI中的第一字段的值m(m为二进制数)以及集合K1来确定用于传输HARQ-ACK码本的上行时间单元。该上行时间单元例如可以是全带U时隙,或者也可以是子带U时隙或者全带FD时隙或者全带F时隙或者全带D及FD时隙或者全带U及FD时隙。为方便区分和说明,将终端传输HARQ-ACK码本的时隙记为反馈时隙。
示例性地,第一字段的值m可以用于指示K1中的一个值k m。例如,集合K1为{1,2,3,4,5,6,7,8},这个集合中的“1”可以记为第0个数,“2”可以记为第1个数,依次类推,“8”可以记为第7个数。当网络设备下发给终端设备的DCI中的第一字段的值m为“001”时,则表示k m的取值为集合K1中的第1个数,也即,k m=2。终端接收到下行数据的时隙和终端向基站反馈ACK/NACK之间的时隙满足n+k m的定时关系,其中,n可以表示终端接收下行数据的时隙,k m可以表示下行数据接收的时隙到对应的ACK/NACK反馈的时隙之间相差的时隙,即反馈ACK/NACK的时隙为时隙n+k m
另一种确定PDSCH的接收时间单元的实现方式,网络设备可以通过RRC层信令 为终端配置用于传输HARQ-ACK码本的上行时间单元,即确定终端的HARQ-ACK的反馈时隙。
又一种确定PDSCH的接收时间单元的实现方式,网络设备可以通过MAC控制元素(MAC control element,MAC CE)信令为终端配置用于传输HARQ-ACK码本的上行时间单元,即确定终端的HARQ-ACK的反馈时隙。
基于该反馈时隙,终端根据集合K1可以确定该HARQ-ACK码本是针对此反馈时隙之前的哪几个时隙上接收到的PDSCH做出的反馈。
例如,将反馈时隙记为时隙i,终端可以接收PDSCH的时隙j与该时隙i满足:j=i-k m的定时关系。k m可以表示接收PDSCH的时隙与反馈时隙之间的偏移量,k m可以为集合K1中的任一个元素。
K1默认的配置为{1,2,3,4,5,6,7,8}。终端可以根据反馈时隙、K1以及是否有BWP的切换确定出可以接收PDSCH的时间范围。示例性地,K1可以由RRC层信令中的下行(downlink,DL)数据到上行(uplink,UL)确认(DL-DataToUL-ACK)”、或“版本16(release 16,r16)的下行数据到上行确认(DL-DataToUL-ACK-r16)”或“版本16的下行数据到上行确认的DCI-1-2(DL-DataToUL-ACK-DCI-1-2-r16)”确定,或者也可以按照默认配置来确定。本申请实施例包含但不限于此。
可以理解,在终端有多个服务小区时,终端可以在每个服务小区上分别确定出可以接收PDSCH的时间范围,每个时间范围中可以包括至少一个第一时间单元。应理解,终端确定可以接收PDSCH的时间范围的具体实现方式可以参看技术规范(technical specification,TS)38.213版本G60章节9中的相关说明,此处不作详述。
如图4所示,时隙i为反馈时隙。网络设备配置K1={1,2,3,4},也即,终端需要对在时隙i-4、时隙i-3、时隙i-2和时隙i-1上接收到的PDSCH在时隙i上进行反馈,也即,时隙i上反馈的HARQ-ACK信息为时隙i-4至时隙i-1内终端可能接收PDSCH的反馈信息。
由于一个时隙内可以包括一个或多个候选PDSCH接收时机,终端还可进一步确定出这些时隙中的可能用于传输PDSCH的候选PDSCH接收时机。
终端可以根据RRC层配置的表格或者协议预定义的表格确定一个时隙中的候选PDSCH接收时机的起始符号以及符号长度,并排除候选PDSCH接收时机所在的符号中一个或多个符号在所述多个子带上均为被RRC时隙格式配置的符号类别为U的那些候选PDSCH接收时机。由于被排除的候选PDSCH接收时机不能传输下行数据,因此也没有必要发送对应的反馈信息。
需要说明的是,终端在从网络设备配置的时频资源中确定第一时频资源之前,还可以排除全带U时隙,由于这些时隙不能传输下行数据,因此也没有必要向网络设备发送对应的反馈信息。终端可以先排除被参数TDD-ConfigCommon及参数TDD-ConfigDedicated配置为全带U的时隙,此后,终端可以在未被排除的候选PDSCH接收时机中确定目标候选PDSCH接收时机。
另外,网络设备为终端配置的时频资源在时域上如果包括全带D时隙、全带FD时隙、或全带F时隙,则终端还可以根据目前已知的技术,从全带D时隙、全带FD时隙或全带F时隙中确定出目标候选PDSCH接收时机。
在步骤320中,终端基于多个目标候选PDSCH接收时机确定HARQ-ACK码本。
终端确定了目标候选PDSCH接收时机后,可以根据这多个目标候选PDSCH接收时机确定HARQ-ACK码本的载荷大小,也即,HARQ-ACK码本的比特数,以及每个比特需要反馈NACK还是ACK,来生成HARQ-ACK码本。
例如,终端可以根据各个服务小区在一个时间范围内的每个时间单元上的目标候选PDSCH接收时机,以及该终端是否支持在一个时隙内传输多个PDSCH、RRC层信令配置的服务小区个数、各个服务小区的harq-ACK-SpatialBundlingPUCCH、各个服务小区的PDSCH-CodeBlockGroupTransmission、各个服务小区支持的最大码字参数等,按照TS 38.213中的相关说明,此处不作详述。
在步骤330中,终端发送HARQ-ACK码本。相应地,网络设备接收来自该终端的HARQ-ACK码本。
终端在生成HARQ-ACK码本后,可以向网络设备发送该HARQ-ACK码本,相应地,网络设备可以接收来自该终端的HARQ-ACK码本。
一种的可能的实现方式,终端可以根据成HARQ-ACK码本的载荷大小,从网络设备配置给该终端的对应多个HARQ-ACK码本的载荷大小的范围的多个PUCCH资源集中,根据生成的这个HARQ-ACK码本的载荷大小,确定出能够用来发送这个HARQ-ACK码本的PUCCH资源集,在PUCCH资源集中的PUCCH资源的数目小于等于8的情况下,终端可以根据网络设备的DCI中的ACK/NCK资源指示(resource indicator)(ARI)字段来确定所述PUCCH资源集中的PUCCH资源的索引,ARI字段的值的大小和承载HARQ-ACK信息的PUCCH资源的索引大小相等;在PUCCH资源集中的PUCCH资源的数目大于8的情况下,终端可以根据ARI字段、承载一个PDCCH资源所在的控制资源集(control resource set,CORESET)所包含的控制信道粒子(control channel element,CCE)个数以及该PDCCH所在的CCE中第一个CCE的索引来确定所述PUCCH资源集中的PUCCH资源的索引。确定了PUCCH资源的索引,也即,确定了用于发送HARQ-ACK码本的PUCCH资源,这样一来,终端就可以在这个PUCCH资源上向网络设备发送这个HARQ-ACK码本。相应地,网络设备可以在这个PUCCH资源上接收来自该终端的这个HARQ-ACK码本。
另一方面,由于网络设备需要确定接收HARQ-ACK码本的PUCCH资源,而PUCCH资源与HARQ-ACK码本的载荷大小相关,而HARQ-ACK码本的载荷大小与目标候选PDSCH接收时机相关。网络设备若要正确解析HARQ-ACK码本,也需要预先确定HARQ-ACK码本的载荷大小。故网络设备在接收HARQ-ACK码本之前,可以先执行步骤340,从第一时频资源中确定目标候选PDSCH候选时机,进而执行步骤350,确定HARQ-ACK码本的载荷大小。由此可以保证对HARQ-ACK码本的正确接收。
应理解,网络设备从第一时频资源中确定目标候选PDSCH候选时机以及HARQ-ACK码本的载荷大小的具体实现方式,与前文步骤310中终端从第一时频资源中确定目标候选PDSCH候选时机,以及步骤320终端基于多个目标候选PDSCH接收时机确定HARQ-ACK码本的载荷大小的具体实现方式相似,此处不再赘述。
还应理解,本申请并不限定步骤340和步骤350与步骤310和步骤320的执行先 后顺序。也就是说,在步骤330之前,终端已经执行了步骤310和步骤320,并且网络设备已经执行了步骤340和步骤350。
基于上述方案,在SBFD方案的使用场景下,终端可以基于目标候选PDSCH候选时机的定义,从多个候选PDSCH接收时机中确定出目标候选PDSCH接收时机,进而确定HARQ-ACK码本;网络设备也可以基于相同的方法确定目标候选PDSCH接收时机,进而确定HARQ-ACK码本的载荷大小,从而可以实现对HARQ-ACK码本的正确接收。由此实现了HARQ-ACK码本的正常传输。
此外,由于目标候选PDSCH接收时机中的每个符号满足在至少一个子带上的符号类别为下行、灵活或全双工,这就意味着在同一个符号上还可能存在至少一个子带,符号类别是上行。如此一来,网络设备可以尽可能地在同一CC的下行子带上调度下行数据,并在上行子带上接收上行数据,即,可以同时在同一CC上进行上行和下行传输,因此资源的利用率得以提高。
上文已述及,在已知的技术中,在终端生成HARQ-ACK码本后,对于图5中的(a)所示出的情况,终端和网络设备可以根据生成的HARQ-ACK码本的载荷大小,在网络设备配置给终端的对应多个HARQ-ACK码本的载荷大小的范围的多个PUCCH资源集中,确定出能够用来发送这个HARQ-ACK码本的PUCCH资源集,并在这个资源集中确定出一个PUCCH资源来发送这个HARQ-ACK码本。
然而,在使用SBFD方案的情况下,由于终端确定出的PUCCH资源存在跨子带的可能性,如图5中的(b)中时隙10上的PUCCH资源1、PUCCH资源3,以及时隙11上的PUCCH资源3,若按照已有的技术来确定用于传输HARQ-ACK码本的资源,图5中的(b)所示的在时隙10中的PUCCH资源1和PUCCH资源3,以及在时隙11中的PUCCH资源3,均不能用于传输这个HARQ-ACK码本;而对于图5的(b)示出的时隙11中的PUCCH资源1、图5的(c)中示出的在时隙12中的PUCCH资源1和PUCCH资源2的时域资源的符号类别包含D,也不能用于输这个HARQ-ACK码本,从而不仅影响了HARQ-ACK码本的发送和接收,还导致一部分资源被闲置,资源利用率不高。如果所有的PUCCH资源都跨子带,且所有的PUCCH资源的时域资源的符号类别均包含D,则会出现没有资源用来传输HARQ-ACK码本的情况,导致传输可靠性下降。
因此,本申请实施例提出一种通信方法,在使用SBFD方案的情况下,通过对网络设备为终端配置的PUCCH资源集的设计,限定网络设备为终端配置的多个PUCCH资源集中的每两个PUCCH资源集对应于一个HARQ-ACK码本的载荷大小范围,并且这两个PUCCH资源集中的至少一个PUCCH资源集中包括至少一个不跨子带的PUCCH资源,从而为HARQ-ACK码本的传输合理地确定PUCCH资源,一方面可以保证HARQ-ACK码本的正常传输,保障传输可靠性,另一方面还可以提高资源的利用率。
下文结合图6和图8的实施例提供了PUCCH资源集的两种可能的设计。
在一种可能的设计中,网络设备为终端配置的PUCCH资源集中,每个HARQ-ACK码本的载荷大小范围可对应两个PUCCH资源集,且该两个PUCCH资源集中的一个PUCCH资源集(即,下述的第一PUCCH资源集)包括的PUCCH资源均不跨子带, 具体可参看图6所示的方法600。在另一种可能的设计中,网络设备为终端配置的PUCCH资源集中,每个PUCCH资源集对应一个HARQ-ACK码本的载荷大小范围,且每个PUCCH资源集包括至少一个不跨子带的PUCCH资源,具体可参看图8所示的方法800。
图6是本申请另一实施例提供的通信方法600的示意性流程图。如图6所示,方法600包括在步骤610至步骤680。下结合附图对步骤610至步骤680进行详细说明。
在步骤610中,网络设备为终端配置多个PUCCH资源集。
在本申请实施例中,第二时频资源在时域上对应一个时间单元,为便于区分和说明,本申请中将与第二时频资源对应的时间单元记为第二时间单元,该第二时间单元包括一个或多个符号。
在第二时间单元为子带U时间单元或者全带D及FD时间单元或者全带U及FD时间单元的情况下,该第二时频资源对应的频域资源包括多个子带,这多个子带是该第二时频资源上对应的频域资源上连续的不重叠的频域资源,且这多个子带在一个载波上,该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同,也即,该第二时频资源可适用于SBFD方案。例如,图5的(b)中示出的载波6包括子带1、子带2和子带3这三个子带,载波6对应于时隙10的这一块时频资源,以及载波6对应于时隙11的这一块时频资源都可以认为是第二时频资源,时隙10和时隙11都可以是第二时间单元。在这种情况下,网络设备为终端配置的多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,在这多个PUCCH资源集中,每两个PUCCH资源集对应于一个HARQ-ACK码本的载荷大小范围,对应于一个HARQ-ACK码本的载荷大小范围的两个PUCCH资源集可以认为是一组PUCCH资源集。
为方便区分和说明,下文将对应于一个HARQ-ACK码本的载荷大小范围的两个PUCCH资源集分别记为第一PUCCH资源集和第二PUCCH资源集。
RRC层配置的时隙格式为周期性的,包括单周期及双周期2种配置,可定义单周期的时长为T(T≥0)秒或者双周期的2个周期的持续时长之和为T秒,在时间T秒内,包含M(M≥1,M为整数)个第二时间单元,根据M个第二时间单元上多个子带上符号类别的配置及第二时频资源的定义,确定M个时间单元中N(N≥1,N为整数)个第二时频资源所在的第二时间单元。在所述N个第二时频资源中,有N1(N1≥1,N1为整数,N1≤N)个第二时频资源用于承载HARQ-ACK信息。网络设备可以通过DCI指示或者RRC配置信息或者MAC CE指示终端发送HARQ-ACK信息所在的时频资源,据此可以确定N1个第二时频资源。
可以理解的是,第二时间单元对应的第二时频资源满足:所述第二时频资源对应的时域为所述第二时间单元,所述第二时频资源对应的频域为终端激活的BWP所在的频域。
在一种可能的实现方式A1中,第一PUCCH资源集是包括至少一个第一PUCCH资源的资源集,第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带或者多个子带内,第一PUCCH资源在N1个第二时间单元中至少一个第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为U或F 或FD。例如,图5的(b)中示出的在时隙10和时隙11中的PUCCH资源2是第一PUCCH资源。
需要说明的是,第一PUCCH资源在一个第二时频资源上可以称为候选第一PUCCH资源,所述候选第一PUCCH资源满足:所述第一PUCCH资源在所述第二时频资源对应的第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为U或F或FD。此时,也可称为所述第二时频资源上有候选第一PUCCH资源。
在一种可能的实现方式A2中,在所述N1个第二时频资源上均有至少一个候选第一PUCCH资源。所述至少一个候选第一PUCCH资源属于第一PUCCH资源集。可以理解,这种可能的方式A2是对上述可能的实现方式A1中的第一PUCCH资源集的更进一步的限定。
在一种可能的实现方式A3中,在满足实现方式A1中的第一PUCCH资源集的限定时,第一PUCCH资源集中包括的PUCCH资源在所述N1个第二时频资源中的至少一个第二时频资源上均为候选第一PUCCH资源。可以理解,这种可能的方式A3是对上述可能的实现方式A1中的第一PUCCH资源集的更进一步的限定。
在一种可能的实现方式A4中,在满足实现方式A2中的第一PUCCH资源集的限定时,第一PUCCH资源集中包括的PUCCH资源在所述N1个第二时频资源中的至少一个第二时频资源上均为候选第一PUCCH资源。可以理解,这种可能的方式A4是对上述可能的实现方式A2中的第一PUCCH资源集的更进一步的限定。
在一种可能的实现方式A5中,第一PUCCH资源集中包括的PUCCH资源在所述N1个第二时频资源中均为候选第一PUCCH资源。可以理解,这种可能的方式A5是对上述可能的实现方式A4中的第一PUCCH资源集的更进一步的限定。
第二PUCCH资源集可以包括第一PUCCH资源,也可以不包括第一PUCCH资源,本申请对此不作限定。
HARQ-ACK码本的载荷大小范围与第一PUCCH资源集和第二PUCCH资源集的对应关系,可以以表格的形式体现,也可以以其他的形式体现,本申请对此不作任何限定。
此外,在本申请实施例中,第三时频资源在时域上也可以对应一个第二时间单元,该第三时频资源对应的频域资源包括多个子带,这多个子带是该第三时频资源上对应的频域资源上连续的不重叠的频域资源,且这多个子带在一个载波上,该第二时间单元中的每个符号在多个子带上的符号类别相同,且在该第二时间单元中的一个或多个符号在这多个子带上的符号类别为U或者FD或者F,也即,第二时间单元还可以是全带U时隙,或者,全带F时隙,或者全带FD时隙。例如,图2的(b)中的时隙4对应载波2的这一块时频资源可以认为是第三时频资源,以及,图5的(c)中的时隙13对应的载波7的这一块时频资源可以认为是第三时频资源。又或者,第二时间单元内可以包括全带U子时隙、全带F子时隙、全带FD子时隙或全带D子时隙。应理解,子时隙比时隙的范围小,一个时隙可以包括多个子时隙。例如,一个子时隙可以包括7个符号,也即,一个时隙可以包括两个子时隙,如图5的(c)中的时隙12可以包括第一子时隙(第1个符号至第7个符号)和第二子时隙(第8个符号至第14个符号),那么,时隙12的第二子时隙对应的载波7的这一块时频资源可以认为是第三时频资源。 可以理解的是,第二时间单元对应的第三时频资源满足:所述第三时频资源对应的时域为所述第二时间单元,所述第三时频资源对应的频域为终端激活的BWP所在的频域。
类似地,网络设备和终端可以在所述时间T秒内确定J(J≥0,J为整数)个第三时频资源,在所述J个第三时频资源中,有J1(J1≥0,J1为整数,J1≤J)个第三时频资源用于承载HARQ-ACK信息。网络设备可以通过DCI指示或者RRC配置信息或者MAC CE指示终端发送HARQ-ACK信息所在的时频资源,据此可确定J1个第三时频资源。
上述5中可能的实现方式A1、A2、A3、A4和A5也可以适用于第三时频资源的这种情况,详细内容可以参看上述可能的实现方式A1、A2、A3、A4和A5,此处不再赘述。
在步骤620中,终端从多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集。
其中,HARQ-ACK码本可以是动态码本,也可以是半静态码本,本申请实施例中不作限定。
终端可以根据HARQ-ACK码本的载荷大小确定HARQ-ACK码本的载荷大小属于哪个HARQ-ACK码本的大小范围内,进而从这多个PUCCH资源集中确定出与这个HARQ-ACK码本的载荷大小范围对应的第一PUCCH资源集和第二PUCCH资源集。
在步骤630中,终端从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集。
终端在确定出HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集后,终端可以从这两个PUCCH资源集中确定出一个目标PUCCH资源集,以用于后续进一步确定出可以用于发送该HARQ-ACK码本的PUCCH资源。
下文示例性地示出了从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集的几种可能的实现方式。
在一种可能的实现方式B1中,在所述N1个第二时频资源上,终端将第一PUCCH资源集确定为目标PUCCH资源集。
结合目前已知的技术,网络设备进行资源调度,网络设备和终端知道每个子带上每个时隙上的符号类别,网络设备可以通过指示信息指示终端其每个时隙上包括的符号类别,例如,网络设备可以通过TDD-ConfigCommon及TDD-ConfigDedicated来指示终端其每个时隙上的符号类别。网络设备还可以通过DCI 2-0来指示终端其每个时隙上的符号类别。并且,终端还可以根据网络设备下发给该终端的DCI知道在哪个时隙上发送HARQ-ACK码本。
由此,利用目前已知的技术,终端便可以根据网络设备指示的信息知道需要发送HARQ-ACK码本的这个时隙上的符号类别。也即,在使用SBFD方案的情况下,终端可以知道整个CC包括的多个子带的每个子带在这个时隙上的符号类别。
当网络设备配置给终端的第一PUCCH资源集是可能的实现方式A1、A2、A3、A4和A5中的任一种时,终端在知道整个CC包括的多个子带的每个子带在这个时隙上的符号类别的情况下,可以将第一PUCCH资源集确定为目标PUCCH资源集。
一种可能的实现方式B2中,在所述N1个第二时频资源中,第二时频资源满足约束条件C1时,终端可以将第二PUCCH资源集确定为目标PUCCH资源集。
其中,约束条件C1是约束条件C的子集,约束条件C可以为:
第二时间单元对应的第二时频资源所在的子带上的符号类别为U或FD;或者,
第二时间单元对应的第二时频资源所在的子带上的符号类别为U或F;或者,
第二时间单元对应的第二时频资源所在的子带上的符号类别为F或FD;或者,
第二时间单元对应的第二时频资源所在的子带上的符号类别为U或者FD或者F,且包含U,FD和F这3种符号类别。
另外,对于在所述N1个第二时频资源中不满足约束条件C1的第二时频资源中,终端可以将第一PUCCH资源集确定为目标PUCCH资源集。
在一种可能的实现方式D1中,在所述J1个第三时频资源中,终端可以将第二PUCCH资源集确定为目标PUCCH资源集。
在一种可能的实现方式D2中,在所述J1个第三时频资源中,在满足约束条件E1时,终端可以将第一PUCCH资源集确定为目标PUCCH资源集。
其中,约束条件E1为约束条件E的子集,约束条件E可以为:
第二时间单元对应的第三时频资源所在的子带上的符号类别为F;或者,
第二时间单元对应的第三时频资源所在的子带上的符号类别为F或者DL,且包含F和FD这2种符号类别;
另外,对于在所述J1个第三时频资源中不满足约束E1的第三时频资源中,终端可以将第二PUCCH资源集确定为目标PUCCH资源集。
应理解,在上述可能的实现方式B1、B2、D1和D2中,所述第一PUCCH资源集的限定可以为实现方式A1、A2、A3、A4和A5中的任一种,对第二PUCCH资源集不作限定。
在上述这几种实现方式中,网络设备与终端可以基于相同的规则来确定目标PUCCH资源集,而无需通过额外的信令交互,便可以确定出目标PUCCH资源集。
在某些可能的实现方式中,终端可以根据网络设备的指示来确定目标PUCCH资源。
在一种可能的实现方式F1中,终端接收来自网络设备的第一指示信息,该第一指示信息包括N+J(N≥1、J≥0,N、J为整数)比特的比特位图,为了便于描述,在本申请实施例中将该N+J比特的比特位图记为第一比特位图,所述第一比特位图的N+J比特与N+J个第二时间单元对应,第一比特位图中的第n(1≤n≤N+J,n为整数)个比特位的值用于指示这N+J个第二时间单元中的第n个第二时间单元对应的第一PUCCH资源集和第二PUCCH资源集中的一个PUCCH资源集;终端根据该第二时间单元在该第一比特位图中对应的比特位的值确定目标PUCCH资源集。相应地,网络设备向终端发送该第一指示信息。
可选地,BWP中在N+J个第二时间单元对应在时频资源中可以包括至少一个第二时频资源,即N≥1。如图7所示,终端被RRC配置的时隙格式为双周期,2个周期的时长分别为5个时隙,T秒一共包括10个时隙,如图中示出的时隙1至时隙10,其中BWP中在时隙3和时隙7对应的时频资源为第二时频资源,即N=2。BWP中在时 隙4、时隙5、时隙8、时隙9和时隙10对应的时频资源为第三时频资源,即J=5。
示例性地,第一指示信息可以是RRC层信令,网络设备通过RRC层信令指示在这N+J个时间单元中的每个时间单元中分别使用第一PUCCH资源集和第二PUCCH资源集中的哪个PUCCH资源集,也即,网络设备通过RRC层信令指示在这N+J个时间单元中的每个时间单元中第一PUCCH资源集是目标PUCCH资源集,还是第二PUCCH资源集是目标PUCCH资源集。例如,N+J=7时,用“0”表示将第一PUCCH资源集作为目标PUCCH资源集,用“1”表示将第二PUCCH资源集作为目标PUCCH资源集,N+J个比特位的值为“0110111”,则表示在这7个时隙中的第1个时隙和第4个中将第一PUCCH资源集作为目标PUCCH资源集,在这7个时隙中的第2个时隙至第3个时隙以及第5个时隙至第7个时隙中将第二PUCCH资源集作为目标PUCCH资源集,结合图7,也即在时隙3和时隙7中第一PUCCH资源集为目标PUCCH资源集,在时隙4和时隙5,以及时隙8至时隙10中第二PUCCH资源集为目标PUCCH资源集。
应理解,在实际应用中也可以用“0”表示将第二PUCCH资源集作为目标PUCCH资源集,用“1”表示将第一PUCCH资源集作为目标PUCCH资源集,本申请实施例对此不做任何限定。
在一种可能的实施方式F2中,比特位图仅指示第二时频资源使用的PUCCH资源集;而第三时频资源使用的PUCCH资源集可根据可能的实现方式D1或者D2等实现,在这种实现方式中对此不做限定。
终端可以接收来自网络设备的第一指示信息,该第一指示信息包括N比特的比特位图,为了便于描述,在本申请实施例中将该N比特的比特位图记为第二比特位图,所述第二比特位图的N比特与N个第二时间单元对应,第二比特位图中的第n个比特位的值用于指示这N个第二时间单元中的第n个第二时间单元对应的第一PUCCH资源集和第二PUCCH资源集中的一个PUCCH资源集,其中,1≤n≤N,N和n为整数;终端根据该第二时间单元在该第二比特位图中对应的比特位的值确定目标PUCCH资源集,详细实现过程与可能的实现方式F1中的相关描述类似,为了简洁,此处不再赘述。相应地,网络设备向终端发送该第一指示信息。
在一种可能的实施方式F3中,比特位图仅指示第三时频资源使用的PUCCH资源集;
而第二时频资源使用的PUCCH资源集可根据可能的实现方式B1或者B2等实现,在这种实现方式中对此不做限定。
终端可以接收来自网络设备的第一指示信息,该第一指示信息包括J比特的比特位图,为了便于描述,在本申请实施例中将该J比特的比特位图记为第三比特位图,所述第三比特位图的J比特与J个第二时间单元对应,第三比特位图中的第j个比特位的值用于指示这J个第二时间单元中的第j个第二时间单元对应的第一PUCCH资源集和第二PUCCH资源集中的一个PUCCH资源集,其中,1≤j≤J,J和j为整数;终端根据该第二时间单元在该第三比特位图中对应的比特位的值确定目标PUCCH资源集,详细实现过程与可能的实现方式F1中的相关描述类似,为了简洁,此处不再赘述。相应地,网络设备向终端发送该第一指示信息。
应理解,在上述可能的实现方式F1、F2和F3中,所述第一PUCCH资源集的限定可以为实现方式A1、A2、A3、A4和A5中的任一种,对第二PUCCH资源集不作限定。为了简洁,此处不再赘述。
在一种可能的实现方式F4中,终端可以接收来自网络设备的第二指示信息,该第二指示信息包括一个PUCCH资源集的标识;终端将第一PUCCH资源集和第二PUCCH资源集中与这个标识对应的PUCCH资源集确定为目标PUCCH资源集。相应地,网络设备向终端发送第二指示信息,该第二指示信息包括一个PUCCH资源集的标识,以及网络设备将第一PUCCH资源集和第二PUCCH资源集中与所述标识对应的PUCCH资源集确定为目标PUCCH资源集。
示例性地,第二指示信息可以为DCI,网络设备可以直接通过DCI指示给终端一个PUCCH资源集的ID,终端可以直接将第一PUCCH资源集和第二PUCCH资源集中与这个ID对应的PUCCH资源集确定为目标PUCCH资源集,无需终端做额外的计算或判断,不会给终端带来额外的功率消耗。
应理解,在上述可能的实现方式F4中,所述第一PUCCH资源集的限定可以为实现方式A1、A2、A3、A4和A5中的任一种,对第二PUCCH资源集不作限定。
在一种可能的实现方式F5中,终端可以先从默认的PUCCH资源集中选择PUCCH资源,若选择的PUCCH资源无法用于发送HARQ-ACK码本,则将另外一个PUCCH资源集确定为目标PUCCH资源集。
示例性地,假设第二PUCCH资源集为默认的PUCCH资源集,终端可以结合目前已知的技术先从第二PUCCH资源集中确定一个用于发送HARQ-ACK码本的PUCCH资源,若选择的这个PUCCH资源无法用来发送HARQ-ACK码本,则可以认为这个PUCCH资源所在的符号的符号类别包括至少一个D,因此无法用来发送HARQ-ACK码本,这时,终端可以直接将第一PUCCH资源集作为目标PUCCH资源集。
应理解,在上述可能的实现方式F5中,所述第一PUCCH资源集的限定可以为实现方式A1、A2、A3、A4和A5中的任一种,对第二PUCCH资源集不作限定。
在步骤640中,终端将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源。
终端在确定出目标PUCCH资源集后,可以根据已知的技术,例如,在目标PUCCH资源集中的PUCCH资源的数目小于等于8的情况下,终端可以根据网络设备的DCI中的ARI字段来确定所述PUCCH资源集中的PUCCH资源的索引,ARI字段的值的大小和承载HARQ-ACK信息的PUCCH资源的索引大小相等;在目标PUCCH资源集中的PUCCH资源的数目大于8的情况下,终端可以根据ARI字段、承载一个PDCCH资源所在的控制资源集所包含的CCE的个数以及该PDCCH所在的CCE中第一个CCE的索引来确定所述PUCCH资源集中的PUCCH资源的索引。确定了PUCCH资源的索引,也即,确定了用于发送HARQ-ACK码本的目标PUCCH资源,本申请对此不作限定。
在步骤650中,终端在该目标PUCCH资源上发送该HARQ-ACK码本。相应地,网络设备可以在该目标PUCCH资源上接收来自该终端的HARQ-ACK码本。
终端在确定出用于发送HARQ-ACK码本的目标PUCCH资源后,便可以在这个 PUCCH资源上向网络设备发送该HARQ-ACK码本。相应地,网络设备在确定出用于接收该终端的HARQ-ACK码本的目标PUCCH资源后,便可以在该目标PUCCH资源上接收来自该终端的HARQ-ACK码本。
另一方面,由于网络设备需要预先确定在哪个PUCCH资源上接收HARQ-ACK码本,而在哪个PUCCH资源上接收HARQ-ACK码本又与HARQ-ACK码本的载荷大小相关,故网络设备在接收HARQ-ACK码本之前,可以先确定目标PUCCH资源。下面详细说明网络设备确定目标PUCCH资源的具体过程。
在步骤660中,网络设备从多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集。
一种可能的实现方式是,网络设备可以确定该终端在一定的时频域内的目标候选PDSCH接收时机,并基于这些目标候选PDSCH接收时机确定终端的HARQ-ACK码本的载荷大小。之后,网络设备可以根据终端的HARQ-ACK码本的载荷大小从配置给该中的多个PUCCH资源集中确定出与HARQ-ACK码本的载荷大小对应的一组第一PUCCH资源集和第二PUCCH资源集,进而,网络设备可以从这两个资源集中确定出一个目标PUCCH资源集,以用于后续进一步确定出可以用于接收该终端的HARQ-ACK码本的PUCCH资源。
应理解,网络设备确定目标候选PDSCH接收时机的具体方式可以与上文方法300中所述的对目标候选PDSCH接收时机的确定方式相同,也可以与已有技术中的目标候选PDSCH接收时机的确定方式相同,本申请实施例对此不作限定。
网络设备在确定了与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集后,可以继续执行步骤670,从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,进而执行步骤680,将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源。由此可以保证对HARQ-ACK码本的正确接收。
应理解,网络设备从多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集,和从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,以及将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源的具体实现方式,与前文步骤620中终端从从多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集,和步骤630中,终端从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集,以及步骤640中终端将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源的具体实现方式相似,此处不再赘述。
在SBFD方案的使用场景下,网络设备为终端配置的多个PUCCH资源集中的一些PUCCH资源集中包括至少一个不跨子带的PUCCH资源。如此以来,终端可以灵活地选择PUCCH资源来传输HARQ-ACK码本,避免因PUCCH资源全部跨子带而导致的没有PUCCH资源来传输HARQ-ACK码本的情况发生,从而可以保证HARQ-ACK码本的正常传输,保障传输可靠性。另外,终端既可以使用上行子带传输HARQ-ACK码本,也可以使用全带资源传输HARQ-ACK码本,因此有利于提高资源的利用率。
图8是本申请又一实施例提供的通信方法800的示意性流程图。如图8所示,该 方法800可以包括步骤810至步骤860,以下对方法800进行说明。
在步骤810中,网络设备为终端配置多个PUCCH资源集,该多个PUCCH资源集中的每个PUCCH资源集中包括至少一个第一PUCCH资源。
其中,所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内。并且,这多个PUCCH资源集中的每个PUCCH资源集对应一个HARQ-ACK码本的载荷大小范围。
在本方法800中的第二时频资源的定义与方法600中的第二时频资源的定义相同,即,第二时频资源在时域上对应一个时间单元,在本方法800中也将与第二时频资源对应的时间单元记为第二时间单元,该第二时间单元包括一个或多个符号。
在第二时间单元为子带U时间单元或者全带D及FD时间单元或者全带U及FD时间单元的情况下,该第二时频资源对应的频域资源包括多个子带,这多个子带是该第二时频资源上对应的频域资源上连续的不重叠的频域资源,且这多个子带在一个载波上。在本申请实施例中,该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同,也即,该第二时频资源可适用于SBFD方案。例如,图5的(b)中示出的载波6包括子带1、子带2和子带3这三个子带,载波6对应于时隙10的这一块时频资源,以及载波6对应于时隙11的这一块时频资源都可以认为是第二时频资源,时隙10和时隙11都可以是第二时间单元。在这种情况下,网络设备为终端配置的多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,在这多个PUCCH资源集中,每两个PUCCH资源集对应于一个HARQ-ACK码本的载荷大小范围,对应于一个HARQ-ACK码本的载荷大小范围的两个PUCCH资源集可以认为是一组PUCCH资源集。
同样地,RRC层配置的时隙格式为周期性的,包括单周期及双周期2种配置,可定义单周期的时长为T(T≥0)秒或者双周期的2个周期的持续时长之和为T秒,在时间T秒内,包含M(M≥1,M为整数)个第二时间单元,根据M个第二时间单元上多个子带上符号类别的配置及第二时频资源的定义,确定M个时间单元中N(N≥1,N为整数)个第二时频资源所在的第二时间单元。在所述N个第二时频资源中,有N1(N1≥1,N1为整数,N1≤N)个第二时频资源用于承载HARQ-ACK信息。网络设备可以通过DCI指示或者RRC配置信息或者MAC CE指示终端发送HARQ-ACK信息所在的时频资源,据此可以确定N1个第二时频资源。
可以理解的是,第二时间单元对应的第二时频资源满足:所述第二时频资源对应的时域为所述第二时间单元,所述第二时频资源对应的频域为终端激活的BWP所在的频域。
在一种可能的实现方式H1中,网络设备为终端配置多个PUCCH资源集中的每一个PUCCH资源集是包括至少一个第一PUCCH资源的资源集,第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带或者多个子带内,第一PUCCH资源在N1个第二时间单元中至少一个第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为U或F或FD。例如,图5的(b)中示出的在时隙10和时隙11中的PUCCH资源2是第一PUCCH资源。
需要说明的是,第一PUCCH资源在一个第二时频资源上可以称为候选第一 PUCCH资源,所述候选第一PUCCH资源满足:所述第一PUCCH资源在所述第二时频资源对应的第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为U或F或FD。此时,也可称为所述第二时频资源上有候选第一PUCCH资源。
在一种可能的实现方式H2中,网络设备为终端配置多个PUCCH资源集中的每一个PUCCH资源集中包括的PUCCH资源在所述N1个第二时频资源上均有至少一个候选第一PUCCH资源。可以理解,这种可能的方式H2是对上述可能的实现方式H1中的多个PUCCH资源集中的每一个PUCCH资源集的更进一步的限定。
在一种可能的实现方式H3中,在满足实现方式H1中对多个PUCCH资源集中的每一个PUCCH资源集的限定时,多个PUCCH资源集中的每一个PUCCH资源集中包括的PUCCH资源在所述N1个第二时频资源中的至少一个第二时频资源上均为候选第一PUCCH资源。可以理解,这种可能的方式H3是对上述可能的实现方式H1中的多个PUCCH资源集中的每一个PUCCH资源集的更进一步的限定。
在一种可能的实现方式H4中,在满足实现方式H2中对多个PUCCH资源集中的每一个PUCCH资源集的限定时,多个PUCCH资源集中的每一个PUCCH资源集中包括的PUCCH资源在所述N1个第二时频资源中的至少一个第二时频资源上均为候选第一PUCCH资源。可以理解,这种可能的方式H4是对上述可能的实现方式H2中的多个PUCCH资源集中的每个PUCCH资源集的更进一步的限定。
在一种可能的实现方式H5中,网络设备为终端配置多个PUCCH资源集中的每一个PUCCH资源集中包括的PUCCH资源在所述N1个第二时频资源中均为候选第一PUCCH资源。可以理解,这种可能的方式H5是对上述可能的实现方式H4中的多个PUCCH资源集中的每个PUCCH资源集的更进一步的限定。
此外,在本方法800中,第三时频资源在时域上也可以对应一个第二时间单元,该第三时频资源对应的频域资源包括多个子带,这多个子带是该第三时频资源上对应的频域资源上连续的不重叠的频域资源,且这多个子带在一个载波上,该第二时间单元中符号在多个子带上的符号类别相同,且在该第二时间单元中的一个或多个符号在这多个子带上的符号类别为U或者FD或者F,也即,第二时间单元还可以是全带U时隙,或者,全带F时隙,或者全带FD时隙。例如,图2的(b)中的时隙4对应载波2的这一块时频资源可以认为是第三时频资源,以及,图5的(c)中的时隙13对应的载波7的这一块时频资源可以认为是第三时频资源。又或者,第二时间单元内可以包括全带U子时隙、全带F子时隙、全带FD子时隙或全带D子时隙。应理解,子时隙比时隙的范围小,一个时隙可以包括多个子时隙。例如,一个子时隙可以包括7个符号,也即,一个时隙可以包括两个子时隙,如图5的(c)中的时隙12可以包括第一子时隙(第1个符号至第7个符号)和第二子时隙(第8个符号至第14个符号),那么,时隙12的第二子时隙对应的载波7的这一块时频资源可以认为是第三时频资源。可以理解的是,第二时间单元对应的第三时频资源满足:所述第三时频资源对应的时域为所述第二时间单元,所述第三时频资源对应的频域为终端激活的BWP所在的频域。类似地,网络设备和终端可以在所述时间T秒内确定J(J≥0,J为整数)个第三时频资源,在所述J个第三时频资源中,有J1(J1≥0,J1为整数,J1≤J)个第三时频资源用于承载HARQ-ACK信息。网络设备可以通过DCI指示或者RRC配置信息或 者MAC CE指示终端发送HARQ-ACK信息所在的时频资源,据此可确定J1个第三时频资源。上述5中可能的实现方式H1、H2、H3、H4和H5也可以适用于第三时频资源的这种情况,详细内容可以参看上述可能的实现方式H1、H2、H3、H4和H5,此处不再赘述。
在步骤820中,终端从这多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集,以及在步骤850中,网络设备从这多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集。该HARQ-ACK码本由终端生成。
在步骤830中,终端将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源,以及在步骤860中,网络设备将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源。
在步骤840中,终端在该目标PUCCH资源上向网络设备发送该HARQ-ACK码本。相应地,网络设备在该目标PUCCH资源上接收来自该终端的HARQ-ACK码本。
上述步骤820至步骤860的实现过程可以参照已知的技术。例如,网络设备和终端可以根据HARQ-ACK码本的载荷大小在这多个PUCCH资源集中确定出一个目标PUCCH资源集,这个目标PUCCH资源集与一个HARQ-ACK码本的载荷大小的范围对应,HARQ-ACK码本的载荷大小就在这个范围内。通过DCI指示或者RRC层配置的信息,终端可以从目标PUCCH资源集中确定出用于发送HARQ-ACK码本的PUCCH资源。例如,第二时间单元为子带U时隙,则网路设备和终端可以将一个或多个第一PUCCH资源中的一个确定为目标PUCCH资源。本申请对此不再详细赘述。
应理解,本申请并不限定步骤850和步骤860与步骤820和步骤830的执行先后顺序。也就是说,在步骤840之前,终端已经执行了步骤820和步骤830,并且网络设备已经执行了步骤850和步骤860。
基于上述方案,在子带全双工的场景下,只需要限制网络设备配置给终端的每个PUCCH资源集中包括至少一个第一PUCCH资源,不需要对终端的行为做较大的改变,便可以避免因为终端配置的资源集中的全部PUCCH资源位于至少两个符号类别不同的子带上,而导致无法使用这些PUCCH资源接发送和收HARQ-ACK码本的问题,实现方式简单。
为了便于下文描述,可以将上文所述的方法300记为第一种方法,将上文所述的方法600记为第二种方法,将上文所述的方法800记为第三种方法。接下来介绍第四种方法和第五种方法。
第四种方法,与上述方法600不同的是,在使用SBFD方案的情况下,限定网络设备为终端配置的多个PUCCH资源集中的每个PUCCH资源集包括第一PUCCH资源子集和第二PUCCH资源子集。第一PUCCH资源子集可以对应于方法600中的第一PUCCH资源集,第二PUCCH资源子集可以对应于方法600中的第二PUCCH资源集。
在这种可能的实现方式中,第二时频资源的定义与方法600中的第二时频资源的定义相同,即,第二时频资源在时域上对应一个时间单元,在这种实现方式中也将与第二时频资源对应的时间单元记为第二时间单元,该第二时间单元包括一个或多个符号。
在第二时间单元为子带U时间单元或者全带D及FD时间单元或者全带U及FD时间单元的情况下,该第二时频资源对应的频域资源包括多个子带,这多个子带是该第二时频资源上对应的频域资源上连续的不重叠的频域资源,且这多个子带在一个载波上。在本申请实施例中,该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同,也即,该第二时频资源可适用于SBFD方案。例如,图5的(b)中示出的载波6包括子带1、子带2和子带3这三个子带,载波6对应于时隙10的这一块时频资源,以及载波6对应于时隙11的这一块时频资源都可以认为是第二时频资源,时隙10和时隙11都可以是第二时间单元。在这种情况下,网络设备为终端配置的多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,在这多个PUCCH资源集中,每个PUCCH资源集对应于一个HARQ-ACK码本的载荷大小范围,也即,每个PUCCH资源集中包括的第一PUCCH资源子集和第二PUCCH资源子集对应于同一个HARQ-ACK码本的载荷大小范围。
同样地,RRC层配置的时隙格式为周期性的,包括单周期及双周期2种配置,可定义单周期的时长为T(T≥0)秒或者双周期的2个周期的持续时长之和为T秒,在时间T秒内,包含M(M≥1,M为整数)个第二时间单元,根据M个第二时间单元上多个子带上符号类别的配置及第二时频资源的定义,确定M个时间单元中N(N≥1,N为整数)个第二时频资源所在的第二时间单元。在所述N个第二时频资源中,有N1(N1≥1,N1为整数,N1≤N)个第二时频资源用于承载HARQ-ACK信息。网络设备可以通过DCI指示或者RRC配置信息或者MAC CE指示终端发送HARQ-ACK信息所在的时频资源,据此可以确定N1个第二时频资源。可以理解的是,第二时间单元对应的第二时频资源满足:所述第二时频资源对应的时域为所述第二时间单元,所述第二时频资源对应的频域为终端激活的BWP所在的频域。
在一种可能的实现方式L1中,第一PUCCH资源子集是包括至少一个第一PUCCH资源的资源集,第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带或者多个子带内,第一PUCCH资源在N1个第二时间单元中至少一个第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为U或F或FD。例如,图5的(b)中示出的在时隙10和时隙11中的PUCCH资源2是第一PUCCH资源。
需要说明的是,第一PUCCH资源在一个第二时频资源上可以称为候选第一PUCCH资源,所述候选第一PUCCH资源满足:所述第一PUCCH资源在所述第二时频资源对应的第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为U或F或FD。此时,也可称为所述第二时频资源上有候选第一PUCCH资源。
在一种可能的实现方式L2中,在所述N1个第二时频资源上均有至少一个候选第一PUCCH资源。所述至少一个候选第一PUCCH资源属于第一PUCCH资源子集。可以理解,这种可能的方式L2是对上述可能的实现方式L1中的第一PUCCH资源子集的更进一步的限定。
在一种可能的实现方式L3中,在满足实现方式L1中的第一PUCCH资源子集的限定时,第一PUCCH资源子集中包括的PUCCH资源在所述N1个第二时频资源中的至少一个第二时频资源上均为候选第一PUCCH资源。可以理解,这种可能的方式L3 是对上述可能的实现方式L1中的第一PUCCH资源子集的更进一步的限定。
在一种可能的实现方式L4中,在满足实现方式L2中的第一PUCCH资源子集的限定时,第一PUCCH资源子集中包括的PUCCH资源在所述N1个第二时频资源中的至少一个第二时频资源上均为候选第一PUCCH资源。可以理解,这种可能的方式L4是对上述可能的实现方式L2中的第一PUCCH资源子集的更进一步的限定。
在一种可能的实现方式L5中,第一PUCCH资源子集中包括的PUCCH资源在所述N1个第二时频资源中均为候选第一PUCCH资源。可以理解,这种可能的方式L5是对上述可能的实现方式L4中的第一PUCCH资源子集的更进一步的限定。
第二PUCCH资源子集可以包括第一PUCCH资源,也可以不包括第一PUCCH资源,本申请对此不作限定。
HARQ-ACK码本的载荷大小范围与第一PUCCH资源子集和第二PUCCH资源子集的对应关系,可以以表格的形式体现,也可以以其他的形式体现,本申请对此不作任何限定。
此外,在这种实现方式中,第三时频资源在时域上也可以对应一个第二时间单元,该第三时频资源对应的频域资源包括多个子带,这多个子带是该第三时频资源上对应的频域资源上连续的不重叠的频域资源,且这多个子带在一个载波上,该第二时间单元中符号在多个子带上的符号类别相同,且在该第二时间单元中的一个或多个符号在这多个子带上的符号类别为U或者FD或者F,也即,第二时间单元还可以是全带U时隙,或者,全带F时隙,或者全带FD时隙。例如,图2的(b)中的时隙4对应载波2的这一块时频资源可以认为是第三时频资源,以及,图5的(c)中的时隙13对应的载波7的这一块时频资源可以认为是第三时频资源。又或者,第二时间单元内可以包括全带U子时隙、全带F子时隙、全带FD子时隙或全带D子时隙。应理解,子时隙比时隙的范围小,一个时隙可以包括多个子时隙。例如,一个子时隙可以包括7个符号,也即,一个时隙可以包括两个子时隙,如图5的(c)中的时隙12可以包括第一子时隙(第1个符号至第7个符号)和第二子时隙(第8个符号至第14个符号),那么,时隙12的第二子时隙对应的载波7的这一块时频资源可以认为是第三时频资源。可以理解的是,第二时间单元对应的第三时频资源满足:所述第三时频资源对应的时域为所述第二时间单元,所述第三时频资源对应的频域为终端激活的BWP所在的频域。
类似地,网络设备和终端可以在所述时间T秒内确定J(J≥0,J为整数)个第三时频资源,在所述J个第三时频资源中,有J1(J1≥0,J1为整数,J1≤J)个第三时频资源用于承载HARQ-ACK信息。网络设备可以通过DCI指示或者RRC配置信息或者MAC CE指示终端发送HARQ-ACK信息所在的时频资源,据此可确定J1个第三时频资源。
上述5中可能的实现方式L1、L2、L3、L4和L5也可以适用于第三时频资源的这种情况,详细内容可以参看上述可能的实现方式L1、L2、L3、L4和L5,此处不再赘述。
在这种可能的实现方式中,终端和网络设备从第一PUCCH资源子集和第二PUCCH资源子集中确定目标PUCCH资源子集也有多种可选的实现方式。
终端在确定出HARQ-ACK码本的载荷大小对应的第一PUCCH资源子集和第二PUCCH资源集子后,终端可以从这两个PUCCH资源子集中确定出一个目标PUCCH资源子集,以用于后续进一步确定出可以用于发送该HARQ-ACK码本的PUCCH资源。
下文示例性地示出了从第一PUCCH资源子集和第二PUCCH资源子集中确定目标PUCCH资源子集的几种可能的实现方式。
在一种可能的实现方式O1中,在所述N1个第二时频资源上,终端将第一PUCCH资源子集确定为目标PUCCH资源子集。
结合目前已知的技术,网络设备进行资源调度,网络设备和终端知道每个子带上每个时隙上的符号类别,网络设备可以通过指示信息指示终端其每个时隙上包括的符号类别,例如,网络设备可以通过TDD-ConfigCommon及TDD-ConfigDedicated来指示终端其每个时隙上的符号类别。网络设备还可以通过DCI 2-0来指示终端其每个时隙上的符号类别。并且,终端还可以根据网络设备下发给该终端的DCI知道在哪个时隙上发送HARQ-ACK码本。
由此,利用目前已知的技术,终端便可以根据网络设备指示的信息知道需要发送HARQ-ACK码本的这个时隙上的符号类别。也即,在使用SBFD方案的情况下,终端可以知道整个CC包括的多个子带的每个子带在这个时隙上的符号类别。
一种可能的实现方式O2中,在所述N1个第二时频资源中,第二时频资源满足约束条件C1时,终端可以将第二PUCCH资源子集确定为目标PUCCH资源子集。其中,约束条件C1为约束条件C的子集,关于约束条件C的定义可以参看方法600中的相关描述,为了简洁,此处不再赘述。
另外,对于在所述N1个第二时频资源中不满足约束条件C1的第二时频资源中,终端可以将第一PUCCH资源子集确定为目标PUCCH资源子集。
在一种可能的实现方式O3中,在所述J1个第三时频资源中,终端可以将第二PUCCH资源子集确定为目标PUCCH资源子集。
在一种可能的实现方式O4中,在所述J1个第三时频资源中,在满足约束条件E1时,终端可以将第一PUCCH资源子集确定为目标PUCCH资源子集。其中,约束条件E1为约束条件E的子集,关于约束条件E的定义可以参看方法600中的相关描述,为了简洁,此处不再赘述。
另外,对于在所述J1个第三时频资源中不满足约束E1的第三时频资源中,终端可以将第二PUCCH资源子集确定为目标PUCCH资源子集。
应理解,在上述可能的实现方式O1、O2、O3和O4中,所述第一PUCCH资源子集的限定可以为实现方式L1、L2、L3、L4和L5中的任一种,对第二PUCCH资源子集不作限定。
在上述这几种实现方式中,网络设备与终端可以基于相同的规则来确定目标PUCCH资源子集,而无需通过额外的信令交互,便可以确定出目标PUCCH资源子集。
在某些可能的实现方式中,终端可以根据网络设备的指示来确定目标PUCCH资源。
在一种可能的实现方式O5中,终端接收来自网络设备的第一指示信息,该第一指示信息包括N+J(N≥1,J≥0,N、J为整数)比特的比特位图,为了便于描述,在 本申请实施例中将该N+J比特的比特位图记为第一比特位图,所述第一比特位图的N+J比特与N+J个第二时间单元对应,第一比特位图中的第n(1≤n≤N+J,n为整数)个比特位的值用于指示这N+J个第二时间单元中的第n个第二时间单元对应的第一PUCCH资源子集和第二PUCCH资源子集中的一个PUCCH资源子集;终端根据该第二时间单元在该第一比特位图中对应的比特位的值确定目标PUCCH资源子集。相应地,网络设备向终端发送该第一指示信息。
可选地,BWP中在N+J个第二时间单元对应在时频资源中可以包括至少一个第二时频资源,即N≥1。如图7所示,终端被RRC配置的时隙格式为双周期,2个周期的时长分别为5个时隙,T秒一共包括10个时隙,如图中示出的时隙1至时隙10,其中BWP中在时隙3和时隙7对应的时频资源为第二时频资源,即N=2。BWP中在时隙4、时隙5、时隙8、时隙9和时隙10对应的时频资源为第三时频资源,即J=5。
示例性地,第一指示信息可以是RRC层信令,网络设备通过RRC层信令指示在这N+J个时间单元中的每个时间单元中分别使用第一PUCCH资源子集和第二PUCCH资源子集中的哪个PUCCH资源子集,也即,网络设备通过RRC层信令指示在这N+J个时间单元中的每个时间单元中第一PUCCH资源子集是目标PUCCH资源子集,还是第二PUCCH资源子集是目标PUCCH资源子集。例如,N+J=7时,用“0”表示将第一PUCCH资源子集作为目标PUCCH资源子集,用“1”表示将第二PUCCH资源子集作为目标PUCCH资源子集,N+J个比特位的值为“0110111”,则表示在这7个时隙中的第1个时隙和第4个中将第一PUCCH资源子集作为目标PUCCH资源子集,在这7个时隙中的第2个时隙至第3个时隙以及第5个时隙至第7个时隙中将第二PUCCH资源子集作为目标PUCCH资源子集,结合图7,也即在时隙3和时隙7中第一PUCCH资源子集为目标PUCCH资源子集,在时隙4和时隙5,以及时隙8至时隙10中第二PUCCH资源子集为目标PUCCH资源子集。
应理解,在实际应用中也可以用“0”表示将第二PUCCH资源子集作为目标PUCCH资源子集,用“1”表示将第一PUCCH资源子集作为目标PUCCH资源子集,本申请实施例对此不做任何限定。
在一种可能的实施方式O6中,比特位图仅指示第二时频资源使用的PUCCH资源子集;而第三时频资源使用的PUCCH资源子集可根据可能的实现方式O3或者O4等实现,在这种实现方式中对此不做限定。
终端可以接收来自网络设备的第一指示信息,该第一指示信息包括N比特的比特位图,为了便于描述,在本申请实施例中将该N比特的比特位图记为第二比特位图,所述第二比特位图的N比特与N个第二时间单元对应,第二比特位图中的第n个比特位的值用于指示这N个第二时间单元中的第n个第二时间单元对应的第一PUCCH资源子集和第二PUCCH资源子集中的一个PUCCH资源子集,其中,1≤n≤N,N和n为整数;终端根据该第二时间单元在该第二比特位图中对应的比特位的值确定目标PUCCH资源子集,详细实现过程与可能的实现方式O5中的相关描述类似,为了简洁,此处不再赘述。相应地,网络设备向终端发送该第一指示信息。
在一种可能的实施方式O7中,比特位图仅指示第三时频资源使用的PUCCH资源子集;
而第二时频资源使用的PUCCH资源子集可根据可能的实现方式O1或者O2等实现,在这种实现方式中对此不做限定。
终端可以接收来自网络设备的第一指示信息,该第一指示信息包括J比特的比特位图,为了便于描述,在本申请实施例中将该J比特的比特位图记为第三比特位图,所述第三比特位图的J比特与J个第二时间单元对应,第三比特位图中的第j个比特位的值用于指示这J个第二时间单元中的第j个第二时间单元对应的第一PUCCH资源子集和第二PUCCH资源子集中的一个PUCCH资源子集,其中,1≤j≤J,J和j为整数;终端根据该第二时间单元在该第三比特位图中对应的比特位的值确定目标PUCCH资源子集,详细实现过程与可能的实现方式O5中的相关描述类似,为了简洁,此处不再赘述。相应地,网络设备向终端发送该第一指示信息。
应理解,在上述可能的实现方式O5、O6和O7中,所述第一PUCCH资源子集的限定可以为实现方式L1、L2、L3、L4和L5中的任一种,对第二PUCCH资源子集不作限定。为了简洁,此处不再赘述。
在一种可能的实现方式O8中,终端可以接收来自网络设备的第二指示信息,该第二指示信息包括一个PUCCH资源子集的标识;终端将第一PUCCH资源子集和第二PUCCH资源子集中与这个标识对应的PUCCH资源子集确定为目标PUCCH资源子集。相应地,网络设备向终端发送第二指示信息,该第二指示信息包括一个PUCCH资源子集的标识,以及网络设备将第一PUCCH资源子集和第二PUCCH资源子集中与所述标识对应的PUCCH资源集确定为目标PUCCH资源子集。
示例性地,第二指示信息可以为DCI,网络设备可以直接通过DCI指示给终端一个PUCCH资源子集的ID,终端可以直接将第一PUCCH资源子集和第二PUCCH资源子集中与这个ID对应的PUCCH资源子集确定为目标PUCCH资源子集,无需终端做额外的计算或判断,不会给终端带来额外的功率消耗。
应理解,在上述可能的实现方式O8中,所述第一PUCCH资源子集的限定可以为实现方式L1、L2、L3、L4和L5中的任一种,对第二PUCCH资源子集不作限定。
在一种可能的实现方式O9中,终端可以先从默认的PUCCH资源子集中选择PUCCH资源,若选择的PUCCH资源无法用于发送HARQ-ACK码本,则将另外一个PUCCH资源子集确定为目标PUCCH资源子集。
示例性地,假设第二PUCCH资源子集为默认的PUCCH资源子集,终端可以结合目前已知的技术先从第二PUCCH资源子集中确定一个用于发送HARQ-ACK码本的PUCCH资源,若选择的这个PUCCH资源无法用来发送HARQ-ACK码本,则可以认为这个PUCCH资源所在的符号的符号类别包括至少一个D,因此无法用来发送HARQ-ACK码本,这时,终端可以直接将第一PUCCH资源子集作为目标PUCCH资源子集。
终端和网络设备确定出目标PUCCH资源子集后,可以根据已知的技术,从目标PUCCH资源子集中确定出一个用于发送HARQ-ACK码本的目标PUCCH资源。为了简洁此处不再赘述。
应理解,在上述可能的实现方式O9中,所述第一PUCCH资源子集的限定可以为实现方式L1、L2、L3、L4和L5中的任一种,对第二PUCCH资源子集不作限定。
第五种方法,与上述方法600不同的是,网络设备可以按照目前已知的方案(一个HARQ-ACK码本的载荷大小的范围对应一个PUCCH资源集)为终端配置PUCCH资源集,并通过DCI或者RRC层信令向终端指示一个目标PUCCH资源。终端也根据目前已知的方案确定目标PUCCH资源集和目标PUCCH资源,当终端最终确定出的目标PUCCH资源无法用来发送HARQ-ACK码本时,终端可以将确定出的目标PUCCH资源在第二时间单元内通过平移使其可用于发送HARQ-ACK码本。
可选地,将目标PUCCH资源从其所在的时间单元内的符号索引最小的符号开始,向符号索引最大的符号的方向依次平移,在每个符号上尝试是否可以使用该目标PUCCH发送HARQ-ACK码本,并且,在每个符号上尝试时,从目标PUCCH资源的起始资源块索引最小的位置开始。
如图9所示,假如第二时间单元包含7个符号,符号索引分别为0至6,未平移前指示的这个目标PUCCH资源无法用于发送HARQ-ACK码本。先平移至符号0并在符号0上由下而上平移尝试,无法用于发送HARQ-ACK码本,再平移至符号1上尝试,仍无法用于发送HARQ-ACK码本,再平移至符号2上尝试,此时可用于发送HARQ-ACK码本。
应理解,图9只是一示例,不应对本申请产生任何限定。
本申请实施例提出了多种通信方法,例如方法300、方法600和方法800,以及第四种方法和第五种方法等。其中,方法300、方法600和方法800,以及第四种方法和第五种方法等可以分别单独使用,也可以结合使用,例如,方法300可以与方法600结合使用,在方法300中确定出HARQ-ACK码本后,可以根据方法600中根据HARQ-ACK码本的载荷大小确定目标资源集和确定目标资源;又例如,方法300可以与方法800结合使用,在方法300中确定出HARQ-ACK码本后,可以根据方法800中根据HARQ-ACK码本的载荷大小确定目标资源集和确定目标资源。本申请对此不作限定。
图10是本申请实施例提供的通信装置的示意性框图。如图10所示,该通信装置1000可以包括:处理模块1010和收发模块1020。该通信装置1000可以用于执行本申请实施例中提出的通信方法中终端或网络设备的执行步骤。
示例性地,当该通信装置1000用于执行通信方法300中终端的执行步骤时,其中,处理模块1010可以用于从第一时频资源中确定目标候选PDSCH接收时机,所述目标候选PDSCH接收时机包含至少一个符号,所述目标候选PDSCH接收时机用于接收PDSCH,所述第一时频资源在时域上对应第一时间单元,所述第一时间单元包括一个或多个符号,所述第一时频资源对应的频域资源包括多个子带,所述多个子带为所述第一时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第一时间单元中的一个或多个符号在所述多个子带上的符号类别不同,所述目标候选PDSCH接收时机中包含的每个符号满足:在所述多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工,或者,在所述多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;处理模块1010还可以用于基于多个所述目标候选PDSCH接收时机确定HARQ-ACK码本;收发模块1020可以用于发送所述HARQ-ACK码本。
可选地,第一子带是所述多个子带中优先级最高的子带。
可选地,第一子带是所述多个子带中网络设备指定的子带。
示例性地,当该通信装置1000用于执行通信方法300中网络设备的执行步骤时,其中,处理模块1010可以用于从配置给终端的第一时频资源中确定目标候选PDSCH接收时机,所述目标候选PDSCH接收时机包含至少一个符号,所述目标候选PDSCH接收时机用于所述终端接收PDSCH,所述第一时频资源在时域上对应第一时间单元,所述第一时间单元包括一个或多个符号,所述第一时频资源对应的频域资源包括多个子带,所述多个子带为所述第一时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第一时间单元中的一个或多个符号在所述多个子带上的符号类别不同,所述目标候选PDSCH接收时机中包含的每个符号满足:在所述多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工,或者,在所述多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;处理模块1010还可以用于基于所述终端的多个所述目标候选PDSCH接收时机确定所述终端的HARQ-ACK码本的载荷大小;收发模块1020可以用于基于所述HARQ-ACK码本的载荷大小接收来自所述终端的所述HARQ-ACK码本。
可选地,第一子带是所述多个子带中优先级最高的子带。
可选地,第一子带是所述多个子带中网络设备指定的子带。
示例性地,当该通信装置1000用于执行通信方法600中终端的执行步骤时,其中,处理模块1010可以用于从多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一个或多个符号,所述第二时频资源对应的频域资源包括多个子带,所述多个子带为所述第二时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第二时间单元中的一个或多个符号在所述多个子带上的符号类别不同;所述第一PUCCH资源集包括至少一个第一PUCCH资源,所述第一PUCCH资源满足:所述第一PUCCH资源的频域资源位于所述多个子带中的一个子带内,所述第一PUCCH资源在所述第二时间单元内对应的时域资源在所述第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;处理模块1010还可以用于从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集;以及,将所述目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;收发模块1020可以用于在所述目标PUCCH资源上发送所述HARQ-ACK码本。
可选地,所述第一PUCCH资源集中包括的资源均为第一PUCCH资源;以及处理模块1010可以用于将所述第一PUCCH资源集确定为目标PUCCH资源集。
可选地,收发模块1020可以用于接收来自网络设备的第一指示信息,所述第一指示信息包括N比特的位图,所述N比特与N个时间单元对应,所述位图中的第n个比特位的值用于指示所述N个时间单元中的第n个时间单元对应的所述第一PUCCH资源集和所述第二PUCCH资源集中的一个PUCCH资源集,其中,1≤n≤N,N和n为整数;处理模块1010可以用于根据所述第二时间单元在所述位图中对应的比特位的 值确定目标PUCCH资源集。
可选地,收发模块1020可以用于接收来自网络设备的第二指示信息,所述第二指示信息包括一个PUCCH资源集的标识;处理模块1010可以用于将所述第一PUCCH资源集和所述第二PUCCH资源集中与所述标识对应的PUCCH资源集确定为目标PUCCH资源集。
示例性地,当该通信装置1000用于执行通信方法600中网络设备的执行步骤时,其中,处理模块1010可以用于为终端配置多个PUCCH资源集,所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一个或多个符号,所述第二时频资源对应的频域资源包括多个子带,所述多个子带为所述第二时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第二时间单元中的一个或多个符号在所述多个子带上的符号类别不同;处理模块1010还可以用于从所述多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集,所述第一PUCCH资源集是包括至少一个第一PUCCH资源的资源集,所述第一PUCCH资源满足:所述第一PUCCH资源的频域资源位于所述多个子带中的一个子带内,所述第一PUCCH资源在所述第二时间单元内对应的时域资源在所述第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工,所述HARQ-ACK码本由所述终端生成;以及,从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集,并将所述目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;收发模块1020可以用于在所述目标PUCCH资源上接收所述HARQ-ACK码本。
可选地,所述第一PUCCH资源集中包括的资源均为第一PUCCH资源;以及处理模块1010可以用于将所述第一PUCCH资源集确定为目标PUCCH资源集。
可选地,收发模块1020可以用于向终端发送第一指示信息,所述第一指示信息包括N比特的位图,所述N比特与N个时间单元对应,所述位图中的第n个比特位的值用于指示所述N个时间单元中的第n个时间单元对应的所述第一PUCCH资源集和所述第二PUCCH资源集中的一个PUCCH资源集,其中,1≤n≤N,N和n为整数;处理模块1010可以用于根据所述第二时间单元在所述位图中对应的比特位的值确定目标PUCCH资源集。
可选地,收发模块1020可以用于向终端发送第二指示信息,所述第二指示信息包括一个PUCCH资源集的标识;处理模块1010可以用于将所述第一PUCCH资源集和所述第二PUCCH资源集中与所述标识对应的PUCCH资源集确定为目标PUCCH资源集。
示例性地,当该通信装置1000用于执行通信方法800中终端的执行步骤时,其中,处理模块1010可以用于从网络设备配置的多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集,所述HARQ-ACK码本由所述终端生成,所述多个PUCCH资源集中的每个PUCCH资源集包括至少一个第一PUCCH资源;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第 二时间单元,所述第二时间单元包括一个或多个符号,所述第二时频资源对应的频域资源包括多个子带,所述多个子带为所述第二时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第二时间单元中的一个或多个符号在所述多个子带上的符号类别不同;所述第一PUCCH资源满足:所述第一PUCCH资源的频域资源位于所述多个子带中的一个子带内,所述第一PUCCH资源在所述第二时间单元内对应的时域资源在所述第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;处理模块1010还可以用于将所述目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;收发模块1020可以用于在所述目标PUCCH资源上发送所述HARQ-ACK码本。
示例性地,当该通信装置1000用于执行通信方法800中网络设备的执行步骤时,其中,处理模块1010可以用于为终端配置多个PUCCH资源集,所述多个PUCCH资源集中的每个PUCCH资源集包括至少一个第一PUCCH资源;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一个或多个符号,所述第二时频资源对应的频域资源包括多个子带,所述多个子带为所述第二时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第二时间单元中的一个或多个符号在所述多个子带上的符号类别不同;所述第一PUCCH资源满足:所述第一PUCCH资源的频域资源位于所述多个子带中的一个子带内,所述第一PUCCH资源在所述第二时间单元内对应的时域资源在所述第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;处理模块1010还可以用于从所述多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集,所述HARQ-ACK码本由所述终端生成;以及,将所述目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;收发模块1020可以用于在所述目标PUCCH资源上接收所述HARQ-ACK码本。
图11是本申请实施例提供的通信装置的另一示意性框图。该通信装置1100可用于实现上述方法中终端或网络设备的功能。该通信装置1100可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图11所示,该通信装置1100可以包括至少一个处理器1110,用于实现本申请实施例提供的方法中终端或网络设备的功能。
例如,当该通信装置1100用于实现本申请实施例提供的方法300中终端的功能时,处理器1110可用于从第一时频资源中确定目标候选PDSCH接收时机,目标候选PDSCH接收时机包含至少一个符号,目标候选PDSCH接收时机用于接收PDSCH,第一时频资源在时域上对应第一时间单元,该第一时间单元包括一个或多个符号,该第一时频资源对应的频域资源包括多个子带,这多个子带为该第一时频资源上对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第一时间单元中的一个或多个符号在这多个子带上的符号类别不同,目标候选PDSCH接收时机中包含的每个符号满足:在这多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工,或者,在这多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;基于多个目标候选PDSCH接收时机HARQ-ACK码本;发送HARQ-ACK码本。 具体参见方法示例中的详细描述,此处不做赘述。
例如,当该通信装置1100用于实现本申请实施例提供的方法300中网络设备的功能时,处理器1110可用于从配置给终端的第一时频资源中确定目标候选PDSCH接收时机,目标候选PDSCH接收时机包含至少一个符号,目标候选PDSCH接收时机用于该终端接收PDSCH,该第一时频资源在时域上对应第一时间单元,该第一时间单元包括一个或多个符号,该第一时频资源对应的频域资源包括多个子带,这多个子带为该第一时频资源上对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第一时间单元中的一个或多个符号在这多个子带上的符号类别不同,目标候选PDSCH接收时机中包含的每个符号满足:在这多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工,或者,在这多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;基于该终端的多个所述目标候选PDSCH接收时机确定该终端的HARQ-ACK码本的载荷大小;基于HARQ-ACK码本的载荷大小接收来自该终端的这个HARQ-ACK码本。具体参见方法示例中的详细描述,此处不做赘述。
例如,当该通信装置1100用于实现本申请实施例提供的方法600中终端的功能时,处理器1110可用于从网络设备配置的多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集;这多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,该第二时频资源在时域上对应第二时间单元,该第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同;第一PUCCH资源集是包括至少一个第一PUCCH资源的资源集,第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带内,第一PUCCH资源在该第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;从第一PUCCH资源集和第二PUCCH资源集中确定目标PUCCH资源集;将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;在该目标PUCCH资源上发送该HARQ-ACK码本。具体参见方法示例中的详细描述,此处不做赘述。
例如,当该通信装置1100用于实现本申请实施例提供的方法600中网络设备的功能时,处理器1110可用于为终端配置多个PUCCH资源集,这多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同;网络设备从这多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集,第一PUCCH资源集是包括至少一个第一PUCCH资源的资源集,第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带内,第一PUCCH资源在该第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工,该HARQ-ACK码本由终端生成;从这个第一 PUCCH资源集和这个第二PUCCH资源集中确定目标PUCCH资源集;将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;在该目标PUCCH资源上接收该HARQ-ACK码本。具体参见方法示例中的详细描述,此处不做赘述。
例如,当该通信装置1100用于实现本申请实施例提供的方法800中终端的功能时,处理器1110可用于从网络设备配置的多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的目标PUCCH资源集,所述多个PUCCH资源集中的每个PUCCH资源集包括至少一个第一PUCCH资源;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,该第二时频资源在时域上对应第二时间单元,该第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同;第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带内,第一PUCCH资源在该第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;从这多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集,该HARQ-ACK码本由终端生成;将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;在该目标PUCCH资源上发送该HARQ-ACK码本。具体参见方法示例中的详细描述,此处不做赘述。
例如,当该通信装置1100用于实现本申请实施例提供的方法800中网络设备的功能时,处理器1110可用于为终端配置多个PUCCH资源集,所述多个PUCCH资源集中的每个PUCCH资源集包括至少一个第一PUCCH资源;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,该第二时频资源在时域上对应第二时间单元,该第二时间单元包括一个或多个符号,该第二时频资源对应的频域资源包括多个子带,这多个子带为该第二时频资源对应的频域资源上连续的不重叠的频域资源,这多个子带在一个载波上,且该第二时间单元中的一个或多个符号在这多个子带上的符号类别不同;第一PUCCH资源满足:第一PUCCH资源的频域资源位于这多个子带中的一个子带内,第一PUCCH资源在该第二时间单元内对应的时域资源在第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;从这多个PUCCH资源集中确定与HARQ-ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集,该HARQ-ACK码本由终端生成;将目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;在该目标PUCCH资源上接收该HARQ-ACK码本。具体参见方法示例中的详细描述,此处不做赘述。
该通信装置1100还可以包括至少一个存储器1120,用于存储程序指令和/或数据。存储器1120和处理器1110耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1110可能和存储器1120协同操作。处理器1110可能执行存储器1120中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
该通信装置1100还可以包括通信接口1130,用于通过传输介质和其它设备进行通信,从而用于通信装置1100中的装置可以和其它设备进行通信。示例性地,当该通 信装置1100用于实现本申请实施例提供的方法中网络设备的功能时,该其他设备可以是终端;当该通信装置1100用于实现本申请实施例提供的方法中终端的功能时,该其他设备可以是网络设备。所述通信接口1130例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器1110可利用通信接口1130收发数据和/或信息,并用于实现图3或图6或图8中对应的实施例中所述的网络设备或终端所执行的方法。
本申请实施例中不限定上述处理器1110、存储器1120以及通信接口1130之间的具体连接介质。本申请实施例在图11中以处理器1110、存储器1120以及通信接口1130之间通过总线1140连接。总线1140在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图12是本申请实施例提供的终端的结构示意图。该终端1200具有图3、图6或图8中所示的终端的功能,该终端1200可应用于如图1所示的通信系统100中。如图12所示,该终端1200包括处理器1201和收发器1202。可选地,该终端1200还包括存储器1203。其中,处理器1201、收发器1202和存储器1203之间可以通过内部连接通路互相通信,传输控制和/或数据信号,该存储器1203用于存储计算机程序,该处理器1201用于从该存储器1203中调用并运行该计算机程序,以控制该收发器1202收发信号。可选地,终端1200还可以包括天线1204,用于将收发器1202输出的上行数据或上行控制信令通过无线信号发送出去。可选地,该终端1200还包括无线保真(wireless fidelity,Wi-Fi)模块1211,用于接入无线网络中。
上述处理器1201可以和存储器1203可以合成一个处理装置,处理器1201用于执行存储器1203中存储的程序代码来实现上述功能。具体实现时,该存储器1203也可以集成在处理器1201中,或者独立于处理器1201。该处理器1201可以与图10中的处理模块1010或图11中的处理器1110对应。
上述收发器1202可以与图10中的收发模块1020或图11中的通信接口1130对应。收发器1202可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
可选地,上述终端1200还可以包括电源1205,用于给终端1200中的各种器件或电路提供电源。
除此之外,为了使得该终端设备设备的功能更加完善,该终端1200还可以包括输入单元1206、显示单元1207、音频电路1208、摄像头1209和传感器1210等中的一个或多个,所述音频电路还可以包括扬声器1208a、麦克风1208b等。
应理解,图12所示的终端1200能够实现图3、图6或者图8所示方法实施例中涉及终端的各个过程。终端1200中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
当终端1200用于执行上文方法实施例中涉及终端的操作流程时,处理器1201可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器1202可以用于执行前面方法实施例中描述的终端向网络设备发送或从网络设备接收的动作。具体请 见前面方法实施例中的描述,此处不再赘述。
图13是本申请实施例提供的基站的结构示意图。该基站1300具有图3、图6或者图8所示的网络设备的功能,该基站1300可应用于如图1所示的通信系统100中。如图13所示,该基站1300可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1310和一个或多个基带单元(BBU)(也可称为分布式单元(distributed unit,DU))1320。所述RRU 1310可以称为收发单元,可以与图10中的收发模块1020或图11中的通信接口1130对应。可选地,该RRU 1310还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1311和射频单元1312。可选地,RRU 1310可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 1310部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如,用于执行上述方法实施例中关于网络设备的操作流程,如,向终端发送第一指示信息、第二指示信息等。所述BBU 1320部分主要用于进行基带处理,对基站进行控制等。所述RRU 1310与BBU 1320可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1320为基站的控制中心,也可以称为处理单元,可以与图10中的处理模块1010或图11中的处理器1110对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述第一信息、第三信息或第四信息等。或,所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1320可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1320还包括存储器1321和处理器1322。所述存储器1321用以存储必要的指令和数据。所述处理器1322用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1321和处理器1322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图13所示的基站1300能够实现图3、图6或者图8所示方法实施例中涉及网络设备的各个过程。基站1300中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
当基站1300用于执行上文方法实施例中涉及网络设备的操作流程时,BBU 1320可以用于执行由网络设备内部实现的动作,而RRU 1310可以用于执行网络设备发送、接收等动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图13所示出的基站1300仅为接入网设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括有源天线单元(active antenna unit,AAU),还可以包括集中单元(centralized,CU)和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU。 本申请对于网络设备的具体形态不做限定。
本申请还提供了一种芯片系统,所述芯片系统包括至少一个处理器,用于实现上述图3、图6或者图8所示实施例中网络设备或终端执行的方法中所涉及的功能,例如,接收或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请还提供了一种通信系统,包括前述的网络设备和终端。
本申请还提供了一种计算机可读存储介质,所述计算机存储介质上存储有计算机程序(也可以称为代码,或指令),当所述计算机程序在被处理器运行时,使得上述图3、图6或者图8所示实施例中网络设备或终端执行的方法被执行。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行图3、图6或者图8所示实施例中网络设备或终端执行的方法。
本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。通过举例说明但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或 者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端从第一时频资源中确定目标候选物理下行共享信道PDSCH接收时机,所述目标候选PDSCH接收时机包含至少一个符号,所述目标候选PDSCH接收时机用于接收PDSCH,所述第一时频资源在时域上对应第一时间单元,所述第一时间单元包括一个或多个符号,所述第一时频资源对应的频域资源包括多个子带,所述多个子带为所述第一时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第一时间单元中的一个或多个符号在所述多个子带上的符号类别不同,所述目标候选PDSCH接收时机中包含的每个符号满足:在所述多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工,或者,在所述多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;
    所述终端基于多个所述目标候选PDSCH接收时机确定混合自动重传请求HARQ-确定应答ACK码本;
    所述终端发送所述HARQ-ACK码本。
  2. 如权利要求1所述的方法,其特征在于,所述第一子带是所述多个子带中优先级最高的子带。
  3. 如权利要求1所述的方法,其特征在于,所述第一子带是所述多个子带中网络设备指定的子带。
  4. 一种通信方法,其特征在于,所述方法包括:
    终端从多个物理上行控制信道PUCCH资源集中确定与第一混合自动重传请求HARQ-确定应答ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一个或多个符号,所述第二时频资源对应的频域资源包括多个子带,所述多个子带为所述第二时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第二时间单元中的一个或多个符号在所述多个子带上的符号类别不同;所述第一PUCCH资源集包括至少一个第一PUCCH资源,所述第一PUCCH资源满足:所述第一PUCCH资源的频域资源位于所述多个子带中的一个子带内,所述第一PUCCH资源在所述第二时间单元内对应的时域资源在所述第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;
    所述终端从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集类别;
    所述终端将所述目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;
    所述终端在所述目标PUCCH资源上发送所述HARQ-ACK码本。
  5. 如权利要求4所述的方法,其特征在于,所述第一PUCCH资源集中包括的资源均为第一PUCCH资源;以及
    所述终端从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集,包括:
    所述终端将所述第一PUCCH资源集确定为目标PUCCH资源集。
  6. 如权利要求4所述的方法,其特征在于,所述终端从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集,包括:
    所述终端接收来自网络设备的第一指示信息,所述第一指示信息包括N比特的位图,所述N比特与N个时间单元对应,所述位图中的第n个比特位的值用于指示所述N个时间单元中的第n个时间单元对应的所述第一PUCCH资源集和所述第二PUCCH资源集中的一个PUCCH资源集,其中,1≤n≤N,N和n为整数;
    所述终端根据所述第二时间单元在所述位图中对应的比特位的值确定目标PUCCH资源集。
  7. 如权利要求4所述的方法,其特征在于,所述终端从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集,包括:
    所述终端接收来自网络设备的第二指示信息,所述第二指示信息包括一个PUCCH资源集的标识;
    所述终端将所述第一PUCCH资源集和所述第二PUCCH资源集中与所述标识对应的PUCCH资源集确定为目标PUCCH资源集。
  8. 一种通信方法,其特征在于,所述方法包括:
    网络设备从配置给终端的第一时频资源中确定目标候选物理下行共享信道PDSCH接收时机,所述目标候选PDSCH接收时机包含至少一个符号,所述目标候选PDSCH接收时机用于所述终端接收PDSCH,所述第一时频资源在时域上对应第一时间单元,所述第一时间单元包括一个或多个符号,所述第一时频资源对应的频域资源包括多个子带,所述多个子带为所述第一时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第一时间单元中的一个或多个符号在所述多个子带上的符号类别不同,所述目标候选PDSCH接收时机中包含的每个符号满足:在所述多个子带中的至少一个子带上的符号类别为下行或者灵活或者全双工,或者,在所述多个子带中的第一子带上的符号类别为下行或者灵活或者全双工;
    所述网络设备基于所述终端的多个所述目标候选PDSCH接收时机确定所述终端的混合自动重传请求HARQ-确定应答ACK码本的载荷大小;
    所述网络设备基于所述HARQ-ACK码本的载荷大小接收来自所述终端的所述HARQ-ACK码本。
  9. 如权利要求8所述的方法,其特征在于,所述第一子带是所述多个子带中优先级最高的子带。
  10. 如权利要求8所述的方法,其特征在于,所述第一子带是所述多个子带中所述网络设备指定的子带。
  11. 一种通信方法,其特征在于,所述方法包括:
    网络设备为终端配置多个物理上行控制信道PUCCH资源集,所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一个或多个符号,所述第二时频资源对应的频域资源包括多个子带,所述多个子带为所述第二时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个 载波上,且所述第二时间单元中的一个或多个符号在所述多个子带上的符号类别不同;
    所述网络设备从所述多个PUCCH资源集中确定与第一混合自动重传请求HARQ-确定应答ACK码本的载荷大小对应的第一PUCCH资源集和第二PUCCH资源集,所述第一PUCCH资源集是包括至少一个第一PUCCH资源的资源集,所述第一PUCCH资源满足:所述第一PUCCH资源的频域资源位于所述多个子带中的一个子带内,所述第一PUCCH资源在所述第二时间单元内对应的时域资源在所述第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工,所述HARQ-ACK码本由所述终端生成;
    所述网络设备从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集类别;
    所述网络设备将所述目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;
    所述网络设备在所述目标PUCCH资源上接收所述HARQ-ACK码本。
  12. 如权利要求11所述的方法,其特征在于,所述第一PUCCH资源集包括的资源均为第一PUCCH资源;以及
    所述网络设备从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集,包括:
    所述网络设备将所述第一PUCCH资源集确定为目标PUCCH资源集。
  13. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送第一指示信息,所述第一指示信息包括N比特的位图,所述N比特与N个时间单元对应,所述位图中的第n个比特位的值用于指示所述N个时间单元中的第n个时间单元对应的目标PUCCH资源集,其中,1≤n≤N,N和n为整数;以及
    所述网络设备从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集,包括:
    所述网络设备根据所述第二时间单元在所述位图中对应的比特位的值确定目标PUCCH资源集。
  14. 如权利要求11所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端发送第二指示信息,所述第二指示信息包括一个PUCCH资源集的标识;以及
    所述网络设备从所述第一PUCCH资源集和所述第二PUCCH资源集中确定目标PUCCH资源集,包括:
    所述网络设备将所述第一PUCCH资源集和所述第二PUCCH资源集中与所述标识对应的PUCCH资源集确定为目标PUCCH资源集。
  15. 一种通信方法,其特征在于,所述方法包括:
    网络设备为终端配置多个物理上行控制信道PUCCH资源集,所述多个PUCCH资源集中的每个PUCCH资源集包括至少一个第一PUCCH资源;所述多个PUCCH资源集中的每个PUCCH资源集包括的全部PUCCH资源所在的频域均在第二时频资源的频域资源内,所述第二时频资源在时域上对应第二时间单元,所述第二时间单元包括一 个或多个符号,所述第二时频资源对应的频域资源包括多个子带,所述多个子带为所述第二时频资源对应的频域资源上连续的不重叠的频域资源,所述多个子带在一个载波上,且所述第二时间单元中的一个或多个符号在所述多个子带上的符号类别不同;所述第一PUCCH资源满足:所述第一PUCCH资源的频域资源位于所述多个子带中的一个子带内,所述第一PUCCH资源在所述第二时间单元内对应的时域资源在所述第一PUCCH资源所在的子带上的符号类别为上行或灵活或全双工;
    所述网络设备从所述多个PUCCH资源集中确定与第一混合自动重传请求HARQ-确定应答ACK码本的载荷大小对应的一个PUCCH资源集为目标资源集,所述HARQ-ACK码本由所述终端生成;
    所述网络设备将所述目标PUCCH资源集中的一个PUCCH资源确定为目标PUCCH资源;
    所述网络设备在所述目标PUCCH资源上接收所述HARQ-ACK码本。
  16. 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求1至7中任一项所述方法的模块,或者,所述通信装置包括用于执行如权利要求8至15中任一项所述方法的模块。
  17. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述通信装置执行如权利要求1至7中任一项所述的方法,或者,使得所述通信装置执行如权利要求8至15中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法,或者,使得所述计算机执行如权利要求8至15中任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,包括程序代码,当所述程序代码在计算机上运行时,使得所述计算机实现如权利要求1至7中任一项所述的方法,或者,使得所述计算机实现如权利要求8至15中任一项所述的方法。
PCT/CN2022/138563 2021-12-13 2022-12-13 通信方法和通信装置 WO2023109790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111516823.6 2021-12-13
CN202111516823.6A CN116264739A (zh) 2021-12-13 2021-12-13 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023109790A1 true WO2023109790A1 (zh) 2023-06-22

Family

ID=86721740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138563 WO2023109790A1 (zh) 2021-12-13 2022-12-13 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN116264739A (zh)
WO (1) WO2023109790A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133190A1 (en) * 2018-12-28 2020-07-02 Lenovo (Beijing) Limited Payload reduction for semi-static harq-ack codebook
WO2021133974A1 (en) * 2019-12-24 2021-07-01 Qualcomm Incorporated Transport block and hybrid automatic repeat request acknowledgment design for full duplex user equipment
WO2021243300A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Codebook-based operation for subband full duplex in nr

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133190A1 (en) * 2018-12-28 2020-07-02 Lenovo (Beijing) Limited Payload reduction for semi-static harq-ack codebook
WO2021133974A1 (en) * 2019-12-24 2021-07-01 Qualcomm Incorporated Transport block and hybrid automatic repeat request acknowledgment design for full duplex user equipment
WO2021243300A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Codebook-based operation for subband full duplex in nr

Also Published As

Publication number Publication date
CN116264739A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2021027940A1 (zh) 一种用于指示信号传输的方法及装置
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
WO2020221021A1 (zh) 通信方法和通信装置
CN111954308B (zh) 通信方法和通信装置
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
US20230224933A1 (en) Wireless communication method, terminal device and network device
CN109156030B (zh) Pucch资源分配
CN115136646A (zh) 数据传输方法、装置及设备
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
WO2019047193A1 (zh) 信号传输方法、相关装置及系统
WO2019192500A1 (zh) 通信方法和通信装置
WO2019214660A1 (zh) 通信方法和通信装置
WO2019157634A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2022011699A1 (zh) 一种通信方法及侧行设备
CN115399025A (zh) 无线通信方法、终端设备和网络设备
WO2023109790A1 (zh) 通信方法和通信装置
WO2021237751A1 (zh) 数据传输方法、终端设备和网络设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021227142A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
CN116097597A (zh) 信息传输方法和通信装置
WO2021088063A1 (zh) 一种通信方法及装置
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
US20230353292A1 (en) Wireless communication method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906535

Country of ref document: EP

Kind code of ref document: A1