WO2023160432A1 - 低噪声放大电路及信号收发电路 - Google Patents

低噪声放大电路及信号收发电路 Download PDF

Info

Publication number
WO2023160432A1
WO2023160432A1 PCT/CN2023/075849 CN2023075849W WO2023160432A1 WO 2023160432 A1 WO2023160432 A1 WO 2023160432A1 CN 2023075849 W CN2023075849 W CN 2023075849W WO 2023160432 A1 WO2023160432 A1 WO 2023160432A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection circuit
circuit
signal
diode array
protection
Prior art date
Application number
PCT/CN2023/075849
Other languages
English (en)
French (fr)
Inventor
李镁钰
宋楠
倪建兴
Original Assignee
锐石创芯(深圳)科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐石创芯(深圳)科技股份有限公司 filed Critical 锐石创芯(深圳)科技股份有限公司
Publication of WO2023160432A1 publication Critical patent/WO2023160432A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • H03F1/523Circuit arrangements for protecting such amplifiers for amplifiers using field-effect devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]

Definitions

  • the present application relates to the technical field of radio frequency integrated circuits, in particular to a low-noise amplifier circuit and a signal transceiver circuit.
  • Low Noise Amplifier (LNA for short) is generally used as a high-frequency or intermediate-frequency preamplifier for various radio receivers, which can amplify the weak signal received by the antenna on the receiving path.
  • the withstand voltage performance of the amplifier transistors in the low noise amplifier circuit is poor.
  • the existing low-noise amplifier circuit is easily disturbed and affected by leakage signals on other paths during use, thus greatly shortening the service life of the amplifier transistors in the low-noise amplifier circuit and affecting the low-noise amplifier circuit. Therefore, how to protect the low-noise amplifier circuit in the RF front-end circuit from being affected by the leakage signal is an urgent problem to be solved.
  • Embodiments of the present application provide a low-noise amplifier circuit and a signal transceiver circuit to solve the problem that leakage signals affect the reliability of amplifier transistors in the low-noise amplifier circuit.
  • a low noise amplifying circuit comprising a signal amplifying circuit, a first protection circuit and a second protection circuit;
  • the first end of the first protection circuit is coupled to the input path of the signal amplifying circuit, the second end of the first protection circuit is connected to the ground, and the first protection circuit includes a low-impedance mode and a high-impedance mode. model;
  • One end of the second protection circuit is coupled to the input path of the signal amplification circuit, and the other end of the second protection circuit is connected to the ground terminal;
  • the first protection circuit When the signal amplifying circuit is in a non-working state, the first protection circuit is in a low-impedance mode, and if there is a leakage signal in the input path, when the leakage signal is smaller than the conduction threshold of the second protection circuit, The leakage signal is released to the ground through the first protection circuit, and when the leakage signal is greater than or equal to the conduction threshold of the second protection circuit, the leakage signal passes through the first protection circuit and the second protection circuit.
  • the two protection circuits are jointly released to ground.
  • the first protection circuit is in a high-impedance mode.
  • the impedance presented by the second protection circuit is smaller than the impedance presented by the first protection circuit.
  • the first protection circuit includes a protection switch, and the protection switch is turned off when the signal amplification circuit is in a working state.
  • the first protection circuit includes a first resistor connected in series with the protection switch.
  • the first protection circuit includes an adjustable resistor.
  • the protection switch includes at least one field effect transistor; each of the field effect transistors is connected in sequence, and the source stages of the sequentially connected first-end field effect transistors are connected to the input path of the signal amplification circuit, and the sequentially connected
  • the drain of the terminal field effect transistor is connected to the ground, the drain of the first field effect transistor is connected to the source of its adjacent field effect transistor, and the source of the terminal field effect transistor is connected to the adjacent field effect transistor
  • the drains of the first-end field effect transistors and the end-end field-effect transistors are connected in sequence, and the drains adjacent to the first-end field-effect transistors and the drains adjacent to the end-end field-effect transistors are connected in sequence.
  • the source of the effect transistor is connected.
  • the second protection circuit includes a first diode array and a second diode array, and the first diode array and the second diode array are connected in antiparallel; the second The conduction threshold of the protection circuit is positively correlated with the number of diodes in the first diode array or the second diode array.
  • the first diode array includes at least one first diode
  • the second diode array includes at least one second diode
  • each of the first diodes is connected in series
  • each The second diodes are connected in series.
  • the number of the first diodes in the first diode array is the same as the number of the second diodes in the second diode array.
  • a low noise amplifying circuit comprising a signal amplifying circuit, a first protection circuit and a second protection circuit;
  • the first end of the first protection circuit is coupled to the input path of the signal amplifying circuit, the second end of the first protection circuit is connected to the ground, and the first protection circuit includes a low-impedance mode and a high-impedance mode. model;
  • One end of the second protection circuit is coupled to the input path of the signal amplifying circuit, the other end of the second protection circuit is connected to the ground, and the second protection circuit includes a first diode array and a second A diode array, the first diode array and the second diode array are connected in antiparallel, the conduction threshold of the second protection circuit is the same as that of the first diode array or the second diode array The number of diodes in the two-diode array is positively correlated;
  • the first protection circuit When the signal amplifying circuit is in a non-working state, the first protection circuit is in a low-impedance mode, and if there is a leakage signal in the input path, the voltage of the leakage signal is less than the conduction threshold of the second protection circuit , the second protection circuit is in a non-conductive state, and the voltage of the leakage signal is greater than or equal to the voltage of the second protection circuit When the threshold is turned on, the second protection circuit is in a turned-on state.
  • a signal transceiving circuit including a transmission path and a reception path, the transmission path is configured to send a transmission signal to an antenna through a switch; the reception path is configured to receive a reception signal from the antenna through the switch, and amplifying the received signal; the receiving path includes the above-mentioned low-noise amplifier circuit.
  • the above-mentioned low-noise amplifying circuit and signal transceiving circuit include a signal amplifying circuit, a first protection circuit and a second protection circuit; for the first protection circuit, the first end is coupled to the input path of the signal amplifying circuit, and the second end is connected to the ground terminal , the first protection circuit includes a low-impedance mode and a high-impedance mode; the second protection circuit, one end is coupled to the input path of the signal amplifying circuit, and the other end is connected to the ground; when the signal amplifying circuit is in a non-working state, the first protection The circuit is in low-impedance mode.
  • the leakage signal is less than the conduction threshold of the second protection circuit, the leakage signal is released to the ground through the first protection circuit, and the leakage signal is greater than or equal to the conduction threshold of the second protection circuit.
  • the leakage signal is released to the ground through the first protection circuit and the second protection circuit, and when the second protection circuit is in the cut-off state, the first protection circuit releases the leakage signal input into the signal amplification circuit to the ground,
  • the second protection circuit is in the conduction state, the first protection circuit and the second protection circuit work together to release the leakage signal leaked into the input path of the signal amplification circuit to the ground, which solves the problem of the leakage signal from the low noise amplification circuit.
  • the reliability of the amplifying transistor in the circuit is affected, so that the leakage signal can be comprehensively and effectively processed, and the purpose of effectively protecting the low-noise amplifying circuit can be achieved.
  • Fig. 1 is a schematic circuit diagram of a low noise amplifier circuit in an embodiment of the present application
  • Fig. 2 is another schematic circuit diagram of the low noise amplifier circuit in an embodiment of the present application.
  • FIG. 3 is another schematic circuit diagram of a low noise amplifier circuit in an embodiment of the present application.
  • Fig. 4 is another schematic circuit diagram of a low noise amplifier circuit in an embodiment of the present application.
  • FIG. 5 is a schematic circuit diagram of a signal transceiving circuit in an embodiment of the present application.
  • signal amplification circuit 20, first protection circuit; 30, second protection circuit; 31, first diode array; 32, second diode array; 40, emission path; 50, switching switch ; 60, duplexer; 70, antenna.
  • Spatial terms such as “below”, “under”, “beneath”, “below”, “above”, “above”, etc., may be used herein for convenience of description The relationship of one element or feature to other elements or features shown in the figures is thus described. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use and operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as “below” or “beneath” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary terms “below” and “beneath” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.
  • This embodiment provides a low-noise amplifier circuit, as shown in FIG. 1 , including a signal amplifier circuit 10, a first protection circuit 20, and a second protection circuit 30; On the input path, the second terminal of the first protection circuit 20 is connected to the ground terminal, and the first protection circuit 20 includes a low-impedance mode and a high-impedance mode. One end of the second protection circuit 30 is coupled to the input path of the signal amplifying circuit 10 , and the other end of the second protection circuit 30 is connected to the ground. When the signal amplifying circuit 10 is in a non-working state, the first protection circuit 20 is in a low-impedance mode.
  • the leakage signal is released to the ground through the first protection circuit 20 , and when the leakage signal is greater than or equal to the conduction threshold of the second protection circuit 30 , the leakage signal is jointly released to the ground through the first protection circuit 20 and the second protection circuit 30 .
  • the signal amplifying circuit 10 is used to amplify the radio frequency input signal and output the radio frequency amplified signal.
  • the first protection circuit 20 is a switch protection circuit.
  • the second protection circuit 30 is a circuit capable of releasing the leakage signal on the input path of the signal amplifying circuit 10 to the ground terminal in the diode conduction state.
  • the turn-on threshold is a voltage at which the first protection circuit 20 or the second protection circuit 30 is turned on, that is, the turn-on voltage.
  • the second protection circuit 30 since the second protection circuit 30 includes a diode, and the diode has a turn-on voltage, only when the voltage of the leakage signal on the input path of the signal amplification circuit 10 is greater than the turn-on voltage of the diode in the second protection circuit 30 , the second protection circuit 30 can release the leakage signal to the ground terminal.
  • the signal amplifying circuit 10 when the signal amplifying circuit 10 is in a non-working state, when the voltage of the leakage signal on the input path of the signal amplifying circuit 10 is less than the conduction voltage of the diode in the second protection circuit 30, the diode is in a cut-off state, and the second The impedance value of the second protection circuit 30 is infinite, and it is impossible to release the leakage signal to the ground terminal.
  • the low noise amplifying circuit of the present application is connected with a first protection circuit 20 on the input path of the signal amplification circuit 10, and the first protection circuit 20 and the second protection circuit 30 are both Coupled to the input path of the signal amplifying circuit 10.
  • the first protection circuit 20 is in a low-impedance mode, that is, when the first protection circuit 20 is in a conduction state, if there is a leakage signal in the input path, the first protection circuit 20 can transmit the signal Leakage signals on the input path of the amplifying circuit 10 are discharged to ground.
  • the first protection circuit 20 is configured to: when the voltage of the leakage signal on the input path of the signal amplifying circuit 10 is less than the conduction voltage of the diode in the second protection circuit 30, that is, when the second protection circuit 30 is off state, the leakage signal is released to the ground; and, when the voltage of the leakage signal on the input path of the signal amplifying circuit 10 is equal to or greater than the conduction voltage of the diode in the second protection circuit 30, that is, when the second protection circuit 30 is in In the conduction state, it cooperates with the second protection circuit 30 to release the leakage signal to the ground.
  • the leakage signal in this embodiment may be a leakage signal leaked from other transmission paths to the input path of the low noise amplifier circuit, or any other signal that may shorten the life of the amplifier transistor in the low noise amplifier circuit, so as to The reliability of the amplifying transistor in the noise amplifying circuit affects the signal.
  • one end of the second protection circuit 30 is coupled to the input path of the signal amplifying circuit 10, and the other end is connected to the ground terminal. Since the second protection circuit 30 includes a diode and has a specific conduction voltage, the signal amplifying circuit 10 When in the non-working state, the second protection circuit 30 can be in the conduction state when the voltage of the leakage signal is greater than the specific conduction voltage, thereby releasing the leakage signal to the ground, which is not fully effective compared with the existing protection circuit
  • the leakage signal in the input path of the low-noise amplifier circuit is processed in a low-level manner. For example, some weaker leakage signals cannot be fully and effectively released.
  • the leakage signal can be fully and effectively processed to avoid the leakage signal from shortening the lifespan of the amplification transistor in the low noise amplifier circuit, so as to reduce the life of the amplifier transistor in the low noise amplifier circuit put The reliability of large transistors is affected.
  • the first end of the first protection circuit 20 is coupled to the input path of the signal amplifier circuit 10 , the second end is connected to the ground end, wherein, the impedance presented by the first protection circuit 20 in the low-impedance mode is relatively small, usually more than ten ohms, so that the voltage of the leakage signal does not reach the second protection circuit 30.
  • the conduction voltage is in the cut-off state, the leakage signal in the input path is released to the ground terminal, so as to prevent the leakage signal from affecting the life and reliability of the amplifying transistor in the low-noise amplifier circuit.
  • the first protection circuit 20 in this embodiment is in the conduction state when the voltage of the leakage signal reaches the conduction voltage of the second protection circuit 30. At this time, it works together with the second protection circuit 30 to input the The leakage signal is released to the ground terminal; thereby further strengthening the release of the leakage signal and realizing more comprehensive and effective protection for the low noise amplifier circuit.
  • the first protection circuit 20 can release the leakage signal input to the signal amplifying circuit 10 to the ground when the second protection circuit 30 is in the cut-off state
  • the second protection circuit 30 When the second protection circuit 30 is in the conduction state, it cooperates with the second protection circuit 30 to release the leakage signal input into the signal amplifying circuit 10 to the ground, so that the leakage signal can be monitored within a relatively large voltage range.
  • the release solves the problem that the leakage signal affects the reliability of the amplifying transistor in the low-noise amplifier circuit, thereby comprehensively and effectively processing the leak signal and achieving the purpose of effectively protecting the low-noise amplifier circuit.
  • the first protection circuit 20 when the signal amplifying circuit 10 is in the working state, the first protection circuit 20 is in the high-impedance mode. In this embodiment, when the signal amplifying circuit 10 is working, that is, when the signal amplifying circuit 10 amplifies radio frequency signals, the first protection circuit 20 is in a high-impedance mode to prevent the radio frequency signals from being released to the ground.
  • the signal amplifying circuit 10 includes at least one amplifying transistor.
  • the signal amplifying circuit 10 includes two amplifying transistors connected in series: a first amplifying transistor M21 and a second amplifying transistor M22.
  • the first amplifying transistor M21 and the second amplifying transistor M22 can be BJT transistors (for example, HBT transistors) or field effect transistors, so as to realize multiple radio frequency input signals when the low noise amplifying circuit is in the signal amplifying mode. Secondary amplification to increase the gain of the low noise amplifier circuit.
  • both the first amplifier transistor M21 and the second amplifier transistor M22 are BJT transistors
  • both the first amplifier transistor M21 and the second amplifier transistor M22 may be NPN transistors.
  • the signal amplifying circuit 10 may also include a multi-stage amplifying circuit, and each stage of amplifying circuit has two amplifying transistors connected in series, so that when the low-noise amplifying circuit is in the signal amplifying mode, the The radio frequency input signal is amplified in multiple stages to increase the gain of the low noise amplifier circuit.
  • the signal amplifying circuit 10 further includes a DC blocking capacitor C11 disposed between the signal input terminal Vin and the input terminal of the first amplifying transistor M21 .
  • the DC blocking capacitor C11 is configured to block the DC signal in the radio frequency input signal.
  • the base (gate) of the first amplifying transistor M21 is connected to the DC blocking capacitor C11, the collector (source) is connected to the emitter (drain) of the second amplifying transistor M22, and the emitter of the first amplifying transistor M21
  • the (drain stage) is connected to the ground terminal through the gain adjustment inductor L1, and is configured to amplify the radio frequency input signal for the first time.
  • the base (gate) of the second amplifying transistor M22 is connected to the power supply terminal VDD, the collector (source) is connected to the signal output terminal Vout, and connected to the power supply VDD through the load inductance L1, the second amplifying transistor M22 is configured In the signal amplification mode, the radio frequency input signal is amplified for the second time, thereby increasing the gain of the low noise amplifier circuit.
  • the gain adjustment inductor L1 is configured to adjust the gain of the signal amplifying circuit 10, so as to ensure the gain of the signal amplifying circuit 10 while improving the third-order intermodulation point IIP3 of the signal amplifying circuit 10, thereby improving the signal amplifying circuit 10 linearity.
  • the impedance presented by the second protection circuit 30 is smaller than the impedance presented by the first protection circuit 20 .
  • the low noise amplifier circuit is protected more effectively, when the second protection circuit When 30 is in the conduction state, the impedance value presented by the second protection circuit 30 is smaller than the impedance value presented by the first protection circuit 20 .
  • the impedance value presented by the first protection circuit 20 in the conduction state is more than ten ohms, and the impedance value presented by the second protection circuit 30 in the conduction state is several ohms; to ensure that the second protection circuit 30 It can quickly and effectively release the leakage signal on the input path of the low-noise amplifier circuit to the ground, which solves the problem that the leakage signal affects the reliability of the amplification transistor in the low-noise amplifier circuit, so as to comprehensively monitor the leakage signal Effective processing achieves the purpose of effectively protecting the low noise amplifier circuit.
  • the first protection circuit 20 includes a protection switch.
  • the first end of the protection switch is coupled to the input path of the signal amplifying circuit 10 , and the second end is connected to the ground end.
  • the impedance of the protection switch in the on state is relatively small, usually several ohms or tens of ohms, and the impedance in the off state is infinite. Therefore, when the signal amplifying circuit 10 is in a non-working state, the protection switch is turned on to release the leakage signal to the ground terminal; .
  • the first protection circuit 20 further includes a first resistor connected in series with the protection switch.
  • the leakage signal can also be connected to the first resistor connected in series with the protective switch.
  • the protective switch and the first resistor work together to release the leaked signal to the ground terminal when the signal amplifying circuit 10 is in a non-working state.
  • the resistance value of the first resistor should not be too large.
  • the first resistor is several ohms.
  • the first protection circuit 20 includes an adjustable resistance R21, which is convenient for adjusting the impedance of the first protection circuit 20 in the on state, so that when the signal amplification circuit 10 is in the non-working state, the leakage signal released to ground.
  • the protection switch includes at least one field effect transistor Q21; each field effect transistor Q21 is sequentially connected, and each field effect transistor Q21 is sequentially connected, and the sequentially connected first-end field effect transistor Q21
  • the source is connected to the input path of the signal amplifying circuit 10, the drain of the sequentially connected terminal field effect transistor Q21 is connected to the ground terminal, and the drain of the first field effect transistor Q21 is connected to the source of the adjacent field effect transistor Q21 , the source of the terminal field effect transistor Q21 is connected to the drain of its adjacent field effect transistor Q21, and the adjacent first field effect transistor Q21 of the two adjacent field effect transistors Q21 connected in sequence between the first terminal field effect transistor Q21 and the terminal field effect transistor Q21 The drain of the end field effect transistor Q21 is connected to the source of the adjacent end field effect transistor Q21.
  • the field effect transistor Q21 may be an N-channel field effect transistor or a P-channel field effect transistor.
  • the field effect transistor Q21 may be a P-channel field effect transistor, and the source of the field effect transistor Q21 is coupled to the input path of the signal amplifying circuit 10, and the drain is connected to the ground terminal and not connected to the ground.
  • the gate of is configured to control the turn-on and turn-off of the field effect transistor Q21.
  • a low potential is applied to the gate to control the conduction of the field effect transistor Q21, and a high potential is applied to the gate to control the disconnection of the field effect transistor Q21.
  • the field effect transistor Q21 may be an N-channel field effect transistor.
  • the drain of the field effect transistor Q21 is coupled to the input path of the signal amplifying circuit 10, and the source is connected to the ground terminal.
  • the connected gate is configured to control the on and off of the field effect transistor Q21, for example, a high potential is applied to the gate to control the conduction of the field effect transistor Q21, and a low potential is applied to the gate to control the field effect transistor The disconnection of Q21.
  • the protection switch is a field effect transistor Q21, which can be turned on when the signal amplifying circuit 10 is in a non-operating state, and can be turned off when the signal amplifying circuit 10 is in an operating state, thereby avoiding the When 10 is in the working state, the radio frequency input signal is released to the ground, which affects the gain of the signal amplifying circuit 10, thereby improving the stability of the low noise amplifying circuit.
  • the protection switch includes at least one field effect transistor Q21, therefore, the impedance presented by the protection switch when it is turned on is related to the number of field effect transistors Q21.
  • the greater the number of field effect transistors Q21 the greater the impedance of the protection switch when it is turned on.
  • the number of field effect transistors can be determined by the user according to the actual field Scene specific settings. For example, the smaller the leakage signal voltage to be suppressed or filtered, the smaller the number of sequentially connected field effect transistors Q21.
  • the second protection circuit 30 includes a first diode array 31 and a second diode array 32, and the first diode array 31 and the second diode array 32 connected in parallel.
  • the conduction threshold of the second protection circuit 30 is positively correlated with the number of diodes in the first diode array 31 or the second diode array 32 .
  • the first diode array 31 when the voltage of the positive cycle of the leakage signal is greater than the specific conduction voltage corresponding to the first diode array 31 , the first diode array 31 is turned on to release the leakage signal to the ground.
  • the second diode array 32 is turned on to release the leakage signal to the ground.
  • the specific conduction voltage corresponding to the first diode array 31 and the specific conduction voltage corresponding to the second diode array 32 may be the same or different.
  • the specific conduction voltage corresponding to the first diode array 31 is the same as the specific conduction voltage corresponding to the second diode array 32, so as to effectively protect the low noise amplifier circuit.
  • the second protection circuit 30 includes a first diode array 31 and a second diode array 32, and the first diode array 31 and the second diode array 32 are connected in antiparallel, so as to Low noise amplifier circuit for effective protection.
  • the first diode array 31 includes at least one first diode D31
  • the second diode array 32 includes at least one second diode D32
  • each first The diodes D31 are connected in series
  • each second diode D32 is connected in series.
  • the first diode D31 and the second diode D32 may specifically be transient voltage suppressor diodes (Transient Voltage Suppressor, TVS for short), which use the reverse breakdown working principle of the PN junction to reduce the leakage in the input path The signal is released to the ground, thereby protecting the signal amplifying circuit 10 .
  • the anode of the first first diode in the first diode array 31 is coupled to the input path of the signal amplifying circuit 10, the cathode is connected to the anode of the next first diode, and so on, the first The cathode of the last first diode in a diode array 31 is connected to the ground.
  • the cathode of the first second diode in the second diode array 32 is connected to the ground terminal, and the anode is connected to the cathode of the next second diode, and so on, the second diode array
  • the anode of the last second diode in 32 is coupled to the input path of the signal amplifying circuit 10 . Therefore, the leakage signal in the positive period can be released to the ground terminal through the first diode array 31 , and the leakage signal in the negative period can be released to the ground terminal through the second diode array 32 .
  • the first diode array 31 includes at least one first diode D31
  • the second diode array 32 includes at least one second diode D32, and between each first diode D31 connected in series, each second diode D32 is connected in series, when the voltage of the leakage signal leaked to the input path of the signal amplifying circuit 10 is greater than the voltage of the first diode array 31, or greater than the voltage of the second diode array 32
  • each first diode D31 in the first diode array 31 conducts and releases the leakage signal to the ground.
  • the voltage of the signal is the voltage in the negative period, and each second diode D32 in the second diode array 32 is turned on to release the leaked signal to the ground, thereby effectively protecting the signal amplifying circuit 10 .
  • the specific conduction voltage is related to the number of the first diode D31 or the second diode D32 in the first diode array 31 or the second diode array 32, and the number of the first diode D31 in the first diode array 31 The more the number of diodes D31 is, the greater the corresponding turn-on voltage is. Similarly, the more the number of second diodes D32 in the second diode array 32 is, the greater the corresponding turn-on voltage is.
  • the number of first diodes D31 in the first diode array 31 is the same as the number of second diodes D32 in the second diode array 32 .
  • the number of the first diodes D31 in the first diode array 31 is the same as the number of the second diodes D32 in the second diode array 32, so as to improve the performance of the second protection circuit 30. Stability and reliability during work.
  • the number of the first diodes D31 in the first diode array 31 and the number of the second diodes D32 in the second diode array 32 are related to the corresponding conduction voltage There is a proportional relationship.
  • the number of first diodes D31 in the array 32 is associated with the number of second diodes D32 in the second diode array 32 .
  • the impedance value presented by the second protection circuit 30 is It is proportional to the number of first diodes D31 in the first diode array 31 and the number of second diodes D32 in the second diode array 32 .
  • the impedance value presented by the second protection circuit 30 is related to the number of the first diodes D31 in the first diode array 31 and the number of the second diodes D32 in the second diode array 32 Quantities are proportional.
  • the impedance exhibited by the protection switch is related to the quantity and area of the field effect transistor Q21.
  • the impedance presented by the second protection circuit 30 is smaller than the impedance presented by the first protection circuit 20, in this example, the area of the effect transistor Under certain circumstances; the more the number of field effect transistors Q21, the greater the impedance of the first protection circuit 20, therefore, the area of the field effect transistors in the protection switch is the same as that of the first two in the first diode array 31.
  • the number of field effect transistors Q21 in the protection switch is greater than the first The number of first diodes in a diode array 31, and/or, the number of field effect transistors Q21 in the protection switch is greater than the number of second diodes in the second diode array 32, so that When the second protection circuit 30 is in the conduction state, the impedance presented by the second protection circuit 30 is smaller than the impedance presented by the first protection circuit 20 .
  • the number of field effect transistors Q21 in the protection switch is greater than the first two.
  • the number of field effect transistors Q21 in the protection switch is greater than the second The number of the second diodes in the diode array 32, in this example, when the voltage of the negative cycle of the leakage signal is greater than the specific conduction voltage of the second diode array 32, the first protection circuit 20 presents The impedance is greater than the impedance presented by the second protection circuit 30 , and the second protection circuit 30 can quickly release the leakage signal in the low noise amplifier circuit to the ground, so as to achieve a more effective protection effect on the low noise amplifier circuit.
  • the area of the field effect transistor in the protection switch is the same as the area of the first diode in the first diode array 31, and the area of the field effect transistor in the protection switch is the same as the area of the second diode
  • the number of field effect transistors Q21 in the protection switch is greater than the number of the first diodes in the first diode array 31, and greater than the second two The number of the second diodes in the diode array 32, so that when the voltage of the negative period of the leakage signal is greater than the specific conduction voltage of the first diode array 31 and the second diode array 32, the second protection The circuit 30 can quickly release the leakage signal in the low noise amplifier circuit to the ground, so as to achieve a more effective protection effect on the low noise amplifier circuit.
  • the impedance presented by the second protection circuit 30 is smaller than the impedance presented by the first protection circuit 20, in this example, the field effect transistor Q21 The larger the area, the greater the impedance of the first protection circuit 20. Therefore, the impedance presented by the protection switch can be adjusted by configuring the area of the field effect transistor Q21, so that the second protection circuit 30 is in the conduction state.
  • the impedance presented by the second protection circuit 30 is smaller than the impedance presented by the first protection circuit 20 .
  • the quantity and area of field effect transistors Q21 can be adjusted so that the impedance presented by the second protection circuit 30 is less than the impedance presented by the first protection circuit 20, so when the voltage of the leakage signal is greater than the specific turn-on voltage of the second protection circuit 30, the second protection circuit 30 can rapidly reduce the leakage signal in the low noise amplifier circuit Released to the ground, the problem of the leakage signal affecting the reliability of the amplifying transistor in the low-noise amplifier circuit is solved, so that the leakage signal is fully and effectively processed, and the purpose of effectively protecting the low-noise amplifier circuit is achieved.
  • This embodiment provides a low-noise amplifying circuit, including a signal amplifying circuit 10, a first protection circuit 20, and a second protection circuit 30; the first end of the first protection circuit 20 is coupled to the input path of the signal amplifying circuit 10, and the second A second end of a protection circuit 20 is connected to the ground, and the first protection circuit 20 includes a low-impedance mode and a high-impedance mode; one end of the second protection circuit 30 is coupled to the input path of the signal amplifying circuit 10, and the second protection circuit 30 The other end is connected to the ground terminal, the second protection circuit 30 includes a first diode array 31 and a second diode array 32, the first diode array 31 and the second diode array 32 are connected in antiparallel, The turn-on threshold of the second protection circuit 30 is positively correlated with the number of diodes in the first diode array 31 or the second diode array 32; when the signal amplifying circuit 10 is in a non-working state, the first protection circuit 20 is in a
  • the second protection circuit 30 is in a non-conduction state, and when the voltage of the leakage signal is greater than or equal to the second protection circuit 30 When the conduction threshold of , the second protection circuit 30 is in the conduction state.
  • the conduction voltage of the second protection circuit 30 is positively correlated with the number of diodes in the first diode array 31 or the second diode array 32, for example, the first diode array 31 or the second diode array 32.
  • the number of diodes the greater the turn-on voltage of the second protection circuit 30, only when the voltage of the leakage signal on the input path of the signal amplifier circuit 10 is greater than the turn-on voltage of the second protection circuit 30, the second protection circuit 30 Only in this way can the leakage signal be released to the ground terminal.
  • the second protection circuit 30 when the signal amplifying circuit 10 is in a non-operating state, when the voltage of the leakage signal on the input path of the signal amplifying circuit 10 is less than the conduction voltage of the second protection circuit 30, the second protection circuit 30 is in a non-conducting state ( Cut-off state), at this time, the impedance value of the second protection circuit 30 is infinite, and it is impossible to release the leakage signal to the ground terminal.
  • the low noise amplifier circuit of the present application connects a first protection circuit 20 on the input path of the signal amplification circuit 10, and the first protection circuit 20 and the second protection circuit 30 are both coupled On the input path of the signal amplifying circuit 10 .
  • the first protection circuit 20 is in a low-impedance mode, that is, when the switch protection circuit is turned on, if there is a leakage signal in the input path, the signal on the input path of the signal amplifying circuit 10 can be A circuit that releases a leaked signal to ground.
  • the first protection circuit 20 is configured to: when the voltage of the leakage signal on the input path of the signal amplifying circuit 10 is smaller than the conduction voltage in the second protection circuit 30, that is, when the second protection circuit 30 is in the cut-off state , releasing the leakage signal to the ground; and, when the voltage of the leakage signal on the input path of the signal amplifying circuit 10 is equal to or greater than the conduction voltage in the second protection circuit 30, that is, when the second protection circuit 30 is in the conduction state , cooperate with the second protection circuit 30 to release the leakage signal to the ground.
  • the leakage signal in this embodiment may be a leakage signal leaked from other transmission paths into the input path of the low-noise amplifier circuit, or any other signal that may shorten the life of the amplifier transistor in the low-noise amplifier circuit, so that the low-noise
  • the reliability of the amplifying transistor in the amplifying circuit affects the signal.
  • one end of the second protection circuit 30 is coupled to the input path of the signal amplifying circuit 10, and the other end is connected to the ground terminal.
  • the voltage is greater than the specific conduction voltage, it is in the conduction state, thereby releasing the leakage signal to the ground.
  • it cannot fully and effectively process the leakage signal in the input path of the low noise amplifier circuit. For example, it is impossible to fully and effectively release some weaker leakage signals.
  • the low-noise amplifying circuit of the present application When the signal amplifying circuit 10 is in a non-working state, the low-noise amplifying circuit of the present application, under the joint action of the first protection circuit 20 and the second protection circuit 30, The leakage signal can be fully and effectively processed to prevent the leakage signal from shortening the life of the amplification transistor in the low noise amplifier circuit, so as to affect the reliability of the amplification transistor in the low noise amplifier circuit.
  • the first end of the first protection circuit 20 is coupled to the input path of the signal amplifier circuit 10 , the second end is connected to the ground end, wherein, the impedance presented by the first protection circuit 20 in the low-impedance mode is relatively small, usually more than ten ohms, so that the voltage of the leakage signal does not reach the second protection circuit 30.
  • the conduction voltage is in the cut-off state, the leakage signal in the input path is released to the ground terminal, so as to prevent the leakage signal from affecting the life and reliability of the amplifying transistor in the low-noise amplifier circuit.
  • the first protection circuit 20 in this embodiment is in the conduction state when the voltage of the leakage signal reaches the conduction voltage of the second protection circuit 30. At this time, it works together with the second protection circuit 30 to input the The leakage signal is released to the ground terminal; thereby further strengthening the release of the leakage signal and realizing more comprehensive and effective protection for the low noise amplifier circuit.
  • the first protection circuit 20 can release the leakage signal input to the signal amplifying circuit 10 to the ground when the second protection circuit 30 is in the cut-off state
  • the second protection circuit 30 When the second protection circuit 30 is in the conduction state, it cooperates with the second protection circuit 30 to release the leakage signal input into the signal amplifying circuit 10 to the ground, so that the leakage signal can be monitored within a relatively large voltage range.
  • the release solves the problem that the leakage signal affects the reliability of the amplifying transistor in the low-noise amplifier circuit, thereby comprehensively and effectively processing the leak signal and achieving the purpose of effectively protecting the low-noise amplifier circuit.
  • this embodiment provides a signal transceiver circuit, including a transmission path 40 and a reception path, the transmission path 40 is configured to send the transmission signal to the antenna 70 through the switch 50; the reception path is configured to pass the switch 50 Receive the received signal from the antenna 70 and amplify the received signal; the receiving path includes the low noise amplifier circuit in the above embodiment.
  • the radio frequency signal transmission path 40 the input end is connected with the transmission signal input end, and the output end is connected with the first end of the switch 50; the low noise amplifier circuit, the input end is connected with the second end of the switch 50, and the output end Connected to the receiving signal input end; switch 50, the third end is connected to the duplexer 60; the duplexer 60 is connected to the antenna 70, used to receive the transmission signal from the transmission path 40, and send the transmission signal to the antenna 70, And for receiving the receive signal from the antenna 70 and sending the receive signal to the receive path.
  • the signal transceiving circuit can be switched to the transmission path 40 by the switch 50, that is, when the radio frequency signal is transmitted to the duplexer 60 through the transmission path 40 and then transmitted through the antenna 70, due to the switch 50
  • the isolation is effective. Therefore, the radio frequency signal in the transmission path 40 will leak into the reception path through the switch 50, thereby affecting the amplification transistor in the low noise amplifier circuit.
  • the first protection circuit 20 and the second protection circuit 30 are connected in the path, thereby preventing the radio frequency leakage signal leaked into the receiving path from affecting the amplifying transistor in the low noise amplifying circuit, so that the amplifying transistor in the low noise amplifying circuit can be effectively protection of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本申请公开了一种低噪声放大电路及信号收发电路,包括信号放大电路、第一保护电路和第二保护电路;第一保护电路,第一端耦合在信号放大电路的输入路径上,第二端与接地端相连,第一保护电路包括低阻模式和高阻模式;第二保护电路,一端耦合在信号放大电路的输入路径上,另一端与接地端相连;在信号放大电路处于非工作状态时,第一保护电路处于低阻模式,若输入路径存在泄露信号,在泄露信号小于第二保护电路的导通阈值时,泄露信号通过第一保护电路释放到地,在泄露信号大于或者等于第二保护电路的导通阈值时,泄露信号通过第一保护电路和第二保护电路共同释放到地。本技术方案能够对泄露信号进行全面有效抑制,对低噪声放大电路进行有效保护。

Description

低噪声放大电路及信号收发电路
本申请以2022年02月22日提交的申请号为202210163661.0,名称为“低噪声放大电路及信号收发电路”的中国发明申请为基础,要求其优先权。
技术领域
本申请涉及射频集成电路技术领域,尤其涉及一种低噪声放大电路及信号收发电路。
背景技术
低噪声放大电路(Low Noise Amplifier,简称LNA)一般用作各类无线电接收机的高频或中频的前置放大器,能够将接收路径上天线接收到的微弱信号进行放大。
目前,为了保证低噪声放大电路的高增益和小噪声性能,低噪声放大电路中的放大晶体管耐压性能都较差。然而,现有的低噪声放大电路在使用过程中又容易受到其它路径上的泄露信号的干扰和影响,从而大大减短了低噪声放大电路中的放大晶体管的使用寿命,影响了低噪声放大电路中的放大晶体管的可靠性,因此,如何保护射频前端电路中的低噪声放大电路不被泄露信号所影响是目前亟待解决的问题。
申请内容
本申请实施例提供一种低噪声放大电路及信号收发电路,以解决泄露信号对低噪声放大电路中的放大晶体管的可靠性造成影响的问题。
一种低噪声放大电路,包括信号放大电路、第一保护电路和第二保护电路;
所述第一保护电路的第一端耦合在所述信号放大电路的输入路径上,所述第一保护电路的第二端与接地端相连,所述第一保护电路包括低阻模式和高阻模式;
所述第二保护电路的一端耦合在所述信号放大电路的输入路径上,所述第二保护电路的另一端与接地端相连;
在所述信号放大电路处于非工作状态时,所述第一保护电路处于低阻模式,若所述输入路径存在泄露信号,在所述泄露信号小于所述第二保护电路的导通阈值时,所述泄露信号通过所述第一保护电路释放到地,在所述泄露信号大于或者等于所述第二保护电路的导通阈值时,所述泄露信号通过所述第一保护电路和所述第二保护电路共同释放到地。
进一步地,在所述信号放大电路处于工作状态时,所述第一保护电路处于高阻模式。
进一步地,在所述第二保护电路处于导通状态下时,所述第二保护电路呈现出的阻抗小于所述第一保护电路呈现出的阻抗。
进一步地,所述第一保护电路包括保护开关,在所述信号放大电路处于工作状态时,所述保护开关断开。
进一步地,第一保护电路包括与所述保护开关串联连接的第一电阻。
进一步地,所述第一保护电路包括可调电阻。
进一步地,所述保护开关包括至少一个场效应晶体管;每一所述场效应晶体管依次连接,依次连接的首端场效应晶体管的源级连接至所述信号放大电路的输入路径上,依次连接的末端场效应晶体管的漏级与接地端相连,所述首端场效应晶体管的漏级与其相邻的场效应晶体管的源级相连,所述末端场效应晶体管的源级与其相邻的场效应晶体管的漏级相连,所述首端场效应晶体管和所述末端场效应晶体管之间依次连接的相邻两个场效应晶体管中邻近所述首端场效应晶体管的漏级、与邻近所述末端场效应晶体管的源级相连。
进一步地,所述第二保护电路包括第一二极管阵列和第二二极管阵列,所述第一二极管阵列和所述第二二极管阵列反向并联连接;所述第二保护电路的导通阈值与所述第一二极管阵列或所述第二二极管阵列的二极管数量呈正相关。
进一步地,所述第一二极管阵列包括至少一个第一二极管,第二二极管阵列包括至少一个第二二极管,每一所述第一二极管之间串联连接,每一所述第二二极管之间串联连接。
进一步地,所述第一二极管阵列中的所述第一二极管的数量和所述第二二极管阵列中的第二二极管的数量相同。
一种低噪声放大电路,包括信号放大电路、第一保护电路和第二保护电路;
所述第一保护电路的第一端耦合在所述信号放大电路的输入路径上,所述第一保护电路的第二端与接地端相连,所述第一保护电路包括低阻模式和高阻模式;
所述第二保护电路的一端耦合在所述信号放大电路的输入路径上,所述第二保护电路的另一端与接地端相连,所述第二保护电路包括第一二极管阵列和第二二极管阵列,所述第一二极管阵列和所述第二二极管阵列反向并联连接,所述第二保护电路的导通阈值与所述第一二极管阵列或所述第二二极管阵列的二极管数量呈正相关;
在所述信号放大电路处于非工作状态时,所述第一保护电路处于低阻模式,若所述输入路径存在泄露信号,在所述泄露信号的电压小于所述第二保护电路的导通阈值时,所述第二保护电路处于非导通状态,在所述泄露信号的电压大于或者等于所述第二保护电路的 导通阈值时,所述第二保护电路处于导通状态。
一种信号收发电路,包括发射通路和接收通路,所述发射通路被配置通过切换开关将发射信号发送至天线;所述接收通路被配置为通过所述切换开关接收来自所述天线的接收信号,并对所述接收信号进行放大;所述接收通路包括上述低噪声放大电路。
上述低噪声放大电路及信号收发电路,包括信号放大电路、第一保护电路和第二保护电路;第一保护电路,第一端耦合在信号放大电路的输入路径上,第二端与接地端相连,第一保护电路包括低阻模式和高阻模式;第二保护电路,一端耦合在信号放大电路的输入路径上,另一端与接地端相连;在信号放大电路处于非工作状态时,第一保护电路处于低阻模式,若输入路径存在泄露信号,在泄露信号小于第二保护电路的导通阈值时,泄露信号通过第一保护电路释放到地,在泄露信号大于或者等于第二保护电路的导通阈值时,泄露信号通过第一保护电路和第二保护电路共同释放到地,在第二保护电路处于截止状态下时,第一保护电路将输入到信号放大电路中的泄露信号释放到地,当第二保护电路处于导通状态下时,第一保护电路与第二保护电路共同作用,将泄露到信号放大电路的输入路径中的泄露信号释放到地,解决了泄露信号对低噪声放大电路中的放大晶体管的可靠性造成影响的问题,从而对泄露信号的进行全面有效处理,达到对低噪声放大电路进行有效保护的目的。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中低噪声放大电路的一电路示意图;
图2是本申请一实施例中低噪声放大电路的另一电路示意图;
图3是本申请一实施例中低噪声放大电路的另一电路示意图;
图4是本申请一实施例中低噪声放大电路的另一电路示意图;
图5是本申请一实施例中信号收发电路的一电路示意图。
图中:10、信号放大电路;20、第一保护电路;30、第二保护电路;31、第一二极管阵列;32、第二二极管阵列;40、发射通路;50、切换开关;60、双工器;70、天线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请 中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大自始至终相同附图标记表示相同的元件。
应当明白,当元件或层被称为“在…上”、“与…相邻”、“与…相连”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在…上”、“与…直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本申请教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在…下”、“在…下面”、“下面的”、“在…之下”、“在…之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在…下面”和“在…下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构及步骤,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
本实施例提供一种低噪声放大电路,如图1所示,包括信号放大电路10、第一保护电路20和第二保护电路30;第一保护电路20的第一端耦合在信号放大电路10的输入路径上,第一保护电路20的第二端与接地端相连,第一保护电路20包括低阻模式和高阻模式。第二保护电路30的一端耦合在信号放大电路10的输入路径上,第二保护电路30的另一端与接地端相连。在信号放大电路10处于非工作状态时,第一保护电路20处于低阻模式,若信号放大电路10的输入路径存在泄露信号,在泄露信号小于第二保护电路30的导通阈值时,泄露信号通过第一保护电路20释放到地,在泄露信号大于或者等于第二保护电路30的导通阈值时,泄露信号通过第一保护电路20和第二保护电路30共同释放到地。
其中,信号放大电路10用于对射频输入信号进行放大,输出射频放大信号。作为优选地,第一保护电路20为开关保护电路。第二保护电路30为在二极管导通状态下,可将信号放大电路10的输入路径上的泄露信号释放到接地端的电路。导通阈值为使第一保护电路20或第二保护电路30处于导通状态的电压,即导通电压。在本实施例中,由于第二保护电路30包括二极管,二极管有个导通电压,只有当信号放大电路10的输入路径上的泄露信号的电压大于第二保护电路30中的二极管的导通电压时,第二保护电路30才能实现将泄露信号释放到接地端。然而,在信号放大电路10处于非工作状态时,当信号放大电路10的输入路径上的泄露信号的电压小于第二保护电路30中的二极管的导通电压时,二极管处于截止状态,此时第二保护电路30的阻抗值为无穷大,无法实现将泄露信号释放到接地端。
因此,本申请的低噪声放大电路在第二保护电路30的基础上,在信号放大电路10的输入路径上再接入一第一保护电路20,第一保护电路20和第二保护电路30均耦合在信号放大电路10的输入路径上。在信号放大电路10处于非工作状态时,第一保护电路20为低阻模式,即第一保护电路20处于导通的状态下,若输入路径存在泄露信号,第一保护电路20便可将信号放大电路10的输入路径上的泄露信号释放到接地端。具体地,第一保护电路20,被配置为:当信号放大电路10的输入路径上的泄露信号的电压小于第二保护电路30中的二极管的导通电压,即在第二保护电路30处于截止状态时,将泄露信号释放到地;以及,当信号放大电路10的输入路径上的泄露信号的电压等于或大于第二保护电路30中的二极管的导通电压,即当第二保护电路30处于导通状态时,与第二保护电路30共同作用将泄露信号释放到地。其中,本实施例中的泄露信号可以为从其他传输路径泄露至低噪声放大电路的输入路径中的泄露信号,或者其他任意可能会减短低噪声放大电路中的放大晶体管的寿命,以对低噪声放大电路中的放大晶体管的可靠性造成影响的信号。
作为另一示例,第二保护电路30,一端耦合在信号放大电路10的输入路径上,另一端与接地端相连,由于第二保护电路30包括二极管,具有特定的导通电压,在信号放大电路10处于非工作状态时,第二保护电路30能够在泄露信号的电压大于该特定的导通电压时,处于导通状态,从而将泄露信号释放到地,相比较现有的保护电路无法全面有效地对低噪声放大电路的输入路径中的泄露信号进行处理,比如无法对一些较微弱的泄露信号进行全面有效的释放,本申请的低噪声放大电路在信号放大电路10处于非工作状态时,在第一保护电路20和第二保护电路30的共同作用下,可对泄露信号的进行全面有效处理以避免泄露信号减短低噪声放大电路中的放大晶体管的寿命,以对低噪声放大电路中的放 大晶体管的可靠性造成影响。同时,本示例中,为了在信号放大电路10处于非工作状态时,对低噪声放大电路进行更加全面有效的保护,将第一保护电路20,第一端耦合在信号放大电路10的输入路径上,第二端与接地端连接,其中,第一保护电路20在低阻模式下所呈现出的阻抗较小,通常为十几欧姆,从而实现在泄露信号的电压未达到第二保护电路30的导通电压,处于截止状态时,将输入路径中的泄露信号释放到接地端,以避免泄露信号对低噪声放大电路中的放大晶体管的寿命和可靠性造成影响。进一步地,本实施例中的第一保护电路20在泄露信号的电压达到第二保护电路30的导通电压时,处于导通状态,此时,与第二保护电路30共同作用将输入路径中的泄露信号释放到接地端;从而进一步加强对泄露信号的释放,对低噪声放大电路实现更全面有效地保护。
在本实施例中,在信号放大电路10处于非工作状态时,第一保护电路20能够在第二保护电路30处于截止状态下时,将输入到信号放大电路10中的泄露信号释放到地,当第二保护电路30处于导通状态下时,与第二保护电路30共同作用将输入到信号放大电路10中的泄露信号释放到地,从而能够在较大的电压范围内实现对泄露信号的释放,解决了泄露信号对低噪声放大电路中的放大晶体管的可靠性造成影响的问题,从而对泄露信号的进行全面有效处理,达到对低噪声放大电路进行有效保护的目的。
在一具体实施例中,在信号放大电路10处于工作状态时,第一保护电路20处于高阻模式。在本实施例中,在信号放大电路10处于工作状态时,即信号放大电路10对射频信号进行放大时,第一保护电路20处于高阻模式,防止将射频信号释放到地。
进一步地,如图2所示,信号放大电路10包括至少一个放大晶体管。优选地,信号放大电路10包括两个相互串联连接的放大晶体管:第一放大晶体管M21和第二放大晶体管M22。其中,例如,第一放大晶体管M21和第二放大晶体管M22可以为BJT晶体管(例如,HBT晶体管)或场效应晶体管,以实现在当低噪声放大电路处于信号放大模式下,对射频输入信号进行多次放大,提高低噪声放大电路的增益。在一具体实施例中,第一放大晶体管M21和第二放大晶体管M22均为BJT晶体管时,第一放大晶体管M21和第二放大晶体管M22均可以为NPN管。
在另一具体实施例中,信号放大电路10还可以包括多级放大电路,每一级放大电路均两个相互串联连接的放大晶体管,以实现在当低噪声放大电路处于信号放大模式下,对射频输入信号进行多级放大,提高低噪声放大电路的增益。
如图2所示,在一具体实施例中,信号放大电路10还包括设置在信号输入端Vin与第一放大晶体管M21的输入端之间的隔直电容C11。隔直电容C11被配置为对射频输入信号中的直流信号进行阻隔。
其中,第一放大晶体管M21的基极(栅极)与隔直电容C11相连,集电极(源级)与第二放大晶体管M22的发射极(漏级)相连,第一放大晶体管M21的发射极(漏级)通过增益调节电感L1与接地端相连,被配置为对射频输入信号进行第一次放大。第二放大晶体管M22的基极(栅极)与供电端VDD相连,集电极(源级)与信号输出端Vout相连,以及通过负载电感L1与馈电电源VDD相连,第二放大晶体管M22被配置为在信号放大模式时,对射频输入信号进行第二次放大,从而提高低噪声放大电路的增益。
其中,增益调节电感L1被配置为对信号放大电路10进行增益调节,从而实现在保证信号放大电路10的增益的同时,提高了信号放大电路10的三阶交调点IIP3,进而改善信号放大电路10的线性度。
在一实施例中,当第二保护电路30处于导通状态下时,第二保护电路30呈现出的阻抗小于第一保护电路20呈现出的阻抗。
在本实施例中,为了保证在信号放大电路10的输入路径上的泄露信号的电压大于第二保护电路30的导通电压时,对低噪声放大电路进行更加有效的保护,当第二保护电路30处于导通状态下时,使第二保护电路30呈现出的阻抗值小于第一保护电路20呈现出的阻抗值。例如,第一保护电路20在导通状态下时呈现出的阻抗值为十几欧姆,第二保护电路30在导通状态下时呈现出的阻抗值为几欧姆;以保证第二保护电路30能够快速有效地将低噪声放大电路的输入路径上的泄露信号快速地释放到地,解决了泄露信号对低噪声放大电路中的放大晶体管的可靠性造成影响的问题,从而对泄露信号的进行全面有效处理,达到对低噪声放大电路进行有效保护的目的。
在一实施例中,如图2所示,第一保护电路20包括保护开关。
作为一示例,保护开关的第一端耦合至信号放大电路10的输入路径上,第二端与接地端相连。本示例中,当保护开关导通时,保护开关在导通状态下的阻抗比较小,通常为几欧姆或者十几欧姆,在断开状态下的阻抗为无穷大。因此,在信号放大电路10处于非工作状态时,保护开关导通,将泄露信号释放到接地端,在信号放大电路10处于工作状态时,保护开关断开,从而避免将射频输入信号释放到地。
在一具体实施例中,第一保护电路20还包括与保护开关串联连接的第一电阻。具体地,由于保护开关在导通状态下的阻抗通常很小,因此,为了将输入路径中的泄露信号稳 定地释放到接地端,还可以接入与保护开关串联连接的第一电阻,保护开关和第一电阻共同作用,实现在信号放大电路10处于非工作状态时,将泄露信号释放到接地端。需要说明的是,为了减小因接入第一电阻而带来的损耗,第一电阻的阻值不能过大,优选地,第一电阻为几欧姆。
进一步地,如图2所示,第一保护电路20包括可调电阻R21,便于调节第一保护电路20在导通状态下的阻抗,实现在信号放大电路10处于非工作状态时,将泄露信号释放到接地端。
在一实施例中,如图3所示,保护开关包括至少一个场效应晶体管Q21;每一场效应晶体管Q21依次连接,每一场效应晶体管Q21依次连接,依次连接的首端场效应晶体管Q21的源级连接至信号放大电路10的输入路径上,依次连接的末端场效应晶体管Q21的漏级与接地端相连,首端场效应晶体管Q21的漏级与其相邻的场效应晶体管Q21的源级相连,末端场效应晶体管Q21的源级与其相邻的场效应晶体管Q21的漏级相连,首端场效应晶体管Q21和末端场效应晶体管Q21之间依次连接的相邻两个场效应晶体管Q21中邻近首端场效应晶体管Q21的漏级、与邻近末端场效应晶体管Q21的源级相连。其中,场效应晶体管Q21可以是N沟道场效应管或者P沟道场效应管。
作为一示例,如图3所示,场效应晶体管Q21可以是P沟道场效应管,该场效应晶体管Q21,源极耦合在信号放大电路10的输入路径上,漏极与接地端相连,未连接的栅极被配置为控制场效应晶体管Q21的导通和断开。本示例中,在栅极加上低电位,控制场效应晶体管Q21的导通,在栅极加上高电位,控制场效应晶体管Q21的断开。
作为另一示例,如图4所示,场效应晶体管Q21可以是N沟道场效应管,该场效应晶体管Q21,漏极耦合在信号放大电路10的输入路径上,源极与接地端相连,未连接的栅极被配置为控制场效应晶体管Q21的导通和断开,例如,在栅极加上高电位,控制场效应晶体管Q21的导通,在栅极加上低电位,控制场效应晶体管Q21的断开。
在本实施例中,保护开关为场效应晶体管Q21,场效应晶体管Q21能够在信号放大电路10处于非工作状态时导通,在信号放大电路10处于工作状态时断开,能够避免在信号放大电路10处于工作状态时,将射频输入信号释放到地,对信号放大电路10的增益造成影响,进而提高低噪声放大电路的稳定性。
在本实施例中,保护开关包括至少一个场效应晶体管Q21,因此,保护开关在导通时所呈现出的阻抗与场效应晶体管Q21的数量相关联。例如,场效应晶体管Q21的数量越多,保护开关在导通时的阻抗就越大。场效应管晶体管的数量可以由用户根据实际使用场 景具体设置。例如,所要抑制或者滤除的泄露信号电压越小,依次连接的场效应晶体管Q21数量越少。
在一实施例中,如图2所示,第二保护电路30包括第一二极管阵列31和第二二极管阵列32,第一二极管阵列31和第二二极管阵列32反向并联连接。第二保护电路30的导通阈值与第一二极管阵列31或第二二极管阵列32的二极管数量呈正相关。
作为一示例,当泄露信号正周期的电压大于第一二极管阵列31对应的特定的导通电压时,第一二极管阵列31导通,将泄露信号释放到地。当泄露信号负周期的电压大于第二二极管阵列32对应的特定的导通电压时,第二二极管阵列32导通,将泄露信号释放到地。需要说明的是,第一二极管阵列31对应的特定的导通电压和第二二极管阵列32对应的特定的导通电压可以相同,也可以不相同。优选地,第一二极管阵列31对应的特定的导通电压和第二二极管阵列32对应的特定的导通电压相同,从而对低噪声放大电路进行有效的保护。
作为一示例,第一二极管阵列31或第二二极管阵列32的二极管数量越多,则第二保护电路30的导通电压则越大,即第二保护电路30的导通阈值与第一二极管阵列31或第二二极管阵列32的二极管数量呈正相关。
在本实施例中,第二保护电路30包括第一二极管阵列31和第二二极管阵列32,第一二极管阵列31和第二二极管阵列32反向并联连接,从而对低噪声放大电路进行有效的保护。
在一实施例中,如图2所示,第一二极管阵列31包括至少一个第一二极管D31,第二二极管阵列32包括至少一个第二二极管D32,每一第一二极管D31之间串联连接,每一第二二极管D32之间串联连接。
可选地,第一二极管D31和第二二极管D32具体可以为瞬态抑制二极管(Transient Voltage Suppressor,简称TVS),利用PN结的反向击穿工作原理,将输入路径中的泄露信号释放到地,从而对信号放大电路10起保护作用。其中,第一二极管阵列31中的第一个第一二极管的阳极耦合在信号放大电路10的输入路径上,阴极与下一个第一二极管的阳极连接,以此类推,第一二极管阵列31中的最后一个第一二极管的阴极与接地端连接。相反地,第二二极管阵列32中的第一个第二二极管的阴极与接地端连接,阳极与下一个第二二极管的阴极连接,以此类推,第二二极管阵列32中的最后一个第二二极管的阳极耦合在信号放大电路10的输入路径上。因此,处于正周期的泄露信号可以通过第一二极管阵列31释放至接地端,处于负周期的泄露信号可以第二二极管阵列32释放至接地端。
在本实施例中,第一二极管阵列31包括至少一个第一二极管D31,第二二极管阵列32包括至少一个第二二极管D32,每一第一二极管D31之间串联连接,每一第二二极管D32之间串联连接,当泄露到信号放大电路10输入路径上的泄露信号的电压大于第一二极管阵列31,或,大于第二二极管阵列32对应的特定的导通电压时,若泄露信号的电压为正周期内的电压,第一二极管阵列31中的每一第一二极管D31导通,将泄露信号释放到地,若泄露信号的电压为负周期内的电压,第二二极管阵列32中的每一第二二极管D32导通,将泄露信号释放到地,从而实现对信号放大电路10进行有效保护。该特定的导通电压与第一二极管阵列31或第二二极管阵列32中第一二极管D31或第二二极管D32的数量有关,第一二极管阵列31中的第一二极管D31数量越多,对应的导通电压就越大,同样地,第二二极管阵列32中的第二二极管D32的数量越多,对应的导通电压就越大。
在一实施例中,如图2所示,第一二极管阵列31中的第一二极管D31的数量和第二二极管阵列32中的第二二极管D32的数量相同。
在本实施例中,第一二极管阵列31中的第一二极管D31的数量和第二二极管阵列32中的第二二极管D32的数量相同,以提高第二保护电路30工作过程中的稳定性和可靠性。
进一步地,如图2所示,第一二极管阵列31中的第一二极管D31的数量和第二二极管阵列32中的第二二极管D32的数量与对应的导通电压呈正比关系。
在本实施例中,第一二极管阵列31中的第一二极管D31的数量越多,第一二极管D31正向导通的所需的电压也就越大,第二二极管阵列32中的第二二极管D32的数量越多,第二二极管D32的反向导通的电压也越大,因此,第二保护电路30的导通电压与第一二极管阵列31中的第一二极管D31的数量和第二二极管阵列32中的第二二极管D32的数量相关联。
在一实施例中,如图2所示,当泄露到信号放大电路10输入路径上的泄露信号的电压大于第二保护电路30的导通电压时,第二保护电路30所呈现出的阻抗值与第一二极管阵列31中的第一二极管D31的数量和第二二极管阵列32中的第二二极管D32的数量呈正比关系。
本示例中,第二保护电路30所呈现出的阻抗值与第一二极管阵列31中的第一二极管D31的数量和第二二极管阵列32中的第二二极管D32的数量呈正比关系。示例性地,第一二极管D31和第二二极管D32的数量越多,第一二极管阵列31和第二二极管阵列32分别呈现出的阻抗值就越大,如此,第二保护电路30所呈现出的阻抗值也就越大。可以理解地,第一二极管D31和第二二极管D32的数量越少,第一二极管阵列31和第二二极管阵 列32分别呈现出的阻抗值就越小,如此,第二保护电路30所呈现出的阻抗值也就越小。
在一实施例中,保护开关呈现出的阻抗与场效应晶体管Q21的数量和面积相关联。
在一具体实施例中,由于当第二保护电路30处于导通状态下时,第二保护电路30呈现出的阻抗小于第一保护电路20呈现出的阻抗,本示例中,在效应晶体管的面积确定的情况下;场效应晶体管Q21的数量越多,第一保护电路20的阻抗便越大,因此,在保护开关中的场效应晶体管的面积与第一二极管阵列31中的第一二极管的面积,和,保护开关中的场效应晶体管的面积与第二二极管阵列32中的第二二极管的面积相同的情况下,保护开关中的场效应晶体管Q21的数量大于第一二极管阵列31中的第一二极管的数量,和/或,保护开关中的场效应晶体管Q21的数量大于第二二极管阵列32中的第二二极管的数量,以使第二保护电路30处于导通状态下时,第二保护电路30呈现出的阻抗小于第一保护电路20呈现出的阻抗。
作为一示例,在保护开关中的场效应晶体管的面积与第一二极管阵列31中的第一二极管的面积相同的情况下,保护开关中的场效应晶体管Q21的数量大于第一二极管阵列31中的第一二极管的数量,本示例中,当泄露信号正周期的电压大于第一二极管阵列31的特定的导通电压时,第一保护电路20呈现出的阻抗便大于第二保护电路30呈现出的阻抗,第二保护电路30便能够将低噪声放大电路中的泄露信号快速地释放到地,以达到对低噪声放大电路进行更加有效的保护效果。
作为另一示例,在保护开关中的场效应晶体管的面积与第二二极管阵列32中的第二二极管的面积相同的情况下,保护开关中的场效应晶体管Q21的数量大于第二二极管阵列32中的第二二极管的数量,本示例中,当泄露信号负周期的电压大于第二二极管阵列32的特定的导通电压时,第一保护电路20呈现出的阻抗便大于第二保护电路30呈现出的阻抗,第二保护电路30便能够将低噪声放大电路中的泄露信号快速地释放到地,以达到对低噪声放大电路进行更加有效的保护效果。
作为另一示例,在保护开关中的场效应晶体管的面积与第一二极管阵列31中的第一二极管的面积,和,保护开关中的场效应晶体管的面积与第二二极管阵列32中的第二二极管的面积相同的情况下,保护开关中的场效应晶体管Q21的数量大于第一二极管阵列31中的第一二极管的数量,以及大于大于第二二极管阵列32中的第二二极管的数量,如此,当泄露信号负周期的电压大于第一二极管阵列31和第二二极管阵列32的特定的导通电压时,第二保护电路30便能够将低噪声放大电路中的泄露信号快速地释放到地,以达到对低噪声放大电路进行更加有效的保护效果。
在另一具体实施例中,由于当第二保护电路30处于导通状态下时,第二保护电路30呈现出的阻抗小于第一保护电路20呈现出的阻抗,本示例中,场效应晶体管Q21的面积越大,第一保护电路20的阻抗便越大,因此,可以通过配置场效应晶体管Q21的面积的面积,调整保护开关呈现出的阻抗,以使第二保护电路30处于导通状态下时,第二保护电路30呈现出的阻抗小于第一保护电路20呈现出的阻抗。
在本实施例中,由于保护开关呈现出的阻抗与场效应晶体管Q21的数量和面积相关联,因此,可以通过调整场效应晶体管Q21的数量和面积,以使第二保护电路30呈现出的阻抗小于第一保护电路20呈现出的阻抗,所以,在泄露信号的电压大于第二保护电路30的特定的导通电压时,第二保护电路30便能够将低噪声放大电路中的泄露信号快速地释放到地,解决了泄露信号对低噪声放大电路中的放大晶体管的可靠性造成影响的问题,从而对泄露信号的进行全面有效处理,达到对低噪声放大电路进行有效保护的目的。
本实施例提供一种低噪声放大电路,包括信号放大电路10、第一保护电路20和第二保护电路30;第一保护电路20的第一端耦合在信号放大电路10的输入路径上,第一保护电路20的第二端与接地端相连,第一保护电路20包括低阻模式和高阻模式;第二保护电路30的一端耦合在信号放大电路10的输入路径上,第二保护电路30的另一端与接地端相连,第二保护电路30包括第一二极管阵列31和第二二极管阵列32,第一二极管阵列31和第二二极管阵列32反向并联连接,第二保护电路30的导通阈值与第一二极管阵列31或第二二极管阵列32的二极管数量呈正相关;在信号放大电路10处于非工作状态时,第一保护电路20处于低阻模式,若输入路径存在泄露信号,在泄露信号的电压小于第二保护电路30的导通阈值时,第二保护电路30处于非导通状态,在泄露信号的电压大于或者等于第二保护电路30的导通阈值时,第二保护电路30处于导通状态。
在本实施例中,由于第二保护电路30包括第一二极管阵列31和第二二极管阵列32,第一二极管阵列31和第二二极管阵列32中的二极管具有导通电压,第二保护电路30的导通电压与第一二极管阵列31或第二二极管阵列32的二极管数量呈正相关,例如,第一二极管阵列31或第二二极管阵列32的二极管数量越多,第二保护电路30的导通电压越大,只有当信号放大电路10的输入路径上的泄露信号的电压大于第二保护电路30的导通电压时,第二保护电路30才能实现将泄露信号释放到接地端。然而,在信号放大电路10处于非工作状态时,当信号放大电路10的输入路径上的泄露信号的电压小于第二保护电路30的导通电压时,第二保护电路30处于非导通状态(截止状态),此时第二保护电路30的阻抗值为无穷大,无法实现将泄露信号释放到接地端。
因此,本申请的低噪声放大电路在第二保护电路30的基础上在信号放大电路10的输入路径上再接入一第一保护电路20,第一保护电路20和第二保护电路30均耦合在信号放大电路10的输入路径上。在信号放大电路10处于非工作状态时,第一保护电路20为低阻模式,即开关保护电路导通的状态下,若输入路径存在泄露信号,便可将信号放大电路10的输入路径上的泄露信号释放到接地端的电路。具体地,第一保护电路20,被配置为:当信号放大电路10的输入路径上的泄露信号的电压小于第二保护电路30中的导通电压,即在第二保护电路30处于截止状态时,将泄露信号释放到地;以及,当信号放大电路10的输入路径上的泄露信号的电压等于或大于第二保护电路30中的导通电压,即当第二保护电路30处于导通状态时,与第二保护电路30共同作用将泄露信号释放到地。其中,本实施例中的泄露信号可以为其他传输路径泄露至低噪声放大电路的输入路径中的泄露信号,或者其他任意可能会减短低噪声放大电路中的放大晶体管的寿命,以对低噪声放大电路中的放大晶体管的可靠性造成影响的信号。
作为另一示例,第二保护电路30,一端耦合在信号放大电路10的输入路径上,另一端与接地端相连,在信号放大电路10处于非工作状态时,第二保护电路30能够在泄露信号的电压大于该特定的导通电压时,处于导通状态,从而将泄露信号释放到地,相比较现有的保护电路无法全面有效地对低噪声放大电路的输入路径中的泄露信号进行处理,比如无法对一些较微弱的泄露信号进行全面有效的释放,本申请的低噪声放大电路在信号放大电路10处于非工作状态时,在第一保护电路20和第二保护电路30的共同作用下,可对泄露信号的进行全面有效处理以避免泄露信号减短低噪声放大电路中的放大晶体管的寿命,以对低噪声放大电路中的放大晶体管的可靠性造成影响。同时,本示例中,为了在信号放大电路10处于非工作状态时,对低噪声放大电路进行更加全面有效的保护,将第一保护电路20,第一端耦合在信号放大电路10的输入路径上,第二端与接地端连接,其中,第一保护电路20在低阻模式下所呈现出的阻抗较小,通常为十几欧姆,从而实现在泄露信号的电压未达到第二保护电路30的导通电压,处于截止状态时,将输入路径中的泄露信号释放到接地端,以避免泄露信号对低噪声放大电路中的放大晶体管的寿命和可靠性造成影响。进一步地,本实施例中的第一保护电路20在泄露信号的电压达到第二保护电路30的导通电压时,处于导通状态,此时,与第二保护电路30共同作用将输入路径中的泄露信号释放到接地端;从而进一步加强对泄露信号的释放,对低噪声放大电路实现更全面有效地保护。
在本实施例中,在信号放大电路10处于非工作状态时,第一保护电路20能够在第二保护电路30处于截止状态下时,将输入到信号放大电路10中的泄露信号释放到地,当第二保护电路30处于导通状态下时,与第二保护电路30共同作用将输入到信号放大电路10中的泄露信号释放到地,从而能够在较大的电压范围内实现对泄露信号的释放,解决了泄露信号对低噪声放大电路中的放大晶体管的可靠性造成影响的问题,从而对泄露信号的进行全面有效处理,达到对低噪声放大电路进行有效保护的目的。
如图5所示,本实施例提供一种信号收发电路,包括发射通路40和接收通路,发射通路40被配置通过切换开关50将发射信号发送至天线70;接收通路被配置为通过切换开关50接收来自天线70的接收信号,并对接收信号进行放大;接收通路包括上述实施例中的低噪声放大电路。
作为一示例,射频信号发射通路40,输入端与发射信号输入端相连,输出端与切换开关50的第一端相连;低噪声放大电路,输入端与切换开关50的第二端相连,输出端与接收信号输入端相连;切换开关50,第三端与双工器60相连;双工器60,与天线70相连,用于从发射通路40接收发送信号,并将发送信号发送至天线70,以及用于从天线70接收接收信号,并将接收信号发送至接收通路。
在本实施例中,该信号收发电路能在切换开关50切换至发射通路40时,也即在射频信号通过发射通路40传输至双工器60后经天线70进行发射时,由于切换开关50的隔离度有效,因此,发射通路40中的射频信号在经过切换开关50会泄露至接收通路中,从而给低噪声放大电路中的放大晶体管造成影响,因此,本申请通过在低噪声放大电路的输入路径中接入第一保护电路20和第二保护电路30,进而避免泄露至接收通路中的射频泄露信号影响低噪声放大电路中的放大晶体管,从而能够对低噪声放大电路中的放大晶体管进行有效的保护。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种低噪声放大电路,其中,包括信号放大电路、第一保护电路和第二保护电路;
    所述第一保护电路的第一端耦合在所述信号放大电路的输入路径上,所述第一保护电路的第二端与接地端相连,所述第一保护电路包括低阻模式和高阻模式;
    所述第二保护电路的一端耦合在所述信号放大电路的输入路径上,所述第二保护电路的另一端与接地端相连;
    在所述信号放大电路处于非工作状态时,所述第一保护电路处于低阻模式,若所述输入路径存在泄露信号,在所述泄露信号小于所述第二保护电路的导通阈值时,所述泄露信号通过所述第一保护电路释放到地,在所述泄露信号大于或者等于所述第二保护电路的导通阈值时,所述泄露信号通过所述第一保护电路和所述第二保护电路共同释放到地。
  2. 如权利要求1所述的低噪声放大电路,其中,在所述信号放大电路处于工作状态时,所述第一保护电路处于高阻模式。
  3. 如权利要求1所述的低噪声放大电路,其中,在所述第二保护电路处于导通状态下时,所述第二保护电路呈现出的阻抗小于所述第一保护电路呈现出的阻抗。
  4. 如权利要求1所述的低噪声放大电路,其中,所述第一保护电路包括保护开关,在所述信号放大电路处于工作状态时,所述保护开关断开。
  5. 如权利要求4所述的低噪声放大电路,其中,第一保护电路包括与所述保护开关串联连接的第一电阻。
  6. 如权利要求1所述的低噪声放大电路,其中,所述第一保护电路包括可调电阻。
  7. 如权利要求4所述的低噪声放大电路,其中,所述保护开关包括至少一个场效应晶体管;每一所述场效应晶体管依次连接,依次连接的首端场效应晶体管的源级连接至所述信号放大电路的输入路径上,依次连接的末端场效应晶体管的漏级与接地端相连,所述首端场效应晶体管的漏级与其相邻的场效应晶体管的源级相连,所述末端场效应晶体管的源级与其相邻的场效应晶体管的漏级相连,所述首端场效应晶体管和所述末端场效应晶体管之间依次连接的相邻两个场效应晶体管中邻近所述首端场效应晶体管的漏级、与邻近所述末端场效应晶体管的源级相连。
  8. 如权利要求1所述的低噪声放大电路,其中,所述第二保护电路包括第一二极管阵列和第二二极管阵列,所述第一二极管阵列和所述第二二极管阵列反向并联连接;所述第二保护电路的导通阈值与所述第一二极管阵列或所述第二二极管阵列的二极管数量呈正相关。
  9. 如权利要求8所述的低噪声放大电路,其中,所述第一二极管阵列包括至少一个第一二极管,第二二极管阵列包括至少一个第二二极管,每一所述第一二极管之间串联连接,每一所述第二二极管之间串联连接。
  10. 如权利要求8所述的低噪声放大电路,其中,所述第一二极管阵列中的所述第一二极管的数量和所述第二二极管阵列中的第二二极管的数量相同。
  11. 一种低噪声放大电路,其中,包括信号放大电路、第一保护电路和第二保护电路;
    所述第一保护电路的第一端耦合在所述信号放大电路的输入路径上,所述第一保护电路的第二端与接地端相连,所述第一保护电路包括低阻模式和高阻模式;
    所述第二保护电路的一端耦合在所述信号放大电路的输入路径上,所述第二保护电路的另一端与接地端相连,所述第二保护电路包括第一二极管阵列和第二二极管阵列,所述第一二极管阵列和所述第二二极管阵列反向并联连接,所述第二保护电路的导通阈值与所述第一二极管阵列或所述第二二极管阵列的二极管数量呈正相关;
    在所述信号放大电路处于非工作状态时,所述第一保护电路处于低阻模式,若所述输入路径存在泄露信号,在所述泄露信号的电压小于所述第二保护电路的导通阈值时,所述第二保护电路处于非导通状态,在所述泄露信号的电压大于或者等于所述第二保护电路的导通阈值时,所述第二保护电路处于导通状态。
  12. 一种信号收发电路,其中,包括发射通路和接收通路,所述发射通路被配置通过切换开关将发射信号发送至天线;所述接收通路被配置为通过所述切换开关接收来自所述天线的接收信号,并对所述接收信号进行放大;所述接收通路包括权利要求1至11任一项所述的低噪声放大电路。
PCT/CN2023/075849 2022-02-22 2023-02-14 低噪声放大电路及信号收发电路 WO2023160432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210163661.0A CN114584084A (zh) 2022-02-22 2022-02-22 低噪声放大电路及信号收发电路
CN202210163661.0 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023160432A1 true WO2023160432A1 (zh) 2023-08-31

Family

ID=81773485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075849 WO2023160432A1 (zh) 2022-02-22 2023-02-14 低噪声放大电路及信号收发电路

Country Status (2)

Country Link
CN (1) CN114584084A (zh)
WO (1) WO2023160432A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584084A (zh) * 2022-02-22 2022-06-03 锐石创芯(深圳)科技股份有限公司 低噪声放大电路及信号收发电路
CN115865123A (zh) * 2023-02-10 2023-03-28 南京燧锐科技有限公司 一种射频收发切换开关

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104644A (zh) * 2017-04-12 2017-08-29 江苏卓胜微电子有限公司 低噪声放大器
CN112953423A (zh) * 2019-12-10 2021-06-11 株式会社村田制作所 放大电路及通信装置
US20210376801A1 (en) * 2020-04-13 2021-12-02 Skyworks Solutions, Inc. Amplifier having input power protection
CN114584084A (zh) * 2022-02-22 2022-06-03 锐石创芯(深圳)科技股份有限公司 低噪声放大电路及信号收发电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8903332B2 (en) * 2009-06-23 2014-12-02 Silicon Laboratories Inc. Circuit device and method of coupling to an antenna
TWI664808B (zh) * 2018-11-20 2019-07-01 立積電子股份有限公司 放大裝置
JP2020205568A (ja) * 2019-06-19 2020-12-24 株式会社東芝 高周波増幅回路
US10938348B1 (en) * 2019-10-30 2021-03-02 Psemi Corporation Complete turn off and protection of branched cascode amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104644A (zh) * 2017-04-12 2017-08-29 江苏卓胜微电子有限公司 低噪声放大器
CN112953423A (zh) * 2019-12-10 2021-06-11 株式会社村田制作所 放大电路及通信装置
US20210376801A1 (en) * 2020-04-13 2021-12-02 Skyworks Solutions, Inc. Amplifier having input power protection
CN114584084A (zh) * 2022-02-22 2022-06-03 锐石创芯(深圳)科技股份有限公司 低噪声放大电路及信号收发电路

Also Published As

Publication number Publication date
CN114584084A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023160432A1 (zh) 低噪声放大电路及信号收发电路
KR102287445B1 (ko) 저잡음 증폭기를 바이패스하는 시스템 및 방법
US7688133B2 (en) Power amplifier
US8149049B2 (en) Low noise receiving apparatus
EP1468487B1 (en) A high performance bifet low noise amplifier
US10587114B2 (en) Bi-directional electrostatic discharge protection device for radio frequency circuits
CN105743450A (zh) 射频功率放大器
US8111105B1 (en) Variable gain BiCMOS amplifier
CN112272045A (zh) 一种接收通道带bypass功能的射频前端模组
US11152893B2 (en) Power amplifying circuit and power amplifier
US10938354B2 (en) Amplification device
US8598951B1 (en) Linear multi-mode power amplifier for dynamic supply operation
CN104753470A (zh) X频段低噪声放大器
WO2023160431A1 (zh) 低噪声放大电路及射频前端模组
CN113422583A (zh) 低噪声放大电路、射频前端模组及控制方法
JP7476530B2 (ja) 増幅回路及び通信装置
US9124354B2 (en) Isolation and protection circuit for a receiver in a wireless communication device
JP2012019500A (ja) バイアス回路および無線通信機
Poh et al. High gain, high linearity, L-band SiGe low noise amplifier with fully-integrated matching network
WO2022155918A1 (zh) 一种电子器件、光电接收机、光模块及网络设备
US11323080B2 (en) Amplification circuit, radio-frequency front end circuit, and communication device
CN101295964B (zh) 具有交叉耦合电容的差动回馈放大电路
JP2020205568A (ja) 高周波増幅回路
Zhong et al. A Dual Mode Integrated LNA and Switch for WLAN Receiver
Xiao et al. A DC-10GHz SPDT RF Switch with Bulk Self-Biasing Technique in 0.25 µm BiCMOS Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759057

Country of ref document: EP

Kind code of ref document: A1