CN113422583A - 低噪声放大电路、射频前端模组及控制方法 - Google Patents

低噪声放大电路、射频前端模组及控制方法 Download PDF

Info

Publication number
CN113422583A
CN113422583A CN202110638356.8A CN202110638356A CN113422583A CN 113422583 A CN113422583 A CN 113422583A CN 202110638356 A CN202110638356 A CN 202110638356A CN 113422583 A CN113422583 A CN 113422583A
Authority
CN
China
Prior art keywords
circuit
bypass
radio frequency
low
amplification circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110638356.8A
Other languages
English (en)
Inventor
丁团结
宋楠
倪建兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
An Advanced Rf Power Amplifier And Communication Device
Original Assignee
An Advanced Rf Power Amplifier And Communication Device
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by An Advanced Rf Power Amplifier And Communication Device filed Critical An Advanced Rf Power Amplifier And Communication Device
Priority to CN202110638356.8A priority Critical patent/CN113422583A/zh
Publication of CN113422583A publication Critical patent/CN113422583A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种低噪声放大电路、射频前端模组及控制方法,该低噪声放大电路包括射频放大电路和反馈旁路电路;射频放大电路,被配置为接收射频输入信号,对射频输入信号进行放大处理,输出射频放大信号;反馈旁路电路,一端耦合至射频放大电路的输入端,另一端耦合至射频放大电路的输出端;反馈旁路电路,被配置为在低噪声放大电路为信号放大模式时,形成反馈路径,在低噪声放大电路为旁路模式时,形成旁路路径。本技术方案通过一条反馈旁路电路就能够兼顾低噪声放大电路的信号放大模式和旁路模式的实现,通过该反馈旁路电路既能够保证低噪声放大电路高增益模式下的稳定性,也提供了多增益挡位的配置方式。

Description

低噪声放大电路、射频前端模组及控制方法
技术领域
本发明涉及射频前端技术领域,尤其涉及一种低噪声放大电路、射频前端模组及控制方法。
背景技术
在射频技术领域中一般包含用于接收射频信号的接收链路。接收链路中包括低噪声放大器。低噪声放大器作为接收链路的第一级,可能需要对来自天线的射频接收信号进行放大处理。在射频(RF)应用中,为了能对射频接收到的不同功率等级的信号进行有效处理,低噪声放大电路常需处于不同的工作模式。例如,低噪声放大电路需工作于旁路模式,或者工作于放大模式;由于不同的工作模式对低噪声放大电路的性能要求不同,因此对低噪声放大电路的整体性能提出了更高的要求,且大大增加的低噪声放大电路的设计难度。
发明内容
本发明实施例提供一种低噪声放大电路、射频前端模组及控制方法,以解决低噪声放大电路的性能较差的问题。
一种低噪声放大电路,所述低噪声放大电路包括射频放大电路和反馈旁路电路;
所述射频放大电路,被配置为接收射频输入信号,对所述射频输入信号进行放大处理,输出射频放大信号;
所述反馈旁路电路,一端耦合至所述射频放大电路的输入端,另一端耦合至所述射频放大电路的输出端;
其中,所述反馈旁路电路,被配置为在所述低噪声放大电路为信号放大模式时,形成反馈路径,在所述低噪声放大电路为旁路模式时,形成旁路路径。
进一步地,所述反馈旁路电路包括公共网络和选通网络,所述公共网络和选通网络串联连接在所述射频放大电路的输入端和输出端之间。
进一步地,所述选通网络包括第一选通单元和第二选通单元;
在所述射频放大电路为信号放大模式时,所述第一选通单元与所述公共网络串联形成反馈路径;
在所述射频放大电路为旁路模式时,所述第二选通单元与所述公共网络串联形成旁路路径。
进一步地,在所述低噪声放大电路为旁路模式时,所述第一选通单元的阻抗小于所述第二选通单元的阻抗。
进一步地,所述公共网络包括第一电容。
进一步地,所述第一选通单元包括反馈电阻。
进一步地,所述第二选通单元包括旁路开关,在所述低噪声放大电路为信号放大模式时,所述旁路开关断开,在所述低噪声放大电路为旁路模式时,所述旁路开关闭合。
进一步地,所述第二选通单元还包括与所述旁路开关串联的旁路元件,所述旁路元件的阻抗小于所述反馈电阻的阻抗。
进一步地,所述旁路元件为第一电阻。
一种射频前端模组,包括上述的低噪声放大电路。
一种低噪声放大电路的控制方法,包括:接收控制信号,根据所述控制信号控制所述低噪声放大电路的工作模式,以使所述所述反馈旁路电路在所述低噪声放大电路为信号放大模式时,形成反馈路径,在所述低噪声放大电路为旁路模式时,形成旁路路径。
上述低噪声放大电路、射频前端模组及控制方法,低噪声放大电路包括射频放大电路和反馈旁路电路;反馈旁路电路,一端耦合至射频放大电路的输入端,另一端耦合至射频放大电路的输出端;在旁路模式下,反馈旁路电路将射频输入信号旁路传输至低噪声放大电路的输出端,通过一条反馈旁路电路就能够兼顾低噪声放大电路的信号放大模式和旁路模式的实现,通过该反馈旁路电路既能够保证低噪声放大电路高增益模式下的稳定性,也提供了多增益挡位的配置方式,还提高了低噪声放大电路的集成度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中低噪声放大电路的一电路示意图;
图2是本发明一实施例中低噪声放大电路的另一电路示意图;
图3是本发明一实施例中低噪声放大电路的另一电路示意图;
图4是本发明一实施例中低噪声放大电路的另一电路示意图;
图5是本发明一实施例中低噪声放大电路的另一电路示意图;
图6是本发明一实施例中低噪声放大电路的另一电路示意图。
图中:10、射频放大电路;20、反馈旁路电路;21、公共网络;22、选通网络;221、第一选通单元;222、第二选通单元;2221、旁路元件;30、后级放大电路;40、增益调节电路。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大自始至终相同附图标记表示相同的元件。
应当明白,当元件或层被称为“在…上”、“与…相邻”、“与…相连”“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在…上”、“与…直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在…下”、“在…下面”、“下面的”、“在…之下”、“在…之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在…下面”和“在…下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的结构及步骤,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
本实施例提供一种低噪声放大电路,如图1所示,低噪声放大电路包括射频放大电路10和反馈旁路电路20;射频放大电路10,被配置为接收射频输入信号,对射频输入信号进行放大处理,输出射频放大信号;反馈旁路电路20,一端耦合至射频放大电路10的输入端,另一端耦合至射频放大电路10的输出端;其中,反馈旁路电路20,被配置为在低噪声放大电路为信号放大模式下时,形成反馈路径,在低噪声放大电路为旁路模式下时,形成旁路路径。
具体地,射频输入信号为待进行放大处理的信号。射频放大信号为射频输入信号经过射频放大电路10进行放大处理后得到的信号。信号放大模式为射频输入信号需经过低噪声放大电路中的射频放大电路10进行放大处理的模式。旁路模式为射频输入信号不需经过低噪声放大电路中的射频放大电路10进行放大处理的模式。
在一具体实施例中,在所述低噪声放大电路为信号放大模式时,形成反馈路径。
在一具体实施例中,在所述低噪声放大电路为旁路模式时,形成旁路路径;此时所述射频放大电路10不工作,射频输入信号经过该旁路路径旁路传输至低噪声放大电路的输出端,进而传输至后级电路进行信号处理。
作为一示例,低噪声放大电路还包括信号输入端Vin和信号输出端Vout。信号输入端Vin为接收射频输入信号的端口。信号输出端Vout为输出射频放大信号的端口。射频放大电路10设置在信号输入端Vin和信号输出端Vout之间,被配置为接收射频输入信号,对射频输入信号进行放大处理,输出射频放大信号。本示例中,射频放大电路10可以包括多个串联连接的射频放大晶体管。射频放大晶体管可为BJT晶体管(例如,HBT晶体管)或场效应晶体管,以实现在当低噪声放大电路处于信号放大模式下,对射频输入信号进行多次放大,提高低噪声放大电路的增益。例如,射频放大电路10包括串联连接的第一放大晶体管M11和第二放大晶体管M12,第一放大晶体管M11和第二放大晶体管M12均为BJT晶体管时,第一放大晶体管M11和第二放大晶体管M12均可以为NPN管。
在一具体实施例中,低噪声放大电路还包括设置在信号输入端Vin与射频放大电路10的输入端之间的隔直电容C11。隔直电容C11被配置为对射频输入信号中的直流信号进行阻隔。其中,隔直电容C11的一端与信号输入端Vin连接,另一端与反馈旁路电路20和所述射频放大电路10的输入端的连接节点连接,或者,隔直电容C11的一端与反馈旁路电路20和所述射频放大电路10的输入端的连接节点连接,另一端与第一放大晶体管11的输入端连接。
第一放大晶体管M11的基极(栅极)与隔直电容C11相连,集电极(源级)与第二放大晶体管M12的发射极(漏级)相连,第一放大晶体管M11的发射极(漏级)通过电感L41与接地端相连,被配置为在信号放大模式时,对射频输入信号进行第一次放大。第二放大晶体管M12的基极(栅极)与供电端VDD相连,集电极(源级)与信号输出端Vout相连,以及通过负载电感L1与馈电电源VDD相连,第二放大晶体管M12被配置为在信号放大模式时,对射频输入信号进行第二次放大,实现低噪声放大电路的高增益。
作为另一示例,反馈旁路电路20,一端耦合至射频放大电路10的输入端,另一端耦合至射频放大电路10的输出端。当低噪声放大电路在信号放大模式下,也即当低噪声放大电路中的射频放大电路10对射频输入信号进行信号放大处理时,为了保证低噪声放大电路的稳定性,反馈旁路电路20根据射频放大电路10输出的射频放大信号对射频输入信号进行调整,以使低噪声放大电路更加稳定,进而提高低噪声放大电路的线性度。
作为另一示例,当低噪声放大电路在旁路模式时,也即当不需要采用低噪声放大电路中的射频放大电路10对射频输入信号进行信号放大处理时,射频放大电路10不工作,射频输入信号通过反馈旁路电路20传输至低噪声放大电路的输出端,进而传输至后级电路进行信号处理。在本示例中,通过一条反馈旁路电路20就能够兼顾低噪声放大电路的信号放大模式和旁路模式的实现,通过该反馈旁路电路20既能够保证低噪声放大电路高增益模式下的稳定性,也提供了多增益挡位的配置方式。
在本实施例中,低噪声放大电路包括射频放大电路10和反馈旁路电路20;反馈旁路电路20,一端耦合至射频放大电路10的输入端,另一端耦合至射频放大电路10的输出端;在信号放大模式下,反馈旁路电路20根据射频放大电路10输出的射频放大信号对射频输入信号进行调整,在旁路模式下,反馈旁路电路20将射频输入信号旁路传输至低噪声放大电路的输出端,通过一条反馈旁路电路20就能够兼顾低噪声放大电路的信号放大模式和旁路模式的实现,通过该反馈旁路电路20既能够保证低噪声放大电路高增益模式下的稳定性,也提供了多增益挡位的配置方式。
在一实施例中,如图2所示,反馈旁路电路20包括公共网络21和选通网络22,公共网络21和选通网络22串联连接在射频放大电路10的输入端和输出端之间。
作为一示例,公共网络21和选通网络22串联连接,公共网络21与射频放大电路10的输入端相连,选通网络22与射频放大电路10的输出端相连,在信号放大模式下,公共网络21与选通网络22形成反馈路径,根据射频放大电路10输出的射频放大信号对射频输入信号进行调整,在旁路模式下,公共网络21与选通网络22形成旁路路径,将射频输入信号旁路传输至低噪声放大电路的输出端,从而在保证低噪声放大电路的增益和稳定性的同时,还提高了低噪声放大电路的集成度。
作为另一示例,公共网络21和选通网络22串联连接,公共网络21与射频放大电路10的输出端相连,选通网络22与射频放大电路10的输入端相连,该连接方式同样能够在在信号放大模式下,公共网络21与选通网络22形成反馈路径,根据射频放大电路10输出的射频放大信号对射频输入信号进行调整,在旁路模式下,公共网络21与选通网络22形成旁路路径,将射频输入信号旁路传输至低噪声放大电路的输出端,从而在保证低噪声放大电路的增益和稳定性的同时,还提高了低噪声放大电路的集成度。
在本实施例中,反馈旁路电路20通过串联连接在射频放大电路10的输入端和输出端之间的公共网络21和选通网络22,便能在信号放大模式和旁路模式和对射频输入信号进行不同的处理,通过一条反馈旁路电路20就能够兼顾低噪声放大电路的信号放大模式和旁路模式的实现,通过该反馈旁路电路20既能够保证低噪声放大电路高增益模式下的稳定性,也提供了多增益挡位的配置方式。
在一实施例中,如图3所示,选通网络22包括第一选通单元221和第二选通单元222;在射频放大电路10为信号放大模式时,第一选通单元221与公共网络21串联形成反馈路径;在射频放大电路10为旁路模式时,第二选通单元222与公共网络21串联形成旁路路径。
作为一示例,当低噪声放大电路在信号放大模式下,为了保证低噪声放大电路的稳定性,公共网络21与第一选通单元221串联形成反馈路径,通过该反馈路径能够根据射频放大电路10输出的射频放大信号对射频输入信号进行调整,从而保证低噪声放大电路的稳定性。
作为另一示例,当低噪声放大电路在旁路模式时,也即是当不需要采用低噪声放大电路中的射频放大电路10对射频输入信号进行信号放大处理时,射频放大电路10不工作,射频输入信号通过第二选通单元222与公共网络21串联形成旁路路径传输至低噪声放大电路的输出端,进而传输至后级电路进行信号处理。
在本实施例中,当低噪声放大电路在信号放大模式下,公共网络21和第一选通单元221串联形成反馈路径,在所述射频放大电路10为旁路模式时,射频放大电路10不工作,所述第二选通单元222与所述公共网络21串联形成旁路路径,从而在保证低噪声放大电路的增益和稳定性的同时,还能够降低低噪声放大电路的电路复杂度,以提高低噪声放大电路的集成度。
在一实施例中,在所述射频放大电路10为旁路模式时,所述第一选通单元221的阻抗小于所述第二选通单元222的阻抗。
在本实施例中,在所述射频放大电路10为旁路模式时,所述第一选通单元221的阻抗小于所述第二选通单元222的阻抗,从而实现在所述低噪声放大电路为旁路模式、第二选通单元222与公共网络21串联形成旁路路径时,射频输入信号经过旁路路径传输至射频放大电路10的输出端,避免射频输入信号泄露至反馈路径中。
在一实施例中,如图4所示,公共网络21包括第一电容C211;第一电容C211的一端与射频放大电路10的输入端或输出端相连,另一端分别与第一选通单元221的第一端和第二选通单元222的第一端连接。其中,第一电容C211为用于滤除直流信号的电容。
在本实施例中,第一电容C211的一端与射频放大电路10的输入端或输出端相连,另一端分别与第一选通单元221的第一端和第二选通单元222的第一端连接,被配置为信号放大模式下,对流过反馈路径中的直流信号进行滤除处理,在旁路模式下,对流过旁路路径中的直流信号进行滤除处理,从而防止直流信号造成低噪声放大电路的零点漂移,造成工作的不稳定和失真,以保证低噪声放大电路的稳定性。
在一实施例中,如图4所示,第一选通单元221包括反馈电阻R2211;反馈电阻R2211,一端与公共网络21相连,另一端耦合至射频放大电路10的输出端或输入端,被配置为在信号放大模式下,与公共网络21形成反馈路径。
其中,反馈电阻R2211为用于与公共网络21形成反馈路径的电阻。反馈电阻R2211的阻值可以根据实际情况自定义设置,只需保证反馈电阻R2211的总阻抗值大于旁路路径中的电阻的阻抗值即可,如此,在低噪声放大电路处于旁路模式下时,由于反馈路径上的阻抗值远大于旁路路径上的阻抗值,因此,射频输入信号即可通过旁路路径传输至低噪声放大电路的输出端,以在保证低噪声放大电路的稳定性的同时,进而提高了低噪声放大电路的集成度。
在本实施例中,反馈电阻R2211,一端与公共网络21相连,另一端耦合至射频放大电路10的输出端,被配置为在信号放大模式下,与公共网络21形成反馈路径,反馈路径根据射频放大电路10输出的射频放大信号对射频输入信号进行调整,保证低噪声放大电路的稳定性。
在一实施例中,如图4所示,第二选通单元222包括旁路开关S2221;在低噪声放大电路为信号放大模式下时,旁路开关S2221断开,在低噪声放大电路为旁路模式下时,旁路开关S2221闭合。
其中,旁路开关S2221为用于切换所述低噪声放大电路的工作模式的开关。在射频放大电路10为信号放大模式下时,旁路开关S2221断开,射频放大电路10对射频输入信号进行放大处理;在所述低噪声放大电路为旁路模式时,射频放大电路10不工作,旁路开关S2221闭合,与第一电容C211串联形成旁路路径。
在一具体实施例中,由于当射频放大电路10在信号放大模式下时,旁路开关S2221断开,旁路开关S在断开状态下的阻抗值为无穷大,射频输入信号不能通过旁路路径传输至射频放大电路10的输出端,此时,反馈旁路电路20可根据射频放大电路10输出的射频放大信号对射频输入信号进行调整。当所述低噪声放大电路在旁路模式时,旁路开关S2221闭合,旁路开关S在闭合状态下的阻抗值很小,远大于反馈路径中的反馈电阻R2211的阻值,此时射频放大电路10不工作,射频输入信号经过旁路路径传输至射频放大电路10的输出端。
作为一示例,在旁路模式下,旁路开关S2221闭合,与第一电容C211串联形成旁路路径,由于反馈路径的阻抗值要大于旁路路径的阻抗值,因此,射频输入信号经过旁路路径旁路传输至低噪声放大电路的输出端。需要说明的是,在信号放大模式下,为了防止射频输入信号通过旁路路径传输至低噪声放大电路的输出端,旁路开关S2221需处于断开状态。
在本实施例中,旁路开关S2221,一端与公共网络21相连,另一端耦合至射频放大电路10的输出端/输入端,被配置为在旁路模式下,与第一电容C211串联形成旁路路径,在旁路模式下,将射频输入信号旁路传输至低噪声放大电路的输出端,以保证低噪声放大电路的稳定性的同时,进而提高了低噪声放大电路的集成度。
在一实施例中,如图5所示,第二选通单元222还包括与旁路开关S2221串联的旁路元件2221;旁路元件2221的阻抗应小于反馈电阻R2211的阻抗。其中,旁路元件2221为对射频输入信号起衰减作用的元件。在本实施例中,反馈电阻R2211对应的阻抗应大于旁路元件2221对应的阻抗;从而实现在所述低噪声放大电路为旁路模式、旁路开关S2221闭合时,射频输入信号经过旁路路径传输至射频放大电路10的输出端,避免射频输入信号泄露至反馈路径中。
需要说明的是,为了避免旁路元件2221给低噪声放大电路带来过大的损耗,在不影响低噪声放大电路的稳定性的同时,旁路元件2221的阻抗应尽可能小。比如:旁路元件2221的阻抗小于10欧姆。
作为一示例,在低噪声放大电路为旁路模式下时,为了保证低噪声放大电路的稳定性,第二选通单元222还包括与旁路开关S2221串联的旁路元件2221;旁路开关S2221和旁路元件2221串联连接,在低噪声放大电路为旁路模式下时,旁路开关S2221、旁路元件2221和第一电容C211串联形成旁路路径,射频输入信号经过旁路元件2221旁路开关S2221、旁路元件2221和第一电容C211形成的旁路路径之后,传输至低噪声放大电路的输出端。
在本实施例中,第二选通单元222还包括与旁路开关S2221串联的旁路元件2221,射频输入信号经过旁路元件2221的稳定作用后,旁路传输至低噪声放大电路的输出端,进而提高了低噪声放大电路在旁路模式下的稳定性。
在一实施例中,如图6所示,旁路元件2221为第一电阻R2221,被配置为在旁路模式下,射频输入信号经过旁路元件2221进行信号稳定,提高低噪声放大电路在旁路模式下的稳定性。
在一实施例中,如图4所示,低噪声放大电路还包括后级放大电路30;后级放大电路30可以为输出匹配电路或者衰减电路,以对经射频放大电路10进行放大处理后的射频放大信号,或者对射频输入信号经旁路路径传输至输出端的信号进行后级信号处理。后级放大电路30,被配置为在信号放大模式下,接收射频放大电路10输出的射频放大信号;在旁路模式下,接收被反馈旁路电路20旁路传输的射频输入信号;以便进一步对射频放大电路10输出的射频放大信号或者经旁路路径传输至输出端的射频信号进行进一步后级处理。
进一步地,如图4所示,低噪声放大电路还包括增益调节电路40;增益调节电路40,一端与射频放大电路10相连,另一端与接地端相连,被配置为对射频放大电路10进行增益调节。
作为一示例,如图4所示,增益调节电路40包括增益调节电感L41,增益调节电感L41,一端与射频放大电路10相连,另一端与接地端相连,被配置为对射频放大电路10进行增益调节,提高低噪声放大电路的增益和线性度。
一种射频前端模组,包括上述的低噪声放大电路,该低噪声放大电路通过一条反馈旁路电路20即能够实现低噪声放大电路的信号放大模式和旁路模式时,从而在保证低噪声放大电路的增益和稳定性的同时,还进一步提高了低噪声放大电路的集成度。
一种低噪声放大电路的控制方法,包括:接收控制信号,根据所述控制信号控制所述低噪声放大电路的工作模式,以使所述所述反馈旁路电路20在所述低噪声放大电路为信号放大模式时,形成反馈路径,在所述低噪声放大电路为旁路模式时,形成旁路路径。本申请通过控制信号控制所述低噪声放大电路在所述低噪声放大电路为信号放大模式时,形成反馈路径,在所述低噪声放大电路为旁路模式时,形成旁路路径,即通过一条反馈旁路电路20就能够兼顾低噪声放大电路的信号放大模式和旁路模式的实现,通过该反馈旁路电路20既能够保证低噪声放大电路高增益模式下的稳定性,也提供了多增益挡位的配置方式。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (11)

1.一种低噪声放大电路,其特征在于,所述低噪声放大电路包括射频放大电路和反馈旁路电路;
所述射频放大电路,被配置为接收射频输入信号,对所述射频输入信号进行放大处理,输出射频放大信号;
所述反馈旁路电路,一端耦合至所述射频放大电路的输入端,另一端耦合至所述射频放大电路的输出端;
其中,所述反馈旁路电路,被配置为在所述低噪声放大电路为信号放大模式时,形成反馈路径,在所述低噪声放大电路为旁路模式时,形成旁路路径。
2.如权利要求1所述的低噪声放大电路,其特征在于,所述反馈旁路电路包括公共网络和选通网络,所述公共网络和选通网络串联连接在所述射频放大电路的输入端和输出端之间。
3.如权利要求2所述的低噪声放大电路,其特征在于,所述选通网络包括第一选通单元和第二选通单元;
在所述射频放大电路为信号放大模式时,所述第一选通单元与所述公共网络串联形成反馈路径;
在所述射频放大电路为旁路模式时,所述第二选通单元与所述公共网络串联形成旁路路径。
4.如权利要求3所述的低噪声放大电路,其特征在于,在所述低噪声放大电路为旁路模式时,所述第一选通单元的阻抗小于所述第二选通单元的阻抗。
5.如权利要求2所述的低噪声放大电路,其特征在于,所述公共网络包括第一电容。
6.如权利要求3所述的低噪声放大电路,其特征在于,所述第一选通单元包括反馈电阻。
7.如权利要求6所述的低噪声放大电路,其特征在于,所述第二选通单元包括旁路开关,在所述低噪声放大电路为信号放大模式时,所述旁路开关断开,在所述低噪声放大电路为旁路模式时,所述旁路开关闭合。
8.如权利要求7所述的低噪声放大电路,其特征在于,所述第二选通单元还包括与所述旁路开关串联的旁路元件,所述旁路元件的阻抗小于所述反馈电阻的阻抗。
9.如权利要求8所述的低噪声放大电路,其特征在于,所述旁路元件为第一电阻。
10.一种射频前端模组,其特征在于,包括权利要求1至9任一项所述的低噪声放大电路。
11.一种如权利要求1-9中任意一项所述的低噪声放大电路的控制方法,其特征在于,包括:
接收控制信号,根据所述控制信号控制所述低噪声放大电路的工作模式,以使所述所述反馈旁路电路在所述低噪声放大电路为信号放大模式时,形成反馈路径,在所述低噪声放大电路为旁路模式时,形成旁路路径。
CN202110638356.8A 2021-06-08 2021-06-08 低噪声放大电路、射频前端模组及控制方法 Pending CN113422583A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110638356.8A CN113422583A (zh) 2021-06-08 2021-06-08 低噪声放大电路、射频前端模组及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110638356.8A CN113422583A (zh) 2021-06-08 2021-06-08 低噪声放大电路、射频前端模组及控制方法

Publications (1)

Publication Number Publication Date
CN113422583A true CN113422583A (zh) 2021-09-21

Family

ID=77788018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110638356.8A Pending CN113422583A (zh) 2021-06-08 2021-06-08 低噪声放大电路、射频前端模组及控制方法

Country Status (1)

Country Link
CN (1) CN113422583A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584079A (zh) * 2022-02-17 2022-06-03 锐石创芯(深圳)科技股份有限公司 低噪声放大电路
WO2023229860A1 (en) * 2022-05-27 2023-11-30 Psemi Corporation Feedback topologies for amplifier gain reduction

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005092A (ja) * 2007-06-21 2009-01-08 New Japan Radio Co Ltd 利得可変型低雑音増幅器
CN101944883A (zh) * 2010-08-24 2011-01-12 上海集成电路研发中心有限公司 低噪声放大器
CN105978512A (zh) * 2016-05-06 2016-09-28 江苏卓胜微电子有限公司 多可配置旁路模式的低噪声放大器
CN107888153A (zh) * 2017-10-20 2018-04-06 江苏卓胜微电子股份有限公司 一种低噪声放大器和利用低噪声放大器的射频放大方法
CN108306623A (zh) * 2017-01-13 2018-07-20 上海韦玏微电子有限公司 低噪声放大器
CN110838826A (zh) * 2018-08-17 2020-02-25 三星电机株式会社 具有隔离特性的放大装置
CN111313842A (zh) * 2018-12-11 2020-06-19 三星电机株式会社 偏置电路以及放大器
CN111510089A (zh) * 2020-04-30 2020-08-07 中国电子科技集团公司第二十四研究所 一种带旁路功能的低噪声放大模块及控制方法
CN112039442A (zh) * 2020-08-07 2020-12-04 广州慧智微电子有限公司 一种双频低噪声放大器电路、低噪声放大器及设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005092A (ja) * 2007-06-21 2009-01-08 New Japan Radio Co Ltd 利得可変型低雑音増幅器
CN101944883A (zh) * 2010-08-24 2011-01-12 上海集成电路研发中心有限公司 低噪声放大器
CN105978512A (zh) * 2016-05-06 2016-09-28 江苏卓胜微电子有限公司 多可配置旁路模式的低噪声放大器
CN108306623A (zh) * 2017-01-13 2018-07-20 上海韦玏微电子有限公司 低噪声放大器
CN107888153A (zh) * 2017-10-20 2018-04-06 江苏卓胜微电子股份有限公司 一种低噪声放大器和利用低噪声放大器的射频放大方法
CN110838826A (zh) * 2018-08-17 2020-02-25 三星电机株式会社 具有隔离特性的放大装置
CN111313842A (zh) * 2018-12-11 2020-06-19 三星电机株式会社 偏置电路以及放大器
CN111510089A (zh) * 2020-04-30 2020-08-07 中国电子科技集团公司第二十四研究所 一种带旁路功能的低噪声放大模块及控制方法
CN112039442A (zh) * 2020-08-07 2020-12-04 广州慧智微电子有限公司 一种双频低噪声放大器电路、低噪声放大器及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584079A (zh) * 2022-02-17 2022-06-03 锐石创芯(深圳)科技股份有限公司 低噪声放大电路
WO2023229860A1 (en) * 2022-05-27 2023-11-30 Psemi Corporation Feedback topologies for amplifier gain reduction

Similar Documents

Publication Publication Date Title
US6351183B1 (en) Switched amplifying device
US7649418B2 (en) Variable-gain amplifier
US6211737B1 (en) Variable gain amplifier with improved linearity
TW516266B (en) Constant impedance for switchable amplifier with power control
US7679452B2 (en) Amplifier arrangement and method
US7688133B2 (en) Power amplifier
CN108566167B (zh) 低噪声放大电路
CN111510089B (zh) 一种带旁路功能的低噪声放大模块及控制方法
KR20050027993A (ko) 스위칭 이득 증폭기
KR101732279B1 (ko) 저잡음 증폭기 모듈을 위한 시스템 및 방법
US6492869B1 (en) Linear amplifier and radio communication apparatus using the same
CN113422583A (zh) 低噪声放大电路、射频前端模组及控制方法
WO2024066713A1 (zh) 多频段可调增益的低噪声放大器
JP5640725B2 (ja) 電力増幅器
US9628023B2 (en) Apparatus and methods for multi-mode low noise amplifiers
JP2003501930A (ja) 利得が切り換えられる低雑音増幅器および方法
CN116961690B (zh) 双模射频前端模组
CN114567271B (zh) 低噪声放大电路及射频前端模组
KR20020008746A (ko) 가변이득증폭기
US8115552B2 (en) Amplifier circuit with step gain
WO2006095416A1 (ja) 減衰器を備えた高周波増幅器
JP2007243872A (ja) トランジスタ回路及びそれを用いた高周波増幅器
US6693492B2 (en) Variable gain low-noise amplifier and method
US7541876B2 (en) Amplifier and method for operating the same
KR20150096193A (ko) 다중이득 모드를 지원하는 저잡음 증폭기

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 518000 room 2001, building 3, Shenzhen new generation industrial park, 136 Zhongkang Road, Meidu community, Meilin street, Futian District, Shenzhen City, Guangdong Province

Applicant after: Ruishi Chuangxin (Shenzhen) Technology Co.,Ltd.

Address before: 518000 room 2001, building 3, Shenzhen new generation industrial park, 136 Zhongkang Road, Meidu community, Meilin street, Futian District, Shenzhen City, Guangdong Province

Applicant before: AN ADVANCED RF POWER AMPLIFIER AND COMMUNICATION DEVICE