WO2023160364A1 - 转子、电机、压缩机和空调器 - Google Patents

转子、电机、压缩机和空调器 Download PDF

Info

Publication number
WO2023160364A1
WO2023160364A1 PCT/CN2023/074642 CN2023074642W WO2023160364A1 WO 2023160364 A1 WO2023160364 A1 WO 2023160364A1 CN 2023074642 W CN2023074642 W CN 2023074642W WO 2023160364 A1 WO2023160364 A1 WO 2023160364A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
core shaft
rotor core
rotor
magnetic isolation
Prior art date
Application number
PCT/CN2023/074642
Other languages
English (en)
French (fr)
Inventor
李镇杉
吴昕
辜永刚
吴文辉
Original Assignee
重庆美的通用制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆美的通用制冷设备有限公司, 美的集团股份有限公司 filed Critical 重庆美的通用制冷设备有限公司
Publication of WO2023160364A1 publication Critical patent/WO2023160364A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures

Definitions

  • the present disclosure relates to the technical field of motors, in particular, to a rotor, a motor, a compressor and an air conditioner.
  • the surface-mounted permanent magnet rotor includes the rotor shaft, magnetic steel and non-magnetic metal. Since there is no effective fixing structure, the effective positioning of the non-magnetic metal cannot be guaranteed, and the phenomenon of displacement is easy to occur, and the device cannot be guaranteed. The matching size will affect the performance of the product.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art or related art.
  • a first aspect of the present disclosure proposes a rotor.
  • a second aspect of the present disclosure proposes an electric machine.
  • a third aspect of the present disclosure proposes a compressor.
  • a fourth aspect of the present disclosure proposes an air conditioner.
  • the first aspect of the present disclosure provides a rotor, including: a rotor core shaft; a jacket structure connected to the peripheral side of the rotor core shaft, between the inner surface of the jacket structure and the outer surface of the rotor core shaft
  • the installation chamber is enclosed; a plurality of magnetic steels are located in the installation chamber, and the plurality of magnetic steels are distributed on the periphery of the rotor core shaft at intervals, and any two adjacent magnetic steels in the plurality of magnetic steels are connected to the cavity of the installation chamber.
  • a magnetic isolation cavity is enclosed between the walls; a plurality of magnetic isolation parts, each magnetic isolation cavity is provided with a magnetic isolation part, and the magnetic isolation parts are connected to the cavity walls of the magnetic isolation cavity.
  • the disclosure provides a rotor core shaft, a sheath structure, a plurality of magnetic steels and a plurality of magnetic isolation parts.
  • the plurality of magnetic steels are located on the peripheral side of the rotor core shaft, and the plurality of magnetic steels are arranged at intervals along the circumferential direction of the rotor.
  • a magnetic isolation cavity is enclosed between any two adjacent magnetic steels among the plurality of magnetic steels and the cavity wall of the installation chamber, that is, between the plurality of magnetic steels, the outer surface of the rotating core shaft and the inner surface of the sheath structure
  • a plurality of magnetic isolation cavities are formed between each magnetic isolation cavity, and a magnetic isolation member is arranged in each magnetic isolation cavity, and the magnetic isolation member is connected to the wall of the magnetic isolation cavity.
  • the magnetic isolation part can be connected with the cavity wall of the magnetic isolation cavity, the matching size of the magnetic isolation part and the magnetic isolation cavity can be ensured, and the That is, it can ensure the matching dimensions of the magnetic isolation parts, magnetic steel, sheath structure and rotor core shaft, and there will be no displacement of the magnetic isolation parts, providing effective and reliable structural support for ensuring the performance of the rotor.
  • the side walls of two adjacent magnetic steels form a part of the magnetic isolation cavity, and the magnetic isolation parts are located in the magnetic isolation cavity. parts, which can ensure the magnetic isolation effect of the magnetic isolation parts.
  • the sheath structure has a protective effect on the magnetic steel and magnetic isolation parts, so as to meet the use requirements of high-speed motors.
  • a magnetic isolation member is formed by injection molding in the magnetic isolation cavity.
  • each magnetic isolation cavity is injection-molded with a magnetic isolation part, that is, a magnetic isolation part formed by injection molding Attach to any of magnets, sheath structures, and rotor mandrels.
  • a magnetic isolation part that is, a magnetic isolation part formed by injection molding Attach to any of magnets, sheath structures, and rotor mandrels.
  • the magnetic steel, the sheath structure and the rotor core shaft are effectively connected as a whole through the magnetic isolation piece.
  • each magnetic isolation cavity is injection-molded with magnetic isolation parts to ensure the dimensional accuracy of the product, that is, to ensure the matching dimensions of the magnetic isolation parts, magnetic steel, sheath structure and rotor core shaft, which can effectively avoid the composition of the rotor.
  • the occurrence of component displacement provides an effective and reliable structural support to ensure the performance of the rotor.
  • the injection molding material is filled into the magnetic isolation cavity by injection molding, so that the injection molding material fills the magnetic isolation cavity, so that the magnetic steel, the sheath structure and the rotor
  • the mandrel is assembled as a whole through the magnetic spacer.
  • the magnetic isolation part is a metal part, and the degree of freedom of the metal part is limited by the size of the magnetic isolation cavity, which is not conducive to the assembly of the magnetic isolation part.
  • a magnetic isolation part is formed by injection molding in the magnetic isolation cavity. Since the injection molding material has good fluidity and filling properties, the setting of the magnetic isolation part is not limited by the shape of the magnetic isolation cavity, which makes up for the Insufficient degrees of freedom of machined metal parts in the related art can not only ensure the magnetic isolation effect of the magnetic isolation parts, but also make full use of the internal structure of the installation chamber, which is beneficial to reduce the external size and weight of the rotor.
  • the sheath structure is provided with a feed port and an exhaust port, and both the feed port and the exhaust port communicate with the magnetic isolation chamber.
  • the sheath structure is provided with a material inlet, and the material inlet communicates with the magnetic isolation cavity, and the injection molding material flows into the magnetic isolation cavity through the material inlet, and fills the magnetic isolation cavity.
  • the sheath structure is equipped with an exhaust port. When the magnetic isolation material flows into the magnetic isolation cavity through the feeding port, the air in the magnetic isolation cavity is discharged through the exhaust port to ensure that the magnetic isolation material is effectively filled in the magnetic isolation cavity.
  • the first end surface of the magnetic steel abuts against the inner surface of the sheath structure, and the second end surface of the magnetic steel abuts against the outer surface of the rotor core shaft.
  • the magnetic steel has a first end surface and a second end surface, and by rationally setting the magnetic steel, the sheath structure and the rotor
  • the matching structure of the mandrel makes the first end surface of the magnetic steel abut against the inner surface of the sheath structure, and the second end surface of the magnetic steel abuts against the outer surface of the rotor mandrel, that is, the magnetic steel abuts against the sheath structure and the rotor shaft. That is to say, a part of the outer surface of the rotor core shaft, a part of the inner surface of the sheath structure, and side walls of two adjacent magnetic steels jointly constitute the cavity wall of the magnetic isolation cavity.
  • This setting can not only ensure the use requirements of the magnetic isolation parts to effectively separate two adjacent magnetic steels, but also ensure the accommodation space of the magnetic steels, ensure the size of the magnetic steels, and provide reliable structural support for the effective use of the rotor.
  • the installation chamber is an annular chamber
  • the annular chamber includes an inner ring surface, an outer ring surface, a first wall surface and a second wall surface
  • the first wall surface connects the inner ring surface and the outer ring surface
  • the second wall surface connects the inner ring surface and the outer ring surface
  • the first wall surface and the second wall surface are arranged at intervals along the axial direction of the rotor.
  • the outer surface of the rotor core shaft forms the inner ring surface of the annular chamber
  • the inner surface of the sheath structure forms the outer ring surface, the first wall surface and the second wall surface of the annular chamber.
  • the magnetic isolation part includes at least one of a plastic magnetic isolation part and an aluminum magnetic isolation part.
  • the material of the magnetic isolation parts can be set according to specific actual use requirements, for example, the magnetic isolation parts include plastic magnetic isolation parts, and for another example, the magnetic isolation parts include aluminum magnetic isolation parts, and for another example, the magnetic isolation parts include plastic Magnetic isolation parts and aluminum magnetic isolation parts.
  • the rotor further includes: a plurality of connecting pieces; wherein, each magnetic steel is connected to the rotor core shaft through at least one connecting piece.
  • the rotor further includes a plurality of connecting pieces, and each magnetic steel is connected to the rotor core shaft through at least one connecting piece, that is, the connecting piece connects the rotor core shaft and the magnetic flux as a whole.
  • the magnet is connected to the rotor shaft by glue curing. This setting cannot ensure the effective positioning of the magnet, and is prone to displacement. The problem of the shaft is difficult to assemble and will affect the performance of the product.
  • the disclosure improves the matching structure of the magnetic steel and the rotor mandrel so that each magnetic steel is connected to the rotor mandrel through at least one connecting piece, and the connecting piece is used to ensure that the magnetic steel and the rotor mandrel are assembled together stably and securely, without occurrence of The displacement of the magnetic steel when assembling the rotor simplifies the difficulty of assembly and helps to improve assembly efficiency.
  • each magnetic steel is connected to the rotor core shaft through one connecting piece, or each magnetic steel is connected to the rotor core shaft through multiple connecting pieces.
  • the connecting piece includes: a clamping part, the clamping part is arranged on the rotor core shaft, and the magnetic steel is clamped and connected with the clamping part; and/or a fastening part, the fastening part passes through Pass through the magnetic steel and connect with the rotor mandrel.
  • the connecting piece includes a clamping portion, or the connecting piece includes a fastening portion, or the connecting piece includes a clamping portion and a fastening portion. That is, the magnetic steel can be assembled with the rotor core shaft through one of the clamping portion and the fastening portion, so as to achieve the purpose of limiting the displacement of the magnetic steel relative to the rotor core shaft.
  • an external force can be applied to the magnet to overcome the magnet
  • This structural arrangement has assembly reliability, is convenient for installation, subsequent disassembly and maintenance, and is also convenient for debugging and calibration of the magnetic steel relative to the rotor core shaft during the assembly process.
  • the magnetic steel is locked through the fastening part, or the magnetic steel is clamped through the clamping part, or the magnetic steel is clamped through the clamping part and locked through the fastening part.
  • One of the clamping and fastening has the function of pre-fixing, and the other of the clamping and fastening has the function of further fixing, which can strengthen the assembly reliability of the magnetic steel, and further calibrate the assembly tightness and precision of the magnetic steel , making product assembly easier.
  • the connector when the connector includes a snap-in portion, the snap-in portion includes a slot, and at least a part of the magnetic steel is located in the slot.
  • the clamping part includes a clamping groove, and the magnetic steel is limited and fixed by the clamping groove, specifically, at least a part of the magnetic steel is located in the clamping groove.
  • the cooperative structure of the clamping groove and the magnetic steel can increase the contact area and contact angle between the clamping part and the magnetic steel, which is beneficial to improving the stability and reliability of the assembly of the clamping part and the magnetic steel.
  • the matching structure of the magnetic steel and the slot while ensuring the effectiveness and feasibility of the matching connection between the magnetic steel and the slot, is conducive to reducing the size of the rotor along the radial direction of the rotor core shaft, and is conducive to reducing the size of the rotor. weight of the rotor.
  • the rotor core shaft at least includes a first connection section and a second connection section, and the distance from the outer peripheral wall of the first connection section to the axis of the rotor core shaft , greater than the distance from the outer peripheral wall of the second connection section to the axis of the rotor core shaft; wherein, the first end of the first connection section is provided with a first notch, the second end of the first connection section is provided with a second notch, and the slot Connecting the first gap and the second gap.
  • the rotor core shaft includes at least a first connection section and a second connection section, and the first connection section and the second connection section are arranged along the axial direction of the rotor core shaft, that is, along the axial direction of the rotor core shaft,
  • the first connection section is located on one side of the second connection section.
  • the distance from the outer peripheral wall of the first connecting section to the axis of the rotor core shaft is greater than the distance from the outer peripheral wall of the second connecting section to the axis of the rotor core shaft, that is, the distance between the outer peripheral wall of the second connecting section relative to the first connecting section
  • the peripheral wall is closer to the axis of the rotor mandrel.
  • the first end of the first connection section is provided with a first notch
  • the second end of the first connection section is provided with a second notch
  • the locking groove communicates with the first notch and the second notch.
  • the number of the second connecting section is two, and a matching structure of two second connecting sections and one first connecting section is defined, specifically, the first connecting section is located between the two second connecting sections .
  • the rotor core shaft is connected with other components of the motor through the second connection section.
  • the card slot includes a slot bottom, a first side wall and a second side wall, the first side wall is connected to the first side of the slot bottom, and the second side wall is connected to the first side of the slot bottom. Two sides; wherein, the first side wall and the second side wall of the card slot are set correspondingly.
  • the card slot includes a slot bottom, a first side wall and a second side wall, and both the first side wall and the second side wall are connected to the bottom of the slot, specifically, the first side wall is connected to the second side wall of the bottom of the slot.
  • the second side wall is connected to the second side of the bottom of the slot, wherein the first side wall and the second side wall of the card slot are arranged correspondingly.
  • This setting defines the specific structure of the card slot.
  • the cooperation between the card slot and the magnetic steel increases the contact area and contact angle between the card slot and the magnetic steel, which is conducive to improving the stability and reliability of the assembly of the card slot and the magnetic steel.
  • Multiple directions and multiple angles limit the magnetic steel, which can ensure the matching size of the magnetic steel and the rotor core shaft, and effectively avoid the displacement of the magnetic steel.
  • the sheath structure is assembled with the rotor core shaft, and the sheath structure and the slots cooperate to limit the magnetic steels. Then, by means of injection molding, the injection molding material is rushed into the magnetic isolation cavity through the material inlet and solidified to form a magnetic isolation part. That is, a plurality of magnetic isolation parts, a plurality of magnetic steels, a sheath structure and a rotor core shaft are assembled as a whole.
  • a part of the rotor core shaft is recessed to form a locking groove.
  • a part of the rotor mandrel is recessed to form a card slot, that is, the rotor mandrel is integrally formed with a card slot.
  • This structure simplifies the card slot because the assembly process of the card slot and the rotor mandrel is omitted.
  • the process of assembling and subsequent disassembling of the slot and the rotor core shaft is conducive to improving the efficiency of assembly and disassembly, thereby reducing production and maintenance costs.
  • a part of the rotor core shaft is recessed to form a card slot to ensure the dimensional accuracy requirements of product molding.
  • a part of the rotor core shaft is recessed to form a card slot, which is beneficial to reduce the matching between the rotor core shaft and the magnet steel along the radial direction of the rotor core shaft while ensuring the effectiveness and feasibility of the matching connection between the magnet steel and the card slot.
  • the size is conducive to reducing the size of the rotor and reducing the weight of the rotor.
  • the fastening part includes bolts, screws or rivets.
  • the fastening part includes bolts, screws or rivets, and the bolts, screws or rivets pass through the magnetic steel and are locked into the rotor core shaft.
  • the sheath structure includes: a sleeve, located on the peripheral side of the rotor core shaft; a first end cover, located on the peripheral side of the rotor core shaft, and connected to the first end of the sleeve; The second end cover is located on the peripheral side of the rotor core shaft and connected to the second end of the sleeve.
  • the sheath structure includes a sleeve, a first end cap and a second end cap.
  • the first end cap is connected to the first end of the sleeve
  • the second end cap is connected to the second end of the sleeve
  • the first end cap and the second end cap are oppositely arranged
  • both the first end cover and the second end cover are provided with communication holes, and the rotor core shaft can pass through the communication holes.
  • the first end cap is inserted into the sleeve, and/or a portion of the second end cap is inserted into the sleeve.
  • the setting can increase the contact area between the end cap and the sleeve, and can ensure the assembly structural strength of the end cap and the sleeve.
  • the material inlet is provided on at least one of the end cover and the sleeve
  • the material outlet is provided on at least one of the end cover and the sleeve.
  • a second aspect of the present disclosure provides a motor, including: the rotor of any technical solution in the first aspect.
  • the motor provided by the present disclosure includes the rotor according to any technical solution in the first aspect, it has all the beneficial effects of the above-mentioned rotor, and no one statement is made here.
  • a third aspect of the present disclosure provides a compressor, including: the motor in the second aspect.
  • the compressor provided by the present disclosure includes the motor as in the second aspect, it has all the beneficial effects of the above-mentioned motor, and it will not be stated here.
  • the compressor is a centrifugal compressor.
  • a fourth aspect of the present disclosure provides an air conditioner, including: the compressor in the third aspect.
  • the air conditioner provided by the present disclosure includes the compressor in the third aspect, it has all the beneficial effects of the above-mentioned compressor, and no one statement will be made here.
  • Fig. 1 shows a schematic structural view of a rotor of at least one embodiment of the present disclosure
  • Figure 2 illustrates a cross-sectional view of a first portion of a rotor of at least one embodiment of the present disclosure
  • Fig. 3 is a partial enlarged view of A place in Fig. 2;
  • Figure 4 illustrates a cross-sectional view of a second portion of a rotor of at least one embodiment of the present disclosure
  • FIG. 5 is a partial enlarged view of B in FIG. 4 .
  • a rotor 100 , a motor, a compressor, and an air conditioner according to some embodiments of the present disclosure are described below with reference to FIGS. 1 to 5 .
  • the embodiment of the first aspect of the present disclosure proposes a rotor 100, the rotor 100 includes a rotor core shaft 110, a sheath structure 120, a plurality of magnetic steel 130 and a plurality of magnetic isolation parts 140.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of magnetic isolation parts 140 .
  • the plurality of magnetic steels 130 are located on the peripheral side of the rotor core shaft 110 , and the plurality of magnetic steels 130 are arranged at intervals along the circumferential direction of the rotor 100 .
  • a magnetic isolation cavity 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber, that is, a plurality of magnetic steels 130, the outer surface of the rotating core shaft and the sheath structure
  • a plurality of magnetic isolation cavities 150 are formed between the inner surfaces of 120 , each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the magnetic isolation part 140 can be connected with the cavity wall of the magnetic isolation cavity 150, the matching size between the magnetic isolation part 140 and the magnetic isolation cavity 150 can be guaranteed, that is, the structure of the magnetic isolation part 140, the magnetic steel 130, and the sheath can be ensured.
  • the matching dimensions between 120 and the rotor core shaft 110 do not cause the displacement of the magnetic isolation member 140 , which provides an effective and reliable structural support for ensuring the performance of the rotor 100 .
  • the side walls of two adjacent magnets 130 form a part of the cavity wall of the magnetic isolation cavity 150, and the magnetic isolation member 140 is located in the magnetic isolation cavity 150, so that the clamping between the adjacent two magnetic steels 130 can be ensured.
  • a magnetic isolation member 140 is provided to ensure the magnetic isolation effect of the magnetic isolation member 140 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the magnetic isolation part 140 is formed by injection molding in the magnetic isolation cavity 150 .
  • each magnetic isolation cavity 150 is injection-molded with a magnetic isolation member 140 , that is, the injection-molded magnetic isolation member 140 is connected to any one of the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 .
  • the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 are effectively connected as a whole through the magnetic isolation member 140 .
  • each magnetic isolation cavity 150 is injection molded with a magnetic isolation member 140 to ensure the dimensional accuracy of the product, that is, to ensure the matching dimensions of the magnetic isolation member 140, the magnetic steel 130, the sheath structure 120 and the rotor core shaft 110, It can effectively prevent the components of the rotor 100 from being displaced, and provide effective and reliable structural support for ensuring the performance of the rotor 100 .
  • the injection molding material is filled into the magnetic isolation cavity 150 by injection molding, so that the injection molding material fills the magnetic isolation cavity 150, so that the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 are assembled as a whole through the magnetic isolation member 140 .
  • This setting simplifies the assembly process of the rotor 100, is beneficial to improving the assembly efficiency of the rotor 100, is beneficial to mass production, and is beneficial to reducing the production cost of the product.
  • the magnetic isolation part 140 is a metal part, and the degree of freedom of the metal part is limited by the size of the magnetic isolation cavity 150 , which is not conducive to the assembly of the magnetic isolation part 140 .
  • the magnetic isolation member 140 is injection-molded in the magnetic isolation cavity 150 by injection molding. Since the injection molding material has good fluidity and filling properties, the setting of the magnetic isolation component 140 is not limited to the magnetic isolation cavity 150.
  • the shape makes up for the deficiency in the degree of freedom of machined metal parts in the related art. It can not only ensure the magnetic isolation effect of the magnetic isolation part 140, but also make full use of the internal structure of the installation chamber, which is conducive to reducing the external size and size of the rotor 100. weight.
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • a magnetic isolation member 140 is formed by injection molding in the magnetic isolation cavity 150 .
  • sheath structure 120 is provided with a material inlet and an exhaust port, both of which communicate with the magnetic isolation chamber 150 .
  • the sheath structure 120 is provided with a material inlet, which communicates with the magnetic isolation cavity 150 , and the injection molding material flows into the magnetic isolation cavity 150 through the material inlet, and fills the magnetic isolation cavity 150 .
  • the sheath structure 120 is provided with an exhaust port. When the magnetic isolation material flows into the magnetic isolation cavity 150 through the feed port, the air in the magnetic isolation cavity 150 is discharged through the exhaust port to ensure that the magnetic isolation material is effectively filled in the magnetic isolation cavity 150. .
  • the magnetic isolation part 140 includes at least one of a plastic magnetic isolation part 140 and an aluminum magnetic isolation part 140 .
  • the material of the magnetic isolation member 140 can be set according to specific actual use requirements, such as, the magnetic isolation member 140 includes a plastic isolation
  • the magnetic isolation member 140 includes an aluminum magnetic isolation part 140
  • the magnetic isolation part 140 includes a plastic magnetic isolation part 140 and an aluminum magnetic isolation part 140 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the first end surface of the magnetic steel 130 abuts against the inner surface of the jacket structure 120
  • the second end surface of the magnetic steel 130 abuts against the outer surface of the rotor core shaft 110 .
  • the magnetic steel 130 has a first end surface and a second end surface, and by rationally setting the matching structure of the magnetic steel 130, the sheath structure 120 and the rotor core shaft 110, the first end surface of the magnetic steel 130 and the inner surface of the sheath structure 120 Surface abutting, the second end surface of the magnetic steel 130 abuts against the outer surface of the rotor core shaft 110 , that is, the magnetic steel 130 abuts between the sheath structure 120 and the rotor core shaft 110 . That is to say, a part of the outer surface of the rotor core shaft 110 , a part of the inner surface of the sheath structure 120 , and side walls of two adjacent magnetic steels 130 together constitute the cavity wall of the magnetic isolation cavity 150 .
  • This setting can not only ensure the use requirements of the magnetic isolation part 140 to effectively separate two adjacent magnetic steels 130, but also ensure the accommodation space of the magnetic steels 130, ensure the size of the magnetic steels 130, and provide a reliable structure for the effective use of the rotor 100 support.
  • the installation chamber is an annular chamber
  • the annular chamber includes an inner ring surface, an outer ring surface, a first wall surface and a second wall surface
  • the first wall surface connects the inner ring surface and the outer ring surface
  • the second wall surface connects the inner ring surface and the outer ring surface
  • the first wall surface and the second wall surface are arranged at intervals along the axial direction of the rotor 100 .
  • the outer surface of the rotor core shaft 110 forms the inner ring surface of the annular chamber
  • the inner surface of the sheath structure 120 forms the outer ring surface, the first wall surface and the second wall surface of the annular chamber.
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the rotor 100 further includes a plurality of connecting pieces 160 .
  • Each magnetic steel 130 is connected to the rotor core shaft 110 through at least one connecting piece 160 .
  • the rotor 100 also includes a plurality of connecting pieces 160, and each magnetic steel 130 is connected with at least one connecting piece 160
  • the rotor core shaft 110 is connected, that is, the connecting piece 160 connects the rotor core shaft 110 and the magnetic flux as a whole.
  • This setting can ensure the matching dimensions of the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 , effectively avoid the displacement of the magnetic steel 130 , and provide effective and reliable structural support for ensuring the performance of the rotor 100 .
  • the magnetic steel 130 is connected to the rotor 100 shaft by means of adhesive curing. This setting cannot ensure the effective positioning of the magnetic steel 130, and it is prone to displacement. The problem of not being firmly attached to the 100-axis of the rotor is difficult to assemble and will affect the performance of the product.
  • the disclosure improves the matching structure between the magnetic steel 130 and the rotor core shaft 110, so that each magnetic steel 130 is connected to the rotor core shaft 110 through at least one connecting piece 160, and the connecting piece 160 is used to ensure that the magnetic steel 130 and the rotor core shaft 110 are stable and Assembled firmly together, there will be no displacement of the magnetic steel 130 when the rotor 100 is assembled, which simplifies the difficulty of assembly and is beneficial to improve assembly efficiency.
  • each magnetic steel 130 is connected to the rotor core shaft 110 through one connecting piece 160 , or each magnetic steel 130 is connected to the rotor core shaft 110 through multiple connecting pieces 160 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the rotor 100 also includes a plurality of connectors 160 .
  • Each magnetic steel 130 is connected to the rotor core shaft 110 through at least one connecting piece 160 .
  • the connecting piece 160 includes: a clamping part, the clamping part is provided on the rotor core shaft 110, and the magnetic steel 130 is clamped and connected with the clamping part; and/or a fastening part, the fastening part passes through the magnetic steel 130 and It is connected with the rotor core shaft 110.
  • the connector 160 includes a snap-in portion, or the connector 160 includes a fastening portion, or the connector 160 includes a snap-in portion and a fastening portion. That is, the magnetic steel 130 can be assembled with the rotor core shaft 110 through one of the clamping portion and the fastening portion, so as to achieve the purpose of limiting the displacement of the magnetic steel 130 relative to the rotor core shaft 110 .
  • an external force can be applied to the magnetic steel 130 to overcome the clamping force between the magnetic steel 130 and the rotor core shaft 110, or unlock the fastening part, thereby realizing the separation of the magnetic steel 130 from the rotor core shaft 110 the goal of.
  • This structural arrangement has assembly reliability, facilitates installation, subsequent disassembly and maintenance, and also facilitates debugging and calibration of the magnetic steel 130 relative to the rotor core shaft 110 during the assembly process.
  • the magnetic steel 130 is locked through the fastening part, or the magnetic steel 130 is clamped through the clamping part, or the magnetic steel 130 is clamped through the clamping part and locked through the fastening part.
  • One of the clamping and fastening has the function of pre-fixing, and the other of the clamping and fastening has the function of further fixing, which can strengthen the assembly reliability of the magnetic steel 130 and further calibrate the assembly of the magnetic steel 130 Compactness and precision make product assembly more convenient.
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the rotor 100 also includes a plurality of connectors 160 .
  • Each magnetic steel 130 is connected to the rotor core shaft 110 through at least one connecting piece 160 .
  • the connecting part 160 includes: a clamping part, which is arranged on the rotor core shaft 110, and the magnetic steel 130 is clamped and connected with the clamping part; and/or a fastening part, which passes through the magnetic steel 130 and connects with the rotor core Shaft 110 is connected.
  • the connecting member 160 includes a locking portion
  • the locking portion includes a slot, and at least a part of the magnetic steel 130 is located in the slot.
  • the clamping portion includes a slot, and the magnetic steel 130 is limited and fixed by the slot. Specifically, at least a part of the magnetic steel 130 is located in the slot.
  • the matching structure of the clamping groove and the magnetic steel 130 can increase the contact area and contact angle between the clamping portion and the magnetic steel 130 , which is beneficial to improving the stability and reliability of the assembly of the clamping portion and the magnetic steel 130 .
  • the matching structure between the magnetic steel 130 and the slot not only ensures the effectiveness and feasibility of the matching connection between the magnetic steel 130 and the slot, but also helps to reduce the size of the rotor 100 in the radial direction of the rotor core shaft 110, and It is beneficial to reduce the weight of the rotor 100 .
  • the rotor core shaft 110 includes at least a first connection section 112 and a second connection section 114 .
  • the distance between the outer peripheral wall of a connecting section 112 and the axis of the rotor core shaft 110 is greater than the distance between the outer peripheral wall of the second connecting section 114 and the axis of the rotor core shaft 110 .
  • the first end of the first connecting section 112 is provided with a first notch
  • the second end of the first connecting section 112 is provided with a second notch
  • the card slot communicates with the first notch and the second notch.
  • the rotor core shaft 110 includes at least a first connection section 112 and a second connection section 114, and the first connection section 112 and the second connection section 114 are arranged along the axial direction of the rotor core shaft 110, that is, along the In the axial direction, the first connecting section 112 is located on one side of the second connecting section 114 .
  • the distance from the outer peripheral wall of the first connecting section 112 to the axis of the rotor core shaft 110 is greater than the distance from the outer peripheral wall of the second connecting section 114 to the axis of the rotor core shaft 110, that is, the outer peripheral wall of the second connecting section 114 is relatively
  • the outer peripheral wall of the first connecting section 112 is closer to the axis of the rotor core shaft 110 .
  • the first end of the first connecting section 112 is provided with a first notch
  • the second end of the first connecting section 112 is provided with a second notch
  • the card slot communicates with the first notch and the second notch. This setting defines the card slot and The matching structure of the first connecting section 112 .
  • the magnetic steel 130 can be inserted into the slot along the axial direction of the rotor core shaft 110 .
  • This setting simplifies the assembly process of the magnetic steel 130 and the rotor core shaft 110, which is beneficial to reduce the disassembly efficiency of the product, and further helps to reduce the production cost of the product.
  • FIG. 1 there are two second connecting sections 114 , and the first connecting section 112 is located between the two second connecting sections 114 .
  • the number of the second connecting section 114 is two, and defines the matching structure of two second connecting sections 114 and one first connecting section 112, specifically, the first connecting section 112 is located between the two second connecting sections 114 between. In this way, when assembling the magnetic steel 130 , there will be no interference, which can ensure the high efficiency of assembling the magnetic steel 130 and the rotor core shaft 110 .
  • the rotor core shaft 110 is connected with other components of the motor through the second connection section 114 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the rotor 100 also includes a plurality of connectors 160 .
  • Each magnetic steel 130 is connected to the rotor core shaft 110 through at least one connecting piece 160 .
  • the connecting part 160 includes: a clamping part, which is arranged on the rotor core shaft 110, and the magnetic steel 130 is clamped and connected with the clamping part; and/or a fastening part, which passes through the magnetic steel 130 and connects with the rotor core Shaft 110 is connected.
  • the locking portion includes a slot, and at least a part of the magnetic steel 130 is located in the slot.
  • the rotor core shaft 110 Arranged along the axial direction of the rotor core shaft 110, the rotor core shaft 110 at least includes a first connection section 112 and a second connection section 114, the distance from the outer peripheral wall of the first connection section 112 to the axis of the rotor core shaft 110 is greater than that of the second connection section The distance from the peripheral wall of the segment 114 to the axis of the rotor core shaft 110 .
  • the first end of the first connecting section 112 is provided with a first notch
  • the second end of the first connecting section 112 is provided with a second notch
  • the card slot communicates with the first notch and the second notch.
  • the card slot includes a slot bottom 162 , a first side wall 164 and a second side wall 166 .
  • the first sidewall 164 is connected to the first side of the groove bottom 162 .
  • the second sidewall 166 is connected to the second side of the groove bottom 162 .
  • first side wall 164 and the second side wall 166 of the card slot are arranged correspondingly.
  • the slot includes a slot bottom 162, a first side wall 164 and a second side wall 166, and the first side wall 164 and the second side wall 166 are all connected to the groove bottom 162, specifically, the first side wall 164 is connected to the first side of the groove bottom 162, and the second side wall 166 is connected to the second side of the groove bottom 162, wherein the first side wall of the slot 164 and the second side wall 166 are set correspondingly.
  • This setting defines the specific structure of the card slot, and the cooperation between the card slot and the magnetic steel 130 increases the contact area and contact angle between the card slot and the magnetic steel 130, which is conducive to improving the stability and reliability of the assembly of the card slot and the magnetic steel 130 , to achieve multiple directions and multiple angles to limit the magnetic steel 130, which can ensure the matching size of the magnetic steel 130 and the rotor core shaft 110, and effectively avoid the displacement of the magnetic steel 130.
  • the sheath structure 120 is assembled with the rotor core shaft 110, and the sheath structure 120 cooperates with the slots to limit the magnetic steel 130. .
  • the injection molding material is poured into the magnetic isolation cavity 150 through the material inlet and solidified to form the magnetic isolation member 140 . That is, the plurality of magnetic isolation parts 140 , the plurality of magnetic steels 130 , the sheath structure 120 and the rotor core shaft 110 are assembled as a whole.
  • first sidewall 164 is perpendicular to the groove bottom 162
  • second sidewall 166 is perpendicular to the groove bottom 162 .
  • the included angle between the first side wall 164 and the groove bottom 162 is an acute angle or an obtuse angle.
  • the included angle between the second side wall 166 and the groove bottom 162 is an acute angle or an obtuse angle.
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the rotor 100 also includes a plurality of connectors 160 .
  • Each magnetic steel 130 is connected to the rotor core shaft 110 through at least one connecting piece 160 .
  • the connecting part 160 includes: a clamping part, which is arranged on the rotor core shaft 110, and the magnetic steel 130 is clamped and connected with the clamping part; and/or a fastening part, which passes through the magnetic steel 130 and connects with the rotor core Shaft 110 is connected.
  • the locking portion includes a slot, and at least a part of the magnetic steel 130 is located in the slot.
  • a part of the rotor core shaft 110 is recessed to form a locking groove.
  • a part of the rotor core shaft 110 is recessed to form a clamping groove, that is, the rotor core shaft 110 is integrally formed with a clamping groove, and this structural arrangement simplifies the clamping process because the assembly process of the clamping groove and the rotor core shaft 110 is omitted.
  • the assembly and subsequent disassembly process of the slot and the rotor core shaft 110 is beneficial to improve the assembly and disassembly efficiency, thereby reducing production and maintenance costs.
  • a part of the rotor core shaft 110 is recessed to form a slot to ensure the dimensional accuracy requirements of product molding.
  • a part of the rotor core shaft 110 is recessed to form a clamping groove, which is beneficial to reduce the rotor core shaft 110 and the rotor core shaft 110 radially
  • the matched dimensions of the magnetic steel 130 are beneficial to reducing the size and weight of the rotor 100 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the rotor 100 also includes a plurality of connectors 160 .
  • Each magnetic steel 130 is connected to the rotor core shaft 110 through at least one connecting piece 160 .
  • the connecting part 160 includes: a clamping part, which is arranged on the rotor core shaft 110, and the magnetic steel 130 is clamped and connected with the clamping part; and/or a fastening part, which passes through the magnetic steel 130 and connects with the rotor core Shaft 110 is connected.
  • the fastening part includes bolts, screws or rivets.
  • the fastening part includes bolts, screws or rivets, and the bolts, screws or rivets pass through the magnetic steel 130 and are locked into the rotor core shaft 110 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of isolation magnets. 140 pieces.
  • the jacket structure 120 is connected to the peripheral side of the rotor core shaft 110 .
  • An installation chamber is enclosed between the inner surface of the sheath structure 120 and the outer surface of the rotor core shaft 110 .
  • a plurality of magnetic steels 130 are located in the installation chamber, and the plurality of magnetic steels 130 are distributed at intervals around the rotor core shaft 110 .
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • Each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the sheath structure 120 includes a sleeve 122 , a first end cap 124 and a second end cap 126 .
  • the sleeve 122 is located on the peripheral side of the rotor core shaft 110 .
  • the first end cover 124 is located on the peripheral side of the rotor core shaft 110 and connected to the first end of the sleeve 122 .
  • the second end cover 126 is located on the peripheral side of the rotor core shaft 110 and connected to the second end of the sleeve 122 .
  • the jacket structure 120 includes a sleeve 122 , a first end cap 124 and a second end cap 126 .
  • the first end cap 124 is connected to the first end of the sleeve 122
  • the second end cap 126 is connected to the second end of the sleeve 122
  • the first end cap 124 and the second end cap 126 are oppositely arranged.
  • both the first end cover 124 and the second end cover 126 are provided with communication holes, and the rotor core shaft 110 can pass through the communication holes.
  • first end cap 124 is inserted into the sleeve 122, and/or a portion of the second end cap 126 is inserted into the sleeve 122. into the sleeve 122.
  • This arrangement can increase the contact area between the end cap and the sleeve 122 , and can ensure the assembly structural strength of the end cap and the sleeve 122 .
  • the material inlet is provided on at least one of the end cover and the sleeve 122
  • the material outlet is provided on at least one of the end cover and the sleeve 122 .
  • Some embodiments of the second aspect of the present disclosure propose a motor, including: the rotor 100 of any embodiment of the first aspect.
  • the motor includes a rotor 100 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of magnetic isolation parts 140 .
  • the plurality of magnetic steels 130 are located on the peripheral side of the rotor core shaft 110 , and the plurality of magnetic steels 130 are arranged at intervals along the circumferential direction of the rotor 100 .
  • a magnetic isolation cavity 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber, that is, a plurality of magnetic steels 130, the outer surface of the rotating core shaft and the sheath structure
  • a plurality of magnetic isolation cavities 150 are formed between the inner surfaces of 120 , each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the magnetic isolation part 140 can be connected with the cavity wall of the magnetic isolation cavity 150, the matching size between the magnetic isolation part 140 and the magnetic isolation cavity 150 can be guaranteed, that is, the structure of the magnetic isolation part 140, the magnetic steel 130, and the sheath can be ensured.
  • the matching dimensions between 120 and the rotor core shaft 110 do not cause the displacement of the magnetic isolation member 140 , which provides an effective and reliable structural support for ensuring the performance of the rotor 100 .
  • the side walls of two adjacent magnets 130 form a part of the cavity wall of the magnetic isolation cavity 150, and the magnetic isolation member 140 is located in the magnetic isolation cavity 150, so that the clamping between the adjacent two magnetic steels 130 can be ensured.
  • a magnetic isolation member 140 is provided to ensure the magnetic isolation effect of the magnetic isolation member 140 .
  • a magnetic isolation member 140 is formed by injection molding in the magnetic isolation cavity 150 .
  • the magnetic isolation part 140 is formed by injection molding in each magnetic isolation cavity 150, that is, the magnetic isolation part formed by injection molding 140 is connected to any one of the magnet steel 130 , the sheath structure 120 and the rotor core shaft 110 .
  • the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 are effectively connected as a whole through the magnetic isolation member 140 .
  • This setting omits the assembly process of the magnetic isolation member 140 and the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 , thus simplifying the forming process of the rotor 100 and improving the processing efficiency of the product.
  • each magnetic isolation cavity 150 is injection molded with a magnetic isolation member 140 to ensure the dimensional accuracy of the product, that is, to ensure the matching dimensions of the magnetic isolation member 140, the magnetic steel 130, the sheath structure 120 and the rotor core shaft 110, It can effectively prevent the components of the rotor 100 from being displaced, and provide effective and reliable structural support for ensuring the performance of the rotor 100 .
  • the injection molding material is filled into the magnetic isolation cavity 150 by injection molding, so that the injection molding material fills the magnetic isolation cavity 150, so that the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 are assembled as a whole through the magnetic isolation member 140 .
  • This setting simplifies the assembly process of the rotor 100, and has It is beneficial to improve the assembly efficiency of the rotor 100 , to facilitate mass production, and to reduce the production cost of the product.
  • the magnetic isolation part 140 is a metal part, and the degree of freedom of the metal part is limited by the size of the magnetic isolation cavity 150 , which is not conducive to the assembly of the magnetic isolation part 140 .
  • the magnetic isolation member 140 is injection-molded in the magnetic isolation cavity 150 by injection molding. Since the injection molding material has good fluidity and filling properties, the setting of the magnetic isolation component 140 is not limited to the magnetic isolation cavity 150.
  • the shape makes up for the deficiency in the degree of freedom of machined metal parts in the related art. It can not only ensure the magnetic isolation effect of the magnetic isolation part 140, but also make full use of the internal structure of the installation chamber, which is conducive to reducing the external size and size of the rotor 100. weight.
  • the embodiment of the third aspect of the present disclosure provides a compressor, including: the motor in the second aspect.
  • the compressor includes a motor.
  • the electric machine includes a rotor 100 .
  • the rotor 100 includes a rotor core shaft 110 , a sheath structure 120 , a plurality of magnetic steels 130 and a plurality of magnetic isolation parts 140 .
  • the plurality of magnetic steels 130 are located on the peripheral side of the rotor core shaft 110 , and the plurality of magnetic steels 130 are arranged at intervals along the circumferential direction of the rotor 100 .
  • a magnetic isolation cavity 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber, that is, a plurality of magnetic steels 130, the outer surface of the rotating core shaft and the sheath structure
  • a plurality of magnetic isolation cavities 150 are formed between the inner surfaces of 120 , each magnetic isolation cavity 150 is provided with a magnetic isolation member 140 , and the magnetic isolation member 140 is connected to the wall of the magnetic isolation cavity 150 .
  • the magnetic isolation part 140 can be connected with the cavity wall of the magnetic isolation cavity 150, the matching size between the magnetic isolation part 140 and the magnetic isolation cavity 150 can be guaranteed, that is, the structure of the magnetic isolation part 140, the magnetic steel 130, and the sheath can be ensured.
  • the matching dimensions between 120 and the rotor core shaft 110 do not cause the displacement of the magnetic isolation member 140 , which provides an effective and reliable structural support for ensuring the performance of the rotor 100 .
  • the side walls of two adjacent magnets 130 form a part of the cavity wall of the magnetic isolation cavity 150, and the magnetic isolation member 140 is located in the magnetic isolation cavity 150, so that the clamping between the adjacent two magnetic steels 130 can be ensured.
  • a magnetic isolation member 140 is provided to ensure the magnetic isolation effect of the magnetic isolation member 140 .
  • a magnetic isolation member 140 is formed by injection molding in the magnetic isolation cavity 150 .
  • the magnetic isolation part 140 is formed by injection molding in each magnetic isolation cavity 150, that is, the magnetic isolation part formed by injection molding 140 is connected to any one of the magnet steel 130 , the sheath structure 120 and the rotor core shaft 110 .
  • the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 are effectively connected as a whole through the magnetic isolation member 140 .
  • This setting omits the assembly process of the magnetic isolation member 140 and the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 , thus simplifying the forming process of the rotor 100 and improving the processing efficiency of the product.
  • each magnetic isolation cavity 150 is injection molded with a magnetic isolation member 140 to ensure the dimensional accuracy of the product, that is, to ensure the matching dimensions of the magnetic isolation member 140, the magnetic steel 130, the sheath structure 120 and the rotor core shaft 110, It can effectively prevent the components of the rotor 100 from being displaced, and provide effective and reliable structural support for ensuring the performance of the rotor 100 .
  • the sheath structure 120 and a plurality of magnetic steels 130 are injected into the The magnetic isolation cavity 150 is filled with injection molding material, so that the injection molding material fills the magnetic isolation cavity 150 , so that the magnetic steel 130 , the sheath structure 120 and the rotor core shaft 110 are assembled as a whole through the magnetic isolation member 140 .
  • This setting simplifies the assembly process of the rotor 100, is beneficial to improving the assembly efficiency of the rotor 100, is beneficial to mass production, and is beneficial to reducing the production cost of the product.
  • the magnetic isolation part 140 is a metal part, and the degree of freedom of the metal part is limited by the size of the magnetic isolation cavity 150 , which is not conducive to the assembly of the magnetic isolation part 140 .
  • the magnetic isolation member 140 is injection-molded in the magnetic isolation cavity 150 by injection molding. Since the injection molding material has good fluidity and filling properties, the setting of the magnetic isolation component 140 is not limited to the magnetic isolation cavity 150.
  • the shape makes up for the deficiency in the degree of freedom of machined metal parts in the related art. It can not only ensure the magnetic isolation effect of the magnetic isolation part 140, but also make full use of the internal structure of the installation chamber, which is conducive to reducing the external size and size of the rotor 100. weight.
  • the motor includes a permanent magnet synchronous motor
  • the permanent magnet synchronous motor includes a rotor 100, and a slot is formed on the rotor mandrel 110 by machining, so as to realize high-precision positioning of the magnetic steel 130 during the assembly process , At the same time, it is also convenient for assembly operations to improve production efficiency.
  • a magnetic isolation chamber 150 is enclosed between any two adjacent magnetic steels 130 among the plurality of magnetic steels 130 and the cavity wall of the installation chamber.
  • the injection molding material is filled into the magnetic isolation cavity 150 by injection molding, and solidified to form the magnetic isolation member 140 . While ensuring structural integrity, the present disclosure has better versatility, easier operation, and relatively lower cost.
  • the slot cooperates with the magnetic steel 130, so that the magnetic steel 130 can be well positioned during the assembly process. Thereby improving assembly efficiency and product quality.
  • the sheath structure 120 is provided with a material inlet and an exhaust port, both of which communicate with the magnetic isolation chamber 150 .
  • the molding of the magnetic isolation member 140 is not limited to the shape of the magnetic isolation cavity 150 . It makes up for the defect in the related art that the degree of freedom of the metal parts is limited by the size of the magnetic isolation cavity 150 , which is not conducive to the assembly of the magnetic isolation part 140 .
  • the embodiment of the fourth aspect of the present disclosure provides an air conditioner, including: the compressor in the third aspect.
  • connection refers to two or more, unless otherwise clearly defined.
  • installation means for example, “connection” can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.
  • connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子、电机、压缩机和空调器。转子(100)包括:转子芯轴(110);护套结构(120),连接于转子芯轴(110)的周侧,护套结构(120)的内表面和转子芯轴(110)的外表面之间合围出安装腔室;多个磁钢(130)位于安装腔室内且间隔分布于转子芯轴(110)的周侧,任意两个相邻的磁钢(130)和安装腔室的腔壁之间合围出隔磁腔(150);每个隔磁腔(150)内设有一个隔磁件(140),隔磁件(140)连接隔磁腔(150)的腔壁。

Description

转子、电机、压缩机和空调器
相关申请的交叉引用
本公开基于申请号为202210186109.3,申请日为2022年02月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及电机技术领域,具体而言,涉及一种转子、一种电机、一种压缩机和一种空调器。
背景技术
相关技术中,表贴式永磁转子包括转子轴、磁钢和非导磁金属,由于未设置有有效固定结构,无法保证非导磁金属的有效定位,易出现移位的现象,无法保证器件的配合尺寸,会影响产品使用性能。
申请内容
本公开旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本公开的第一方面提出了一种转子。
本公开的第二方面提出了一种电机。
本公开的第三方面提出了一种压缩机。
本公开的第四方面提出了一种空调器。
有鉴于此,本公开的第一方面提出了一种转子,包括:转子芯轴;护套结构,连接于转子芯轴的周侧,护套结构的内表面和转子芯轴的外表面之间合围出安装腔室;多个磁钢,位于安装腔室内,且多个磁钢间隔分布于转子芯轴的周侧,多个磁钢中任意两个相邻的磁钢和安装腔室的腔壁之间合围出隔磁腔;多个隔磁件,每个隔磁腔内设有一个隔磁件,隔磁件连接隔磁腔的腔壁。
本公开提供的一种转子芯轴、护套结构、多个磁钢和多个隔磁件。其中,多个磁钢均位于转子芯轴的周侧,且多个磁钢沿转子的周向间隔布置。多个磁钢中任意两个相邻的磁钢和安装腔室的腔壁之间合围出隔磁腔,也即,多个磁钢、转芯轴的外表面和护套结构的内表面之间形成多个隔磁腔,每个隔磁腔内设有一个隔磁件,且隔磁件连接隔磁腔的腔壁。
由于隔磁件能够与隔磁腔的腔壁连接,故而,能够保证隔磁件与隔磁腔的配合尺寸,也 即,能够保证隔磁件、磁钢、护套结构和转子芯轴的配合尺寸,不会出现隔磁件移位的情况,为保证转子的使用性能提供了有效且可靠的结构支撑。
可以理解的是,相邻两个磁钢的侧壁形成隔磁腔的一部分腔壁,隔磁件位于隔磁腔内,故而,可保证相邻两个磁钢之间夹设有一个隔磁件,可保证隔磁件的隔磁效果。
另外,护套结构对磁钢和隔磁件具有保护的作用,以满足高速运转的电机的使用需求。
根据本公开上述的转子,还可以具有以下附加技术特征:
在上述技术方案中,进一步地,隔磁腔内注塑形成有隔磁件。
在该技术方案中,通过合理限定隔磁件、磁钢、护套结构和转子芯轴的配合结构,使得每个隔磁腔内注塑形成有隔磁件,也即,注塑形成的隔磁件与磁钢、护套结构和转子芯轴中的任一者连接。换句话说,磁钢、护套结构和转子芯轴通过隔磁件有效接连为一个整体。该设置由于省去了隔磁件与磁钢、护套结构和转子芯轴的装配工序,故而简化了转子的成型工序,有利于提升产品的加工效率。另外,每个隔磁腔内注塑形成有隔磁件可保证产品的尺寸的精度,也即,保证隔磁件、磁钢、护套结构和转子芯轴的配合尺寸,可有效避免转子的组成部件移位的情况发生,为保证转子的使用性能提供了有效且可靠的结构支撑。
具体地,将转子芯轴、护套结构和多个磁钢装配后,再通过注塑的方式向隔磁腔内填充注塑材料,使得注塑材料充满隔磁腔,使得磁钢、护套结构和转子芯轴通过隔磁件装配为一个整体。该设置简化了转子的装配工序,有利于提升转子的装配效率,利于批量生产,有利于降低产品的生产成本。
另外,相关技术中,隔磁件为金属件,金属件的自由度方面受限于隔磁腔的尺寸,不利于隔磁件装配。而本公开通过注塑的方式,在隔磁腔内注塑形成有隔磁件,由于注塑材料具有良好的流动性和填充性,使得隔磁件地设置不受限于隔磁腔的形状,弥补了相关技术中机加工金属件自由度方面的不足,既能保证隔磁件的隔磁效果,又能够充分利用安装腔室的内部结构,有利于减小转子的外形尺寸和重量。
在上述任一技术方案中,进一步地,护套结构设有入料口和排气口,入料口和排气口均与隔磁腔连通。
在该技术方案中,护套结构设有入料口,入料口与隔磁腔连通,注塑材料通过入料口流入隔磁腔,并充满隔磁腔。
护套结构设有排气口,隔磁材料通过入料口流入隔磁腔的同时,隔磁腔内的空气通过排气口排出,以保证隔磁材料有效充盈于隔磁腔。
在上述任一技术方案中,进一步地,磁钢的第一端面与护套结构的内表面抵靠,磁钢的第二端面与转子芯轴的外表面抵靠。
在该技术方案中,磁钢具有第一端面和第二端面,通过合理设置磁钢、护套结构和转子 芯轴的配合结构,使得磁钢的第一端面与护套结构的内表面抵靠,磁钢的第二端面与转子芯轴的外表面抵靠,也即,磁钢抵接于护套结构和转子芯轴之间。也就是说,转子芯轴的外表面的一部分、护套结构的内表面的一部分、相邻两个磁钢的侧壁共同构成隔磁腔的腔壁。
该设置既可保证隔磁件有效分隔相邻两个磁钢的使用需求,又可保证磁钢的容置空间,保证磁钢的尺寸,为转子有效使用提供了可靠的结构支撑。
具体地,安装腔室为环形腔室,环形腔室包括内环面、外环面、第一壁面和第二壁面,第一壁面连接内环面和外环面,第二壁面连接内环面和外环面,第一壁面和第二壁面沿转子的轴向间隔布置。转子芯轴的外表面形成环形腔室的内环面,护套结构的内表面形成环形腔室的外环面、第一壁面和第二壁面。
在上述任一技术方案中,进一步地,隔磁件包括塑料隔磁件和铝隔磁件中的至少一者。
在该技术方案中,可以根据具体实际使用需求设置隔磁件的材质,如,隔磁件包括塑料隔磁件,又如,隔磁件包括铝隔磁件,又如,隔磁件包括塑料隔磁件和铝隔磁件。
在上述任一技术方案中,进一步地,转子还包括:多个连接件;其中,每个磁钢通过至少一个连接件与转子芯轴连接。
在该技术方案中,转子还包括多个连接件,且每个磁钢通过至少一个连接件与转子芯轴连接,也就是说,连接件将转子芯轴和磁通连接为一个整体。该设置能够保证磁钢与护套结构和转子芯轴的配合尺寸,可有效避免磁钢移位的情况发生,为保证转子的使用性能提供了有效且可靠的结构支撑。
相关技术中,磁钢通过粘胶固化的方式与转子轴连接,该设置无法保证磁钢的有效定位,易出现移位的现象,无法保证器件的配合尺寸,且易出现磁钢未牢于转子轴的问题,装配难度大,且会影响产品使用性能。
本公开通过改进磁钢和转子芯轴的配合结构,使得每个磁钢通过至少一个连接件与转子芯轴连接,利用连接件保证磁钢和转子芯轴稳固且牢靠装配在一起,不会出现装配转子时磁钢移位的情况,简化了装配难度,有利于提升装配效率。
具体地,每个磁钢通过一个连接件与转子芯轴连接,或者每个磁钢通过多个连接件与转子芯轴连接。
在上述任一技术方案中,进一步地,连接件包括:卡接部,卡接部设于转子芯轴上,磁钢与卡接部卡接连接;和/或紧固部,紧固部穿过磁钢并与转子芯轴连接。
在该技术方案中,连接件包括卡接部,或者连接件包括紧固部,或者连接件包括卡接部和紧固部。即,磁钢可通过卡接部和紧固部中的一个与转子芯轴装配在一起,以实现限定磁钢相对于转子芯轴的位移的目的。当需要拆卸磁钢时,可通向磁钢施加外力以克服磁钢 与转子芯轴之间的卡接力,或解锁紧固部,进而实现磁钢与转子芯轴相分离的目的。该结构设置具有装配可靠性,便于安装及后续的拆卸、维护,也便于组装过程中磁钢相对于转子芯轴的调试和校准。
进一步地,磁钢经由紧固部锁定,或磁钢经卡接部卡接,或磁钢通过卡接部卡接,且经由紧固部锁定。卡接及紧固中的一者具有预固定的作用,卡接及紧固中的另一者具有进一步固定的作用,可强化磁钢装配可靠性,并进一步校准磁钢的装配紧密性和精度,使得产品组装更加便捷。
在上述任一技术方案中,进一步地,当连接件包括卡接部时,卡接部包括卡槽,磁钢的至少一部分位于卡槽内。
在该技术方案中,卡接部包括卡槽,利用卡槽限位和固定磁钢,具体地,磁钢的至少一部分位于卡槽内。卡槽与磁钢的配合结构,能够增大卡接部与磁钢的接触面积和接触角度,有利于提升卡接部与磁钢装配的稳固性及可靠性。
具体地,磁钢与卡槽的配合结构,在保证磁钢与卡槽配合连接的有效性及可行性的同时,有利于沿转子芯轴的径向减小转子的尺寸,且有利于减小转子的重量。
在上述任一技术方案中,进一步地,沿转子芯轴的轴向布置,转子芯轴至少包括第一连接段和第二连接段,第一连接段的外周壁至转子芯轴的轴线的距离,大于第二连接段的外周壁至转子芯轴的轴线的距离;其中,第一连接段的第一端设有第一缺口,第一连接段的第二端设有第二缺口,卡槽连通第一缺口和第二缺口。
在该技术方案中,转子芯轴至少包括第一连接段和第二连接段,第一连接段和第二连接段沿转子芯轴的轴向布置,也即,沿转子芯轴的轴向,第一连接段位于第二连接段的一侧。
第一连接段的外周壁至转子芯轴的轴线的距离,大于第二连接段的外周壁至转子芯轴的轴线的距离,也即,第二连接段的外周壁相对于第一连接段的外周壁更靠近转子芯轴的轴线。其中,第一连接段的第一端设有第一缺口,第一连接段的第二端设有第二缺口,卡槽连通第一缺口和第二缺口。该设置限定了卡槽和第一连接段的配合结构。这样,可沿转子芯轴的轴向将磁钢插入卡槽。该设置简化了磁钢与转子芯轴的装配工序,有利于降低产品的拆装效率,进而有利于降低产品的生产成本。
在上述任一技术方案中,进一步地,第二连接段的数量为两个,第一连接段位于两个第二连接段之间。
在该技术方案中,第二连接段的数量为两个,并限定两个第二连接段和一个第一连接段的配合结构,具体地,第一连接段位于两个第二连接段之间。这样,装配磁钢时,不会发生干涉,可保证磁钢与转子芯轴装配的高效性。
可以理解的是,转子芯轴通过第二连接段与电机的其他器件连接。
在上述任一技术方案中,进一步地,卡槽包括槽底、第一侧壁和第二侧壁,第一侧壁连接于槽底的第一侧,第二侧壁连接于槽底的第二侧;其中,卡槽的第一侧壁和第二侧壁对应设置。
在该技术方案中,卡槽包括槽底、第一侧壁和第二侧壁,第一侧壁和第二侧壁均与槽底连接,具体地,第一侧壁连接于槽底的第一侧,第二侧壁连接于槽底的第二侧,其中,卡槽的第一侧壁和第二侧壁对应设置。
该设置限定了卡槽的具体结构,卡槽与磁钢配合,增大了卡槽与磁钢的接触面积和接触角度,有利于提升卡槽与磁钢装配的稳固性及可靠性,实现了多个方向及多个角度限位磁钢,可保证磁钢与转子芯轴的配合尺寸,有效避免磁钢移位。
具体地,装配转子时,将多个磁钢装配于多个卡槽后,再将护套结构与转子芯轴装配,护套结构和卡槽相配合以限位磁钢。而后通过注塑的方式,将注塑材料通过入料口冲入隔磁腔内并固化形成隔磁件。即,多个隔磁件、多个磁钢、护套结构和转子芯轴装配为一个整体。
在上述任一技术方案中,进一步地,转子芯轴的一部分凹陷以形成卡槽。
在该技术方案中,转子芯轴的一部分凹陷以形成卡槽,也即,转子芯轴一体形成有卡槽,该结构设置由于省去了卡槽和转子芯轴的装配工序,故而简化了卡槽和转子芯轴的装配及后续拆卸的工序,有利于提升装配及拆卸效率,进而可降低生产及维护成本。另外,转子芯轴的一部分凹陷以形成卡槽可保证产品成型的尺寸精度要求。
另外,转子芯轴的一部分凹陷以形成卡槽,在保证磁钢与卡槽配合连接的有效性及可行性的同时,有利于沿转子芯轴的径向减小转子芯轴和磁钢的配合尺寸,有利于减小转子的尺寸,及有利于减小转子的重量。
在上述任一技术方案中,进一步地,当连接件包括紧固部时,紧固部包括螺栓、螺钉或铆钉。
在该技术方案中,当连接件包括紧固部时,紧固部包括螺栓、螺钉或铆钉,利用螺栓、螺钉或铆钉穿过磁钢锁入转子芯轴。
在上述任一技术方案中,进一步地,护套结构包括:套筒,位于转子芯轴的周侧;第一端盖,位于转子芯轴的周侧,且连接于套筒的第一端;第二端盖,位于转子芯轴的周侧,且连接于套筒的第二端。
在该技术方案中,护套结构包括套筒、第一端盖和第二端盖。第一端盖连接于套筒的第一端,第二端盖连接于套筒的第二端,第一端盖和第二端盖相对设置
可以理解的是,第一端盖和第二端盖均设有连通孔,转子芯轴能够闯过连通孔。
具体地,第一端盖的至少一部分插入套筒内,和/或第二端盖的一部分插入套筒内。该 设置能够增大端盖与套筒的接触面积,可保证端盖与套筒的装配结构强度。
具体地,入料口设于端盖和套筒的至少一个上,出料口设于端盖和套筒的至少一个上。
本公开的第二方面提出了一种电机,包括:第一方面中任一技术方案的转子。
本公开提供的电机,因包括如第一方面中任一技术方案的转子,因此,具有上述转子的全部有益效果,在此不做一一陈述。
本公开的第三方面提出了一种压缩机,包括:第二方面中的电机。
本公开提供的压缩机,因包括如第二方面中的电机,因此,具有上述电机的全部有益效果,在此不做一一陈述。
具体地,压缩机为离心式压缩机。
本公开的第四方面提出了一种空调器,包括:第三方面中的压缩机。
本公开提供的空调器,因包括如第三方面中的压缩机,因此,具有上述压缩机的全部有益效果,在此不做一一陈述。
本公开的附加方面和优点将在下面的描述部分中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本公开的至少一个实施例的转子的结构示意图;
图2示出了本公开的至少一个实施例的转子的第一部分的剖视图;
图3为图2的A处局部放大图;
图4示出了本公开的至少一个实施例的转子的第二部分的剖视图;
图5为图4的B处局部放大图。
其中,图1至图5中的附图标记与部件名称之间的对应关系为:
100转子,110转子芯轴,112第一连接段,114第二连接段,120护套结构,122套筒,124第一端盖,126第二端盖,130磁钢,140隔磁件,150隔磁腔,160连接件,162槽底,164第一侧壁,166第二侧壁。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和具体实施方式对本公开进行进一步的详细描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是,本公开还可以采用其他不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图5描述根据本公开一些实施例的转子100、电机、压缩机和空调器。
如图1、图2、图3、图4和图5所示,本公开第一方面的实施例提出了一种转子100,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
详细地,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。其中,多个磁钢130均位于转子芯轴110的周侧,且多个磁钢130沿转子100的周向间隔布置。多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150,也即,多个磁钢130、转芯轴的外表面和护套结构120的内表面之间形成多个隔磁腔150,每个隔磁腔150内设有一个隔磁件140,且隔磁件140连接隔磁腔150的腔壁。
由于隔磁件140能够与隔磁腔150的腔壁连接,故而,能够保证隔磁件140与隔磁腔150的配合尺寸,也即,能够保证隔磁件140、磁钢130、护套结构120和转子芯轴110的配合尺寸,不会出现隔磁件140移位的情况,为保证转子100的使用性能提供了有效且可靠的结构支撑。
可以理解的是,相邻两个磁钢130的侧壁形成隔磁腔150的一部分腔壁,隔磁件140位于隔磁腔150内,故而,可保证相邻两个磁钢130之间夹设有一个隔磁件140,可保证隔磁件140的隔磁效果。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
进一步地,隔磁腔150内注塑形成有隔磁件140。
详细地,通过合理限定隔磁件140、磁钢130、护套结构120和转子芯轴110的配合结 构,使得每个隔磁腔150内注塑形成有隔磁件140,也即,注塑形成的隔磁件140与磁钢130、护套结构120和转子芯轴110中的任一者连接。换句话说,磁钢130、护套结构120和转子芯轴110通过隔磁件140有效接连为一个整体。该设置由于省去了隔磁件140与磁钢130、护套结构120和转子芯轴110的装配工序,故而简化了转子100的成型工序,有利于提升产品的加工效率。另外,每个隔磁腔150内注塑形成有隔磁件140可保证产品的尺寸的精度,也即,保证隔磁件140、磁钢130、护套结构120和转子芯轴110的配合尺寸,可有效避免转子100的组成部件移位的情况发生,为保证转子100的使用性能提供了有效且可靠的结构支撑。
具体地,将转子芯轴110、护套结构120和多个磁钢130装配后,再通过注塑的方式向隔磁腔150内填充注塑材料,使得注塑材料充满隔磁腔150,使得磁钢130、护套结构120和转子芯轴110通过隔磁件140装配为一个整体。该设置简化了转子100的装配工序,有利于提升转子100的装配效率,利于批量生产,有利于降低产品的生产成本。
另外,相关技术中,隔磁件140为金属件,金属件的自由度方面受限于隔磁腔150的尺寸,不利于隔磁件140装配。而本公开通过注塑的方式,在隔磁腔150内注塑形成有隔磁件140,由于注塑材料具有良好的流动性和填充性,使得隔磁件140地设置不受限于隔磁腔150的形状,弥补了相关技术中机加工金属件自由度方面的不足,既能保证隔磁件140的隔磁效果,又能够充分利用安装腔室的内部结构,有利于减小转子100的外形尺寸和重量。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
隔磁腔150内注塑形成有隔磁件140。
进一步地,护套结构120设有入料口和排气口,入料口和排气口均与隔磁腔150连通。
详细地,护套结构120设有入料口,入料口与隔磁腔150连通,注塑材料通过入料口流入隔磁腔150,并充满隔磁腔150。
护套结构120设有排气口,隔磁材料通过入料口流入隔磁腔150的同时,隔磁腔150内的空气通过排气口排出,以保证隔磁材料有效充盈于隔磁腔150。
进一步地,隔磁件140包括塑料隔磁件140和铝隔磁件140中的至少一者。
其中,可以根据具体实际使用需求设置隔磁件140的材质,如,隔磁件140包括塑料隔 磁件140,又如,隔磁件140包括铝隔磁件140,又如,隔磁件140包括塑料隔磁件140和铝隔磁件140。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
进一步地,如图2和图4所示,磁钢130的第一端面与护套结构120的内表面抵靠,磁钢130的第二端面与转子芯轴110的外表面抵靠。
详细地,磁钢130具有第一端面和第二端面,通过合理设置磁钢130、护套结构120和转子芯轴110的配合结构,使得磁钢130的第一端面与护套结构120的内表面抵靠,磁钢130的第二端面与转子芯轴110的外表面抵靠,也即,磁钢130抵接于护套结构120和转子芯轴110之间。也就是说,转子芯轴110的外表面的一部分、护套结构120的内表面的一部分、相邻两个磁钢130的侧壁共同构成隔磁腔150的腔壁。
该设置既可保证隔磁件140有效分隔相邻两个磁钢130的使用需求,又可保证磁钢130的容置空间,保证磁钢130的尺寸,为转子100有效使用提供了可靠的结构支撑。
具体地,安装腔室为环形腔室,环形腔室包括内环面、外环面、第一壁面和第二壁面,第一壁面连接内环面和外环面,第二壁面连接内环面和外环面,第一壁面和第二壁面沿转子100的轴向间隔布置。转子芯轴110的外表面形成环形腔室的内环面,护套结构120的内表面形成环形腔室的外环面、第一壁面和第二壁面。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
进一步地,如图2、图3、图4和图5所示,转子100还包括多个连接件160。
每个磁钢130通过至少一个连接件160与转子芯轴110连接。
详细地,转子100还包括多个连接件160,且每个磁钢130通过至少一个连接件160与 转子芯轴110连接,也就是说,连接件160将转子芯轴110和磁通连接为一个整体。该设置能够保证磁钢130与护套结构120和转子芯轴110的配合尺寸,可有效避免磁钢130移位的情况发生,为保证转子100的使用性能提供了有效且可靠的结构支撑。
相关技术中,磁钢130通过粘胶固化的方式与转子100轴连接,该设置无法保证磁钢130的有效定位,易出现移位的现象,无法保证器件的配合尺寸,且易出现磁钢130未牢于转子100轴的问题,装配难度大,且会影响产品使用性能。
本公开通过改进磁钢130和转子芯轴110的配合结构,使得每个磁钢130通过至少一个连接件160与转子芯轴110连接,利用连接件160保证磁钢130和转子芯轴110稳固且牢靠装配在一起,不会出现装配转子100时磁钢130移位的情况,简化了装配难度,有利于提升装配效率。
具体地,每个磁钢130通过一个连接件160与转子芯轴110连接,或者每个磁钢130通过多个连接件160与转子芯轴110连接。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
转子100还包括多个连接件160。
每个磁钢130通过至少一个连接件160与转子芯轴110连接。
进一步地,连接件160包括:卡接部,卡接部设于转子芯轴110上,磁钢130与卡接部卡接连接;和/或紧固部,紧固部穿过磁钢130并与转子芯轴110连接。
详细地,连接件160包括卡接部,或者连接件160包括紧固部,或者连接件160包括卡接部和紧固部。即,磁钢130可通过卡接部和紧固部中的一个与转子芯轴110装配在一起,以实现限定磁钢130相对于转子芯轴110的位移的目的。当需要拆卸磁钢130时,可通向磁钢130施加外力以克服磁钢130与转子芯轴110之间的卡接力,或解锁紧固部,进而实现磁钢130与转子芯轴110相分离的目的。该结构设置具有装配可靠性,便于安装及后续的拆卸、维护,也便于组装过程中磁钢130相对于转子芯轴110的调试和校准。
进一步地,磁钢130经由紧固部锁定,或磁钢130经卡接部卡接,或磁钢130通过卡接部卡接,且经由紧固部锁定。卡接及紧固中的一者具有预固定的作用,卡接及紧固中的另一者具有进一步固定的作用,可强化磁钢130装配可靠性,并进一步校准磁钢130的装配 紧密性和精度,使得产品组装更加便捷。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
转子100还包括多个连接件160。
每个磁钢130通过至少一个连接件160与转子芯轴110连接。
连接件160包括:卡接部,卡接部设于转子芯轴110上,磁钢130与卡接部卡接连接;和/或紧固部,紧固部穿过磁钢130并与转子芯轴110连接。
进一步地,当连接件160包括卡接部时,卡接部包括卡槽,磁钢130的至少一部分位于卡槽内。
详细地,卡接部包括卡槽,利用卡槽限位和固定磁钢130,具体地,磁钢130的至少一部分位于卡槽内。卡槽与磁钢130的配合结构,能够增大卡接部与磁钢130的接触面积和接触角度,有利于提升卡接部与磁钢130装配的稳固性及可靠性。
具体地,磁钢130与卡槽的配合结构,在保证磁钢130与卡槽配合连接的有效性及可行性的同时,有利于沿转子芯轴110的径向减小转子100的尺寸,且有利于减小转子100的重量。
进一步地,如图1、图2、图3、图4和图5所示,沿转子芯轴110的轴向布置,转子芯轴110至少包括第一连接段112和第二连接段114,第一连接段112的外周壁至转子芯轴110的轴线的距离,大于第二连接段114的外周壁至转子芯轴110的轴线的距离。
第一连接段112的第一端设有第一缺口,第一连接段112的第二端设有第二缺口,卡槽连通第一缺口和第二缺口。
其中,转子芯轴110至少包括第一连接段112和第二连接段114,第一连接段112和第二连接段114沿转子芯轴110的轴向布置,也即,沿转子芯轴110的轴向,第一连接段112位于第二连接段114的一侧。
第一连接段112的外周壁至转子芯轴110的轴线的距离,大于第二连接段114的外周壁至转子芯轴110的轴线的距离,也即,第二连接段114的外周壁相对于第一连接段112的外周壁更靠近转子芯轴110的轴线。其中,第一连接段112的第一端设有第一缺口,第一连接段112的第二端设有第二缺口,卡槽连通第一缺口和第二缺口。该设置限定了卡槽和 第一连接段112的配合结构。这样,可沿转子芯轴110的轴向将磁钢130插入卡槽。该设置简化了磁钢130与转子芯轴110的装配工序,有利于降低产品的拆装效率,进而有利于降低产品的生产成本。
进一步地,如图1所示,第二连接段114的数量为两个,第一连接段112位于两个第二连接段114之间。
其中,第二连接段114的数量为两个,并限定两个第二连接段114和一个第一连接段112的配合结构,具体地,第一连接段112位于两个第二连接段114之间。这样,装配磁钢130时,不会发生干涉,可保证磁钢130与转子芯轴110装配的高效性。
可以理解的是,转子芯轴110通过第二连接段114与电机的其他器件连接。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
转子100还包括多个连接件160。
每个磁钢130通过至少一个连接件160与转子芯轴110连接。
连接件160包括:卡接部,卡接部设于转子芯轴110上,磁钢130与卡接部卡接连接;和/或紧固部,紧固部穿过磁钢130并与转子芯轴110连接。
当连接件160包括卡接部时,卡接部包括卡槽,磁钢130的至少一部分位于卡槽内。
沿转子芯轴110的轴向布置,转子芯轴110至少包括第一连接段112和第二连接段114,第一连接段112的外周壁至转子芯轴110的轴线的距离,大于第二连接段114的外周壁至转子芯轴110的轴线的距离。
第一连接段112的第一端设有第一缺口,第一连接段112的第二端设有第二缺口,卡槽连通第一缺口和第二缺口。
进一步地,如图2、图3、图4和图5所示,卡槽包括槽底162、第一侧壁164和第二侧壁166。
第一侧壁164连接于槽底162的第一侧。
第二侧壁166连接于槽底162的第二侧。
其中,卡槽的第一侧壁164和第二侧壁166对应设置。
详细地,卡槽包括槽底162、第一侧壁164和第二侧壁166,第一侧壁164和第二侧壁 166均与槽底162连接,具体地,第一侧壁164连接于槽底162的第一侧,第二侧壁166连接于槽底162的第二侧,其中,卡槽的第一侧壁164和第二侧壁166对应设置。
该设置限定了卡槽的具体结构,卡槽与磁钢130配合,增大了卡槽与磁钢130的接触面积和接触角度,有利于提升卡槽与磁钢130装配的稳固性及可靠性,实现了多个方向及多个角度限位磁钢130,可保证磁钢130与转子芯轴110的配合尺寸,有效避免磁钢130移位。
具体地,装配转子100时,将多个磁钢130装配于多个卡槽后,再将护套结构120与转子芯轴110装配,护套结构120和卡槽相配合以限位磁钢130。而后通过注塑的方式,将注塑材料通过入料口冲入隔磁腔150内并固化形成隔磁件140。即,多个隔磁件140、多个磁钢130、护套结构120和转子芯轴110装配为一个整体。
在本实施例中,第一侧壁164垂直于槽底162,第二侧壁166垂直于槽底162。
在其他一些实施例中,第一侧壁164与槽底162的夹角为锐角或钝角。第二侧壁166与槽底162的夹角为锐角或钝角。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
转子100还包括多个连接件160。
每个磁钢130通过至少一个连接件160与转子芯轴110连接。
连接件160包括:卡接部,卡接部设于转子芯轴110上,磁钢130与卡接部卡接连接;和/或紧固部,紧固部穿过磁钢130并与转子芯轴110连接。
当连接件160包括卡接部时,卡接部包括卡槽,磁钢130的至少一部分位于卡槽内。
进一步地,转子芯轴110的一部分凹陷以形成卡槽。
详细地,转子芯轴110的一部分凹陷以形成卡槽,也即,转子芯轴110一体形成有卡槽,该结构设置由于省去了卡槽和转子芯轴110的装配工序,故而简化了卡槽和转子芯轴110的装配及后续拆卸的工序,有利于提升装配及拆卸效率,进而可降低生产及维护成本。另外,转子芯轴110的一部分凹陷以形成卡槽可保证产品成型的尺寸精度要求。
另外,转子芯轴110的一部分凹陷以形成卡槽,在保证磁钢130与卡槽配合连接的有效性及可行性的同时,有利于沿转子芯轴110的径向减小转子芯轴110和磁钢130的配合尺寸,有利于减小转子100的尺寸,及有利于减小转子100的重量。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
转子100还包括多个连接件160。
每个磁钢130通过至少一个连接件160与转子芯轴110连接。
连接件160包括:卡接部,卡接部设于转子芯轴110上,磁钢130与卡接部卡接连接;和/或紧固部,紧固部穿过磁钢130并与转子芯轴110连接。
进一步地,当连接件160包括紧固部时,紧固部包括螺栓、螺钉或铆钉。
其中,当连接件160包括紧固部时,紧固部包括螺栓、螺钉或铆钉,利用螺栓、螺钉或铆钉穿过磁钢130锁入转子芯轴110。
如图1、图2、图3、图4和图5所示,在本公开的一些实施例中,转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。
护套结构120连接于转子芯轴110的周侧。
护套结构120的内表面和转子芯轴110的外表面之间合围出安装腔室。
多个磁钢130位于安装腔室内,且多个磁钢130间隔分布于转子芯轴110的周侧。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。
每个隔磁腔150内设有一个隔磁件140,隔磁件140连接隔磁腔150的腔壁。
进一步地,如图1、图2、图4和图5所示,护套结构120包括套筒122、第一端盖124和第二端盖126。
套筒122位于转子芯轴110的周侧。
第一端盖124位于转子芯轴110的周侧,且连接于套筒122的第一端。
第二端盖126位于转子芯轴110的周侧,且连接于套筒122的第二端。
详细地,护套结构120包括套筒122、第一端盖124和第二端盖126。第一端盖124连接于套筒122的第一端,第二端盖126连接于套筒122的第二端,第一端盖124和第二端盖126相对设置
可以理解的是,第一端盖124和第二端盖126均设有连通孔,转子芯轴110能够闯过连通孔。
具体地,第一端盖124的至少一部分插入套筒122内,和/或第二端盖126的一部分插 入套筒122内。该设置能够增大端盖与套筒122的接触面积,可保证端盖与套筒122的装配结构强度。
具体地,入料口设于端盖和套筒122的至少一个上,出料口设于端盖和套筒122的至少一个上。
本公开第二方面的一些实施例中提出了一种电机,包括:第一方面中任一实施例的转子100。
详细地,电机包括转子100。
转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。其中,多个磁钢130均位于转子芯轴110的周侧,且多个磁钢130沿转子100的周向间隔布置。多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150,也即,多个磁钢130、转芯轴的外表面和护套结构120的内表面之间形成多个隔磁腔150,每个隔磁腔150内设有一个隔磁件140,且隔磁件140连接隔磁腔150的腔壁。
由于隔磁件140能够与隔磁腔150的腔壁连接,故而,能够保证隔磁件140与隔磁腔150的配合尺寸,也即,能够保证隔磁件140、磁钢130、护套结构120和转子芯轴110的配合尺寸,不会出现隔磁件140移位的情况,为保证转子100的使用性能提供了有效且可靠的结构支撑。
可以理解的是,相邻两个磁钢130的侧壁形成隔磁腔150的一部分腔壁,隔磁件140位于隔磁腔150内,故而,可保证相邻两个磁钢130之间夹设有一个隔磁件140,可保证隔磁件140的隔磁效果。
隔磁腔150内注塑形成有隔磁件140。
通过合理限定隔磁件140、磁钢130、护套结构120和转子芯轴110的配合结构,使得每个隔磁腔150内注塑形成有隔磁件140,也即,注塑形成的隔磁件140与磁钢130、护套结构120和转子芯轴110中的任一者连接。换句话说,磁钢130、护套结构120和转子芯轴110通过隔磁件140有效接连为一个整体。该设置由于省去了隔磁件140与磁钢130、护套结构120和转子芯轴110的装配工序,故而简化了转子100的成型工序,有利于提升产品的加工效率。另外,每个隔磁腔150内注塑形成有隔磁件140可保证产品的尺寸的精度,也即,保证隔磁件140、磁钢130、护套结构120和转子芯轴110的配合尺寸,可有效避免转子100的组成部件移位的情况发生,为保证转子100的使用性能提供了有效且可靠的结构支撑。
具体地,将转子芯轴110、护套结构120和多个磁钢130装配后,再通过注塑的方式向隔磁腔150内填充注塑材料,使得注塑材料充满隔磁腔150,使得磁钢130、护套结构120和转子芯轴110通过隔磁件140装配为一个整体。该设置简化了转子100的装配工序,有 利于提升转子100的装配效率,利于批量生产,有利于降低产品的生产成本。
另外,相关技术中,隔磁件140为金属件,金属件的自由度方面受限于隔磁腔150的尺寸,不利于隔磁件140装配。而本公开通过注塑的方式,在隔磁腔150内注塑形成有隔磁件140,由于注塑材料具有良好的流动性和填充性,使得隔磁件140地设置不受限于隔磁腔150的形状,弥补了相关技术中机加工金属件自由度方面的不足,既能保证隔磁件140的隔磁效果,又能够充分利用安装腔室的内部结构,有利于减小转子100的外形尺寸和重量。
本公开第三方面的实施例提出了一种压缩机,包括:第二方面中的电机。
详细地,压缩机包括电机。
电机包括转子100。
转子100包括转子芯轴110、护套结构120、多个磁钢130和多个隔磁件140。其中,多个磁钢130均位于转子芯轴110的周侧,且多个磁钢130沿转子100的周向间隔布置。多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150,也即,多个磁钢130、转芯轴的外表面和护套结构120的内表面之间形成多个隔磁腔150,每个隔磁腔150内设有一个隔磁件140,且隔磁件140连接隔磁腔150的腔壁。
由于隔磁件140能够与隔磁腔150的腔壁连接,故而,能够保证隔磁件140与隔磁腔150的配合尺寸,也即,能够保证隔磁件140、磁钢130、护套结构120和转子芯轴110的配合尺寸,不会出现隔磁件140移位的情况,为保证转子100的使用性能提供了有效且可靠的结构支撑。
可以理解的是,相邻两个磁钢130的侧壁形成隔磁腔150的一部分腔壁,隔磁件140位于隔磁腔150内,故而,可保证相邻两个磁钢130之间夹设有一个隔磁件140,可保证隔磁件140的隔磁效果。
隔磁腔150内注塑形成有隔磁件140。
通过合理限定隔磁件140、磁钢130、护套结构120和转子芯轴110的配合结构,使得每个隔磁腔150内注塑形成有隔磁件140,也即,注塑形成的隔磁件140与磁钢130、护套结构120和转子芯轴110中的任一者连接。换句话说,磁钢130、护套结构120和转子芯轴110通过隔磁件140有效接连为一个整体。该设置由于省去了隔磁件140与磁钢130、护套结构120和转子芯轴110的装配工序,故而简化了转子100的成型工序,有利于提升产品的加工效率。另外,每个隔磁腔150内注塑形成有隔磁件140可保证产品的尺寸的精度,也即,保证隔磁件140、磁钢130、护套结构120和转子芯轴110的配合尺寸,可有效避免转子100的组成部件移位的情况发生,为保证转子100的使用性能提供了有效且可靠的结构支撑。
具体地,将转子芯轴110、护套结构120和多个磁钢130装配后,再通过注塑的方式向 隔磁腔150内填充注塑材料,使得注塑材料充满隔磁腔150,使得磁钢130、护套结构120和转子芯轴110通过隔磁件140装配为一个整体。该设置简化了转子100的装配工序,有利于提升转子100的装配效率,利于批量生产,有利于降低产品的生产成本。
另外,相关技术中,隔磁件140为金属件,金属件的自由度方面受限于隔磁腔150的尺寸,不利于隔磁件140装配。而本公开通过注塑的方式,在隔磁腔150内注塑形成有隔磁件140,由于注塑材料具有良好的流动性和填充性,使得隔磁件140地设置不受限于隔磁腔150的形状,弥补了相关技术中机加工金属件自由度方面的不足,既能保证隔磁件140的隔磁效果,又能够充分利用安装腔室的内部结构,有利于减小转子100的外形尺寸和重量。
在本公开的一些实施例中,电机包括永磁同步电机,永磁同步电机包括转子100,在转子芯轴110上通过机加工形成卡槽,从而在装配过程中实现磁钢130的高精度定位,同时也便于装配操作提高生产效率。
多个磁钢130中任意两个相邻的磁钢130和安装腔室的腔壁之间合围出隔磁腔150。用注塑的方式将注塑材料填充至隔磁腔150内,固化以形成隔磁件140,在保证结构完整性的同时,本公开的通用性和操作简便性更好,成本也相对较低。
卡槽与磁钢130配合,可以在装配过程中对磁钢130进行良好定位。从而提高装配效率和产品质量。
护套结构120设有入料口和排气口,入料口和排气口均与隔磁腔150连通。
由于注塑材料具有良好的流动性和填充性,因此,隔磁件140地成型不受限于隔磁腔150的形状。弥补了相关技术中金属件的自由度方面受限于隔磁腔150的尺寸,不利于隔磁件140装配的缺陷。
本公开第四方面的实施例提出了一种空调器,包括:第三方面中的压缩机。
在本公开中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本公开的可选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、 等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (17)

  1. 一种转子,包括:
    转子芯轴;
    护套结构,连接于所述转子芯轴的周侧,所述护套结构的内表面和所述转子芯轴的外表面之间合围出安装腔室;
    多个磁钢,位于所述安装腔室内,且所述多个磁钢间隔分布于所述转子芯轴的周侧,所述多个磁钢中任意两个相邻的磁钢和所述安装腔室的腔壁之间合围出隔磁腔;
    多个隔磁件,每个所述隔磁腔内设有一个所述隔磁件,所述隔磁件连接所述隔磁腔的腔壁。
  2. 根据权利要求1所述的转子,其中,
    所述隔磁腔内注塑形成有所述隔磁件。
  3. 根据权利要求2所述的转子,其中,
    所述护套结构设有入料口和排气口,所述入料口和所述排气口均与所述隔磁腔连通。
  4. 根据权利要求1至3中任一项所述的转子,其中,
    所述磁钢的第一端面与所述护套结构的内表面抵靠,所述磁钢的第二端面与所述转子芯轴的外表面抵靠。
  5. 根据权利要求1至4中任一项所述的转子,其中,
    所述隔磁件包括塑料隔磁件和铝隔磁件中的至少一者。
  6. 根据权利要求1至5中任一项所述的转子,其中,还包括:
    多个连接件;
    其中,每个所述磁钢通过至少一个所述连接件与所述转子芯轴连接。
  7. 根据权利要求6所述的转子,其中,所述连接件包括:
    卡接部,所述卡接部设于所述转子芯轴上,所述磁钢与所述卡接部卡接连接;和/或
    紧固部,所述紧固部穿过所述磁钢并与所述转子芯轴连接。
  8. 根据权利要求7所述的转子,其中,当所述连接件包括所述卡接部时,
    所述卡接部包括卡槽,所述磁钢的至少一部分位于所述卡槽内。
  9. 根据权利要求8所述的转子,其中,
    沿所述转子芯轴的轴向布置,所述转子芯轴至少包括第一连接段和第二连接段,所 述第一连接段的外周壁至所述转子芯轴的轴线的距离,大于所述第二连接段的外周壁至所述转子芯轴的轴线的距离;
    其中,所述第一连接段的第一端设有第一缺口,所述第一连接段的第二端设有第二缺口,所述卡槽连通所述第一缺口和所述第二缺口。
  10. 根据权利要求9所述的转子,其中,
    所述第二连接段的数量为两个,所述第一连接段位于两个所述第二连接段之间。
  11. 根据权利要求8至10中任一项所述的转子,其中,
    所述卡槽包括槽底、第一侧壁和第二侧壁,所述第一侧壁连接于所述槽底的第一侧,所述第二侧壁连接于所述槽底的第二侧;
    其中,所述卡槽的第一侧壁和第二侧壁对应设置。
  12. 根据权利要求8至11中任一项所述的转子,其中,
    所述转子芯轴的一部分凹陷以形成所述卡槽。
  13. 根据权利要求7至12中任一项所述的转子,其中,当所述连接件包括紧固部时,
    所述紧固部包括螺栓、螺钉或铆钉。
  14. 根据权利要求1至13中任一项所述的转子,其中,所述护套结构包括:
    套筒,位于所述转子芯轴的周侧;
    第一端盖,位于所述转子芯轴的周侧,且连接于所述套筒的第一端;
    第二端盖,位于所述转子芯轴的周侧,且连接于所述套筒的第二端。
  15. 一种电机,包括:
    如权利要求1至14中任一项所述的转子。
  16. 一种压缩机,包括:
    如权利要求15所述的电机。
  17. 一种空调器,包括:
    如权利要求16所述的压缩机。
PCT/CN2023/074642 2022-02-28 2023-02-06 转子、电机、压缩机和空调器 WO2023160364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210186109.3 2022-02-28
CN202210186109.3A CN116707180A (zh) 2022-02-28 2022-02-28 转子、电机和压缩机

Publications (1)

Publication Number Publication Date
WO2023160364A1 true WO2023160364A1 (zh) 2023-08-31

Family

ID=87764817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074642 WO2023160364A1 (zh) 2022-02-28 2023-02-06 转子、电机、压缩机和空调器

Country Status (2)

Country Link
CN (1) CN116707180A (zh)
WO (1) WO2023160364A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243654A (ja) * 1998-02-24 1999-09-07 Kokusan Denki Co Ltd 回転電機用磁石回転子
CN106704204A (zh) * 2015-07-24 2017-05-24 浙江三花汽车零部件有限公司 电子泵
CN207426835U (zh) * 2017-10-30 2018-05-29 南京磁谷科技有限公司 一种表贴式永磁转子的隔磁结构
CN109713820A (zh) * 2018-12-24 2019-05-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种油浸式永磁电机
CN110739787A (zh) * 2018-07-20 2020-01-31 广东德昌电机有限公司 电机及其转子
CN215646408U (zh) * 2021-06-23 2022-01-25 贵州航天林泉电机有限公司苏州分公司 一种表贴式转子磁钢防脱落结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243654A (ja) * 1998-02-24 1999-09-07 Kokusan Denki Co Ltd 回転電機用磁石回転子
CN106704204A (zh) * 2015-07-24 2017-05-24 浙江三花汽车零部件有限公司 电子泵
CN207426835U (zh) * 2017-10-30 2018-05-29 南京磁谷科技有限公司 一种表贴式永磁转子的隔磁结构
CN110739787A (zh) * 2018-07-20 2020-01-31 广东德昌电机有限公司 电机及其转子
CN109713820A (zh) * 2018-12-24 2019-05-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种油浸式永磁电机
CN215646408U (zh) * 2021-06-23 2022-01-25 贵州航天林泉电机有限公司苏州分公司 一种表贴式转子磁钢防脱落结构

Also Published As

Publication number Publication date
CN116707180A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US8035273B2 (en) Rotor assembly having two core portions each with a reduced back portion
CN101621221B (zh) 电动机及该电动机的制造方法
US7709991B2 (en) Rotor assembly for an electric machine including a vibration damping member and method of manufacturing same
US20070132335A1 (en) Rotor assembly having a reduced back portion and a method of manufacturing same
JP7105997B2 (ja) 電動送風機
JP4837334B2 (ja) 永久磁石式回転子
WO2023160364A1 (zh) 转子、电机、压缩机和空调器
US11233430B2 (en) Rotor of synchronous motor with reinforcement member for pressing magnet
KR101097398B1 (ko) 전동기의 회전자
CN216016565U (zh) 无刷电机
JPH10174327A (ja) 永久磁石回転子とその製造方法
RU2589717C2 (ru) Усовершенствование конструкции электродвигателя для бытового электроприбора
CN212033850U (zh) 转子铁芯及具有其的注塑转子
CN212162960U (zh) 电机外转子、无刷永磁电机和电气产品
KR20230024411A (ko) 모터
WO2023000735A1 (zh) 电机转子、永磁同步电机及车辆
CN211790987U (zh) 转子铁芯及具有其的转子
CN117458750A (zh) 转子铁芯及注塑转子
CN218006085U (zh) 定子组件、电机以及车辆
WO2021218728A1 (zh) 一种转子组件的制造方法、转子组件以及电动泵
US20220302780A1 (en) Motor external rotor, brushless permanent magnet motor and electrical product
CN210985767U (zh) 电机转子、电机及电动工具
CN216904471U (zh) 转子铁芯及转子组件、电机
WO2024075374A1 (ja) 回転機械
CN117937835B (zh) 一种直线旋转电机及其装配工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758989

Country of ref document: EP

Kind code of ref document: A1