WO2023160175A1 - 卷绕机变径卷针的控制方法、电子设备和存储介质 - Google Patents

卷绕机变径卷针的控制方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023160175A1
WO2023160175A1 PCT/CN2022/140362 CN2022140362W WO2023160175A1 WO 2023160175 A1 WO2023160175 A1 WO 2023160175A1 CN 2022140362 W CN2022140362 W CN 2022140362W WO 2023160175 A1 WO2023160175 A1 WO 2023160175A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
diameter
tab
needle
value
Prior art date
Application number
PCT/CN2022/140362
Other languages
English (en)
French (fr)
Inventor
陆世锋
成长发
许天锋
周明浪
黄振奎
Original Assignee
广东利元亨智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东利元亨智能装备股份有限公司 filed Critical 广东利元亨智能装备股份有限公司
Publication of WO2023160175A1 publication Critical patent/WO2023160175A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/18Constructional details
    • B65H75/24Constructional details adjustable in configuration, e.g. expansible
    • B65H75/242Expansible spindles, mandrels or chucks, e.g. for securing or releasing cores, holders or packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/18Constructional details
    • B65H75/24Constructional details adjustable in configuration, e.g. expansible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of battery manufacturing equipment, and in particular relates to a control method, electronic equipment and a storage medium for variable-diameter winding needles of a winding machine.
  • the incoming materials need to be replaced.
  • the thickness of the separator film of the incoming material fluctuates between 30um-40um, the thickness of the separator film is unstable, the thickness deviation of the positive and negative electrodes, and the die-cutting size deviation of the tab incoming material, etc., resulting in the winding out of the cell Misaligned ears.
  • the existing winding machines on the market observe the misalignment amount and direction of the battery core through manual experience, and stick Teflon on the surface of the winding needle to change the circumference of the winding needle to adjust the tab misalignment of the battery core.
  • Teflon on the surface of the winding needle to change the circumference of the winding needle to adjust the tab misalignment of the battery core.
  • there is manual intervention and adjustment in this method and there is no data support.
  • One refueling requires multiple adjustments to achieve the effect of stable tab alignment, and the adjustment efficiency is low and the yield rate is low.
  • Embodiments of the present invention provide a control method, electronic equipment, and storage medium for variable-diameter winding needles of a winding machine, which can not only improve adjustment efficiency, but also improve product yield.
  • an embodiment of the present invention provides a method for controlling variable-diameter winding needles of a winding machine, which is applied to a controller in a winding machine, and the winding machine further includes an image sensor, a drive assembly, and a variable-diameter winding needle,
  • the controller communicates with the image sensor, and the controller is also used to adjust the variable-diameter winding needle through the drive assembly;
  • control methods include:
  • the adjustment amount of the variable diameter needle is calculated according to the effective difference, and the driving assembly is controlled based on the adjustment amount of the variable diameter needle to adjust the winding diameter of the variable diameter needle.
  • the detection of the tab width value of the tab group of the battery cell after each roll material pasting by the image sensor includes:
  • the image information of the tab group of the battery cell after each coil material is glued is collected by the image sensor;
  • a lug width value is calculated according to the first distance value and the second distance value.
  • the screening process on the tab width difference includes:
  • the tab width difference is screened.
  • the screening process is performed on the tab width difference, and at least one effective difference is screened out, including one of the following:
  • the calculation of the adjustment amount of the variable-diameter needle according to the effective difference includes one of the following:
  • the average value of all the effective differences is calculated, and the adjustment amount of the reducing needle is calculated according to the average value.
  • variable-diameter rolling needle is provided with a variable-diameter slider
  • variable-diameter sliding block is provided with a slope for adjusting the rolling diameter of the variable-diameter rolling needle
  • Adjustment amount of the variable-diameter needle median value/cell coil The number of turns/ ⁇ /Tan ⁇ ; wherein, the ⁇ is the inclination angle of the slope;
  • Adjustment amount of the variable-diameter needle average value/number of coil winding turns / ⁇ /Tan ⁇ ; wherein, the ⁇ is the inclination angle of the slope.
  • the preset allowable adjustment interval is a numerical interval greater than the preset tab width adjustment threshold and smaller than the preset maximum limit value of needle winding adjustment, wherein the tab width adjustment threshold is used to define Whether it is necessary to adjust the roll diameter of the variable-diameter needle, the maximum limit value of the needle adjustment is used to represent the maximum adjustment range of the variable-diameter needle.
  • the tab group is an anode tab group or a cathode tab group
  • the tab width difference is a positive number indicating that the tab is misaligned toward the outer edge of the cell
  • the tab width difference A negative value indicates that the tab is misaligned toward the middle of the cell.
  • the embodiment of the present invention also provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor executes the computer program
  • the program realizes the control method of the variable-diameter winding needle of the winding machine as described in the first aspect above.
  • the embodiment of the present invention also provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are used to implement the variable-diameter winding needle of the winding machine as described in the first aspect. Control Method.
  • the embodiment of the present invention includes: first, the embodiment of the present invention detects the tab width value of the tab group of the battery cell after each coil pasting glue through the image sensor; then, combines at least one tab width value with the preset tab width value Calculate the difference between the theoretical value of the ear width to obtain the difference of the tab width; then, filter the difference of the tab width to select at least one effective difference, wherein all effective differences are positive or negative, effective The difference is within the preset allowable adjustment range; finally, the embodiment of the present invention calculates the adjustment amount of the variable diameter needle according to the effective difference, and controls the driving assembly based on the adjustment amount of the variable diameter needle to adjust the winding diameter of the variable diameter needle.
  • the embodiment of the present invention obtains the tab width difference through the detection method of the image sensor, which is different from the method of observing the battery cell through manual experience in the prior art, thereby improving the production efficiency Secondly, the embodiment of the present invention will screen out the effective difference from the lug width difference, and eliminate the invalid difference, so that the adjustment amount of the variable-diameter winding needle obtained by the subsequent calculation is more accurate, thereby improving the yield of the product; Finally, the embodiment of the present invention adjusts the winding diameter of the variable-diameter winding needle by controlling the driving assembly, which is different from the method of changing the circumference of the winding needle by sticking Teflon in the prior art, thereby also improving the production efficiency.
  • Fig. 1 is a flow chart of a control method of a winding machine variable-diameter winding needle provided by an embodiment of the present invention
  • Fig. 2 is a flow chart of the control method of the variable-diameter winding needle of the winding machine provided by another embodiment of the present invention.
  • Fig. 3 is a flow chart of the control method of the variable-diameter winding needle of the winding machine provided by another embodiment of the present invention.
  • Fig. 4 is a flow chart of the control method of the variable-diameter winding needle of the winding machine provided by another embodiment of the present invention.
  • Fig. 5 is a flow chart of the control method of the variable-diameter winding needle of the winding machine provided by another embodiment of the present invention.
  • Fig. 6 is a flow chart of the control method of the variable-diameter winding needle of the winding machine provided by another embodiment of the present invention.
  • Fig. 7 is a flow chart of the control method of the variable-diameter winding needle of the winding machine provided by another embodiment of the present invention.
  • Fig. 8 is a schematic structural view of a variable-diameter rolling needle provided by an embodiment of the present invention.
  • Fig. 9 is a partial structural schematic view of the reducing needle shown in Fig. 8.
  • Fig. 10 is a structural schematic diagram of a control device for variable-diameter winding needles of a winding machine provided by an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present invention.
  • the incoming materials need to be replaced.
  • the thickness of the separator film of the incoming material fluctuates between 30um-40um, the thickness of the separator film is unstable, the thickness deviation of the positive and negative electrodes, and the die-cutting size deviation of the tab incoming material, etc., resulting in the winding out of the cell Misaligned ears.
  • the existing winding machines on the market observe the misalignment amount and direction of the battery core through manual experience, and stick Teflon on the surface of the winding needle to change the circumference of the winding needle to adjust the tab misalignment of the battery core.
  • there is manual intervention and adjustment in this method and there is no data support.
  • One refueling requires multiple adjustments to achieve the effect of stable tab alignment, and the adjustment efficiency is low and the yield rate is low.
  • an embodiment of the present invention provides a method for controlling variable-diameter needles of a winding machine, a control device for variable-diameter needles of a winding machine, electronic equipment, and a computer-readable storage medium, including the following steps: First, the embodiments of the present invention will Use the image sensor to detect the tab width value of the tab group of the battery cell after each roll of material glue; then, calculate the difference between at least one tab width value and the preset tab width theoretical value to obtain the tab Width difference; then, filter the lug width difference, and filter out at least one effective difference, wherein all effective differences are positive or negative, and the effective difference is within the preset allowable adjustment interval; finally, In the embodiment of the present invention, the adjustment amount of the variable diameter needle is calculated according to the effective difference, and the driving assembly is controlled based on the adjustment amount of the variable diameter needle to adjust the winding diameter of the variable diameter needle.
  • the embodiment of the present invention obtains the tab width difference through the detection method of the image sensor, which is different from the method of observing the battery cell through manual experience in the prior art, thereby improving the production efficiency Secondly, the embodiment of the present invention will screen out the effective difference from the lug width difference, and eliminate the invalid difference, so that the adjustment amount of the variable-diameter winding needle obtained by the subsequent calculation is more accurate, thereby improving the yield of the product; Finally, the embodiment of the present invention adjusts the winding diameter of the variable-diameter winding needle by controlling the driving assembly, which is different from the method of changing the circumference of the winding needle by sticking Teflon in the prior art, thereby also improving the production efficiency.
  • variable-diameter winding needle of the winding machine provided in the embodiment of the present invention are specifically described through the following embodiments. Firstly, the control method of the variable-diameter winding needle of the winding machine in the embodiment of the present invention is described.
  • Figure 1 is a flow chart of the control method of the variable-diameter winding needle of the winding machine provided by an embodiment of the present invention; the control method of the variable-diameter winding needle of the winding machine in the embodiment of the present invention is applied to the winding machine
  • the controller the winding machine also includes an image sensor, a driving assembly and a variable diameter winding needle, the controller communicates with the image sensor, and the controller is also used to adjust the variable diameter winding needle through the driving assembly.
  • control method in the embodiment of the present invention may include but not limited to include step S100, step S200, step S300 and step S400.
  • Step S100 using the image sensor to detect the tab width value of the tab group of the battery cell after each roll material pasting glue
  • Step S200 calculating the difference between at least one tab width value and a preset tab width theoretical value to obtain a tab width difference
  • Step S300 performing screening processing on the lug width difference, and filtering out at least one effective difference, wherein all effective differences are positive or negative, and the effective difference is within the preset allowable adjustment interval;
  • Step S400 calculating the adjustment amount of the variable-diameter needle according to the effective difference, and controlling the driving assembly based on the adjustment amount of the variable-diameter needle to adjust the winding diameter of the variable-diameter needle.
  • the embodiment of the present invention first adjusts the consistency of multiple winding needles manually, and adjusts to ensure that the cells wound out of multiple winding needles in the same roll have no misalignment, so as to ensure that the variable-diameter winding needles adjust the winding diameter at one time.
  • the adjustment amount of multiple winding needles can be consistent, and the consistency of the adjustment results is consistent; then, after the cell winding is completed and the position is changed to the position where the end glue is attached, and the end glue is attached, the tab group of the battery cell is controlled by the image sensor.
  • the embodiment of the present invention obtains the tab width difference through the detection method of the image sensor, which is different from the method of observing the battery cell through manual experience in the prior art, thereby improving the production efficiency Secondly, the embodiment of the present invention will also screen out effective differences from multiple lug width differences, and eliminate invalid differences, so that the adjustment amount of the variable-diameter winding needle obtained by subsequent calculations is more accurate, thereby improving the quality of the product. rate; finally, the embodiment of the present invention adjusts the roll diameter of the variable-diameter roll needle by controlling the drive assembly, which is different from the way of changing the circumference of the roll needle by sticking Teflon in the prior art, thereby also improving production efficiency.
  • the tab group includes a plurality of tabs, wherein the multiple tabs are stacked and arranged, and the tab group includes the first tab, several intermediate tabs and the last tab.
  • the above image sensor may be, but not limited to, a CCD image sensor.
  • Figure 2 is a flow chart of the control method of the variable diameter winding needle of the winding machine provided by an embodiment of the present invention; the above step S100 may include but not limited to include step S110, step S120, step S130 and step S140.
  • Step S110 using the image sensor to collect the image information of the tab group of the battery cell after each coil material is glued;
  • Step S120 performing recognition processing on the image information, identifying the first tab and the last tab in the tab group;
  • Step S130 calculating the first distance value between the first tab relative to the preset reference position, and calculating the second distance value between the last tab relative to the preset reference position;
  • Step S140 calculating and obtaining a tab width value according to the first distance value and the second distance value.
  • the station is changed to the position where the finishing glue is attached, and after the finishing glue is attached, the image sensor is used to take pictures of the tab group of the battery cell for detection.
  • the position of the rolling needle mark that is, the preset reference position
  • the first distance of the first tab of the battery core relative to the reference is detected, and the first distance of the last tab of the battery core relative to the reference is detected at the same time, and finally according to The above-mentioned first distance and the second distance are calculated to obtain the tab width value.
  • the tab width value can be calculated by calculating the difference between the first distance and the second distance.
  • Fig. 3 is a flow chart of a control method of a winding machine variable-diameter winding needle provided by another embodiment of the present invention; the above step S300 may include but not limited to step S310 and step S320.
  • Step S310 acquiring the number of image acquisitions of the image sensor and the preset deviation correction frequency
  • Step S320 when the number of image acquisitions reaches the deviation correction frequency, filter the lug width difference.
  • a variable parameter can be preset to set the deviation correction frequency, When the value of the number of image acquisitions is equal to the set deviation correction frequency, the variable-diameter needle roll adjustment will be performed once.
  • deviation correction frequency in the embodiment of the present invention can be set according to human experience.
  • Fig. 4 and Fig. 5 are both flow charts of a control method of a variable-diameter winding needle of a winding machine provided by another embodiment of the present invention.
  • step S300 may include but not limited to include step S331 and step S332 .
  • Step S331 performing classification processing on a plurality of lug width differences to obtain a first array of lug width differences that are only stored as positive numbers;
  • Step S332 removing tab width difference values whose absolute values are outside the preset allowable adjustment range from the first array to obtain a new first array storing at least one effective difference value.
  • step S300 may include but not limited to include step S341 and step S342 .
  • Step S341 performing classification processing on multiple lug width differences to obtain a second array of lug width differences that are only stored as negative numbers;
  • Step S342 removing tab width difference values whose absolute values are outside the preset allowable adjustment range from the second array to obtain a new second array storing at least one effective difference value.
  • the classification processing of the effective value of the tab width difference according to the acquisition of the position information of the innermost tab located at the drive assembly and the variable-diameter coil needle and the outermost tab Width information, refer to the position information of the innermost tab to calculate the difference.
  • the width of the outermost tab is the tab width value of the tab group that has been glued. If the difference is positive, it means that the tab is facing the current. The direction of the outer edge of the core is misaligned, and the negative value indicates that the tab is misaligned toward the middle of the cell.
  • the positive and negative directions are judged by the data results fed back by the image sensor, and the positive and negative values are cached separately with the first array and the second array.
  • the first array only caches positive values
  • the second array only caches negative values. Then, take the absolute value of each lug width difference in the first array or the second array, and compare it with the preset allowable adjustment interval, wherein the tab width difference whose absolute value is within the preset allowable adjustment interval is valid , the default allows the tab width difference outside the adjustment interval to be directly rejected.
  • the preset allowable adjustment range is a value range that is greater than the preset tab width adjustment threshold and smaller than the preset maximum limit value for needle winding adjustment, wherein the tab width adjustment threshold is used to define whether the diameter reduction needs to be adjusted
  • the winding diameter of the winding needle, the maximum adjustment limit value of the winding needle is used to represent the maximum adjustment range of the variable diameter winding needle.
  • a positive tab width difference indicates that the tab is dislocated toward the outer edge of the cell
  • a negative tab width difference indicates that the tab is misaligned toward the middle of the cell
  • FIG. 6 and FIG. 7 both of which are flow charts of a method for controlling variable-diameter winding needles of a winding machine provided by another embodiment of the present invention.
  • the calculation of the variable diameter needle winding adjustment amount calculated according to the effective difference in the above step S400 may include, but is not limited to, step S411 and step S412 .
  • Step S411 performing sorting processing on all effective differences to obtain sorted effective differences
  • Step S412 calculating the median value from the sorted effective difference values, and calculating the adjustment amount of the variable-diameter needle roll according to the median value.
  • the adjusting amount of the variable-diameter needle winding calculated according to the effective difference in step S400 may include, but is not limited to, step S421 and step S422 .
  • Step S421 calculating the average value of all effective differences
  • Step S422 calculating the adjustment amount of the variable diameter needle according to the average value.
  • the bubble sorting method can be used to perform ascending sorting according to the numerical value, and then calculate the median value or the average value.
  • FIG. 8 is a schematic structural view of a variable-diameter rolling needle provided by an embodiment of the present invention
  • FIG. 9 is a partial structural schematic diagram of the variable-diameter rolling needle shown in FIG. 8
  • the variable-diameter rolling needle in the embodiment of the present invention includes two needle bodies 100, on which the variable-diameter slider 110 is arranged, and the variable-diameter sliding block 110 is provided with a slope 111 for adjusting the rolling diameter of the variable-diameter rolling needle ,
  • each needle body is connected to the needle winding motor through the drive shaft 200 .
  • Adjustment amount of the variable-diameter needle median value/battery core Number of coils/ ⁇ /Tan ⁇ ; where ⁇ is the inclination angle of the slope.
  • Adjustment amount of the variable-diameter needle average value / battery coil Number of turns/ ⁇ /Tan ⁇ ; where ⁇ is the inclination angle of the slope.
  • the tab set is an anode tab set or a cathode tab set.
  • the adjustment amount of the above-mentioned variable-diameter needle winding specifically refers to the displacement of the needle-threading motor. As shown in Fig. 9, the variable-diameter winding needle The adjustment amount is specifically the relative displacement amount between the axial directions of the two driving shafts 200 .
  • the CCD image sensor detects the width of the cathode tab and the anode tab
  • the difference is calculated with reference to the position information of the innermost lug, and the width of the outermost lug is For the lug width value of the glued tab group, if the difference is a positive value, it means that the tab is misaligned toward the outer edge of the cell, and a negative value means that the tab is misaligned toward the middle of the cell.
  • the positive and negative directions are judged by the data results fed back by the CCD, and the positive and negative values are cached separately with arrays A and B. Array A only caches positive values, and array B only caches negative values.
  • the anode adjustment amount (unit/mm) M1/number of core winding circles/ ⁇ /Tan ⁇ ;
  • the anode adjustment amount (unit/mm) of the winding needle and needle threading motor M2/the number of winding coils of the battery core/ ⁇ /Tan ⁇ .
  • the anode adjustment amount extended by the needle winding motor ((A[0]+A[1]+A[2]+A[3] +A[4]+A[5]+A[6]+A[7]+A[8])/correction frequency F)/number of core coils/ ⁇ /Tan ⁇ ;
  • the anode adjustment amount extended by the needle winding motor ((B[0]+B[1]+B[2]+B[3] +B[4]+B[5]+B[6]+B[7]+B[8])/correction frequency F)/number of coils/ ⁇ /Tan ⁇ .
  • the cathode adjustment amount (unit/mm) of the winding needle threading motor protruding M4/the number of winding coils of the battery core/ ⁇ /Tan ⁇ .
  • the adjustment amount of the cathode stretched out by the needle rolling and threading motor ((C[0]+C[1]+C[2]+C[3] +C[4]+C[5]+C[6]+C[7]+C[8])/correction frequency F)/number of coils/ ⁇ /Tan ⁇ ;
  • the adjustment amount of the cathode stretched out by the needle winding motor ((D[0]+D[1]+D[2]+D[3] +D[4]+D[5]+D[6]+D[7]+D[8])/correction frequency F)/number of coils/ ⁇ /Tan ⁇ .
  • the embodiment of the present invention also provides a control device for variable-diameter needles of a winding machine, which can implement the control method for the above-mentioned variable-diameter needles of a winding machine.
  • the control device 300 for variable-diameter needles of a winding machine includes:
  • the width value calculation unit 310 is used to detect the tab width value of the tab group of the battery cell after each coil material pasting glue through the image sensor;
  • a difference calculation unit 320 configured to calculate the difference between at least one tab width value and a preset theoretical tab width value to obtain a tab width difference
  • the difference screening unit 330 is configured to perform screening processing on the tab width difference, and screen out at least one effective difference, wherein all effective differences are positive or negative, and the effective difference is within the preset allowable adjustment interval;
  • the adjusting unit 340 is configured to calculate the adjustment amount of the variable-diameter needle according to the effective difference, and control the driving assembly based on the adjustment amount of the variable-diameter needle to adjust the winding diameter of the variable-diameter needle.
  • control device for the variable-diameter needle of the winding machine is basically the same as the specific embodiment of the control method for the above-mentioned variable-diameter needle of the winding machine, and will not be repeated here.
  • An embodiment of the present invention also provides an electronic device, the electronic device includes: a memory, a processor, a program stored in the memory and operable on the processor, and a data bus for realizing connection and communication between the processor and the memory , when the program is executed by the processor, the above method for controlling the variable-diameter winding needle of the winding machine is realized.
  • the electronic device may be any intelligent terminal including a tablet computer, a vehicle-mounted computer, and the like.
  • FIG. 11 illustrates a hardware structure of an electronic device in another embodiment.
  • the electronic device includes:
  • the processor 410 may be implemented by a general-purpose CPU (Central Processing Unit, central processing unit), a microprocessor, an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits, and is used to execute related programs to realize The technical solutions provided by the embodiments of the present invention;
  • the memory 420 may be implemented in the form of a read-only memory (ReadOnlyMemory, ROM), a static storage device, a dynamic storage device, or a random access memory (RandomAccessMemory, RAM).
  • the memory 420 can store operating systems and other application programs.
  • the relevant program codes are stored in the memory 420 and called by the processor 410 to execute the implementation of the present invention.
  • the input/output interface 430 is used to realize information input and output;
  • the communication interface 440 is used to realize the communication interaction between the device and other devices, and the communication can be realized through a wired method (such as USB, network cable, etc.), or can be realized through a wireless method (such as a mobile network, WIFI, Bluetooth, etc.); and
  • bus 450 to transfer information between various components of the device (eg, processor 410, memory 420, input/output interface 430, and communication interface 440);
  • the processor 410 , the memory 420 , the input/output interface 430 and the communication interface 440 are connected to each other within the device through the bus 450 .
  • the embodiment of the present invention also provides a storage medium, the storage medium is a computer-readable storage medium for computer-readable storage, the storage medium stores one or more programs, and one or more programs can be processed by one or more implement, so as to realize the above-mentioned control method of the variable-diameter winding needle of the winding machine.
  • memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage devices.
  • the memory optionally includes memory located remotely from the processor, and these remote memories may be connected to the processor via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division.
  • multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including multiple instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), magnetic disk or optical disc, etc., which can store programs. medium.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or optical disc etc., which can store programs. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种卷绕机变径卷针的控制方法,控制方法包括:通过图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;将至少一个极耳宽度值和预设的极耳宽度理论值进行差值计算,得到极耳宽度差值;对极耳宽度差值进行筛选处理,筛选出至少一个有效差值,所有有效差值均为正数或者负数,有效差值位于预设允许调整区间内;根据有效差值计算得到变径卷针调整量,并基于变径卷针调整量控制驱动组件以调整变径卷针的卷径。还包括执行控制方法的电子设备和存储介质。通过图像传感器的检测方式来得到极耳宽度差值,提高了生产效率;通过筛选有效差值,剔除无效差值,使得变径卷针调整量更准确,提高了产品良率;通过控制驱动组件调整变径卷针的卷径,提高了生产效率。

Description

卷绕机变径卷针的控制方法、电子设备和存储介质 技术领域
本发明属于电池制造设备技术领域,尤其涉及一种卷绕机变径卷针的控制方法、电子设备和存储介质。
背景技术
卷绕机在生产过程中,由于隔离膜、正极、负极存在料卷使用完,需要更换来料的情况。但由于来料的隔离膜的厚度在30um-40um之间波动,隔离膜来料厚度不稳定、正负极片厚度偏差以及极耳来料模切尺寸偏差等原因,造成卷绕出来的电芯极耳错位。市场上现有的卷绕机是通过人工经验观察电芯的错位量及错位方向,在卷针表面上贴铁氟龙来改变卷针的周长的方式,来调节电芯的极耳错位。但此方式存在人工干预调节,没有数据支持,一次换料需要多次调整才能达到极耳对齐稳定的效果,调整的效率低且良率低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种卷绕机变径卷针的控制方法、电子设备和存储介质,不但能够提高调整效率,而且还能够提高产品的良率。
第一方面,本发明实施例提供了一种卷绕机变径卷针的控制方法,应用于卷绕机中的控制器,所述卷绕机还包括图像传感器、驱动组件和变径卷针,所述控制器与所述图像传感器通信,所述控制器还用于通过所述驱动组件调整所述变径卷针;
所述控制方法包括:
通过所述图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;
将至少一个所述极耳宽度值和预设的极耳宽度理论值进行差值计算,得到极耳宽度差值;
对所述极耳宽度差值进行筛选处理,筛选出至少一个有效差值,其中,所有所述有效差值均为正数或者负数,所述有效差值位于预设允许调整区间内;
根据所述有效差值计算得到变径卷针调整量,并基于所述变径卷针调整量控制所述驱动组件以调整所述变径卷针的卷径。
在一些实施例中,所述通过所述图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值,包括:
通过所述图像传感器采集电芯在每次卷料贴胶后的极耳组的图像信息;
对所述图像信息进行识别处理,识别出所述极耳组中的首个极耳和最后一个极耳;
计算出所述首个极耳相对于预设基准位置之间的第一距离值,以及计算出所述最后一个极耳相对于所述预设基准位置之间的第二距离值;
根据所述第一距离值和所述第二距离值计算得到极耳宽度值。
在一些实施例中,所述对所述极耳宽度差值进行筛选处理,包括:
获取所述图像传感器的图像采集次数和预设的纠偏频率;
当所述图像采集次数达到所述纠偏频率,对所述极耳宽度差值进行筛选处理。
在一些实施例中,所述对所述极耳宽度差值进行筛选处理,筛选出至少一个有效差值,包括如下之一:
对所述极耳宽度差值进行分类处理,得到只存储为正数的极耳宽度差值的第一数组;从所述第一数组中剔除绝对值位于预设允许调整区间外的极耳宽度差值,得到存储有至少一个有效差值的新的第一数组;
对所述极耳宽度差值进行分类处理,得到只存储为负数的极耳宽度差值的第二数组;从所述第二数组中剔除绝对值位于预设允许调整区间外的极耳宽度差值,得到存储有至少一个有效差值的新的第二数组。
在一些实施例中,所述根据所述有效差值计算得到变径卷针调整量,包括如下之一:
对所有所述有效差值进行排序处理,得到排序后的有效差值;从所述排序后的有效差值中计算出中位值,并根据所述中位值计算得到变径卷针调整量;
计算出所有所述有效差值的平均值,并根据所述平均值计算得到变径卷针调整量。
在一些实施例中,所述变径卷针设置有变径滑块,所述变径滑块设置有用于调整所述变径卷针的卷径的斜面;所述控制方法包括如下之一:
在采用所述中位值计算变径卷针调整量的情况下,根据所述中位值计算得到变径卷针调整量的公式如下:变径卷针调整量=中位值/电芯卷绕圈数/π/Tanθ;其中,所述θ为所述斜面的倾斜角度;
在采用所述平均值计算变径卷针调整量的情况下,根据所述平均值计算得到变径卷针调整量的公式如下:变径卷针调整量=平均值/电芯卷绕圈数/π/Tanθ;其中,所述θ为所述斜面的倾斜角度。
在一些实施例中,所述预设允许调整区间为大于预设的极耳宽度调整阈值并且小于预设的卷针调整最大限制值的数值区间,其中,所述极耳宽度调整阈值用于界定是否需要调整所述变径卷针的卷径,所述卷针调整最大限制值用于表征所述变径卷针的最大调整幅度。
在一些实施例中,所述极耳组为阳极极耳组或者阴极极耳组,所述极耳宽度差值为正数表征极耳朝电芯的外边沿方向错位,所述极耳宽度差值为负数表征极耳朝电芯的中间方向错位。
第二方面,本发明实施例还提供了一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述的卷绕机变径卷针的控制方法。
第三方面,本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上述第一方面所述的卷绕机变径卷针的控制方法。
本发明实施例包括:首先,本发明实施例会通过图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;然后,将至少一个极耳宽度值和预设的极耳宽度理论值进行差值计算,得到极耳宽度差值;接着,对极耳宽度差值进行筛选处理,筛选出至少一个有效差值,其中,所有有效差值均为正数或者负数,有效差值位于预设允许调整区间内;最后,本发明实施例会根据有效差值计算得到变径卷针调整量,并基于变径卷针调整量控制驱动组件以调整变径卷针的卷径。根据本发明实施例的技术方案,首先,本发明实施例通过图像传感器的检测方式来得到极耳宽度差值,区别于现有技术中通过人工经验来观察电芯的方式,从而提高了生产效率;其次,本发明实施例还会从极耳宽度差值中筛选出有效差值,剔除了无效差值,使得后续计算得到的变径卷针调整量更加准确,从而提高了产品的良率;最后,本发明实施例是通过控制驱动组件来调整变径卷针的卷径,区别于现有技术中通过贴铁氟龙来改变卷针周长的方式,从而也提高了生产效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是本发明一个实施例提供的卷绕机变径卷针的控制方法的流程图;
图2是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图;
图3是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图;
图4是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图;
图5是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图;
图6是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图;
图7是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图;
图8是本发明一个实施例提供的变径卷针的结构示意图;
图9是图8中所示的变径卷针的部分结构示意图;
图10是本发明一个实施例提供的卷绕机变径卷针的控制装置的结构示意图;
图11是本发明一个实施例提供的电子设备的硬件结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本发明实施例的目的,不是旨在限制本发明。
目前,卷绕机在生产过程中,由于隔离膜、正极、负极存在料卷使用完,需要更换来料的情况。但由于来料的隔离膜的厚度在30um-40um之间波动,隔离膜来料厚度不稳定、正负极片厚度偏差以及极耳来料模切尺寸偏差等原因,造成卷绕出来的电芯极耳错位。市场上现有的卷绕机是通过人工经验观察电芯的错位量及错位方向,在卷针表面上贴铁氟龙来改变卷针的周长的方式,来调节电芯的极耳错位。但此方式存在人工干预调节,没有数据支持,一次换料需要多次调整才能达到极耳对齐稳定的效果,调整的效率低且良率低。
基于此,本发明实施例提供了一种卷绕机变径卷针的控制方法、卷绕机变径卷针的控制装置、电子设备和计算机可读存储介质,包括如下步骤:首先,本发明实施例会通过图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;然后,将至少一个极耳宽度值和预设的极耳宽度理论值进行差值计算,得到极耳宽度差值;接着,对极耳宽度差值进行筛选处理,筛选出至少一个有效差值,其中,所有有效差值均为正数或者负数,有效差值位于预设允许调整区间内;最后,本发明实施例会根据有效差值计算得到变径卷针调整量,并基于变径卷针调整量控制驱动组件以调整变径卷针的卷径。根据本发明实施例的技术方案,首先, 本发明实施例通过图像传感器的检测方式来得到极耳宽度差值,区别于现有技术中通过人工经验来观察电芯的方式,从而提高了生产效率;其次,本发明实施例还会从极耳宽度差值中筛选出有效差值,剔除了无效差值,使得后续计算得到的变径卷针调整量更加准确,从而提高了产品的良率;最后,本发明实施例是通过控制驱动组件来调整变径卷针的卷径,区别于现有技术中通过贴铁氟龙来改变卷针周长的方式,从而也提高了生产效率。
本发明实施例提供的卷绕机变径卷针的控制方法、装置、电子设备及存储介质,具体通过如下实施例进行说明,首先描述本发明实施例中的卷绕机变径卷针的控制方法。
如图1所示,图1是本发明一个实施例提供的卷绕机变径卷针的控制方法的流程图;本发明实施例的卷绕机变径卷针的控制方法应用于卷绕机中的控制器,卷绕机还包括图像传感器、驱动组件和变径卷针,控制器与图像传感器通信,控制器还用于通过驱动组件调整变径卷针。
本发明实施例的控制方法可以包括但不限于包括步骤S100、步骤S200、步骤S300和步骤S400。
步骤S100、通过图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;
步骤S200、将至少一个极耳宽度值和预设的极耳宽度理论值进行差值计算,得到极耳宽度差值;
步骤S300、对极耳宽度差值进行筛选处理,筛选出至少一个有效差值,其中,所有有效差值均为正数或者负数,有效差值位于预设允许调整区间内;
步骤S400、根据有效差值计算得到变径卷针调整量,并基于变径卷针调整量控制驱动组件以调整变径卷针的卷径。
具体地,本发明实施例首先会通过手工调节多根卷针的一致性,调整到同一料卷多根卷针卷绕出的电芯无错位,保证变径卷针在一次调节卷径的时候多根卷针的调节量能够一致,调节结果的一致性;然后,在电芯卷绕完成换工位到贴收尾胶位置,并且贴收尾胶完成后,通过图像传感器对电芯的极耳组进行拍照,根据图像信息检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;接着,在电芯多次卷料贴胶后,会得到多个极耳宽度值,并将多个极耳宽度值分别和预设的极耳宽度理论值进行差值计算,得到多个极耳宽度差值;由于个极耳宽度差值中包含有不同方向的差值或者无效的差值,因此,本发明实施例会对多个极耳宽度差值进行筛选处理,筛选出至少一个有效差值;最后,本发明实施例会根据有效差值计算得到变径卷针调整量,并基于变径卷针调整量控制驱动组件,从而调整变径卷针的卷径。
根据本发明实施例的技术方案,首先,本发明实施例通过图像传感器的检测方式来得到极耳宽度差值,区别于现有技术中通过人工经验来观察电芯的方式,从而提高了生产效率; 其次,本发明实施例还会从多个极耳宽度差值中筛选出有效差值,剔除了无效差值,使得后续计算得到的变径卷针调整量更加准确,从而提高了产品的良率;最后,本发明实施例是通过控制驱动组件来调整变径卷针的卷径,区别于现有技术中通过贴铁氟龙来改变卷针周长的方式,从而也提高了生产效率。
需要说明的是,关于极耳组,包括了多个极耳,其中,多个极耳层叠排列设置,极耳组包括了首个极耳、若干个中间极耳和最后一个极耳。
另外,可以理解的是,关于上述的图像传感器,可以但不限于是CCD图像传感器。
另外,如图2所示,图2是本发明一个实施例提供的卷绕机变径卷针的控制方法的流程图;关于上述步骤S100,可以包括但不限于包括步骤S110、步骤S120、步骤S130和步骤S140。
步骤S110、通过图像传感器采集电芯在每次卷料贴胶后的极耳组的图像信息;
步骤S120、对图像信息进行识别处理,识别出极耳组中的首个极耳和最后一个极耳;
步骤S130、计算出首个极耳相对于预设基准位置之间的第一距离值,以及计算出最后一个极耳相对于预设基准位置之间的第二距离值;
步骤S140、根据第一距离值和第二距离值计算得到极耳宽度值。
具体地,本发明实施例在电芯卷绕完成换工位到贴收尾胶位置,贴收尾胶完成后,采用图像传感器对电芯的极耳组进行拍照检测。具体地,以卷针标记的位置即预设基准位置为基准,检测出电芯首个极耳相对基准的第一距离,同时检测出电芯最后一个极耳相对基准的第一距离,最后根据上述第一距离和第二距离计算得到极耳宽度值。
需要说明的是,可以通过第一距离和第二距离之间的差值运算计算出极耳宽度值。
另外,如图3所示,图3是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图;关于上述步骤S300,可以包括但不限于包括步骤S310和步骤S320。
步骤S310、获取图像传感器的图像采集次数和预设的纠偏频率;
步骤S320、当图像采集次数达到纠偏频率,对极耳宽度差值进行筛选处理。
具体地,在生产过程中,每贴胶完一个正常卷绕的电芯则进行拍照一次,并记录拍照的次数即图像采集次数;另外,可以预先设置一个可变参数用于设定纠偏频率,当图像采集次数的值与设定的纠偏频率相等,才会执行一次变径卷针调节。
需要说明的是,本发明实施例的纠偏频率是可以根据人为经验设定的。
另外,如图4和图5所示,图4和图5均是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图。
如图4所示,关于上述步骤S300,可以包括但不限于包括步骤S331和步骤S332。
步骤S331、对多个极耳宽度差值进行分类处理,得到只存储为正数的极耳宽度差值的第一数组;
步骤S332、从第一数组中剔除绝对值位于预设允许调整区间外的极耳宽度差值,得到存储有至少一个有效差值的新的第一数组。
如图5所示,关于上述步骤S300,可以包括但不限于包括步骤S341和步骤S342。
步骤S341、对多个极耳宽度差值进行分类处理,得到只存储为负数的极耳宽度差值的第二数组;
步骤S342、从第二数组中剔除绝对值位于预设允许调整区间外的极耳宽度差值,得到存储有至少一个有效差值的新的第二数组。
基于上述图4和图5中的方法流程,具体地,极耳宽度差值有效值分类处理:根据获取位于驱动组件和变径卷针的最内层极耳的位置信息与最外层极耳宽度信息,参照最内层极耳位置信息进行差值计算,最外层极耳的宽度值为贴胶完的极耳组的极耳宽度值,若差值为正值则代表极耳朝电芯外侧边沿方向错位,负值代表极耳朝电芯中间方向错位。通过图像传感器反馈回来的数据结果判断正负方向,对正数值和负数值分开缓存用第一数组和第二数组分开缓存,第一数组只缓存正数值,第二数组只缓存负数值。然后,对第一数组或第二数组中的各个极耳宽度差值取绝对值,与预设允许调整区间进行对比,其中,绝对值位于预设允许调整区间内的极耳宽度差值才有效,预设允许调整区间外的极耳宽度差值直接剔除处理。
需要说明的是,预设允许调整区间为大于预设的极耳宽度调整阈值并且小于预设的卷针调整最大限制值的数值区间,其中,极耳宽度调整阈值用于界定是否需要调整变径卷针的卷径,卷针调整最大限制值用于表征变径卷针的最大调整幅度。
另外,需要说明的是,极耳宽度差值为正数表征极耳朝电芯的外边沿方向错位,极耳宽度差值为负数表征极耳朝电芯的中间方向错位。
另外,如图6和图7所示,图6和图7均是本发明另一个实施例提供的卷绕机变径卷针的控制方法的流程图。
如图6所示,关于上述步骤S400中的根据有效差值计算得到变径卷针调整量,可以包括但不限于包括步骤S411和步骤S412。
步骤S411、对所有有效差值进行排序处理,得到排序后的有效差值;
步骤S412、从排序后的有效差值中计算出中位值,并根据中位值计算得到变径卷针调整量。
如图7所示,关于上述步骤S400中的根据有效差值计算得到变径卷针调整量,可以包括但不限于包括步骤S421和步骤S422。
步骤S421、计算出所有有效差值的平均值;
步骤S422、根据平均值计算得到变径卷针调整量。
基于上述图6和图7中的方法流程,具体地,本发明实施例可以通过冒泡排序法根据数值大小进行升序排序,进而计算出中位值或者平均值。
需要说明的是,如图8和图9所示,图8是本发明一个实施例提供的变径卷针的结构示意图;图9是图8中所示的变径卷针的部分结构示意图;本发明实施例的变径卷针包括两个针体100,两个针体100上均设置有变径滑块110,变径滑块110设置有用于调整变径卷针的卷径的斜面111,另外,每个针体均通过驱动轴200连接至卷针穿针电机。
值得注意的是,在采用中位值计算变径卷针调整量的情况下,根据中位值计算得到变径卷针调整量的公式如下:变径卷针调整量=中位值/电芯卷绕圈数/π/Tanθ;其中,θ为斜面的倾斜角度。
另外,值得注意的是,在采用平均值计算变径卷针调整量的情况下,根据平均值计算得到变径卷针调整量的公式如下:变径卷针调整量=平均值/电芯卷绕圈数/π/Tanθ;其中,θ为斜面的倾斜角度。
其中,平均值的计算公式如下:平均值=所有有效差值的总和/纠偏频率。因此,上述根据平均值计算得到变径卷针调整量的公式可以变为:变径卷针调整量=所有有效差值的总和/纠偏频率/电芯卷绕圈数/π/Tanθ。
基于上述图1至图9的实施例,需要说明的是,极耳组为阳极极耳组或者阴极极耳组。
基于上述图1至图9的实施例,需要说明的是,关于上述的变径卷针调整量,具体是指卷针穿针电机伸出的位移量,如图9所示,变径卷针调整量具体是两个驱动轴200的轴向方向之间的相对位移量。
基于上述图1至图9的实施例,提出本发明实施例的整体方案,具体包括如下步骤:
一、手工调节三针卷针的一致性,调整到同一料卷三针卷针卷绕出的电芯无错位,保证变径卷针在一次调节卷径的时候三根针调节量的一致性,调节结果的一致性。
二、CCD图像传感器检测出阴极极耳、阳极极耳的宽度;
电芯卷绕完成换工位到贴收尾胶位置,贴收尾胶完成后,用CCD对电芯的阳极极耳,阴极极耳进行拍照检测。以卷针标记的位置的为基准,检测出电芯阳极首极耳,阳极最后一个极耳相对基准的距离,计算出阳极极耳宽度L1。同理,计算出阴极极耳宽度L2。
三、标定一个完美电芯的极耳宽度,记录完美电芯的阳极极耳宽度B1(单位/mm),阴极极耳宽度B2(单位/mm),以此完美电芯的极耳宽度为参照,计算出当前检测电芯与完美电芯极耳宽度差值X1=L1-B1及X2=L2-B2。
四、在人际界面设定一个阳极极耳宽度阈值Y1(单位/mm)及阴极极耳宽度阈值Y2(单位/mm),用于判定是否进行变卷径调节。设定一个卷针调整最大限制值Ym(单位/mm),限制计算出来的参数超过变径卷针的可调节范围。
五、在生产过程中,每贴胶完一个正常卷绕的电芯则进行拍照一次,记录拍照的次数Cout1(单位/EA)。在人机界面设置一个可变参数F(单位/EA)用于设定纠偏频率,当记录拍照的次数Cout1的值与设定的调节频率F相等,则执行一次变径卷针调节。
六、对极耳宽度差值X1和X2的极性进行分类缓存:
①阳极极耳宽度差值X1有效值分类处理;
根据获取位于驱动组件和变径卷针的最内层极耳的位置信息与最外层极耳宽度信息,参照最内层极耳位置信息进行差值计算,最外层极耳的宽度值为贴胶完的极耳组的极耳宽度值,若差值为正值则代表极耳朝电芯外侧边沿方向错位,负值代表极耳朝电芯中间方向错位。通过CCD反馈回来的数据结果判断正负方向,对正数值和负数值分开缓存用数组A和B分开缓存,数组A只缓存正数值,数组B只缓存负数值。并对极耳宽度差值X1取绝对值,与阈值Y1及最大限制值Ym进行对比,结果的绝对值要大于阈值Y1并小于最大限制值Ym的数据才有效,超出范围的数据直接剔除处理。
②阴极极耳宽度差值X2有效值分类处理;
基于上述阳极极耳宽度差值X1有效值分类处理对X2做范围判断,筛选出有效数据,并把正数值缓存数组C,把负数值缓存到数组D进行缓存。
七、通过数组A和B,计算出卷针穿针电机伸出的阳极调整量。
①中位数计算调整量;通过数组A和B中缓存的数据,通过冒泡排序法根据数值大小进行升序排序,分别计算出中位值M1(单位/mm)及M2(单位/mm),则通过如下之一公式进行计算:
卷针穿针电机伸出的阳极调整量(单位/mm)=M1/电芯卷绕圈数/π/Tanθ;
卷针穿针电机伸出的阳极调整量(单位/mm)=M2/电芯卷绕圈数/π/Tanθ。
②平均值计算卷针穿针电机伸出的阳极调整量;则通过如下之一公式进行计算:
示例性,若数组A包括有9个有效差值的情况下,卷针穿针电机伸出的阳极调整量=((A[0]+A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8])/纠偏频率F)/电芯卷绕圈数/π/Tanθ;
示例性,若数组B包括有9个有效差值的情况下,卷针穿针电机伸出的阳极调整量=((B[0]+B[1]+B[2]+B[3]+B[4]+B[5]+B[6]+B[7]+B[8])/纠偏频率F)/电芯卷绕圈数/π/Tanθ。
八、通过数组C和D,计算出卷针穿针电机伸出的阴极调整量。
①中位数计算调整量;通过数组C和D中缓存的数据,通过冒泡排序法根据数值大小进 行升序排序,分别计算出中位值M3(单位/mm)及M4(单位/mm),则通过如下之一公式进行计算:
卷针穿针电机伸出的阴极调整量(单位/mm)=M3/电芯卷绕圈数/π/Tanθ;
卷针穿针电机伸出的阴极调整量(单位/mm)=M4/电芯卷绕圈数/π/Tanθ。
②平均值计算卷针穿针电机伸出的阴极调整量;则通过如下之一公式进行计算:
示例性,若数组C包括有9个有效差值的情况下,卷针穿针电机伸出的阴极调整量=((C[0]+C[1]+C[2]+C[3]+C[4]+C[5]+C[6]+C[7]+C[8])/纠偏频率F)/电芯卷绕圈数/π/Tanθ;
示例性,若数组D包括有9个有效差值的情况下,卷针穿针电机伸出的阴极调整量=((D[0]+D[1]+D[2]+D[3]+D[4]+D[5]+D[6]+D[7]+D[8])/纠偏频率F)/电芯卷绕圈数/π/Tanθ。
请参阅图10,本发明实施例还提供一种卷绕机变径卷针的控制装置,可以实现上述卷绕机变径卷针的控制方法,该卷绕机变径卷针的控制装置300包括:
宽度值计算单元310,用于通过图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;
差值计算单元320,用于将至少一个极耳宽度值和预设的极耳宽度理论值进行差值计算,得到极耳宽度差值;
差值筛选单元330,用于对极耳宽度差值进行筛选处理,筛选出至少一个有效差值,其中,所有有效差值均为正数或者负数,有效差值位于预设允许调整区间内;
调整单元340,用于根据有效差值计算得到变径卷针调整量,并基于变径卷针调整量控制驱动组件以调整变径卷针的卷径。
该卷绕机变径卷针的控制装置的具体实施方式与上述卷绕机变径卷针的控制方法的具体实施例基本相同,在此不再赘述。
本发明实施例还提供了一种电子设备,电子设备包括:存储器、处理器、存储在存储器上并可在处理器上运行的程序以及用于实现处理器和存储器之间的连接通信的数据总线,程序被处理器执行时实现上述卷绕机变径卷针的控制方法。该电子设备可以为包括平板电脑、车载电脑等任意智能终端。
请参阅图11,图11示意了另一实施例的电子设备的硬件结构,电子设备包括:
处理器410,可以采用通用的CPU(CentralProcessingUnit,中央处理器)、微处理器、应用专用集成电路(ApplicationSpecificIntegratedCircuit,ASIC)、或者一个或多个集成电路等方式实现,用于执行相关程序,以实现本发明实施例所提供的技术方案;
存储器420,可以采用只读存储器(ReadOnlyMemory,ROM)、静态存储设备、动态存储设备或者随机存取存储器(RandomAccessMemory,RAM)等形式实现。存储器420可以存储 操作系统和其他应用程序,在通过软件或者固件来实现本说明书实施例所提供的技术方案时,相关的程序代码保存在存储器420中,并由处理器410来调用执行本发明实施例的卷绕机变径卷针的控制方法;
输入/输出接口430,用于实现信息输入及输出;
通信接口440,用于实现本设备与其他设备的通信交互,可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信;和
总线450,在设备的各个组件(例如处理器410、存储器420、输入/输出接口430和通信接口440)之间传输信息;
其中处理器410、存储器420、输入/输出接口430和通信接口440通过总线450实现彼此之间在设备内部的通信连接。
本发明实施例还提供了一种存储介质,存储介质为计算机可读存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现上述卷绕机变径卷针的控制方法。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本发明实施例描述的实施例是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域技术人员可知,随着技术的演变和新应用场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1-9中示出的技术方案并不构成对本发明实施例的限定,可以包括比图示更多或更少的步骤,或者组合某些步骤,或者不同的步骤。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
本发明的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以 外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本发明中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括多指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序的介质。
以上参照附图说明了本发明实施例的优选实施例,并非因此局限本发明实施例的权利范 围。本领域技术人员不脱离本发明实施例的范围和实质内所作的任何修改、等同替换和改进,均应在本发明实施例的权利范围之内。

Claims (10)

  1. 一种卷绕机变径卷针的控制方法,其特征在于,应用于卷绕机中的控制器,所述卷绕机还包括图像传感器、驱动组件和变径卷针,所述控制器与所述图像传感器通信,所述控制器还用于通过所述驱动组件调整所述变径卷针;
    所述控制方法包括:
    通过所述图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值;
    将至少一个所述极耳宽度值和预设的极耳宽度理论值进行差值计算,得到极耳宽度差值;
    对所述极耳宽度差值进行筛选处理,筛选出至少一个有效差值,其中,所有所述有效差值均为正数或者负数,所述有效差值位于预设允许调整区间内;
    根据所述有效差值计算得到变径卷针调整量,并基于所述变径卷针调整量控制所述驱动组件以调整所述变径卷针的卷径。
  2. 根据权利要求1所述的控制方法,其特征在于,所述通过所述图像传感器检测电芯在每次卷料贴胶后的极耳组的极耳宽度值,包括:
    通过所述图像传感器采集电芯在每次卷料贴胶后的极耳组的图像信息;
    对所述图像信息进行识别处理,识别出所述极耳组中的首个极耳和最后一个极耳;
    计算出所述首个极耳相对于预设基准位置之间的第一距离值,以及计算出所述最后一个极耳相对于所述预设基准位置之间的第二距离值;
    根据所述第一距离值和所述第二距离值计算得到极耳宽度值。
  3. 根据权利要求1所述的控制方法,其特征在于,所述对所述极耳宽度差值进行筛选处理,包括:
    获取所述图像传感器的图像采集次数和预设的纠偏频率;
    当所述图像采集次数达到所述纠偏频率,对所述极耳宽度差值进行筛选处理。
  4. 根据权利要求1所述的控制方法,其特征在于,所述对所述极耳宽度差值进行筛选处理,筛选出至少一个有效差值,包括如下之一:
    对所述极耳宽度差值进行分类处理,得到只存储为正数的极耳宽度差值的第一数组;从所述第一数组中剔除绝对值位于预设允许调整区间外的极耳宽度差值,得到存储有至少一个有效差值的新的第一数组;
    对所述极耳宽度差值进行分类处理,得到只存储为负数的极耳宽度差值的第二数组;从所述第二数组中剔除绝对值位于预设允许调整区间外的极耳宽度差值,得到存储有至少一个有效差值的新的第二数组。
  5. 根据权利要求1所述的控制方法,其特征在于,所述根据所述有效差值计算得到变径卷针调整量,包括如下之一:
    对所有所述有效差值进行排序处理,得到排序后的有效差值;从所述排序后的有效差值中计算出中位值,并根据所述中位值计算得到变径卷针调整量;
    计算出所有所述有效差值的平均值,并根据所述平均值计算得到变径卷针调整量。
  6. 根据权利要求5所述的控制方法,其特征在于,所述变径卷针设置有变径滑块,所述变径滑块设置有用于调整所述变径卷针的卷径的斜面;所述控制方法包括如下之一:
    在采用所述中位值计算变径卷针调整量的情况下,根据所述中位值计算得到变径卷针调整量的公式如下:变径卷针调整量=中位值/电芯卷绕圈数/π/Tanθ;其中,所述θ为所述斜面的倾斜角度;
    在采用所述平均值计算变径卷针调整量的情况下,根据所述平均值计算得到变径卷针调整量的公式如下:变径卷针调整量=平均值/电芯卷绕圈数/π/Tanθ;其中,所述θ为所述斜面的倾斜角度。
  7. 根据权利要求1至6中任意一项所述的控制方法,其特征在于,所述预设允许调整区间为大于预设的极耳宽度调整阈值并且小于预设的卷针调整最大限制值的数值区间,其中,所述极耳宽度调整阈值用于界定是否需要调整所述变径卷针的卷径,所述卷针调整最大限制值用于表征所述变径卷针的最大调整幅度。
  8. 根据权利要求1至6中任意一项所述的控制方法,其特征在于,所述极耳组为阳极极耳组或者阴极极耳组,所述极耳宽度差值为正数表征极耳朝电芯的外边沿方向错位,所述极耳宽度差值为负数表征极耳朝电芯的中间方向错位。
  9. 一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至8中任意一项所述的控制方法。
  10. 一种计算机可读存储介质,其特征在于,存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1至8中任意一项所述的控制方法。
PCT/CN2022/140362 2022-02-28 2022-12-20 卷绕机变径卷针的控制方法、电子设备和存储介质 WO2023160175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210185330.7A CN116692603A (zh) 2022-02-28 2022-02-28 卷绕机变径卷针的控制方法、电子设备和存储介质
CN202210185330.7 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023160175A1 true WO2023160175A1 (zh) 2023-08-31

Family

ID=87764630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140362 WO2023160175A1 (zh) 2022-02-28 2022-12-20 卷绕机变径卷针的控制方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN116692603A (zh)
WO (1) WO2023160175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117870547A (zh) * 2024-03-12 2024-04-12 宁德时代新能源科技股份有限公司 电池极耳的错位检测方法、装置和电池极片卷绕系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524704A (zh) * 2018-11-21 2019-03-26 无锡先导智能装备股份有限公司 极耳错位调整方法、系统、电子设备和存储介质
JP2021068614A (ja) * 2019-10-24 2021-04-30 Ckd株式会社 巻回装置
CN113224367A (zh) * 2021-03-31 2021-08-06 广东利元亨智能装备股份有限公司 一种卷针外周长调节装置、卷绕机及卷针外周长调节方法
CN113241464A (zh) * 2021-03-31 2021-08-10 广东利元亨智能装备股份有限公司 一种外周长可调节卷针、卷绕机及卷针外周长调节方法
CN113300057A (zh) * 2021-05-24 2021-08-24 广东利元亨智能装备股份有限公司 一种极耳错位调整方法及系统
CN214706012U (zh) * 2021-03-31 2021-11-12 广东利元亨智能装备股份有限公司 一种外周长可调节卷针及卷绕机
CN214706011U (zh) * 2021-03-31 2021-11-12 广东利元亨智能装备股份有限公司 一种卷针外周长调节装置及卷绕机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524704A (zh) * 2018-11-21 2019-03-26 无锡先导智能装备股份有限公司 极耳错位调整方法、系统、电子设备和存储介质
JP2021068614A (ja) * 2019-10-24 2021-04-30 Ckd株式会社 巻回装置
CN113224367A (zh) * 2021-03-31 2021-08-06 广东利元亨智能装备股份有限公司 一种卷针外周长调节装置、卷绕机及卷针外周长调节方法
CN113241464A (zh) * 2021-03-31 2021-08-10 广东利元亨智能装备股份有限公司 一种外周长可调节卷针、卷绕机及卷针外周长调节方法
CN214706012U (zh) * 2021-03-31 2021-11-12 广东利元亨智能装备股份有限公司 一种外周长可调节卷针及卷绕机
CN214706011U (zh) * 2021-03-31 2021-11-12 广东利元亨智能装备股份有限公司 一种卷针外周长调节装置及卷绕机
CN113300057A (zh) * 2021-05-24 2021-08-24 广东利元亨智能装备股份有限公司 一种极耳错位调整方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117870547A (zh) * 2024-03-12 2024-04-12 宁德时代新能源科技股份有限公司 电池极耳的错位检测方法、装置和电池极片卷绕系统

Also Published As

Publication number Publication date
CN116692603A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2023160175A1 (zh) 卷绕机变径卷针的控制方法、电子设备和存储介质
CN107681202B (zh) 一种ccd反馈纠偏闭环控制方法、控制装置及控制系统
KR101420476B1 (ko) 전극 시트의 제조 방법 및 그 장치
CN109786853B (zh) 一种锂电池卷绕层边界位移的自动修正方法
CN113300057B (zh) 一种极耳错位调整方法及系统
CN109524704A (zh) 极耳错位调整方法、系统、电子设备和存储介质
CN112577421A (zh) 一种电芯检测方法、装置及设备
CN113782819B (zh) 一种卷芯极耳边距确定方法及卷绕设备校正方法
CN217086648U (zh) 一种纠偏装置和卷绕机
CN109683282B (zh) 一种低畸变广角定焦线扫机器视觉镜头光学系统
CN113148736B (zh) 叠片机张力控制方法、张力控制装置及叠片机
CN110470217B (zh) 电芯收尾状态的检测方法
CN211719713U (zh) 用于全极耳电池极片的辊压装置
CN115797254B (zh) 极片缺陷检测方法、装置、计算机设备和存储介质
CN115546204B (zh) 极片打皱检测系统、方法、装置、计算机设备和存储介质
CN217359628U (zh) 一种锂电池极片尺寸检测装置
CN110190341A (zh) 一种激光模切卷绕一体机
CN115159225A (zh) 辊缝偏差控制方法、装置、计算机和可读存储介质
WO2023160176A1 (zh) 变径控制调节方法、装置、控制器以及存储介质
CN206864472U (zh) 图像传感器
CN217719722U (zh) 一种检测装置以及电芯卷绕装置
WO2023061284A1 (zh) 一种电芯卷绕校准方法、装置、设备和电芯卷绕系统
CN109530450B (zh) 一种薄箔轧制设备中的张力辊
WO2024113651A1 (zh) 极片料线位置抓取方法、系统、装置、设备和存储介质
CN115829928A (zh) 极片检测方法、装置、控制器、系统、介质和程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928424

Country of ref document: EP

Kind code of ref document: A1