WO2023159904A1 - 一种管道全位置多层多道焊的免打磨焊接方法 - Google Patents

一种管道全位置多层多道焊的免打磨焊接方法 Download PDF

Info

Publication number
WO2023159904A1
WO2023159904A1 PCT/CN2022/116127 CN2022116127W WO2023159904A1 WO 2023159904 A1 WO2023159904 A1 WO 2023159904A1 CN 2022116127 W CN2022116127 W CN 2022116127W WO 2023159904 A1 WO2023159904 A1 WO 2023159904A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
melting electrode
torch
arc
layer
Prior art date
Application number
PCT/CN2022/116127
Other languages
English (en)
French (fr)
Inventor
任国清
罗明洪
张佼
冯希望
李恒敏
戟增旭
先泽均
Original Assignee
成都熊谷加世电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都熊谷加世电器有限公司 filed Critical 成都熊谷加世电器有限公司
Publication of WO2023159904A1 publication Critical patent/WO2023159904A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/067Starting the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to the field of pipeline welding, in particular to a grinding-free welding method for all-position multi-layer multi-pass welding of pipelines.
  • each welding layer is welded by clockwise (CW: 12 o'clock-3 o'clock-6 o'clock) and counterclockwise Composed of clockwise welding (CCW: 12 o'clock-9 o'clock-6 o'clock), there is an arc starting overlap area R at the 12 o'clock position.
  • the metal dust produced by grinding is a major hidden danger affecting the occupational health of on-site workers, and it also increases the difficulty of maintenance of other equipment on site.
  • the grinding process is added, which increases the difficulty of coordination between the CW welding torch and the CCW welding torch process, and seriously reduces the efficiency of all-position automatic welding of pipelines.
  • DE 102014002213B4 discloses a process and composite welding torch for metal gas shielded welding, which is carried out by first using non-melting electrode gas shielded welding.
  • the method of preheating and then switching to MIGA welding for arc welding in a short period of time solves the problems of small penetration depth and insufficient fusion at the arc starting point of gas shielded welding.
  • the problem of excessive arc starting point reinforcement of deep groove filling welding that needs to be polished is not considered, nor is the problem of oxide cleaning on the weld bead surface at the arc starting position of the filling layer and capping layer considered.
  • the problem of poor fusion of the blunt edge of the arc starting point of the composite bevel pipe automatic welding heat welding layer there is no relevant technical improvement at present, and it can only be solved by grinding.
  • the purpose of the present invention is to provide a non-grinding welding method for all-position multi-layer multi-pass welding of pipelines, which is used to improve the welding efficiency and welding quality of all-position automatic welding of pipelines, improve the working environment and reduce labor intensity.
  • the present invention provides the following technical solutions:
  • a grinding-free welding method for pipeline all-position multi-layer multi-pass welding comprising the following steps:
  • Step S1 Preparation before welding, positioning counterparts, and performing root welding process
  • Step S2 Carry out clockwise and counterclockwise arc start welding on the thermal welding layer, and control the arc start in sections by adopting non-melting electrode welding + melting electrode welding in the preset overlapping area, and then use melting electrode welding for follow-up welding;
  • Step S3 Carry out clockwise and counterclockwise arc starting welding on the filled layer, and control the arc starting in sections in the manner of non-melting electrode welding + melting electrode welding in the overlapping area, and then use melting electrode welding for subsequent welding;
  • Step S4 Carry out clockwise and counterclockwise arc starting welding on the cover layer, and control the arc starting in sections in the manner of non-melting electrode welding + melting electrode welding in the overlapping area, and then use melting electrode welding for subsequent welding.
  • the welding groove is a composite groove
  • step S1 Between the step S1 and the step S2, it also includes:
  • Step S1A Using non-melting electrode welding, performing non-filler fusion welding on the overlapping area, the length of the fusion welding is 20-40mm;
  • the step S2 includes: performing arc starting welding in the fusion welding area obtained in the step S1A.
  • the length of the overlapping area is 100-300mm; in the clockwise and counterclockwise arc starting welding in the step, the welding overlapping layer of clockwise welding and counterclockwise welding is ⁇ 30mm.
  • the step adopting the method of non-melting electrode welding + melting electrode welding to control arc initiation in sections includes:
  • the melting electrode torch is used to move to the area welded by the non-melting electrode torch within a set time to perform subsection control arc starting.
  • the setting distance is 2-10mm, and the setting time is 0.3-15s.
  • the step adopting the method of non-melting electrode welding + melting electrode welding to control arc initiation in sections includes:
  • the non-melting electrode welding torch When starting the arc, control the non-melting electrode welding torch to perform positioning welding and moving welding; the positioning welding time corresponding to the non-melting electrode welding torch is 0-t1, and the moving welding time is t1-t2;
  • the melting electrode welding torch performs the first stage of arc initiation, the corresponding welding voltage changes from the no-load voltage U1 to the initial welding voltage U2, the transition walking speed is Vt2, and the wire feeding speed changes from the initial wire feeding speed to Vf1 rises slowly to the transitional wire feeding speed Vf2, Vf2-Vf1 is the wire speed compensation in the first stage;
  • the melting electrode torch does not swing
  • the melting electrode torch starts to swing with the initial swing amplitude A1;
  • the melting electrode torch slowly drops to the target swing amplitude A2;
  • the melting electrode torch performs the second stage of arc initiation, the corresponding welding voltage is gradually increased from the initial welding voltage U2 to the target welding voltage U3, and the wire feeding speed is gradually increased from the transitional wire feeding speed Vf2 to the target Wire feeding speed Vf3;
  • the walking speed of the melting electrode torch is gradually increased from the transitional walking speed Vt2 to the target walking speed Vt3;
  • the welding parameters of the melting electrode torch are the target welding parameters.
  • the non-melting electrode welding adopts TIG welding;
  • the welding parameters for the heat welding layer include:
  • the welding current I of described TIG welding is 100-300A;
  • the melting electrode welding adopts MAG welding;
  • the welding parameters for the heat welding layer include: the initial welding voltage U2 of the MAG welding is 15-26V; the target welding voltage U3 is 19-30V; the initial wire feeding speed Vf1 is 180-210in/min; transitional wire feeding speed Vf2 is 220-250in/min; target wire feeding speed Vf3 is 320-450in/min; initial walking speed Vt1 is 100-200cm/min; transitional walking speed Vt2 is 30- 45cm/min; target walking speed Vt3 is 33-70cm/min; initial swing amplitude A1 is 1-3.5mm; target swing amplitude A2 is 1-3mm.
  • the non-melting electrode welding adopts TIG welding;
  • the welding parameters for the filling layer include:
  • the welding current I of described TIG welding is 100-300A;
  • the melting electrode welding adopts MAG welding; the initial welding voltage U2 of the MAG welding is 15-26V; the target welding voltage U3 is 19-30V; the initial wire feeding speed Vf1 is 180-210in/min; The speed Vf2 is 220-250in/min; the target wire feeding speed Vf3 is 320-450in/min; the initial walking speed Vt1 is 100-200cm/min; the transition walking speed Vt2 is 40-50cm/min; the target walking speed Vt3 is 37- 60cm/min; the initial swing range A1 is 2-5mm; the target swing range A2 is 1.5-5mm.
  • the non-melting electrode welding adopts TIG welding;
  • the welding parameters to the cover layer include:
  • the welding current I of described TIG welding is 100-300A;
  • the melting electrode welding adopts MAG welding;
  • the welding parameters for the cover layer include: the initial welding voltage U2 of the MAG welding is 15-26V; the target welding voltage U3 is 19-30V; the initial wire feeding speed Vf1 is 180-210in/min; transitional wire feeding speed Vf2 is 220-250in/min; target wire feeding speed Vf3 is 320-400in/min; initial walking speed Vt1 is 100-200cm/min; transitional walking speed Vt2 is 30- 50cm/min; target walking speed Vt3 is 40-70cm/min; initial swing range A1 is 3-5mm; target swing range A2 is 2-6mm.
  • said step S3 also includes:
  • the oxides on the surface of the welding bead at the arcing position can be cleaned by the arc force of the non-melting electrode welding;
  • the step S4 also includes:
  • the oxides on the surface of the welding bead at the arcing position can be cleaned by the arc force of the non-melting electrode welding.
  • the non-grinding welding method for all-position multi-layer multi-pass welding of pipelines includes the following steps: Step S1: preparation before welding, positioning counterparts, and performing root welding process; Step S2: performing clockwise welding on the heat welding layer Start welding counterclockwise, and use non-melting electrode welding + melting electrode welding to control the arc starting in sections in the preset overlapping area, and then use melting electrode welding for subsequent welding; Step S3: Carry out clockwise welding on the filling layer and counterclockwise arc starting welding, and adopt non-melting electrode welding + melting electrode welding to control arc starting in sections in the overlapping area, and then use melting electrode welding for subsequent welding; step S4: clockwise welding on the cover layer and counterclockwise arc starting welding, and adopt non-melting electrode welding + melting electrode welding to control arc starting in sections in the overlapping area, and then use melting electrode welding for subsequent welding.
  • the non-grinding welding method of pipeline all-position multi-layer multi-pass welding provided by the present invention divides the heat welding layer, the filling layer and the cover layer by adopting non-melting electrode welding + melting electrode welding
  • the method of controlling the arc starting in the first stage, and then using the melting electrode welding for subsequent welding there is no welding wire filling in the non-melting electrode welding process, and the arc starting area of the workpiece can be heated, and when the welding wire is filled with the melting electrode welding, due to the arc starting area of the workpiece If the temperature is higher, the molten pool will not cool down rapidly, the molten pool can be fully spread out, and the formed arc starting position is more gentle without grinding, which can effectively improve welding efficiency and welding quality, improve the working environment and reduce labor intensity.
  • Fig. 1 is the welding process schematic diagram of pipeline all-position welding in the prior art
  • Fig. 2 is a flow chart of a specific embodiment of the non-grinding welding method of pipeline all-position multi-layer multi-pass welding provided by the present invention
  • Fig. 3 is the control sequence of subsection control arc starting in the welding method provided by the present invention.
  • Fig. 4 is the schematic diagram of weld bead in the welding method provided by the present invention.
  • the core of the present invention is to provide a non-grinding welding method for pipeline all-position multi-layer multi-pass welding, which is used to improve the welding quality and welding efficiency of pipeline all-position automatic welding, improve the working environment and reduce labor intensity.
  • FIG. 2 is the flow chart of a specific embodiment of the non-grinding welding method of pipeline all-position multi-layer multi-pass welding provided by the present invention
  • Fig. 3 is the subdivision of the welding method provided by the present invention The control sequence of segment control arc starting
  • FIG. 4 is a schematic diagram of the welding bead in the welding method provided by the present invention.
  • the grinding-free welding method for all-position multi-layer multi-pass welding of pipelines includes the following steps:
  • Step S1 Preparation before welding, positioning counterparts, and performing root welding process
  • Step S2 Carry out clockwise and counterclockwise arc starting welding on the thermal welding layer, and use non-melting electrode welding + melting electrode welding to control the arc starting in sections in the preset overlapping area R, and then use melting electrode welding to carry out Subsequent welding;
  • the arc starting height is the vertical distance between the tungsten electrode and the arc starting point, which is 2-3mm.
  • Step S3 Carry out clockwise and counterclockwise arc starting welding on the filling layer, and adopt non-melting electrode welding + melting electrode welding to control arc starting in sections in the overlapping area R, and then use melting electrode welding for subsequent welding;
  • Step S4 Carry out clockwise and counterclockwise arc starting welding on the cover surface layer, and adopt non-melting electrode welding + melting electrode welding to control arc starting in sections in the overlapping area R, and then use melting electrode welding for subsequent welding.
  • the preparation before welding includes selecting the automatic external welding machine of the pipeline 100, the automatic internal welding machine and the pipeline 100, setting up a U-shaped composite groove or a V-shaped groove at the position to be welded of the pipeline 100, and The welding position is matched and positioned, that is, the two sections of pipelines 100 are docked, and the welding torch and the groove are positioned, as shown in Figure 4, the U-shaped composite groove schematic diagram used in this embodiment, the width of the upper groove is 8mm, according to the welding layer Planning can be divided into different welding layers: root welding layer (area 1), thermal welding layer (area 2), filling layer (area 3, 4, 5, 6, 7) and cover layer (area 8-1 and area 8 -2); adjust the automatic internal welding machine to match and position the welding position of the pipeline 100, then preheat the weld bead, use the all-position automatic internal welding machine to complete the welding of the root welding layer, and then remove the internal welding machine.
  • root welding layer area 1
  • thermal welding layer area 2
  • filling layer area 3, 4, 5, 6, 7)
  • the welding groove is a compound groove; and, between step S1 and step S2, it also includes:
  • Step S1A Use an automatic argon arc welding machine to weld the overlapping area R without filler wire; the length of welding is 20-40mm;
  • Step S2 includes: performing arc starting welding in the fusion welding area obtained in step S1A.
  • an automatic internal welding machine can be used to complete root welding, and then proceed to step S1A; for other types of grooves, such as single V grooves, automatic external root welding can be used to complete root welding, and then directly proceed to step S2 .
  • the welding current of the automatic argon arc welding machine is 180-280A.
  • the length of the overlapping area R is 100-300 mm. As shown in Figure 1, it can be an area of 50-150 mm on both sides of the 12 o'clock position to form an arcing overlapping area. Of course, it is not necessary to use the 12 o'clock position is the midpoint, which can be set according to actual needs; in the steps of clockwise and counterclockwise arc starting welding, the welding overlapping layer of clockwise welding and counterclockwise welding is ⁇ 30mm.
  • step S2 the area with a total length of 30 mm on both sides of the 12 o'clock position can be used for the blunt edge of the groove at the position of 15 mm on each side of the 12 o'clock position by fully automatic argon arc welding.
  • Filler fusion welding may not take the 12 o'clock position as the midpoint, and can be set according to actual needs, and the preset welding current is 210A, so that the blunt edge of this section and the root welding layer are fused together; further, in clockwise welding Arcing starts above the layers, and the length of the overlapping welding layers at the overlapping positions of clockwise and counterclockwise is more than 30 mm, preferably, the length of the overlapping welding layers is 40 mm.
  • step S4 and step S4 the welding process of the corresponding filling layer and cover layer is consistent with the process and arc starting control mode of the heat welding layer, and the parameters are changed.
  • the combined welding of non-melting electrode welding and melting electrode welding can use an integrated composite welding torch, or a split welding torch, and the non-melting electrode welding torch can move up and down in the height direction driven by the driving device;
  • the vertical distance of the arc point is preferably 2-3mm.
  • the steps of adopting non-melting electrode welding + melting electrode welding to control arc initiation in sections include:
  • non-melting electrode welding torch for positioning arc starting combustion, and control the non-melting electrode welding torch to move a set distance along the welding direction;
  • the melting pole welding torch is used to move to the area welded by the non-melting pole welding torch within a set time for segmental control of arc start.
  • the setting distance is 2-10mm, and the setting time is 0.3-15s.
  • the steps of adopting non-melting electrode welding + melting electrode welding to control arc initiation in sections include:
  • control the non-melting electrode welding torch for positioning welding and moving welding When starting the arc, control the non-melting electrode welding torch for positioning welding and moving welding; the corresponding positioning welding time of the non-melting electrode welding torch is 0 ⁇ t1, and the moving welding time is t1 ⁇ t2;
  • the melting electrode torch starts the first stage of arcing, the corresponding welding voltage changes from the no-load voltage U1 to the initial welding voltage U2, the transitional walking speed is Vt2, and the wire feeding speed slows down from the initial wire feeding speed Vf1 Raise to the transitional wire feeding speed Vf2, Vf2-Vf1 is the first stage wire speed compensation;
  • the melting electrode torch does not swing
  • the melting electrode torch starts to swing with the initial swing amplitude A1;
  • the melting electrode torch slowly drops to the target swing range A2;
  • the melting electrode torch is in the second stage of arc initiation, the corresponding welding voltage is gradually increased from the initial welding voltage U2 to the target welding voltage U3, and the wire feeding speed is gradually increased from the transitional wire feeding speed Vf2 to the target wire feeding speed Vf3;
  • the walking speed of the melting electrode torch is gradually increased from the transitional walking speed Vt2 to the target walking speed Vt3;
  • the welding parameters of the melting electrode torch are the target welding parameters.
  • step S3 also includes:
  • the oxides on the surface of the welding bead at the arcing position are cleaned by the arc force of non-melting electrode welding;
  • Step S4 also includes:
  • the oxides on the surface of the welding bead at the arcing position are cleaned by the arc force of non-melting electrode welding.
  • the oxides on the surface of the weld bead at the arc starting position can be cleaned by the arc force of the non-melting electrode welding, effectively avoiding the possible formation of subsequent melting electrode welding at the arc starting position.
  • Oxide inclusions What needs to be explained here is that the above steps are preferably performed when there are oxides in the weld bead, and may not be performed when the surface of the weld bead is clean and no cleaning is required.
  • the steps of adopting non-melting electrode welding + melting electrode welding to control arc initiation in sections include:
  • control the non-melting electrode welding torch for positioning welding and moving welding When starting the arc, control the non-melting electrode welding torch for positioning welding and moving welding; the corresponding positioning welding time of the non-melting electrode welding torch is 0 ⁇ t1, and the moving welding time is t1 ⁇ t2;
  • the melting electrode torch starts the first stage of arcing, the corresponding welding voltage changes from the no-load voltage U1 to the initial welding voltage U2, the transitional walking speed is Vt2, and the wire feeding speed slows down from the initial wire feeding speed Vf1 Raise to the transitional wire feeding speed Vf2, Vf2-Vf1 is the first stage wire speed compensation;
  • the melting electrode torch does not swing
  • the melting electrode torch starts to swing with the initial swing amplitude A1;
  • the melting electrode torch slowly drops to the target swing range A2;
  • the melting electrode torch is in the second stage of arc initiation, the corresponding welding voltage is gradually increased from the initial welding voltage U2 to the target welding voltage U3, and the wire feeding speed is gradually increased from the transitional wire feeding speed Vf2 to the target wire feeding speed Vf3;
  • the walking speed of the melting electrode torch is gradually increased from the transitional walking speed Vt2 to the target walking speed Vt3;
  • the welding parameters of the melting electrode torch are the target welding parameters.
  • TIG welding is selected for non-melting pole welding
  • MAG welding is selected for melting pole welding
  • (0, t1) TIG welding torch moving welding time is (t1, t2), at time t2, TIG welding torch closes the arc and stops welding
  • (t2, t3) time period TIG welding torch stops welding and retracts TIG welding torch, at the same time, walk
  • the device drives the MAG welding torch to reach the welding area of the TIG welding torch at the walking speed of Vt1; the MAG welding torch starts arcing at time t3, (t3, t5) is the first stage of MAG welding torch arcing, the corresponding welding voltage is U2, and the walking speed is Vt2 , the wire feeding speed increases slowly from Vf1 to Vf2, Vf2-Vf1 is the wire speed compensation in the first stage, (t3, t4) is the swing delay, that is, the MAG torch does not swing during this time period, and the initial swing amplitude A1 is used at t4 It starts to swing, and gradually
  • the wire speed is slowly increased from Vf2 to Vf3;
  • (t5, t6) is the delay time of the slow increase of walking speed, that is, when the second stage of arcing of the MAG welding torch starts, it still walks at the speed of Vt2, and switches to the second stage at t6 Walking speed Vt3, after the completion of the second stage of MAG welding torch arcing, that is, after the time t8, enter the target welding parameters;
  • t1 2s ⁇ 0.5s
  • t2 2.8s ⁇ 0.5s
  • t3 3.1s ⁇ 0.5s
  • t4 3.5s ⁇ 0.5s
  • t5 4.6s ⁇ 0.5s
  • t6 5.1s ⁇ 0.5s
  • t7 5.5s ⁇ 0.5s
  • t8 6.6s ⁇ 0.5s.
  • the corresponding time parameters in the timing diagram shown in FIG. 1 are preferably as shown in Table 1.
  • non-melting electrode welding adopts TIG welding
  • the welding parameters of the heat welding layer include:
  • the welding current I of TIG welding is 200-280A;
  • the melting electrode welding adopts MAG welding
  • the welding parameters for the heat welding layer include: the initial welding voltage U2 of MAG welding is 19-22V; the target welding voltage U3 is 23-26V; the initial wire feeding speed Vf1 is 185-200in/min; transitional wire feeding speed Vf2 is 225-240in/min; target wire feeding speed Vf3 is 375-390in/min; initial walking speed Vt1 is 115-130cm/min; transitional walking speed Vt2 is 36- 41cm/min; target walking speed Vt3 is 33-70cm/min; initial swing amplitude A1 is 1.7-2.5mm; target swing amplitude A2 is 1.2-2.0mm.
  • non-melting electrode welding adopts TIG welding
  • the welding parameters for the filling layer include:
  • the welding current I of TIG welding is 200-280A;
  • MAG welding is used for melting electrode welding;
  • the welding parameters for the filling layer include: the initial welding voltage U2 of MAG welding is 19-22V; the target welding voltage U3 is 23-26V; the initial wire feeding speed Vf1 170-220in/min; transitional wire feeding speed Vf2 is 210-260in/min; target wire feeding speed Vf3 is 390-420in/min; initial walking speed Vt1 is 115-130cm/min; transitional walking speed Vt2 is 40-48cm /min; the target walking speed Vt3 is 37-45cm/min; the initial swing amplitude A1 is 2-4.5mm; the target swing amplitude A2 is 1.5-4mm.
  • non-melting electrode welding adopts TIG welding
  • the welding parameters for the cover layer include:
  • the welding current I of TIG welding is 200-280A;
  • MAG welding is used for melting electrode welding;
  • the welding parameters for the cover layer include: the initial welding voltage U2 of MAG welding is 19-22V; the target welding voltage U3 is 23-26V; the initial wire feeding speed Vf1 is 140-190in/min; transitional wire feeding speed Vf2 is 180-230in/min; target wire feeding speed Vf3 is 210-260in/min; initial walking speed Vt1 is 115-130cm/min; transitional walking speed Vt2 is 36- 41cm/min; target walking speed Vt3 is 33-60cm/min; initial swing range A1 is 3.2-4.0mm; target swing range A2 is 2.7-3.5mm.
  • the melting electrode Since the workpiece is in a low-temperature state in the traditional welding process, if the melting electrode is directly used for welding, a large current and a high wire-feeding speed are required to start the arc. The molten pool rapidly cools and solidifies, and the formed weld reinforcement is high. When the next welding is performed, the previous arc starting point must be ground and smoothed.
  • the non-grinding welding method of all-position multi-layer multi-pass welding of pipelines uses non-melting electrode welding before heat welding to carry out non-filling fusion welding of specific lengths on both sides of the 12 o’clock position of the blunt edge, which solves the problem of heat welding layer
  • the non-melting electrode welding + melting electrode welding is used to control the arc start in sections.
  • the non-melting electrode is used for welding. There is no welding wire filling in this process, and the starting position of the workpiece can be heated, and then the melting electrode is used.
  • non-melting electrode welding is preferably TIG welding
  • melting electrode welding is preferably MAG welding
  • other heating methods that can realize segmental control of arcing without grinding, such as laser welding, electron beam welding, plasma arc welding, flame heating, induction heating, etc., are also available, and are not limited to this embodiment The given method; similarly, the metal electrode welding can be inert gas shielded welding, active gas shielded welding and mixed gas shielded welding, and other forms of metal electrode heating methods can also be selected.
  • the workpiece to be welded can be a pipe, or other annular or spherical workpieces; the material to be welded can be various metal materials such as carbon steel, stainless steel, aluminum alloy, etc., which can be selected according to actual use requirements, and no further limitation is made here .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

一种管道全位置多层多道焊的免打磨焊接方法,包括以下步骤:焊前准备,定位对口,并进行根焊工序;分别对热焊层(2)、填充层(3-7)和盖面层(8-1,8-2)进行顺时针和逆时针起弧焊接,并在预先设定的搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接。该方法采用非熔化极焊接+熔化极焊接方式分段控制起弧,采用熔化极焊接进行后续焊接的方式,非熔化极焊接过程中无焊丝填充,可对工件起弧区域加热,再使用熔化极焊接进行焊丝填充时,由于工件起弧区域的温度较高,则熔池不会快速冷却,熔池可充分铺开,形成的起弧位置更平缓,无需打磨,有效提高焊接效率和焊接质量、改善工作环境、降低劳动强度。

Description

一种管道全位置多层多道焊的免打磨焊接方法
本申请要求于2022年02月24日提交中国专利局、申请号为202210176531.0、发明名称为“一种管道全位置多层多道焊的免打磨焊接方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及管道焊接领域,特别是涉及一种管道全位置多层多道焊的免打磨焊接方法。
背景技术
如图1所示,现有管道全位置自动焊现场施工过程中,进行热焊、填充以及盖面时,每一焊层由顺时针焊接(CW:12点-3点-6点)和逆时针焊接(CCW:12点-9点-6点)组成,12点位置存在一个起弧搭接区域R,具体的,首先顺时针CW起弧焊接,在逆时针CCW起弧之前,要借助砂轮机对CW的起弧点进行人工或自动打磨,否则当CCW经过CW起弧点时会因CW起弧点几何尺寸过高形成未熔缺陷。经过打磨的CW起弧点,当CCW电弧经过其上方时,可以平缓地过渡和填充,形成搭接接头。第二道CW起弧前,对前一道CCW起弧点同样借助砂轮机进行打磨,如此重复,最终形成完整的焊缝。此外,针对填充层和盖面层起弧位置焊道表面的氧化物,目前也是采用机械打磨的方式进行清理,否则会形成夹杂。
然而,现有技术中的打磨方式,会存在以下问题:
1、在每一焊层起弧前,都需要对起弧区域和前一层的起弧点进行打磨,需要配备专门的打磨设备和人员,增大了施工现场人员管理和设备管理的成本。
2、打磨产生的金属粉尘是影响现场工作人员职业健康的重大隐患,也增加了现场其他设备的保养维护难度。
3、增加了打磨工序,导致CW焊炬和CCW焊炬工序之间的协调难度增大,严重降低了管道全位置自动焊的效率。
4、目前管道全位置自动焊现场施工过程中在起弧位置主要采用施工人 员手工打磨,且目前没有统一的打磨规范(标准),打磨位置的焊接质量受人为因素的影响比较大,搭接接头的焊接质量不稳定。
另外,为了解决搭接接头的问题,现有技术中也存在相关的技术改进,例如DE 102014002213B4公布了一种用于金属气体保护焊接的工艺和复合焊枪,通过先采用非熔化极气体保护焊进行预热,然后短时间内切换到熔化极气体保护焊进行起弧焊接的方式解决气体保护焊起弧点熔深小和熔合不充分的问题,然而,上述发明专利重点在于复合焊枪的设计,适合于平板堆焊,并没有考虑深坡口填充焊起弧点余高过大需要打磨的问题,也没有考虑填充层和盖面层起弧位置焊道表面的氧化物清理问题。而针对复合型坡口管道自动焊热焊层起弧点钝边熔合不佳的问题,目前没有相关的技术改进,只能通过打磨的方式解决。
因此,如何有效解决管道全位置焊接时,搭接位置需要打磨的问题,是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种管道全位置多层多道焊的免打磨焊接方法,用于提高管道全位置自动焊的焊接效率和焊接质量、改善工作环境、降低劳动强度。
为实现上述目的,本发明提供如下技术方案:
一种管道全位置多层多道焊的免打磨焊接方法,包括以下步骤:
步骤S1:焊前准备,定位对口,并进行根焊工序;
步骤S2:对热焊层进行顺时针和逆时针起弧焊接,并在预先设定的搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;
步骤S3:对填充层进行顺时针和逆时针起弧焊接,并在所述搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;
步骤S4:对盖面层进行顺时针和逆时针起弧焊接,并在所述搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊 接进行后续焊接。
优选地,所述焊接坡口为复合型坡口;
所述步骤S1与所述步骤S2之间,还包括:
步骤S1A:采用非熔化极焊接,将所述搭接区域进行不填丝熔焊,所述熔焊的长度为20-40mm;
所述步骤S2包括:在所述步骤S1A中得到的熔焊区域内进行起弧焊接。
优选地,所述搭接区域的长度为100-300mm;所述步骤所述顺时针和逆时针起弧焊接中,顺时针焊接和逆时针焊接的焊接重叠层≥30mm。
优选地,所述步骤采用非熔化极焊接+熔化极焊接的方式分段控制起弧包括:
采用非熔化极焊枪进行定位起弧燃烧,并控制所述非熔化极焊枪沿焊接方向移动设定距离;
控制所述非熔化极焊枪熄弧,并抬起所述非熔化极焊枪;
待所述非熔化极焊枪熄弧后,采用熔化极焊枪在设定时间内移动到所述非熔化极焊枪焊过的区域进行分段控制起弧。
优选地,所述设定距离为2-10mm,设定时间为0.3-15s。
优选地,所述步骤采用非熔化极焊接+熔化极焊接的方式分段控制起弧包括:
起弧时,控制非熔化极焊枪进行定位焊接和移动焊接;所述非熔化极焊枪对应的定位焊接时间为0~t1,移动焊接时间为t1~t2;
在t2时刻,控制所述非熔化极焊枪收弧停止焊接;
在t2~t3时间段内,控制所述非熔化极焊枪停止焊接并收回所述非熔化极焊枪;
控制所述熔化极焊枪以初始行走速度Vt1到达所述非熔化极焊枪的熔焊区域;
在t3时刻,控制所述熔化极焊枪开始起弧;
在t3~t5时间段内,所述熔化极焊枪进行起弧第一阶段,对应的焊接电压由空载电压U1变为初始焊接电压U2,过渡行走速度为Vt2,送丝速 度由初始送丝速度Vf1缓升至过渡送丝速度Vf2,Vf2-Vf1为第一阶段丝速补偿;
在t3~t4时间段内,所述熔化极焊枪不摆动;
在t4时刻,所述熔化极焊枪以初始摆动幅度A1开始摆动;
在t4~t7时间段内,所述熔化极焊枪缓降至目标摆动幅度A2;
在t5~t8时间段内,所述熔化极焊枪进行起弧第二阶段,对应的焊接电压由初始焊接电压U2缓升至目标焊接电压U3,送丝速度由过渡送丝速度Vf2缓升至目标送丝速度Vf3;
在t5~t6时间段内,所述熔化极焊枪的行走速度由过渡行走速度Vt2缓升至目标行走速度Vt3;
在t8时刻,所述熔化极焊枪的焊接参数为目标焊接参数。
优选地,所述非熔化极焊接采用TIG焊;对所述热焊层的焊接参数包括:
所述TIG焊的焊接电流I为100-300A;
优选地,所述熔化极焊接采用MAG焊;对所述热焊层的焊接参数包括:所述MAG焊的初始焊接电压U2为15-26V;目标焊接电压U3为19-30V;初始送丝速度Vf1为180-210in/min;过渡送丝速度Vf2为220-250in/min;目标送丝速度Vf3为320-450in/min;初始行走速度Vt1为100-200cm/min;过渡行走速度Vt2为30-45cm/min;目标行走速度Vt3为33-70cm/min;初始摆动幅度A1为1-3.5mm;目标摆动幅度A2为1-3mm。
优选地,所述非熔化极焊接采用TIG焊;对填充层的焊接参数包括:
所述TIG焊的焊接电流I为100-300A;
优选地,所述熔化极焊接采用MAG焊;所述MAG焊的初始焊接电压U2为15-26V;目标焊接电压U3为19-30V;初始送丝速度Vf1为180-210in/min;过渡送丝速度Vf2为220-250in/min;目标送丝速度Vf3为320-450in/min;初始行走速度Vt1为100-200cm/min;过渡行走速度Vt2为40-50cm/min;目标行走速度Vt3为37-60cm/min;初始摆动幅度A1为2-5mm;目标摆动幅度A2为1.5-5mm。
优选地,所述非熔化极焊接采用TIG焊;对所述盖面层的焊接参数包 括:
所述TIG焊的焊接电流I为100-300A;
优选地,所述熔化极焊接采用MAG焊;对所述盖面层的焊接参数包括:所述MAG焊的初始焊接电压U2为15-26V;目标焊接电压U3为19-30V;初始送丝速度Vf1为180-210in/min;过渡送丝速度Vf2为220-250in/min;目标送丝速度Vf3为320-400in/min;初始行走速度Vt1为100-200cm/min;过渡行走速度Vt2为30-50cm/min;目标行走速度Vt3为40-70cm/min;初始摆动幅度A1为3-5mm;目标摆动幅度A2为2-6mm。
优选地,所述步骤S3还包括:
在所述填充层的起弧前,可以通过所述非熔化极焊接的电弧力将起弧位置焊道表面的氧化物进行清理;
所述步骤S4还包括:
在所述盖面层的起弧前,可以通过所述非熔化极焊接的电弧力将起弧位置焊道表面的氧化物进行清理。
本发明所提供的管道全位置多层多道焊的免打磨焊接方法,包括以下步骤:步骤S1:焊前准备,定位对口,并进行根焊工序;步骤S2:对热焊层进行顺时针和逆时针起弧焊接,并在预先设定的搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;步骤S3:对填充层进行顺时针和逆时针起弧焊接,并在所述搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;步骤S4:对盖面层进行顺时针和逆时针起弧焊接,并在所述搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接。本发明所提供的管道全位置多层多道焊的免打磨焊接方法,通过对所述热焊层、所述填充层和所述盖面层,采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接的方式,非熔化极焊接过程中没有焊丝填充,可对工件起弧区域加热,再使用熔化极焊接接进行焊丝填充时,由于工件起弧区域的温度较高,则熔池不会快速冷却,熔池可以充分地铺开,形成的起弧位置更为平缓,无需打磨,有效提高焊接效率和焊接质量、改善工作环境、降低劳 动强度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中管道全位置焊接的焊接过程示意图;
图2为本发明所提供的管道全位置多层多道焊的免打磨焊接方法一种具体实施方式的流程图;
图3为本发明所提供的焊接方法中分段控制起弧的控制时序;
图4为本发明所提供的焊接方法中焊道的示意图;
其中:100-管道;R-搭接区域。
具体实施方式
本发明的核心是提供一种管道全位置多层多道焊的免打磨焊接方法,用于提高管道全位置自动焊的焊接质量和焊接效率、改善工作环境、降低劳动强度。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图2至图4,图2为本发明所提供的管道全位置多层多道焊的免打磨焊接方法一种具体实施方式的流程图;图3为本发明所提供的焊接方法中分段控制起弧的控制时序;图4为本发明所提供的焊接方法中焊道的示意图。
在该实施方式中,管道全位置多层多道焊的免打磨焊接方法包括以下步骤:
步骤S1:焊前准备,定位对口,并进行根焊工序;
步骤S2:对热焊层进行顺时针和逆时针起弧焊接,并在预先设定的搭接区域R采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;
其中起弧高度为钨极与起弧点的垂直距离,为2-3mm。
步骤S3:对填充层进行顺时针和逆时针起弧焊接,并在搭接区域R采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;
步骤S4:对盖面层进行顺时针和逆时针起弧焊接,并在搭接区域R采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接。
具体的,步骤S1中,焊前准备,包括选用管道100自动外焊机、自动内焊机和管道100,在管道100的待焊位置开设U型复合型坡口或者V型坡口、并对焊接位置进行对口和定位,即对接两段管道100,并定位焊枪和坡口,如图4所示,该实施例采用的U型复合型坡口示意图,上坡口宽度为8mm,根据焊层规划可以划分为不同焊层:根焊层(区域1)、热焊层(区域2)、填充层(区域3、4、5、6、7)和盖面层(区域8-1和区域8-2);调整自动内焊机进行管道100焊接位置的对口和定位,然后对焊道进行预热,采用全位置自动内焊机完成根焊层的焊接,然后撤掉内焊机。
在一种实施方式中,焊接坡口为复合型坡口;并且,步骤S1与步骤S2之间,还包括:
步骤S1A:采用自动氩弧焊机,将搭接区域R进行不填丝熔焊;熔焊的长度为20-40mm;
步骤S2包括:在步骤S1A中得到的熔焊区域内进行起弧焊接。
具体的,针对复合型坡口可采用自动内焊机完成根焊,然后进行步骤S1A;针对其他坡口形式,如单V坡口,可采用自动外根焊完成根焊,然后直接进行步骤S2。
优选地,自动氩弧焊机的焊接电流为180-280A。
优选地,搭接区域R的长度为100-300mm,如图1所示,可以为12点位置两侧各50-150mm的区域,构成起弧搭接区域,当然,也可以不以 12点位置为中点,可以根据实际需求设定;步骤顺时针和逆时针起弧焊接中,顺时针焊接和逆时针焊接的焊接重叠层≥30mm。
具体的,在一种实施例中,步骤S2中,采用全自动氩弧焊将12点位置两侧共30mm长度的区域,可以为12点单侧各15mm长度位置处的坡口钝边进行不填丝熔焊,当然,也可以不以12点位置为中点,可以根据实际需求设定,预设焊接电流210A,使得该段钝边与根焊层熔合到一起;进一步,在顺时针焊层的上方开始起弧,顺时针和逆时针搭接位置的焊接重叠层长度在30mm之上,优选地,焊接重叠层的长度为40mm。步骤S4和步骤S4中,对应的填充层和盖面层的焊接过程与热焊层的流程及起弧控制方式一致,参数有变动。
进一步,非熔化极焊接和熔化极焊接的组合焊接可采用一体式复合焊枪,也可采用分体式焊枪,非熔化极焊枪在驱动装置带动下可高度方向上下移动;起弧高度为钨极与起弧点的垂直距离,优选为2-3mm。
在上述各实施方式的基础上,步骤采用非熔化极焊接+熔化极焊接的方式分段控制起弧包括:
采用非熔化极焊枪进行定位起弧燃烧,并控制非熔化极焊枪沿焊接方向移动设定距离;
控制非熔化极焊枪熄弧,并抬起非熔化极焊枪;
待非熔化极焊枪熄弧后,采用熔化极焊枪在设定时间内移动到非熔化极焊枪焊过的区域进行分段控制起弧。
在上述各实施方式的基础上,设定距离为2-10mm,设定时间为0.3-15s。
在上述各实施方式的基础上,步骤采用非熔化极焊接+熔化极焊接的方式分段控制起弧包括:
起弧时,控制非熔化极焊枪进行定位焊接和移动焊接;非熔化极焊枪对应的定位焊接时间为0~t1,移动焊接时间为t1~t2;
在t2时刻,控制非熔化极焊枪收弧停止焊接;
在t2~t3时间段内,控制非熔化极焊枪停止焊接并收回非熔化极焊枪;
控制熔化极焊枪以初始行走速度Vt1到达非熔化极焊枪的熔焊区域;
在t3时刻,控制熔化极焊枪开始起弧;
在t3~t5时间段内,熔化极焊枪进行起弧第一阶段,对应的焊接电压由空载电压U1变为初始焊接电压U2,过渡行走速度为Vt2,送丝速度由初始送丝速度Vf1缓升至过渡送丝速度Vf2,Vf2-Vf1为第一阶段丝速补偿;
在t3~t4时间段内,熔化极焊枪不摆动;
在t4时刻,熔化极焊枪以初始摆动幅度A1开始摆动;
在t4~t7时间段内,熔化极焊枪缓降至目标摆动幅度A2;
在t5~t8时间段内,熔化极焊枪进行起弧第二阶段,对应的焊接电压由初始焊接电压U2缓升至目标焊接电压U3,送丝速度由过渡送丝速度Vf2缓升至目标送丝速度Vf3;
在t5~t6时间段内,熔化极焊枪的行走速度由过渡行走速度Vt2缓升至目标行走速度Vt3;
在t8时刻,熔化极焊枪的焊接参数为目标焊接参数。
在上述各实施方式的基础上,步骤S3还包括:
在填充层的起弧前,通过非熔化极焊接的电弧力将起弧位置焊道表面的氧化物进行清理;
步骤S4还包括:
在盖面层的起弧前,通过非熔化极焊接的电弧力将起弧位置焊道表面的氧化物进行清理。
即在填充层和盖面层的起弧前,可以通过非熔化极焊接的电弧力将起弧位置焊道表面的氧化物进行清理,有效地避免了后续熔化极焊接在起弧位置可能形成的氧化物夹杂;这里需要说明的是,上述步骤,优选在焊道中存在氧化物时执行,当焊道表面干净,无需清理时,可以不执行。
在上述各实施方式的基础上,步骤采用非熔化极焊接+熔化极焊接的方式分段控制起弧包括:
起弧时,控制非熔化极焊枪进行定位焊接和移动焊接;非熔化极焊枪对应的定位焊接时间为0~t1,移动焊接时间为t1~t2;
在t2时刻,控制非熔化极焊枪收弧停止焊接;
在t2~t3时间段内,控制非熔化极焊枪停止焊接并收回非熔化极焊枪;
控制熔化极焊枪以初始行走速度Vt1到达非熔化极焊枪的熔焊区域;
在t3时刻,控制熔化极焊枪开始起弧;
在t3~t5时间段内,熔化极焊枪进行起弧第一阶段,对应的焊接电压由空载电压U1变为初始焊接电压U2,过渡行走速度为Vt2,送丝速度由初始送丝速度Vf1缓升至过渡送丝速度Vf2,Vf2-Vf1为第一阶段丝速补偿;
在t3~t4时间段内,熔化极焊枪不摆动;
在t4时刻,熔化极焊枪以初始摆动幅度A1开始摆动;
在t4~t7时间段内,熔化极焊枪缓降至目标摆动幅度A2;
在t5~t8时间段内,熔化极焊枪进行起弧第二阶段,对应的焊接电压由初始焊接电压U2缓升至目标焊接电压U3,送丝速度由过渡送丝速度Vf2缓升至目标送丝速度Vf3;
在t5~t6时间段内,熔化极焊枪的行走速度由过渡行走速度Vt2缓升至目标行走速度Vt3;
在t8时刻,熔化极焊枪的焊接参数为目标焊接参数。
在一种具体实施例中,非熔化极焊接选择TIG焊,熔化极焊接选择MAG焊;如图1所示,起弧时,TIG焊枪先进行定位和移动熔化焊接,对应TIG焊枪定位焊接时间为(0,t1),TIG焊枪移动焊接时间为(t1,t2),在t2时刻,TIG焊枪收弧停止焊接;(t2,t3)时间段内,TIG焊枪停止焊接并收回TIG焊枪,同时,行走装置带动MAG焊枪以Vt1的行走速度到达TIG焊枪熔焊的区域;在t3时刻MAG焊枪开始起弧,(t3,t5)为MAG焊枪起弧第一阶段,对应焊接电压为U2,行走速度为Vt2,送丝速度由Vf1缓升至Vf2,Vf2-Vf1为第一阶段丝速补偿,(t3,t4)为摆动延时,即在此时间段内MAG焊枪没有摆动,t4时刻以初始摆动幅度A1开始摆动,在(t4,t7)时间段内缓降至正常摆动;(t5,t8)时间段为MAG焊枪起弧第二阶段,此阶段内,MAG焊枪焊接电压由U2缓升至U3,送丝速度由Vf2缓升至Vf3;(t5,t6)为行走速度缓升延时时间,即MAG焊枪起弧第二阶段开始时,任然以Vt2的速度行走,在t6时刻切换至第二阶段行走速 度Vt3,MAG焊枪起弧第二阶段完成之后,即t8时刻之后,进入目标焊接参数;
在上述各实施方式的基础上,t1=2s±0.5s,t2=2.8s±0.5s,t3=3.1s±0.5s,t4=3.5s±0.5s,t5=4.6s±0.5s,t6=5.1s±0.5s,t7=5.5s±0.5s,t8=6.6s±0.5s。
优选地,图1所示的时序图中对应的时间参数优选为如表1。
表1
Figure PCTCN2022116127-appb-000001
这里需要说明的是,在对不同的坡口焊道进行设计时,上述时间可以根据需要进行调整,并不局限于本实施例给出的方式。
在上述各实施方式的基础上,非熔化极焊接采用TIG焊;对热焊层的焊接参数包括:
TIG焊的焊接电流I为200-280A;
在上述各实施方式的基础上,熔化极焊接采用MAG焊,对热焊层的焊接参数包括:MAG焊的初始焊接电压U2为19-22V;目标焊接电压U3为23-26V;初始送丝速度Vf1为185-200in/min;过渡送丝速度Vf2为225-240in/min;目标送丝速度Vf3为375-390in/min;初始行走速度Vt1为115-130cm/min;过渡行走速度Vt2为36-41cm/min;目标行走速度Vt3为33-70cm/min;初始摆动幅度A1为1.7-2.5mm;目标摆动幅度A2为1.2-2.0mm。
在上述各实施方式的基础上,非熔化极焊接采用TIG焊;对填充层的焊接参数包括:
TIG焊的焊接电流I为200-280A;
在上述各实施方式的基础上,熔化极焊接采用MAG焊;对填充层的焊接参数包括:MAG焊的初始焊接电压U2为19-22V;目标焊接电压U3为23-26V;初始送丝速度Vf1为170-220in/min;过渡送丝速度Vf2为210-260in/min;目标送丝速度Vf3为390-420in/min;初始行走速度Vt1为115-130cm/min;过渡行走速度Vt2为40-48cm/min;目标行走速度Vt3为 37-45cm/min;初始摆动幅度A1为2-4.5mm;目标摆动幅度A2为1.5-4mm。
在上述各实施方式的基础上,非熔化极焊接采用TIG焊;对盖面层的焊接参数包括:
TIG焊的焊接电流I为200-280A;
在上述各实施方式的基础上,熔化极焊接采用MAG焊;对盖面层的焊接参数包括:MAG焊的初始焊接电压U2为19-22V;目标焊接电压U3为23-26V;初始送丝速度Vf1为140-190in/min;过渡送丝速度Vf2为180-230in/min;目标送丝速度Vf3为210-260in/min;初始行走速度Vt1为115-130cm/min;过渡行走速度Vt2为36-41cm/min;目标行走速度Vt3为33-60cm/min;初始摆动幅度A1为3.2-4.0mm;目标摆动幅度A2为2.7-3.5mm。
由于传统焊接过程中,工件处于低温状态,若直接使用熔化极焊接的话,则需要大电流和大送丝速度才能起弧,然而大电流和大送丝速度遇到低温工件,会导致起弧位置的熔池快速冷却凝固,形成的焊缝余高较高,在进行下一道焊接时则必须要将前一个起弧点打磨平滑。本发明所提供的管道全位置多层多道焊的免打磨焊接方法,热焊前采用非熔化极焊接将钝边12点位置两侧特定长度进行不填丝熔焊,解决了热焊层起弧点钝边的熔合问题,采用非熔化极焊接+熔化极焊接分段控制起弧的方式,先用非熔化极焊接,该过程没有焊丝填充,可以对工件起始位置加热,再使用熔化极焊接进行焊丝填充时,并采用缓升的送丝速度和电压,配合温度较高的工件,则熔池不会快速冷却,填充金属可以充分地铺开,形成的起弧位置更为平滑,以及通过非熔化极焊接的电弧力清理起弧位置焊道表面的氧化物,可有效解决现有技术中,必须通过机械打磨的方式解决热焊层起弧点未熔合以及填充过程起弧点余高过大和夹杂的问题,提高焊接质量和效率、改善工作环境、节省劳动力。
这里需要说明的是,本实施例中,非熔化极焊接优选为TIG焊,熔化极焊接优选为MAG焊;然而,除了采用非熔化极焊接的加热方式来熔焊钝边、加热起弧点和清理氧化物之外,能够实现免打磨分段控制起弧思路的其他加热方式,如激光焊、电子束焊、等离子弧焊、火焰加热、感应加 热等方式亦可,并不局限于本实施例所给出的方式;同样的,熔化极焊接可以是惰性气体保护焊接、活性气体保护焊接以及混合气体保护焊接,也可以选择其他形式的熔化极加热方式。进一步,被焊工件可以是管道,也可以是其他环形、球形工件;被焊材料可以是碳钢、不锈钢、铝合金等各种金属材料,可以根据实际的使用需求进行选择,在此不作进一步限定。
以上对本发明所提供的管道全位置多层多道焊的免打磨焊接方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (13)

  1. 一种管道全位置多层多道焊的免打磨焊接方法,其特征在于,包括以下步骤:
    步骤S1:焊前准备,定位对口,并进行根焊工序;
    步骤S2:对热焊层进行顺时针和逆时针起弧焊接,并在预先设定的搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;
    步骤S3:对填充层进行顺时针和逆时针起弧焊接,并在所述搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接;
    步骤S4:对盖面层进行顺时针和逆时针起弧焊接,并在所述搭接区域采用非熔化极焊接+熔化极焊接的方式分段控制起弧,然后采用熔化极焊接进行后续焊接。
  2. 根据权利要求1所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述焊接坡口为复合型坡口;
    所述步骤S1与所述步骤S2之间,还包括:
    步骤S1A:采用非熔化极焊接,将所述搭接区域进行不填丝熔焊,所述熔焊的长度为20-40mm;
    所述步骤S2包括:在所述步骤S1A中得到的熔焊区域内进行起弧焊接。
  3. 根据权利要求1所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述搭接区域的长度为100-300mm;所述步骤所述顺时针和逆时针起弧焊接中,顺时针焊接和逆时针焊接的焊接重叠层≥30mm。
  4. 根据权利要求1至3任意一项所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述步骤采用非熔化极焊接+熔化极焊接的方式分段控制起弧包括:
    采用非熔化极焊枪进行定位起弧燃烧,并控制所述非熔化极焊枪沿焊接方向移动设定距离;
    控制所述非熔化极焊枪熄弧,并抬起所述非熔化极焊枪;
    待所述非熔化极焊枪熄弧后,采用熔化极焊枪在设定时间内移动到所述非熔化极焊枪焊过的区域进行分段控制起弧。
  5. 根据权利要求4所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述设定距离为2-10mm,设定时间为0.3-15s。
  6. 根据权利要求4所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述步骤采用非熔化极焊接+熔化极焊接的方式分段控制起弧包括:
    起弧时,控制非熔化极焊枪进行定位焊接和移动焊接;所述非熔化极焊枪对应的定位焊接时间为0~t1,移动焊接时间为t1~t2;
    在t2时刻,控制所述非熔化极焊枪收弧停止焊接;
    在t2~t3时间段内,控制所述非熔化极焊枪停止焊接并收回所述非熔化极焊枪;
    控制所述熔化极焊枪以初始行走速度Vt1到达所述非熔化极焊枪的熔焊区域;
    在t3时刻,控制所述熔化极焊枪开始起弧;
    在t3~t5时间段内,所述熔化极焊枪进行起弧第一阶段,对应的焊接电压由空载电压U1变为初始焊接电压U2,过渡行走速度为Vt2,送丝速度由初始送丝速度Vf1缓升至过渡送丝速度Vf2,Vf2-Vf1为第一阶段丝速补偿;
    在t3~t4时间段内,所述熔化极焊枪不摆动;
    在t4时刻,所述熔化极焊枪以初始摆动幅度A1开始摆动;
    在t4~t7时间段内,所述熔化极焊枪缓降至目标摆动幅度A2;
    在t5~t8时间段内,所述熔化极焊枪进行起弧第二阶段,对应的焊接电压由初始焊接电压U2缓升至目标焊接电压U3,送丝速度由过渡送丝速度Vf2缓升至目标送丝速度Vf3;
    在t5~t6时间段内,所述熔化极焊枪的行走速度由过渡行走速度Vt2缓升至目标行走速度Vt3;在t8时刻,所述熔化极焊枪的焊接参数为目标焊接参数。
  7. 根据权利要求6所述的管道全位置多层多道焊的免打磨焊接方法, 其特征在于,所述非熔化极焊接采用TIG焊,对所述热焊层的焊接参数包括:
    所述TIG焊的焊接电流I为100-300A。
  8. 根据权利要求7所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述熔化极焊接采用MAG焊;
    对所述热焊层的焊接参数包括:
    所述MAG焊的初始焊接电压U2为15-26V;目标焊接电压U3为19-30V;初始送丝速度Vf1为180-210in/min;过渡送丝速度Vf2为220-250in/min;目标送丝速度Vf3为320-450in/min;初始行走速度Vt1为100-200cm/min;过渡行走速度Vt2为30-45cm/min;目标行走速度Vt3为33-70cm/min;初始摆动幅度A1为1-3.5mm;目标摆动幅度A2为1-3mm。
  9. 根据权利要求6所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述非熔化极焊接采用TIG焊;
    对填充层的焊接参数包括:
    所述TIG焊的焊接电流I为100-300A。
  10. 根据权利要求9所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述熔化极焊接采用MAG焊;
    对填充层的焊接参数包括:
    所述MAG焊的初始焊接电压U2为15-26V;目标焊接电压U3为19-30V;初始送丝速度Vf1为180-210in/min;过渡送丝速度Vf2为220-250in/min;目标送丝速度Vf3为320-450in/min;初始行走速度Vt1为100-200cm/min;过渡行走速度Vt2为40-50cm/min;目标行走速度Vt3为37-60cm/min;初始摆动幅度A1为2-5mm;目标摆动幅度A2为1.5-5mm。
  11. 根据权利要求6所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述非熔化极焊接采用TIG焊;
    对所述盖面层的焊接参数包括:
    所述TIG焊的焊接电流I为100-300A。
  12. 根据权利要求11所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述熔化极焊接采用MAG焊;
    对所述盖面层的焊接参数包括:
    所述MAG焊的初始焊接电压U2为15-26V;目标焊接电压U3为19-30V;初始送丝速度Vf1为180-210in/min;过渡送丝速度Vf2为220-250in/min;目标送丝速度Vf3为320-400in/min;初始行走速度Vt1为100-200cm/min;过渡行走速度Vt2为30-50cm/min;目标行走速度Vt3为40-70cm/min;初始摆动幅度A1为3-5mm;目标摆动幅度A2为2-6mm。
  13. 根据权利要求1至3任意一项所述的管道全位置多层多道焊的免打磨焊接方法,其特征在于,所述步骤S3还包括:
    在所述填充层的起弧前,通过所述非熔化极焊接的电弧力将起弧位置焊道表面的氧化物进行清理;
    所述步骤S4还包括:
    在所述盖面层的起弧前,通过所述非熔化极焊接的电弧力将起弧位置焊道表面的氧化物进行清理。
PCT/CN2022/116127 2022-02-24 2022-08-31 一种管道全位置多层多道焊的免打磨焊接方法 WO2023159904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210176531.0 2022-02-24
CN202210176531.0A CN114367724B (zh) 2022-02-24 2022-02-24 一种管道全位置多层多道焊的免打磨焊接方法

Publications (1)

Publication Number Publication Date
WO2023159904A1 true WO2023159904A1 (zh) 2023-08-31

Family

ID=81146358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116127 WO2023159904A1 (zh) 2022-02-24 2022-08-31 一种管道全位置多层多道焊的免打磨焊接方法

Country Status (2)

Country Link
CN (1) CN114367724B (zh)
WO (1) WO2023159904A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367724B (zh) * 2022-02-24 2023-07-25 成都熊谷加世电器有限公司 一种管道全位置多层多道焊的免打磨焊接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163574A (ja) * 1982-03-25 1983-09-28 Mitsubishi Electric Corp 溶接方法及び溶接装置
JPH058041A (ja) * 1991-07-03 1993-01-19 Ishikawajima Harima Heavy Ind Co Ltd 複合電極溶接方法及び装置
CN101301699A (zh) * 2007-11-23 2008-11-12 鞍钢建设集团有限公司 一种大口径铝合金管道无衬垫钨极氩弧单面焊双面成型方法
CN103551711A (zh) * 2013-11-14 2014-02-05 大连理工大学 一种中厚板对接单道单面焊双面成形高效焊接方法
CN104972210A (zh) * 2014-04-04 2015-10-14 三菱电机株式会社 压缩机容器的焊接方法和使用其的压缩机的制造方法
CN108356387A (zh) * 2018-05-11 2018-08-03 大连理工大学 一种基于双电弧振动的焊接熔池稳定性调控方法及其应用
CN114367724A (zh) * 2022-02-24 2022-04-19 成都熊谷加世电器有限公司 一种管道全位置多层多道焊的免打磨焊接方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291220A (en) * 1979-12-12 1981-09-22 Westinghouse Electric Corp. Method of welding utilizing both consumable and non-consumable electrodes
JP5586182B2 (ja) * 2009-07-14 2014-09-10 新日鉄住金エンジニアリング株式会社 突き合わせガスシールドアーク溶接継手および方法
CN103394815B (zh) * 2013-08-14 2016-01-20 哈尔滨工业大学 一种环缝激光-gma复合焊接的方法
DE102014002213B4 (de) * 2014-02-21 2016-01-14 MHIW b.v. Verfahren und Brennerkopf zum Metall-Schutzgas-Schweißen
CN108247228A (zh) * 2017-12-29 2018-07-06 兰州兰石重型装备股份有限公司 一种薄壁不锈钢智能高效焊接方法
CN108927589A (zh) * 2018-07-16 2018-12-04 中车青岛四方机车车辆股份有限公司 一种插入式管板堆焊方法
CN109623098A (zh) * 2018-12-23 2019-04-16 南京理工大学 一种mig-tig复合增材方法
CN112404660A (zh) * 2019-08-22 2021-02-26 高准有限公司 一种管道焊接的方法
CN110666294B (zh) * 2019-10-24 2021-07-13 青岛磊金德冲压件有限公司 一种轨道客车耐候钢枕梁复杂交叉结构的焊接方法
CN111496352A (zh) * 2020-04-28 2020-08-07 成都熊谷加世电器有限公司 一种坡地管道的焊接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163574A (ja) * 1982-03-25 1983-09-28 Mitsubishi Electric Corp 溶接方法及び溶接装置
JPH058041A (ja) * 1991-07-03 1993-01-19 Ishikawajima Harima Heavy Ind Co Ltd 複合電極溶接方法及び装置
CN101301699A (zh) * 2007-11-23 2008-11-12 鞍钢建设集团有限公司 一种大口径铝合金管道无衬垫钨极氩弧单面焊双面成型方法
CN103551711A (zh) * 2013-11-14 2014-02-05 大连理工大学 一种中厚板对接单道单面焊双面成形高效焊接方法
CN104972210A (zh) * 2014-04-04 2015-10-14 三菱电机株式会社 压缩机容器的焊接方法和使用其的压缩机的制造方法
CN108356387A (zh) * 2018-05-11 2018-08-03 大连理工大学 一种基于双电弧振动的焊接熔池稳定性调控方法及其应用
CN114367724A (zh) * 2022-02-24 2022-04-19 成都熊谷加世电器有限公司 一种管道全位置多层多道焊的免打磨焊接方法

Also Published As

Publication number Publication date
CN114367724A (zh) 2022-04-19
CN114367724B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN104625412B (zh) 一种铜合金激光‑冷金属过渡复合热源增材制造的方法
CN103737158B (zh) 一种基于热输入控制的双熔化极电弧焊枪及其焊接方法
CN105583523B (zh) 一种超声辅助激光深熔焊接板材的方法
WO2023159904A1 (zh) 一种管道全位置多层多道焊的免打磨焊接方法
WO2022012000A1 (zh) 一种全位置熔化极电弧-激光双面复合焊接工艺及其设备
CN105458470A (zh) 一种钛合金形件双电弧复合热源增材制造方法
JPH0642992B2 (ja) レールの自動溶接法
CN108406118B (zh) 激光-旋转电弧复合焊接系统及其复合焊接方法
CN105081527B (zh) 一种5%Ni钢中薄板立对接自动焊接工艺方法
CN104907696B (zh) 一种考虑焊接电流值的激光-电弧复合焊接方法
CN105081520A (zh) 全自动9%Ni钢中薄板立对接FCAW单面焊双面成型工艺方法
CN106392348A (zh) 基于激光双mig复合热源铝合金增材制造方法及装置
CN107442907A (zh) 一种基于深熔气保焊的钢桥梁u肋板双面焊接方法
CN103692060B (zh) 一种φ1.6实芯焊丝co2气体保护焊的焊接方法
CN104325230B (zh) 一种大型厂房箱型柱对接焊接方法
WO2011134199A1 (zh) 焊接坡口搭接方法、双丝焊接方法及其系统
CN110238492A (zh) 一种管道垂直固定口全位置埋弧焊接工艺
CN107252971A (zh) 镀锌板激光叠焊方法
CN106271140A (zh) 一种等离子‑mag复合焊接方法
CN111230265A (zh) 铝合金衬垫单面成型焊接方法
CN113070553B (zh) 碳钢管道药芯焊丝全位置机动焊mag打底焊接工艺
CN108098110A (zh) 一种坡地管道的焊接方法
RU2798038C1 (ru) Способ всепозиционной многослойной многопроходной сварки трубопровода без шлифования
CN201380358Y (zh) 水平圆形环焊缝埋弧自动焊接装置
US8881404B1 (en) Method of manufacturing a seamless metal clad polystyrene door

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928170

Country of ref document: EP

Kind code of ref document: A1