WO2023155573A1 - 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用 - Google Patents

一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023155573A1
WO2023155573A1 PCT/CN2022/138883 CN2022138883W WO2023155573A1 WO 2023155573 A1 WO2023155573 A1 WO 2023155573A1 CN 2022138883 W CN2022138883 W CN 2022138883W WO 2023155573 A1 WO2023155573 A1 WO 2023155573A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
polypropylene composite
temperature range
polypropylene
strong acid
Prior art date
Application number
PCT/CN2022/138883
Other languages
English (en)
French (fr)
Inventor
李栋栋
陈平绪
叶南飚
杨霄云
陆湛泉
王爱东
赵治国
姜向新
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2023155573A1 publication Critical patent/WO2023155573A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of polymer materials, and in particular relates to a polypropylene composite material with wide temperature range, low shrinkage, strong acid electrolyte resistance and its preparation method and application.
  • the flow battery realizes the conversion of electrical energy and chemical energy through the reversible redox reaction of the positive and negative electrolytes.
  • the electrolyte flows directly in the flow channel of the plate and frame, so the frame material needs to have excellent electrolyte resistance to ensure the use of the battery.
  • the process has a high energy density; at the same time, it is easy to have a large heat change and a large temperature difference change in the external environment during the redox reaction process of charging and discharging the battery (for example, the temperature range between summer and winter in northern China is large, and the temperature is between -30 ⁇ 40°C), therefore, the frame material of the battery is required to have a low coefficient of linear expansion, so as to prevent excessive dimensional changes during temperature changes and leakage.
  • Polypropylene (PP for short) has the advantages of good mechanical properties, easy molding and processing, and low cost, and is one of the four general-purpose materials.
  • Polypropylene resin is a semi-crystalline thermoplastic with high impact resistance, strong mechanical properties, excellent performance in resistance to various organic solvents and acid and alkali corrosion, as well as good electrical properties and high-frequency insulation , and can be widely used in the fields of automotive interiors and batteries.
  • ordinary polypropylene materials cannot meet the requirements of low shrinkage and deformation in a wide temperature range, and the existing filled modified polypropylene cannot meet the requirements of maintaining liquid flow in direct contact with strong acid electrolytes.
  • the battery has high energy efficiency, so polypropylene needs to be modified to improve the electrolyte resistance and low heat shrinkage of polypropylene.
  • the linear expansion coefficient of polypropylene is usually reduced by adding inorganic fillers such as talcum powder and wollastonite (such as the patent "a low linear expansion coefficient polypropylene compound and its preparation method”); by adding Sheet-like inorganic fillers (such as the patent "a low-temperature super-tough electrolyte-resistant polypropylene modified material and its preparation method") to improve the electrolyte-resistant performance of polypropylene, but there is no report that it has a low linear expansion coefficient at the same time
  • polypropylene materials with high electrolyte resistance performance, and the existing polypropylene materials can maintain a low linear expansion coefficient and high electrolyte resistance in a narrow temperature range. In different temperature environments, different materials need to be selected. Modified polypropylene materials increase the cost of manufacturing research and development.
  • the purpose of the present invention is to fill in the gap that there is no polypropylene material with both low linear expansion coefficient and electrolyte resistance performance, and at the same time further broaden the use temperature range of polypropylene material, so that it can be used in a wider temperature range. It has a low linear expansion coefficient and strong acid electrolyte resistance, and provides a polypropylene composite material with low shrinkage in a wide temperature range and strong acid electrolyte resistance.
  • Another object of the present invention is to provide a preparation method of the polypropylene composite material with low shrinkage in a wide temperature range and strong acid electrolyte resistance.
  • Another object of the present invention is to provide the application of the wide temperature range, low shrinkage, and strong acid electrolyte resistant polypropylene composite material in the preparation of a flow battery.
  • the present invention adopts the following technical solutions:
  • a polypropylene composite material with low shrinkage in a wide temperature range and strong acid electrolyte resistance comprising components calculated in parts by weight as follows:
  • the flaky inorganic filler is talc powder with a sheet index ⁇ 2 and/or mica powder with a diameter-thickness ratio ⁇ 80; the branched end of the hyperbranched polymer is a hydroxyl group, and the number-average molecular weight is 2500-3000 g/ mol.
  • the number average molecular weight of the hyperbranched polymer in the present invention is obtained by GPC testing.
  • a thinner flaky inorganic filler is selected.
  • the addition of this flaky inorganic filler can be arranged in an orderly manner along the flow direction of the polypropylene melt during processing, increasing the barrier performance of the material and preventing electrolysis.
  • Liquid infiltration; on the other hand, the flake-shaped inorganic filler can also act as a nucleating agent in the polypropylene matrix, further improving the crystallinity of the polypropylene resin matrix, thereby improving the rigidity of the polypropylene material.
  • the strong acid electrolyte resistance performance of the polypropylene material can be significantly improved and the linear expansion coefficient can be reduced.
  • the present inventors have discovered creatively that if adding a small amount of hyperbranched polymers whose branched ends are hydroxyl groups and within a specific molecular weight range, the dispersibility of the sheet-like inorganic filler in the crystalline polypropylene resin matrix can be significantly improved, enabling A larger amount of flake inorganic filler is added to the acrylic resin matrix.
  • the branched chain of the hyperbranched polymer can be firmly inserted in the polypropylene resin matrix, and its terminal hydroxyl group has a strong polarity, which can have a strong interaction with the polar group on the surface of the sheet-like inorganic filler. Force, the sheet-like inorganic filler is adsorbed to the end of the hyperbranched polymer, and then dispersed evenly in the polypropylene matrix resin.
  • the present invention actually improves the crystallinity of polypropylene by adding thinner flaky inorganic fillers (the larger the sheet index of talc powder and the higher the thickness-to-diameter ratio of mica powder, the thinner the filler), the flaky Under the synergistic effect of inorganic fillers and crystalline polypropylene, it can improve the resistance to strong acid electrolyte and linear expansion coefficient of polypropylene materials; in addition, by adding specific hyperbranched polymers, the amount of ultra-thin flake inorganic fillers can be increased , broaden the heat resistance of polypropylene material, so that it has a lower linear expansion coefficient and strong acid electrolyte resistance in a wider temperature range.
  • the inventors of the present invention also found through further research that, for the molecular weight of the hyperbranched polymer, if the molecular weight of the selected hyperbranched resin is too small, the phenomenon of precipitation is prone to occur, thereby reducing the strong acid electrolyte performance of the polypropylene composite material; If the molecular weight of the selected hyperbranched resin is too large, its dispersion in the polypropylene matrix will become poor, and the interface properties between the sheet-like inorganic filler and the polymer matrix cannot be effectively improved, thereby affecting the linear expansion of the polypropylene composite material. coefficient and resistance to strong acid electrolyte performance. Therefore, only the hyperbranched polymer with a molecular weight within a specific range selected by the present invention can improve the dispersibility of the sheet-like inorganic filler in the polypropylene resin matrix.
  • melt flow rate of the PP resin at 230° C. under a load of 2.16 kg is 10-50 g/10 min.
  • the melt flow rate of the PP resin is detected according to the ISO 1133-1:2011 standard method.
  • the lamellar index of the talc powder is 3-6.
  • the lamellar index of the talcum powder is calculated by using different particle size distribution test methods: the D50 data of the laser particle size analyzer method and the sedimentation method according to (D50 laser method-D50 sedimentation method)/D50 sedimentation method.
  • the mica powder has an aspect ratio of 90-100.
  • Mica powder is generally in the form of flakes, and the diameter-thickness ratio is a parameter describing the properties of mica powder in the field, which refers to the ratio of the diameter of mica powder to its thickness.
  • the flaky inorganic filler in the present invention can also be the flaky inorganic filler after acid treatment, and the acid treatment can remove the flaky inorganic filler that can be mixed with the strong acid electrolyte. Reactive impurities, thereby ensuring the number of effective ions in the electrolyte, and ensuring the energy conversion efficiency of the battery during charging and discharging.
  • the acid is one or a combination of hydrochloric acid, sulfuric acid or nitric acid.
  • the hyperbranched polymer (HBP for short) is a hydroxyl-terminated polyol.
  • the crystallinity of polypropylene in the polypropylene composite material is 45-55%, and the crystallinity is measured according to the method in GB/T 19466.3-2004.
  • the compatibilizer is polypropylene grafted maleic anhydride. It should be noted that conventional commercially available polypropylene grafted maleic anhydride can be used in the present invention.
  • the other additives include but not limited to one or a combination of antioxidants or lubricants.
  • the antioxidant is one or a combination of hindered phenolic antioxidants and/or phosphite antioxidants.
  • the lubricant is one or a combination of metal soap lubricants, stearic acid complex ester lubricants or amide lubricants.
  • the polypropylene composite material with low shrinkage in a wide temperature range and strong acid electrolyte resistance includes components calculated in parts by weight as follows:
  • the preparation method of the polypropylene composite material with low shrinkage in the wide temperature range and strong acid electrolyte resistance comprises the following steps:
  • the mixing is performed in a high-speed mixer, and the frequency of the high-speed mixer is 50 Hz.
  • the extrusion is performed in a twin-screw extruder having a length-to-diameter ratio (L/D) of 48:1.
  • L/D length-to-diameter ratio
  • the present invention improves the crystallinity of polypropylene by adding ultra-thin flaky inorganic fillers, and the synergistic effect of flaky inorganic fillers and crystalline polypropylene improves the rigidity of polypropylene materials; in addition, by adding specific hyperbranched polymers, the The addition of ultra-thin flaky inorganic fillers broadens the heat-resistant temperature of polypropylene materials (heat distortion temperature above 80°C), making it linear expansion coefficient in a wider temperature range (-30 to 80°C). ⁇ 110 ⁇ m/(m ⁇ °C), after soaking in the flow battery electrolyte for 1000h at 70°C, the tensile strength retention rate of the material is above 90%, and can be as high as 98.2%.
  • the present invention will be further described below in conjunction with specific examples, but the examples do not limit the present invention in any form.
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
  • the reagents and materials used in the present invention are commercially available.
  • PP-1 PP HC9012D, with a melt flow rate of 10g/10min at 230°C and a load of 2.16kg, purchased from PetroChina Zhanjiang Dongxing Petrochemical Co., Ltd.;
  • PP-2 PP H9018, with a melt flow rate of 50g/10min at 230°C and a load of 2.16kg, purchased from Lanzhou Petrochemical;
  • Talc powder-1 HTPUltra5L, sheet index is 2, purchased from Liaoning Aihai Yimi Mining Co., Ltd.;
  • Talc powder-2 HAR 3G 77L, with a sheet index of 3, purchased from Shanghai Huazhongrong Industry and Trade Co., Ltd.;
  • Talc-3 HAR T84, with a sheet index of 6, purchased from Shanghai Huazhongrong Industry and Trade Co., Ltd.;
  • AH-1250N6 sheet index is 1.5, purchased from Guangxi Longsheng Huamei Talc Development Co., Ltd.;
  • Mica powder-1 A-41S, the ratio of diameter to thickness is 80, purchased from YAMAGUCHI;
  • Mica powder-2 SYA-21RS, the ratio of diameter to thickness is 90, purchased from YAMAGUCHI;
  • Mica powder-3 B-82, the ratio of diameter to thickness is 100, purchased from YAMAGUCHI;
  • Mica powder-4 A-21S, the ratio of diameter to thickness is 70, purchased from YAMAGUCHI;
  • HBP-1 hydroxyl-terminated polyol hyperbranched polymer, CYD-P214, with a number average molecular weight of 2500g/mol, purchased from Weihai Chenyuan Molecular New Materials Co., Ltd.;
  • HBP-2 hydroxyl-terminated polyol hyperbranched polymer, CYD-P218, with a number average molecular weight of 3000g/mol, purchased from Weihai Chenyuan Molecular New Materials Co., Ltd.;
  • HBP-3 hydroxyl-terminated polyol hyperbranched polymer, HBP-158, with a number average molecular weight of 2800g/mol, purchased from Wuhan Hyperbranched Resin Technology Co., Ltd.;
  • HBP-4 hydroxyl-terminated polyol hyperbranched polymer, Hyper H102, with a number average molecular weight of 1100g/mol, purchased from Wuhan Hyperbranched Resin Technology Co., Ltd.;
  • HBP-5 hydroxyl-terminated polyol hyperbranched polymer, Hyper H104, with a number average molecular weight of 5400g/mol, purchased from Wuhan Hyperbranched Resin Technology Co., Ltd.;
  • HBP-6 Epoxy-terminated hyperbranched polymer, Hyper E102, with a number average molecular weight of 3000g/mol, purchased from Wuhan Hyperbranched Resin Technology Co., Ltd.;
  • MAH-g-PP PC-3, purchased from Foshan Nanhai Baichen Polymer New Material Co., Ltd.;
  • Hindered phenolic antioxidant 1010 commercially available
  • Phosphite antioxidant 168 commercially available
  • Amide lubricant ethylene bis stearamide, commercially available
  • This example provides a series of polypropylene composite materials with wide temperature range, low shrinkage and strong acid electrolyte resistance, which are prepared according to the formulas in Tables 1-2 and the preparation method including the following steps:
  • Table 1 The content of each component in the wide temperature range low shrinkage and strong acid electrolyte polypropylene composite material of Examples 1-5 (parts by weight)
  • Table 2 The content of each component in the wide temperature range low shrinkage and strong acid electrolyte polypropylene composite material of Examples 6-13 (parts by weight)
  • This comparative example provides a polypropylene composite material, the formula is different from that of Example 2 in that the talcum powder is replaced by talcum powder-4 with a lamellar index ⁇ 2.
  • This comparative example provides a polypropylene composite material, the formula is different from that of Example 2 in that the talcum powder is replaced by mica powder-4 with an aspect ratio of ⁇ 80.
  • This comparative example provides a polypropylene composite material, the formula is different from that of Example 2 in that the hyperbranched polymer is replaced by HBP-4 with a small number average molecular weight.
  • This comparative example provides a polypropylene composite material, the formula is different from that of Example 2 in that the hyperbranched polymer is replaced by HBP-5 with a large number average molecular weight.
  • This comparative example provides a polypropylene composite material, the formula is different from that of Example 2 in that the hyperbranched polymer is replaced by epoxy-terminated hyperbranched polymer HBP-6.
  • This comparative example provides a polypropylene composite material, the difference between the formula and Example 2 is that no hyperbranched polymer is added.
  • Crystallinity measured according to GB/T 19466.3-2004;
  • Linear expansion coefficient refer to the method in GB/T 1036-1989 standard to test the linear expansion coefficient of polypropylene composite materials in the range of -30°C to 80°C, and record the maximum linear expansion coefficient;
  • Heat distortion temperature Tested according to GB/T 1634.2-2004, the test conditions are: load 1.8MPa, lay flat;
  • Tensile strength soak the polypropylene composite material sample in a strong acid electrolyte (2mol/L hydrochloric acid solution) at a temperature of 70°C, soak for 1000h, and test the polypropylene composite material in accordance with GB/T 1040.2-2006 Tensile strength before and after immersion in electrolyte.
  • the crystallinity of polypropylene is higher than 45%, and can be as high as 52.4%; in the temperature range of -30 to 80°C
  • the linear expansion coefficients in the interior are all ⁇ 110 ⁇ m/(m ⁇ °C), which can be as low as 98.5 ⁇ m/(m ⁇ °C); after soaking in hydrochloric acid electrolyte at 70°C for 1000h, the tensile strength retention rate of the material is above 90%, which can be As high as 98.2% (embodiment 11), it shows that it has good resistance to strong acid electrolyte.
  • Example 2 and Example 4 show that the PP resin matrix within the range of the melt index selected by the present invention can be used in the present invention, and the prepared polypropylene composites have a lower coefficient of linear expansion and excellent resistance to Strong acid electrolyte performance.
  • Example 2 The results of Example 2, Examples 6-11, and Comparative Examples 1-2 show that the ultra-thin sheet-like inorganic filler selected in the present invention can improve the crystallinity of polypropylene, further improve the rigidity of polypropylene composite materials, and then improve Polypropylene composites have strong acid electrolyte resistance and low linear expansion coefficient in a wide temperature range.
  • the flaky inorganic fillers used in Comparative Examples 1 and 2 are relatively thick. In the prepared polypropylene composite materials, the crystallinity of polypropylene is low and the rigidity is reduced, so the electrolyte resistance performance is significantly deteriorated.
  • Example 2 The results of Example 2, Examples 12-13, and Comparative Examples 3-4 show that hyperbranched polymers with a molecular weight within a specific range can significantly improve the relationship between the sheet-like inorganic filler and the polypropylene resin matrix in the polypropylene composite material. Compatibility, and then improve the dispersion of flake inorganic fillers in the polypropylene resin matrix, and improve the performance of polypropylene materials.
  • Comparative Example 3 a hyperbranched polymer with a smaller molecular weight was selected, and it was soaked in the electrolyte for 1000h, and a precipitation phenomenon occurred; in Comparative Example 4, a hyperbranched polymer with a larger molecular weight was selected. Due to the poor dispersibility, the prepared polypropylene composite The material's resistance to strong acid electrolyte is significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用。本发明的聚丙烯复合材料,包括按照如下重量份计算的组分:60~75份PP树脂,15~40份片状无机填料,3~5份相容剂,0.2~1份超支化聚合物,0~1份其它添加剂,其中,所述片状无机填料为片层指数≥2的滑石粉和/或径厚比≥80的云母粉;所述超支化聚合物的支链末端为羟基、数均分子量为2500~3000g/mol。本发明的聚丙烯复合材料在更宽的温度范围内(-30~80℃),保持低线性膨胀系数(<110μm/(m·℃)),70℃下在液流电池电解液中浸泡1000h后,材料的拉伸强度保持率在90%以上,可高达98.2%。

Description

一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用 技术领域
本发明属于高分子材料技术领域,具体涉及一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用。
背景技术
伴随着人类经济社会的飞速发展,能源及环境问题也随之而来。近年来能源与环境问题也越来越受到国际社会关注。尤其在2020年中国政府在联合国大会上提出二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和,而发展清洁能源是实现“碳中和”的重要一环。但是,清洁能源中相当一部分具有不稳定性,需要与储能设备结合才能并入电网。液流电池作为一种新型蓄电储能设备,不仅可以用于太阳能和风能发电过程中的储能,还可以用于电网调峰,提高电网的稳定性。
液流电池通过正负极电解液的可逆氧化还原反应实现电能和化学能的转化,其电解液直接在板框流道中流动,因而框体材料需要极其优异的耐电解液性能,以保证电池使用过程中具有较高的能量密度;同时,在电池充放电发生氧化还原反应的过程中容易出现较大的热量变化及外部环境较大的温差变化(例如中国北方夏天跟冬天温差范围大,温度在-30~40℃),因此要求电池的框体材料具有低的线性膨胀系数,防止在温度变化过程中尺寸变化过大而出现漏液的现象。
聚丙烯(Polypropylene,简称PP)具有良好的力学性能、易成型加工以及低成本等优点,是四大通用材料之一。聚丙烯树脂是一种半结晶的热塑性塑料,具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀等优异的性能,同时具有良好的电性能及高频绝缘性,可广泛应用于汽车内饰、电池领域中。但是当应用到液流电池中时,普通聚丙烯材料无法满足宽温域范围内低收缩变形的要求,而现有填充改性的聚丙烯无法满足在强酸性电解液的直接接触中保持液流电池高能效,因此需要对聚丙烯进行改性,来改善聚丙烯的耐电解液性能和低热收缩性能。
现有的改性中,通常通过添加滑石粉、硅灰石(如专利《一种低线性膨胀系 数聚丙烯复合物及其制备方法》)等无机填料来降低聚丙烯的线性膨胀系数;通过添加片状无机填料(如专利《一种低温超韧的耐电解液聚丙烯改性材料及其制备方法》)来提高聚丙烯的耐电解液性能,但是并未见有报道同时具有低线性膨胀系数和高耐电解液性能的聚丙烯材料,且现有的聚丙烯材料的能够保持在低线性膨胀系数和高耐电解液性能的温度范围较窄,在不同的温度环境中,还需要分别选用不同改性的聚丙烯材料,增加了制造研发成本。
因此,需要开发一种能够在更大温差范围内使用的同时具有低线性膨胀系数和高耐强酸性电解液性能的聚丙烯复合材料。
发明内容
本发明的目的在于,为了填补未见有同时具有低线性膨胀系数和耐电解液性能的聚丙烯材料的空白,同时进一步拓宽聚丙烯材料的使用温度范围,使其在更宽的温度范围内均具有较低的线性膨胀系数和耐强酸性电解液性能,提供一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料。
本发明的另一目的在于,提供所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料的制备方法。
本发明的另一目的在于,提供所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料在制备液流电池中的应用。
为实现上述目的,本发明采用如下技术方案:
一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料,包括按照如下重量份计算的组分:
Figure PCTCN2022138883-appb-000001
其中,所述片状无机填料为片层指数≥2的滑石粉和/或径厚比≥80的云母粉;所述超支化聚合物的支链末端为羟基、数均分子量为2500~3000g/mol。
需要说明的是,本发明中超支化聚合物的数均分子量按照GPC法测试得到。
本发明中,选用了较薄的片状无机填料,这种片状无机填料的添加,一方面在加工过程中可以随着聚丙烯熔体流动方向有序排列,增加材料的阻隔性能,防 止电解液浸润;另一方面,薄片状无机填料在聚丙烯基体中还能够起到成核剂的作用,进一步提高聚丙烯树脂基体的结晶度,从而提高聚丙烯材料的刚性。在片状无机填料和较高结晶的聚丙烯基体的共同作用下,能够显著提高聚丙烯材料的耐强酸电解液性能和降低线性膨胀系数。
另外,若要拓宽聚丙烯材料的耐热性能,需要添加大量的片状无机填料,但是高径厚比片状无机填料之间具有较大的界面相互作用力,使其在聚丙烯树脂基体中的分散性变差,大量添加后容易出现团聚的现象,进而会降低聚丙烯材料的耐强酸电解液性能和耐收缩性能。本发明人创造性的发现,如添加少量支链末端为羟基、且在特定分子量范围内的超支化聚合物,可以显著提高片状无机填料在结晶聚丙烯树脂基体中的分散性,使能够在聚丙烯树脂基体中添加更大量的片状无机填料。这是因为超支化聚合物的支链能够牢固的穿插在聚丙烯树脂基体中,而其端羟基又具有很强的极性,能够与片状无机填料表面的极性基团具有较强的相互作用力,将片状无机填料吸附到超支化聚合物末端,进而使其均匀分散在聚丙烯基体树脂中。
因此,本发明其实是通过添加较薄的片状无机填料(滑石粉的片层指数越大、云母粉的厚径比越高,表示填料越薄),提高了聚丙烯的结晶度,片状无机填料与结晶聚丙烯协同作用下,可以改善聚丙烯材料的耐强酸性电解液性能和线性膨胀系数;另外还通过加入特定的超支化聚合物,提高了超薄的片状无机填料的添加量,拓宽了聚丙烯材料的耐热性能,使其在更宽的温度范围内均具有较低的线性膨胀系数和耐强酸性电解液性能。
本发明的发明人通过进一步研究还发现,对于超支化聚合物的分子量,若选用的超支化树脂的分子量太小,容易出现析出的现象,进而降低聚丙烯复合材料的耐强酸性电解液性能;若选用的超支化树脂的分子量太大,会导致其在聚丙烯基体中的分散性变差,无法有效改善片状无机填料与聚合物基体间的界面性能,进而影响聚丙烯复合材料的线性膨胀系数和耐强酸性电解液性能。因此,只有在本发明选用的特定范围内分子量的超支化聚合物,才能够提高片状无机填料在聚丙烯树脂基体中的分散性。
需要说明的是,常规市售的PP(聚丙烯)树脂均可用于本发明中,可选地,所述PP树脂在230℃、2.16kg载荷下的熔体流动速率为10~50g/10min。
本发明中,PP树脂的熔体流动速率按照ISO 1133-1:2011标准方法检测得到。
优选地,所述滑石粉的片层指数为3~6。
本发明中,滑石粉的片层指数利用不同粒径分布测试方法:激光粒度仪法和沉降法的D50数据按照(D50激光法-D50沉降法)/D50沉降法计算得到。
优选地,所述云母粉的径厚比为90~100。
云母粉一般为片状,径厚比是本领域描述云母粉性质的一个参数,其指云母粉的直径与其厚度之比。
为了进一步提高聚丙烯复合材料的耐强酸性电解液性能,本发明中的片状无机填料还可以为酸处理后的片状无机填料,酸处理可以去除片状无机填料中可与强酸性电解液反应的杂质,进而保证电解液中有效离子的数量,确保电池充放电过程中的能量转换效率。
可选地,所述酸为盐酸、硫酸或硝酸中的一种或几种的组合。
可选地,所述超支化聚合物(Hyperbranched Polymer,简称HBP)为端羟基多元醇。
优选地,所述聚丙烯复合材料中聚丙烯的结晶度为45~55%,结晶度按照GB/T 19466.3-2004中的方法测定得到。
可选地,所述相容剂为聚丙烯接枝马来酸酐。需要说明的是,常规市售的聚丙烯接枝马来酸酐均可用于本发明中。
需要说明的是,所述其它添加剂包括但不限于抗氧剂或润滑剂中的一种或几种的组合。
可选地,所述抗氧剂为受阻酚类抗氧剂和/或亚磷酸酯类抗氧剂中的一种或几种的组合。
可选地,所述润滑剂为金属皂类润滑剂、硬脂酸复合酯类润滑剂或酰胺类润滑剂中的一种或几种的组合。
优选地,所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,包括按照如下重量份计算的组分:
Figure PCTCN2022138883-appb-000002
所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料的制备方法,包括如下步骤:
将PP树脂、片状无机填料、相容剂、超支化聚合物和加工助剂按比例混合均匀后,在190~220℃、450~600rpm条件下挤出、造粒得到。
优选地,所述混合在高速混合机中进行,所述高速混合机的频率为50Hz。
优选地,所述挤出在双螺杆挤出机中进行,所述双螺杆挤出机的长径比(L/D)为48:1。
上述宽温域低收缩、耐强酸性电解液聚丙烯复合材料在制备液流电池中的应用也在本发明的保护范围之内。
与现有技术相比,本发明的有益效果是:
本发明通过添加超薄的片状无机填料,提高了聚丙烯的结晶度,片状无机填料与结晶聚丙烯协同作用提高聚丙烯材料的刚性;另外还通过加入特定的超支化聚合物,提高了超薄的片状无机填料的添加量,拓宽了聚丙烯材料的耐热温度(热变形温度在80℃以上),使其在更宽的温度范围内(-30~80℃),线性膨胀系数<110μm/(m·℃),70℃下在液流电池电解液中浸泡1000h后,材料的拉伸强度保持率在90%以上,可高达98.2%。
具体实施方式
以下结合具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,本发明所用试剂和材料均为市购。
本发明的实施例采用以下原料:
PP树脂:
PP-1:PP HC9012D,230℃、2.16kg载荷下的熔体流动速率为10g/10min,购自中国石油湛江东兴石油化工有限公司;
PP-2:PP H9018,230℃、2.16kg载荷下的熔体流动速率为50g/10min,购自兰州石化;
片状无机填料:
滑石粉-1:HTPUltra5L,片层指数为2,购自辽宁艾海意米矿业有限公司;
滑石粉-2:HAR 3G 77L,片层指数为3,购自上海华仲荣工贸有限公司;
滑石粉-3:HAR T84,片层指数为6,购自上海华仲荣工贸有限公司;
滑石粉-4:AH-1250N6,片层指数为1.5,购自广西龙胜华美滑石开发有限公司;
云母粉-1:A-41S,径厚比为80,购自YAMAGUCHI;
云母粉-2:SYA-21RS,径厚比为90,购自YAMAGUCHI;
云母粉-3:B-82,径厚比为100,购自YAMAGUCHI;
云母粉-4:A-21S,径厚比为70,购自YAMAGUCHI;
超支化聚合物:
HBP-1:端羟基多元醇超支化聚合物,CYD-P214,数均分子量为2500g/mol,购自威海晨源分子新材料有限公司;
HBP-2:端羟基多元醇超支化聚合物,CYD-P218,数均分子量为3000g/mol,购自威海晨源分子新材料有限公司;
HBP-3:端羟基多元醇超支化聚合物,HBP-158,数均分子量为2800g/mol,购自武汉超支化树脂科技有限公司;
HBP-4:端羟基多元醇超支化聚合物,Hyper H102,数均分子量为1100g/mol,购自武汉超支化树脂科技有限公司;
HBP-5:端羟基多元醇超支化聚合物,Hyper H104,数均分子量为5400g/mol,购自武汉超支化树脂科技有限公司;
HBP-6:端环氧基超支化聚合物,Hyper E102,数均分子量为3000g/mol,购自武汉超支化树脂科技有限公司;
相容剂:
MAH-g-PP:PC-3,购自佛山南海柏晨高分子新材料有限公司;
其它添加剂:
受阻酚类抗氧剂1010:市售;
亚磷酸酯类抗氧剂168:市售;
酰胺类润滑剂:乙撑双硬脂酰胺,市售;
需要说明的是,本发明中,各实施例和对比例中使用其它添加剂相同。
实施例1~13
本实施例提供一系列宽温域低收缩、耐强酸性电解液聚丙烯复合材料,按照表1~2中的配方,按照包括如下步骤的制备方法制备得到:
将PP树脂、片状无机填料、相容剂、超支化聚合物和加工助剂按表1~2中的比例加入到高速混合机中混合5min,高速混合机的频率为50Hz,混合均匀后得到混合物;然后添加至双螺杆挤出机中(螺杆长径比L/D=48:1),在190~220℃(双螺杆挤出机从喂料段到机头的十个区的温度依次为190℃、200℃、205℃、210℃、210℃、220℃、220℃、210℃、210℃、205℃)、450~600rpm转速下熔融挤出、造粒得到。
表1 实施例1~5的宽温域低收缩、耐强酸性电解液聚丙烯复合材料中各组分含量(重量份)
Figure PCTCN2022138883-appb-000003
表2 实施例6~13的宽温域低收缩、耐强酸性电解液聚丙烯复合材料中各组分含量(重量份)
Figure PCTCN2022138883-appb-000004
注:表中“1*”表示经酸处理后的滑石粉-1,所述酸处理具体步骤为:将滑石粉-1浸泡到2mol/L的盐酸中反应直至上清液中游离元素含量(上清液中游离元素的含量用ICP-AES 法进行全元素检测测定得到)低于100ppm后,过滤,收集到滑石粉沉淀,用清水洗涤并烘干。
对比例1
本对比例提供一种聚丙烯复合材料,配方与实施例2的不同之处在于,将滑石粉替换为片层指数<2的滑石粉-4。
对比例2
本对比例提供一种聚丙烯复合材料,配方与实施例2的不同之处在于,将滑石粉替换为径厚比<80的云母粉-4。
对比例3
本对比例提供一种聚丙烯复合材料,配方与实施例2的不同之处在于,将超支化聚合物替换为数均分子量小的HBP-4。
对比例4
本对比例提供一种聚丙烯复合材料,配方与实施例2的不同之处在于,将超支化聚合物替换为数均分子量大的HBP-5。
对比例5
本对比例提供一种聚丙烯复合材料,配方与实施例2的不同之处在于,将超支化聚合物替换为端环氧基超支化聚合物HBP-6。
对比例6
本对比例提供一种聚丙烯复合材料,配方与实施例2的不同之处在于,未添加超支化聚合物。
性能测试
对上述实施例和对比例制备得到的聚丙烯复合材料注塑得到相应的测试样条,并对其性能进行测试,具体测试项目及方法如下:
1.结晶度:按照GB/T 19466.3-2004进行测定;
2.线性膨胀系数:参照GB/T 1036-1989标准中的方法测试聚丙烯复合材料在-30℃~80℃范围内的线性膨胀系数,并记录最大线性膨胀系数;
3.热变形温度:按照GB/T 1634.2-2004进行测试,测试条件为:载荷1.8MPa,平放;
4.拉伸强度:将聚丙烯复合材料样条浸泡至温度为70℃的强酸性电解液(2mol/L的盐酸溶液)中,浸泡1000h,按照GB/T 1040.2-2006测试聚丙烯复合 材料在电解液中浸泡前后的拉伸强度。
测试结果详见表3。
表3 性能测试结果
Figure PCTCN2022138883-appb-000005
从表3中可以看出:
本发明各实施例中制备得到的宽温域低收缩、耐强酸性电解液聚丙烯复合材料中,聚丙烯的结晶度均高于45%,可高达52.4%;在-30~80℃温度范围内的线性膨胀系数均<110μm/(mμ℃),可低至98.5μm/(mμ℃);70℃下在盐酸电解液中浸 泡1000h后,材料的拉伸强度保持率在90%以上,可高达98.2%(实施例11),表明其具有很好的耐强酸性电解液性能。
实施例2、实施例4的结果表明,本发明选择的熔指范围内的PP树脂基体均可用于本发明中,且制备得到的聚丙烯复合材料均具有较低的线性膨胀系数和优异的耐强酸性电解液性能。
实施例2、实施例6~11、对比例1~2的结果表明,本发明所选用的超薄的片状无机填料可以提高聚丙烯的结晶度,进一步提高聚丙烯复合材料的刚性,进而提升聚丙烯复合材料的耐强酸性电解液性能和较宽温度范围内的低线性膨胀系数。对比例1和2选用的片状无机填料较厚,制备得到的聚丙烯复合材料中,聚丙烯的结晶度较低,刚度下降,所以耐电解液性能显著变差。
实施例2、实施例12~13、对比例3~4的结果表明,在特定范围内的分子量的超支化聚合物能够显著提高聚丙烯复合材料中片状无机填料和聚丙烯树脂基体之间的相容性,进而提高片状无机填料在聚丙烯树脂基体中的分散性,提高聚丙烯材料的性能。对比例3选用分子量较小的超支化聚合物,在电解液中浸泡1000h,出现析出现象;对比例4选用分子量较大的超支化聚合物,由于分散性变差,导致制备得到的聚丙烯复合材料的耐强酸性电解液性能显著下降。
对比例5选用的是端环氧基超支化聚合物、对比例6并未添加超支化聚合物,导致制备得到的聚丙烯复合材料的耐强酸性电解液性能显著下降。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,包括按照如下重量份计算的组分:
    Figure PCTCN2022138883-appb-100001
    其中,所述片状无机填料为片层指数≥2的滑石粉和/或径厚比≥80的云母粉;所述超支化聚合物的支链末端为羟基、数均分子量为2500~3000g/mol。
  2. 根据权利要求1所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,所述滑石粉的片层指数为3~6。
  3. 根据权利要求1所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,所述云母粉的径厚比为90~100。
  4. 根据权利要求1所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,所述片状无机填料中为酸处理后的片状无机填料,所述酸为盐酸或硫酸的一种或几种的组合。
  5. 根据权利要求1所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,所述超支化聚合物为端羟基多元醇。
  6. 根据权利要求1所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,所述聚丙烯复合材料中聚丙烯的结晶度为45~55%。
  7. 根据权利要求1所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,所述相容剂为聚丙烯接枝马来酸酐。
  8. 根据权利要求1所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料,其特征在于,包括按照如下重量份计算的组分:
    Figure PCTCN2022138883-appb-100002
  9. 权利要求1~8任一项所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料的制备方法,其特征在于,包括如下步骤:
    将PP树脂、片状无机填料、相容剂、超支化聚合物和加工助剂按比例混合均匀后,在190~220℃、450~600rpm条件下挤出、造粒得到。
  10. 权利要求1~8任一项所述宽温域低收缩、耐强酸性电解液聚丙烯复合材料在制备液流电池中的应用。
PCT/CN2022/138883 2022-02-21 2022-12-14 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用 WO2023155573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210159068.9A CN114524990B (zh) 2022-02-21 2022-02-21 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用
CN202210159068.9 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023155573A1 true WO2023155573A1 (zh) 2023-08-24

Family

ID=81625015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138883 WO2023155573A1 (zh) 2022-02-21 2022-12-14 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114524990B (zh)
WO (1) WO2023155573A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524990B (zh) * 2022-02-21 2024-03-15 金发科技股份有限公司 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用
CN115490960B (zh) * 2022-10-13 2023-12-01 江苏金发科技新材料有限公司 一种抗静电聚丙烯组合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106147034A (zh) * 2016-06-30 2016-11-23 中广核俊尔新材料有限公司 一种低线性膨胀系数的聚丙烯复合材料及其制备方法和应用
CN107286476A (zh) * 2017-08-03 2017-10-24 慈溪市赛斯特金属制品有限公司 一种提高聚丙烯模量的填充物及其应用方法
CN109370041A (zh) * 2018-08-09 2019-02-22 河南工程学院 一种兼具良好刚性和高断裂伸长率的聚丙烯改性材料及其制备方法
CN109456538A (zh) * 2018-10-12 2019-03-12 万华化学集团股份有限公司 一种低密度、低收缩率、银色金属质感的聚丙烯复合材料及其制备方法
CN110218394A (zh) * 2019-05-24 2019-09-10 骆驼集团塑胶制品有限公司 一种低温超韧的耐电解液聚丙烯改性材料及其制备方法
CN111087702A (zh) * 2019-12-19 2020-05-01 浙江普利特新材料有限公司 一种低密度、低收缩、超高韧性聚丙烯纳米复合材料及其制备方法
CN111087693A (zh) * 2019-12-25 2020-05-01 上海金发科技发展有限公司 一种低密度低介电疏水聚丙烯复合材料及其制备方法
CN114524990A (zh) * 2022-02-21 2022-05-24 金发科技股份有限公司 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106147034A (zh) * 2016-06-30 2016-11-23 中广核俊尔新材料有限公司 一种低线性膨胀系数的聚丙烯复合材料及其制备方法和应用
CN107286476A (zh) * 2017-08-03 2017-10-24 慈溪市赛斯特金属制品有限公司 一种提高聚丙烯模量的填充物及其应用方法
CN109370041A (zh) * 2018-08-09 2019-02-22 河南工程学院 一种兼具良好刚性和高断裂伸长率的聚丙烯改性材料及其制备方法
CN109456538A (zh) * 2018-10-12 2019-03-12 万华化学集团股份有限公司 一种低密度、低收缩率、银色金属质感的聚丙烯复合材料及其制备方法
CN110218394A (zh) * 2019-05-24 2019-09-10 骆驼集团塑胶制品有限公司 一种低温超韧的耐电解液聚丙烯改性材料及其制备方法
CN111087702A (zh) * 2019-12-19 2020-05-01 浙江普利特新材料有限公司 一种低密度、低收缩、超高韧性聚丙烯纳米复合材料及其制备方法
CN111087693A (zh) * 2019-12-25 2020-05-01 上海金发科技发展有限公司 一种低密度低介电疏水聚丙烯复合材料及其制备方法
CN114524990A (zh) * 2022-02-21 2022-05-24 金发科技股份有限公司 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114524990B (zh) 2024-03-15
CN114524990A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023155573A1 (zh) 一种宽温域低收缩、耐强酸性电解液聚丙烯复合材料及其制备方法和应用
CN102585348B (zh) 一种增韧导电材料及其制备方法
CN106543563B (zh) 热塑性高压电缆绝缘材料及其制备方法
CN102504407A (zh) 一种太阳能电池用聚丙烯组合物及其制备方法
WO2022110655A1 (zh) 导电聚丙烯组合物及其制备方法
Zha et al. Electrical properties of polypropylene/styrene-ethylene-butylene-styrene block copolymer/MgO nanocomposites
CN107090129B (zh) 一种中间相沥青基石墨纤维/聚丙烯复合材料及其制备方法
CN111087690B (zh) 一种具有电磁屏蔽效应和耐刮擦性能的阻燃级聚丙烯复合材料及其制备方法
AU2020102278A4 (en) Preparation method of recyclable thermoplastic high-voltage direct-current cable nano composite insulating material
CN101759918A (zh) 一种导电聚丙烯复合材料及其制备方法
CN112694661A (zh) 一种兼具导热和吸波功能的电磁屏蔽聚丙烯复合材料及其制备方法
CN111073274A (zh) 一种导热绝缘型玻纤增强pa66/hdpe合金材料及其制备方法
CN106674752A (zh) 一种耐刮擦、抗发粘及永久抗静电聚丙烯复合材料及其制备方法
Meng et al. Investigation on preparation, thermal, and mechanical properties of carbon fiber decorated with hexagonal boron nitride/silicone rubber composites for battery thermal management
Zha et al. Effect of multi-dimensional zinc oxide on electrical properties of polypropylene nanocomposites for HVDC cables
CN109762275B (zh) 一种氟化导电粒子/pvdf基复合介电薄膜的制备方法
CN104448553A (zh) 具有抑制空间电荷的可回收高压直流电缆料的制备方法
TWI753706B (zh) 一種導電塑膠及其應用
CN113150487B (zh) 一种热塑性屏蔽材料制备方法
CN109942933A (zh) 一种抑制空间电荷的直流电缆绝缘料及其制备方法
Saha et al. Development of multifunctional nylon 6, 6-based nanocomposites with high electrical and thermal conductivities by scalable melt and dry blending methods for automotive applications
CN114276611A (zh) 一种导热无卤阻燃聚烯烃复合材料及其制备方法和应用
CN114085453A (zh) 一种导热聚丙烯合金组合物及其制备方法和应用
CN109233242B (zh) 聚苯醚树脂复合材料及其制备方法和应用
Jeddi et al. AC electrical conductivity, shielding effectiveness and viscoelastic characteristics of nanocomposites based on RTV silicon rubber and nano graphite sheets/carbon black hybrid system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926873

Country of ref document: EP

Kind code of ref document: A1