WO2023155452A1 - 一种无钴层状氧化物正极材料 - Google Patents

一种无钴层状氧化物正极材料 Download PDF

Info

Publication number
WO2023155452A1
WO2023155452A1 PCT/CN2022/125096 CN2022125096W WO2023155452A1 WO 2023155452 A1 WO2023155452 A1 WO 2023155452A1 CN 2022125096 W CN2022125096 W CN 2022125096W WO 2023155452 A1 WO2023155452 A1 WO 2023155452A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cobalt
positive electrode
ions
layered oxide
Prior art date
Application number
PCT/CN2022/125096
Other languages
English (en)
French (fr)
Inventor
温晓辉
尚猷
邱报
顾庆文
刘兆平
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to CA3200628A priority Critical patent/CA3200628A1/en
Priority to EP22902472.4A priority patent/EP4261950A1/en
Priority to AU2022383821A priority patent/AU2022383821A1/en
Priority to JP2023536359A priority patent/JP2024510063A/ja
Priority to KR1020237025202A priority patent/KR20230126216A/ko
Publication of WO2023155452A1 publication Critical patent/WO2023155452A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a cobalt-free layered oxide cathode material and its application.
  • Lithium-ion batteries have the characteristics of high energy density and good cycle performance. Therefore, their application scale in new energy vehicles and 3C digital fields is increasing.
  • the current commercial cathode materials include lithium iron phosphate, lithium manganese oxide, and ternary layered oxide cathode materials based on nickel-cobalt-manganese.
  • the energy density of traditional cobalt-free layered materials is generally lower than that of lithium-rich layered oxides, the specific capacity is ⁇ 220mAh/g, and the utilization rate of lithium is lower than 80%.
  • cobalt-free Li-rich layered materials have high specific capacity (>220mAh/g), they suffer from low initial Coulombic efficiency, low lithium utilization efficiency and poor rate capability.
  • the technical problem solved by the present invention is to provide a cobalt-free layered oxide positive electrode material.
  • the cobalt-free layered oxide provided by the application can realize high first-time Coulombic efficiency and lithium utilization rate as a lithium ion battery positive electrode material.
  • the primary particle of the cobalt-free layered oxide positive electrode material contains a lithium-poor phase Li a M 2-a O 2 and a lithium-rich phase Li 2 M'O 3 with a layered structure;
  • x is the proportion of the lithium-poor phase in the cobalt-free layered oxide cathode material
  • a is the occupancy of Li in the lithium layer in the lithium-poor phase, 0 ⁇ x ⁇ 1, 0.5 ⁇ a ⁇ 1;
  • M includes A-type ions and M'-type ions.
  • the relationship between the ionic radius r A of A-type ions and the lithium ion radius r Li is: 0.9 ⁇ r A /r Li ⁇ 1.1;
  • M' is selected from one or more of Mn 4+ , Zr 4+ , Ti 4+ , V 4+ , Sn 4+ and Ru 4+ .
  • the type A ions are selected from one or more of Ni 2+ , Cu + , Zn 2+ and Fe 2+ .
  • the M further includes auxiliary ions, and the auxiliary ions are selected from one or more of Al 3+ and Cr 3+ .
  • the range of the weighted average valence n of the M ions and M' ions is: 2.9 ⁇ n ⁇ 3.25.
  • the content of type A ions is not less than 5% of all ions in M.
  • the X-ray diffraction pattern of the positive electrode material is characterized by: a) an obvious superlattice peak is observed on the right side of the (003) peak; b) the integrated area intensity ratio of the (003) peak and the (104) peak ⁇ 1.1; c) The (018) peak and (110) peak are split to a lesser extent and have a large overlap.
  • the present application also provides an electrode, including the cobalt-free layered oxide positive electrode material described in the above solution.
  • the present application also provides a lithium ion or lithium metal battery, comprising a positive electrode and a negative electrode, and the positive electrode is the above-mentioned electrode.
  • This application provides a cobalt-free layered oxide cathode material, which is formed by "nanocomposite" of lithium-poor phase Li a M 2-a O 2 and lithium-rich phase Li 2 M'O 3 in primary particles;
  • the lithium-poor phase the cationic sites in the lithium layer are no longer all occupied by lithium, and a large part of them are occupied by transition metal atoms, while the cationic sites in the transition metal layer are still almost occupied by transition metal ions; precisely because
  • the initial material has a large number of transition metal ions in the lithium layer, which can stabilize the layered structure at high voltage during charging, so that the redox reversibility of lattice oxygen is greatly improved. Therefore, the new cobalt-free layered oxide cathode material can fully utilize the activity of lattice oxygen to obtain a high specific capacity, and achieve high first-time Coulombic efficiency and lithium utilization.
  • Figure 1 is a schematic diagram of the traditional cobalt-free layered cathode material LiMO2 ;
  • Figure 2 is a schematic diagram of the common cobalt-free lithium-rich layered cathode material xLiMO 2 ⁇ (1-x)Li 2 M'O 3 ;
  • FIG. 3 is a schematic diagram of the cobalt-free layered positive electrode material xLi a M 2-a O 2 ⁇ (1-x)Li 2 M'O 3 provided by the present invention
  • Fig. 4 is the X-ray diffraction pattern of 0.625Li 0.945 Ni 0.582 Mn 0.473 O 2 0.25Li 2 MnO 3 provided by Example 1 of the present invention
  • Fig. 5 is the spectrum observed under the high-angle annular dark field image (STEM-HADDF) of the scanning transmission electron microscope of 0.625Li 0.945 Ni 0.582 Mn 0.473 O 2 0.25Li 2 MnO 3 provided in Example 1 of the present invention;
  • Fig. 6 is the first cycle charge and discharge curve of 0.625Li 0.945 Ni 0.582 Mn 0.473 O 2 ⁇ 0.25Li 2 MnO 3 provided by Example 1 of the present invention
  • Fig. 7 is the X-ray diffraction pattern of 0.7Li 0.857 Ni 0.714 Mn 0.429 O 2 ⁇ 0.2Li 2 MnO 3 provided by Example 2 of the present invention
  • Fig. 8 is an X-ray diffraction pattern of 0.8Li 0.778 Ni 0.833 Mn 0.389 O 2 ⁇ 0.2Li 2 MnO 3 provided by Example 3 of the present invention
  • Fig. 9 is the X-ray diffraction pattern of 0.5Li 0.848 Ni 0.727 Ti 0.424 O 2 ⁇ 0.33Li 2 TiO 3 provided by Example 4 of the present invention.
  • Fig. 10 is an X-ray diffraction pattern of 0.6Li 0.778 Fe 0.833 Mn 0.389 O 2 ⁇ 0.267Li 2 MnO 3 provided in Example 5 of the present invention.
  • this application provides a lithium-poor phase and a lithium-rich phase.
  • the new cathode material has a special two-phase nanocomposite structure in the primary particle, which can significantly improve the energy density, first Coulombic efficiency and lithium utilization of cobalt-free layered cathode materials.
  • the embodiment of the present invention discloses a cobalt-free layered oxide cathode material represented by formula (I),
  • the primary particle of the cobalt-free layered oxide positive electrode material contains a lithium-poor phase Li a M 2-a O 2 and a lithium-rich phase Li 2 M'O 3 with a layered structure;
  • x is the proportion of the lithium-poor phase in the cobalt-free layered oxide cathode material
  • a is the occupancy of Li in the lithium layer in the lithium-poor phase, 0 ⁇ x ⁇ 1, 0.5 ⁇ a ⁇ 1;
  • M includes A-type ions and M'-type ions.
  • the relationship between the ionic radius r A of A-type ions and the lithium ion radius r Li is: 0.9 ⁇ r A /r Li ⁇ 1.1;
  • M' is selected from one or more of Mn 4+ , Zr 4+ , Ti 4+ , V 4+ , Sn 4+ and Ru 4+ .
  • FIG. 1 is a schematic diagram of the structure of a conventional cobalt-free layered cathode material. Lithium atomic layers and transition metal atomic layers are arranged alternately along the direction of the c-axis. In traditional layered oxide cathode materials, the lithium atomic layer is almost completely occupied by lithium atoms, and the transition metal layer is also almost occupied by transition metal atoms M.
  • the chemical formula of common cobalt-free lithium-rich layered oxide cathode materials can be expressed as xLiMO 2 ⁇ (1-x)Li 2 M'O 3 , where, 0 ⁇ x ⁇ 1, M is mainly Ni and Mn, and M' is mainly for Mn.
  • Figure 2 is a schematic diagram of a common cobalt-free lithium-rich layered structure, which can also be considered to be composed of LiMO 2 phase and Li 2 M'O 3 phase at the nanometer scale; the crystal structure of the LiMO 2 phase is similar to the conventional one shown in Figure 1
  • the structure of the layered oxide cathode material is similar to the arrangement of transition metal atoms, and there is no obvious mixing of transition metals and Li; the Li 2 M'O 3 phase is not strictly a layered material, it One-third of the octahedral void positions in the transition metal layer are occupied by Li, and the transition metal M' and Li are arranged in an orderly manner in the transition metal layer.
  • Li 2 MnO 3 is electrochemically inactive, but after forming a nanocomposite structure with LiMO 2 phase in the primary particle, it can exhibit the electrochemical activity of lattice oxygen under high voltage (>4.5V). It is precisely because of the structural properties of this nanocomposite that the lithium-rich layered oxide can exhibit a high capacity of >250mAh/g.
  • the chemical formula of the novel cobalt-free layered cathode material proposed by the present invention can be expressed as xLi a M 2-a O 2 ⁇ 2(1-x)/3Li 2 M'O 3 .
  • the schematic diagram of the structure of the novel cobalt-free layered cathode material is shown in Fig. 3 . It can be considered as a nanocomposite of Li-poor phase Li a M 2-a O 2 and Li-rich phase Li 2 M'O 3 within the primary particle.
  • the crystal configuration of the lithium-rich phase Li 2 M'O 3 is consistent with the lithium-rich phase in the cobalt-free lithium-rich layered oxides in Figure 2, so this new material can also be like the common lithium-rich layered oxide materials
  • the electrochemical activity of lattice oxygen is exerted to achieve a higher charge-discharge specific capacity.
  • the new cobalt-free layered oxide cathode material also has a unique lithium-poor phase xLi a M 2-a O 2 , where 0 ⁇ a ⁇ 1, that is, in the lithium-poor phase Li:M ⁇ 1.
  • the cation sites in the lithium layer are no longer all occupied by lithium, but a large part are occupied by transition metal atoms, while the cation sites in the transition metal layer are still almost occupied by transition metal ions. It is the presence of a large number of transition metal ions in the lithium layer of the initial material that stabilizes the layered structure in the high-voltage state during charging and overcharging, so that the redox reversibility of lattice oxygen is greatly improved. Therefore, the new cobalt-free layered cathode material can fully exploit the activity of lattice oxygen to achieve high capacity, high first-time Coulombic efficiency and lithium utilization.
  • the cations that form the lithium-rich phase of Li 2 MO 3 can also include auxiliary cations, that is, metal ions M represent multiple ions, A-type ions, M'-type ions, and auxiliary-type cations; wherein the radius r A of the A-type ions is the same as that of lithium
  • the radius relationship r Li of the ions is: 0.9 ⁇ r A /r Li ⁇ 1.1; more specifically, the type A ions are selected from one or more of Ni 2+ , Cu + , Zn 2+ and Fe 2+ ; A The content of class ions should not be less than 5% of all ions in M.
  • the auxiliary class ions are selected from one or more of Al 3+ and Cr 3+ .+4 valent M' ions in M ions
  • the content adjusts the average valence state of M ions according to the value of a, usually the preferred range of proportion in all M ions is: 20% to 50%.
  • M must contain one of type A ions such as Ni 2+ , Cu + , Zn 2+ , Fe 2+ , etc., because their ionic radius is the same as Li + when they form a 6-coordinated octahedron with O ions
  • the radius of M is the most similar, and it is easy to replace the Li + site without causing a structural change, thus forming a lithium-poor phase Li a M 2-a O 2 structure;
  • the ions in M must contain the lithium-rich phase complexed with it Transition metal ion M', because it is conducive to the formation of a complex nanocomposite two-phase structure in the primary particle between the lithium-poor phase Li a M 2-a O 2 and the lithium-rich phase Li 2 M'O 3 , and promotes the lattice in the lithium-rich phase
  • the activation of the redox activity of oxygen is beneficial to exhibit the characteristic of high specific capacity.
  • the range of the weighted average valence n of the M ions and M' ions is: 2.9 ⁇ n ⁇ 3.25; 0.3 ⁇ x ⁇ 0.8; 0.75 ⁇ a ⁇ 0.95.
  • the preparation method of the cobalt-free layered oxide positive electrode material described in this application can be realized according to the preparation methods of various conventional materials such as the high-temperature solid-phase method and the co-precipitation method in the prior art after the raw materials and the ratio of the raw materials are determined. There is no particular limitation in this application.
  • the characteristics of the X-ray diffraction spectrum of the cobalt-free layered oxide cathode material provided by the application are: a) Obvious superlattice peak is observed on the right side of (003) peak; b) (003) peak and (104) peak The integrated area intensity ratio of ⁇ 1; c) (018) peak and (110) peak almost coincide. This shows that a large number of transition metal lithium ions occupy the position of the Li layer in the new cobalt-free layered oxide cathode material, and the layered structure characteristics of the sequential arrangement of transition metal ions and Li layers are even less obvious.
  • the present application also provides an electrode, which includes the cobalt-free layered oxide positive electrode material described in the above solution.
  • the present invention also provides a lithium ion battery or a lithium metal battery, which includes a positive electrode and a negative electrode, and the positive electrode is the electrode described in the above solution.
  • layered oxides refer to the crystal structure, with oxygen as the structural skeleton, lithium and transition metals have the characteristics of obvious layered arrangement in the octahedral gap of oxygen; along the c-axis of the unit cell direction, lithium layers and transition metal layers are arranged alternately.
  • the cobalt-free layered oxide positive electrode material provided by this application has a two-phase structure of a lithium-poor phase and a lithium-rich phase. Low Coulombic efficiency and low lithium utilization. Using this new type of cobalt-free layered cathode material as the cathode material of lithium-ion batteries can obtain lithium-ion batteries with lower cost and high energy density.
  • a new type of cobalt-free layered oxide cathode material composed of a lithium-poor phase and a lithium-rich phase.
  • the composition of the lithium-poor phase is: Li 0.945 Ni 0.582 Mn 0.473 O 2
  • the composition of the lithium-rich phase is: Li 2 MnO 3 .
  • the lithium-poor phase and the lithium-rich phase account for 62.5% and 37.5% respectively; its chemical formula is 0.625Li 0.945 Ni 0.582 Mn 0.473 O 2 0.25Li 2 MnO 3 (0.375Li 4/3 Mn 2/3 O 2 is reduced to 0.25Li 2 MnO 3 ).
  • the precursor is uniformly mixed in stoichiometric ratio, and then the precursor and Li 2 CO 3 are mixed evenly according to the stoichiometric ratio and subjected to high-temperature solid-state sintering reaction to obtain the new cobalt-free layered cathode material.
  • X-ray powder diffraction patterns and spherical aberration-corrected scanning perspective electron micrographs indicate that the material is composed of a lithium-poor phase and a lithium-rich phase, and the main body is a layered structure oxide.
  • Figure 6 shows the typical electrochemical performance of this novel cobalt-free layered cathode material.
  • a cobalt-free layered oxide cathode material 0.7Li 0.857 Ni 0.714 Mn 0.429 O 2 ⁇ 0.2Li 2 MnO 3 .
  • the preparation method adopts the co-precipitation method.
  • the precursor is uniformly mixed in stoichiometric ratio, and then the precursor and Li 2 CO 3 are mixed evenly according to the stoichiometric ratio and subjected to high-temperature solid-state sintering reaction to obtain the new cobalt-free layered cathode material.
  • the XRD spectrum of the positive electrode material obtained above is the same as that in Example 1, which has obvious two-phase composite structure characteristics of lithium-poor phase and lithium-rich phase (as shown in FIG. 7 ).
  • a cobalt-free layered oxide cathode material 0.8Li 0.778 Ni 0.833 Mn 0.389 O 2 ⁇ 0.2Li 2 MnO 3 .
  • the precursor is uniformly mixed in stoichiometric ratio, and then the precursor and Li 2 CO 3 are mixed evenly according to the stoichiometric ratio and subjected to high-temperature solid-state sintering reaction to obtain the new cobalt-free layered cathode material.
  • the XRD spectrum of the positive electrode material obtained above has the same two-phase composite structure characteristics as the lithium-poor phase and the lithium-rich phase as in Example 1, as shown in FIG. 8 .
  • a cobalt-free layered oxide cathode material 0.5Li 0.848 Ni 0.727 Ti 0.424 O 2 ⁇ 0.33Li 2 TiO 3 .
  • the XRD pattern of the positive electrode material obtained above has the same two-phase composite structure characteristics as the lithium-poor phase and the lithium-rich phase as in Example 1, as shown in FIG. 9 .
  • a cobalt-free layered oxide cathode material 0.6Li 0.778 Fe 0.833 Mn 0.389 O 2 ⁇ 0.267Li 2 MnO 3 .
  • Preparation method High temperature solid phase method. Li 2 CO 3 , FeO, MnO 2 and the stoichiometric ball mill were uniformly mixed and calcined at 800° C. for 12 hours in an inert atmosphere.
  • the XRD spectrum of the positive electrode material 0.6Li 0.778 Fe 0.833 Mn 0.389 O 2 ⁇ 0.267Li 2 MnO 3 obtained above has the same two-phase composite structure characteristics as the lithium-poor phase and the lithium-rich phase as in Example 1, as shown in Figure 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

本发明提供了一种无钴层状氧化物正极材料,所述无钴层状氧化物正极材料的一次颗粒内含有类层状结构的贫锂相Li aM 2-aO 2和富锂相Li 2M'O 3;本申请提供的正极材料在贫锂相和富锂相的协同作用下,一定程度上解决了无钴层状正极材料能量密度低、首次库伦效率低和锂的利用率低等问题。采用这种新型无钴层状正极材料作为锂离子电池正极材料,可以获得更低成本的高能量密度锂离子电池。

Description

一种无钴层状氧化物正极材料
本申请要求于2022年02月21日提交中国专利局、申请号为2022101576060、发明名称为“一种无钴层状氧化物正极材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种无钴层状氧化物正极材料及其应用。
背景技术
当今社会,人们对移动储能设备需求越来越大。锂离子电池具有能量密度高、循环性能好等特点,因此,其在新能源汽车以及3C数码领域的应用规模越来越大。目前商业化的正极材料有磷酸铁锂、锰酸锂和以镍钴锰为体系的三元层状氧化物正极材料。
磷酸铁锂和锰酸锂虽然成本低,但是它们的能量密度也较低。而目前商业化的层状正极材料又普遍含有贵金属元素钴,难以控制成本。目前将层状材料无钴化的主要方向有两个:一是在传统镍钴锰三元材料中直接剔除钴,制备化学式为LiNi xMn 1-xO 2(0<x<1)的传统无钴层状材料,另一个方向是在富锂锰基层状氧化物去除钴元素,制备化学式为xLiMO 2·(1-x)Li 2M’O 3(0<x<1,M=Ni+Mn;M’=Mn)的常见无钴富锂层状材料。
传统无钴层状材的能量密度普遍比富锂层状氧化物的低,比容量<220mAh/g,锂的利用率低于80%。无钴富锂层状材料虽然比容量较高(>220mAh/g),但是它的首次库伦效率低,锂的利用效率低和倍率性能差。
发明内容
本发明解决的技术问题在于提供一种无钴层状氧化物正极材料,本申请提供的无钴层状氧化物作为锂离子电池正极材料可实现高的首次库伦效率和锂的利用率。
有鉴于此,本申请提供了一种如式(Ⅰ)所示的无钴层状氧化物正极材料,
xLi aM 2-aO 2·2(1-x)/3Li 2M’O 3     (Ⅰ);
所述无钴层状氧化物正极材料的一次颗粒内含有类层状结构的贫锂相Li aM 2-aO 2和富锂相Li 2M’O 3
其中,x为贫锂相在所述无钴层状氧化物正极材料中所占的比例,a为贫锂相中Li在锂层的占有率,0<x<1,0.5<a<1;
M包括A类离子和M’类离子,A类离子的离子半径r A与锂离子半径r Li的关系为:0.9<r A/r Li<1.1;
M’选自Mn 4+、Zr 4+、Ti 4+、V 4+、Sn 4+和Ru 4+中的一种或几种。
优选的,所述A类离子选自Ni 2+、Cu +、Zn 2+和Fe 2+中的一种或多种。
优选的,所述M还包括辅助类离子,所述辅助类离子选自Al 3+和Cr 3+中的一种或多种。
优选的,所述M离子和M’离子的加权平均价态n的范围为:2.9<n<3.25。
优选的,0.3<x<0.8。
优选的,0.75<a<0.95。
优选的,A类离子的含量不低于M中所有离子的5%。
优选的,所述正极材料的X射线衍射图谱的特征为:a)在(003)峰右侧观察到明显的超晶格峰;b)(003)峰和(104)峰的积分面积强度比值<1.1;c)(018)峰和(110)峰劈裂程度较小,有较大重叠。
本申请还提供了一种电极,包括上述方案所述的无钴层状氧化物正极材料。
本申请还提供了一种锂离子或锂金属电池,包括正极和负极,所述正极为上述所述的电极。
本申请提供了一种无钴层状氧化物正极材料,其由贫锂相Li aM 2-aO 2和富锂相Li 2M’O 3在一次颗粒内“纳米复合”而成;在贫锂相中锂层中的阳离子位点不再全部被锂占据,有很大一部分被过渡金属原子所占据,而过渡金属层中的阳离子位点还是几乎被过渡金属离子所占据;正是由于初始材料在锂层中存在大量的过渡金属离子,可以稳定住充电过程中在高电压状态下的层状结构,使得晶格氧的氧化还原可逆性大大提高。因此,该新型无钴层状氧化物正极材料可以充分发挥晶格氧的活性获得高的比容量,并且实现高的首次库伦效率和锂利用率。
附图说明
图1为传统无钴层状正极材料LiMO 2示意图;
图2为常见无钴富锂层状正极材料xLiMO 2·(1-x)Li 2M’O 3示意图;
图3为本发明提供的无钴层状正极材料xLi aM 2-aO 2·(1-x)Li 2M’O 3示意图;
图4为本发明实施例1提供的0.625Li 0.945Ni 0.582Mn 0.473O 2·0.25Li 2MnO 3的X射线衍射图谱;
图5为本发明实施例1提供的0.625Li 0.945Ni 0.582Mn 0.473O 2·0.25Li 2MnO 3的扫描透射电子显微镜的高角环形暗场像(STEM-HADDF)下所观察到的图谱;
图6为本发明实施例1提供的0.625Li 0.945Ni 0.582Mn 0.473O 2·0.25Li 2MnO 3的首圈充放电曲线;
图7为本发明实施例2提供的0.7Li 0.857Ni 0.714Mn 0.429O 2·0.2Li 2MnO 3的X射线衍射图谱;
图8为本发明实施例3提供的0.8Li 0.778Ni 0.833Mn 0.389O 2·0.2Li 2MnO 3的X射线衍射图谱;
图9为本发明实施例4提供的0.5Li 0.848Ni 0.727Ti 0.424O 2·0.33Li 2TiO 3的X射线衍射图谱;
图10为本发明实施例5提供的0.6Li 0.778Fe 0.833Mn 0.389O 2·0.267Li 2MnO 3的X射线衍射图谱。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
针对现有技术中无钴层状氧化物正极材料能量密度较低,首圈库伦效率低以及晶格氧的氧化还原可逆性差等缺点,本申请提供了一种由贫锂相和富锂相组成的新型正极材料,该材料在一次颗粒内具有特殊的两相纳米复合结构,可显著提高无钴层状正极材料的能量密度、首次库伦效率和锂的利用率。具体的,本发明实施例公开了一种如式(Ⅰ)所示的无钴层状氧化物正极材料,
xLi aM 2-aO 2·2(1-x)/3Li 2M’O 3    (Ⅰ);
所述无钴层状氧化物正极材料的一次颗粒内含有类层状结构的贫锂相Li aM 2-aO 2和富锂相Li 2M’O 3
其中,x为贫锂相在所述无钴层状氧化物正极材料中所占的比例,a为贫锂相中Li在锂层的占有率,0<x<1,0.5<a<1;
M包括A类离子和M’类离子,A类离子的离子半径r A与锂离子半径r Li关系为:0.9<r A/r Li<1.1;
M’选自Mn 4+、Zr 4+、Ti 4+、V 4+、Sn 4+和Ru 4+中的一种或几种。
为了详细说明该新型无钴层状氧化物正极材料的晶体结构特点,与传统层状氧化物正极材料和富锂层状氧化物正极材料的晶体结构进行了对比。传统无钴层状氧化物的化学式可以用LiMO 2表示,其中M主要为Ni和Mn元素,Li:M=1:1。图1为传统无钴层状正极材料的结构示意图。锂原子层和过渡金属原子层沿着c轴的方向交替排布。在传统层状氧化物正极材料中,锂原子层中几乎全部被锂原子占据,过渡金属层也几乎被过渡金属原子M占据。
常见的无钴富锂层状氧化物正极材料的化学式可表示为xLiMO 2·(1-x)Li 2M’O 3,其中,0<x<1,M主要为Ni和Mn,M’主要为Mn。图2为常见无钴富锂层状结构示意图,它也可以认为是由LiMO 2相和Li 2M’O 3相在纳米尺度复合而成;LiMO 2相的晶体结构与图1所示的传统层状氧化物正极材料的结构和过渡金属原子的排布是相似的,没有明显的过渡金属和Li的混排现象;Li 2M’O 3相则并不是严格意义上的层状材料,它的过渡金属层中有三分之一的八面体空隙位置被Li占据,过渡金属M’和Li在过渡金属层中是有序的排列。纯的Li 2MnO 3是电化学非活性,但是与LiMO 2相在一次颗粒内形成纳米复合结构后,在高电压下(>4.5V)可以发挥出晶格氧的电化学活性。正是由于这种纳米复合的结构特性使得富锂层状氧化物可以发挥出>250mAh/g的高容量。
本发明所提出的新型无钴层状正极材料的化学式可表示为xLi aM 2-aO 2·2(1-x)/3Li 2M’O 3。该新型无钴层状正极材料结构示意图如图3所示。它可以被认为是由贫锂相Li aM 2-aO 2和富锂相Li 2M’O 3在一次颗粒内的纳米复合而成。其中富锂相Li 2M’O 3的晶体构型与图2中无钴富锂层状氧化物中的富锂相一致,因此该新型材料也可以像常见的富锂层状氧化物材料一样发挥出晶格氧 的电化学活性,实现较高的充放电比容量。值得注意的是,该新型无钴层状氧化物正极材料中还具有独特的贫锂相xLi aM 2-aO 2,其中0<a<1,也就是在贫锂相中Li:M<1。在锂层中的阳离子位点不再是全部被锂占据,有很大一部分被过渡金属原子所占据,而过渡金属层中的阳离子位点还是几乎被过渡金属离子所占据。正是初始材料的锂层中存在大量的过渡金属离子,稳定住了充电过充中高电压状态下的层状结构,使得晶格氧的氧化还原可逆性大大提高。因此,该新型无钴层状正极材料可以充分发挥晶格氧的活性实现高容量,实现高的首次库伦效率和锂利用率。
在本申请的贫锂相Li aM 2-aO 2中,必须包括三类阳离子,Li离子、A类离子(与Li离子半径接近的阳离子),M’类离子(化合价为+4价易于形成Li 2MO 3富锂相的阳离子,还可包括辅助类阳离子,即金属离子M代表多个离子,A类离子、M’类离子和辅助类阳离子;其中A类离子的半径r A与锂离子的半径关系r Li为:0.9<r A/r Li<1.1;更具体地,A类离子选自Ni 2+、Cu +、Zn 2+和Fe 2+中的一种或多种;A类离子的含量应不低于M中所有离子的5%。所述辅助类离子选自Al 3+和Cr 3+中的一种或多种。+4价的M’离子在M离子中的含量根据a值调整M离子的平均价态,通常在所有M离子中所占比例的优选范围为:20%~50%。金属离子M平均价态
Figure PCTCN2022125096-appb-000001
M中必须包含A类离子例如Ni 2+、Cu +、Zn 2+、Fe 2+等这些离子中的一种,原因是它们与O离子形成6配位的八面体时的离子半径与Li +的半径最为相似,容易取代Li +的位点而不造成结构的变化,从而形成贫锂相Li aM 2-aO 2结构;M中的离子中必须包含与之复合的富锂相中的过渡金属离子M’,因为它有利于贫锂相Li aM 2-aO 2与富锂相Li 2M’O 3在一次颗粒内形成复纳米复合两相结构,促进富锂相中晶格氧的氧化还原活性的活化,有利于发挥高比容量的特性。
在本申请的正极材料中,所述M离子和M’离子的加权平均价态n的范围为:2.9<n<3.25;0.3<x<0.8;0.75<a<0.95。
本申请所述无钴层状氧化物正极材料的制备方法在原料和原料的配比确定之后则可以按照现有技术中的高温固相法、共沉淀法等多种常规材料的制备方法实现,对此本申请没有特别的限制。
本申请提供的无钴层状氧化物正极材料的X射线衍射图谱的特征为:a)在(003)峰右侧观察到明显的超晶格峰;b)(003)峰和(104)峰的积分面积强度比值<1;c)(018)峰和(110)峰几乎重合。由此说明,该新型无钴层状氧化物正极材料中大量的过渡金属锂子占据了Li层的位置,过渡金属离子和Li分层依次排布的层状结构特性更不明显。
本申请还提供了一种电极,其包括上述方案所述的无钴层状氧化物正极材料。
进一步的,本发明还提供了一种锂离子电池或锂金属电池,其包括正极和负极,所述正极为上述方案所述的电极。
本领域技术人员熟知的,层状氧化物是指在晶体结构中,以氧为结构骨架,锂和过渡金属在氧的八面体间隙中具有明显分层排布的特性;沿着晶胞c轴的方向,锂层和过渡金属层交替排布。层状氧化物正极材料锂的利用率=正极可逆脱出和嵌入的锂的含量/正极总的含锂量=首圈放电比容量/理论比容量。
本申请提供的无钴层状氧化物正极材料具有贫锂相和富锂相的两相结构,在这两相的协同作用下,一定程度上解决了无钴层状正极材料能量密度低、首次库伦效率低和锂的利用率低等问题。采用这种新型无钴层状正极材料作为锂离子电池正极材料,可以获得更低成本的高能量密度锂离子电池。
为了进一步理解本发明,下面结合实施例对本发明提供的无钴层状氧化物正极材料进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
一种新型贫锂相与富锂相组成的无钴层状氧化物正极材料,其中贫锂相的组成为:Li 0.945Ni 0.582Mn 0.473O 2,富锂相的组成为:Li 2MnO 3。贫锂相与富锂相各占62.5%和37.5%;其化学式为0.625Li 0.945Ni 0.582Mn 0.473O 2·0.25Li 2MnO 3(0.375Li 4/3Mn 2/3O 2约化为0.25Li 2MnO 3)。
制备方法采用共沉淀法,将NiSO 4和MnSO 4按化学计量比Ni:Mn=2:3配成混合溶液,滴加到Na 2CO 3溶液中,将沉淀物过滤干燥得到Ni和Mn按化学计量比均匀混合的前驱体,再将前驱体与Li 2CO 3按化学计量比混合均匀经过高温固相烧结反应即可得到该新型无钴层状正极材料。
如图4和图5所示,X射线粉末衍射图谱和球差校正扫描透视电子显微图谱表明该材料是由贫锂相和富锂相两相组成的主体为层状结构的氧化物。图6展示了该新型无钴层状正极材料的典型电化学性能。
从该材料的结构和电化学测试表征结果分析,可以发现它具有以下几个特征:
(1)在波长为0.154nm的X射线衍射得到的图谱中在20度左右有超晶格峰;
(2)(003)峰和(104)峰的积分面积比值<1;
(3)(018)峰和(110)峰几乎重合;
(4)在球差校正的透射电子显微镜下,从垂直于[003]晶向去观察该材料的原子像可以发现大量的过渡原子(Ni)出现在锂层,形成了贫锂相结构;
(5)首次库伦效率和Li的利用锂用率均可超过90%。
实施例2
一种无钴层状氧化物正极材料0.7Li 0.857Ni 0.714Mn 0.429O 2·0.2Li 2MnO 3
制备方法采用共沉淀法,将NiSO 4和MnSO 4按化学计量比Ni:Mn=1:1配成混合溶液滴,加到Na 2CO 3溶液中,将沉淀物过滤干燥得到Ni和Mn按化学计量比均匀混合的前驱体,再将前驱体与Li 2CO 3按化学计量比混合均匀经过高温固相烧结反应即可得到该新型无钴层状正极材料。
上述得到的正极材料的XRD图谱与实施例1中的一样具有明显贫锂相和富锂相两相复合结构特征(如图7所示)。
实施例3
一种无钴层状氧化物正极材料0.8Li 0.778Ni 0.833Mn 0.389O 2·0.2Li 2MnO 3
制备方法采用共沉淀法,将NiSO 4和MnSO 4按化学计量比Ni:Mn=3:2配成混合溶液,滴加到Na 2CO 3溶液中,将沉淀物过滤干燥得到Ni和Mn按化学计量比均匀混合的前驱体,再将前驱体与Li 2CO 3按化学计量比混合均匀经过高温固相烧结反应即可得到该新型无钴层状正极材料。
上述得到的正极材料的XRD图谱与实施例1中的一样具有明显贫锂相和富锂相两相复合结构特征,如图8所示。
实施例4
一种无钴层状氧化物正极材料0.5Li 0.848Ni 0.727Ti 0.424O 2·0.33Li 2TiO 3
制备方法高温固相法,将Li 2CO 3、NiCO 3、和Ti[OCH(CH 3) 2] 4按化学计量比Li:Ni:Ti=6:2:3用球磨机混合均匀后800℃煅烧12小时。
上述得到的正极材料的XRD图谱与实施例1中的一样具有明显贫锂相和富锂相两相复合结构特征,如图9所示。
实施例5
一种无钴层状氧化物正极材料0.6Li 0.778Fe 0.833Mn 0.389O 2·0.267Li 2MnO 3
制备方法高温固相法。将Li 2CO 3、FeO、MnO 2和按化学计量用球磨机混合均匀后在惰性气氛中800℃煅烧12小时。
上述得到的正极材料0.6Li 0.778Fe 0.833Mn 0.389O 2·0.267Li 2MnO 3的XRD图谱与实施例1中的一样具有明显贫锂相和富锂相两相复合结构特征,如图10所示。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种如式(Ⅰ)所示的无钴层状氧化物正极材料,
    xLi aM 2-aO 2·2(1-x)/3Li 2M’O 3    (Ⅰ);
    所述无钴层状氧化物正极材料的一次颗粒内含有类层状结构的贫锂相Li aM 2-aO 2和富锂相Li 2M’O 3
    其中,x为贫锂相在所述无钴层状氧化物正极材料中所占的比例,a为贫锂相中Li在锂层的占有率,0<x<1,0.5<a<1;
    M包括A类离子和M’类离子,A类离子的离子半径r A与锂离子半径r Li的关系为:0.9<r A/r Li<1.1;
    M’选自Mn 4+、Zr 4+、Ti 4+、V 4+、Sn 4+和Ru 4+中的一种或几种。
  2. 根据权利要求1所述的无钴层状氧化物正极材料,其特征在于,所述A类离子选自Ni 2+、Cu +、Zn 2+和Fe 2+中的一种或多种。
  3. 根据权利要求1所述的无钴层状氧化物正极材料,其特征在于,所述M还包括辅助类离子,所述辅助类离子选自Al 3+和Cr 3+中的一种或多种。
  4. 根据权利要求1所述的无钴层状氧化物正极材料,其特征在于,所述M离子和M’离子的加权平均价态n的范围为:2.9<n<3.25。
  5. 根据权利要求1所述的无钴层状氧化物正极材料,其特征在于,0.3<x<0.8。
  6. 根据权利要求1所述的无钴层状氧化物正极材料,其特征在于,0.75<a<0.95。
  7. 根据权利要求1所述的无钴层状氧化物正极材料,其特征在于,A类离子的含量不低于M中所有离子的5%。
  8. 根据权利要求1所述的无钴层状氧化物正极材料,其特征在于,所述正极材料的X射线衍射图谱的特征为:a)在(003)峰右侧观察到明显的超晶格峰;b)(003)峰和(104)峰的积分面积强度比值<1.1;c)(018)峰和(110)峰劈裂程度较小,有较大重叠。
  9. 一种电极,包括权利要求1~8任一项所述的无钴层状氧化物正极材料。
  10. 一种锂离子或锂金属电池,包括正极和负极,所述正极为权利要求9 所述的电极。
PCT/CN2022/125096 2022-02-21 2022-10-13 一种无钴层状氧化物正极材料 WO2023155452A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3200628A CA3200628A1 (en) 2022-02-21 2022-10-13 Cathode material made of cobalt-free layered oxide
EP22902472.4A EP4261950A1 (en) 2022-02-21 2022-10-13 Cobalt-free layered oxide positive electrode material
AU2022383821A AU2022383821A1 (en) 2022-02-21 2022-10-13 Cathode material made of cobalt-free layered oxide
JP2023536359A JP2024510063A (ja) 2022-02-21 2022-10-13 コバルトフリー層状酸化物正極材料
KR1020237025202A KR20230126216A (ko) 2022-02-21 2022-10-13 코발트-무함유 층상 산화물 캐소드 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210157606.0A CN116666616A (zh) 2022-02-21 2022-02-21 一种无钴层状氧化物正极材料
CN202210157606.0 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023155452A1 true WO2023155452A1 (zh) 2023-08-24

Family

ID=87577436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125096 WO2023155452A1 (zh) 2022-02-21 2022-10-13 一种无钴层状氧化物正极材料

Country Status (8)

Country Link
EP (1) EP4261950A1 (zh)
JP (1) JP2024510063A (zh)
KR (1) KR20230126216A (zh)
CN (1) CN116666616A (zh)
AU (1) AU2022383821A1 (zh)
CA (1) CA3200628A1 (zh)
TW (1) TW202343861A (zh)
WO (1) WO2023155452A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150303453A1 (en) * 2012-08-08 2015-10-22 Jihui Yang Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries
CN106058236A (zh) * 2015-04-08 2016-10-26 旭硝子株式会社 含锂复合氧化物、其制造方法、正极活性物质、锂离子二次电池用正极以及锂离子二次电池
CN108140828A (zh) * 2015-09-08 2018-06-08 尤米科尔公司 用于制备可充电蓄电池的基于Ni的Li过渡金属氧化物阴极的前体及方法
CN110383541A (zh) * 2017-10-26 2019-10-25 株式会社Lg化学 包含形成有含贫锂过渡金属氧化物的涂层的富锂锂锰基氧化物的正极活性材料和包含其的锂二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150303453A1 (en) * 2012-08-08 2015-10-22 Jihui Yang Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries
CN106058236A (zh) * 2015-04-08 2016-10-26 旭硝子株式会社 含锂复合氧化物、其制造方法、正极活性物质、锂离子二次电池用正极以及锂离子二次电池
CN108140828A (zh) * 2015-09-08 2018-06-08 尤米科尔公司 用于制备可充电蓄电池的基于Ni的Li过渡金属氧化物阴极的前体及方法
CN110383541A (zh) * 2017-10-26 2019-10-25 株式会社Lg化学 包含形成有含贫锂过渡金属氧化物的涂层的富锂锂锰基氧化物的正极活性材料和包含其的锂二次电池

Also Published As

Publication number Publication date
EP4261950A1 (en) 2023-10-18
TW202343861A (zh) 2023-11-01
CA3200628A1 (en) 2023-08-21
KR20230126216A (ko) 2023-08-29
AU2022383821A1 (en) 2023-09-07
CN116666616A (zh) 2023-08-29
JP2024510063A (ja) 2024-03-06

Similar Documents

Publication Publication Date Title
CN113258060B (zh) 一种钠离子电池高镍层状氧化物材料及其制备方法和应用
JP7236459B2 (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
KR100430938B1 (ko) 리튬 2차 전지용 정극(正極) 재료 및 그 제조 방법
Kim et al. Synthesis of spherical Li [Ni (1/3− z) Co (1/3− z) Mn (1/3− z) Mgz] O2 as positive electrode material for lithium-ion battery
TWI423508B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
US20150255789A1 (en) Modified Lithium Ion Battery Anode Material Having High Energy Density, and Manufacturing Method Thereof
CN109428061B (zh) 一种核壳材料
CN110649230B (zh) 一种纳米铆钉核壳结构正极材料及制备方法
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
CN112624207A (zh) 一种全浓度梯度分布的富锂锰基锂正极材料及其制备方法与应用
CN116525817A (zh) 正极活性材料及其制备方法、正极片和二次电池
Tabuchi et al. Synthesis and electrochemical characterization of Ni-and Ti-substituted Li2MnO3 positive electrode material using coprecipitation–hydrothermal–calcination method
WO2024103956A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
KR102096889B1 (ko) 니켈계 양극 재료 및 이의 제조방법
KR102533325B1 (ko) 리튬 전이 금속 복합 산화물 및 제조 방법
JP2022523646A (ja) 安定なカソード材料
WO2023155452A1 (zh) 一种无钴层状氧化物正极材料
CN116190593A (zh) 一种混相结构的锂电池正极材料及其制备方法和应用
WO2014019162A1 (en) A new solid solution composite limv04-lini1-x-ycoxmnyo2 material for rechargeable lithium ion batteries
KR102604722B1 (ko) 리튬 이차 전지용 양극 활물질과 이의 제조 방법 및 리튬 이차 전지
Senthilkumar et al. Layered Na‐ion transition‐metal oxide electrodes for sodium‐ion batteries
JP2000090923A (ja) リチウムイオン二次電池
CN113889617A (zh) 一种复合结构高锰基材料及其制备方法与应用
JP2021183555A (ja) リチウム複合酸化物及びその製造方法
CN115676905B (zh) 一种高电压钴酸锂电池正极材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022383821

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2023536359

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022902472

Country of ref document: EP

Effective date: 20230614

ENP Entry into the national phase

Ref document number: 20237025202

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022383821

Country of ref document: AU

Date of ref document: 20221013

Kind code of ref document: A