WO2023155095A1 - 显示基板及显示装置 - Google Patents

显示基板及显示装置 Download PDF

Info

Publication number
WO2023155095A1
WO2023155095A1 PCT/CN2022/076617 CN2022076617W WO2023155095A1 WO 2023155095 A1 WO2023155095 A1 WO 2023155095A1 CN 2022076617 W CN2022076617 W CN 2022076617W WO 2023155095 A1 WO2023155095 A1 WO 2023155095A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
edge portion
pixel
display
Prior art date
Application number
PCT/CN2022/076617
Other languages
English (en)
French (fr)
Inventor
张粲
陈小川
张大成
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/076617 priority Critical patent/WO2023155095A1/zh
Priority to CN202280000237.2A priority patent/CN116941344A/zh
Publication of WO2023155095A1 publication Critical patent/WO2023155095A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate and a display device.
  • Virtual reality technology is widely used in various display devices.
  • the screen resolution (Pixel per inch, PPI) of the display device is usually greater than 2000PPI. Since glass-based display devices have a smaller PPI, near-eye display devices based on virtual reality technology focus on silicon-based microdisplays (eg, micro OLED (Micro-OLED), liquid crystal on silicon (LCOS), etc.). Compared with LCOS, Micro-OLED has many advantages, such as high contrast ratio and lower power consumption. Therefore, Micro-OLED is currently a hot topic in the research and development of silicon-based microdisplays.
  • Embodiments of the present disclosure provide a display substrate and a display device.
  • a display substrate includes: a substrate including a display area and a peripheral area located around the display area; a plurality of sub-pixels on the substrate and located in the display area separated by a pixel defining layer, wherein , the sub-pixel includes: a first electrode located on the substrate; a first light-emitting layer located on the first electrode; and a charge generation layer located on the first light-emitting layer, wherein the pixel defines A layer is located between the first electrode and the first light emitting layer, the pixel defining layer has a first opening exposing the first electrode, wherein an edge of the pixel defining layer adjacent to the first opening Partially covering the edge portion of the first electrode, wherein the charge generation layer has a second opening, the orthographic projection of the second opening on the substrate is the same as the orthographic projection of the pixel defining layer on the substrate overlapping at least partially, wherein the charge generation layer has an edge portion adjacent to the second opening, the orthographic projection
  • the display substrate further includes: a second light-emitting layer located on the charge generation layer; and a second electrode located on the second light-emitting layer, wherein the charge generation layer
  • An orthographic projection of the edge portion on the substrate overlaps an orthographic projection of the pixel defining layer on the substrate and has a size of 0.1 micrometers or more and 0.2 micrometers or less in a direction parallel to the substrate.
  • the edge portion of the charge generation layer sequentially includes a first edge portion and a second edge portion along a direction away from the first opening, and the thickness of the first edge portion is along the direction toward the first opening.
  • the direction of the first opening gradually becomes smaller.
  • the thickness of the first edge portion is smaller than the thickness of the second edge portion.
  • the slope angle of the first edge portion is greater than or equal to 40° and less than or equal to 70°.
  • the slope angle of the edge portion of the pixel defining layer is greater than or equal to 80° and less than or equal to 90°
  • the peripheral area includes: a wiring area and a cathode ring area located on at least one side of the display area, arranged in sequence along a direction parallel to the substrate away from the display area.
  • the peripheral area further includes: a first vacant area surrounding the display area, a second vacant area surrounding the cathode ring area, and the charge generation layer is also located on the substrate.
  • the first vacant area, the cathode ring area, and the second vacant area in the peripheral area, and the second opening is not located in the first vacant area, the cathode ring area, and the Second free area.
  • the sub-pixel includes one of a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • a portion of the charge generation layer between the red sub-pixel and the green sub-pixel does not have the second opening.
  • a portion of the charge generation layer between the red sub-pixel and the blue sub-pixel does not have the second opening.
  • the sub-pixel further includes a hole injection layer and a first hole transport layer sequentially located between the first electrode and the first light-emitting layer, between the first light-emitting layer and the first light-emitting layer.
  • the first electron transport layer between the charge generation layer, the second hole transport layer between the charge generation layer and the second light-emitting layer, and the second hole transport layer between the second light-emitting layer and the second electrode between the second electron transport layer and the electron injection layer.
  • the hole injection layer is located in the first opening and covers at least a part of the edge portion of the pixel defining layer.
  • the hole injection layer is located in the first opening and covers the top surface of the pixel defining layer located in the display region.
  • the first hole transport layer covers a surface of the pixel defining layer on a side away from the substrate and a surface of the hole injection layer on a side away from the substrate.
  • the orthographic projection of the hole injection layer on the substrate overlaps with the orthographic projection of the charge generation layer on the substrate.
  • the second hole transport layer is located in the second opening and covers a surface of the charge generation layer on a side away from the substrate.
  • a display device includes the display substrate according to the second aspect of the present disclosure.
  • FIG. 1 shows a schematic diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 3 shows a cross-sectional view of a display substrate according to another embodiment of the present disclosure.
  • FIG. 4 illustrates a cross-sectional view of a display substrate according to yet another embodiment of the present disclosure.
  • FIG. 5 shows a cross-sectional view of a display substrate according to yet another embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of the structure of a reticle according to an embodiment of the disclosure.
  • FIG. 7 shows a schematic diagram of a structure for setting an angular limit position in a reticle according to an embodiment of the disclosure.
  • FIG. 8 shows a schematic diagram of the structure of a display device according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic diagram of a display substrate according to an embodiment of the present disclosure.
  • the display substrate 1 includes a substrate 10 and a plurality of sub-pixels 20 .
  • the substrate 10 includes a display area A and a peripheral area B located around the display area A.
  • a plurality of sub-pixels 20 are located in the display area A on the substrate 10 .
  • FIG. 2 illustrates a cross-sectional view of the display substrate shown in FIG. 1 at line LL according to an embodiment of the present disclosure.
  • the display substrate 1 includes a plurality of sub-pixels 20 ( 201 , 202 , 203 ), and the plurality of sub-pixels 20 are separated by a pixel-defining layer 30 .
  • the sub-pixel 20 at least includes: a first electrode 21 located on the substrate 10, a first light-emitting layer 22 located on the first electrode 21, a charge generation layer 23 located on the first light-emitting layer 22, a second layer located on the charge generation layer 23 The second light emitting layer 24 and the second electrode 25 located on the second light emitting layer 24 .
  • the pixel defining layer 30 is located between the first electrode 21 and the first light emitting layer 22, the pixel defining layer 30 has a first opening 301 exposing the first electrode 21, and the pixel defining layer 30 has The edge portion 302 adjacent to the first opening 301 covers the edge portion of the first electrode 21 .
  • the charge generation layer 23 has a second opening 231 , and the orthographic projection of the second opening 231 on the substrate 10 at least partially overlaps with the orthographic projection of the pixel defining layer 30 on the substrate 10 .
  • the charge generation layer 23 has an edge portion 232 adjacent to the second opening 231, the orthographic projection of the edge portion 232 on the substrate 10 overlaps at least partially the orthographic projection of the pixel defining layer 30 on the substrate 10, and has a direction parallel to the substrate 10. In one example of the present disclosure, it may have a dimension of greater than or equal to 0.1 micron and less than or equal to 0.2 micron in a direction parallel to the substrate 10.
  • the substrate may include a silicon substrate, such as a single crystal silicon wafer.
  • the electrode material of the first electrode may include transparent conductive materials such as indium tin oxide.
  • the material of the second electrode may include aluminum, magnesium or an alloy material formed of the two.
  • the first light-emitting layer can be a yellow light-emitting layer, and the second light-emitting layer can be a blue light-emitting layer, so that the two can be mixed to produce white light.
  • the charge generation layer can include an n-type charge generation layer and a p-type charge generation layer, wherein the n-type charge generation layer can include an organic material film layer or a metal lithium layer containing doped metal lithium, and the p-type charge generation layer can include the following One of the film layers: HAT-CN (Hexanitrile hexaazatriphenylene), tetracyanodimethyl-p-benzoquinone (TCNQ), and tetrafluorotetracyanodimethyl-p-benzoquinone (F4TCNQ).
  • HAT-CN Hexaazatriphenylene
  • TCNQ tetracyanodimethyl-p-benzoquinone
  • F4TCNQ tetrafluorotetracyanodimethyl-p-benzoquinone
  • the area of the charge generation layer can be increased, thereby increasing the area of the charge generation layer.
  • the charge generation layer has a relatively high electrical conductivity, and by making the charge generation layer have the second opening, the lateral flow of current at the second opening can be blocked, and crosstalk between sub-pixels can be avoided.
  • sub-pixels shown in FIG. 2 are arranged in a 3 ⁇ 4 array. It can be understood that those skilled in the art can arrange the sub-pixels in any suitable manner and number according to actual needs.
  • the edge portion 232 of the charge generation layer 23 sequentially includes a first edge portion 232a and a second edge portion 232b in a direction away from the first opening 301 (ie, along the X direction shown).
  • the thickness of the first edge portion 232a gradually becomes smaller in a direction toward the first opening 301 (ie, in the direction opposite to the X direction), and the thickness of the first edge portion 232a is smaller than that of the second edge portion 232b.
  • the slope angle of the first edge portion 232a is ⁇ , and the slope angle ⁇ is greater than or equal to 40° and less than or equal to 70°.
  • the slope angle of the edge portion 302 of the pixel defining layer 30 is ⁇ , and the slope angle ⁇ is greater than or equal to 80° and less than or equal to 90°.
  • thickness refers to the distance of the film layer in the direction perpendicular to the substrate.
  • the slope angle ⁇ refers to the angle of the first edge portion 232a at the intersection of the surface aa of the first edge portion 232a and the top surface bb of the non-edge portion 232c of the charge generation layer 23, taking the intersection line as a tangent.
  • the slope angle ⁇ means that at the intersection line between the surface cc of the edge portion 302 of the pixel defining layer 30 and the top surface dd of the first electrode 21, the cut plane of the surface c of the edge portion 302 and the first electrode 21 with the intersection line as the tangent line
  • the angle between the top surface dd of refers to the angle of the first edge portion 232a at the intersection of the surface aa of the first edge portion 232a and the top surface bb of the non-edge portion 232c of the charge generation layer 23, taking the intersection line as a tangent.
  • the peripheral area B of the display substrate 1 may include: a cathode ring area B2 surrounding the display area A and a wiring area B1 disposed in sequence along a direction parallel to the substrate 10 away from the display area A.
  • the peripheral area B may further include: a first dummy area B3 surrounding the display area A, and a second dummy area B4 surrounding the cathode ring area B2.
  • the display area A may be a rectangular area, and the first free area B3, the cathode ring area B2, and the second free area B4 surround the periphery of the display area A in sequence.
  • the display area A can also be a rounded rectangle, a circle, a rectangle with an opening, or other shapes.
  • the charge generation layer may also be located in the first vacant area, the cathode ring area, and the second vacant area in the peripheral area of the substrate, and the second opening of the charge generation layer is not located in the first vacant area in the peripheral area. Free area, cathode ring area and second free area.
  • the manufacturing process of the display substrate can be simplified by not forming the second opening in the peripheral area.
  • the sub-pixel 20 further includes a color filter layer 26 on the second electrode 25 .
  • sub-pixel 201 may be a red sub-pixel
  • sub-pixel 202 may be a green sub-pixel
  • sub-pixel 203 may be a blue sub-pixel.
  • the color filter layer in the red sub-pixel is a red color filter layer, which may be formed of a photosensitive resin material containing a red pigment
  • the color filter layer in a green sub-pixel is a green color filter layer, which is made of a photosensitive resin material containing a green pigment.
  • the color filter layer in the blue sub-pixel is a blue color filter layer, which is formed of a photosensitive resin material containing blue pigment, so that each sub-pixel emits light of different colors.
  • FIG. 3 shows a cross-sectional view of a display substrate according to another embodiment of the present disclosure. As shown in FIG. 3 , the portion of the charge generation layer 23 between the red sub-pixel 201 and the green sub-pixel 202 does not have the second opening 231 .
  • FIG. 4 illustrates a cross-sectional view of a display substrate according to yet another embodiment of the present disclosure. As shown in FIG. 4 , the portion of the charge generation layer 23 between the red sub-pixel 201 and the blue sub-pixel 203 does not have the second opening 231 .
  • the red sub-pixel and the green sub-pixel share the same charge generation layer (that is, there is no second opening between the two sub-pixels), and with the display substrate shown in Figure 4, the red The sub-pixel and the blue sub-pixel share the same charge generation layer, which can simplify the manufacturing process of the display substrate.
  • FIGS. 3 and 4 are similar to those shown in FIG. 2 , and will not be described again here.
  • the sub-pixel 20 also includes a hole injection layer 27 and a first hole transport layer 28 sequentially located between the first electrode 21 and the first light-emitting layer 22, and is located between the first light-emitting layer 22 and the charge generation layer 23.
  • the display substrate 1 further includes a thin film encapsulation layer 34 located between the second electrode 25 and the color filter layer 26 .
  • the hole injection layer 27 may be located in the first opening 301 and cover at least a part of the edge portion 302 of the pixel defining layer 30 .
  • the orthographic projections of the pixel defining layer 30 and the hole injection layer 27 on the substrate 10 have at least a partially non-overlapping area.
  • the orthographic projection of the hole injection layer 27 on the substrate 10 overlaps the orthographic projection of the charge generation layer 23 on the substrate 10 .
  • the hole injection layer 27 may be located in the first opening 301 and cover the top surface of the pixel defining layer 30 located in the display area. In other words, adjacent to the second opening 231, the pixel defining layer 30 It overlaps with the orthographic projection of the hole injection layer 27 on the substrate 10 .
  • the same mask can be used to form the hole injection layer and the charge generation layer respectively, thereby saving the number of masks.
  • the first hole transport layer 28 covers the surface of the pixel defining layer 30 away from the substrate 10 and the surface of the hole injection layer 27 away from the substrate 10 .
  • the second hole transport layer 31 is located in the second opening 231 and covers the surface of the charge generation layer 23 away from the substrate 10 .
  • the thin film encapsulation layer may include a first inorganic encapsulation layer, an organic encapsulation layer and a second inorganic encapsulation layer sequentially stacked on the second electrode.
  • An organic encapsulation layer may be located between adjacent first and second inorganic encapsulation layers in order to achieve planarization and relieve stress between the inorganic encapsulation layers.
  • the inorganic encapsulation layer can effectively block moisture and oxygen from the outside, and prevent material degradation caused by water and oxygen intrusion into the light-emitting layer.
  • the display substrate may further include a pixel driving circuit for driving each sub-pixel.
  • the pixel driving circuit may include transistors and storage capacitors.
  • the transistor may be a thin film transistor, and the thin film transistor may be a top gate thin film transistor, a bottom gate thin film transistor or a double gate thin film transistor.
  • the types of any two transistors may be the same or different.
  • some transistors may be N-type transistors and some transistors may be P-type transistors.
  • the material of the active layer of some transistors may be low temperature polysilicon semiconductor material, and the material of the active layer of some transistors may be metal oxide semiconductor material.
  • the charge generation layer may be formed by evaporation using a mask.
  • Figure 6 shows a reticle according to an embodiment of the present disclosure, which includes a body 1' and a mask pattern 2' formed on the body 1', the body 1' is made of a silicon base, and also includes a mask pattern 2' formed on the body 1' A plurality of support structures 3', the plurality of support structures 3' are uniformly arranged on the body 1' and located in the area surrounded by the mask pattern 2', for supporting the body 1' and the mask pattern 2'.
  • the mechanical strength of the silicon-based reticle is increased by adding a support structure 3', a support body 1' and a mask pattern 2' to the silicon-based reticle, so that the silicon-based reticle is
  • the reliability of the work is good, and the multiple support structures 3' are evenly arranged and located in the area surrounded by the mask pattern 2', which can ensure that the supporting force for the mask plate is evenly distributed along the extension surface of the body 1', and then Ensure that the overall force on the mask is uniform, avoid the phenomenon that a certain position of the mask is broken due to excessive force and drooping due to uneven force, and then ensure the reliability of the mask.
  • the thickness direction is at a set angle.
  • the end of the support structure 3' away from the mask pattern 2' is symmetrically provided with a slope surface, and the symmetrical slope surface is the same as the set angle of the thickness direction of the body 1', and the end of the support structure 3' away from the mask pattern 2' can be cylindrical, trapezoidal, or triangular, and the specific shape can be determined according to the mask. The actual situation is determined.
  • is the setting angle
  • H is the distance from the evaporation source 4' to the mask plate
  • D1 is the distance from the evaporation source 4' to the central point O of the evaporation chamber
  • D 2 is the distance from the pixel opening 21 ′ corresponding to the mask pattern 2 ′ closest to the support structure 3 ′ to the central point O of the evaporation chamber.
  • the evaporation source 4' is arranged in the evaporation chamber along the circumferential direction, and the connection between the evaporation source 4' and the pixel opening 21' corresponding to the mask pattern 2' closest to the support structure 3' In the right-angled triangle whose line is the hypotenuse, in order to ensure that the evaporation material ejected from the evaporation source 4' can pass through the mask pattern 2' closest to the support structure 3, it is necessary to ensure that the corresponding support structure 3' will not block the evaporation material.
  • FIG. 8 shows a schematic diagram of the structure of a display device according to an embodiment of the present disclosure.
  • the display device 2 includes the display substrate 1 as described above.
  • the area of the charge generation layer can be increased, thereby increasing the The number of electrons and holes generated, thereby enhancing the display effect.
  • the charge generation layer has a relatively high electrical conductivity, and by making the charge generation layer have the second opening, the lateral flow of current at the second opening can be blocked, and crosstalk between sub-pixels can be avoided.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本公开的实施例提供一种显示基板,其包括:基板,其包括显示区域和外围区域;在基板上且位于显示区域中的由像素限定层间隔开的多个子像素,其中,子像素包括:第一电极、第一发光层、以及电荷产生层,其中,像素限定层具有暴露第一电极的第一开口,其中,像素限定层的邻近第一开口的边缘部分覆盖第一电极的边缘部分,其中,电荷产生层具有第二开口,第二开口在基板上的正投影与像素限定层在基板上的正投影至少部分重叠,其中,电荷产生层具有邻近第二开口的边缘部分,电荷产生层的边缘部分在基板上的正投影与像素限定层在基板上的正投影重叠并具有在平行于基板的方向上大于等于0.01微米且小于等于0.5微米的尺寸。

Description

显示基板及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及显示装置。
背景技术
虚拟现实技术广泛应用于各种显示设备。为了使所显示的虚拟现实场景没有颗粒感,显示设备的屏幕分辨率(Pixel per inch,PPI)通常大于2000PPI。由于玻璃基的显示设备具有较小的PPI,因此,基于虚拟现实技术的近眼显示设备聚焦于硅基微型显示器(例如,微型OLED(Micro-OLED)、硅基液晶(LCOS)等)。Micro-OLED相比于LCOS具有很多优点,例如高对比度,较低功耗,因此,Micro-OLED是目前硅基微型显示器的研发热门。
发明内容
本公开的实施例提供了一种显示基板及显示装置。
根据本公开的第一方面,提供了一种显示基板。所述显示基板,包括:基板,其包括显示区域和位于所述显示区域周边的外围区域;在所述基板上且位于所述显示区域中的由像素限定层间隔开的多个子像素,其中,所述子像素包括:第一电极,位于所述基板上;第一发光层,位于所述第一电极上;以及电荷产生层,位于所述第一发光层上,其中,所述像素限定层位于所述第一电极与所述第一发光层之间,所述像素限定层具有暴露所述第一电极的第一开口,其中,所述像素限定层的邻近所述第一开口的边缘部分覆盖所述第一电极的边缘部分,其中,所述电荷产生层具有第二开口,所述第二开口在所述基板上的正投影与所述像素限定层在所述基板 上的正投影至少部分重叠,其中,所述电荷产生层具有邻近所述第二开口的边缘部分,所述电荷产生层的所述边缘部分在所述基板上的正投影与所述像素限定层在所述基板上的正投影重叠并具有在平行于所述基板的方向上大于等于0.01微米且小于等于0.5微米的尺寸。
在本公开的实施例中,所述显示基板还包括:第二发光层,位于所述电荷产生层上;以及第二电极,位于所述第二发光层上,其中,所述电荷产生层的所述边缘部分在所述基板上的正投影与所述像素限定层在所述基板上的正投影重叠并具有在平行于所述基板的方向上大于等于0.1微米且小于等于0.2微米的尺寸。
在本公开的实施例中,所述电荷产生层的所述边缘部分沿远离所述第一开口的方向依次包括第一边缘部分和第二边缘部分,所述第一边缘部分的厚度沿朝向所述第一开口的方向逐渐变小。
在本公开的实施例中,所述第一边缘部分的厚度小于所述第二边缘部分的厚度。
在本公开的实施例中,所述第一边缘部分的坡度角大于等于40°且小于等于70°。
在本公开的实施例中,所述像素限定层的所述边缘部分的坡度角大于等于80°且小于等于90°
在本公开的实施例中,所述外围区域包括沿平行于所述基板的方向上远离所述显示区域依次设置的:走线区域和位于所述显示区域的至少一侧的阴极环区域。
在本公开的实施例中,所述外围区域还包括:围绕所述显示区域的第一空闲区域、围绕所述阴极环区域的第二空闲区域,所述电荷产生层还位于所述基板的所述外围区域中的所述第一空闲区域、所述阴极环区域、以及所述第二空闲区域,以及所述第二开口不位于所述第一空闲区域、所述阴极环区域、以及所述第二空闲区域。
在本公开的实施例中,子像素包括红色子像素、绿色子像素以及蓝色子像素中的一个。
在本公开的实施例中,所述电荷产生层位于所述红色子像素与所述绿色子像素之间的部分不具有所述第二开口。
在本公开的实施例中,所述电荷产生层位于所述红色子像素与所述蓝色子像素之间的部分不具有所述第二开口。
在本公开的实施例中,子像素还包括依次位于所述第一电极与所述第一发光层之间的空穴注入层和第一空穴传输层,位于所述第一发光层与所述电荷产生层之间的第一电子传输层,位于所述电荷产生层与所述第二发光层之间的第二空穴传输层,依次位于所述第二发光层与所述第二电极之间的第二电子传输层和电子注入层。
在本公开的实施例中,所述空穴注入层位于所述第一开口中并至少覆盖所述像素限定层的所述边缘部分的一部分。
在本公开的实施例中,所述空穴注入层位于所述第一开口中并覆盖所述像素限定层位于所述显示区域的顶表面。
在本公开的实施例中,所述第一空穴传输层覆盖所述像素限定层的远离所述基板一侧的表面和所述空穴注入层的远离所述基板一侧的表面。
在本公开的实施例中,所述空穴注入层在所述基板上的正投影与所述电荷产生层在所述基板上的正投影重叠。
在本公开的实施例中,所述第二空穴传输层位于所述第二开口中并覆盖所述电荷产生层的远离所述基板一侧的表面。
根据本公开的第二方面,提供了一种显示装置。所述显示装置包括根据本公开的第二方面中的显示基板。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在说明的目的,并不旨在限制本申请的范围。
附图说明
本文中描述的附图用于仅对所选择的实施例的说明的目的,并不是所 有可能的实施方式,并且不旨在限制本申请的范围,其中:
图1示出了根据本公开的实施例的显示基板的示意图。
图2示出了根据本公开的实施例的显示基板的截面图。
图3示出了根据本公开的另一实施例的显示基板的截面图。
图4示出了根据本公开的又一实施例的显示基板的截面图。
图5示出了根据本公开的再一实施例的显示基板的截面图。
图6示出了根据本公开实施例的掩模版的结构的示意图。
图7示出了根据本公开实施例的掩模版中设定角度极限位置的结构的示意图。
图8示出了根据本公开的实施例的显示装置的结构的示意图。
具体实施方式
现将参考附图详细描述各种实施例,其作为本公开的示例性示例而提供,以使得本领域技术人员能够实现本公开。
值得注意的是,以下附图和示例并不意味着限制本公开的范围。在使用已知的组件(或方法或过程)可以部分或全部实现本公开的特定元件的情况下,将仅描述对理解本公开所需要的这种已知组件(或方法或过程)的那些部分,并且这种已知组件的其它部分的详细描述将被省略以便不会混淆本公开。进一步地,各种实施例通过说明的方式包含与在此涉及的组件等同的现在和未来已知的等同物。
除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,用语“包含”、“包括”、“含有”和“具有”及其语法变型旨在包括性的并且表示可以存在除所列要素之外的另外的要素。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。术语“第一”、“第二”、“第三”等仅用于描述的目的,而不能理解为指示或暗示相对重要性及形成顺序。
图1示出了根据本公开的实施例的显示基板的示意图。如图1所示,显示基板1包括基板10和多个子像素20。基板10包括显示区域A和位于显示区域A周边的外围区域B。多个子像素20在基板10上且位于显示区域A中。
图2示出了根据本公开的实施例的图1所示的显示基板在线LL处的截面图。如图2所示,显示基板1包括多个子像素20(201、202、203),并且多个子像素20由像素限定层30间隔开。子像素20至少包括:位于基板10上的第一电极21、位于第一电极21上的第一发光层22、位于第一发光层22上的电荷产生层23、位于电荷产生层23上的第二发光层24、以及位于第二发光层24上的第二电极25。
在图2所示的实施例中,像素限定层30位于第一电极21与第一发光层22之间,像素限定层30具有暴露第一电极21的第一开口301,以及像素限定层30的邻近第一开口301的边缘部分302覆盖第一电极21的边缘部分。
继续参考图2,电荷产生层23具有第二开口231,第二开口231在基板10上的正投影与像素限定层30在基板10上的正投影至少部分重叠。电荷产生层23具有邻近第二开口231的边缘部分232,边缘部分232在基板10上的正投影与像素限定层30在基板10上的正投影至少部分重叠,并具有在平行于基板10的方向上大于等于0.01微米(μm)且小于等于0.5微米(μm)的尺寸,在本公开的一个示例中,可以具有在平行于基板10的方向上大于等于0.1微米且小于等于0.2微米的尺寸。
在本公开的实施例中,基板可以包括硅基板,例如单晶硅圆片。第一电极的电极材料可以包括氧化铟锡等透明导电材料。第二电极的材料可以包括铝、镁或者二者形成的合金材料。第一发光层可以为黄色发光层,第二发光层可以为蓝色发光层,以使得二者可以混合成白光。电荷产生层可以包括n型电荷产生层和p型电荷产生层,其中,n型电荷产生层可以包括包含掺杂金属锂的有机材料膜层或者金属锂层,p型电荷产生层可以包括包含以下中的一个的膜层:HAT-CN(Hexanitrile  hexaazatriphenylene)、四氰二甲基对苯醌(TCNQ)、以及四氟四氰二甲基对苯醌(F4TCNQ)。
采用根据本公开的实施例的显示基板,通过使电荷产生层的边缘部分在基板上的正投影与像素限定层在基板上的正投影至少部分重叠,能够增加电荷产生层的面积,进而增加所产生的电子和空穴的数量,从而提升显示效果。
此外,电荷产生层具有较高的电导率,通过使电荷产生层具有第二开口,能够阻断电流在第二开口处的横向流通,避免子像素之间的串扰现象。
需要说明的是,图2所示的子像素以3×4的阵列方式进行布置,可以理解,本领域的技术人员可以根据实际需要,以任何合适的方式和数量来布置子像素。
继续参考图2,在图2的下方进一步示出了区域A和B的放大图。如区域A的放大图所示,电荷产生层23的边缘部分232沿远离第一开口301的方向(即,沿所示的X方向)依次包括第一边缘部分232a和第二边缘部分232b。第一边缘部分232a的厚度沿朝向第一开口301的方向(即,沿X方向的反方向)逐渐变小,并且第一边缘部分232a的厚度小于第二边缘部分232b的厚度。第一边缘部分232a的坡度角为α,并且坡度角α大于等于40°且小于等于70°。如区域B的放大图所示,像素限定层30的边缘部分302的坡度角为β,并且坡度角β大于等于80°且小于等于90°。在本申请中,厚度是指膜层在垂直于基板的方向上的距离。
需要说明的是,坡度角α是指在第一边缘部分232a的表面aa与电荷产生层23的非边缘部分232c的顶表面bb的交线处,以交线作为切线的第一边缘部分232a的表面aa的切面与非边缘部分232c的顶表面bb之间的夹角。坡度角β是指在像素限定层30的边缘部分302的表面cc与第一电极21的顶表面dd的交线处,以交线作为切线的边缘部分302的表面c的切面与第一电极21的顶表面dd之间的夹角。
继续参考图1,显示基板1的外围区域B可以包括沿平行于基板10的方向上远离显示区域A依次设置的:围绕显示区域A的阴极环区域B2 和走线区域B1。外围区域B还可以包括:围绕显示区域A的第一空闲(Dummy)区域B3、围绕阴极环区域B2的第二空闲区域B4。其中,显示区域A可以为矩形区域,第一空闲区域B3、阴极环区域B2、以及第二空闲区域B4依次围绕显示区域A的周边。显示区域A还可以为圆角矩形、圆形、带开口的矩形、或者其他形状。
在本公开的实施例中,电荷产生层还可以位于基板的外围区域中的第一空闲区域、阴极环区域和第二空闲区域,并且电荷产生层的第二开口不位于外围区域中的第一空闲区域、阴极环区域和第二空闲区域。不在外围区域形成第二开口,可以简化显示基板的制造工艺。
继续参考图2,子像素20还包括位于第二电极25上的彩膜层26。
在图2所示的实施例中,子像素201可以为红色子像素、子像素202可以为绿色子像素、以及子像素203可以为蓝色子像素。相应地,红色子像素中的彩膜层为红色彩膜层,其可以由包含红色色素的感光性树脂材料形成,绿色子像素中的彩膜层为绿色彩膜层,其由包含绿色色素的感光性树脂材料形成,蓝色子像素中的彩膜层为蓝色彩膜层,其由包含蓝色色素的感光性树脂材料形成,以使得各个子像素发射不同颜色的光。
图3示出了根据本公开的另一实施例的显示基板的截面图。如图3所示,电荷产生层23位于红色子像素201与绿色子像素202之间的部分不具有第二开口231。
图4示出了根据本公开的又一实施例的显示基板的截面图。如图4所示,电荷产生层23位于红色子像素201与蓝色子像素203之间的部分不具有第二开口231。
采用图3所示的显示基板,使红色子像素和绿色子像素共用相同的电荷产生层(即,两个子像素之间不具有第二开口),以及采用图4所示的显示基板,使红色子像素和蓝色子像素共用相同的电荷产生层,能够简化显示基板的制造工艺。
需要说明的是,图3和4所示的显示基板的其它结构和/或功能与图2所示的结构和/或功能类似,在此不再重复描述。
继续参考图2,子像素20还包括依次位于第一电极21与第一发光层22之间的空穴注入层27和第一空穴传输层28,位于第一发光层22与电荷产生层23之间的第一电子传输层29,位于电荷产生层23与第二发光层24之间的第二空穴传输层31,依次位于第二发光层24与第二电极25之间的第二电子传输层32和电子注入层33。此外,显示基板1还包括位于第二电极25与彩膜层26之间的薄膜封装层34。
在图2、3和4所示的实施例中,空穴注入层27可以位于第一开口301中并至少覆盖像素限定层30的边缘部分302的一部分。换言之,邻近第二开口231,像素限定层30与空穴注入层27在基板10上的正投影至少存在部分不交叠的区域。在图2、3和4所示的实施例中,空穴注入层27在基板10上的正投影与电荷产生层23在基板10上的正投影重叠。在图5所示的另一实施例中,空穴注入层27可以位于第一开口301中,并覆盖像素限定层30位于显示区域的顶表面,换言之,邻近第二开口231,像素限定层30与空穴注入层27在基板10上的正投影相交叠。在本公开的实施例中,可以采用相同的掩膜板分别形成空穴注入层和电荷产生层,进而节省掩膜板的数量。
在本公开的实施例中,如图2所示,第一空穴传输层28覆盖像素限定层30的远离基板10一侧的表面和空穴注入层27的远离基板10一侧的表面。第二空穴传输层31位于第二开口231中并覆盖电荷产生层23的远离基板10一侧的表面。
在本公开的实施例中,薄膜封装层可以包括依次层叠设置于第二电极上的第一无机封装层、有机封装层和第二无机封装层。有机封装层可以位于相邻的第一无机封装层和第二无机封装层之间,以便实现平坦化和减弱无机封装层之间的应力。无机封装层可以有效的阻隔外界的水分和氧气,避免水氧入侵发光层而导致材料降解。
在本公开的实施例中,显示基板还可以包括用于驱动各个子像素的像素驱动电路。像素驱动电路可以包括晶体管和存储电容。进一步地,晶体管可以为薄膜晶体管,薄膜晶体管可以为顶栅型薄膜晶体管、底栅型薄膜 晶体管或者双栅型薄膜晶体管。
可以理解的是,像素驱动电路中的各个晶体管中,任意两个晶体管之间的类型可以相同或者不相同。示例性地,在一个像素驱动电路中,部分晶体管可以为N型晶体管且部分晶体管可以为P型晶体管。再示例性地,在一个像素驱动电路中,部分晶体管的有源层的材料可以为低温多晶硅半导体材料,且部分晶体管的有源层的材料可以为金属氧化物半导体材料。
在本公开的实施例中,电荷产生层可以采用掩膜板通过蒸镀技术形成。如图6示出根据本公开实施例的掩模版,其包括本体1’以及形成于本体1’上的掩模图形2’,本体1’采用硅基制备,还包括形成于本体1’上的多个支撑结构3’,多个支撑结构3’均匀布置在本体1’上、且位于掩模图形2’所围成的区域内,用于支撑本体1’及掩模图形2’。
在上述掩模版中,通过在硅基制成的掩模版中增加支撑结构3’支撑本体1’及掩模图形2’,以增加硅基掩膜版的机械强度,使得硅基掩膜版在工作时的可靠性较好,多个支撑结构3’均匀布置且位于掩模图形2’所围成的区域内能够保证其对掩膜版的支撑力沿本体1’的延伸面分布均匀,进而保证掩膜版整体受力均匀,避免掩膜版某一位置因受力过大而破碎以及因受力不均而下垂的现象,进而保证掩膜版的可靠性较好。
在上述掩膜版的基础上,为了保证蒸镀的均匀性,具体地,如图7所示,支撑结构3’远离掩模图形2’的一端设有坡面,坡面与本体1’的厚度方向成设定角度。
在上述掩模版中,通过将支撑结构3’远离掩模图形2’的一端设置成坡面,即具有一定的角度,能够避免支撑结构3’在蒸镀过程中遮挡有机材料的蒸镀,进而能够保证蒸镀时蒸镀材料能够均匀地透过掩膜图形,从而保证了蒸镀的均匀性,而为了进一步保证均匀蒸镀,支撑结构3’远离掩模图形2’的一端对称设有坡面,且对称坡面与本体1’的厚度方向所称设定角度相同,支撑结构3’远离掩模图形2’的一端可以为圆柱形、梯形、三角形,具体的形状可以根据掩膜版的实际情况进行确定。
在上述掩膜版的基础上,为了进一步保证蒸镀的均匀性,更具体地, 如图7所示,设定角度满足下列公式:
tanθ=H/(D 1+D 2);
其中,θ为设定角度;
H为蒸发源4’到掩模版的距离;
D 1为蒸发源4’到蒸发腔室中心点O的距离;
D 2为与支撑结构3’最近的掩模图形2’所对应的像素开口21’到蒸发腔室中心点O的距离。
在上述掩模版中,蒸发源4’在蒸发腔室内沿圆周方向排布,以蒸发源4’、与支撑结构3’最近的掩模图形2’所对应的像素开口21’这两点的连线为斜边的直角三角形中,为了保证蒸发源4’喷出的蒸镀材料能够通过与支撑结构3最近的掩模图形2’,需要保证对应的支撑结构3’不会阻挡蒸镀材料的喷射,即极限情况是直角三角形的斜边正好与坡面相接触,且设定角度与直角三角形中直角边与本体1’厚度方向的夹角相同,且此时的设定角度θ可以根据公式tanθ=H/(D 1+D 2)计算出,通过上述公式计算出的θ为最大的设定角度,在设定角度满足以上条件时,对蒸镀的材料不遮挡,具体的掩模版设计时具体的设定角度可以小于根据公式tanθ=H/(D 1+D 2),具体的设定角度值可以根据掩膜版的实际情况进行确定。
图8示出了根据本公开实施例的显示装置的结构的示意图。如图8所示,显示装置2包括如上所述的显示基板1。采用根据本公开的实施例的显示装置2,通过使电荷产生层的边缘部分在基板上的正投影与像素限定层在基板上的正投影至少部分重叠,能够增加电荷产生层的面积,进而增加所产生的电子和空穴的数量,从而提升显示效果。此外,电荷产生层具有较高的电导率,通过使电荷产生层具有第二开口,能够阻断电流在第二开口处的横向流通,避免子像素之间的串扰现象。
以上为了说明和描述的目的提供了实施例的前述描述。其并不旨在是穷举的或者限制本申请。特定实施例的各个元件或特征通常不限于特定的实施例,但是,在合适的情况下,这些元件和特征是可互换的并且可用在所选择的实施例中,即使没有具体示出或描述。同样也可以以许多方式来 改变。这种改变不能被认为脱离了本申请,并且所有这些修改都包含在本申请的范围内。

Claims (18)

  1. 一种显示基板,包括:
    基板,其包括显示区域和位于所述显示区域周边的外围区域;
    在所述基板上且位于所述显示区域中的由像素限定层间隔开的多个子像素,其中,所述子像素包括:
    第一电极,位于所述基板上;
    第一发光层,位于所述第一电极上;以及
    电荷产生层,位于所述第一发光层上,
    其中,所述像素限定层位于所述第一电极与所述第一发光层之间,所述像素限定层具有暴露所述第一电极的第一开口,其中,所述像素限定层的邻近所述第一开口的边缘部分覆盖所述第一电极的边缘部分,
    其中,所述电荷产生层具有第二开口,所述第二开口在所述基板上的正投影与所述像素限定层在所述基板上的正投影至少部分重叠,
    其中,所述电荷产生层具有邻近所述第二开口的边缘部分,所述电荷产生层的所述边缘部分在所述基板上的正投影与所述像素限定层在所述基板上的正投影重叠并具有在平行于所述基板的方向上大于等于0.01微米且小于等于0.5微米的尺寸。
  2. 根据权利要求1所述的显示基板,还包括:
    第二发光层,位于所述电荷产生层上;以及
    第二电极,位于所述第二发光层上,
    其中,所述电荷产生层的所述边缘部分在所述基板上的正投影与所述像素限定层在所述基板上的正投影重叠并具有在平行于所述基板的方向上大于等于0.1微米且小于等于0.2微米的尺寸。
  3. 根据权利要求2所述的显示基板,其中,所述电荷产生层的所述边缘部分沿远离所述第一开口的方向依次包括第一边缘部分和第二边缘部分,所述第一边缘部分的厚度沿朝向所述第一开口的方向逐渐变小。
  4. 根据权利要求3所述的显示基板,其中,所述第一边缘部分的厚度小于所述第二边缘部分的厚度。
  5. 根据权利要求3所述的显示基板,其中,所述第一边缘部分的坡度角大于等于40°且小于等于70°。
  6. 根据权利要求1所述的显示基板,其中,所述像素限定层的所述边缘部分的坡度角大于等于80°且小于等于90°
  7. 根据权利要求1所述的显示基板,其中,所述外围区域包括沿平行于所述基板的方向上远离所述显示区域依次设置的:走线区域和位于所述显示区域的至少一侧的阴极环区域。
  8. 根据权利要求7所述的显示基板,其中,所述外围区域还包括:围绕所述显示区域的第一空闲区域、围绕所述阴极环区域的第二空闲区域,所述电荷产生层还位于所述基板的所述外围区域中的所述第一空闲区域、所述阴极环区域、以及所述第二空闲区域,以及所述第二开口不位于所述第一空闲区域、所述阴极环区域、以及所述第二空闲区域。
  9. 根据权利要求1所述的显示基板,其中,子像素包括红色子像素、绿色子像素以及蓝色子像素中的一个。
  10. 根据权利要求9所述的显示基板,其中,所述电荷产生层位于所述红色子像素与所述绿色子像素之间的部分不具有所述第二开口。
  11. 根据权利要求9所述的显示基板,其中,所述电荷产生层位于所述红色子像素与所述蓝色子像素之间的部分不具有所述第二开口。
  12. 根据权利要求2所述的显示基板,其中,子像素还包括依次位于所述第一电极与所述第一发光层之间的空穴注入层和第一空穴传输层,位于所述第一发光层与所述电荷产生层之间的第一电子传输层,位于所述电荷产生层与所述第二发光层之间的第二空穴传输层,依次位于所述第二发光层与所述第二电极之间的第二电子传输层和电子注入层。
  13. 根据权利要求12所述的显示基板,其中,所述空穴注入层位于所述第一开口中并至少覆盖所述像素限定层的所述边缘部分的一部分。
  14. 根据权利要求12所述的显示基板,其中,所述空穴注入层位于所述第一开口中并覆盖所述像素限定层位于所述显示区域的顶表面。
  15. 根据权利要求12所述的显示基板,其中,所述第一空穴传输层覆 盖所述像素限定层的远离所述基板一侧的表面和所述空穴注入层的远离所述基板一侧的表面。
  16. 根据权利要求12所述的显示基板,其中,所述空穴注入层在所述基板上的正投影与所述电荷产生层在所述基板上的正投影重叠。
  17. 根据权利要求12所述的显示基板,其中,所述第二空穴传输层位于所述第二开口中并覆盖所述电荷产生层的远离所述基板一侧的表面。
  18. 一种显示装置,包括根据权利要求1-17中任一项所述的显示基板。
PCT/CN2022/076617 2022-02-17 2022-02-17 显示基板及显示装置 WO2023155095A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/076617 WO2023155095A1 (zh) 2022-02-17 2022-02-17 显示基板及显示装置
CN202280000237.2A CN116941344A (zh) 2022-02-17 2022-02-17 显示基板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076617 WO2023155095A1 (zh) 2022-02-17 2022-02-17 显示基板及显示装置

Publications (1)

Publication Number Publication Date
WO2023155095A1 true WO2023155095A1 (zh) 2023-08-24

Family

ID=87577324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076617 WO2023155095A1 (zh) 2022-02-17 2022-02-17 显示基板及显示装置

Country Status (2)

Country Link
CN (1) CN116941344A (zh)
WO (1) WO2023155095A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810381A (zh) * 2014-01-24 2015-07-29 索尼公司 有机el元件、显示装置和照明装置
CN110400822A (zh) * 2018-04-24 2019-11-01 三星显示有限公司 有机电致发光显示装置
CN113451524A (zh) * 2020-03-27 2021-09-28 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法
CN113921573A (zh) * 2021-09-30 2022-01-11 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN113972256A (zh) * 2021-10-26 2022-01-25 京东方科技集团股份有限公司 阵列基板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810381A (zh) * 2014-01-24 2015-07-29 索尼公司 有机el元件、显示装置和照明装置
CN110400822A (zh) * 2018-04-24 2019-11-01 三星显示有限公司 有机电致发光显示装置
CN113451524A (zh) * 2020-03-27 2021-09-28 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法
CN113921573A (zh) * 2021-09-30 2022-01-11 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN113972256A (zh) * 2021-10-26 2022-01-25 京东方科技集团股份有限公司 阵列基板及显示装置

Also Published As

Publication number Publication date
CN116941344A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2021018301A1 (zh) 显示基板以及显示装置
CN110265583B (zh) 一种显示面板及其制备方法、显示装置
US11552131B2 (en) Electroluminescent display panel and display device
TWI806137B (zh) 有機發光顯示裝置之畫素排列結構
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
JP2017199675A (ja) 有機発光表示装置及びその製造方法
US10170526B1 (en) Organic light emitting diode display panel and method for manufacturing same
WO2022188214A1 (zh) 显示面板及其制备方法
TW201705469A (zh) 有機發光顯示裝置
WO2022267549A1 (zh) 显示基板以及显示装置
WO2022011749A1 (zh) 触控显示装置
TW202139158A (zh) 顯示面板及顯示裝置
WO2020228429A1 (zh) 显示基板、显示面板和显示装置
US11532678B2 (en) Touch display device
WO2023134675A9 (zh) 显示基板和显示装置
WO2021184306A1 (zh) 显示基板以及显示装置
JP7182569B2 (ja) 発光素子及びその製造方法、表示装置
WO2021016945A1 (zh) 显示基板和显示装置
WO2022052010A1 (zh) 一种显示基板及相关装置
WO2021184305A1 (zh) 显示基板以及显示装置
CN111710792A (zh) 显示面板及显示面板的制备方法
US20240099079A1 (en) Display apparatus, and display panel and manufacturing method therefor
US20220223669A1 (en) Display device
US11871620B2 (en) OLED display panel having fence structure under anode
WO2024022084A1 (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000237.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18004756

Country of ref document: US