WO2022267549A1 - 显示基板以及显示装置 - Google Patents

显示基板以及显示装置 Download PDF

Info

Publication number
WO2022267549A1
WO2022267549A1 PCT/CN2022/079643 CN2022079643W WO2022267549A1 WO 2022267549 A1 WO2022267549 A1 WO 2022267549A1 CN 2022079643 W CN2022079643 W CN 2022079643W WO 2022267549 A1 WO2022267549 A1 WO 2022267549A1
Authority
WO
WIPO (PCT)
Prior art keywords
corner
opening
openings
spacers
sub
Prior art date
Application number
PCT/CN2022/079643
Other languages
English (en)
French (fr)
Inventor
王本莲
杜丽丽
刘聪
秦成杰
张微
黄炜赟
胡明
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/029,317 priority Critical patent/US20230371336A1/en
Priority to KR1020237013052A priority patent/KR20240024035A/ko
Priority to EP22827054.2A priority patent/EP4207305A4/en
Publication of WO2022267549A1 publication Critical patent/WO2022267549A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape

Definitions

  • At least one embodiment of the present disclosure relates to a display substrate and a display device.
  • Organic Light-Emitting Display is a self-luminous device with a series of advantages such as high brightness, full viewing angle, fast response speed, and flexible display.
  • Organic light-emitting diode display devices can be divided into passive matrix OLED (Passive Matrix OLED) and active matrix OLED (Active Matrix OLED) according to the driving method.
  • Passive Matrix OLED Passive Matrix OLED
  • Active Matrix OLED Active Matrix OLED
  • AMOLED display devices have higher luminous efficiency and can be used as high-resolution large-size display device.
  • At least one embodiment of the present disclosure provides a display substrate and a display device.
  • At least one embodiment of the present disclosure provides a display substrate, including: a base substrate; a plurality of sub-pixels located on the base substrate, the plurality of sub-pixels include a plurality of light emitting regions; a pixel defining layer located on the substrate On the base substrate, the pixel defining layer includes a plurality of openings to define the plurality of light emitting regions; and a plurality of spacers are located on the side of the pixel defining layer away from the base substrate and distributed on adjacent space between openings.
  • the shape of at least one opening is a shape obtained by truncating at least one vertex of a polygon, and the corners of the opening include a first corner, and the first corner is a part of the polygon clipped by two sides.
  • the ratio of the length of the truncated portion of at least one of the two sides to the length of the side is 0.2 ⁇ 0.8.
  • each spacer is disposed at a space between the first corner and an opening adjacent to the first corner.
  • the number of openings having the first corner is not less than the number of the plurality of spacers.
  • the opening having the first corner is configured to define a light emitting area of at least one color sub-pixel.
  • the openings having the first corner include openings of the same type.
  • the openings having the first corner and configured to define light emitting regions of sub-pixels of the same color include at least two types of openings, among different types of openings, the first The vertices of the corners point to different directions from the vertices of the opposite corners, and at least part of the plurality of spacers are distributed at the intervals corresponding to the same type of openings.
  • the plurality of spacers include a plurality of first spacers, and the plurality of first spacers are distributed in all the corners corresponding to the first corners of the same type of openings.
  • the gaps, and the plurality of first spacers are evenly distributed.
  • the at least two types of openings include a first type of opening and a second type of opening, and the plurality of first spacers are distributed on at least part of the first type of openings.
  • the intervals corresponding to the corners; the plurality of spacers also include a plurality of second spacers, and the plurality of second spacers are distributed at the first corners of at least part of the second type of openings corresponding intervals, and the plurality of second spacers are evenly distributed.
  • the at least two types of openings further include a third type of opening and a fourth type of opening, the first type of opening, the second type of opening, the third type of opening and
  • the vertices of the first corners of the two types of openings in the fourth type of openings point opposite to the vertices of the opposite corners, and the vertices of the first corners of the other two types of openings point opposite to them.
  • At least part of the spacer is distributed between the first corner of the opening configured to define sub-pixels of different colors and the opening adjacent to the first corner. interval.
  • At least two openings adjacent to at least one spacer both include the first corner, and the first corners of the at least two openings are the openings where they are located. the corner closest to the spacer.
  • each sub-pixel includes a light-emitting element
  • the light-emitting element includes a first electrode, a light-emitting layer, and a second electrode that are stacked, and the second electrode is located on the side where the light-emitting layer faces the substrate.
  • One side of the base substrate, and the second electrode includes a body electrode, at least partially having the body electrode of the corresponding sub-pixel in the opening of the first corner portion having substantially the same shape as the opening.
  • the plurality of sub-pixels includes a plurality of first-color sub-pixels, a plurality of second-color sub-pixels, and a plurality of third-color sub-pixels, and the plurality of first-color sub-pixels and The plurality of sub-pixels of the third color are arranged alternately along the row direction and the column direction to form a plurality of first pixel rows and a plurality of first pixel columns, and the plurality of second-color sub-pixels are arranged along the row direction and the plurality of first pixel columns.
  • the column directions are all arranged in an array to form a plurality of second pixel rows and a plurality of second pixel columns, and the plurality of first pixel rows and the plurality of second pixel rows are arranged alternately along the column direction and at the Staggering each other in the row direction, the plurality of first pixel columns and the plurality of second pixel columns are alternately arranged along the row direction and staggered from each other in the column direction;
  • the plurality of openings include a plurality of first an opening, a plurality of second openings, and a plurality of third openings, the plurality of first openings are configured to define light emitting regions of the plurality of first color sub-pixels, the plurality of second openings are configured to define the Light emitting regions of a plurality of second color sub-pixels, the plurality of third openings configured to define the light emitting regions of the plurality of third color sub-pixels; the first opening, the second opening and the first At least one of the three openings includes the first corner.
  • At least part of the plurality of spacers are distributed at intervals between two adjacent openings arranged along at least one of the column direction and the row direction.
  • four sub-pixels of the second color are arranged between adjacent spacers along one of the row direction and the column direction, and along the row direction and the column direction In the other direction of the column, two sub-pixels of the first color and two sub-pixels of the third color are arranged between adjacent spacers; or, along the direction of the row and the column In one direction, six sub-pixels of the second color are arranged between adjacent spacers, and in the other direction of the row direction and the column direction, three sub-pixels are arranged between adjacent spacers.
  • the openings having the first corner and configured to define light emitting regions of sub-pixels of the same color include at least two types of openings, among different types of openings, the first The apex of the corner pointing to the direction of the apex of the opposite corner is different, the plurality of spacers include a plurality of first spacers and a plurality of second spacers, the first spacers and the plurality of spacers The second spacers are distributed at intervals corresponding to the first corners of different types of openings.
  • the second color are arranged between adjacent first spacers, and along the row direction and the other of the column direction, two sub-pixels of the first color and two sub-pixels of the third color are arranged between adjacent first spacers; along the row direction and the In one of the column directions, four sub-pixels of the second color are arranged between adjacent to the second spacer, and along the other of the row direction and the column direction, adjacent to the second spacer Two sub-pixels of the first color and two sub-pixels of the third color are arranged between the pads.
  • At least part of the third opening includes the first corner, and each spacer is disposed on the first corner of the third opening and the adjacent corners of the third opening. spaces between the first openings.
  • the distance between the spacer and the first corner on one side is the first distance
  • the distance between the spacer and the opening on the other side is the first distance
  • the shortest distance at the corner is the second distance
  • the first distance is not less than the second distance
  • At least one of the row direction and the column direction, the opposite corners of the two openings located on both sides of the spacer and immediately adjacent to the spacer The connecting line of the part is located on the side of the geometric center of the spacer away from the first corner part.
  • two adjacent openings along at least one of the row direction and the column direction both include the first corner portion, and the two openings of the two openings
  • the first corners are the two corners closest to each other.
  • At least part of the opening includes at least two first corners.
  • the maximum dimension of at least one spacer in a direction parallel to the line connecting the geometric center of the opening where the first corner part is located and the geometric center of the adjacent opening is A dimension
  • the largest dimension in the direction perpendicular to the connecting line is a second dimension
  • the first dimension is smaller than the second dimension
  • the display substrate includes a display area, at least part of the plurality of spacers and the plurality of sub-pixels are located in the display area, located in the first corner and in contact with the display area.
  • the ratio of the number of the spacers in the space between adjacent openings of the first corner to the number of the spacers in the display area is not less than 50%.
  • the shape and size of the light-emitting layers of sub-pixels of the same color are the same, the boundary of the light-emitting layer on the pixel defining layer and the first angle corresponding to the light-emitting layer A distance of a portion is different from a distance between a boundary of the light emitting layer on the pixel defining layer and other corners corresponding to the light emitting layer.
  • the corner of the opening further includes a second corner, the intersection of two sides connecting the two ends of the first corner or their extensions to the geometric center of the opening The distance is greater than the distance from the intersection of the two sides constituting the second corner or their extensions to the geometric center of the opening.
  • At least one embodiment of the present disclosure provides a display device, including any one of the above display substrates.
  • FIG. 1 is a schematic diagram of a local planar structure of a pixel arrangement provided according to an example of an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of a pixel defining layer and a spacer provided according to an example of an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a partial cross-sectional structure cut along the line AB shown in Fig. 1 and Fig. 2;
  • Figure 4A is a schematic diagram of the shape of an opening shown in Figure 2;
  • Fig. 4B is a schematic diagram of another light-emitting region shape
  • 5A is a schematic plan view of a pixel defining layer and a spacer
  • 5B is a schematic diagram of a partial planar structure of an example of a pixel defining layer and a spacer shown in FIG. 2;
  • FIG. 5C is a partial plan view of another example of the pixel defining layer and the spacer shown in FIG. 2;
  • FIG. 6 is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure
  • Figure 7 is an enlarged view of an opening shown in Figure 2;
  • FIG. 8A is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure
  • FIG. 8B is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • 8C is a schematic plan view showing the substrate
  • FIG. 9 is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • FIG. 10A is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure
  • FIG. 10B is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • FIG. 10C is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • FIG. 11A is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • 11B is a schematic diagram of the corresponding relationship between the light emitting layer of some sub-pixels and the corresponding opening;
  • FIG. 13 is a schematic diagram of a partial planar structure of an active semiconductor layer
  • FIG. 14 is a schematic diagram of a partial planar structure of the first conductive layer
  • 15 is a schematic diagram of a partial planar structure of a second conductive layer
  • 16 is a schematic diagram of a local planar structure of a source-drain metal layer
  • FIG. 17 is a schematic plan view of the second electrode of some sub-pixels.
  • FIG. 18 is a lamination diagram of light emitting regions, active semiconductor layers, first conductive layers, second conductive layers, and source-drain metal layers of some sub-pixels.
  • Embodiments of the present disclosure provide a display substrate and a display device.
  • the display substrate includes a base substrate, a plurality of sub-pixels on the base substrate, a pixel defining layer and a plurality of spacers.
  • a plurality of sub-pixels includes a plurality of light emitting regions;
  • the pixel defining layer includes a plurality of openings to define a plurality of light emitting regions;
  • a plurality of spacers are located on the side of the pixel defining layer away from the base substrate, and are distributed between adjacent openings interval.
  • the shape of at least one opening is a shape obtained by truncating at least one vertex of a polygon, and the corners of the opening include a first corner, and the first corner is an angle formed by truncating a vertex of a polygon formed by two sides. part; at least one spacer is arranged at the interval between the first corner and its adjacent opening, and the geometric center of the opening where the first corner is located is connected to the geometric center of the adjacent opening A wire passes through the first corner and the spacer.
  • spacers are provided at intervals between the openings of the pixel defining layer corresponding to the first corner, which is beneficial to improve the process yield or improve the supporting function of the spacers.
  • FIG. 1 is a schematic diagram of a partial planar structure of pixel arrangement provided according to an example of an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a planar structure of a pixel defining layer and a spacer provided according to an example of an embodiment of the present disclosure.
  • FIG. 3 is Schematic diagram of the local cross-sectional structure taken along the AB line shown in Figure 1 and Figure 2.
  • the display substrate includes a base substrate 10 , a plurality of sub-pixels 100 located on the base substrate 10 , a pixel defining layer 200 and a plurality of spacers located on the side of the pixel defining layer 200 away from the base substrate 10 .
  • Bedding Photo Spacer, PS
  • the plurality of sub-pixels 100 includes a plurality of light emitting areas 101 , for example, each sub-pixel 100 includes a light emitting area 101 , and the pixel defining layer 200 includes a plurality of openings 210 to define the light emitting areas 101 of the plurality of sub-pixels 100 .
  • each sub-pixel 100 includes a light emitting element 1000, and the light emitting element 1000 includes a stacked first electrode 1100, a light emitting layer 1300, and a second electrode 1200, and the second electrode 1200 is located on the side of the light emitting layer 1300 facing the substrate 10.
  • the second electrode 1200 is located on the side of the pixel defining layer 200 facing the base substrate 10 .
  • the first electrode 1100 and the second electrode 1200 located on both sides of the light emitting layer 1300 can drive the light emitting layer 1300 in the opening 210 of the pixel defining layer 200 to emit light.
  • a functional layer is further disposed in at least one of between the light emitting layer 1300 and the first electrode 1100 and between the light emitting layer 1300 and the second electrode 1200 .
  • the functional layer includes any one of a hole injection layer, a hole transport layer, an electron transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer, an auxiliary light-emitting layer, an interface improvement layer, an anti-reflection layer, etc. or multiple layers.
  • the orthographic projection of the opening 210 of the pixel defining layer 200 on the base substrate 10 is located within the orthographic projection of the corresponding light-emitting layer 1300 on the base substrate 10, that is, the light-emitting layer 1300 covers the
  • the pixel defines the opening 210 of the layer 200 .
  • the area of the light-emitting layer 1300 is larger than the area of the corresponding opening 210 of the pixel-defining layer 200, that is, the light-emitting layer 1300 includes at least the portion on the physical structure covering the pixel-defining layer 200 except for the part located inside the opening 210 of the pixel-defining layer 200. part.
  • the light emitting layer 1300 is covered on the physical structure of the pixel defining layer 200 at each boundary of the opening 210 of the pixel defining layer 200 .
  • a plurality of spacers 300 are distributed at intervals between adjacent openings 210 of the pixel defining layer 200 .
  • the above space refers to the physical structure of the pixel defining layer 200 between adjacent openings 210 , for example, the spacer 300 is located on the physical structure of the pixel defining layer 200 .
  • the embodiment of the present disclosure uses the pixel defining layer 200 and the spacer 300 as two mutually independent structures, but is not limited thereto.
  • the spacer and the pixel defining layer may have an integral structure, For example, it is integrally formed in the same patterning process without obvious boundaries.
  • the spacer and the pixel definition layer can be bounded by the position where the inflection point of the slope angle curve occurs.
  • the slope angle can be from large to small, until the pixel defining layer is close to flat
  • the slope angle can be roughly 0° to 5°; on the surface where the pixel-defining layer is close to flat, to the boundary of the spacer, the slope angle shows an upward trend again, for example, at the boundary of the spacer, the slope angle can be approximately It increases from close to 0° to about 10° (for example, 5° to 10°), or more than 10°.
  • the aforementioned slope angle may be the angle between the circumscribed line drawn at the position of the measurement point and the plane where the closest second electrode (for example, an anode) is away from the surface of the substrate.
  • the thickness of the part of the pixel defining layer not provided with a spacer is a first thickness (for example, the average thickness of a part close to flat)
  • the maximum thickness of a part of the pixel defining layer provided with a spacer is a second thickness
  • the spacer The boundary between the pixel definition layer and the pixel definition layer can be defined as the pixel definition layer itself from the surface of the pixel definition layer on the side close to the base substrate to the first thickness, and the part beyond the first thickness to the second thickness is the spacer part.
  • the first thickness (eg, the average thickness of the nearly flat portion) may be 0.8-1.8 ⁇ m.
  • the first thickness may be greater than or equal to 1.1 ⁇ m.
  • the first thickness may be less than 3 ⁇ m. Because the pixel defining layer is a part of the encapsulation organic layer barrier dam, the thickness is too small, and the organic layer overflow may easily occur and affect the encapsulation effect. If the first thickness of the pixel defining layer is too thick, it is likely to cause relatively large restrictions on the light output angle and affect the light output efficiency.
  • the slope angle of the portion of the pixel defining layer 200 close to the opening 210 may be 15°-25°.
  • the slope angle of the portion of the pixel defining layer 200 close to the opening 210 may be 17°-21°.
  • the slope angle of the portion of the pixel defining layer 200 close to the opening 210 may be 18°-20°.
  • FIG. 3 schematically shows that the spacers are disposed on the pixel defining layer, but not limited thereto, the spacers can also be disposed on other film layers, for example, the spacers can be disposed on the opposite substrate.
  • FIG. 4A is a schematic diagram of the shape of an opening shown in FIG. 2 .
  • at least one opening 210 is in the shape of a polygon 400 truncated by at least one vertex 401 , and the corners of the opening 210 include a first corner 1011 , and the first corner 1011 is the polygon 400 is A first corner 1011 is formed by cutting off a corner 401 sandwiched by two sides 410 .
  • the section line 402 used to truncate the vertex 401 of the polygon 400 may include regular-shaped line segments such as curves and straight lines, and may also be irregular-shaped line segments.
  • each side of each opening 210 or its extension line is connected in turn to form a polygon 400, and at least part of the multiple corners of the polygon 400 have areas that do not overlap with multiple corners of the corresponding opening; at least one of the openings 210 Among the plurality of corners, at least the first corner 1011 is included, and the area of the region where the first corner 1011 and the corresponding vertices of the polygon 400 do not overlap is greater than that of at least part of the other corners. The area of the area where the corner and the vertex of the polygon 400 corresponding to the corner do not overlap.
  • the embodiment of the present disclosure schematically shows that the polygon 400 is a quadrilateral.
  • the shape of the polygon 400 corresponding to at least one opening 210 may be a rhombus, a rectangle, or a square, but it is not limited thereto.
  • the polygon 400 may also be a triangle, five A polygon or a hexagon, etc., are not limited in this embodiment of the present disclosure.
  • the angles of the respective corners of the polygon may be equal or different.
  • the first corner 1011 includes a vertex P, which can be formed on the connecting line 403 by the two sides connected to the two ends of the first corner 1011 extending toward the vertex P and converging. A section of the curve (that is, the outer edge of the corner) so that the first corner 1011 becomes a round chamfer.
  • the first corner 1011 can be from the vertex P as the center along the range of x microns along the contour, x microns The value of can be 2-7 microns.
  • the corner of the opening 210 further includes a second corner 1012, and the distance from the intersection of the two sides connecting the two ends of the first corner 1011 or their extensions to the geometric center of the opening 210 is greater than that constituting the corner. The distance from the intersection point of the two sides of the second corner portion 1012 or their extensions to the geometric center of the opening 210 .
  • the two ends connected to the first corner is greater than the distance from the intersection of the extensions of the two straight sides forming the corner opposite to the first corner to the geometric center O.
  • the above-mentioned "round chamfer” is a corner formed by a section of a curve, which can be a circular arc or an irregular curve, such as a curve intercepted from an ellipse, a wavy line, etc.
  • the embodiment of the present disclosure schematically shows that the curve has a shape convex outward relative to the geometric center O of the opening 210 , but is not limited thereto, and the curve may also have a concave shape relative to the geometric center O of the opening 210 .
  • the central angle of the arc may range from 10° to 150°.
  • the central angle of the arc may range from 60° to 120°.
  • the range of the central angle of the arc may be 90°.
  • the curve length of the fillet included in the first corner 1011 may be 10-60 microns.
  • the radius of curvature may be 5-20 microns.
  • FIG. 4B is a schematic diagram of another light emitting region shape.
  • the above-mentioned first corner can also be a line segment formed by two sides forming a certain vertex extending toward its vertex P and converging (that is, the outer edge of the corner), so that the first corner becomes
  • the chamfer for example, the first corner 1011 includes a chamfer, and the apex of the first corner may be on the line 403 , such as the intersection of the line 403 and the chamfer.
  • At least one spacer 300 is disposed at the interval between the first corner 1011 and the opening 210 adjacent thereto, and the first corner 1011 is located at the geometric center of the opening 210 where it is located.
  • One side close to the adjacent opening 210 makes the first corner 1011 face the adjacent opening 210 .
  • the first corner portion 1011 facing the adjacent opening means that the outer edge of the first corner portion 1011 protrudes toward the adjacent opening.
  • the line C01 connecting the geometric center of the opening 201 where the first corner 1011 is located and the geometric center of the adjacent opening 210 passes through the first corner 1011 and the spacer Object 300.
  • spacers are provided at intervals between the openings of the pixel defining layer corresponding to the first corner, which is beneficial to improve the process yield or improve the supporting function of the spacers.
  • the above-mentioned "interval position of the opening of the pixel defining layer corresponding to the first corner" refers to the interval adjacent to the outer edge of the corner.
  • a spacer is provided at the interval corresponding to the first corner, which can increase the distance between the spacer and the opening, and/or increase the size of the spacer, which can reduce the probability of the spacer falling off, This will help improve the process yield of the product.
  • the spacer can play the role of supporting the fine metal mask (FMM) for evaporating the light-emitting layer.
  • the FMM has a plurality of through holes, and the through holes can be engraved. The holes are formed by etching, and the evaporation material is deposited on the pixel defining layer through the through holes from bottom to top. Because the FMM is made of metal, it is easy to damage the material deposited on the substrate when it comes into contact with the substrate.
  • a spacer is provided on the pixel defining layer to support the FMM during evaporation, preventing the FMM from scratching the surface of the film layers such as the pixel defining layer.
  • the base substrate is placed on top of the substrate, and the spacer is bonded to the FMM.
  • spacers are provided at the intervals corresponding to the corners, which can increase the distance between the spacers and the opening, and/or, increase the size of the spacers, which is beneficial to improve the impact of the spacers on the fine metal mask. supporting role.
  • the interval on the lower side of the opening 210 A spacer 300 is provided.
  • the embodiment of the present disclosure is not limited thereto. If the first corner of an opening faces upward (the direction indicated by the arrow in the Y direction as shown in FIG.
  • spacers are provided at intervals on the upper side of the opening; an opening If the first corner of the opening faces to the right (as shown in Figure 2 and the direction indicated by the arrow in the X direction), a spacer is provided at the interval on the right side of the opening; if the first corner of the opening faces to the left (Fig. 2 shows the direction opposite to the direction indicated by the arrow in the X direction), then a spacer is provided at the interval on the left side of the opening.
  • the orientation of the first corner of an opening is not limited to the above-mentioned upward, downward, leftward, or rightward directions (these orientations are all roughly parallel to the row direction and the column direction), and may also be oriented in an oblique direction.
  • the oblique direction is a direction intersecting both the row direction and the column direction.
  • the angle between the oblique direction and the row direction may be 20-80 degrees, or 30-70 degrees, or 45-60 degrees.
  • the orientation of the first corner of the opening can also be obliquely upward (such as obliquely upward to the left, or obliquely upward to the right), obliquely downward (such as obliquely downward to the left, or obliquely downward to the right).
  • the spacer 300 is provided with two adjacent openings 210 on both sides in one direction, at least one opening 210 is provided with a first corner 1011 , and the first corner 1011 is located between the spacer 300 and the geometric center of the at least one opening 210 .
  • At least one opening 210 adjacent to the spacer 300 is provided with a first corner 1011, and the first corner 1011 is the closest corner of the opening 210 to the spacer.
  • a corner of the bedding 300 is provided.
  • the ratio of the length L1 of the truncated portion of at least one of the two sides (eg, the first side 410 ) of the polygon 400 to the length of the side 410 is 0.2 ⁇ 0.8.
  • the first side 410 of the polygon 400 is truncated by the first line segment L1, and the remaining part L2 forms a side connecting the opening 210 of the first corner 1011, for example, the two ends of the first corner 1011 are respectively connected to the two straight sides of the opening 210. Connection, at least one of the two straight sides is the remaining straight side after the first side 410 of the polygon 400 cuts off the first line segment L1.
  • polygon 400 may be truncated with at least one first corner 401 to form at least one first corner 1011 .
  • a polygon 400 includes multiple first vertex angles 401 with equal degrees, and parameters such as shape and size of multiple first corner portions 1011 formed after the multiple first vertex angles 401 are truncated are equal.
  • the ratio of the length of the first line segment L1 to the length of the first side 410 is 0.3 ⁇ 0.7.
  • the ratio of the length of the first line segment L1 to the length of the first side 410 is 0.4 ⁇ 0.6.
  • the ratio of the length of the first line segment L1 to the length of the first side 410 is 0.5.
  • the ratio of the length of the first line segment L1 to the length of the remaining portion L2 is 0.25 ⁇ 4.
  • the ratio of the length of the first line segment L1 to the length of the remaining part L2 is 1-3.
  • the ratio of the length of the first line segment L1 to the length of the remaining part L2 is 0.5-2.
  • each spacer 300 is disposed at a space between a first corner 1011 and an opening 210 adjacent to the first corner 1011 .
  • all the spacers 300 are arranged at intervals close to the first corner 1011 to further improve the process yield and the supporting function of the spacers.
  • the number of openings 210 having the first corner 1011 is not less than the number of spacers 300 .
  • the number of openings 210 with first corners 1011 is greater than the number of spacers 300, spacers 300 are provided near some of the openings 210 in openings 210 with first corners 1011, and spacers 300 are provided near other openings 210. No spacer 300 is provided.
  • the embodiments of the present disclosure are not limited thereto, and the spacers may also be provided with relatively high density, for example, the number of spacers may be approximately equal to the number of openings with first corners, for example, the number of openings with first corners Spacers are provided at intervals corresponding to the first corner.
  • the ratio of the size of the spacer 300 to the size of the space between the openings 210 may be 0.8-1.2.
  • the maximum dimension of at least one spacer 300 in the direction parallel to the line C0 between the geometric center of the opening 210 where the first corner 1011 is located and the geometric center of the adjacent opening 210 is the first dimension SZ1
  • the maximum dimension in a direction perpendicular to the connecting line C0 is a second dimension SZ2
  • the first dimension SZ1 is smaller than the second dimension SZ2.
  • the shape of the orthographic projection of at least one spacer 300 on the substrate 10 is a long strip, and the short axis of the long strip is roughly parallel to the geometric center of the opening where the first corner 1011 is located and The line C0 connecting the geometric centers of the adjacent openings.
  • FIG. 2 schematically takes the shape of the orthographic projection of the spacer 300 on the substrate 10 as a rectangle as an example, and the long side of the rectangle is the side adjacent to the first corner 1011 of the opening 210 .
  • Embodiments of the present disclosure are not limited to the shape of the orthographic projection of the spacer on the substrate as a rectangle.
  • the shape of the orthographic projection of the spacer on the substrate can also be selected from rounded rectangle, ellipse, and circle.
  • the orthographic projection of the spacer on the base substrate may be an axisymmetric figure.
  • the spacer is located at the intersection of parts of the pixel defining layer with different extending directions (for example, covering the intersection of parts of the pixel defining layer with different extending directions), and has two symmetry axes, and the two symmetry axes are respectively approximately parallel to where they are located.
  • the pixels define two directions of extension of the layer.
  • the orthographic projection of the spacer on the base substrate may have a size range of 20-50 ⁇ m in the long axis direction.
  • the orthographic projection of the spacer on the base substrate may range in size from 12 to 30 ⁇ m in the short axis direction.
  • the range of the orthographic projection of the spacer on the base substrate is less than 48 ⁇ m*26 ⁇ m.
  • the range of the orthographic projection of the spacers on the base substrate is less than 41 ⁇ m*25 ⁇ m.
  • the range of the orthographic projection of the spacer on the base substrate is less than 33 ⁇ m*20 ⁇ m.
  • the range of the orthographic projection of the spacer on the base substrate is less than 25 ⁇ m*15 ⁇ m.
  • the opening 210 having the first corner 1011 is configured to define the light emitting area 101 of the at least one color sub-pixel 100 .
  • the at least one color sub-pixel 100 includes at least one of a blue sub-pixel, a green sub-pixel, and a red sub-pixel.
  • 1 to 4A schematically show that the opening configured to define the light-emitting area of a sub-pixel of one color includes a first corner, but is not limited thereto, and the openings configured to define the light-emitting area of sub-pixels of other colors may also be Including the first corner, it can be set according to actual product needs.
  • FIG. 5A is a schematic plan view of a pixel defining layer and a spacer.
  • each opening 021 included in a pixel defining layer 020 is polygonal in shape, and the polygon has no truncated corners, and the spacers 030 are located at the opposite corners of two adjacent openings 021 0211 and the interval between the top corner 0212, and the two top corners 0211 and 0212 are both non-round chamfers or non-flat chamfers, such as acute angles or right angles.
  • the two distances between the spacer 030 and the two top corners 0211 and 0212 may be equal, for example, both are S0.
  • the distance between the spacer 030 and the vertex 0211 (or vertex 0212) refers to the distance between the edge of the spacer 030 close to the vertex 0211 (or vertex 0212) and the vertex 0211 (or vertex 0212).
  • the distance S0 of the vertex (0212), but not limited thereto, the distance between the spacer and the vertex can also refer to the distance between the geometric center of the spacer and the vertex.
  • the size of the spacer 030 between the above-mentioned two vertex angles 0211 and 0212 in the Y direction including the arrangement direction of the two openings of the above-mentioned two vertex angles 0211 and 0212), such as a width of W0.
  • FIG. 5B is a partial plan view of an example of the pixel defining layer and spacers shown in FIG. 2 .
  • the distance between the spacer 300 and the first corner 1011 on one side is the first distance S1
  • the shortest distance between the spacer 300 and the corner 1013 of the opening 210 on the other side is The distance is the second distance S2
  • the first distance S1 is not less than the second distance S2.
  • the first distance S1 may be greater than the second distance S2.
  • the first distance S1 may be equal to the second distance S2.
  • the shape of the opening 210 with the corner 1013 shown in FIG. 5B and its positional relationship with the spacer 300 may be the same as the shape of the opening 021 with the corner 0212 shown in FIG. 5A and its relationship with the spacer 030. If the positional relationship is the same, the second distance S2 may be equal to the distance S0.
  • the dimension W1 of the spacer 300 shown in FIG. 5B in the arrangement direction (Y direction) of the two openings 210 is the same as the dimension W1 of the spacer 030 shown in FIG. 5A in the arrangement direction (Y direction) of the two openings 021 W0 may be approximately equal.
  • 5B may be the first corner 1011 formed after the vertex 0211 immediately adjacent to the spacer 030 shown in FIG. 5A is cut off (the vertex 0211
  • the opening 021 where the first corner 1011 is located can be a polygon
  • the first distance S1 between the first corner 1011 and the spacer 300 shown in FIG. 5B can be greater than the top angle shown in FIG. 5A
  • the distance S0 between the 0211 and the spacer 030, the first distance S1 is greater than the second distance S2, so as to increase the distance between the spacer and an opening, which is beneficial to improve the process yield.
  • the shape and relative position of the openings 212 located on both sides of the spacer 300 in the X direction shown in FIG. The relationship is the same.
  • the distance between the spacer 300 and the two openings 212 located on both sides of the spacer 300 in the X direction The distance between the two is equal.
  • the openings 212 located on both sides of the spacer 300 in the X direction may both include the first corner, or may not include the first corner, which is not limited in the embodiments of the present disclosure.
  • the openings 210 surrounding the spacer 300 include two openings arranged in the row direction and two openings arranged in the column direction, and at least one of the four openings 210 includes a first corner.
  • 1011 for example, one of the above four openings includes a first corner 1011 facing the spacer 300, the distance between the spacer 300 and the first corner 1011 is the first distance, the distance between the spacer 300 and the first corner
  • the distance between another opening 210 where the opening of the portion 1011 is arranged in the row or column direction is the second distance
  • the distances between the spacer 300 and the remaining two openings 210 arranged in the column or row direction are respectively the second distance.
  • the distances between the openings 212 on both sides of the spacer 300 in the X direction and the spacer 300 can be the third distance and the fourth distance respectively, and the third distance and the fourth distance can be equal or different.
  • the first distance may be greater than the third distance, and the second distance, the third distance and the fourth distance may all be equal.
  • the first distance is equal to the second distance, the third distance is equal to the fourth distance, and the first distance is greater than the third distance.
  • the size W0 of the spacer 030 in FIG. 5A is equal to the size W1 of the spacer 300 in FIG. 5B , it can be adjusted by adjusting the spacer 300 in FIG.
  • the distance between the openings 210 is such that the first distance S1 and the second distance S2 are substantially equal, and then both the first distance S1 and the second distance S2 are greater than the distance S0 shown in FIG. 5A .
  • the embodiment of the present disclosure can increase the distance between the spacer and the two openings on both sides by adjusting the distance between the spacer and the opening, which is beneficial to reduce the probability of the spacer falling off and improve the process yield. .
  • FIG. 5C is a partial plan view of another example of the pixel defining layer and spacers shown in FIG. 2 .
  • the line L0 connecting the opposite corners 0213 and 0214 of the two openings 021 adjacent to the spacer 030 on both sides of the spacer 030 in the X direction passes through the geometric center of the spacer 030 031.
  • the first distance S1 and the second distance S2 between the spacer 300 and the two openings 210 located on both sides thereof in the X direction may be equal to the distance S0 shown in FIG. 5A, and FIG.
  • the dimension W1 (such as the width) of the spacer 300 shown in FIG. 5C in the Y direction is larger than the dimension W0 of the spacer 030 shown in FIG.
  • the supporting function of the spacer can be improved on the basis of ensuring the process yield.
  • the opening 210 on one side of the spacer 300 in the Y direction (or X direction) has a first corner 1011, and the other side of the spacer 300 in the Y direction (or X direction)
  • the openings 210 on one side do not have the first corner 1011, and the openings 210 on both sides of the spacer 300 in the X direction (or Y direction) are symmetrically distributed, and none of them may have the first corner 1011, or Both may have first corners 1011 , and the first corners 1011 in the two openings 210 are distributed symmetrically.
  • At least one of the row direction and the column direction is located on both sides of the spacer 300 and is adjacent to the spacer 300.
  • the line connecting the opposite corners 1014 and 1015 of the two openings 210 L01 is located on a side of the geometric center 301 of the spacer 300 away from the first corner 1011 .
  • the first distance, the second distance, the third distance and the fourth distance may all be equal.
  • the embodiments of the present disclosure are not limited to the size of the spacer and the setting of the distance between the spacer and the opening.
  • the size W1 of the spacer 300 shown in FIG. 5B may also be greater than the size W0 of the spacer 030 shown in FIG. 5A
  • the distance between the spacer 300 and at least one opening is also greater than the distance S0 between the spacer 030 and the opening shown in Figure 5A
  • the probability of material falling off is also beneficial to improve the process yield of the product and the supporting function of the spacer.
  • FIG. 6 is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • the openings 210 having the first corner 1011 include the same type of opening, for example, the openings 210 having the first corner 1011 may each include a first corner 1011, and
  • the orientations of the first corners 1011 in each opening 210 are the same, for example, the first corners 1011 in each opening 210 are all facing up, or all are facing down, or are all facing right, or are all facing left, or are all facing ( diagonally) to the upper left, or both toward (obliquely) lower left, or both toward (obliquely) upper right, or both toward (obliquely) lower right, then a plurality of spacers 300 are all distributed in the first corner of the same orientation 1011 corresponds to the interval.
  • openings of the same type refer to openings facing the same corner, and the openings of the same type may only include openings configured to define light-emitting regions of sub-pixels of the same color, or may include openings configured to define different color sub-pixels. The opening of the light-emitting area of the sub-pixel.
  • the same type of openings may only include the openings defining the light-emitting area of the blue sub-pixel, or the openings defining the light-emitting area of the green sub-pixel, or the openings defining the light-emitting area of the red sub-pixel;
  • An opening defining a light-emitting area of a red sub-pixel; an opening defining a light-emitting area of a blue sub-pixel, an opening defining a light-emitting area of a red sub-pixel, and an opening defining a light-emitting area of a green sub-pixel may also be included.
  • the opening configured to define the light-emitting area of a sub-pixel of one color includes a first corner, but is not limited thereto, and the opening configured to define the light-emitting area of another color sub-pixel may also include a first corner.
  • the corners can be set according to actual product needs.
  • the opening 210 having the first corner 1011 and configured to define the light emitting region 101 of the same color sub-pixel 100 includes at least two types of openings, among different types of openings 210, the first The apex of the corner 1011 points in a different direction than the apex of the opposite corner.
  • different types of openings refer to openings in which the apexes of the corners point to the apexes of the opposite corners in different directions.
  • the above-mentioned opening may include four corners, at this time, the opening may include a first corner, and one of three other corners is opposite to the first corner; the above-mentioned opening may also include two first corners and Two other corners, each first corner is opposite to a corresponding other corner, and at this time the two corners are adjacent corners, and one of the corners is divided according to the relative positional relationship between the two corners
  • the direction of the reference corner pointing to the corner opposite to it is taken as the reference direction; the above-mentioned opening may also include three corners and one other corner, with the corner opposite to the other corner
  • the corner is used as a reference corner to determine different types of openings, and the direction that the reference corner points to the opposite corner is taken as the reference direction.
  • FIG. 7 is an enlarged view of an opening shown in FIG. 2 .
  • the opening 210 is divided into two by the line L connecting the vertices of the other two corners except the above-mentioned reference first corner 1011 and the corner opposite to it.
  • One part is the part where the first corner 1011 is located, and the other part is the part where the corner 1012 opposite to the first corner 1011 (for example, the second corner 1012) is located.
  • the ratio of the area of the portion where the first corner 1011 is located to the area of the portion where the second corner 1012 is located may be 0.1 ⁇ 0.99.
  • the ratio of the area of the portion where the first corner 1011 is located to the area of the portion where the second corner 1012 is located may be 0.2 ⁇ 0.9.
  • the ratio of the area of the portion where the first corner 1011 is located to the area of the portion where the second corner 1012 is located may be 0.3 ⁇ 0.8.
  • the ratio of the area of the portion where the first corner 1011 is located to the area of the portion where the second corner 1012 is located may be 0.4 ⁇ 0.7.
  • the distance d1 between the apex of the first corner portion 1011 and the connection line L is smaller than the distance d2 between the apex of the second corner portion 1012 and the connection line L.
  • the ratio d1/d2 of the distance d1 between the apex of the first corner 1011 and the line L to the distance d2 between the apex of the second corner 1012 and the line L may range from 0.1 to 0.9.
  • the range of d1/d2 may be 0.2 ⁇ 0.8.
  • d1/d2 may range from 0.4 to 0.6.
  • the ratio of d1 to d2 may range from 0.7 to 0.9.
  • the length of the line between the vertex of the first corner 1011 and the vertex of the second corner 1012 can be a (that is, the sum of the above-mentioned distance d1 and distance d2), and the length of the line L It may be b, and the ratio of a to b may range from 0.6 to 0.9.
  • the ratio of a to b may range from 0.7 to 0.8.
  • the orientation of the first corner 1011 may include upward, downward, leftward, rightward, diagonally upward to the left, diagonally downward to the left, diagonally upward to the right, or diagonally downward to the right
  • the first corner The direction in which the apex of the first corner 1011 points to the apex of the opposite corner may also include multiple directions.
  • the direction in which the apex of the first corner 1011 points to the apex of the opposite corner may include At least two of D1, direction D2, direction D3, and direction D4, and each direction is different.
  • the direction in which the apex of the first corner 1011 of the two types of openings 210 points to the apex of the opposite corner may be parallel and opposite, or may intersect.
  • the plurality of spacers 300 are distributed at intervals corresponding to openings of the same type.
  • the spacers 300 distributed at the intervals corresponding to the openings of the same type are evenly distributed, which is beneficial to reduce the difficulty of the manufacturing process of the spacers.
  • the at least two types of openings 210 include at least two of a first type of opening 1001 , a second type of opening 1002 , a third type of opening 1003 and a fourth type of opening 1004 .
  • a first type of opening 1001 a second type of opening 1002
  • a third type of opening 1003 a fourth type of opening 1004 .
  • the direction in which the apex of the first corner 1011 in the first-type opening 1001 points to the apex of the opposite corner may be direction D2
  • the direction of the vertex of the corner opposite to it may be the direction D3
  • the direction in which the vertex of the first corner 1011 in the third type opening 1003 points to the direction of the vertex of the opposite corner may be the direction D4
  • the first corner 1011 in the fourth type of opening 1004 The direction in which the vertex of the corner 1011 points to the vertex of the opposite corner may be a direction D1.
  • At least part of the plurality of spacers 300 can be evenly distributed at intervals corresponding to the first type of openings 1001; or at least part of the plurality of spacers 300 can be evenly distributed at intervals corresponding to the second type of openings 1002. Or, at least part of the plurality of spacers 300 can be evenly distributed at the interval corresponding to the third type of opening 1003; or, at least part of the plurality of spacers 300 can be evenly distributed in the fourth Type opening 1004 corresponds to the interval.
  • the direction of the first corner 1011 in the two types of openings is opposite, and the other two The orientations of the first corners 1011 in the two types of openings are opposite.
  • the direction D1 of the fourth-type opening 1004 is opposite to the direction D4 of the third-type opening 1003, and the direction of the first corner 1011 of the fourth-type opening 1004 is opposite to the direction of the first corner 1011 of the third-type opening 1003. .
  • the direction D2 of the first-type opening 1001 is opposite to the direction D3 of the second-type opening 1002, and the direction of the first corner 1011 of the first-type opening 1001 is opposite to the direction of the first corner 1011 of the second-type opening 1002.
  • the embodiments of the present disclosure do not limit the names of the above four types of openings, and the names of the above-mentioned "first type opening", “second type opening”, “third type opening” and “fourth type opening” can be interchanged.
  • FIG. 8A is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • the plurality of spacers 300 includes a plurality of first spacers 310, and the plurality of first spacers 310 are distributed at intervals corresponding to the first corners 1011 of the same type of openings, and the plurality of first spacers 310 A spacer 310 is evenly distributed.
  • FIG. 8A schematically shows that a plurality of first spacers 310 are distributed at intervals corresponding to at least part of the first corners 1011 of the first type of opening 1001, but is not limited thereto, and may also be distributed in other types of openings (such as the interval corresponding to the first corner 1011 of the second type opening 1002 , the third type opening 1003 or the fourth type opening 1004 ).
  • the embodiments of the present disclosure are not limited to the distribution of the first spacers at the intervals corresponding to the corners of the same type of openings.
  • a part of the first spacers may be distributed at the intervals corresponding to the corners of one type of openings.
  • the other part of a spacer can be distributed at intervals corresponding to the corners of at least one type of opening among other types of openings, and the first spacers can be arranged regularly.
  • the plurality of spacers 300 further includes a plurality of second spacers 320, and the plurality of second spacers 320 are distributed at least part of the first corners 1011 of the second type of openings 1002 corresponding to intervals, and a plurality of second spacers 320 are evenly distributed.
  • the embodiment of the present disclosure schematically shows that the second type of opening 1002 is an opening with the first corner 1011 facing left, but it is not limited thereto, the second type of opening can also be one of the corners facing upward, downward or right. There are various types of openings, which are not limited in the embodiments of the present disclosure.
  • the first spacer 310 and the second spacer 320 can be elongated, and the long sides of the two elongated shapes can be parallel or intersected. This is not limited.
  • the number of the first spacer 310 and the number of the second spacer 320 may be the same or different.
  • the quantity ratio of the two can be 0.1-1, or 0.2-0.9, or 0.3-0.8, or 0.4-0.7, or 0.5-0.6.
  • the number of spacers 300 adjacent to one opening 210 may be one or two.
  • the two spacers 300 may be located at the intervals corresponding to two adjacent corners of the opening 210, or may be located at the opening 210.
  • the interval corresponding to the two opposite corners of the which is not limited in the embodiments of the present disclosure.
  • the number of spacers adjacent to one opening may be three or four, which may be set according to actual product requirements.
  • Embodiments of the present disclosure are not limited to spacers including only first spacers and second spacers, for example, spacers may also include third spacers, and the third spacers may be distributed in the third type of openings or At the intervals corresponding to the first corners of the fourth type of opening, for example, the third spacers can be evenly distributed; for example, the spacers can also include fourth spacers, and the fourth spacers can be distributed in the remaining one. At intervals corresponding to the first corners of the type openings, for example, the fourth spacers may be evenly distributed.
  • the spacers may be randomly distributed at intervals corresponding to the first corners, and distributed regularly.
  • the regular distribution here can refer to the distribution of the spacers at substantially equal intervals in the row direction, for example, four openings (not limited to four openings, but also two or six openings) are arranged between any two adjacent spacers. etc.); spacers are also distributed at substantially equal intervals in the column direction, for example, four openings are arranged between any adjacent two spacers (not limited to four openings, but also two, six, etc.) .
  • the shape and size of the first spacer 310 and the second spacer 320 may be the same or different.
  • FIG. 8A schematically shows that the first spacer 310 has the same shape and size as the second spacer 320 , that is, all the spacers 300 have the same shape and size.
  • the shape of the spacer may refer to the shape of the orthographic projection of the spacer on the substrate, and the size of the spacer may refer to the area of the orthographic projection of the spacer on the substrate.
  • FIG. 8B is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • the example shown in FIG. 8B differs from the example shown in FIG. 8A in that at least some of the spacers are of different sizes.
  • the first spacer 310 and the second spacer 320 have different shapes and sizes.
  • the first spacer 310 and the second spacer 320 have the same shape but different sizes.
  • the spacer 300 may include a largest dimension along any direction, and spacers with different directions of extension of the largest dimension have different areas.
  • the area of the spacer 300 located at the interval corresponding to the first corner 1011 is different from the area of the spacer located at the interval not corresponding to the first corner.
  • the shape of the first spacer and the second spacer does not limit the shape of the first spacer and the second spacer, for example, the shape of the first spacer and the second spacer can also be a regular shape such as a circle, an ellipse, a rhombus, a square, etc. , can also be an irregular shape, and can be set according to actual product needs.
  • FIG. 8C is a schematic plan view showing the substrate.
  • the display substrate includes a display area AA and a non-display area NA surrounding the display area AA.
  • 2 and 3 show partial areas of the display area.
  • the plurality of sub-pixels 100 are located in the display area AA
  • at least part of the plurality of spacers 300 are located in the display area AA.
  • the spacer 300 in the display area AA may include the spacer at the space between the first corner 1011 and the opening 210 adjacent to the first corner 1011 and the spacer at other positions.
  • the number of the spacers 300 located in the interval between the first corner 1011 and the opening 210 adjacent to the first corner 1011 is the same as the number of the spacers located in the display area AA.
  • the quantity ratio of the bedding 300 is not less than 50%.
  • the number of spacers 300 located in the interval between the first corner 1011 and the opening 210 adjacent to the first corner 1011 is the same as the number of spacers 300 located in the display area AA.
  • the proportion of the number of 300 is not less than 60%.
  • the number of spacers 300 located in the interval between the first corner 1011 and the opening 210 adjacent to the first corner 1011 is the same as the number of spacers 300 located in the display area AA.
  • the proportion of the number of 300 is not less than 70%.
  • the number of spacers 300 located in the interval between the first corner 1011 and the opening 210 adjacent to the first corner 1011 is the same as the number of spacers 300 located in the display area AA.
  • the proportion of the number of 300 is not less than 80%.
  • the number of spacers 300 located in the interval between the first corner 1011 and the opening 210 adjacent to the first corner 1011 is the same as the number of spacers 300 located in the display area AA.
  • the proportion of the number of 300 is not less than 90%.
  • the opening 210 includes openings configured to define sub-pixels of different colors, for example, in the direction of at least one of the row direction, the column direction or the oblique direction, two adjacent openings 210 is configured to define light emitting regions of sub-pixels of different colors.
  • openings configured to define sub-pixels of different colors may include a first opening 211, a second opening 212, and a third opening 213, one of which is used to define a red sub-pixel.
  • the other opening is used to define the light emitting area of the blue sub-pixel, and the remaining opening is used to define the light emitting area of the green sub-pixel.
  • the spacer 300 is distributed between the first corner 1011 of the opening 210 configured to define different color sub-pixels and the opening 210 adjacent to the first corner 1011. the interval between.
  • the spacers 300 may be distributed at intervals between the first corner 1011 of the third opening 213 and the first opening 211 .
  • the spacer 300 may also be distributed between two openings 210 defining sub-pixels of the same color, for example, the spacer 300 is distributed between two second openings 211, and the second opening 211 faces the spacer 300
  • the corner portion of may or may not be the first corner portion, which is not limited in this embodiment of the present disclosure.
  • FIG. 9 is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • at least two openings 210 adjacent to at least one spacer 300 both include first corners 1011 , and the first corners 1011 of at least two openings 210 both face the spacer 300 .
  • both the first opening 211 and the third opening 213 include a first corner 1011 , and the first corners 1011 of the two openings 210 all face the spacer 300 between the two openings 210 , to further increase the distance between the opposite corners of the two openings located on both sides of the spacer, so that only the size of the spacer can be increased, and only the distance between the spacer and the opening can be increased , the size of the spacer and the distance between the spacer and the opening can also be increased, which can reduce the probability of the spacer falling off, and is conducive to improving the process yield of the product and the supporting effect of the spacer.
  • Embodiments of the present disclosure are not limited to at least two openings 210 immediately adjacent to the spacer 300 (the first opening 211 and the third opening 213 shown in FIG.
  • the corners 1011 all face the spacer 300 .
  • the three openings immediately adjacent to the spacer 300 for example including the first opening 211 , the third opening 213 and a second opening 212 , all include a first corner 1011 , and the first corners 1011 of the three openings 210 All face the spacer 300 .
  • the three openings 210 immediately adjacent to the spacer 300 for example including two second openings 212 and a first opening 211 or a third opening 213, all include corners, and the first corners of the three openings 210 1011 all face the spacer 400 .
  • the four openings immediately adjacent to the spacer 300 for example including the first opening 211 , the third opening 213 and the two second openings 212 , all include the first corner 1011 , and the first corners of the four openings 210 1011 all face the spacer 300 .
  • the display substrate includes a plurality of sub-pixels 100 .
  • the plurality of sub-pixels 100 includes a plurality of first-color sub-pixels 110 , a plurality of second-color sub-pixels 120 and a plurality of third-color sub-pixels 130 .
  • a plurality of first color sub-pixels 110 and a plurality of third color sub-pixels 130 are arranged alternately along the row direction (X direction as shown in FIG.
  • first pixel row 01 to form a first pixel row 01
  • second color sub-pixels 120 are arranged along the row direction direction to form the second pixel row 02
  • the first pixel row 01 and the second pixel row 02 are arranged alternately along the column direction crossing the row direction (Y direction as shown in FIG. 1 ) and staggered from each other in the row direction.
  • adjacent first-color sub-pixels 110 and second-color sub-pixels 120 are arranged along a first direction, and the first direction intersects both the row direction and the column direction. As shown in FIG.
  • a plurality of first color sub-pixels 110 and a plurality of third color sub-pixels 130 are arranged alternately along the column direction to form a plurality of first pixel columns 03, and a plurality of second color sub-pixels 120 are arranged along the row direction and
  • the column direction is arranged in an array to form a plurality of second pixel rows 02 and a plurality of second pixel columns 04, and a plurality of first pixel columns 03 and a plurality of second pixel columns 04 are alternately arranged along the row direction and mutually arranged in the column direction.
  • Staggered that is, the second pixel row 02 where a second color sub-pixel 120 is located is located between two adjacent first pixel rows 01, and the second pixel column 04 where the second color sub-pixel 120 is located is located between two adjacent first pixel rows 01 between pixel columns 03.
  • both the row direction and the column direction refer to the arrangement direction of the sub-pixels of the first color and the sub-pixels of the third color, which may be parallel to the direction of the line connecting the geometric centers of the light emitting regions of two adjacent sub-pixels, or may be Not parallel.
  • the row direction intersects the column direction.
  • the included angle between the row direction and the column direction may be 80-100 degrees.
  • the included angle between the row direction and the column direction may be 85-95 degrees.
  • the row direction and the column direction may be perpendicular, but not limited thereto, and may not be perpendicular.
  • the row direction and the column direction can be interchanged.
  • the sub-pixels in the embodiments of the present disclosure refer to the light-emitting device structure, and the first-color sub-pixel, the second-color sub-pixel and the third-color sub-pixel are sub-pixels that emit light of different colors.
  • the sub-pixels of the first color are red sub-pixels
  • the sub-pixels of the second color are green sub-pixels
  • the sub-pixels of the third color are blue sub-pixels.
  • the sub-pixels of the first color are red sub-pixels
  • the sub-pixels of the second color are green sub-pixels
  • the sub-pixels of the third color are blue sub-pixels, which do not limit the protection scope of the embodiments of the present disclosure.
  • the area of the light-emitting region of at least one blue sub-pixel is larger than the area of the light-emitting region of at least one red sub-pixel, and the area of the light-emitting region of at least one red sub-pixel is larger than the area of the light-emitting region of at least one green sub-pixel, so as to extend the display The service life of the substrate.
  • the areas of the light emitting regions of the sub-pixels of the same color are substantially equal.
  • the plurality of openings 210 of the pixel defining layer 200 includes a plurality of first openings 211 , a plurality of second openings 212 and a plurality of third openings 213 , and the plurality of first openings 211 are configured To define the light emitting regions 101 of the plurality of first color sub-pixels 110, the plurality of second openings 212 are configured to define the light emitting regions 101 of the plurality of second color sub-pixels 120, and the plurality of third openings 213 are configured to define the plurality of second color sub-pixels 101.
  • the light-emitting area 101 of the three-color sub-pixel 130 is configured to define the plurality of second color sub-pixels 101 .
  • At least one opening 210 of the first opening 211 , the second opening 212 , and the third opening 213 includes a first corner 1011 .
  • FIG. 2 schematically shows that only the third opening 213 includes the first corner 1011
  • FIG. 9 schematically shows that both the first opening 211 and the third opening 213 include the first corner 1011.
  • the first opening, the second opening and the third opening all include a first corner, or the first opening and the second opening include a first corner, or the second opening and the third opening include a first corner, or only The first opening includes a first corner, or only the second opening includes a first corner.
  • At least part of the plurality of spacers 300 is distributed at the interval between two adjacent openings 210 arranged along at least one of the column direction and the row direction.
  • the spacers 300 may be distributed between the two second openings 212 arranged in the row direction, and distributed between the first openings 211 and the third openings 213 arranged in the column direction.
  • the spacers 300 may be distributed between the two second openings 212 arranged in the column direction, and distributed between the first openings 211 and the third openings 213 arranged in the row direction.
  • the opening 210 surrounding the spacer 300 may include a first opening 211, a third opening 213, and two second openings 212, and the first opening 211 and the third opening 213 may be arranged along one of the row direction and the column direction.
  • the two second openings 212 may be arranged in the other direction of the row direction and the column direction.
  • the sub-pixels 100 surrounding the spacer 300 may include a first-color sub-pixel 110, a third-color sub-pixel 130, and two second-color sub-pixels 120, the first-color sub-pixel 110 and the third-color sub-pixel
  • the pixels 130 may be arranged in one of the row direction and the column direction
  • the two second color sub-pixels 120 may be arranged in the other direction of the row direction and the column direction.
  • four second color sub-pixels 120 are arranged between adjacent spacers 300 along one of the row direction and the column direction, and along the other row direction and the column direction, the opposite Two sub-pixels 110 of the first color and two sub-pixels 130 of the third color are disposed between the spacers 300 .
  • four second openings 212 are provided between adjacent spacers 300, and along the other of the row direction and column direction, two second openings 212 are provided between adjacent spacers 300.
  • the first opening 211 and two third openings 213 are provided along one of the row direction and the column direction, and along the other row direction and the column direction, the opposite Two sub-pixels 110 of the first color and two sub-pixels 130 of the third color are disposed between the spacers 300 .
  • four second openings 212 are provided between adjacent spacers 300, and along the other of the row direction and column direction, two second openings 212 are provided between adjacent spacers 300.
  • the first opening 211 and two third openings 213 are provided along one of the row
  • FIG. 10A is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • six second-color sub-pixels 120 are arranged between adjacent spacers 300, and along the other row direction and column direction, adjacent spacers 300
  • Three sub-pixels 110 of the first color and three sub-pixels 130 of the third color are arranged between the pads 300 .
  • six second openings 212 are provided between adjacent spacers 300, and along the other row direction and column direction, three second openings 212 are provided between adjacent spacers 300.
  • One opening 211 and three third openings 213 As shown schematically in the figure, part of the spacer 300 is located at the interval corresponding to the first corner 1011 , and some of the spacer 300 is not located at the interval corresponding to the first corner 1011 , the embodiment of the present disclosure is not limited thereto. For example, by adjusting the orientation of the first corners of the openings so that all the spacers are located at intervals corresponding to the first corners, for example, the orientations of the first corners 1011 of all the third openings 213 are adjusted to down, so that all the spacers are located at the intervals corresponding to the first corner 1011 .
  • orientations of the first corners 1011 of all the first openings 211 can also be adjusted upwards, so that all the spacers are located at intervals corresponding to the first corners 1011 .
  • a right-facing or left-facing first corner 1011 may also be provided in the second opening 212 , so that all spacers are located at intervals corresponding to the first corner 1011 .
  • FIG. 10B is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • six second-color sub-pixels 120 are arranged between adjacent spacers 300, and along the other row direction and column direction, adjacent spacers 300 are arranged.
  • Two sub-pixels 110 of the first color and two sub-pixels 130 of the third color are arranged between the pads 300 .
  • six second openings 212 are provided between adjacent spacers 300, and along the other of the row direction and column direction, two second openings 212 are provided between adjacent spacers 300.
  • the first opening 211 and two third openings 213 As shown schematically in the figure, part of the spacer 300 is located at the interval corresponding to the first corner 1011 , and some of the spacer 300 is not located at the interval corresponding to the first corner 1011 , the embodiment of the present disclosure is not limited thereto. For example, by adjusting the orientation of the first corners of the openings so that all the spacers are located at intervals corresponding to the first corners, for example, the orientations of the first corners 1011 of all the third openings 213 are adjusted to down, so that all the spacers 300 are located at intervals corresponding to the first corner 1011 .
  • orientations of the first corners 1011 of all the first openings 211 can also be adjusted upward, so that all the spacers 300 are located at intervals corresponding to the first corners 1011 .
  • a right-facing or left-facing first corner 1011 may also be provided in the second opening 212 , so that all spacers 300 are located at intervals corresponding to the first corner 1011 .
  • FIG. 10C is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • four second color sub-pixels 120 are arranged between adjacent spacers 300, and along the other row direction and column direction, adjacent spacers
  • Three sub-pixels 110 of the first color and three sub-pixels 130 of the third color are arranged between the pads 300 .
  • four second openings 212 are arranged between adjacent spacers 300, and along the other of the row direction and column direction, three second openings 212 are arranged between adjacent spacers 300.
  • One opening 211 and three third openings 213 As shown schematically in the figure, part of the spacer 300 is located at the interval corresponding to the first corner 1011 , and some of the spacer 300 is not located at the interval corresponding to the first corner 1011 , the embodiment of the present disclosure is not limited thereto. For example, by adjusting the orientation of the first corners of the openings so that all the spacers are located at intervals corresponding to the first corners, for example, the orientations of the first corners 1011 of all the third openings 213 are adjusted to down, so that all the spacers 300 are located at intervals corresponding to the first corner 1011 .
  • orientations of the first corners 1011 of all the first openings 211 can also be adjusted upward, so that all the spacers 300 are located at intervals corresponding to the first corners 1011 .
  • a right-facing or left-facing first corner 1011 may also be provided in the second opening 212 , so that all spacers 300 are located at intervals corresponding to the first corner 1011 .
  • the opening 210 having the first corner 1011 and configured to define the light-emitting area 101 of the same color sub-pixel 100 includes at least two types of openings.
  • the first corner The apex of the portion 1011 points in a direction different from the apex of the opposite corner
  • the plurality of spacers 300 includes a plurality of first spacers 310 and a plurality of second spacers 320, the first spacers 310 and the second spacers
  • the spacers 320 are distributed at intervals corresponding to the first corners 1011 of different types of openings.
  • four second color sub-pixels 120 are arranged between adjacent first spacers 310 along one of the row direction and the column direction, and the other one along the row direction and the column direction , two first color sub-pixels 110 and two third color sub-pixels 130 are arranged between adjacent first spacers 310; along one of the row direction and column direction, between adjacent second spacers 320
  • Four second-color sub-pixels 120 are arranged, and the other along the row direction and column direction, two first-color sub-pixels 110 and two third-color sub-pixels 130 are arranged between adjacent second spacers 320 .
  • first openings 211 and two third openings 213 are provided along one of the row direction and column direction; along one of the row direction and column direction, four second openings 212 are provided between adjacent second spacers 320, along the row direction and column direction The other, two first openings 211 and two third openings 213 are disposed between adjacent second spacers 320 .
  • At least part of the third opening 213 includes a first corner 1011, and each spacer 300 is disposed on the first corner 1011 of the third opening 213 and the first opening 211 adjacent thereto. the interval between.
  • the distance between the spacer 300 and the first corner 1011 located in the third opening 213 on one side thereof is the first distance S1
  • the distance between the spacer 300 and the first corner 1011 located on the other side thereof is The shortest distance between corners of an opening 211
  • the first distance S1 is not less than the second distance S2.
  • the relationship between the first distance S1 and the second distance S2, and the size relationship with the distance S0 shown in FIG. 5C are as described above, and will not be repeated here.
  • FIG. 5B only schematically shows that when the third opening 213 includes the first corner 1011, the relationship between the distance between the spacer 300 and the opening 210 is the same as that of the spacer 030 when the first corner is not provided as shown in FIG. 5A.
  • the opposite corners of the first opening 211 and the third opening 213 may both be first corners 1011 , and the spacer 300 is located between the two first corners 1011 .
  • at least part of the corners of the first opening and the third opening other than the corners opposite to each other may also be set as the first corners.
  • at least one of the opposite corners of two adjacent second openings arranged in the row direction or the column direction may be set as the first corner 1011 , and the spacer 300 is located between the two first corners.
  • the first corner adjust the distance between the spacer and the first corner of the opening to increase the distance between the spacer and the two openings on both sides, which is beneficial to reduce the probability of the spacer falling off, and Improve process yield.
  • two openings 210 adjacent to each other along at least one of the row direction and the column direction each include a first corner 1011 , and the first corners 1011 of the two openings 210 are opposite to each other.
  • the embodiment of the present disclosure schematically shows that the two openings may be the first opening 211 and the third opening 213 , but it is not limited thereto, and the two openings may also be the two second openings 212 .
  • the orientations of the first corners 1011 in the openings 210 of the light-emitting regions 101 of the sub-pixels 100 of the same color arranged in the row direction (or column direction) are configured to be different, and the The line C1 connecting the geometric centers of the light emitting regions 101 of the sub-pixels 100 of the same color in the same row (or the same column) is not a straight line, for example, a broken line.
  • the opening 210 configured to define the light emitting region 101 of the third color subpixel 130 includes a first corner 1011, the opening 210 configured to define the light emitting region 101 of the first color subpixel 110 does not include the first corner, Then, the line connecting the geometric centers of the light-emitting regions of the plurality of first-color sub-pixels 110 and the plurality of third-color sub-pixels 130 in the same row (or the same column) is not a straight line, for example, a broken line.
  • FIG. 11A is a schematic plan view of a pixel defining layer and a spacer provided according to another example of an embodiment of the present disclosure.
  • at least part of the opening 210 includes at least two first corners 1011 .
  • the first opening 211 includes four first corners 1011
  • the second opening 212 includes two first corners 1011
  • the third opening 213 includes one first corner 1011 .
  • Embodiments of the present disclosure are not limited thereto, and the first opening may also include at least two first corners.
  • the four openings 210 around the spacer 300 all include a first corner 1011, and the corners closest to the spacer 300 in each opening 210 are all first corners 1011, so that Increase the size of the spacer in both directions, and/or increase the distance between the spacer and the opening in both directions, which is beneficial to reduce the probability of the spacer falling off and improve the process yield of the product Supporting role with spacer.
  • the first opening 211 , the second opening 212 and the third opening 213 each include a first corner 1011 , and at least two openings of the first opening 211 , the second opening 212 and the third opening 213 210 includes different numbers of first corners 1011.
  • the opening 210 includes four corners, the four corners of the first opening 211, the second opening 212 and the third opening 210 include two, three or four first corners 1011, the first opening 211
  • the four corners of at least one of the other two openings 210 , the second opening 212 and the third opening 213 include a first corner 1011 .
  • the embodiment of the present disclosure does not limit the number of first corners included in the openings configured to define light emitting regions of sub-pixels of different colors, and may be configured to limit three corners.
  • the openings of the light-emitting regions of sub-pixels of two colors include different numbers of first corners, and the number may be three selected from 1-4;
  • the number of first corners included in the openings of the two types is the same, and the number of corners included in the third opening is different, so the number of the first corners included in the two openings can be selected from 1-4, and the number of corners included in the third opening
  • the number of included first corners may be selected from 1-4; it may also be that two openings configured to limit light emitting regions of only two color sub-pixels include first corners, then the second corners included in different openings
  • the number of corners can be selected from 1-4, and the embodiment of the present disclosure can be set according to the needs of the product.
  • the embodiments of the present disclosure are not limited to four first corners of each opening, and may be three or more.
  • the number of first corners in the openings can be set according to the above rules.
  • the embodiment of the present disclosure schematically shows that the corners included in the opening of the pixel defining layer except the first corner 1011 are right angles or acute angles formed by the intersection of two straight sides, but Not limited thereto, at least a portion of other corners other than the first corner 1011 may also be a fillet (second corner), and the second corner may be a polygon truncated by two sides.
  • the ratio of the portion where at least one of the two sides is truncated to the side is 0.05 to 0.2.
  • the definition of the second corner can be the same as that of the first corner 1011, but the curvature (or arc or length) of the second corner is smaller than the curvature (or arc or length) of the first corner 1011 ).
  • FIG. 11B is a schematic diagram of the corresponding relationship between light emitting layers and corresponding openings of some sub-pixels.
  • the shape and size of the light emitting layer 1300 of the sub-pixels of the same color are the same. are the same.
  • the shape and size of the light-emitting layer of the first-color sub-pixel are the same, for example, the shape and size of the light-emitting layer of the first-color sub-pixel are the same.
  • the luminescent layer 1300 includes a portion located in the opening 210 and another portion located on the pixel defining layer 2000, the portion of the luminescent layer 1300 on the pixel defining layer 200 has a boundary, and the boundary and The distance S5 of the first corner 1011 corresponding to the light-emitting layer 1300 is different from the distance S6 between the boundary and other corners corresponding to the light-emitting layer 1300 .
  • the distance S5 between the border of the light emitting layer 1300 and the first corner of the opening 210 corresponding to the light emitting layer 1300 is greater than the distance S6 between the border and other corners corresponding to the light emitting layer 1300 .
  • the distances S6 between the boundary and other corners corresponding to the light emitting layer 1300 may be equal.
  • the range of the ratio of the distance S5 to the distance S6 may be 1.1-10.
  • the range of the ratio of the distance S5 to the distance S6 may be 1.2-7.
  • the range of the ratio of the distance S5 to the distance S6 may be 1.3-5.
  • the range of the ratio of the distance S5 to the distance S6 may be 1.4-3.
  • the range of the ratio of the distance S5 to the distance S6 may be 1.5-2.
  • the ratio of the distance S5 to the distance S6 may range from 1.6 to 1.8.
  • Layers 1300 may have substantially the same shape and size.
  • each sub-pixel further includes a pixel circuit configured to be connected to the light emitting element to drive the light emitting element to emit light.
  • FIG. 12 is an equivalent diagram of a pixel circuit.
  • the pixel circuit 2000 includes a second reset transistor T1, a second light emission control transistor T5, a first light emission control transistor T6, a data writing transistor T4, a drive transistor T3, a threshold compensation transistor T2, a first reset control transistor T7 and storage capacitor C.
  • the display substrate further includes reset power signal lines, scan signal lines, power signal lines, reset control signal lines, light emission control signal lines and data lines.
  • the first pole of the threshold compensation transistor T2 is connected to the first pole of the driving transistor T3, the second pole of the threshold compensation transistor T2 is connected to the gate of the driving transistor T3; the first pole of the first reset control transistor T7 is connected to the reset power supply
  • the signal line is connected to receive the reset signal Vinit, the second pole of the first reset control transistor T7 is connected to the second electrode of the light emitting element 1000;
  • the first pole of the data writing transistor T4 is connected to the second pole of the driving transistor T3, and the data writing
  • the second pole of the input transistor T4 is connected to the data line to receive the data signal Data, the gate of the data writing transistor T4 is electrically connected to the scanning signal line to receive the scanning signal Gate;
  • the first pole of the storage capacitor C is electrically connected to the power signal line , the second pole of the storage capacitor C is electrically connected to the gate of the driving transistor T3;
  • the gate of the threshold compensation transistor T2 is electrically connected to the scanning signal line to receive the compensation control signal;
  • the pixel circuit in addition to the 7T1C (that is, seven transistors and one capacitor) structure shown in FIG. 12 , the pixel circuit can also be a structure including other numbers of transistors, such as a 7T2C structure , 6T1C structure, 6T2C structure or 9T2C structure, which is not limited in this embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a partial planar structure of the active semiconductor layer
  • FIG. 14 is a schematic diagram of a partial planar structure of the first conductive layer
  • FIG. 15 is a schematic diagram of a partial planar structure of the second conductive layer
  • FIG. 16 is a partial view of the source-drain metal layer.
  • Schematic diagram of the planar structure Fig. 17 is a schematic diagram of the planar structure of the second electrode of some sub-pixels
  • Fig. 18 is a lamination diagram of the light-emitting area of some sub-pixels, the active semiconductor layer, the first conductive layer, the second conductive layer, and the source-drain metal layer .
  • the active semiconductor layer 3100 can be formed by patterning a semiconductor material.
  • the active semiconductor layer 3100 can be used to make the above-mentioned second reset transistor T1, threshold compensation transistor T2, drive transistor T3, data writing transistor T4, second light emission control transistor T5, first light emission control transistor T6 and first reset control transistor Active layer of T7.
  • the active semiconductor layer 3100 includes the active layer pattern (channel region) and doped region pattern (source-drain doped region) of each transistor of each sub-pixel, and the active layer pattern and doped region pattern of each transistor in the same pixel circuit Miscellaneous area patterns are set in one piece.
  • the active layer may include an integrally formed low-temperature polysilicon layer, and the source region and the drain region may be conductorized by doping or the like to realize electrical connection of various structures. That is, the active semiconductor layer of each transistor of each sub-pixel is an overall pattern formed of p-silicon, and each transistor in the same pixel circuit includes a doped region pattern (ie, a source region and a drain region) and an active layer pattern, the active layers of different transistors are separated by doping structures.
  • the active semiconductor layer 3100 can be made of amorphous silicon, polysilicon, oxide semiconductor materials and the like. It should be noted that the above-mentioned source region and drain region may be regions doped with n-type impurities or p-type impurities.
  • Each dotted rectangular box in FIG. 13 shows each portion where the first conductive layer 3200 overlaps with the active semiconductor layer 3100 .
  • the active semiconductor layer on both sides of each channel region is conductorized by processes such as ion doping as the first pole and the second pole of each transistor (i.e. above doped region pattern).
  • the source and drain of the transistor can be symmetrical in structure, so there can be no difference in the physical structure of the source and drain.
  • the transistors except for the gate as the control electrode, it is directly described that one of them is the first electrode and the other is the second electrode, so the first electrode of all or part of the transistors in the embodiments of the present disclosure
  • the first and second poles are interchangeable as desired.
  • the display substrate includes a gate insulating layer located on the side of the active semiconductor layer away from the base substrate, used to insulate the above-mentioned active semiconductor layer 3100 from the subsequently formed first conductive layer 3200 (ie, the gate metal layer).
  • FIG. 14 shows the first conductive layer 3200 included in the display substrate, and the first conductive layer 3200 is disposed on the gate insulating layer so as to be insulated from the active semiconductor layer 3100 .
  • the first conductive layer 3200 may include the second pole CC2 of the capacitor C, a plurality of scanning signal lines 043 extending along the X direction, a plurality of reset control signal lines 044, a plurality of light emission control signal lines 045, a second reset transistor T1, a threshold Gates of the compensation transistor T2, the drive transistor T3, the data writing transistor T4, the second light emission control transistor T5, the first light emission control transistor T6 and the first reset control transistor T7.
  • the gate of the data writing transistor T3 can be the overlapping part of the scanning signal line 043 and the active semiconductor layer 3100; the gate of the first light emission control transistor T6 can be the light emission control signal
  • the first part where the line 045 overlaps the active semiconductor layer 3100 and the gate of the second light emission control transistor T5 may be the second part where the light emission control signal line 045 overlaps the active semiconductor layer 3100 .
  • the gate of the second reset transistor T1 is the first part where the reset control signal line 044 overlaps the active semiconductor layer 3100
  • the gate of the first reset control transistor T7 is the second part where the reset control signal line 044 overlaps the active semiconductor layer 3100. part.
  • the threshold compensation transistor T2 can be a thin film transistor with a double gate structure, the first gate of the threshold compensation transistor T2 can be the overlapping part of the scanning signal line 043 and the active semiconductor layer 3100, and the second gate of the threshold compensation transistor T2 can be It may be a portion where the protruding structure P protruding from the scan signal line 043 overlaps with the active semiconductor layer 3100 . As shown in FIG. 14 , the gate of the driving transistor T1 can be the second pole CC2 of the capacitor C.
  • a first insulating layer is formed on the first conductive layer 3200 to insulate the first conductive layer 3200 from the second conductive layer 3300 formed subsequently.
  • the second conductive layer 3300 includes a first pole CC1 of a capacitor C and a plurality of reset power signal lines 041 extending along the X direction.
  • the first pole CC1 of the capacitor C and the second pole CC2 of the capacitor C at least partially overlap to form the capacitor C.
  • the display substrate further includes a plurality of covering parts S, and each threshold compensation transistor T2 includes two gates and an active semiconductor layer 3100 between the two gates.
  • the covering portion S overlaps the active semiconductor layer 3100 between the two gates, the data line 910 (described later) and the power signal line 920 (described later).
  • a second insulating layer is formed on the second conductive layer 3300 to insulate the second conductive layer 3300 from the subsequently formed source-drain metal layer 3400 .
  • the source-drain metal layer 3400 includes data lines 910 and power signal lines 920 extending along the Y direction.
  • the data line 910 is electrically connected to the second electrode of the data writing transistor T2 through a via hole penetrating through the gate insulating layer, the first insulating layer and the second insulating layer.
  • the power signal line 920 is electrically connected to the first electrode of the second light emission control transistor T5 through a via hole penetrating through the gate insulating layer, the first insulating layer and the second insulating layer.
  • the power signal lines 920 and the data lines 910 are arranged alternately along the X direction.
  • the power signal line 920 is electrically connected to the first pole CC1 of the capacitor C through a via hole penetrating through the second insulating layer.
  • a passivation layer and a flat layer may be provided on the side of the above-mentioned source-drain metal layer 3400 away from the base substrate to protect the above-mentioned source-drain metal layer 3400 .
  • each pixel circuit further includes: a connection part 052 and a connection part 053 provided on the same layer as the data line 910, and the connection part 052 is configured to connect the second pole of the threshold compensation transistor T2 and the terminal of the driving transistor T3.
  • the gate, the connection part 053 is configured to connect the first pole of the first reset control transistor T7 and the reset power signal line 041 .
  • connection portion 052 is electrically connected to the second electrode of the threshold compensation transistor T2 through a via hole penetrating through the gate insulating layer, the first insulating layer and the second insulating layer, and the other end of the connecting portion 052 is electrically connected to the second electrode of the threshold compensation transistor T2 through a hole penetrating the first insulating layer.
  • the via holes in the first layer and the second insulating layer are electrically connected to the gate of the drive transistor T3 (ie, the second pole CC2 of the capacitor C).
  • connection portion 053 is electrically connected to the reset power signal line 041 through a via hole penetrating the second insulating layer, and the other end of the third connecting portion 053 is electrically connected to the reset power signal line 041 through a via hole penetrating the gate insulating layer, the first insulating layer and the second insulating layer.
  • the via hole is electrically connected to the first electrode of the first reset control transistor T7.
  • each pixel circuit further includes a connection portion 055 provided on the same layer as the data line 910 , and the connection portion 055 is used to connect the second electrode of the light emitting element and the second electrode of the first reset control transistor T7 .
  • the second electrode 1200 of each sub-pixel 100 includes a main body electrode 1201, and the shape of at least part of the main body electrode 1201 of the second electrode 1200 can be compared with that of the light emitting region 101 or its corresponding opening 210. same shape. For example, if the shape of the light emitting region 101 of the first color sub-pixel 110 is a rectangle, the shape of the body electrode of the second electrode 1210 may be a rectangle.
  • the geometric center of the body electrode 1201 may roughly coincide with the geometric center of its corresponding light emitting region 101 , or the distance between the two geometric centers is very small.
  • the orthographic projection of the opening 210 of the pixel defining layer 200 on the base substrate 10 is located within the orthographic projection of the body electrode 1201 of the second electrode 1200 of the corresponding light emitting element 1000 on the base substrate 10 .
  • the body electrode 1201 of the corresponding sub-pixel 100 in the opening 210 at least partially having the first corner 1011 has substantially the same shape as the opening 210 .
  • the third opening 213 configured to define the light emitting region 101 of the third color sub-pixel 130 includes a first corner 1011, and the body electrode 1201 of the second electrode 1230 of the third color sub-pixel 130 also includes a first corner.
  • the shape of 1011 corresponds to the corner 2101 .
  • by arranging the main body electrode of the corresponding sub-pixel in the opening with the first corner to have approximately the same shape as the opening, it can help to improve the display area where the second electrode is located while ensuring the display effect. Transmittance, which in turn facilitates the application integration of under-screen fingerprint recognition or under-screen camera technology.
  • each second electrode 1200 further includes a connection electrode 1202 .
  • the connection electrode 1202 can be integrated with the body electrode 1201 , for example, the connection electrode 1202 is configured to be connected to a transistor of a pixel circuit through a via hole.
  • the 18 shows the light emitting regions of some subpixels (such as the light emitting region of the first color subpixel 110, the light emitting region of the second color subpixel 120 and the light emitting region of the third color subpixel 130) and the active semiconductor layer, the second color subpixel The positional relationship among the first conductive layer, the second conductive layer and the source-drain metal layer.
  • the embodiments of the present disclosure are not limited to the shape of the second color sub-pixel being rectangular, and may also be oval, olive (such as a shape with a middle width and narrow widths at both ends) and other shapes.
  • Another embodiment of the present disclosure provides a display device, including the above-mentioned display substrate.
  • the display device provided by the embodiments of the present disclosure may be a light emitting diode display device.
  • the display device may further include a cover plate located on the display side of the display substrate.
  • the display device may be any product or component with a display function such as a TV, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, or a navigator, and the present embodiment is not limited thereto.
  • the display device may be a display device with an under-screen camera, and the display device includes functional components, such as a camera module (for example, a front-facing camera module), a 3D structured light module (for example, a 3D structured light sensor) , at least one of a time-of-flight 3D imaging module (for example, a time-of-flight sensor), an infrared sensing module (for example, an infrared sensing sensor), and the like.
  • a camera module for example, a front-facing camera module
  • a 3D structured light module for example, a 3D structured light sensor
  • at least one of a time-of-flight 3D imaging module for example, a time-of-flight sensor
  • an infrared sensing module for example, an infrared sensing sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示基板以及显示装置。该显示基板包括衬底基板(10)、多个子像素(100)、像素限定层(200)以及多个隔垫物(300)。每个子像素(100)包括发光区(101);像素限定层(200)包括多个开口(210)以限定多个子像素(100)的发光区(101);隔垫物(300)位于像素限定层(200)远离衬底基板(10)的一侧,且分布在相邻开口(210)之间的间隔处。至少一个开口(210)的形状为多边形(400)截去至少一个顶角(401)后的形状,开口(210)的角部包括第一角部(1011),角部为多边形(400)被截去由两条边所夹的一顶角(401)后形成的角部;至少一个隔垫物(300)设置在角部和与其相邻的开口(210)之间的间隔处,且角部所在开口(210)的几何中心与该相邻的开口(210)的几何中心的连线经过角部和隔垫物(300)。本公开实施例通过在角部对应的像素限定层的开口的间隔位置处设置隔垫物,有利于提升工艺良率或者提升隔垫物的支撑作用。

Description

显示基板以及显示装置
本申请要求于2021年6月25日递交的中国专利申请第202110711261.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种显示基板以及显示装置。
背景技术
有机发光显示器件(Organic Light-Emitting Display,OLED)是一种具有高亮度、全视角、响应速度快、可柔性显示等一系列优点的自发光器件。有机发光二极管显示装置按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED)和有源矩阵型OLED(Active Matrix OLED),AMOLED显示装置发光效能更高,可用作高分辨率的大尺寸显示装置。
发明内容
本公开的至少一实施例提供一种显示基板以及显示装置。
本公开的至少一实施例提供一种显示基板,包括:衬底基板;多个子像素,位于所述衬底基板上,所述多个子像素包括多个发光区;像素限定层,位于所述衬底基板上,所述像素限定层包括多个开口以限定所述多个发光区;以及多个隔垫物,位于所述像素限定层远离所述衬底基板的一侧,且分布在相邻开口之间的间隔处。至少一个开口的形状为多边形截去至少一个顶角后的形状,所述开口的角部包括第一角部,所述第一角部为所述多边形被截去由两条边所夹的一顶角后形成的角部;至少一个隔垫物设置在所述第一角部和与其相邻的开口之间的间隔处,且所述第一角部所在开口的几何中心与该相邻的开口的几何中心的连线经过所述第一角部和所述隔垫物。
例如,在本公开的实施例中,所述两条边至少之一被截去的部分的长度与该边的长度之比为0.2~0.8。
例如,在本公开的实施例中,各隔垫物设置在所述第一角部和与该第一角部相邻的开口之间的间隔处。
例如,在本公开的实施例中,具有所述第一角部的开口的数量不小于所述多个隔垫物的数量。
例如,在本公开的实施例中,具有所述第一角部的开口被配置为限定至少一种颜色子像素的发光区。
例如,在本公开的实施例中,具有所述第一角部的所述开口包括同一种类型的开口。
例如,在本公开的实施例中,具有所述第一角部且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,不同类型开口中,所述第一角部的顶点指向与其相对的角部的顶点的方向不同,所述多个隔垫物中的至少部分分布在同一类型开口对应的所述间隔处。
例如,在本公开的实施例中,所述多个隔垫物包括多个第一隔垫物,所述多个第一隔垫物分布在同一类型开口的所述第一角部对应的所述间隔处,且所述多个第一隔垫物均匀分布。
例如,在本公开的实施例中,所述至少两种类型开口包括第一类型开口和第二类型开口,所述多个第一隔垫物分布在至少部分第一类型开口的所述第一角部对应的所述间隔处;所述多个隔垫物还包括多个第二隔垫物,所述多个第二隔垫物分布在至少部分第二类型开口的所述第一角部对应的间隔处,且所述多个第二隔垫物均匀分布。
例如,在本公开的实施例中,所述至少两种类型开口还包括第三类型开口和第四类型开口,所述第一类型开口、所述第二类型开口、所述第三类型开口以及所述第四类型开口中的两种类型开口中的所述第一角部的顶点指向与其相对角部的顶点的相反,另外两种类型开口中的所述第一角部的顶点指向与其相对角部的顶点的相反。
例如,在本公开的实施例中,至少部分隔垫物分布在被配置为限定不同颜色子像素的所述开口的所述第一角部和与该第一角部相邻的开口之间的间隔处。
例如,在本公开的实施例中,与至少一个隔垫物紧邻的至少两个开口均包括所述第一角部,且所述至少两个开口的所述第一角部均为其所在开口中最靠近该隔垫物的角部。
例如,在本公开的实施例中,每个子像素包括发光元件,所述发光元件包括层叠设置的第一电极、发光层以及第二电极,所述第二电极位于所述发光层 面向所述衬底基板的一侧,且所述第二电极包括主体电极,至少部分具有所述第一角部的所述开口内对应的所述子像素的所述主体电极具有与该开口大致相同的形状。
例如,在本公开的实施例中,所述多个子像素包括多个第一颜色子像素、多个第二颜色子像素以及多个第三颜色子像素,所述多个第一颜色子像素和所述多个第三颜色子像素沿行方向和列方向均交替设置以形成多个第一像素行和多个第一像素列,所述多个第二颜色子像素沿所述行方向和所述列方向均阵列排布以形成多个第二像素行和多个第二像素列,所述多个第一像素行和所述多个第二像素行沿所述列方向交替设置且在所述行方向上彼此错开,所述多个第一像素列和所述多个第二像素列沿所述行方向交替设置且在所述列方向上彼此错开;所述多个开口包括多个第一开口、多个第二开口以及多个第三开口,所述多个第一开口被配置为限定所述多个第一颜色子像素的发光区,所述多个第二开口被配置限定所述多个第二颜色子像素的发光区,所述多个第三开口被配置为限定所述多个第三颜色子像素的发光区;所述第一开口、所述第二开口和所述第三开口的至少一种开口包括所述第一角部。
例如,在本公开的实施例中,所述多个隔垫物的至少部分分布在沿所述列方向和所述行方向的至少之一排布的相邻两个开口之间的间隔处。
例如,在本公开的实施例中,沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素;或者,沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有六个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有三个所述第一颜色子像素以及三个所述第三颜色子像素;或者,沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有三个所述第一颜色子像素以及三个所述第三颜色子像素;或者,沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有六个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素。
例如,在本公开的实施例中,具有所述第一角部且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,不同类型开口中,所述 第一角部的顶点指向与其相对的角部的顶点的方向不同,所述多个隔垫物包括多个第一隔垫物和多个第二隔垫物,所述第一隔垫物和所述第二隔垫物分布在不同类型开口的所述第一角部对应的间隔处。
例如,在本公开的实施例中,沿所述行方向和所述列方向之一,相邻所述第一隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述第一隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素;沿所述行方向和所述列方向之一,相邻所述第二隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述第二隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素。
例如,在本公开的实施例中,至少部分所述第三开口包括所述第一角部,各隔垫物设置在所述第三开口的所述第一角部和与其相邻的所述第一开口之间的间隔处。
例如,在本公开的实施例中,所述隔垫物与位于其一侧的所述第一角部之间的距离为第一距离,所述隔垫物与位于其另一侧的开口的角部的最短距离为第二距离,所述第一距离不小于所述第二距离。
例如,在本公开的实施例中,在所述行方向和所述列方向至少之一上位于所述隔垫物的两侧且与所述隔垫物紧邻的两个开口的彼此相对的角部的连线位于该隔垫物的几何中心远离所述第一角部的一侧。
例如,在本公开的实施例中,沿所述行方向和所述列方向至少之一的方向相邻的两个开口均包括所述第一角部,且所述两个开口中的所述第一角部为最靠近彼此的两个角部。
例如,在本公开的实施例中,至少部分开口包括至少两个第一角部。
例如,在本公开的实施例中,至少一个隔垫物在平行于所述第一角部所在开口的几何中心与该相邻的开口的几何中心的所述连线的方向的最大尺寸为第一尺寸,在垂直于所述连线的方向的最大尺寸为第二尺寸,所述第一尺寸小于所述第二尺寸。
例如,在本公开的实施例中,所述显示基板包括显示区,所述多个隔垫物的至少部分以及所述多个子像素位于所述显示区,位于所述第一角部和与该第一角部相邻的开口之间的间隔处的所述隔垫物的数量与位于所述显示区的所述隔垫物的数量比例不小于50%。
例如,在本公开的实施例中,同一种颜色的子像素的发光层的形状和尺寸相同,所述发光层在所述像素限定层上的边界和与该发光层对应的所述第一角部的距离不同于所述发光层在所述像素限定层上的边界和与该发光层对应的其他角部之间的距离。
例如,在本公开的实施例中,所述开口的角部还包括第二角部,连接所述第一角部的两端点的两条边或其延长线的交点到该开口的几何中心的距离大于构成所述第二角部的两条边或其延长线的交点到该开口的几何中心的距离。
本公开的至少一实施例提供一种显示装置,包括上述任一显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开实施例的一示例提供的像素排布的局部平面结构示意图;
图2为根据本公开实施例的一示例提供的像素限定层以及隔垫物的平面结构示意图;
图3为沿图1和图2所示AB线所截的局部截面结构示意图;
图4A为图2所示一个开口的形状示意图;
图4B为另一种发光区形状的示意图;
图5A为一种像素限定层以及隔垫物的平面结构示意图;
图5B为图2所示像素限定层以及隔垫物的一示例中部分平面结构示意图;
图5C为图2所示像素限定层以及隔垫物的另一示例中部分平面结构示意图;
图6为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图7为图2所示一个开口的放大图;
图8A为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图8B为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图8C为显示基板的平面示意图;
图9为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图10A为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图10B为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图10C为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图11A为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图;
图11B为部分子像素的发光层与相应开口对应关系示意图;
图12为像素电路的等效图;
图13为有源半导体层的局部平面结构示意图;
图14为第一导电层的局部平面结构示意图;
图15为第二导电层的局部平面结构示意图;
图16为源漏金属层的局部平面结构示意图;
图17部分子像素的第二电极的平面结构示意图;以及
图18为部分子像素的发光区与有源半导体层、第一导电层、第二导电层以及源漏金属层的层叠图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者 物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本公开的实施例提供一种显示基板以及显示装置。该显示基板包括衬底基板、位于衬底基板上的多个子像素、像素限定层以及多个隔垫物。多个子像素包括多个发光区;像素限定层包括多个开口以限定多个发光区;多个隔垫物,位于像素限定层远离衬底基板的一侧,且分布在相邻开口之间的间隔处。至少一个开口的形状为多边形截去至少一个顶角后的形状,开口的角部包括第一角部,第一角部为多边形被截去由两条边所夹的一顶角后形成的角部;至少一个隔垫物设置在所述第一角部和与其相邻的开口之间的间隔处,且所述第一角部所在开口的几何中心与该相邻的开口的几何中心的连线经过所述第一角部和所述隔垫物。本公开实施例通过在第一角部对应的像素限定层的开口的间隔位置处设置隔垫物,有利于提升工艺良率或者提升隔垫物的支撑作用。
下面结合附图对本公开实施例提供的显示基板的示意图。
图1为根据本公开实施例的一示例提供的像素排布的局部平面结构示意图,图2为根据本公开实施例的一示例提供的像素限定层以及隔垫物的平面结构示意图,图3为沿图1和图2所示AB线所截的局部截面结构示意图。如图1至图3所示,显示基板包括衬底基板10,位于衬底基板10上的多个子像素100,像素限定层200以及位于像素限定层200远离衬底基板10一侧的多个隔垫物(Photo Spacer,PS)300。多个子像素100包括多个发光区101,例如每个子像素100包括发光区101,像素限定层200包括多个开口210以限定多个子像素100的发光区101。
例如,如图1至图3所示,各子像素100的发光区101的形状与像素限定层200的开口的形状大致相同。例如,各子像素100包括发光元件1000,发光元件1000包括层叠设置的第一电极1100、发光层1300以及第二电极1200,第二电极1200位于发光层1300面向衬底基板10的一侧。例如,第二电极1200的至少部分位于像素限定层200面向衬底基板10的一侧。当发光层1300形成在上述像素限定层200中的开口210中时,位于发光层1300两侧的第一电极1100和第二电极1200能够驱动像素限定层200的开口210中的发光层1300进行发光。例如,发光层1300与第一电极1100之间以及发光层1300与第二电极1200之间的至少之一中还设置有功能层。例如,功能层包括空穴注入层,空穴传输层,电子传输层,空穴阻挡层,电子阻挡层,电子注入层,辅助发光 层,界面改善层,增透层等中的任意一层或多层。
例如,如图1至图3所示,像素限定层200的开口210在衬底基板10上的正投影位于相应的发光层1300在衬底基板10上的正投影内,即发光层1300覆盖了像素限定层200的开口210。例如,发光层1300的面积大于对应的像素限定层200的开口210的面积,即发光层1300除位于像素限定层200的开口210内部的部分,至少还包括覆盖像素限定层200的实体结构上的部分。通常在像素限定层200的开口210的各个边界处的像素限定层200的实体结构上均覆盖发光层1300。
如图1至图3所示,多个隔垫物300分布在像素限定层200的相邻开口210之间的间隔处。例如,上述间隔指相邻开口210之间的像素限定层200的实体结构,例如,隔垫物300位于像素限定层200的实体结构上。
例如,如图1至图3所示,本公开实施例以像素限定层200与隔垫物300为两个彼此独立的结构,但不限于此,隔垫物与像素限定层可以为一体结构,例如在同一步图案化工艺中一体形成,无明显界限。例如,隔垫物和像素限定层可以以坡度角曲线出现拐点的位置作为界限。例如对于像素限定层本身,从位于其延伸方向中心线两侧的一开口边缘到靠近像素限定层延伸方向中心线的方向,坡度角可以是从大到小的趋势,到像素限定层接近平坦的表面,坡度角可以大致为0°到5°;在像素限定层接近平坦的表面上,到隔垫物的边界处,坡度角又呈现上升的趋势,例如隔垫物边界处,坡度角可以大致为从接近0°上升到10°左右(例如为5°~10°),或10°以上。上述坡度角可以为测量点位置做外切线,与最靠近的第二电极(例如为阳极)远离衬底基板的表面所在的平面之间的夹角。例如,未设置隔垫物的像素限定层部分的厚度为第一厚度(例如接近平坦的部分的平均厚度),设置有隔垫物的像素限定层部分的最大厚度为第二厚度,隔垫物和像素限定层的边界,可以按照从像素限定层靠近衬底基板一侧的表面起到第一厚度之间的部分为像素限定层本身,超过第一厚度到第二厚度的部分为隔垫物的部分。例如,第一厚度(例如接近平坦的部分的平均厚度)可以为0.8-1.8μm。例如,第一厚度可以大于等于1.1μm。例如,第一厚度可以小于3μm。因为像素限定层作为封装有机层阻挡坝的一部分,厚度太小,可能容易出现有机层溢流影响封装效果。像素限定层的第一厚度太厚,容易对出光角度造成比较大的限制,影响出光效率。
例如,像素限定层200的靠近开口210的部分的坡度角可以为15°-25°。 例如,像素限定层200的靠近开口210的部分的坡度角可以为17°-21°。例如,像素限定层200的靠近开口210的部分的坡度角可以为18°-20°。
例如,图3示意性的示出隔垫物设置在像素限定层上,但不限于此,隔垫物还可以设置在其他膜层上,例如隔垫物可以设置在对置基板上。
图4A为图2所示一个开口的形状示意图。如图1至图4A所示,至少一个开口210的形状为多边形400截去至少一个顶角401后的形状,开口210的角部包括第一角部1011,第一角部1011为多边形400被截去由两条边410所夹的一顶角401后形成的第一角部1011。例如,用于截去多边形400的顶角401的截线402可以包括曲线、直线等具有规则形状的线段,也可以为不规则形状的线段。
例如,各个开口210的每条边或其延长线依次连接形成多边形400,且至少部分多边形400的多个顶角存在与对应的开口的多个角部不交叠的区域;至少一个开口210的多个角部中,至少包括第一角部1011,所述第一角部1011和与其对应的所述多边形400的顶角不交叠的区域的面积大于其他角部的至少部分角部中各角部和与该角部对应的多边形400的顶角不交叠的区域的面积。
例如,本公开实施例示意性的示出多边形400为四边形,例如,对应于至少一个开口210的多边形400的形状可以为菱形、矩形或者正方形,但不限于此,多边形400还可以为三角形、五边形或者六边形等,本公开实施例对此不作限制。例如,多边形的各角部的角度可以相等,也可以不等。
例如,如图4A所示,第一角部1011包括一顶点P,该顶点可以在连线403上,与第一角部1011的两端连接的两条边向其顶点P延伸交汇的部分形成的一段曲线(即角部的外侧边缘)以使得该第一角部1011成为圆倒角,此时,该第一角部1011可为从该顶点P为中心沿轮廓x微米的范围,x微米的值可以为2~7微米。例如,所述开口210的角部还包括第二角部1012,连接所述第一角部1011的两端点的两条边或其延长线的交点到该开口210的几何中心的距离大于构成所述第二角部1012的两条边或其延长线的交点到该开口210的几何中心的距离。例如,在第一角部为圆倒角,开口的形状中与第一角部相对的角部(例如第二角部)为直角或锐角时,与第一角部的两端连接的两条直边的延长线的交点到该开口210的几何中心O的距离大于构成与第一角部相对的角部的两条直边的延长线的交点到该几何中心O的距离。
上述“圆倒角”为一段曲线形成的角部,该曲线可以为圆弧,也可以为非 规则的曲线,例如椭圆形中截取的曲线、波浪线等。本公开实施例示意性的示出该曲线具有相对于开口210的几何中心O向外凸的形状,但不限于此,该曲线也可以具有相对于开口210的几何中心O向内凹的形状。例如,曲线为向外凸的圆弧时,该圆弧的圆心角的范围可以为10°~150°。例如,该圆弧的圆心角的范围可以为60°~120°。例如,该圆弧的圆心角的范围可以为90°。例如,第一角部1011包括的圆倒角的曲线长度可以为10~60微米。
例如,第一角部1011为圆倒角时,其曲率半径可以为5~20微米。
例如,图4B为另一种发光区形状的示意图。如图4B所示,上述第一角部也可以为构成某一顶角的两条边向其顶点P延伸交汇的部分形成的线段(即角部的外侧边缘)以使得该第一角部成为平倒角,例如第一角部1011包括平倒角,该第一角部的顶点可以在连线403上,例如为连线403与平倒角的交点。
如图1至图4A所示,至少一个隔垫物300设置在第一角部1011和与其相邻的开口210之间的间隔处,且该第一角部1011位于其所在开口210的几何中心靠近该相邻的开口210的一侧以使该第一角部1011朝向该相邻的开口210。上述第一角部1011的外侧边缘为向外凸的曲线时,第一角部1011朝向该相邻的开口指第一角部1011的外侧边缘向该相邻的开口凸出。
如图1至图4A所示,所述第一角部1011所在开201口的几何中心与该相邻的开口210的几何中心的连线C01经过所述第一角部1011和所述隔垫物300。
本公开实施例通过在第一角部对应的像素限定层的开口的间隔位置处设置隔垫物,有利于提升工艺良率或者提升隔垫物的支撑作用。上述“第一角部对应的像素限定层的开口的间隔位置”指与角部的外侧边缘相接的间隔。
本公开实施例在第一角部对应的间隔处设置隔垫物,可以增加隔垫物与开口之间的距离,和/或,增加隔垫物的尺寸,可以降低隔垫物脱落的几率,从而有利于提升产品的工艺良率。
在蒸镀形成子像素的发光层等膜层时,隔垫物可以起到支撑用于蒸镀发光层的精细金属掩模板(FMM)的作用,FMM具有多个通孔,通孔可为刻蚀方式形成的孔,蒸镀材料由下至上通过通孔沉积在像素限定层上。因FMM是金属材质,与衬底基板接触时,易损伤衬底基板上沉积的材料。为了避免FMM破坏显示基板中的膜层,在像素限定层上设置隔垫物以在蒸镀时支撑FMM,防止FMM划伤像素限定层等膜层的表面。蒸镀时,将衬底基板置于的上方, 隔垫物与FMM贴合。本公开实施例在角部对应的间隔处设置隔垫物,可以增加隔垫物与开口之间的距离,和/或,增加隔垫物的尺寸,有利于提升隔垫物对精细金属掩模板的支撑作用。
例如,如图1至图4A所示,一开口210中的第一角部1011朝向下(图2所示与Y方向的箭头所指方向相反的方向),则该开口210的下侧的间隔处设置有隔垫物300。本公开实施例不限于此,一开口中的第一角部朝向上(图2所示与Y方向的箭头所指方向),则该开口的上侧的间隔处设置有隔垫物;一开口中的第一角部朝向右(图2所示与X方向的箭头所指方向),则该开口的右侧的间隔处设置有隔垫物;一开口中的第一角部朝向左(图2所示与X方向的箭头所指方向相反的方向),则该开口的左侧的间隔处设置有隔垫物。本公开实施例中,一开口的第一角部的朝向不限于上述向上、向下、向左或者向右(这些朝向均与行方向和列方向大致平行),还可以朝向倾斜的方向,该倾斜方向为与行方向和列方行均相交的方向,例如,倾斜方向与行方向之间的夹角可以为20~80度,或者30~70度,或者45~60度等。例如,开口的第一角部的朝向还可以斜向上(如斜向左上,或者斜向右上)、斜向下(如斜向左下,或者斜向右下)。
例如,如图1至图4A所示,隔垫物300在一方向上的两侧设置有两个彼此相邻的开口210,至少一个开口210设置有第一角部1011,且该第一角部1011位于该隔垫物300与该至少一个开口210的几何中心之间。
例如,如图1至图4A所示,与隔垫物300紧邻的至少一个开口210设置有第一角部1011,则该第一角部1011为该开口210的所有角部中最靠近该隔垫物300的一个角部。
例如,如图1至图4A所示,多边形400的两条边(例如第一边410)的至少之一被截去的部分的长度L1与该边410的长度之比为0.2~0.8。多边形400的第一边410被截去第一线段L1后剩余部分L2形成连接第一角部1011的开口210的边,例如第一角部1011的两端分别与开口210的两条直边连接,这两条直边的至少一条直边为多边形400的第一边410截去第一线段L1后剩余的直线边。
例如,多边形400可以被截去至少一个第一顶角401以形成至少一个第一角部1011。例如,一个多边形400包括的多个第一顶角401度数相等,且该多个第一顶角401被截去后形成的多个第一角部1011的形状和尺寸等参数均相 等。
例如,如图1和图4A所示,第一线段L1的长度与第一边410的长度之比为0.3~0.7。例如,第一线段L1的长度与第一边410的长度之比为0.4~0.6。例如,第一线段L1的长度与第一边410的长度之比为0.5。
例如,如图1和图4A所示,第一线段L1的长度与剩余部分L2的长度之比为0.25~4。例如,第一线段L1的长度与剩余部分L2的长度之比为1~3。第一线段L1的长度与剩余部分L2的长度之比为0.5~2。
例如,如图1至图4A所示,各隔垫物300设置在第一角部1011和与该第一角部1011相邻的开口210之间的间隔处。例如,所有隔垫物300均设置在靠近第一角部1011的间隔处,以进一步提高工艺良率以及隔垫物的支撑作用。
例如,如图1至图4A所示,具有第一角部1011的开口210的数量不小于多个隔垫物300的数量。例如,具有第一角部1011的开口210的数量大于多个隔垫物300的数量,具有第一角部1011的开口210中的部分开口210附近设置了隔垫物300,其他开口210的附近没有设置隔垫物300。当然本公开实施例不限于此,隔垫物也可以设置比较大的密度,例如隔垫物的数量可以与具有第一角部的开口的数量大致相等,例如设置有第一角部的开口的第一角部对应的间隔处均设置隔垫物。
例如,在相邻的开口210的中心连线的方向上,隔垫物300的尺寸与开口210之间的间隔的尺寸的比值可以为0.8-1.2。
例如,至少一个隔垫物300在平行于所述第一角部1011所在开口210的几何中心与该相邻的开口210的几何中心的所述连线C0的方向的最大尺寸为第一尺寸SZ1,在垂直于所述连线C0的方向的最大尺寸为第二尺寸SZ2,所述第一尺寸SZ1小于所述第二尺寸SZ2。
例如,至少一个隔垫物300的在衬底基板10上的正投影的形状为长条形,且所述长条形的短轴大致平行于所述第一角部1011所在开口的几何中心与该相邻的开口的几何中心的连线C0。
图2示意性的以隔垫物300在衬底基板10上的正投影的形状以矩形为例,矩形的长边为与开口210的第一角部1011相邻的边。
本公开实施例不限于隔垫物在衬底基板上的正投影的形状为矩形,例如,隔垫物在衬底基板上的正投影的形状还可以选自圆角矩形、椭圆形、圆形中的至少一种。例如,隔垫物在衬底基板上的正投影可以为轴对称图形。例如,隔 垫物位于像素限定层不同延伸方向的部分的交点处(例如覆盖像素限定层不同延伸方向的部分的交点),且具有两个对称轴,该两个对称轴分别大致平行其所在处的像素限定层的两个延伸方向。例如,隔垫物在衬底基板上的正投影在其长轴方向尺寸范围可以为20-50μm。例如,隔垫物在衬底基板上的正投影在其短轴方向尺寸范围可以为12-30μm。例如,隔垫物在衬底基板上的正投影的范围小于48μm*26μm。例如,隔垫物在衬底基板上的正投影的范围小于41μm*25μm。例如,隔垫物在衬底基板上的正投影的范围小于33μm*20μm。例如,隔垫物在衬底基板上的正投影的范围小于25μm*15μm。
例如,如图1至图4A所示,具有第一角部1011的开口210被配置为限定至少一种颜色子像素100的发光区101。例如,至少一种颜色子像素100包括蓝色子像素、绿色子像素以及红色子像素的至少之一。图1至图4A示意性的示出被配置为限定一种颜色子像素的发光区的开口包括第一角部,但不限于此,被配置为限定其他颜色子像素的发光区的开口也可以包括第一角部,可以根据实际产品需要进行设置。
图5A为一种像素限定层以及隔垫物的平面结构示意图。如图5A所示,一种像素限定层020包括的各个开口021的形状均为多边形,且该多边形没有顶角被截去,隔垫物030位于相邻两个开口021的彼此相对的顶角0211和顶角0212之间的间隔处,且这两个顶角0211和0212均为非圆倒角或者非平倒角,例如可以为锐角或者直角等。如图5A所示,隔垫物030与两个顶角0211和0212之间的两个距离可以相等,例如均为S0。图5A示意性的示出隔垫物030与顶角0211(或顶角0212)之间的距离指隔垫物030靠近该顶角0211(或顶角0212)的边缘与该顶角0211(或顶角0212)的距离S0,但不限于此,隔垫物与顶角之间的距离还可以指隔垫物的几何中心与顶角之间的距离。如图5A所示,位于上述两个顶角0211和0212之间的隔垫物030在Y方向(包括上述两个顶角0211和0212的两个开口的排列方向)上的尺寸,如宽度为W0。
图5B为图2所示像素限定层以及隔垫物的一示例中部分平面结构示意图。如图5B所示,隔垫物300与位于其一侧的第一角部1011之间的距离为第一距离S1,隔垫物300与位于其另一侧的开口210的角部1013的最短距离为第二距离S2,第一距离S1不小于第二距离S2。例如,第一距离S1可以大于第二距离S2。例如,第一距离S1可以等于第二距离S2。
例如,图5B所示的具有角部1013的开口210的形状以及其与隔垫物300 的位置关系可以与图5A所示的具有顶角0212的开口021的形状以及其与隔垫物030的位置关系相同,则第二距离S2可以与距离S0相等。图5B所示的隔垫物300在两个开口210的排列方向(Y方向)上的尺寸W1与图5A所示的隔垫物030在两个开口021的排列方向(Y方向)上的尺寸W0可以大致相等。图5B所示的与隔垫物300紧邻的第一角部1011可以为图5A所示的与隔垫物030紧邻的顶角0211被截去后形成的第一角部1011(该顶角0211所在开口021可以为形成第一角部1011所在开口210的多边形),则图5B所示的第一角部1011与隔垫物300之间的第一距离S1可以大于图5A所示的顶角0211与隔垫物030之间的距离S0,则第一距离S1大于第二距离S2,以增加隔垫物与一个开口之间的距离,有利于提高工艺良率。
例如,图5B所示位于隔垫物300在X方向的两侧的开口212的形状以及相对位置关系可以与图5A所示位于隔垫物030在X方向的两侧的开口的形状以及相对位置关系相同。例如,如图5B所示,位于隔垫物300在X方向的两侧的开口212相对于连线C0对称分布时,隔垫物300与在X方向上位于其两侧的两个开口212之间的两个距离相等。例如,位于隔垫物300在X方向的两侧的开口212可以均包括第一角部,也可以均不包括第一角部,本公开实施例对此不作限制。
例如,如图5B所示,围绕隔垫物300的开口210包括在行方向排列的两个开口和在列方向上排列的两个开口,上述四个开口210的至少之一包括第一角部1011,例如上述四个开口之一包括朝向隔垫物300的第一角部1011,隔垫物300与第一角部1011之间的距离为第一距离,隔垫物300和与第一角部1011所在开口在行或列方向排列的另一个开口210之间的距离为第二距离,隔垫物300与剩下的在列或行方向排列的两个开口210之间的距离分别为第三距离和第四距离。例如,位于隔垫物300在X方向的两侧的开口212与隔垫物300之间的距离可以分别为第三距离和第四距离,第三距离与第四距离可以相等,也可以不等。例如,第一距离可以大于第三距离,且第二距离、第三距离和第四距离可以均相等。例如,第一距离和第二距离相等,第三距离和第四距离相等,第一距离大于第三距离。
例如,在图5A中隔垫物030的尺寸W0与图5B中隔垫物300的尺寸W1相等时,可以通过调节图5B中隔垫物300与在Y方向上位于其两侧且紧邻的两个开口210之间的距离使得第一距离S1和第二距离S2基本相等,则第一距 离S1和第二距离S2均大于图5A所示的距离S0。本公开实施例可以通过调节隔垫物与开口之间的距离以增加隔垫物与位于其两侧的两个开口之间的距离,有利于降低隔垫物脱落的几率,以提高工艺良率。
图5C为图2所示像素限定层以及隔垫物的另一示例中部分平面结构示意图。如图5A所示,在X方向上位于隔垫物030两侧且与隔垫物030紧邻的两个开口021的彼此相对的角部0213和0214的连线L0经过隔垫物030的几何中心031。如图5C所示,隔垫物300与在X方向上位于其两侧的两个开口210之间的第一距离S1和第二距离S2可以均与图5A所示的距离S0相等,且图5C所示的隔垫物300在Y方向上的尺寸W1(如宽度)大于图5A所示的隔垫物030在Y方向上的尺寸W0,则本公开实施例在没有降低隔垫物与开口之间距离的基础上,通过增加隔垫物的尺寸,在保证工艺良率的基础上可以提高隔垫物的支撑作用。
图5C所示示例中,位于隔垫物300在Y方向(或X方向)上的一侧的开口210具有第一角部1011,该隔垫物300在Y方向(或X方向)上的另一侧的开口210不具有第一角部1011,而位于隔垫物300在X方向(或Y方向)上的两侧的开口210是对称分布的,可以均不具有第一角部1011,也可以均具有第一角部1011,且两个开口210中的第一角部1011是对称分布的。
例如,如图5C所示,在行方向和列方向至少之一上位于隔垫物300的两侧且与隔垫物300紧邻的两个开口210的彼此相对的角部1014和1015的连线L01位于该隔垫物300的几何中心301远离第一角部1011的一侧。
例如,第一距离、第二距离、第三距离以及第四距离可以均相等。
当然本公开实施例不限于上述隔垫物的尺寸以及隔垫物与开口之间的距离的设置。例如,还可以图5B所示的隔垫物300的尺寸W1大于图5A所示的隔垫物030的尺寸W0,且隔垫物300与至少一个开口之间的距离(第一距离和第二距离的至少之一)也大于图5A所示的隔垫物030与开口之间的距离S0,通过同时增加隔垫物的尺寸以及隔垫物与开口之间的距离,既有利于降低隔垫物脱落的几率,又有利于提升产品的工艺良率与隔垫物的支撑作用。
参考图5A至图5C,由于至少一个开口设置了第一角部,则该角部与位于相邻开口且与该第一角部相对的角部之间的距离增加了,此时,既可以仅增加隔垫物的尺寸,又可以仅增加隔垫物与开口之间的距离,还可以隔垫物的尺寸以及隔垫物与开口之间的距离均增加,从而,可以降低隔垫物脱落的几率,有 利于提升产品的工艺良率与隔垫物的支撑作用。
例如,图6为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图。如图6所示,例如,具有所述第一角部1011的所述开口210包括同一种类型的开口,例如,具有第一角部1011的开口210可以均包括一个第一角部1011,且各开口210中的第一角部1011的朝向均相同,例如,各开口210中的第一角部1011均朝向上,或者均朝向下,或均朝向右,或者均朝向左,或者均朝向(斜向)左上,或者均朝向(斜向)左下,或者均朝向(斜向)右上,或者均朝向(斜向)右下,则多个隔垫物300均分布在同一朝向的第一角部1011对应的间隔处。上述“同一种类型的开口”指角部的朝向相同的开口,该同一种类型的开口可以仅包括被配置为限定同一种颜色子像素的发光区的开口,也可以包括被配置为限定不同颜色子像素的发光区的开口。例如,同一种类型的开口可以仅包括限定蓝色子像素的发光区的开口、或者限定绿色子像素的发光区的开口,或者限定红色子像素的发光区的开口;也可以包括限定蓝色子像素的发光区的开口和限定绿色子像素的发光区的开口,或者限定蓝色子像素的发光区的开口和限定红色子像素的发光区的开口,或者限定绿色子像素的发光区的开口和限定红色子像素的发光区的开口;还可以包括限定蓝色子像素的发光区的开口、限定红色子像素的发光区的开口以及限定绿色子像素的发光区的开口。
图6示意性的示出被配置为限定一种颜色子像素的发光区的开口包括第一角部,但不限于此,被配置为限定其他颜色子像素的发光区的开口也可以包括第一角部,可以根据实际产品需要进行设置。
例如,如图1至图4A所示,具有第一角部1011且被配置为限定同一种颜色子像素100的发光区101的开口210包括至少两种类型开口,不同类型开口210中,第一角部1011的顶点指向与其相对的角部的顶点的方向不同。
本公开实施例中不同类型开口指角部的顶点指向与其相对的角部的顶点的方向不同的开口。例如,上述开口可以包括四个角部,此时,开口可以包括一个第一角部,三个其他角部之一与一个第一角部相对;上述开口还可以包括两个第一角部和两个其他角部,每个第一角部和一个相应的其他角部相对,此时两个角部为相邻的角部,根据该两个角部的相对位置关系而将其中一个角部作为判定不同类型开口的基准角部,以该基准角部指向与其相对的角部的方向作为基准方向;上述开口还可以包括三个角部和一个其他角部,以与该其他角 部相对的角部为基准角部来判定不同类型开口,并以该基准角部指向与其相对的角部的方向作为基准方向。
例如,图7为图2所示一个开口的放大图。如图2和图7所示,在至少一个开口210中,除上述基准第一角部1011和与其相对的角部外的其他两个角部的顶点的连线L将该开口210分为两个部分,一个部分为第一角部1011所在的部分,另一个部分为与第一角部1011相对的角部1012(例如为第二角部1012)所在的部分。例如,第一角部1011所在部分的面积与第二角部1012所在部分的面积之比可以为0.1~0.99。例如,第一角部1011所在部分的面积与第二角部1012所在部分的面积之比可以为0.2~0.9。例如,第一角部1011所在部分的面积与第二角部1012所在部分的面积之比可以为0.3~0.8。例如,第一角部1011所在部分的面积与第二角部1012所在部分的面积之比可以为0.4~0.7。
例如,如图7所示,第一角部1011的顶点与连线L之间的距离d1小于第二角部1012的顶点与连线L之间的距离d2。例如第一角部1011的顶点和连线L之间的距离d1与第二角部1012的顶点与连线L之间的距离d2之比d1/d2的范围可以为0.1~0.9。例如,d1/d2的范围可以为0.2~0.8。例如,d1/d2的范围可以为0.4~0.6。例如,d1与d2之比的范围可以为0.7~0.9。
例如,如图7所示,第一角部1011的顶点与第二角部1012的顶点之间的连线的长度可以为a(即上述距离d1与距离d2之和),连线L的长度可以为b,a与b之比的范围可以为0.6~0.9。例如,a与b之比的范围可以为0.7~0.8。
例如,如图2所示,由于第一角部1011的朝向可以包括向上、向下、向左、向右、斜向左上,斜向左下,斜向右上,或者斜向右下,第一角部1011的顶点指向与其相对的角部的顶点的方向也可以包括多个方向,例如至少两种类型开口210中,第一角部1011的顶点指向与其相对的角部的顶点的方向可以包括方向D1、方向D2、方向D3和方向D4的至少两个,且各个方向不同。例如,两种类型开口210的第一角部1011的顶点指向与其相对的角部的顶点的方向可以平行且相反,也可以相交。
例如,如图1至图4A所示,多个隔垫物300中的至少部分分布在同一类型开口对应的间隔处。例如,分布在同一类型开口对应的间隔处的隔垫物300均匀分布,有利于降低隔垫物的制作工艺难度。
例如,如图2所示,至少两种类型开口210包括第一类型开口1001、第二类型开口1002、第三类型开口1003和第四类型开口1004的至少两种。例如, 如图2所示,第一类型开口1001中第一角部1011的顶点指向与其相对的角部的顶点的方向可以为方向D2,第二类型开口1002中第一角部1011的顶点指向与其相对的角部的顶点的方向可以为方向D3,第三类型开口1003中第一角部1011的顶点指向与其相对的角部的顶点的方向可以为方向D4,第四类型开口1004中第一角部1011的顶点指向与其相对的角部的顶点的方向可以为方向D1。例如,多个隔垫物300中的至少部分可以均匀的分布在第一类型开口1001对应的间隔处;或者,多个隔垫物300中的至少部分可以均匀的分布在第二类型开口1002对应的间隔处;或者,多个隔垫物300中的至少部分可以均匀的分布在第三类型开口1003对应的间隔处;或者,多个隔垫物300中的至少部分可以均匀的分布在第四类型开口1004对应的间隔处。
例如,如图2所示,第一类型开口1001、第二类型开口1002、第三类型开口1003以及第四类型开口1004中的两种类型开口中的第一角部1011的朝向相反,另外两种类型开口中的第一角部1011的朝向相反。例如,第四类型开口1004的方向D1与第三类型开口1003的方向D4相反,则第四类型开口1004的第一角部1011的朝向与第三类型开口1003的第一角部1011的朝向相反。例如,第一类型开口1001的方向D2与第二类型开口1002的方向D3相反,则第一类型开口1001的第一角部1011的朝向与第二类型开口1002的第一角部1011的朝向相反。本公开实施例对上述四种类型开口的名称不作限制,上述“第一类型开口”、“第二类型开口”、“第三类型开口”以及“第四类型开口”的名称可以互换。
例如,图8A为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图。如图8A所示,多个隔垫物300包括多个第一隔垫物310,多个第一隔垫物310分布在同一类型开口的第一角部1011对应的间隔处,且多个第一隔垫物310均匀分布。
例如,图8A示意性的示出多个第一隔垫物310分布在至少部分第一类型开口1001的第一角部1011对应的间隔处,但不限于此,还可以分布在其他类型开口(如第二类型开口1002、第三类型开口1003或者第四类型开口1004)的第一角部1011对应的间隔处。当然,本公开实施例不限于第一隔垫物分布在同一类型开口的角部对应的间隔处,例如第一隔垫物的一部分可以分布在一种类型开口的角部对应的间隔处,第一隔垫物的另一部分可以分布在其他类型开口中的至少一种开口的角部对应的间隔处,第一隔垫物可以规律设置即可。
例如,如图8A所示,多个隔垫物300还包括多个第二隔垫物320,多个第二隔垫物320分布在至少部分第二类型开口1002的第一角部1011对应的间隔处,且多个第二隔垫物320均匀分布。本公开实施例示意性的示出第二类型开口1002为第一角部1011朝向左的开口,但不限于此,第二类型开口还可以为角部朝向上、向下或者向右中的一种类型开口,本公开实施例对此不作限制。
例如,如图8A所示,第一隔垫物310和第二隔垫物320可以均为长条形,则两者的长条形的长边可以平行,也可以相交,本公开实施例对此不作限制。
例如,第一隔垫物310与第二隔垫物320的数量可以相同,也可以不同。例如,两者的数量比(可以指第一隔垫物310的数量与第二隔垫物320的数量的比值,也可以指第二隔垫物320的数量与第一隔垫物310的数量的比值)可以为0.1~1,或者0.2~0.9,或者0.3~0.8,或者0.4~0.7,或者0.5~0.6。
例如,如图2和图8A所示,与一个开口210相邻的隔垫物300的数量可以为一个,也可以为两个。例如,在与一个开口210相邻的隔垫物300的数量为两个时,这两个隔垫物300可以位于开口210的相邻的两个角部对应的间隔处,也可以位于开口210的相对的两个角部对应的间隔处,本公开实施例对此不作限制。
本公开实施例不限于此,例如,与一个开口相邻的隔垫物的数量还可以为三个或者四个,可以根据实际产品需求进行设置。
本公开实施例不限于隔垫物仅包括第一隔垫物和第二隔垫物,例如,隔垫物还可以包括第三隔垫物,第三隔垫物可以分布在第三类型开口或第四类型开口的第一角部对应的间隔处,例如第三隔垫物可以均匀分布;例如,隔垫物还可以包括第四隔垫物,第四隔垫物可以分布在剩下的一种类型开口的第一角部对应的间隔处,例如第四隔垫物可以均匀分布。
例如,隔垫物可以任意分布在设置第一角部对应的间隔处,且规律性的分布。这里规律性的分布可以指隔垫物在行方向上基本等间距的分布,例如任意相邻两个隔垫物之间设置有四个开口(不限于四个开口,还可以是两个、六个等);隔垫物在列方向上也是基本等间距的分布,例如任意相邻两个隔垫物之间设置有四个开口(不限于四个开口,还可以是两个、六个等)。
例如,第一隔垫物310和第二隔垫物320的形状和大小可以相同,也可以不同。图8A示意性的示出第一隔垫物310的形状与第二隔垫物320的形状和大小均相同,即所有隔垫物300的形状和大小均相同。本公开实施例中,隔垫 物的形状可以指隔垫物在衬底基板上的正投影的形状,隔垫物的大小可以指隔垫物在衬底基板上的正投影的面积。
例如,图8B为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图。图8B所示示例与图8A所示示例不同之处在于至少部分隔垫物的大小不同。例如,第一隔垫物310和第二隔垫物320的形状不同,大小也不同。例如,第一隔垫物310和第二隔垫物320的形状相同,大小不同。
例如,隔垫物300可以包括沿任一方向上的最大尺寸,该最大尺寸的延伸方向不同的隔垫物的面积不同。例如,位于第一角部1011对应的间隔处的隔垫物300的面积不同于位于非第一角部对应的间隔处的隔垫物的面积。
本公开实施例对第一隔垫物和第二隔垫物的形状不作限制,例如第一隔垫物和第二隔垫物的形状还可以为圆形、椭圆形、菱形、正方形等规则形状,也可以为不规则形状,可以根据实际产品需要进行设置。
图8C为显示基板的平面示意图。如图2、图8A至图8C所示,所述显示基板包括显示区AA以及围绕显示区AA的非显示区NA。图2和图3示出了显示区的部分区域。例如,所述多个子像素100位于显示区AA,所述多个隔垫物300的至少部分位于所述显示区AA。例如,显示区AA内的隔垫物300可以包括位于所述第一角部1011和与该第一角部1011相邻的开口210之间的间隔处的所述隔垫物以及位于其他位置的隔垫物,位于所述第一角部1011和与该第一角部1011相邻的开口210之间的间隔处的所述隔垫物300的数量与位于所述显示区AA的所述隔垫物300的数量比例不小于50%。
例如,位于所述第一角部1011和与该第一角部1011相邻的开口210之间的间隔处的所述隔垫物300的数量与位于所述显示区AA的所述隔垫物300的数量比例不小于60%。例如,位于所述第一角部1011和与该第一角部1011相邻的开口210之间的间隔处的所述隔垫物300的数量与位于所述显示区AA的所述隔垫物300的数量比例不小于70%。例如,位于所述第一角部1011和与该第一角部1011相邻的开口210之间的间隔处的所述隔垫物300的数量与位于所述显示区AA的所述隔垫物300的数量比例不小于80%。例如,位于所述第一角部1011和与该第一角部1011相邻的开口210之间的间隔处的所述隔垫物300的数量与位于所述显示区AA的所述隔垫物300的数量比例不小于90%。
例如,如图2和图8A所示,开口210包括被配置为限定不同颜色子像素的开口,例如在行方向、列方向或者斜向方向的至少之一的方向上,相邻的两 个开口210被配置为限定不同颜色子像素的发光区。例如,被配置为限定不同颜色子像素的开口可以包括第一开口211、第二开口212和第三开口213,第一开口211、第二开口212和第三开口213之一用于限定红色子像素的发光区,另一个用于限定蓝色子像素的发光区,剩余的开口用于限定绿色子像素的发光区。
例如,如图2和图8A所示,至少部分隔垫物300分布在被配置为限定不同颜色子像素的开口210的第一角部1011和与该第一角部1011相邻的开口210之间的间隔处。例如,隔垫物300可以分布在第三开口213的第一角部1011和第一开口211之间的间隔处。
例如,隔垫物300也可以分布在限定同一种颜色子像素的两个开口210之间,例如,隔垫物300分布在两个第二开口211之间,第二开口211朝向隔垫物300的角部可以为第一角部,也可以不是,本公开实施例对此不作限制。
例如,图9为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图。如图9所示,与至少一个隔垫物300紧邻的至少两个开口210均包括第一角部1011,且至少两个开口210的第一角部1011均朝向该隔垫物300。
例如,如图9所示,第一开口211和第三开口213均包括第一角部1011,且两个开口210的第一角部1011均朝向位于两个开口210之间的隔垫物300,以进一步增加位于隔垫物两侧的两个开口的彼此相对的角部之间的距离,从而,既可以仅增加隔垫物的尺寸,又可以仅增加隔垫物与开口之间的距离,还可以隔垫物的尺寸以及隔垫物与开口之间的距离均增加,可以降低隔垫物脱落的几率,有利于提升产品的工艺良率与隔垫物的支撑作用。
本公开实施例不限于与隔垫物300紧邻的至少两个开口210(图9所示的第一开口211和第三开口213)均包括第一角部1011,且两个开口210的第一角部1011均朝向该隔垫物300。例如,与隔垫物300紧邻的三个开口,例如包括第一开口211、第三开口213以及一个第二开口212,均包括第一角部1011,且三个开口210的第一角部1011均朝向该隔垫物300。例如,与隔垫物300紧邻的三个开口210,例如包括两个第二开口212以及一个第一开口211或者一个第三开口213,均包括角部,且三个开口210的第一角部1011均朝向该隔垫物400。例如,与隔垫物300紧邻的四个开口,例如包括第一开口211、第三开口213以及两个第二开口212,均包括第一角部1011,且四个开口210的 第一角部1011均朝向该隔垫物300。
例如,如图1至图9所示,显示基板包括多个子像素100。如图1所示,多个子像素100包括多个第一颜色子像素110、多个第二颜色子像素120以及多个第三颜色子像素130。多个第一颜色子像素110和多个第三颜色子像素130沿行方向(如图1所示的X方向)交替设置以形成第一像素行01,多个第二颜色子像素120沿行方向排列以形成第二像素行02,第一像素行01和第二像素行02沿与行方向交叉的列方向(如图1所示的Y方向)交替设置且在行方向上彼此错开。例如,相邻的第一颜色子像素110和第二颜色子像素120沿第一方向排列,第一方向与行方向和列方向均相交。如图1所示,多个第一颜色子像素110和多个第三颜色子像素130沿列方向交替设置以形成多个第一像素列03,多个第二颜色子像素120沿行方向和列方向均阵列排布以形成多个第二像素行02和多个第二像素列04,多个第一像素列03和多个第二像素列04沿行方向交替设置且在列方向上彼此错开,即一个第二颜色子像素120所在第二像素行02位于相邻两个第一像素行01之间,且该第二颜色子像素120所在第二像素列04位于相邻两个第一像素列03之间。
本公开实施例中,行方向和列方向均指第一颜色子像素和第三颜色子像素的排列方向,该方向可能与相邻两个子像素的发光区的几何中心连线方向平行,也可能不平行。例如,行方向与列方向相交。例如,行方向与列方向之间的夹角可以为80-100度。例如,行方向与列方向之间的夹角可以为85-95度。例如,行方向和列方向可以垂直,但不限于此,也可以不垂直。本公开实施例中,行方向和列方向可以互换。
本公开实施例中的子像素指发光器件结构,第一颜色子像素、第二颜色子像素和第三颜色子像素为发出不同颜色光的子像素。本公开实施例以第一颜色子像素为红色子像素,第二颜色子像素为绿色子像素,第三颜色子像素为蓝色子像素为例进行说明。但第一颜色子像素为红色子像素,第二颜色子像素为绿色子像素以及第三颜色子像素为蓝色子像素并不构成对本公开实施例保护范围的限制。
例如,至少一个蓝色子像素的发光区的面积大于至少一个红色子像素的发光区的面积,至少一个红色子像素的发光区的面积大于至少一个绿色子像素的发光区的面积,以延长显示基板的使用寿命。例如,相同颜色子像素的发光区的面积基本相等。
例如,如图1至图9所示,像素限定层200的多个开口210包括多个第一开口211、多个第二开口212以及多个第三开口213,多个第一开口211被配置为限定多个第一颜色子像素110的发光区101,多个第二开口212被配置限定多个第二颜色子像素120的发光区101,多个第三开口213被配置为限定多个第三颜色子像素130的发光区101。
例如,如图1至图9所示,第一开口211、第二开口212和第三开口213的至少一种开口210包括第一角部1011。
例如,图2示意性的示出仅第三开口213包括第一角部1011,图9示意性的示出第一开口211和第三开口213均包括第一角部1011,本公开实施例不限于此。例如,第一开口、第二开口以及第三开口均包括第一角部,或者第一开口和第二开口包括第一角部,或者第二开口和第三开口包括第一角部,或者仅第一开口包括第一角部,或者仅第二开口包括第一角部。
例如,如图2、图6以及图8A所示,多个隔垫物300的至少部分分布在沿列方向和行方向的至少之一排布的相邻两个开口210之间的间隔处。
例如,隔垫物300可以分布在行方向排列的两个第二开口212之间,且分布在列方向排列的第一开口211和第三开口213之间。例如,隔垫物300可以分布在列方向排列的两个第二开口212之间,且分布在行方向排列的第一开口211和第三开口213之间。例如,围绕隔垫物300的开口210可以包括一个第一开口211、一个第三开口213以及两个第二开口212,第一开口211和第三开口213可以沿行方向和列方向之一排列,两个第二开口212可以沿行方向和列方向的另一个方向排列。同理,围绕隔垫物300的子像素100可以包括一个第一颜色子像素110、一个第三颜色子像素130以及两个第二颜色子像素120,第一颜色子像素110和第三颜色子像素130可以沿行方向和列方向之一排列,两个第二颜色子像素120可以沿行方向和列方向的另一个方向排列。
例如,如图1和图2所示,沿行方向和列方向之一,相邻隔垫物300之间设置有四个第二颜色子像素120,沿行方向和列方向的另一个,相邻隔垫物300之间设置有两个第一颜色子像素110以及两个第三颜色子像素130。例如,沿行方向和列方向之一,相邻隔垫物300之间设置有四个第二开口212,沿行方向和列方向的另一个,相邻隔垫物300之间设置有两个第一开口211以及两个第三开口213。
例如,图10A为根据本公开实施例的另一示例提供的像素限定层以及隔垫 物的平面结构示意图。如图1和图10A所示,沿行方向和列方向之一,相邻隔垫物300之间设置有六个第二颜色子像素120,沿行方向和列方向的另一个,相邻隔垫物300之间设置有三个第一颜色子像素110以及三个第三颜色子像素130。例如,沿行方向和列方向之一,相邻隔垫物300之间设置有六个第二开口212,沿行方向和列方向的另一个,相邻隔垫物300之间设置有三个第一开口211以及三个第三开口213。图中示意性的示出,部分隔垫物300位于第一角部1011对应的间隔处,部分隔垫物300没有位于第一角部1011对应的间隔处,本公开实施例不限于此。例如,可以通过调整开口的第一角部的朝向,使得所有隔垫物均位于第一角部对应的间隔处,例如,将所有第三开口213的第一角部1011的朝向均调整为朝下,以使的所有隔垫物均位于第一角部1011对应的间隔处。例如,还可以将所有第一开口211的第一角部1011的朝向均调整为朝上,以使的所有隔垫物均位于第一角部1011对应的间隔处。例如,还可以在第二开口212中设置朝向右或者朝向左的第一角部1011,以使的所有隔垫物均位于第一角部1011对应的间隔处。
例如,图10B为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图。如图1和图10B所示,沿行方向和列方向之一,相邻隔垫物300之间设置有六个第二颜色子像素120,沿行方向和列方向的另一个,相邻隔垫物300之间设置有两个第一颜色子像素110以及两个第三颜色子像素130。例如,沿行方向和列方向之一,相邻隔垫物300之间设置有六个第二开口212,沿行方向和列方向的另一个,相邻隔垫物300之间设置有两个第一开口211以及两个第三开口213。图中示意性的示出,部分隔垫物300位于第一角部1011对应的间隔处,部分隔垫物300没有位于第一角部1011对应的间隔处,本公开实施例不限于此。例如,可以通过调整开口的第一角部的朝向,使得所有隔垫物均位于第一角部对应的间隔处,例如,将所有第三开口213的第一角部1011的朝向均调整为朝下,以使的所有隔垫物300均位于第一角部1011对应的间隔处。例如,还可以将所有第一开口211的第一角部1011的朝向均调整为朝上,以使的所有隔垫物300均位于第一角部1011对应的间隔处。例如,还可以在第二开口212中设置朝向右或者朝向左的第一角部1011,以使的所有隔垫物300均位于第一角部1011对应的间隔处。
例如,图10C为根据本公开实施例的另一示例提供的像素限定层以及隔垫物的平面结构示意图。如图1和图10C所示,沿行方向和列方向之一,相邻隔 垫物300之间设置有四个第二颜色子像素120,沿行方向和列方向的另一个,相邻隔垫物300之间设置有三个第一颜色子像素110以及三个第三颜色子像素130。例如,沿行方向和列方向之一,相邻隔垫物300之间设置有四个第二开口212,沿行方向和列方向的另一个,相邻隔垫物300之间设置有三个第一开口211以及三个第三开口213。图中示意性的示出,部分隔垫物300位于第一角部1011对应的间隔处,部分隔垫物300没有位于第一角部1011对应的间隔处,本公开实施例不限于此。例如,可以通过调整开口的第一角部的朝向,使得所有隔垫物均位于第一角部对应的间隔处,例如,将所有第三开口213的第一角部1011的朝向均调整为朝下,以使的所有隔垫物300均位于第一角部1011对应的间隔处。例如,还可以将所有第一开口211的第一角部1011的朝向均调整为朝上,以使的所有隔垫物300均位于第一角部1011对应的间隔处。例如,还可以在第二开口212中设置朝向右或者朝向左的第一角部1011,以使的所有隔垫物300均位于第一角部1011对应的间隔处。
例如,如图1和图8A所示,具有第一角部1011且被配置为限定同一种颜色子像素100的发光区101的开口210包括至少两种类型开口,不同类型开口中,第一角部1011的顶点指向与其相对的角部的顶点的方向不同,多个隔垫物300包括多个第一隔垫物310和多个第二隔垫物320,第一隔垫物310和第二隔垫物320分布在不同类型开口的第一角部1011对应的间隔处。
例如,如图1和图8A所示,沿行方向和列方向之一,相邻第一隔垫物310之间设置有四个第二颜色子像素120,沿行方向和列方向的另一个,相邻第一隔垫物310之间设置有两个第一颜色子像素110以及两个第三颜色子像素130;沿行方向和列方向之一,相邻第二隔垫物320之间设置有四个第二颜色子像素120,沿行方向和列方向的另一个,相邻第二隔垫物320之间设置有两个第一颜色子像素110以及两个第三颜色子像素130。例如,沿行方向和列方向之一,相邻第一隔垫物310之间设置有四个第二开口212,沿行方向和列方向的另一个,相邻第一隔垫物310之间设置有两个第一开口211以及两个第三开口213;沿行方向和列方向之一,相邻第二隔垫物320之间设置有四个第二开口212,沿行方向和列方向的另一个,相邻第二隔垫物320之间设置有两个第一开口211以及两个第三开口213。
例如,如图1和图2所示,至少部分第三开口213包括第一角部1011,各隔垫物300设置在第三开口213的第一角部1011和与其相邻的第一开口211 之间的间隔处。
例如,如图5B所示,隔垫物300与位于其一侧第三开口213中的第一角部1011之间的距离为第一距离S1,隔垫物300与位于其另一侧的第一开口211的角部的最短距离为第二距离S2,第一距离S1不小于第二距离S2。这里第一距离S1与第二距离S2之间的关系,以及与图5C所示的距离S0之间的大小关系如前文所述,在此不再赘述。
例如,图5B仅示意性的示出第三开口213包括第一角部1011时,隔垫物300与开口210之间距离的关系与图5A所示没有设置第一角部时隔垫物030与开口021之间距离关系的比较,本公开实施例不限于此。例如,还可以如图9所示第一开口211和第三开口213的彼此相对的角部均为第一角部1011,隔垫物300位于这两个第一角部1011之间。例如,还可以第一开口和第三开口除彼此相对的角部外的其他至少部分角部也设置成第一角部。例如,还可以行方向或列方向排列的相邻两个第二开口彼此相对的角部的至少之一设置为第一角部1011,隔垫物300位于这两个第一角部之间。
在除图5B、图5C以及图9所示示例以外的其他示例中,通过在至少一个开口(可以为第一开口、第二开口以及第三开口的任一、任两个以及三个)设置第一角部,调节隔垫物与开口的第一角部之间的距离以增加隔垫物与位于其两侧的两个开口之间的距离,有利于降低隔垫物脱落的几率,以提高工艺良率。
例如,如图9所示,沿行方向和列方向至少之一的方向彼此相邻的两个开口210均包括第一角部1011,且两个开口210中的第一角部1011彼此相对。本公开实施例示意性的示出这两个开口可以为第一开口211和第三开口213,但是不限于此,这两个开口也可以为两个第二开口212。
例如,如图1和图2所示,被配置为限定沿行方向(或列方向)排列的相同颜色的子像素100的发光区101的开口210中第一角部1011的朝向不同,则位于同一行(或同一列)的相同颜色子像素100的发光区101的几何中心连线C1不是直线,例如为一条折线。
例如,被配置为限定第三颜色子像素130的发光区101的开口210包括第一角部1011,被配置为限定第一颜色子像素110的发光区101的开口210不包括第一角部,则位于同一行(或同一列)的多个第一颜色子像素110和多个第三颜色子像素130的发光区的几何中心的连线不是直线,例如为一条折线。
例如,图11A为根据本公开实施例的另一示例提供的像素限定层以及隔垫 物的平面结构示意图。如图11A所示,至少部分开口210包括至少两个第一角部1011。例如,第一开口211包括四个第一角部1011,第二开口212包括两个第一角部1011,第三开口213包括一个第一角部1011。本公开实施例不限于此,还可以第一开口包括至少两个第一角部。
例如,如图11A所示,围绕隔垫物300的四个开口210均包括第一角部1011,且各开口210中最靠近隔垫物300的角部均为第一角部1011,从而可以在两个方向上均增加隔垫物的尺寸,和/或,在两个方向上均增加隔垫物与开口之间的距离,有利于降低隔垫物脱落的几率,提升产品的工艺良率与隔垫物的支撑作用。
例如,如图11A所示,第一开口211、第二开口212和第三开口213均包括第一角部1011,且第一开口211、第二开口212和第三开口213的至少两种开口210包括的第一角部1011的数量不同。
例如,至少部分开口210包括四个角部,第一开口211、第二开口212以及第三开口210的四个角部包括两个、三个或四个第一角部1011,第一开口211、第二开口212以及第三开口213的另外两个开口210的至少之一的四个角部包括一个第一角部1011。
例如,在各开口的角部的数量为四个时,本公开实施例对被配置为限定不同颜色子像素的发光区的开口包括的第一角部的数量不作限制,可以被配置为限定三种颜色子像素的发光区的开口包括的第一角部的数量均不相同,该数量可以从1-4中选择3个;也可以是被配置为限定两种颜色子像素的发光区的两种开口包括的第一角部的数量相同,第三种开口包括的角部的数量不同,则两种开口包括的第一角部的数量可以从1-4中选择1个,第三种开口包括的第一角部的数量可以从1-4中选择另一个;也可以是被配置为限定仅两种颜色子像素的发光区的两个开口包括第一角部,则不同开口包括的第一角部的数量可以从1-4中选择2个,本公开实施例可以根据产品的需要进行设置。
当然,本公开实施例不限于各开口的第一角部的数量为四个,还可以为三个或大于四个,此时,开口中的第一角部的数量可以按照上述规律进行设置。
需要说明的是,本公开实施例的示意性的示出像素限定层的开口包括的角部中除了第一角部1011以外的其他角部均为两条直边相交形成的直角或者锐角,但是不限于此,除了第一角部1011以外的其他角部的至少部分还可以为圆倒角(第二角部),该第二角部可以为多边形被截去由两条边所夹的角部后 形成的角部,两条边至少之一被截去的部分与该边之比为0.05~0.2。这里第二角部的定义方式可以与第一角部1011的定义方式相同,但是第二角部的曲率(或圆弧弧度或长度)小于第一角部1011的曲率(或圆弧弧度或长度)。
图11B为部分子像素的发光层与相应开口对应关系示意图。如图11B所示,同一种颜色的子像素的发光层1300的形状和尺寸相同,图中示意性的示出第三颜色子像素的发光层,第三颜色子像素的发光层的形状和尺寸均相同。例如,其他颜色子像素,如第一颜色子像素的发光层的形状和尺寸均相同,如第一颜色子像素的发光层的形状和尺寸均相同。
例如,如图11B所示,所述发光层1300包括位于开口210内的部分以及位于像素限定层2000上的另一部分,发光层1300在所述像素限定层200上的部分具有边界,该边界和与该发光层1300对应的所述第一角部1011的距离S5不同于该边界和与该发光层1300对应的其他角部之间的距离S6。
例如,发光层1300的边界与该发光层1300对应的开口210的第一角部的距离S5大于该边界和与该发光层1300对应的其他角部之间的距离S6。例如,该边界和与该发光层1300对应的其他角部之间的距离S6可以均相等。例如,距离S5与距离S6的比值范围可以为1.1~10。例如,距离S5与距离S6的比值范围可以为1.2~7。例如,距离S5与距离S6的比值范围可以为1.3~5。例如,距离S5与距离S6的比值范围可以为1.4~3。例如,距离S5与距离S6的比值范围可以为1.5~2。例如,距离S5与距离S6的比值范围可以为1.6~1.8。
例如,如图11B所示,被配置为限定同种颜色子像素的发光区的开口210的第一角部1011的朝向不同,但形成在限定同种颜色子像素的发光区的开口210内发光层1300可以具有基本相同的形状和尺寸。
例如,各子像素还包括像素电路,像素电路被配置为与发光元件连接以驱动发光元件发光。例如,图12为像素电路的等效图。如图12所示,像素电路2000包括第二复位晶体管T1、第二发光控制晶体管T5、第一发光控制晶体管T6、数据写入晶体管T4、驱动晶体管T3、阈值补偿晶体管T2、第一复位控制晶体管T7以及存储电容C。例如,显示基板还包括复位电源信号线、扫描信号线、电源信号线、复位控制信号线、发光控制信号线以及数据线。
例如,阈值补偿晶体管T2的第一极与驱动晶体管T3的第一极连接,阈值补偿晶体管T2的第二极与驱动晶体管T3的栅极连接;第一复位控制晶体管T7的第一极与复位电源信号线连接以接收复位信号Vinit,第一复位控制晶体 管T7的第二极与发光元件1000的第二电极连接;数据写入晶体管T4的第一极与驱动晶体管T3的第二极连接,数据写入晶体管T4的第二极与数据线连接以接收数据信号Data,数据写入晶体管T4的栅极与扫描信号线电连接以接收扫描信号Gate;存储电容C的第一极与电源信号线电连接,存储电容C的第二极与驱动晶体管T3的栅极电连接;阈值补偿晶体管T2的栅极与扫描信号线电连接以接收补偿控制信号;第一复位晶体管T7的栅极与复位控制信号线电连接以接收复位控制信号Reset(N+1);第二复位晶体管T1的第一极与复位电源信号线电连接以接收复位信号Vinit,第二复位晶体管T1的第二极与驱动晶体管T3的栅极电连接,第二复位晶体管T1的栅极与复位控制信号线电连接以接收复位控制信号Reset(N);第一发光控制晶体管T6的栅极与发光控制信号线电连接以接收发光控制信号EM;第二发光控制晶体管T5的第一极与电源信号线电连接以接收第一电源信号VDD,第二发光控制晶体管T5的第二极与驱动晶体管T3的第二极电连接,第二发光控制晶体管T5的栅极与发光控制信号线电连接以接收发光控制信号EM,发光元件1000的第一电极与电压端VSS连接。上述电源信号线指输出电压信号VDD的信号线,可以与电压源连接以输出恒定的电压信号,例如正电压信号。
需要说明的是,在本公开实施例中,像素电路除了可以为图12所示的7T1C(即七个晶体管和一个电容)结构之外,还可以为包括其他数量的晶体管的结构,如7T2C结构、6T1C结构、6T2C结构或者9T2C结构,本公开实施例对此不作限定。
例如,图13为有源半导体层的局部平面结构示意图,图14为第一导电层的局部平面结构示意图,图15为第二导电层的局部平面结构示意图,图16为源漏金属层的局部平面结构示意图,图17部分子像素的第二电极的平面结构示意图,图18为部分子像素的发光区与有源半导体层、第一导电层、第二导电层以及源漏金属层的层叠图。
例如,如图13所示,有源半导体层3100可采用半导体材料图案化形成。有源半导体层3100可用于制作上述的第二复位晶体管T1、阈值补偿晶体管T2、驱动晶体管T3、数据写入晶体管T4、第二发光控制晶体管T5、第一发光控制晶体管T6和第一复位控制晶体管T7的有源层。有源半导体层3100包括各子像素的各晶体管的有源层图案(沟道区)和掺杂区图案(源漏掺杂区),且同一像素电路中的各晶体管的有源层图案和掺杂区图案一体设置。
需要说明的是,有源层可以包括一体形成的低温多晶硅层,源极区域和漏极区域可以通过掺杂等进行导体化以实现各结构的电连接。也就是每个子像素的各晶体管的有源半导体层为由p-硅形成的整体图案,且同一像素电路中的各晶体管包括掺杂区图案(即源极区域和漏极区域)和有源层图案,不同晶体管的有源层之间由掺杂结构隔开。
例如,有源半导体层3100可采用非晶硅、多晶硅、氧化物半导体材料等制作。需要说明的是,上述的源极区域和漏极区域可为掺杂有n型杂质或p型杂质的区域。
图13中各虚线矩形框示出了第一导电层3200与有源半导体层3100交叠的各个部分。作为各个晶体管的沟道区(即上述有源层图案),在每个沟道区两侧的有源半导体层通过离子掺杂等工艺导体化作为各个晶体管的第一极和第二极(即上述掺杂区图案)。晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在物理结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管,除作为控制极的栅极,直接描述了其中一极为第一极,另一极为第二极,所以本公开的实施例中全部或部分晶体管的第一极和第二极根据需要是可以互换的。
例如,显示基板包括位于有源半导体层远离衬底基板一侧的栅极绝缘层,用于将上述的有源半导体层3100与后续形成的第一导电层3200(即栅极金属层)绝缘。图14示出了该显示基板包括的第一导电层3200,第一导电层3200设置在栅极绝缘层上,从而与有源半导体层3100绝缘。第一导电层3200可以包括电容C的第二极CC2、沿X方向延伸的多条扫描信号线043、多条复位控制信号线044、多条发光控制信号线045以及第二复位晶体管T1、阈值补偿晶体管T2、驱动晶体管T3、数据写入晶体管T4、第二发光控制晶体管T5、第一发光控制晶体管T6和第一复位控制晶体管T7的栅极。
例如,如图13和图14所示,数据写入晶体管T3的栅极可以为扫描信号线043与有源半导体层3100交叠的部分;第一发光控制晶体管T6的栅极可以为发光控制信号线045与有源半导体层3100交叠的第一部分,第二发光控制晶体管T5的栅极可以为发光控制信号线045与有源半导体层3100交叠的第二部分。第二复位晶体管T1的栅极为复位控制信号线044与有源半导体层3100交叠的第一部分,第一复位控制晶体管T7的栅极为复位控制信号线044与有源半导体层3100交叠的第二部分。阈值补偿晶体管T2可为双栅结构的薄膜晶 体管,阈值补偿晶体管T2的第一个栅极可为扫描信号线043与有源半导体层3100交叠的部分,阈值补偿晶体管T2的第二个栅极可为从扫描信号线043突出的突出结构P与有源半导体层3100交叠的部分。如图14所示,驱动晶体管T1的栅极可为电容C的第二极CC2。
例如,在上述的第一导电层3200上形成有第一绝缘层,用于将上述的第一导电层3200与后续形成的第二导电层3300绝缘。
例如,如图13至图15所示,第二导电层3300包括电容C的第一极CC1以及沿X方向延伸多条复位电源信号线041。电容C的第一极CC1与电容C的第二极CC2至少部分重叠以形成电容C。
例如,如图15所示,显示基板还包括多个覆盖部S,各阈值补偿晶体管T2包括两个栅极以及位于两个栅极之间的有源半导体层3100。沿垂直于衬底基板的方向,覆盖部S与两个栅极之间的有源半导体层3100、数据线910(后续描述)以及电源信号线920(后续描述)均有交叠。
例如,在上述的第而导电层3300上形成有第二绝缘层,用于将上述的第二导电层3300与后续形成的源漏金属层3400绝缘。
例如,如图16所示,源漏金属层3400包括沿Y方向延伸的数据线910以及电源信号线920。数据线910通过贯穿栅极绝缘层、第一绝缘层和第二绝缘层的过孔与数据写入晶体管T2的第二极电连接。电源信号线920通过贯穿栅极绝缘层、第一绝缘层和第二绝缘层的过孔与第二发光控制晶体管T5的第一极电连接。电源信号线920和数据线910沿X方向交替设置。电源信号线920通过贯穿第二绝缘层的过孔与电容C的第一极CC1电连接。
例如,在上述的源漏极金属层3400远离衬底基板的一侧可以设置钝化层以及平坦层用于保护上述的源漏极金属层3400。
例如,如图16所示,各像素电路还包括:与数据线910同层设置的连接部052和连接部053,连接部052被配置为连接阈值补偿晶体管T2的第二极和驱动晶体管T3的栅极,连接部053被配置为连接第一复位控制晶体管T7的第一极和复位电源信号线041。例如,连接部052的一端通过贯穿栅极绝缘层、第一绝缘层和第二绝缘层中的过孔与阈值补偿晶体管T2的第二极电连接,连接部052的另一端通过贯穿第一绝缘层和第二绝缘层中的过孔与驱动晶体管T3的栅极(即电容C的第二极CC2)电连接。连接部053的一端通过贯穿第二绝缘层中的过孔与复位电源信号线041电连接,第三连接部053的另一端通 过贯穿栅极绝缘层、第一绝缘层和第二绝缘层中的过孔与第一复位控制晶体管T7的第一极电连接。
例如,如图16所示,各像素电路还包括与数据线910同层设置的连接部055,连接部055用于连接发光元件的第二电极与第一复位控制晶体管T7的第二极。
例如,如图2-3和图17所示,各子像素100的第二电极1200包括主体电极1201,至少部分第二电极1200的主体电极1201的形状可以与其发光区101或者其对应开口210的形状相同。例如,第一颜色子像素110的发光区101的形状为矩形,则其第二电极1210的主体电极的形状可以为矩形。
例如,主体电极1201的几何中心可以与其对应的发光区101的几何中心大致重合,或者两个几何中心之间的距离很小。
例如,像素限定层200的开口210在衬底基板10上的正投影位于相应的发光元件1000的第二电极1200的主体电极1201在衬底基板10上的正投影内。
例如,至少部分具有第一角部1011的开口210内对应的子像素100的主体电极1201具有与该开口210大致相同的形状。例如,被配置为限定第三颜色子像素130的发光区101的第三开口213包括第一角部1011,第三颜色子像素130的第二电极1230的主体电极1201也包括与第一角部1011的形状对应的角部2101。本公开实施例通过将具有第一角部的开口内对应的子像素的主体电极设置为具有与该开口大致相同的形状,可以在保证显示效果的同时,有利于提升第二电极所在显示区域的透过率,进而有利于屏下指纹识别或屏下摄像头技术的应用集成。
例如,如图17所示,各第二电极1200还包括连接电极1202。例如,连接电极1202可以与主体电极1201为一体结构,例如连接电极1202被配置为通过过孔与像素电路的晶体管连接。
图18示出了部分子像素的发光区(如第一颜色子像素110的发光区、第二颜色子像素120的发光区以及第三颜色子像素130的发光区)与有源半导体层、第一导电层、第二导电层以及源漏金属层的位置关系。
例如,本公开实施例不限于第二颜色子像素的形状为矩形,还可以为椭圆形、橄榄形(如中间宽度款,两端宽度窄的形状)等形状。
本公开另一实施例提供一种显示装置,包括上述显示基板。
本公开实施例提供的显示装置中,通过在第一角部对应的像素限定层的开 口的间隔位置处设置隔垫物,有利于提升工艺良率或者提升隔垫物的支撑作用。
例如,本公开实施例提供的显示装置可以为发光二极管显示装置。
例如,显示装置还可以包括位于显示基板显示侧的盖板。
例如,该显示装置可以为电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件,本实施例不限于此。
例如,该显示装置可以为具有屏下摄像头的显示设备,该显示设备包括功能部件,例如包括相机模组(例如,前置摄像模组)、3D结构光模组(例如,3D结构光传感器)、飞行时间法3D成像模组(例如,飞行时间法传感器)、红外感测模组(例如,红外感测传感器)等至少之一。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (28)

  1. 一种显示基板,包括:
    衬底基板;
    多个子像素,位于所述衬底基板上,所述多个子像素包括多个发光区;
    像素限定层,位于所述衬底基板上,所述像素限定层包括多个开口以限定所述多个发光区;以及
    多个隔垫物,位于所述像素限定层远离所述衬底基板的一侧,且分布在相邻开口之间的间隔处,
    其中,至少一个开口的形状为多边形截去至少一个顶角后的形状,所述开口的角部包括第一角部,所述第一角部为所述多边形被截去由两条边所夹的一顶角后形成的角部;
    至少一个隔垫物设置在所述第一角部和与其相邻的开口之间的间隔处,且所述第一角部所在开口的几何中心与该相邻的开口的几何中心的连线经过所述第一角部和所述隔垫物。
  2. 根据权利要求1所述的显示基板,其中,所述两条边至少之一被截去的部分的长度与该边的长度之比为0.2~0.8。
  3. 根据权利要求1或2所述的显示基板,其中,各隔垫物设置在所述第一角部和与该第一角部相邻的开口之间的间隔处。
  4. 根据权利要求1-3任一项所述的显示基板,其中,具有所述第一角部的开口的数量不小于所述多个隔垫物的数量。
  5. 根据权利要求1-4任一项所述的显示基板,其中,具有所述第一角部的开口被配置为限定至少一种颜色子像素的发光区。
  6. 根据权利要求5所述的显示基板,其中,具有所述第一角部的所述开口包括同一种类型的开口。
  7. 根据权利要求5所述的显示基板,其中,具有所述第一角部且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,不同类型开口中,所述第一角部的顶点指向与其相对的角部的顶点的方向不同,所述多个隔垫物中的至少部分分布在同一类型开口对应的所述间隔处。
  8. 根据权利要求7所述的显示基板,其中,所述多个隔垫物包括多个第一隔垫物,所述多个第一隔垫物分布在同一类型开口的所述第一角部对应的所 述间隔处,且所述多个第一隔垫物均匀分布。
  9. 根据权利要求8所述的显示基板,其中,所述至少两种类型开口包括第一类型开口和第二类型开口,所述多个第一隔垫物分布在至少部分第一类型开口的所述第一角部对应的所述间隔处;
    所述多个隔垫物还包括多个第二隔垫物,所述多个第二隔垫物分布在至少部分第二类型开口的所述第一角部对应的间隔处,且所述多个第二隔垫物均匀分布。
  10. 根据权利要求9所述的显示基板,其中,所述至少两种类型开口还包括第三类型开口和第四类型开口,所述第一类型开口、所述第二类型开口、所述第三类型开口以及所述第四类型开口中的两种类型开口中的所述第一角部的顶点指向与其相对角部的顶点的相反,另外两种类型开口中的所述第一角部的顶点指向与其相对角部的顶点的相反。
  11. 根据权利要求5所述的显示基板,其中,至少部分隔垫物分布在被配置为限定不同颜色子像素的所述开口的所述第一角部和与该第一角部相邻的开口之间的间隔处。
  12. 根据权利要求5所述的显示基板,其中,与至少一个隔垫物紧邻的至少两个开口均包括所述第一角部,且所述至少两个开口的所述第一角部均为其所在开口中最靠近该隔垫物的角部。
  13. 根据权利要求1-12任一项所述的显示基板,其中,每个子像素包括发光元件,所述发光元件包括层叠设置的第一电极、发光层以及第二电极,所述第二电极位于所述发光层面向所述衬底基板的一侧,且所述第二电极包括主体电极,至少部分具有所述第一角部的所述开口内对应的所述子像素的所述主体电极具有与该开口大致相同的形状。
  14. 根据权利要求1-13任一项所述的显示基板,其中,所述多个子像素包括多个第一颜色子像素、多个第二颜色子像素以及多个第三颜色子像素,所述多个第一颜色子像素和所述多个第三颜色子像素沿行方向和列方向均交替设置以形成多个第一像素行和多个第一像素列,所述多个第二颜色子像素沿所述行方向和所述列方向均阵列排布以形成多个第二像素行和多个第二像素列,所述多个第一像素行和所述多个第二像素行沿所述列方向交替设置且在所述行方向上彼此错开,所述多个第一像素列和所述多个第二像素列沿所述行方向交替设置且在所述列方向上彼此错开;
    所述多个开口包括多个第一开口、多个第二开口以及多个第三开口,所述多个第一开口被配置为限定所述多个第一颜色子像素的发光区,所述多个第二开口被配置限定所述多个第二颜色子像素的发光区,所述多个第三开口被配置为限定所述多个第三颜色子像素的发光区;
    所述第一开口、所述第二开口和所述第三开口的至少一种开口包括所述第一角部。
  15. 根据权利要求14所述的显示基板,其中,所述多个隔垫物的至少部分分布在沿所述列方向和所述行方向的至少之一排布的相邻两个开口之间的间隔处。
  16. 根据权利要求15所述的显示基板,其中,沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素;或者,
    沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有六个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有三个所述第一颜色子像素以及三个所述第三颜色子像素;或者,
    沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有三个所述第一颜色子像素以及三个所述第三颜色子像素;或者,
    沿所述行方向和所述列方向之一,相邻所述隔垫物之间设置有六个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素。
  17. 根据权利要求15或16所述的显示基板,其中,具有所述第一角部且被配置为限定同一种颜色子像素的发光区的所述开口包括至少两种类型开口,不同类型开口中,所述第一角部的顶点指向与其相对的角部的顶点的方向不同,所述多个隔垫物包括多个第一隔垫物和多个第二隔垫物,所述第一隔垫物和所述第二隔垫物分布在不同类型开口的所述第一角部对应的间隔处。
  18. 根据权利要求17所述的显示基板,其中,沿所述行方向和所述列方向之一,相邻所述第一隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述第一隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素;沿所述行方向和所述列方向之一,相 邻所述第二隔垫物之间设置有四个所述第二颜色子像素,沿所述行方向和所述列方向的另一个,相邻所述第二隔垫物之间设置有两个所述第一颜色子像素以及两个所述第三颜色子像素。
  19. 根据权利要求14-18任一项所述的显示基板,其中,至少部分所述第三开口包括所述第一角部,各隔垫物设置在所述第三开口的所述第一角部和与其相邻的所述第一开口之间的间隔处。
  20. 根据权利要求1-18任一项所述的显示基板,其中,所述隔垫物与位于其一侧的所述第一角部之间的距离为第一距离,所述隔垫物与位于其另一侧的开口的角部的最短距离为第二距离,所述第一距离不小于所述第二距离。
  21. 根据权利要求14-18任一项所述的显示基板,其中,在所述行方向和所述列方向至少之一上位于所述隔垫物的两侧且与所述隔垫物紧邻的两个开口的彼此相对的角部的连线位于该隔垫物的几何中心远离所述第一角部的一侧。
  22. 根据权利要求14-18任一项所述的显示基板,其中,沿所述行方向和所述列方向至少之一的方向相邻的两个开口均包括所述第一角部,且所述两个开口中的所述第一角部为最靠近彼此的两个角部。
  23. 根据权利要求1-18任一项所述的显示基板,其中,至少部分开口包括至少两个第一角部。
  24. 根据权利要求1-18任一项所述的显示基板,其中,至少一个隔垫物在平行于所述第一角部所在开口的几何中心与该相邻的开口的几何中心的所述连线的方向的最大尺寸为第一尺寸,在垂直于所述连线的方向的最大尺寸为第二尺寸,所述第一尺寸小于所述第二尺寸。
  25. 根据权利要求1-18任一项所述的显示基板,其中,所述显示基板包括显示区,所述多个隔垫物的至少部分以及所述多个子像素位于所述显示区,位于所述第一角部和与该第一角部相邻的开口之间的间隔处的所述隔垫物的数量与位于所述显示区的所述隔垫物的数量比例不小于50%。
  26. 根据权利要求13所述的显示基板,其中,同一种颜色的子像素的发光层的形状和尺寸相同,所述发光层在所述像素限定层上的边界和与该发光层对应的所述第一角部的距离不同于所述发光层在所述像素限定层上的边界和与该发光层对应的其他角部之间的距离。
  27. 根据权利要求1-18任一项所述的显示基板,其中,所述开口的角部 还包括第二角部,连接所述第一角部的两端点的两条边或其延长线的交点到该开口的几何中心的距离大于构成所述第二角部的两条边或其延长线的交点到该开口的几何中心的距离。
  28. 一种显示装置,包括权利要求1-27任一项所述的显示基板。
PCT/CN2022/079643 2021-06-25 2022-03-08 显示基板以及显示装置 WO2022267549A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/029,317 US20230371336A1 (en) 2021-06-25 2022-03-08 Display Substrate and Display Apparatus
KR1020237013052A KR20240024035A (ko) 2021-06-25 2022-03-08 표시기판 및 표시장치
EP22827054.2A EP4207305A4 (en) 2021-06-25 2022-03-08 DISPLAY SUBSTRATE AND DISPLAY APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110711261.4A CN113421910A (zh) 2021-06-25 2021-06-25 显示基板以及显示装置
CN202110711261.4 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022267549A1 true WO2022267549A1 (zh) 2022-12-29

Family

ID=77716714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079643 WO2022267549A1 (zh) 2021-06-25 2022-03-08 显示基板以及显示装置

Country Status (5)

Country Link
US (1) US20230371336A1 (zh)
EP (1) EP4207305A4 (zh)
KR (1) KR20240024035A (zh)
CN (1) CN113421910A (zh)
WO (1) WO2022267549A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421910A (zh) * 2021-06-25 2021-09-21 京东方科技集团股份有限公司 显示基板以及显示装置
CN114122291B (zh) * 2021-11-15 2023-04-07 惠州华星光电显示有限公司 Oled显示装置及其制作方法
CN117121653A (zh) * 2022-03-18 2023-11-24 京东方科技集团股份有限公司 显示基板、显示装置
CN114716154B (zh) * 2022-04-15 2023-05-12 业成科技(成都)有限公司 屏蔽组件
CN117500304A (zh) * 2022-07-22 2024-02-02 京东方科技集团股份有限公司 显示面板及显示装置
CN117795680A (zh) * 2022-07-29 2024-03-29 京东方科技集团股份有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150261050A1 (en) * 2014-03-14 2015-09-17 Innolux Corporation Display device
CN107871774A (zh) * 2017-10-27 2018-04-03 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN207883217U (zh) * 2018-02-09 2018-09-18 京东方科技集团股份有限公司 显示基板和显示装置
CN113421910A (zh) * 2021-06-25 2021-09-21 京东方科技集团股份有限公司 显示基板以及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103499B1 (ko) * 2013-10-16 2020-04-23 삼성디스플레이 주식회사 유기 발광 표시 장치
US20210175299A1 (en) * 2019-12-10 2021-06-10 Samsung Display Co., Ltd. Display device, mask assembly, and apparatus for manufacturing display device
AU2020450961B2 (en) * 2020-09-10 2023-07-06 Boe Technology Group Co., Ltd. Pixel array and display device
CN112968040A (zh) * 2021-02-01 2021-06-15 京东方科技集团股份有限公司 像素阵列、显示装置及高精度金属掩膜板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150261050A1 (en) * 2014-03-14 2015-09-17 Innolux Corporation Display device
CN107871774A (zh) * 2017-10-27 2018-04-03 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN207883217U (zh) * 2018-02-09 2018-09-18 京东方科技集团股份有限公司 显示基板和显示装置
CN113421910A (zh) * 2021-06-25 2021-09-21 京东方科技集团股份有限公司 显示基板以及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207305A4

Also Published As

Publication number Publication date
EP4207305A1 (en) 2023-07-05
EP4207305A4 (en) 2024-04-17
US20230371336A1 (en) 2023-11-16
CN113421910A (zh) 2021-09-21
KR20240024035A (ko) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2022267549A1 (zh) 显示基板以及显示装置
US11552131B2 (en) Electroluminescent display panel and display device
US10937848B2 (en) Organic light-emitting diode display
CN215933610U (zh) 显示基板以及显示装置
WO2021018303A2 (zh) 显示基板以及显示装置
WO2021016947A1 (zh) 显示基板和显示装置
US11587983B2 (en) Electroluminescent display module and display device with reduced color cast
WO2021016945A1 (zh) 显示基板和显示装置
US20220320235A1 (en) Display substrate and display device
CN216288464U (zh) 显示面板以及显示装置
WO2022141628A1 (zh) 一种显示基板及相关装置
CN215644495U (zh) 显示基板以及显示装置
WO2022193152A1 (zh) 显示面板及其制作方法以及显示装置
WO2023051110A1 (zh) 显示面板以及显示装置
WO2023060520A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022827054

Country of ref document: EP

Effective date: 20230324

ENP Entry into the national phase

Ref document number: 2023522518

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE