WO2023153766A1 - 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지 - Google Patents

단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2023153766A1
WO2023153766A1 PCT/KR2023/001727 KR2023001727W WO2023153766A1 WO 2023153766 A1 WO2023153766 A1 WO 2023153766A1 KR 2023001727 W KR2023001727 W KR 2023001727W WO 2023153766 A1 WO2023153766 A1 WO 2023153766A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
monoionically
inorganic composite
composite gel
conductive
Prior art date
Application number
PCT/KR2023/001727
Other languages
English (en)
French (fr)
Inventor
김희탁
권혁진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220145729A external-priority patent/KR20230121540A/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023153766A1 publication Critical patent/WO2023153766A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a monoion conductive organic-inorganic composite gel, an electrode structure including the same, and a secondary battery including the same, and in detail, the monoion conductivity that can significantly improve the cycle characteristics of a secondary battery by effectively suppressing the decomposition of a liquid electrolyte. It relates to an organic-inorganic composite gel, an electrode structure including the same, and a secondary battery including the same.
  • Lithium ion batteries have a great influence on modern society and industry, but as the demand for secondary batteries with high energy density increases, lithium metal is attracting attention again as a promising anode material for next-generation high-energy batteries.
  • secondary batteries in which lithium metal is applied as an anode suffer from chemical problems such as formation of lithium dendrites on the surface of the anode during charge/discharge cycles, formation of a thick byproduct layer due to irreversible behavior of lithium ions, deterioration in ionic conductivity, and decomposition of electrolytes. and/or electrochemical instability.
  • a thick lithium metal anode is applied to compensate for the loss of lithium due to the irreversibility of lithium ions, but this substantially reduces the volumetric energy density of the lithium metal battery, thereby canceling out the advantages of the lithium metal battery.
  • An object of the present invention is to provide a monoionic conductive organic-inorganic composite gel capable of effectively suppressing the reversibility of lithium ions and the decomposition of an electrolyte solution.
  • Another object of the present invention is to provide an electrode structure comprising the above-described monoionic conductive organic-inorganic composite gel.
  • Another object of the present invention is to provide a secondary battery that can exhibit remarkably excellent cycle characteristics even under a minimum amount of electrolyte (Lean electrolyte) conditions, including the above-described electrode structure as an anode electrode.
  • the present invention provides a polymer matrix polymerized from a polymerizable composition containing a monoionically conductive monomer; monoionic conductive inorganic particles that are dispersed and incorporated into the polymer matrix, but are in contact with each other to form a network; and solvated lithium ions derived from a liquid electrolyte containing a lithium salt, a solvent, and a fluorine-based additive.
  • the monoionically conductive inorganic particles constituting the network may include nanometer-scale pores.
  • the pore size may be 500 nm or less.
  • the lithium ions are weakly coordinated in the space charge region induced at the interface between the polymer matrix and the monoionically conductive inorganic particles. ) structure.
  • the weak coordination structure is one in which the coordination number of lithium ions between the anion of the lithium salt, the molecule contained in the solvent, and the polymerized polymer satisfies 2 or less.
  • reductive decomposition of the anion of the lithium salt, molecules included in the solvent, and polymerized polymer can be suppressed by the weak coordination structure.
  • the ion conductivity of the monoionically conductive organic-inorganic composite gel may be 1 to 5 mS/cm.
  • the average particle diameter of the monoionically conductive inorganic particles may be 200 to 1000 nm.
  • the monoionically conductive inorganic particles are lithium-aluminum-germanium phosphate (LAGP), lithium-aluminum-tinanium phosphate ((LATP), lithium-phosphorus selected from sulfide (LPS), lithium-germanium-phosphorus sulfide (LGPS), lithium-lanthanum-zirconium oxide (LLZO), lithium-lanthanum-tantalum-zirconate (LLZTO) and lithium-lanthanum-titanate (LLTO) can be more than one.
  • LAGP lithium-aluminum-germanium phosphate
  • (LATP) lithium-aluminum-tinanium phosphate
  • LPS lithium-phosphorus selected from sulfide
  • LGPS lithium-germanium-phosphorus sulfide
  • LZO lithium-lanthanum-zirconium oxide
  • LLZTO lithium-lanthanum-tantalum-zirconate
  • LLTO lithium-lanthanum-tit
  • the monoionically conductive monomer may be a compound represented by Formula 1 below.
  • R 1 and R 2 independently represent H, F, CH 3 or CF 3 .
  • the weight ratio of the polymer matrix to the monoionically conductive inorganic particles may be 1:3 to 6.
  • the monoionically conductive organic-inorganic composite gel may be positioned on a lithium-containing electrode to form a protective film.
  • the present invention in another aspect lithium metal; It provides an electrode structure comprising a; protective film comprising the above-described monoion conductive organic-inorganic composite gel located on the lithium metal.
  • the thickness of the protective film may be 2 to 10 ⁇ m.
  • the present invention provides a lithium secondary battery including the electrode structure described above.
  • the present invention provides a lithium metal and an anode comprising the above-described monoion conductive organic-inorganic composite gel located on the lithium metal as a protective film; cathode; A separator positioned between the anode and cathode; and a liquid electrolyte containing a fluorine-based additive.
  • the fluorine-based additive is fluoroethylene carbonate (FEC), 1,1,2,2-tetrafluoroethyl-2,2,2,3-tetrafluoropropyl Ether (TTE), bis(2,2,2-trifluoroethyl) ether (BTFE), 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TTFFE) , It may be any one or more selected from the group consisting of methoxy nonafluorobutane (MOFB) and ethoxy nonafluorobutane (EOFB).
  • FEC fluoroethylene carbonate
  • TTE 1,1,2,2-tetrafluoroethyl-2,2,2,3-tetrafluoropropyl Ether
  • BTFE bis(2,2,2-trifluoroethyl) ether
  • TTFFE 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether
  • the E / C ratio of the secondary battery which is the amount of electrolyte injected to the battery capacity
  • the capacity of the secondary battery at 150 charge/discharge cycles The retention rate may be 95% or higher.
  • the monoionically conductive organic-inorganic composite gel according to the present invention comprises a polymer matrix polymerized from a polymerizable composition containing a monoionically conductive monomer; monoionic conductive inorganic particles that are dispersed and incorporated into the polymer matrix, but are in contact with each other to form a network; and solvated lithium ions derived from a liquid electrolyte containing a lithium salt, a solvent, and a fluorine-based additive.
  • FIGS. 1A and 1B are views showing a top SEM image and a cross-section SEM image of Example 2, respectively, and FIGS. 1C and 1D are a top SEM image and cross-section of Example 1, respectively. It is a diagram showing a cross-section SEM image, and FIGS. 1E and 1F are views showing a top SEM image and a cross-section SEM image of Example 3, respectively.
  • FIG. 2a and 2b show battery performance evaluation results of lithium symmetric cells including the monoionic conductive organic-inorganic hybrid gels of Examples 1 to 3, and monoionic conductive organic-inorganic composite gels of Examples 1 and Comparative Example 1, respectively. It is a diagram showing comparison of battery performance evaluation of a lithium symmetric cell including
  • 3a, 3b, and 3c are cross-sectional SEM images, high-magnification focused ion beam (FIB) SEM images, and scanning transmission electron microscopy (STEM)-energy dispersive spectroscopy (EDX) analysis results of Example 1, respectively.
  • Figure 5a is a diagram showing the results of ion conductivity characteristics according to temperature in Example 1, Example 4, Comparative Example 1 and Comparative Example 2, as well as ether liquid electrolyte and carbonate liquid electrolyte
  • Figures 5b and 5c are respectively SIC / It is a diagram showing the number density profiles of Li + , solvent molecules (DME), and lithium salt anions (FSI - ) at the interface of liquid electrolyte and SIC/SIP.
  • 6A and 6B are diagrams illustrating changes in mean square displacement (MSD) of Li + over time at the SIC/liquid electrolyte interface and the SIC/SIP interface, respectively.
  • 7a and 7b show the linear scanning potential method ((Linear sweep It is a diagram showing the LSV curve obtained through voltammetry (LSV).
  • 9a and 9b show performance evaluation results of a Li
  • 9c and 9d are diagrams showing SEM images of (plated) lithium, and FIGS. It is a diagram showing the performance evaluation result of the symmetric cell and the SEM image of lithium electrodeposited on lithium metal.
  • FIG. 10a and 10b show performance evaluation of Li
  • FIG. 11 is a diagram schematically showing the structure of a battery manufactured according to an embodiment.
  • Example 12 is a diagram showing cycle characteristics results of Example 5 and Comparative Example 3;
  • FIG. 13 is a diagram showing the residual amount of each component in the electrolyte according to charge/discharge cycles in a full battery analyzed using NMR spectroscopy.
  • 14a and 14b are SEM images of the anode after full charge and full discharge after 30 cycles of Comparative Example 3 and Example 5, respectively.
  • FIG. 15A is a diagram showing C1s, O1s, F1s, and S2p XPS spectra for the cathodes of Comparative Example 3 and Example 5, and FIG. 15B schematically illustrates the behavior of an electrolyte in driving a battery according to an embodiment of the present invention. It is a schematic diagram shown.
  • 16A and 16B are schematic diagrams of a pouch-type battery manufactured according to Example 6 and a battery structure and voltage profiles at the first 0.1C charge and discharge, respectively.
  • Example 17 is a diagram showing cycle characteristics results of Example 6 and Comparative Example 4.
  • the present invention provides a monoionically conductive organic-inorganic composite gel.
  • the monoion conductivity may mean that only one ion, that is, substantially a single ion can move in the organic-inorganic composite gel, and in this case, the single ion may mean a lithium ion.
  • lithium ions which are cations, move in the organic-inorganic composite gel, but the movement of anions paired with lithium ions is restricted, so that the formation of by-products that may be formed through side reactions with anions can be effectively suppressed.
  • the monoionically conductive organic-inorganic composite gel according to the present invention comprises a polymer matrix polymerized from a polymerizable composition containing a monoionically conductive monomer; monoionic conductive inorganic particles that are dispersed and incorporated into the polymer matrix, but are in contact with each other to form a network; and solvated lithium ions resulting from a liquid electrolyte containing a lithium salt, a solvent, and a fluorine-based additive.
  • the monoionically conductive organic-inorganic composite gel is solvated in a structure in which monoionically conductive inorganic particles constituting a network are dispersed and incorporated by mutual contact between particles adjacent to a polymer matrix polymerized from a polymerizable composition containing a monoionically conductive monomer.
  • the inclusion of lithium ions can improve the reversibility of lithium ions and effectively suppress the decomposition of the electrolyte.
  • lithium ions may have a weak week coordination structure in a space charge region induced at an interface between a polymer matrix and monoionically conductive inorganic particles.
  • a space charge region can be induced at the interface between the polymer matrix and the monoionically conductive inorganic particles.
  • the space charge region induced at the interface is the concentration of lithium ions included in each of the polymer matrix and the monoionically conductive inorganic particles. This may be due to differences.
  • the polymer matrix may be polymerized from a polymerizable composition containing a monoion conductive monomer.
  • the monoion conductive monomer may be a compound represented by Chemical Formula 1 below.
  • R 1 and R 2 independently represent H, F, CH 3 or CF 3 .
  • Chemical Formula 1 may be a compound represented by Chemical Formula 2 or Chemical Formula 3, and more specifically, a compound represented by Chemical Formula 3.
  • the aforementioned monoionically conductive monomer may be polymerized by a crosslinking agent, and the crosslinking agent may be an acrylate-based crosslinking agent.
  • acrylic lake-based crosslinking agents include polyethylene glycol diacrylate (PEGDA), poly propylene glycol diacrylate (PPGDA), and hexanediol ethoxylate diacrylate (1,6-Hexanediol ethoxylate diacrylate), 1,6-Hexanediol propoxylate diacrylate, Neopentyl glycol ethoxylate diacrylate, Neopentyl glycol propoxylate diacrylate propoxylate diacrylate), trimethy propane ethoxylate triacrylate, trimethy propane propoxylate triacrylate, pentaerythritol ethoxylate triacrylate and pentaerythritol It may be any one selected from the group consisting of pentaerythritol propoxylate triacrylate.
  • PEGDA polyethylene glycol diacrylate
  • PPGDA poly propylene glycol diacrylate
  • hexanediol ethoxylate diacrylate
  • the monoionically conductive inorganic particle is lithium-aluminum-germanium phosphate (LAGP), lithium-aluminum-tinanium phosphate (LATP), lithium-phosphorus sulfide (LPS), lithium-germanium-phosphorus sulfide (LGPS) , lithium-lanthanum-zirconium oxide (LLZO), lithium-lanthanum-tantalum-zirconate (LLZTO), and lithium-lanthanum-titanate (LLTO), and specifically lithium-lanthanum-tantalum- It may be zirconate (LLZTO), and more specifically, it may be Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 .
  • LAGP lithium-aluminum-germanium phosphate
  • LATP lithium-aluminum-tinanium phosphate
  • LPS lithium-phosphorus sulfide
  • LGPS lithium-germanium-phosphorus sulfide
  • LLZO lithium-lanthanum-zi
  • lithium-lanthanum-tantalum-zirconate specifically Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 is included as the monoionically conductive inorganic particle
  • lithium ions and monoionization by the monoionically conductive monomer included in the polymer matrix It may be advantageous in terms of enhancing the conductivity of lithium ions while having a weak coordination structure of lithium ions in the space charge region induced by the difference in concentration by the ion conductive inorganic particles.
  • the monoionically conductive inorganic particles forming a network by being in contact with each other between adjacent particles may include nanometer-scale pores.
  • the monoionically conductive inorganic particles constituting the network can be dispersed and incorporated into the polymer matrix to induce a space charge region.
  • the monoionically conductive inorganic particles constituting the network include nanometer-scale voids, the space is stably spaced. A charge region is induced so that lithium ions can have a weak coordination structure.
  • the monoionically conductive inorganic particles constituting the network may not substantially include micrometer-scale pores.
  • the size of the pores may be 800 nm or less, specifically 500 nm or less, more specifically 300 nm or less, substantially 10 nm or more, and more substantially 50 nm or more.
  • the pore size satisfies the above range and the monoionically conductive inorganic particles constituting the network are dispersed and incorporated into the polymer matrix so that the space charge region is formed at the interface between the polymer matrix and the monoionically conductive inorganic particles so that lithium ions can have a weak coordination structure. can be stably derived.
  • the average particle diameter of the monoionically conductive inorganic particles may be 200 to 1000 nm, specifically 200 to 800 nm, and more specifically 300 to 600 nm.
  • the weight ratio of the polymer matrix to the monoionically conductive inorganic particles may be 1:2 to 8, specifically 1:3 to 6.
  • Average particle diameter and polymer matrix of monoionically conductive inorganic particles As the weight ratio of monoionically conductive inorganic particles satisfies the above range, adjacent monoionically conductive inorganic particles are mutually contacted to form a network including nanometer-scale pores, , Accordingly, as described above, a space charge region is stably induced at the interface between the polymer matrix and the monoionically conductive inorganic particles, so that lithium ions can have a weak coordination structure.
  • lithium ions having a weak coordination structure in the space charge region induced at the interface between the polymer matrix and the monoionic conductive inorganic particles are solvated lithium ions derived from a liquid electrolyte containing a lithium salt, a solvent and a fluorine-based additive,
  • lithium ions may accumulate and exist at a high density.
  • the lithium salt included in the liquid electrolyte may be included without limitation as long as it is a lithium salt known in the art included in the non-aqueous electrolyte, and as a non-limiting example, the lithium salt is LiClO 4 , LiPF 6 , LiFSI, LiTNFSI, LiTFSI, LiCl , LiBr, LiI, LiNO 3 , LiBF 4 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, etc., but the present invention is not limited thereto.
  • the solvent is ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), ⁇ -Butyrolactone ( ⁇ -butyrolactone), dimethoxyethane (DME), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethyl It may be at least one selected from ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), and mixtures thereof.
  • Fluorine-based additives include fluoroethylene carbonate (FEC), 1,1,2,2-tetrafluoroethyl-2,2,2,3-tetrafluoropropyl ether (TTE), bis(2,2,2-tri fluoroethyl) ether (BTFE), 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TTFFE), methoxynonafluorobutane (MOFB) and ethoxynona It may be any one or more selected from the group consisting of fluorobutane (EOFB).
  • FEC fluoroethylene carbonate
  • TTE 1,1,2,2-tetrafluoroethyl-2,2,2,3-tetrafluoropropyl ether
  • BTFE bis(2,2,2-tri fluoroethyl) ether
  • TTFFE 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether
  • Lithium ions solvated from the above liquid electrolyte may have a weak coordination structure in the space charge region induced at the interface between the polymer matrix and the monoionically conductive inorganic particles.
  • the weak coordination structure may mean that the coordination number of lithium ions with the anion of the lithium salt, the molecule included in the solvent, and the polymerized polymer satisfies 2 or less. That is, in the induced space charge region, lithium ions may have a very weak coordination structure with a coordination number of 2 or less with the anion of the lithium salt, the molecule included in the solvent, and the polymerized polymer.
  • the coordination number may mean the total number of coordinations of lithium ions coordinated with an anion of lithium salt, a molecule included in a solvent, and a polymerized polymer, respectively.
  • the coordination number is 2 or less, 1.5 or less, or 1.0 or less, 0.9 or less, 0.8 or less, 0.7 or less, or 0.6 or less, may be substantially 0.01 or more, and may be more substantially 0.1 or more.
  • lithium ions In the space charge region, lithium ions have a weakly coordinated structure with anions of lithium salts, molecules included in solvents, and polymerized polymers as described above, whereas they can be relatively strongly coordinated with monoionically conductive inorganic particles.
  • the coordination number of monoionically conductive inorganic particles and lithium ions may be 1.1 or more, 1.2 or more, 1.3 or more, 1.4 or more, 1.5 or more, 1.6 or more, or 1.7 or more. More specifically, it may be 3 or less.
  • the coordination number may be a value calculated from a radial distribution function through Equation 1 below.
  • Equation 1 N is the coordination number according to r, is the number of coordinating molecules per unit volume (number density), r and r' are the distances from the lithium ion, Equation at the interface between the silver polymer matrix and monoionically conductive inorganic particles is the radial distribution function expressed as
  • reductive decomposition of the anion of the lithium salt, the molecule included in the solvent, and the polymerized polymer may be suppressed by the aforementioned weak coordination structure.
  • the weak coordination structure restricts the movement of lithium salt anions, molecules included in the solvent, and polymerized polymers, so that their decomposition due to side reactions can be suppressed.
  • the mobility of lithium ions which are relatively strongly coordinated with the monoionically conductive inorganic particles, can be improved by hopping, and reductive decomposition of the above-described lithium salt anion, molecules contained in the solvent, and polymerized polymers is suppressed. There is an advantage that the reversibility of lithium ions with improved mobility can also be improved.
  • the ionic conductivity of the monoionically conductive organic-inorganic composite gel may be 1 to 5 mS/cm, specifically 1.5 to 4 mS/cm, and more specifically 3 to 4 mS/cm.
  • the conduction of ions may proceed in a direction parallel to the interface between the polymer matrix and the monoionically conductive inorganic particles included in the monoionically conductive organic-inorganic composite gel, that is, along the interface.
  • the monoion conductive organic-inorganic composite gel may be placed on the lithium-containing electrode to form a protective film.
  • the lithium-containing electrode may mean an electrode containing lithium metal or an electrode made of lithium metal itself.
  • the monoion conductive organic-inorganic composite gel described above is positioned on the lithium-containing electrode to form a protective film, it is possible to effectively prevent the formation of lithium dendrites on the surface of the lithium-containing electrode, as well as to improve the ionic conductivity of lithium ions as well as the reversibility It also has the advantage of significantly improving the stability and durability of the lithium-containing electrode.
  • the present invention provides an electrode structure in another aspect.
  • An electrode structure according to the present invention includes lithium metal; and a protective film comprising the above-described monoionically conductive organic-inorganic composite gel. At this time, the protective film is located on the lithium metal, but may be formed on a partial surface or the entire surface of the lithium metal.
  • the thickness of the protective film may be 1 to 20 ⁇ m, specifically 2 to 10 ⁇ m, and more specifically 5 to 10 ⁇ m.
  • the thickness of the protective film satisfies the above-mentioned range in terms of improving the stability and durability of lithium metal and considering the mobility of lithium ions when applied as an electrode structure.
  • the present invention provides a lithium secondary battery including the electrode structure described above.
  • the lithium secondary battery may be included without limitation as long as it is a secondary battery including lithium metal as an electrode, and may be, for example, a lithium sulfur battery, a lithium air battery, a lithium metal battery, and the like.
  • the lithium secondary battery includes an electrode structure including a protective film including lithium metal and the above-described monoion conductive organic-inorganic composite gel, unlike the prior art, lithium dendrite formation on the surface of the anode during charge and discharge cycles, irreversible formation of lithium ions It has the advantage of being able to solve chemical and/or electrochemical instability such as formation of a thick byproduct layer, deterioration in ionic conductivity, and decomposition of an electrolyte solution according to the behavior.
  • the present invention provides a secondary battery.
  • a secondary battery according to the present invention includes an anode comprising lithium metal and the above-described monoion conductive organic-inorganic composite gel located on the lithium metal as a protective film; cathode; A separator positioned between the anode and cathode; and a liquid electrolyte containing a fluorine-based additive.
  • the secondary battery according to the present invention includes an anode including lithium metal and the above-described monoion conductive organic-inorganic composite gel located on the lithium metal as a protective film, it effectively inhibits the formation of lithium dendrites on the surface of the anode, In addition to improving stability and durability, there is an advantage in that the cycle characteristics of the secondary battery can be remarkably improved by suppressing the decomposition of the electrolyte.
  • a liquid electrolyte included in a secondary battery includes a solvent and a lithium salt.
  • the anions and/or solvent molecules of the solvated lithium salt contained in the electrolyte are decomposed to form a thick byproduct layer on the anode electrode, significantly reducing the reversibility of lithium ions, thereby reducing the performance of the secondary battery.
  • a solid electrolyte interface (SEI) film may be formed on the surface of the anode by decomposing the fluorine-based additive contained in the electrolyte solution during the charging and discharging process.
  • SEI solid electrolyte interface
  • the capacity retention rate of the secondary battery is 90% or more, 91% or more, or 92% or more in 150 charge/discharge cycles. , 93% or more, 95% or more, may be 96% or more, specifically 99.9% or less, more specifically 99% or less.
  • the secondary battery of the present invention includes a lithium metal and an anode containing the above-described monoionic conductive organic-inorganic composite gel located on the lithium metal as a protective film, so that it is a remarkably excellent secondary battery. that can represent the performance of
  • the fluorine-based additive contained in the electrolyte solution is fluoroethylene carbonate (FEC), 1,1,2,2-tetrafluoroethyl-2,2,2,3-tetrafluoropropyl ether (TTE), Bis(2,2,2-trifluoroethyl) ether (BTFE), 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TTFFE), methoxynonafluoro It may be at least one selected from the group consisting of lobutane (MOFB) and ethoxynonafluorobutane (EOFB).
  • FEC fluoroethylene carbonate
  • TTE 1,1,2,2-tetrafluoroethyl-2,2,2,3-tetrafluoropropyl ether
  • BTFE Bis(2,2,2-trifluoroethyl) ether
  • TTFFE 1,1,2,2-tetrafluoroethyl-2,2,2-trifluor
  • the lithium salt and the solvent included in the electrolyte solution are the same as or similar to those described above, and detailed descriptions thereof are omitted.
  • the thickness of the lithium metal included in the anode may be 10 to 100 ⁇ m, specifically 20 to 80 ⁇ m, and more specifically 30 to 60 ⁇ m.
  • the secondary battery according to one embodiment of the present invention is excellent due to the improvement of the reversibility of lithium ions even though the thickness of the lithium metal included in the anode satisfies the above-mentioned range It has the advantage of having a volumetric energy density.
  • Decomposition of lithium salt anions contained in the electrolyte may also occur on the surface of the cathode.
  • lithium salt anions and/or solvent molecules whose decomposition is inhibited by the monoionically conductive organic-inorganic composite gel included in the anode, contribute to the formation of a cathode electrolyte interface (CEI) film to Durability can also be improved.
  • CEI cathode electrolyte interface
  • a cathode included in a secondary battery may be used without limitation as long as it is a material known in the art.
  • the separator included in the secondary battery according to one embodiment of the present invention is not particularly limited in its material, is located between the anode and the cathode to physically separate the anode and cathode, and has electrolyte and ion permeability. , If it is commonly used as a separator in an electrochemical device, it can be used without limitation.
  • the separator may be a polyolefin-based porous membrane
  • the polyolefin-based porous membrane is made of polyolefin-based polymers such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polypropylene, polybutylene, and polypentene, respectively. It may be a film formed of a polymer alone or a mixture thereof, but is not limited thereto.
  • the monoion conductive organic-inorganic composite gel according to the present invention an electrode structure including the same, and a secondary battery including the same will be described in more detail through examples.
  • the following examples are only one reference for explaining the present invention in detail, but the present invention is not limited thereto, and may be implemented in various forms.
  • Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 nanoparticles (AmpceraTM, hereinafter LLZTO) and Li(STFSI) (Lithium(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide, synthesized by KRICT , Korea) monomer was added to a mixed solvent EC/DEC (1:1, v/v, Sigma-Aldrich) in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed and stirred to obtain a mixture manufactured.
  • EC/DEC ethylene carbonate
  • DEC diethyl carbonate
  • a slurry was prepared by adding a cross-linking agent, PEGDA (Polyethylene glycol-diacrylate)-575 (Mn: 575, Sigma-Aldrich) to the prepared mixture while stirring so that the molar ratio of EO (ethylene oxide): Li was 1: 1. .
  • PEGDA Polyethylene glycol-diacrylate
  • EO ethylene oxide
  • the prepared slurry was applied on a 40 ⁇ m thick Li foil using a doctor blade, and then heat-treated at a temperature of 60 ° C. for 10 hours to obtain a P (STFSI) Li-co-PEGDA polymer (single An organic-inorganic composite membrane was formed in which LLZTO, that is, single ion conducting ceramic (SIC) was incorporated into an ion conducting polymer (SIP).
  • LLZTO that is, single ion conducting ceramic (SIC) was incorporated into an ion conducting polymer (SIP).
  • Li foil on which the organic-inorganic composite film was formed was dissolved in 1.5 M LiFSI (lithium bis (fluorosulfonyl) imide) in DME (1,2-dimethoxyethane) solvent, and 50 wt% TFTFE (1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether) was added to the ether liquid electrolyte until the organic-inorganic composite membrane was fully swollen, thereby preparing a monoionic conductive organic-inorganic composite gel containing the liquid electrolyte in the organic-inorganic composite membrane.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • DME 1,2-dimethoxyethane
  • TFTFE 1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether
  • the weight ratio of SIC:SIP included in the monoionically conductive organic-inorganic composite gel was 4:1.
  • Example 2 The same procedure as in Example 1 was carried out, but the Li foil on which the organic-inorganic composite film was formed was dissolved in 1.0 M LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) in an EC / DEC (1: 1, v / v) mixed solvent, and 10 wt% The same procedure was performed except for immersion in a carbonate liquid electrolyte containing fluoroethylene carbonate (FEC) and 3 wt% lithium bis(oxalato)borate (LiBOB).
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • Example 2 It was carried out in the same manner as in Example 1, except that LLZTO having an average particle diameter of 5 ⁇ m was used as the monoionically conductive inorganic particle.
  • Example 1 was carried out in the same manner as in Example 1, except that a P(STFSI)Li-co-PEGDA polymer film (SIP) obtained by polymerizing Li(STFSI) and PEGDA was formed without using monoionically conductive inorganic particles. conducted.
  • SIP P(STFSI)Li-co-PEGDA polymer film
  • FIGS. 1A and 1B are views showing a top SEM image and a cross-section SEM image of Example 2, respectively, and FIGS. 1C and 1D are a top SEM image and cross-section of Example 1, respectively. It is a diagram showing a cross-section SEM image, and FIGS. 1E and 1F are views showing a top SEM image and a cross-section SEM image of Example 3, respectively.
  • Example 2 in the case of Example 2, it can be seen that the SIC LLZTO particles are discontinuously dispersed in the SIP matrix. From this, it can be determined that Li + ions are predominantly moved through the SIP having a continuous phase structure.
  • the battery performance was evaluated using an ether liquid electrolyte under conditions of a current density of 5 mA/cm 2 and a capacity of 3 mAh/cm 2 .
  • FIG. 2a and 2b show battery performance evaluation results of lithium symmetric cells including the monoionic conductive organic-inorganic hybrid gels of Examples 1 to 3, and monoionic conductive organic-inorganic composite gels of Examples 1 and Comparative Example 1, respectively. It is a diagram showing comparison of battery performance evaluation of a lithium symmetric cell including
  • Example 2 and Example 3 showed internal short-circuit behavior after 30 hours and 220 hours, respectively, in the case of Example 1, it can be seen that the charge/discharge cycle characteristics appear stably even after 500 hours. .
  • 3a, 3b, and 3c are cross-sectional SEM images, high-magnification focused ion beam (FIB) SEM images, and scanning transmission electron microscopy (STEM)-energy dispersive spectroscopy (EDX) analysis results of Example 1, respectively.
  • the La and Zr EDX areas derived from SIC are located within the F and S EDX areas derived from SIP, indicating that SIP surrounds the SIC particles.
  • a space charge region of a Li + accumulation layer and a Li + depletion layer may be formed at the SIC and SIP interfaces, which was directly confirmed using space resolved electron energy loss spectroscopy (SR-EELS).
  • SR-EELS space resolved electron energy loss spectroscopy
  • the Li- K edge signal is detected throughout the scanned area, and the La- M edge It can be seen that signals start appearing in certain areas indicating the presence of SIC and SIP interfaces. In addition, based on the SIC and SIP interfaces, a relatively strong Li- K edge signal appears in the SIP region and a relatively weak Li- K edge signal appears in the SIC region, indicating that a space charge region is formed. The formation of these space charge regions is due to the concentration difference of Li + ions included in SIC and SIP.
  • Example 1 Comparative Example 1 and Comparative Example 2
  • the ion conductivity characteristics according to the temperature in the ether liquid electrolyte and the carbonate liquid electrolyte were compared and analyzed, and the results are shown in FIG. 5a and Table 1 below. .
  • the ion conduction mechanism of Examples 1 and 4 including the monoionically conductive organic-inorganic composite gel is a conventional liquid phase, polymer or It can be seen that it is different from the ceramic electrolyte characteristics.
  • 5b and 5c are diagrams illustrating number density profiles of Li + , solvent molecules (DME), and lithium salt anions (FSI - ) at the SIC/liquid electrolyte interface and the SIC/SIP interface, respectively.
  • 0 on the Z axis means the outermost layer of the La atomic layer included in the SIC, and the images on the right in FIGS. 5B and 5C schematically show the spatial arrangement of ions based on MD simulation.
  • the Li + accumulation layer (L 1 ) is formed in the liquid electrolyte or SIP region adjacent to both the SIC/liquid electrolyte interface and the SIC/SIP interface. This is because, as described above, Li + was moved from the SIC to the liquid electrolyte or SIP region across the interface due to the Li + concentration difference.
  • DME molecules are mainly located in the second layer (L 2 ).
  • the anion number density is 1.12 nm -3 , which is significantly higher than that of the SIC / liquid electrolyte interface (4.05 nm -3 ). low can be seen.
  • MSD mean square displacement
  • the MSD calculation according to time was performed using the analyzer built into Forcite in Materials Studio (Accerlrys Inc.), and the MSD of N atoms (molecules) for each spatial direction was calculated through Equation 2 below, and the liquid electrolyte , MSD for Li + in SIP and bulk LLZO were also calculated and compared.
  • 6A and 6B are diagrams illustrating the MSD change of Li + with time at the SIC/liquid electrolyte interface and the SIC/SIP interface, respectively.
  • the MSD increase rate related to the mobility of Li + is significantly higher in the direction perpendicular to the interface or in the direction parallel to the interface compared to SIP, and the MSD in the liquid electrolyte It can be seen that the rate of increase is at a similar level.
  • the Li + diffusivity in the liquid electrolyte and the SIC / SIP interface is 3.10x10 11 m 2 /s, respectively. and It was confirmed that it was 1.5x10 11 m 2 /s.
  • Equation 1 N is the coordination number according to r, is the number of coordinating molecules per unit volume (number density), r and r' are the distances from the lithium ion, Equation at the interface between the silver polymer matrix and monoionically conductive inorganic particles is the radial distribution function expressed as
  • Li + at the SIC/SIP interface that is, Li + in the dense Li + accumulation layer is weakly coordinated by the solvent and the polymer. From this, it can be seen that Li + conduction at the SIC/SIP interface is not accompanied by drag of anions, polymers, and solvent molecules to the surface of the lithium metal electrode, and about two coordinating oxygens originating from SIC at the SIC/SIP interface for conduction of the valence Li + It is judged to play the role of a hopping site.
  • the reductive decomposition behavior of the electrolyte was analyzed for the Li
  • FIGS 7A and 7B are diagrams showing LSV curves of a Li
  • the CF 3 peak (689 eV, F1s) caused by the reductive decomposition of TFTFE appears only in the Li-SCL (Example 1)
  • the monoionically conductive organic-inorganic composite gel effectively suppresses reductive decomposition of the electrolyte.
  • SCL (Example 1 and Example 4) -Li symmetric cell were applied to ether liquid electrolyte and carbonate liquid electrolyte, respectively and evaluated.
  • 9a and 9b show performance evaluation results of a Li
  • 9c and 9d are diagrams showing SEM images of (plated) lithium, and FIGS. It is a diagram showing the performance evaluation result of the symmetric cell and the SEM image of lithium electrodeposited on lithium metal.
  • the morphological characteristics of lithium electrodeposited on lithium metal are Li-SCL (Example 1 and Example 4)
  • FIG. 10a and 10b show performance evaluation of Li
  • the morphological characteristics of lithium electrodeposited on the conventionally known lithium metal are contained in the monoionically conductive organic-inorganic composite gel, as described above, rather than the mechanical modulus characteristics of the protective layer located on the lithium metal or the effect of lithium ion transition.
  • the reductive decomposition of the lithium salt anion contained in the liquid electrolyte is effectively suppressed by the fluorinated solvent contained in the liquid electrolyte, and at the same time, the solvent molecule is not accompanied by drag on the surface of the lithium metal electrode. It is believed that this is because it affects the formation of the SEI film structure.
  • the areal capacity of the cathode was 3.63 mAh/cm 2
  • the ratio of the capacity of the anode to the cathode capacity (N/P ratio) was 2.15
  • the electrolyte injection amount (E/C ratio) to the battery capacity was 3.5 gAh -1 .
  • FIG. 11 is a diagram schematically showing the structure of a battery manufactured according to an embodiment.
  • Example 5 It was carried out in the same manner as in Example 5, except that the anode was made of lithium metal that did not contain the monoionic conductive organic-inorganic composite gel.
  • Example 12 is a diagram showing cycle characteristics results of Example 5 and Comparative Example 3;
  • Example 5 exhibits substantially the same charge/discharge rate characteristics as Comparative Example 3 and significantly superior charge/discharge cycle characteristics compared to Comparative Example 3.
  • each component in the electrolyte was analyzed using 1 H, 11 B, and 19 F nuclear magnetic resonance spectroscopy (NMR spectroscopy) to analyze the reductive decomposition behavior of the electrolyte according to charge and discharge cycles in a full cell.
  • NMR spectroscopy nuclear magnetic resonance spectroscopy
  • Example 13 As shown in FIG. 13, it can be seen that the residual amount of EC and DMC contained in the electrolyte after the charge/discharge cycle is significantly higher in Example 5 compared to Comparative Example 3, and the residual amount of FEC after 50 cycles is based on the standard before the cycle proceeds. In comparison, in the case of Example 5, 71.6% was confirmed, whereas in the case of Comparative Example 3, 6.7% was confirmed to remain. In addition, the residual amounts of LiTFSI and LiBOB were also observed to be higher in Example 5 compared to Comparative Example 3, from which it can be seen that the decomposition of lithium salt anions is also effectively inhibited.
  • 14a and 14b are SEM images of the anode after full charge and full discharge after 30 cycles of Comparative Example 3 and Example 5, respectively.
  • Example 14a and 14b in the case of Comparative Example 3, it was observed that micro-sized whisker-shaped Li was electrodeposited in the first fully charged state, whereas in Example 5, 20 ⁇ m-sized flat-shaped Li was densely deposited. It can be seen that lithium dendrites are not formed due to electrodeposition. In addition, as can be seen from the cross-sectional SEM image of Example 5, it can be seen that Li was electrodeposited on the lithium metal having a thickness of 40 ⁇ m very densely with a thickness of 18.5 ⁇ m.
  • Comparative Example 3 confirmed that 70% of the initial thickness of the lithium metal electrode had disappeared, whereas Example 5 was observed to remain at the level of 91.5% based on the initial thickness, It was confirmed that the lithium metal electrode remained at a level of 73% even after 120 cycles.
  • the components of the electrolyte with suppressed decomposition contribute to the formation of the cathode electrolyte interface (CEI) film as well as the lithium metal electrode, thereby affecting the durability of the cathode electrode.
  • CEI cathode electrolyte interface
  • 15A is a diagram showing C1s, O1s, F1s, and S2p XPS spectra for the cathodes of Comparative Example 3 and Example 5.
  • Example 5 has stronger signal intensities of the carbonate peak (290 eV) and the LiF peak (685 eV) compared to Comparative Example 3, which indicates that EC (ethylene by BOB) This is because the CEI film containing poly(EC) formed by ring-opening polymerization of carbonate and LiF formed by oxidative decomposition of FEC was formed in Example 5.
  • Example 5 having a LiF-rich CEI film formed with an O-NCM peak (529 eV) and a PVDF peak (687 eV) showing stronger signal strength than Comparative Example 3, as shown in the O1s and F1s XPS spectra of FIG. eV) appears, from which it can be seen that the decomposition of the electrolyte at the cathode is suppressed by the CEI film formed in Example 5.
  • Example 5 compared to Comparative Example 3, it can be seen that the signal intensity of the peaks for the -CF 3 and S components is weaker, from which it can be seen that the oxidative decomposition of TFSI - is also suppressed.
  • 15B is a schematic diagram schematically illustrating the behavior of an electrolyte in driving a battery according to an embodiment of the present invention.
  • the decomposition of EC, FEC, and LiBOB included in the electrolyte can be effectively suppressed as the monoionic organic-inorganic composite gel located on the lithium metal is located, and the EC, FEC, and LiBOB whose decomposition is suppressed are It contributes to the formation of the CEI film again, and has the advantage of preventing electrolyte decomposition on the surface of the cathode.
  • This advantage can significantly improve the lifespan of a lithium battery because electrolyte decomposition is effectively suppressed when applied to a lean electrolyte lithium battery.
  • Example 4 The anode of Example 4 containing the monoionic conductive organic-inorganic composite gel was cut into 40 mm x 60 mm in size, and an anode and separator (PE, Asahi, 19 ⁇ m) were prepared using NMC 532 with a size of 30 mm x 50 mm as a cathode.
  • PE anode and separator
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • EC / DEC 1, v / v
  • FEC fluoroethylene carbonate
  • 100 ⁇ l 2.15 g Ah ⁇ 1
  • LiBOB lithium bis(oxalato)borate
  • the areal capacity of the cathode was 3.7 mAh/cm 2
  • the ratio of the anode capacity to the cathode capacity (N/P ratio) was 2.15
  • the electrolyte injection amount (E/C ratio) to the battery capacity was 2.15 gAh -1 .
  • Example 6 It was carried out in the same manner as in Example 6, except that the anode was made of lithium metal, which did not contain the monoionic conductive organic-inorganic composite gel.
  • 16A and 16B are schematic diagrams of a pouch-type battery manufactured according to Example 6 and a battery structure and voltage profiles at the first 0.1C charge and discharge, respectively.
  • Example 6 As shown in Figure 16b, it was confirmed that the specific capacity of Example 6 was 184.3 mAh g -1 at 0.1 C, and the specific energy density and volumetric energy density were It was confirmed that they were 361 Wh/kg and 1126 Wh/l, respectively.
  • Example 17 is a diagram showing cycle characteristics results of Example 6 and Comparative Example 4.
  • Example 6 effectively inhibits electrolyte decomposition and significantly prevents degradation of cycle characteristics due to electrolyte depletion, and even in a lithium metal battery with a minimal electrolyte, cycle characteristics can be stably implemented even after 500 cycles confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이온의 가역성을 향상시킬 수 있고, 전해액의 분해를 효과적으로 억제시킬 수 있는 단이온 전도성 유무기 복합 겔에 관한 것으로, 상세하게 단이온 전도성 유무기 복합 겔은 단이온 전도성 단량체를 포함하는 중합성 조성물로부터 중합된 고분자 메트릭스; 상기 고분자 메트릭스에 분산 함입되되, 인접하는 입자간 상호 접촉되어 네트워크를 이루는 단이온 전도성 무기입자; 및 리튬염, 용매 및 불소계 첨가제를 포함하는 액상 전해액으로부터 기인한 용매화된 리튬이온;을 포함한다.

Description

단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지
본 발명은 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지에 관한 것으로, 상세하게 액상 전해액의 분해를 효과적으로 억제시켜 이차전지의 사이클 특성을 현저히 향상시킬 수 있는 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지에 관한 것이다.
리튬이온전지는 현대 사회 및 산업에 지대한 영향을 미치고 있으나 고에너지 밀도를 갖는 이차전지에 대한 수요가 증폭됨에 따라 리튬금속이 차세대 고에너지 배터리를 위한 유망한 애노드 재료로 다시 관심받고 있다.
그러나, 리튬금속이 애노드로 적용된 이차전지는 충방전 사이클 동안 애노드 표면에서의 리튬 덴드라이트 형성, 리튬 이온의 비가역적 거동에 따른 두꺼운 부산물 층(byproduct layer) 형성, 이온 전도성 저하, 전해액 분해 등과 같은 화학적 및/또는 전기화학적 불안정성을 유발하는 단점이 있다.
이에, 리튬금속 전지의 경우 리튬이온의 비가역성으로 인한 리튬 손실을 보완하기 위해 두꺼운 리튬금속 애노드를 적용하고 있으나, 이는 실질적으로 리튬금속 전지의 체적 에너지 밀도를 감소시켜 리튬금속 전지의 장점이 상쇄되는 결과를 초래한다.
또한, 전해질 공학(electrolyte engineering) 또는 인공 고체 전해질 계면(SEI), 리튬금속 보호막 도입 등과 같은 다양한 방법으로 리튬금속 전극의 가역성을 향상시키는 기술이 보고되고 있으나 여전히 3 mAh/cm2 초과의 높은 면적 용량(areal capacitie) 및 3 g Ah-1 미만의 최소한계량의 전해질(Lean electrolyte) 조건에서 리튬금속 전지의 내구성과 에너지 밀도를 향상시키는데 한계가 있다.
따라서, 상기 문제점을 해결할 수 있는 리튬금속을 포함하는 이차전지가 개발될 필요성이 있다.
[선행기술문헌]
[비특허문헌]
1. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
2. Cha, E. et al. 2D MoS 2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 13, 337-344 (2018).
본 발명의 목적은 리튬 이온의 가역성 및 전해액의 분해를 효과적으로 억제할 수 있는 단이온 전도성 유무기 복합 겔을 제공하는 것이다.
본 발명의 다른 목적은 전술한 단이온 전도성 유무기 복합 겔을 포함하는 전극 구조체를 제공하는 것이다.
본 발명의 또 다른 목적은 전술한 전극 구조체를 애노드 전극으로 포함하여 최소한계량의 전해질(Lean electrolyte) 조건에서도 현저히 우수한 사이클 특성을 나타낼 수 있는 이차전지를 제공하는 것이다.
본 발명은 일 양태로 단이온 전도성 단량체를 포함하는 중합성 조성물로부터 중합된 고분자 메트릭스; 상기 고분자 메트릭스에 분산 함입되되, 인접하는 입자간 상호 접촉되어 네트워크를 이루는 단이온 전도성 무기입자; 및 리튬염, 용매 및 불소계 첨가제를 포함하는 액상 전해액으로부터 기인한 용매화된 리튬이온;을 포함하는 단이온 전도성 유무기 복합 겔을 제공한다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 네트워크를 이루는 단이온 전도성 무기입자는 나노미터 스케일의 공극을 포함할 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 공극의 크기는 500 nm 이하일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 유도된 공간 전하 영역(space charge region)에서 상기 리튬이온은 약한 배위(week coordination)구조를 가지는 것일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 약한 배위 구조는 상기 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자와의 리튬이온의 배위 수가 2 이하를 만족하는 것일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 약한 배위 구조에 의해 상기 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자의 환원적 분해가 억제될 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 단이온 전도성 유무기 복합 겔의 이온 전도도는 1 내지 5 mS/cm일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 단이온 전도성 무기입자의 평균입경은 200 내지 1000 nm일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 단이온 전도성 무기입자는 리튬-알루미늄-게르마늄 인산염(LAGP), 리튬-알루미늄-티나늄 인산염((LATP), 리튬-인 황화물(LPS), 리튬-게르마늄-인 황화물(LGPS), 리튬-란타늄-지르코늄 산화물(LLZO), 리튬-란타늄-탄탈륨-지르코네이트(LLZTO) 및 리튬-란타늄-티타네이트(LLTO) 중에서 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 단이온 전도성 단량체는 하기 화학식 1로 표현되는 화합물일 수 있다.
(화학식 1)
Figure PCTKR2023001727-appb-img-000001
화학식 1에서 R1 및 R2는 서로 독립적으로 H, F, CH3 또는 CF3를 의미한다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 고분자 메트릭스 : 단이온 전도성 무기입자의 중량비는 1 : 3 내지 6일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 단이온 전도성 유무기 복합 겔은 리튬 함유 전극 상에 위치하여 보호막을 형성할 수 있다.
본 발명은 다른 일 양태로 리튬금속; 상기 리튬금속 상에 위치하는 전술한 단이온 전도성 유무기 복합 겔을 포함하는 보호막;을 포함하는 전극 구조체를 제공한다.
본 발명의 일 실시예에 따른 전극 구조체에 있어, 상기 보호막의 두께는 2 내지 10 μm일 수 있다.
또한, 본 발명은 전술한 전극 구조체를 포함하는 리튬이차전지를 제공한다.
본 발명은 또 다른 일 양태로 리튬금속 및 상기 리튬금속 상에 위치하는 전술한 단이온 전도성 유무기 복합 겔을 보호막으로 포함하는 애노드; 캐소드; 상기 애노드 및 캐소드 사이에 위치하는 분리막; 및 불소계 첨가제가 함유된 액상의 전해액;을 포함하는 이차전지를 제공한다.
본 발명의 일 실시예에 따른 이차전지에 있어, 상기 불소계 첨가제는 플루오로에틸렌 카보네이트(FEC), 1,1,2,2-테트라플루오로에틸-2,2,2,3-테트라플루오로프로필 에테르(TTE), 비스(2,2,2-트리플루오로에틸) 에테르(BTFE), 1,1,2,2-테트라플루오로에틸-2,2,2-트리플루오로에틸 에테르(TFTFE), 메톡시노나플루오로부탄(MOFB) 및 에톡시노나플루오로부탄(EOFB)으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 실시예에 따른 단이온 전도성 유무기 복합 겔에 있어, 상기 이차전지가 전지 용량 대비 전해액 주입량인 E/C ratio가 2.15gAh-1일 경우, 150 충방전 사이클에서 상기 이차전지의 용량 유지율은 95% 이상일 수 있다.
본 발명에 따른 단이온 전도성 유무기 복합 겔은 단이온 전도성 단량체를 포함하는 중합성 조성물로부터 중합된 고분자 메트릭스; 상기 고분자 메트릭스에 분산 함입되되, 인접하는 입자간 상호 접촉되어 네트워크를 이루는 단이온 전도성 무기입자; 및 리튬염, 용매 및 불소계 첨가제를 포함하는 액상 전해액으로부터 기인한 용매화된 리튬이온;을 포함함에 따라 리튬 이온의 가역성을 향상시킬 수 있고, 전해액의 분해를 효과적으로 억제할 수 있다.
또한, 리튬금속 및 전술한 단이온 전도성 유무기 복합 겔을 포함하는 전극 구조체를 이차전지의 애노드로 적용 시 최소한계량의 전해질(Lean electrolyte) 조건에서도 현저히 우수한 사이클 특성을 나타낼 수 이차전지를 제공할 수 있는 장점이 있다.
도 1a 및 도 1b는 각각 실시예 2의 상면(top) SEM 이미지 및 단면(cross-section) SEM 이미지를 도시한 도면이고, 도 1c 및 도 1d는 각각 실시예 1의 상면(top) SEM 이미지 및 단면(cross-section) SEM 이미지를 도시한 도면이며, 도 1e 및 도 1f는 각각 실시예 3의 상면(top) SEM 이미지 및 단면(cross-section) SEM 이미지를 도시한 도면이다.
도 2a 및 도 2b는 각각 실시예 1 내지 실시예 3의 단이온 전도성 유무기 복합 겔을 포함하는 리튬 대칭 셀의 전지 성능 평가 결과 및 실시예 1과 비교예 1의 단이온 전도성 유무기 복합 겔을 포함하는 리튬 대칭 셀의 전지 성능 평가를 비교 도시한 도면이다.
도 3a, 도 3b 및 도 3c는 각각 실시예 1의 단면 SEM 이미지, 고배율 FIB(focused ion beam) SEM 이미지 및 STEM(scanning transmission electron microscopy)-EDX(energy dispersive spectroscopy) 분석 결과를 도시한 도면이다.
도 4는 Li-K edge (55-70 eV) 및 La-M edge (100-140 eV) 에너지 손실 영역에서 SIC 및 SIP 계면을 가로지르도록 P(STFSI)Li-co-PEGDA 중합체(SIP)로부터 단이온 전도성 세라믹(SIC)까지 스캔닝하여 기록된 공간분해 전자 에너지 손실 분광법(SR-EELS)을 이용하여 분석한 이미지를 도시한 도면이다.
도 5a는 실시예 1, 실시예 4, 비교예 1 및 비교예 2와 더불어 에테르 액상 전해질과 카보네이트 액상 전해질에서의 온도에 따른 이온 전도성 특성 결과를 도시한 도면이고, 도 5b 및 도 5c는 각각 SIC/액상 전해질 계면 및 SIC/SIP 계면에서의 Li+, 용매 분자(DME) 및 리튬염의 음이온(FSI-)의 개수 밀도 프로파일을 도시한 도면이다.
도 6a 및 도 6b는 각각 SIC/액상 전해질 계면 및 SIC/SIP 계면에서의 시간에 따른 Li+의 평균 제곱 변위(Mean square displacement, MSD) 변화를 도시한 도면이다.
도 7a 및 도 7b는 각각 에테르 액상 전해질 및 카보네이트 액상 전해질이 적용된 Li||Cu 반쪽전지와 Li-SCL(실시예 1 및 실시예 4)||Cu 반쪽전지에 대하여 선형주사전위법((Linear sweep voltammetry, LSV)을 통해 수득한 LSV 커브를 도시한 도면이다.
도 8a 및 도 8b는 X선 광전자 분광법(XPS)을 이용하여 측정된 각각 에테르 액상 전해질 및 카보네이트 액상 전해질이 적용된 Li||Cu 반쪽전지와 Li-SCL(실시예 1 및 실시예 4)||Cu 반쪽전지에 형성된 고체 전해질 계면(SEI) 막의 F1s와 S2p XPS 스펙트럼을 도시한 도면이다.
도 9a 및 도 9b는 각각 에테르 액상 전해질이 적용된 Li||Li 대칭셀과 Li-SCL(실시예 1)||SCL(실시예 1)-Li 대칭셀의 성능 평가 결과 및 리튬금속 상에 전착된(plated) 리튬의 SEM 이미지를 도시한 도면이고, 도 9c 및 도 9d는 각각 카보네이트 액상 전해질이 적용된 Li||Li 대칭셀과 Li-SCL(실시예 4)||SCL(실시예 4)-Li 대칭셀의 성능 평가 결과 및 리튬금속 상에 전착된(plated) 리튬의 SEM 이미지를 도시한 도면이다.
도 10a 및 도 10b는 각각 에테르 액상 전해질에 불소화 용매인 TFTFE 포함 유무에 따른 Li||Li 대칭셀과 Li-SCL(실시예 1)||SCL(실시예 1)-Li 대칭셀의 성능 평가 및 카보네이트 액상 전해질에 불소화 용매인 FEC 포함 유무에 따른 Li||Li 대칭셀과 Li-SCL(실시예 4)||SCL(실시예 4)-Li 대칭셀의 성능 평가 결과를 도시한 도면이다.
도 11은 일 실시예에 따라 제조된 전지의 구조를 모식적으로 나타낸 도면이다.
도 12는 실시예 5 및 비교예 3의 사이클 특성 결과를 도시한 도면이다.
도 13은 핵자기 공명분광법(NMR spectroscopy)을 이용하여 분석한 완전 전지 내에서 충방전 사이클에 따른 전해질 내의 각 구성 성분의 잔류량을 나타내는 도면이다.
도 14a 및 도 14b는 각각 비교예 3 및 실시예 5의 완전충전 및 30사이클 후 완전 방전시킨 후 애노드의 SEM 이미지를 도시한 도면이다.
도 15a는 비교예 3 및 실시예 5의 캐소드에 대한 C1s, O1s, F1s 및 S2p XPS 스펙트럼을 도시한 도면이고, 도 15b는 본 발명의 일 구현예에 따른 전지 구동에 있어 전해질의 거동을 개략적으로 나타낸 개략도이다.
도 16a 및 도 16b는 각각 실시예 6에 따라 제조된 파우치형 전지와 전지 구조의 모식도 및 첫번째 0.1C 충전 및 방전에서의 전압 프로파일을 도시한 도면이다.
도 17은 실시예 6 및 비교예 4의 사이클 특성 결과를 도시한 도면이다.
이하 첨부한 도면들을 참조하여 본 발명의 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지를 상세히 설명한다.
다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다.
이 때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명을 생략한다.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
본 명세서 및 첨부된 특허청구범위에서 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다.
본 명세서 및 첨부된 특허청구범위에서 포함하다 또는 가지다 등의 용어는 명세서 상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 특별히 한정하지 않는 한, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
본 명세서 및 첨부된 특허청구범위에서, 막(층), 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분과 접하여 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막(층), 다른 영역, 다른 구성 요소 등이 개재되어 있는 경우도 포함한다.
본 발명은 일 양태로 단이온 전도성 유무기 복합 겔을 제공한다.
여기서, 단이온 전도성이라 함은 유무기 복합 겔 내에서 하나의 이온 즉, 실질적으로 단일 이온만 이동할 수 있는 것을 의미할 수 있고, 이 때, 단일 이온은 리튬이온을 의미하는 것일 수 있다.
즉, 유무기 복합 겔 내에서 양이온인 리튬이온만 이동하되, 리튬이온과 짝을 이루는 음이온의 이동이 제한되어 음이온과의 부 반응을 통해 형성될 수 있는 부산물의 형성이 효과적으로 억제될 수 있다.
본 발명에 따른 단이온 전도성 유무기 복합 겔은 단이온 전도성 단량체를 포함하는 중합성 조성물로부터 중합된 고분자 메트릭스; 상기 고분자 메트릭스에 분산 함입되되, 인접하는 입자간 상호 접촉되어 네트워크를 이루는 단이온 전도성 무기입자; 및 리튬염, 용매 및 불소계 첨가제를 포함하는 액상 전해액으로부터 기인한 용매화된 리튬이온;을 포함한다.
구체적으로, 단이온 전도성 유무기 복합 겔이 단이온 전도성 단량체를 포함하는 중합성 조성물로부터 중합된 고분자 메트릭스에 인접하는 입자간 상호 접촉되어 네트워크를 이루는 단이온 전도성 무기입자가 분산 함입된 구조에 용매화된 리튬이온이 포함됨에 따라 리튬 이온의 가역성을 향상시킬 수 있고, 전해액의 분해를 효과적으로 억제할 수 있는 장점이 있다.
일 구현예로, 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 유도된 공간 전하 영역(space charge region)에서 리튬이온은 약한 배위(week coordination)구조를 가지는 것일 수 있다.
상세하게, 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 공간 전하 영역이 유도될 수 있는데 이 때, 상기 계면에서 유도된 공간 전하 영역은 고분자 메트릭스 및 단이온 전도성 무기입자 각각에 포함된 리튬이온의 농도 차이에 의해 기인한 것일 수 있다.
일 구체예로, 고분자 메트릭스는 단이온 전도성 단량체를 포함하는 중합성 조성물로부터 중합된 것일 수 있는데 이 때, 단이온 전도성 단량체는 하기 화학식 1로 표현되는 화합물일 수 있다.
(화학식 1)
Figure PCTKR2023001727-appb-img-000002
화학식 1에서 R1 및 R2는 서로 독립적으로 H, F, CH3 또는 CF3를 의미한다.
구체적으로 화학식 1은 하기 화학식 2 또는 화학식 3으로 표현되는 화합물일 수 있고, 보다 구체적으로 화학식 3으로 표현되는 화합물일 수 있다.
(화학식 2)
Figure PCTKR2023001727-appb-img-000003
(화학식 3)
Figure PCTKR2023001727-appb-img-000004
전술한 단이온 전도성 단량체는 가교제에 의해 중합될 수 있고, 가교제는 아크릴레이트계 가교제일 수 있다.
일 예로, 아크릴레이크계 가교제는 폴리에틸렌글리콜디아크릴레이트(Polyethylene glycol diacrylate, PEGDA), 폴리프로필렌글리콜디아크릴레이트(Poly propylene glycol diacrylate, PPGDA), 헥산디올에톡시레이트디아크릴레이트(1,6-Hexanediol ethoxylate diacrylate), 헥산디올프로폭시레이트디아크릴레이트(1,6-Hexanediol propoxylate diacrylate), 네오펜틸글리콜에톡시레이트디아크릴레이트(Neopentyl glycol ethoxylate diacrylate), 네오펜틸글리콜프로폭시레이트디아크릴레이트(Neopentyl glycol propoxylate diacrylate), 트리메틸프로판에톡시레이트트리아크릴레이트(Trimethy propane ethoxylate triacrylate), 트리메틸프로판프로폭시레이트트리아크릴레이트(Trimethy propane propoxylate triacrylate), 펜타리트리톨에톡시레이트트리아크릴레이트(Pentaerythritol ethoxylate triacrylate) 및 펜타리트리톨프로폭시레이트트리아크릴레이트(Pentaerythritol propoxylate triacrylate)로 이루어진 군에서 선택되는 어느 하나일 수 있다.
일 구현예에 있어, 단이온 전도성 무기입자는 리튬-알루미늄-게르마늄 인산염(LAGP), 리튬-알루미늄-티나늄 인산염(LATP), 리튬-인 황화물(LPS), 리튬-게르마늄-인 황화물(LGPS), 리튬-란타늄-지르코늄 산화물(LLZO), 리튬-란타늄-탄탈륨-지르코네이트(LLZTO) 및 리튬-란타늄-티타네이트(LLTO) 중에서 선택되는 어느 하나 이상일 수 있고, 구체적으로 리튬-란타늄-탄탈륨-지르코네이트(LLZTO)일 수 있으며, 보다 구체적으로 Li6.4La3Zr1.4Ta0.6O12 일 수 있다.
단이온 전도성 무기입자로 리튬-란타늄-탄탈륨-지르코네이트(LLZTO), 구체적으로 Li6.4La3Zr1.4Ta0.6O12를 포함할 경우 고분자 메트릭스에 포함된 단이온 전도성 단량체에 의한 리튬이온과 단이온 전도성 무기입자에 의한 농도 차이로부터 기인하여 유도된 공간 전하 영역에서 리튬이온이 약한 배위 구조를 가짐과 동시에 리튬이온의 전도성을 향상시키는 측면에서 유리할 수 있다.
일 구체예로, 인접하는 입자간 상호 접촉되어 네트워크를 이루는 단이온 전도성 무기입자는 나노미터 스케일의 공극을 포함할 수 있다.
전술한 바와 같이, 네트워크를 이루는 단이온 전도성 무기입자는 고분자 메트릭스에 분산 함입되어 공간 전하 영역이 유도될 수 있는데, 네트워크를 이루는 단이온 전도성 무기입자가 나노미터 스케일의 공극을 포함함에 따라 안정적으로 공간 전하 영역이 유도되어 리튬이온이 약한 배위 구조를 가질 수 있는 것이다. 이 때, 네트워크를 이루는 단이온 전도성 무기입자는 실질적으로 마이크로미터 스케일의 기공을 포함하지 않는 것일 수 있다.
구체적 일 예로, 공극의 크기는 800 nm이하, 구체적으로 500 nm 이하, 보다 구체적으로 300 nm 이하일 수 있고, 실질적으로 10 nm 이상, 보다 실질적으로 50 nm 이상일 수 있다.
공극의 크기가 전술한 범위를 만족하여 네트워크를 이루는 단이온 전도성 무기입자는 고분자 메트릭스에 분산 함입되어 리튬이온이 약한 배위 구조를 가질 수 있도록 공간 전하 영역이 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 안정적으로 유도될 수 있다.
일 구현예로, 단이온 전도성 무기입자의 평균입경은 200 내지 1000 nm, 구체적으로 200 내지 800 nm, 보다 구체적으로 300 내지 600 nm일 수 있다.
일 실시예에 있어, 고분자 메트릭스 : 단이온 전도성 무기입자의 중량비는 1 : 2 내지 8, 구체적으로 1 : 3 내지 6일 수 있다.
단이온 전도성 무기입자의 평균입경 및 고분자 메트릭스 : 단이온 전도성 무기입자의 중량비가 전술한 범위를 만족함에 따라 인접한 단이온 전도성 무기입자간 상호 접촉되어 나노미터 스케일의 공극을 포함하는 네트워크를 이룰 수 있고, 이에 따라 앞서 상술한 바와 같이 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 안정적으로 공간 전하 영역이 유도되어 리튬이온이 약한 배위 구조를 가질 수 있는 것이다.
이 때, 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 유도된 공간 전하 영역에서 약한 배위 구조를 갖는 리튬이온은 리튬염, 용매 및 불소계 첨가제를 포함하는 액상 전해액으로부터 기인한 용매화된 리튬이온으로, 공간 전하 영역에서 즉 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 리튬이온은 고밀도로 축적되어 존재할 수 있다.
액상 전해액에 포함된 리튬염은 비수계 전해액에 포함되는 당업계에 공지된 리튬염이라면 제한없이 포함될 수 있고, 비 한정적인 일 예로, 리튬염은 LiClO4, LiPF6, LiFSI, LiTNFSI, LiTFSI, LiCl, LiBr, LiI, LiNO3, LiBF4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi 등일 수 있으나 본 발명이 이에 한정되는 것은 아니다.
용매는 에틸렌 카보네이트(ethyl carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 부틸렌 카보네이트(butylene carbonate, BC), 비닐렌 카보네이트(vinylene carbonate, VC), 디메틸 카보네이트(dimethyl carbonate, DMC), γ-부티로락톤(γ-butyrolactone), 디메톡시에탄(dimethoxyethane, DME), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트(dipropyl carbonate, DPC), 메틸프로필 카보네이트(methylpropyl carbonate, MPC), 에틸프로필 카보네이트(ethylpropyl carbonate, EPC), 에틸메틸 카보네이트(ethylmethyl carbonate, EMC) 및 이들의 혼합물 중에서 선택되는 어느 하나 이상일 수 있다.
불소계 첨가제는 플루오로에틸렌 카보네이트(FEC), 1,1,2,2-테트라플루오로에틸-2,2,2,3-테트라플루오로프로필 에테르(TTE), 비스(2,2,2-트리플루오로에틸) 에테르(BTFE), 1,1,2,2-테트라플루오로에틸-2,2,2-트리플루오로에틸 에테르(TFTFE), 메톡시노나플루오로부탄(MOFB) 및 에톡시노나플루오로부탄(EOFB)으로 이루어진 군에서 선택되는 어느 하나이상 일 수 있다.
전술한 액상 전해액으로부터 용매화된 리튬이온은 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 유도된 공간 전하 영역에서 약한 배위 구조를 가질 수 있다.
여기서, 약한 배위 구조는 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자와의 리튬이온의 배위 수가 2 이하를 만족하는 것을 의미할 수 있다. 즉, 유도된 공간 전하 영역에서 리튬이온은 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자와의 배위 수가 2 이하로 매우 약한 배위 구조를 가질 수 있다.
구체적 일 예로, 상기 배위 수는 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자와 각각 배위된 리튬이온의 총 배위 수를 의미하는 것일 수 있으며, 구체적으로 배위 수는 2 이하, 1.5 이하, 1.0 이하, 0.9 이하, 0.8 이하, 0.7 이하, 0.6 이하일 수 있고, 실질적으로 0.01 이상, 보다 실질적으로 0.1 이상일 수 있다.
공간 전하 영역에서 리튬이온은 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자와 전술한 바와 같이 약하게 배위된 구조를 가지는 반면에 단이온 전도성 무기입자와는 상대적으로 강하게 배위될 수 있다.
일 예로, 단이온 전도성 무기입자와 리튬이온의 배위 수는 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상, 1.5 이상, 1.6 이상, 1.7 이상일 수 있고, 상한 값이 제한되는 것은 아니나 구체적으로 5이하, 보다 구체적으로 3이하일 수 있다.
이 때, 배위수는 방사 분포 함수(radial distribution function)로부터 하기 계산식 1을 통해 산출된 값일 수 있다.
(계산식 1)
Figure PCTKR2023001727-appb-img-000005
계산식 1에서 N은 r에 따른 배위 수이고,
Figure PCTKR2023001727-appb-img-000006
는 단위 부피당 배위 분자의 개수 (수 밀도) 이며, r 및 r’은 리튬 이온으로부터의 거리이며,
Figure PCTKR2023001727-appb-img-000007
은 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 식
Figure PCTKR2023001727-appb-img-000008
로 표현된 방사 분포 함수이다.
일 구체예로, 전술한 약한 배위 구조에 의해 상기 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자의 환원적 분해가 억제될 수 있다.
구체적으로, 리튬이온이 이동할 경우 약한 배위 구조에 의해 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자의 이동은 제한하여 부반응에 의한 이들의 분해가 억제될 수 있는 것이다. 이와 더불어, 단이온 전도성 무기입자와 상대적으로 강하게 배위된 리튬이온은 호핑에 의해 이동성이 향상될 수 있고, 전술한 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자의 환원적 분해가 억제됨에 따라 이동성이 향상된 리튬이온의 가역성 또한 향상될 수 있는 장점이 있다.
일 구현예로, 단이온 전도성 유무기 복합 겔의 이온 전도도는 1 내지 5 mS/cm, 구체적으로 1.5 내지 4 mS/cm, 보다 구체적으로 3 내지 4 mS/cm일 수 있다.
이 때, 이온의 전도는 단이온 전도성 유무기 복합 겔에 포함된 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면과 수평한 방향 즉, 상기 계면을 따라 진행되는 것일 수 있다.
일 실시예에 있어, 단이온 전도성 유무기 복합 겔은 리튬 함유 전극 상에 위치하여 보호막을 형성할 수 있다.
여기서 리튬 함유 전극이라 함은 리튬금속이 함유된 전극 또는 리튬금속 자체로 이루어진 전극을 의미할 수 있다.
리튬 함유 전극 상에 상술한 단이온 전도성 유무기 복합 겔이 위치하여 보호막을 형성함에 따라 리튬 함유 전극 표면에서의 리튬 덴드라이트 형성을 효과적을 방지할 수 있을 뿐 아니라 리튬이온의 이온 전도도 특성은 물론 가역성도 향상되어 리튬 함유 전극의 안정성 및 내구성을 현저히 향상시킬 수 있는 장점이 있다.
본 발명은 다른 일 양태로 전극 구조체를 제공한다.
본 발명에 따른 전극 구조체는 리튬금속; 및 전술한 단이온 전도성 유무기 복합 겔을 포함하는 보호막;을 포함할 수 있다. 이 때, 보호막은 리튬금속 상에 위치하되, 리튬금속의 일부 면 또는 전체 면에 형성된 것일 수 있다.
일 실시예로, 보호막의 두께는 1 내지 20 μm, 구체적으로 2 내지 10 μm, 보다 구체적으로 5 내지 10 μm일 수 있다.
리튬금속의 안정성 및 내구성 향상과 동시에 전극구조체로 적용되어 리튬이온의 이동성을 고려하는 측면에서 보호막의 두께는 전술한 범위를 만족하는 것이 유리하다.
본 발명은 또 다른 일 양태로 전술한 전극 구조체를 포함하는 리튬이차전지를 제공한다.
여기서 리튬이차전지는 리튬금속을 전극으로 포함하는 이차전지라면 제한없이 포함될 수 있고, 일 예로, 리튬 황 전지, 리튬 공기 전지, 리튬 금속전지 등일 수 있다.
리튬이차전지가 리튬금속 및 전술한 단이온 전도성 유무기 복합 겔을 포함하는 보호막을 포함하는 전극 구조체를 포함함에 따라 종래와 달리 충방전 사이클 동안 애노드 표면에서의 리튬 덴드라이트 형성, 리튬 이온의 비가역적 거동에 따른 두꺼운 부산물 층(byproduct layer) 형성, 이온 전도성 저하, 전해액 분해 등과 같은 화학적 및/또는 전기화학적 불안정성을 해결할 수 있는 장점이 있다.
본 발명은 또 다른 일 양태로 이차전지를 제공한다.
본 발명에 따른 이차전지는 리튬금속 및 상기 리튬금속 상에 위치하는 전술한 단이온 전도성 유무기 복합 겔을 보호막으로 포함하는 애노드; 캐소드; 상기 애노드 및 캐소드 사이에 위치하는 분리막; 및 불소계 첨가제가 함유된 액상의 전해액;을 포함한다.
본 발명에 따른 이차전지가 리튬금속 및 상기 리튬금속 상에 위치하는 전술한 단이온 전도성 유무기 복합 겔을 보호막으로 포함하는 애노드를 포함함에 따라 애노드 표면에서의 리튬 덴드라이트 형성을 효과적으로 억제시켜 애노드의 안정성 및 내구성 향상뿐 아니라 전해액의 분해 또한 억제시켜 이차전지의 사이클 특성을 현저히 향상시킬 수 있는 장점이 있다.
일반적으로 이차전지에 포함된 액상의 전해액은 용매와 리튬염을 포함한다. 이차전지의 충방전 과정에서 전해액에 포함된 용매화된 리튬염의 음이온 및/또는 용매 분자가 분해되어 애노드 전극 상에 두꺼운 부산물 층(byproduct layer) 형성하고, 리튬이온의 가역성을 현저히 떨어뜨려 이차전지의 성능을 저하시키는 문제가 있다.
특히, 리튬염의 음이온이 분해되는 현상에 의해 최소한계량의 전해질(Lean electrolyte) 조건에서 이차전지의 내구성과 에너지 밀도를 향상시키는데 한계가 있다.
반면에, 본 발명의 일 구현예에 따른 이차전지는 충방전 과정에서 전해액에 포함된 불소계 첨가제가 분해되어 애노드 표면 상에 고체 전해질 계면(SEI) 막이 형성될 수 있다. 이 때, 애노드에 포함된 단이온 전도성 유무기 복합 겔에 의해 전해액에 포함된 리튬염 음이온 및/또는 용매 분자의 분해는 효과적으로 억제되어 최소한계량의 전해질 조건에서도 이차전지의 사이클 특성을 현저히 향상시킬 수 있는 것이다.
일 구현예에 있어, 이차전지가 전지 용량 대비 전해액 주입량인 E/C ratio가 2.15gAh-1일 경우, 150 충방전 사이클에서 상기 이차전지의 용량 유지율은 90% 이상, 91% 이상, 92% 이상, 93% 이상, 95% 이상, 96% 이상일 수 있고, 구체적으로 99.9% 이하, 보다 구체적으로 99% 이하일 수 있다.
전해액 주입량이 매우 적은 최소한계량의 전해질 조건에서도 본 발명의 이차전지는 리튬금속 및 상기 리튬금속 상에 위치하는 전술한 단이온 전도성 유무기 복합 겔을 보호막으로 포함하는 애노드를 포함함에 따라 현저히 우수한 이차전지의 성능을 나타낼 수 있는 것이다.
일 구체예로, 전해액에 함유된 불소계 첨가제는 플루오로에틸렌 카보네이트(FEC), 1,1,2,2-테트라플루오로에틸-2,2,2,3-테트라플루오로프로필 에테르(TTE), 비스(2,2,2-트리플루오로에틸) 에테르(BTFE), 1,1,2,2-테트라플루오로에틸-2,2,2-트리플루오로에틸 에테르(TFTFE), 메톡시노나플루오로부탄(MOFB) 및 에톡시노나플루오로부탄(EOFB)으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.
이 때, 전해액에 포함되는 리튬염 및 용매는 전술한 바와 동일 내지 유사한 것으로 상세한 설명은 생략한다.
일 구체예로, 애노드에 포함되는 리튬금속의 두께는 10 내지 100 μm, 구체적으로 20 내지 80 μm, 보다 구체적으로 30 내지 60 μm일 수 있다.
애노드에 단이온 전도성 유무기 복합 겔이 포함됨에 따라 종래와 달리 애노드에 포함되는 리튬금속의 두께가 전술한 범위를 만족함에도 리튬이온의 가역성 향상에 따라 본 발명의 일 구현예에 따른 이차전지가 우수한 체적 에너지 밀도를 가질 수 있는 장점이 있다.
전해액에 포함된 리튬염 음이온의 분해는 캐소드 표면에서도 일어날 수 있다. 그러나, 전술한 바와 같이, 애노드에 포함된 단이온 전도성 유무기 복합 겔에 의해 분해가 억제된 리튬염 음이온 및/또는 용매 분자는 캐소드 전해질 계면(cathode electrolyte interface, CEI)막 형성에 기여하여 캐소드의 내구성 또한 향상시킬 수 있는 장점이 있다.
일 구현예에 있어, 이차전지에 포함되는 캐소드는 당업계에 공지된 물질이라면 제한없이 사용될 수 있다. 비 한정적인 예로, 캐소드는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-z CozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있으나 이에 한정되는 것은 아니다.
일 예로, 본 발명의 일 구현예에 따른 이차전지에 포함되는 분리막은 특별히 그 재질을 한정하지 않으며, 애노드와 캐소드 사이에 위치하여 애노드 및 캐소드를 물리적으로 분리하고, 전해액 및 이온 투과능을 갖는 것으로서, 통상적으로 전기화학소자에서 분리막으로 사용되는 것이라면 제한 없이 사용 가능하다.
구체적 일 예로, 분리막은 폴리올레핀계 다공성 막일 수 있고, 폴리올레핀계 다공성 막은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고 분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막일 수 있으나 이에 제한되는 것은 아니다.
이하, 실시예를 통해 본 발명에 따른 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지에 대해 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한, 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
(실시예 1)
단이온 전도성 무기 입자로 평균 입경이 500 nm인 Li6.4La3Zr1.4Ta0.6O12 나노입자(AmpceraTM, 이하 LLZTO) 및 Li(STFSI)(Lithium(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide, synthesized by KRICT, Korea) 단량체를 에틸렌 카보네이트(ethylene carbonate, EC) 및 디에틸카보네이트(diethyl carbonate, DEC)가 혼합된 혼합용매 EC/DEC(1:1, v/v, Sigma-Aldrich)에 넣고 교반하여 혼합물을 제조하였다.
이후, EO(ethylene oxide) : Li의 몰비가 1 : 1이 되도록 가교제인 PEGDA (Polyethylene glycol-diacrylate)-575(Mn: 575, Sigma-Aldrich)를 제조된 혼합물에 교반하면서 첨가하여 슬러리를 제조하였다.
제조된 슬러리를 40 μm 두께의 Li 포일 상에 닥터 블레이드를 이용하여 도포한 다음 60 ℃의 온도에서 10시간 동안 열처리하여 Li(STFSI)와 PEGDA 중합된 P(STFSI)Li-co-PEGDA 중합체(single ion conducting polymer, 이하 SIP) 내에 LLZTO 즉, 단이온 전도성 세라믹(single ion conducting ceramic, 이하 SIC)이 함입된 유무기 복합막을 형성시켰다.
이어서, 유무기 복합막이 형성된 Li 포일을 DME(1,2-dimethoxyethane) 용매에 1.5 M의 LiFSI(lithium bis(fluorosulfonyl)imide)가 용해되고, 50wt%의 TFTFE(1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether) 첨가된 에테르 액상 전해질에 유무기 복합막이 완전히 부풀때까지(fully swollen) 침지시켜 유무기 복합막에 액상 전해질이 함유된 단이온 전도성 유무기 복합 겔을 제조하였다.
이 때, 단이온 전도성 유무기 복합 겔에 포함된 SIC : SIP의 중량비는 4 : 1이었다.
(실시예 2)
실시예 1과 동일하게 실시하되, 단이온 전도성 유무기 복합 겔에 포함된 SIC : SIP의 중량비가 1 : 1이 되도록 한 것을 제외하고는 동일하게 실시하였다.
(실시예 3)
실시예 1과 동일하게 실시하되, 단이온 전도성 유무기 복합 겔에 포함된 SIC : SIP의 중량비가 9 : 1로 포함되도록 한 것을 제외하고는 동일하게 실시하였다.
(실시예 4)
실시예 1과 동일하게 실시하되, 유무기 복합막이 형성된 Li 포일을 EC/DEC(1:1, v/v) 혼합용매에 1.0 M의 LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)가 용해되고, 10wt%의 FEC(fluoroethylene carbonate) 및 3wt%의 LiBOB(lithium bis(oxalato)borate) 첨가된 카보네이트 액상 전해질에 침지시킨 것을 제외하고는 동일하게 실시하였다.
(비교예 1)
실시예 1과 동일하게 실시하되, 단이온 전도성 무기 입자로 평균 입경이 5 μm인 LLZTO를 사용한 것을 제외하고는 동일하게 실시하였다.
(비교예 2)
실시예 1과 동일하게 실시하되, 단이온 전도성 무기 입자를 사용하지 않고, Li(STFSI)와 PEGDA 중합된 P(STFSI)Li-co-PEGDA 중합체막(SIP)을 형성시킨 것을 제외하고는 동일하게 실시하였다.
(실험예 1) 유무기 복합막 및 단이온 전도성 유무기 복합 겔의 특성 분석
실시예 1 내지 실시예 3에 따라 제조된 유무기 복합막의 모폴로지를 주사전자현미경(SEM)을 이용하여 비교 분석하였다.
도 1a 및 도 1b는 각각 실시예 2의 상면(top) SEM 이미지 및 단면(cross-section) SEM 이미지를 도시한 도면이고, 도 1c 및 도 1d는 각각 실시예 1의 상면(top) SEM 이미지 및 단면(cross-section) SEM 이미지를 도시한 도면이며, 도 1e 및 도 1f는 각각 실시예 3의 상면(top) SEM 이미지 및 단면(cross-section) SEM 이미지를 도시한 도면이다.
도 1a 및 도 1b를 참조하면, 실시예 2의 경우에 SIP 매트릭스 내에서 SIC인 LLZTO 입자들이 불연속적으로 분산된 것을 알 수 있다. 이로부터 Li+ 이온은 연속된 상 구조를 갖는 SIP를 통해 이동하는 것이 우세할 것으로 판단할 수 있다.
반면에, 도 1c 내지 도 1f를 살펴보면, 실시예 1 및 실시예 3의 경우는 LLZTO 입자들이 상호 접촉되어 존재하는 것이 관찰되었다. 다만, 실시예 3의 경우에 마이크로 크기의 공극이 공존하는 것이 관찰되었다.
이러한 모폴로지 특성을 갖는 유무기 복합막이 포함된 단이온 전도성 유무기 복합 겔 및 단이온 전도성 유무기 복합 겔에 포함된 SIC 평균 입경의 영향을 보다 면밀히 관찰하기 위해 리튬 대칭 셀(Li symmetric cell) 제작 후 전지 성능을 평가하였다.
이 때, 전지 성능 평가는 에테르 액상 전해질을 이용하여 전류밀도 5mA/cm2 및 용량 3mAh/cm2의 조건 하에서 수행하였다.
도 2a 및 도 2b는 각각 실시예 1 내지 실시예 3의 단이온 전도성 유무기 복합 겔을 포함하는 리튬 대칭 셀의 전지 성능 평가 결과 및 실시예 1과 비교예 1의 단이온 전도성 유무기 복합 겔을 포함하는 리튬 대칭 셀의 전지 성능 평가를 비교 도시한 도면이다.
도 2a를 참조하면, 실시예 2 및 실시예 3은 각각 30 시간 및 220 시간 후에 내부 단락 거동을 보인 반면에, 실시예 1의 경우는 500 시간 이후에도 충방전 사이클 특성이 안정적으로 나타나는 것을 알 수 있다.
또한, 도 2b에 나타난 바와 같이, 평균 입경이 5 μm인 LLZTO를 단이온 전도성 무기입자로 포함할 경우(비교예 1) 226시간 후에 과전압이 갑자기 증가하여 충방전 사이클 특성이 현저히 열위한 것이 관찰되었다.
도 3a, 도 3b 및 도 3c는 각각 실시예 1의 단면 SEM 이미지, 고배율 FIB(focused ion beam) SEM 이미지 및 STEM(scanning transmission electron microscopy)-EDX(energy dispersive spectroscopy) 분석 결과를 도시한 도면이다.
도 3a 및 도 3 b에서 알 수 있듯이, SIC(LLZTO) 입자들이 서로 접촉되어 네트워크를 이루면서 SIP 매트릭스 내에 함입된 것을 확인하였고, SIC 및 SIP를 포함한 유무기 복합막의 두께는 6 내지 7 μm인 것을 확인하였다.
또한, 도 3c에 도시된 바와 같이 SIC로부터 유래된 La 및 Zr EDX 면적이 SIP로부터 유래된 F 및 S EDX 면적 내에 위치하는 것으로부터 SIP가 SIC 입자를 둘러싸고 있는 것을 알 수 있다.
이 때, SIC 및 SIP 계면에서 Li+ 축적층과 Li+ 공핍층의 공간 전하 영역이 형성될 수 있고, 이를 공간분해 전자 에너지 손실 분광법(SR-EELS)을 이용하여 직접적으로 확인하였다.
도 4는 Li-K edge (55-70 eV) 및 La-M edge (100-140 eV) 에너지 손실 영역에서 SIC 및 SIP 계면을 가로지르도록 SIP부터 SIC까지 스캔닝하여 기록된 SR-EELS 이미지를 도시한 도면이다.
도 4를 참조하면, Li-K edge 신호는 스캔된 영역 전반에 거쳐 검출되고, La-M edge 신호는 SIC 및 SIP 계면의 존재를 나타내는 특정 영역에서 나타나기 시작한 것을 알 수 있다. 또한, SIC 및 SIP 계면을 기준으로 SIP 영역부분에서 상대적으로 강한 Li-K edge 신호가 나타나고, SIC 영역부분에서 상대적으로 약한 Li-K edge 신호가 나타나는 것으로부터 공간 전하 영역이 형성된 것을 알 수 있다. 이러한 공간 전하 영역의 형성은 SIC 및 SIP에 포함된 Li+ 이온의 농도 차이에 의한 것이다.
추가적으로 실시예1, 실시예 4, 비교예 1 및 비교예 2와 더불어 에테르 액상 전해질과 카보네이트 액상 전해질에서의 온도에 따른 이온 전도성 특성을 비교 분석하였고, 그 결과를 도 5a 및 하기 표 1에 나타내었다.
(표 1)
Figure PCTKR2023001727-appb-img-000009
표 1에 나타난 바와 같이, 실시예 1 및 실시예 4의 이온 전도성 특성은 침지에 사용된 각각의 액상 전해질과 유사한 수준으로 나타난 반면에 비교예 1 및 비교예 2(SIP)의 경우에는 현저히 열위하게 나타나는 것을 알 수 있다. 또한, SIC의 경우는 30 ℃에서의 이온 전도도가 약 0.04 내지 0.32 mS/cm 수준으로 알려져 있는데 실시예 1 및 실시예 4의 우수한 이온 전도도 특성이 SIC 및 SIP 각각의 특성에 의해 나타나는 것이 아님을 알 수 있다.
추가적으로 도 5a에 도시된 바와 같이 실시예 1 및 실시예 4의 활성 에너지(Ea)는 온도에 따라 선형 온도 의존성을 보이는 것을 알 수 있고, 실시예 1 및 실시예 4의 Ea는 각각 0.15 eV 및 0.13 eV인 것을 확인하였다. 이러한 특성은 순수 LLZTO 상의 활성에너지(약 0.3 eV)의 절반수준임을 알 수 있다.
이와 같이, 실시예 1 및 실시예 4의 이온 전도도 특성과 활성 에너지를 고려해 볼 때, 단이온 전도성 유무기 복합 겔이 포함된 실시예 1 및 실시예 4의 이온 전도 기작은 종래의 액상, 폴리머 또는 세라믹 전해질 특성과는 상이함을 알 수 있다.
이러한 이온 전도도 특성을 보다 면밀히 분석하기 위해 분자 동역학(molecular dynamics, MD) 시뮬레이션을 수행하였다.
이 때, SIC/액상 전해질 계면과 SIC/SIP 계면 구조를 모델링하여 비교하였고, 액상 전해질과 SIP의 Li+ 개수 밀도(number density)는 0.903 Li+ nm-3 (1.5 M)로 동일하게 적용하였다.
도 5b 및 도 5c는 각각 SIC/액상 전해질 계면 및 SIC/SIP 계면에서의 Li+, 용매 분자(DME) 및 리튬염의 음이온(FSI-)의 개수 밀도 프로파일을 도시한 도면이다. 이 때, Z 축의 0은 SIC에 포함된 La 원자층의 최외측을 의미하고, 도 5b 및 도 5c에서 우측의 이미지는 MD 시뮬레이션에 기반한 이온들의 공간 정렬을 모식적으로 나타낸 것이다.
도 5b 및 도 5c를 참조하면, 첫번째 층인 Li+ 축적층(L1)은 SIC/액상 전해질 계면 및 SIC/SIP 계면 모두 각각의 계면에 근접한 액상 전해질 또는 SIP 영역에서 형성되는 것을 알 수 있다. 이는 전술한 바와 같이, Li+ 농도 차이에 의해 Li+가 SIC로부터 계면을 가로질러 액상 전해질 또는 SIP 영역으로 이동되었기 때문이다.
그러나 놀랍게도, SIC/SIP 계면의 경우에 L1에서의 Li+개수 밀도가 28.5 Li+ nm-3로 SIC/액상 전해질 계면(7.44 Li+ nm-3) 대비 현저히 높은 것을 알 수 있고, 이로부터 계면에서의 공간 전하의 양 증가에 SIP가 중요한 역할을 하는 것을 알 수 있다.
또한, 두번째 층(L2)에서는 주로 DME 분자가 위치하는 것을 알 수 있는데 이 때, SIC/SIP 계면의 경우 음이온 개수 밀도가 1.12 nm-3로 SIC/액상 전해질 계면(4.05 nm-3) 대비 현저히 낮은 것을 알 수 있다.
도 5b 및 도 5c의 우측에 도시한 각각의 모식도를 참조하면, SIC/액상 전해질 계면의 경우에는 Li+ 와 음이온(FSI-)이 액상 전해질 내에서 이동성을 가지기 때문에 확산 이중층 구조(diffuse double layer structure)가 형성된 반면에 SIC/SIP 계면의 경우에는 음이온의 비이동성에 의해 Li+ 분자는 L1으로 압착되어 매우 치밀한 Li+ 축적층을 형성하는 것을 알 수 있다.
추가적으로 Li+의 이동도를 확인하기 위해 각각 SIC/액상 전해질 계면 및 SIC/SIP 계면에서의 Li+에 대한 평균 제곱 변위(Mean square displacement, MSD) 계산을 수행하였다.
이 때, 시간에 따른 MSD 계산은 Forcite in Materials Studio (Accerlrys Inc.)에 내장된 분석기를 이용하였고, 각 공간 방향에 대한 N개 원자(분자)의 MSD는 하기 계산식 2를 통해 계산하였으며, 액상 전해질, SIP 및 벌크 LLZO에서의 Li+에 대한 MSD도 함께 계산하여 비교하였다.
(계산식 2)
Figure PCTKR2023001727-appb-img-000010
도 6a 및 도 6b는 각각 SIC/액상 전해질 계면 및 SIC/SIP 계면에서의 시간에 따른 Li+의 MSD 변화를 도시한 도면이다.
도 6a 및 도 6b를 참조하면, SIC/SIP 계면의 경우 Li+의 이동도와 관계된 MSD 증가율이 계면과 수직인 방향 또는 SIP 대비 계면과 수평인 방향에서 현저히 높은 것을 알 수 있고, 액상 전해질에서의 MSD 증가율 대비 유사한 수준인 것을 알 수 있다. 이 때, 액상 전해질 및 SIC/SIP 계면에서의 Li+ 확산계수(diffusivity)가 각각 3.10x1011 m2/s 1.5x1011 m2/s인 것을 확인하였다.
나아가, 이러한 Li+의 특이한 거동을 보다 상세히 이해하기 위해 방사 분포 함수(radial distribution function)로부터 Li+의 배위 구조(coordination structure)를 분석하였다.
이 때, 배위 구조 분석을 위한 배위수를 방사 분포 함수(radial distribution function)로부터 하기 계산식 1을 통해 산출하였다.
(계산식 1)
Figure PCTKR2023001727-appb-img-000011
계산식 1에서 N은 r에 따른 배위 수이고,
Figure PCTKR2023001727-appb-img-000012
는 단위 부피당 배위 분자의 개수 (수 밀도) 이며, r 및 r’은 리튬 이온으로부터의 거리이며,
Figure PCTKR2023001727-appb-img-000013
은 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 식
Figure PCTKR2023001727-appb-img-000014
로 표현된 방사 분포 함수이다.
액상전해질, SIC/액상 전해질 계면, SIP 및 SIC/SIP 계면에서의 총 배위수(N)에 대하여 각각 음이온에 의한 배위수(Nanion), DME의 산소원자에 의한 배위수(NDME), PEGDA에 포함된 PEO에 의한 배위수(NPEO) 및 LLZO에 의한 배위수(NLLZO)의 기여도를 확인하였고 그 결과를 하기 표 2에 정리하였다.
(표 2)
Figure PCTKR2023001727-appb-img-000015
표 2를 참조하면, SIC/SIP 계면에서 Li+는 즉, 치밀한 Li+ 축적층에서의 Li+는 용매 및 고분자에 의해 약하게 배위된 상태임을 알 수 있다. 이로부터 SIC/SIP 계면에서 Li+ 전도는 리튬금속 전극 표면으로 음이온, 고분자 및 용매 분자의 끌림(drag)을 동반하지 않음을 알 수 있고, SIC/SIP 계면에서 SIC로부터 기인한 약 2개의 배위 산소 원자가 Li+의 전도를 위한 호핑(hopping) 사이트의 역할을 수행할 것으로 판단된다.
(실험예 2) 전해질의 환원적 분해 및 고체 전해질 계면(SEI) 막 형성 거동 분석
Li 및 Cu로 구성된 Li||Cu 반쪽전지에 대해 선형주사전위법((Linear sweep voltammetry, LSV)을 통해 전해질의 환원적 분해 거동을 분석하였다.
이 때, 전해질로 에테르 액상 전해질 및 카보네이트 액상 전해질을 각각 적용하여 Li 전극에 단이온 전도성 유무기 복합 겔의 구비 유무에 따른 전해질의 환원적 분해 거동을 비교하였다.
도 7a 및 도 7b는 각각 에테르 액상 전해질 및 카보네이트 액상 전해질이 적용된 Li||Cu 반쪽전지와 Li-SCL(실시예 1 및 실시예 4)||Cu 반쪽전지의 LSV 커브를 도시한 도면이다.
도 7a 및 도 7b에 나타난 바와 같이, 에테르 액상 전해질 및 카보네이트 액상 전해질 모두에서 Li 전극에 단이온 전도성 유무기 복합 겔(실시예 1 및 실시예 4)이 구비된 경우 1.0 V 미만에서 전해질의 분해가 크게 억제되는 것을 알 수 있다. 또한, 단이온 전도성 유무기 복합 겔에 포함된 LLZTO 대신 비전도성의 Al2O3 SIP를 이용하여 제조된 유무기 복합 겔을 적용 시 전해질 분해 억제 효과는 나타나지 않는 것을 확인하였다.
도 8a 및 도 8b는 X선 광전자 분광법(XPS)을 이용하여 측정된 각각 에테르 액상 전해질 및 카보네이트 액상 전해질이 적용된 Li||Cu 반쪽전지와 Li-SCL(실시예 1 및 실시예 4)||Cu 반쪽전지에 형성된 고체 전해질 계면(SEI) 막의 F1s와 S2p XPS 스펙트럼을 도시한 도면이다.
도 8a를 참조하면, TFTFE의 환원적 분해에 의해 나타나는 CF3 피크(689 eV, F1s)는 Li-SCL(실시예 1)||Cu 반쪽전지에서만 나타나는 것을 알 수 있고, Li||Cu 반쪽전지에서 나타나는 Li-S 피크는 실질적으로 나타나지 않는 것을 알 수 있다. 이로부터 Li-SCL(실시예 1)||Cu 반쪽전지의 경우에는 SEI 막 형성에 TFTFE의 분해에 의한 기여 정도가 증가하여 전해질에 포함된 리튬염 음이온의 분해를 효과적으로 억제시키는 것을 알 수 있다.
이러한 현상은 카보네이트 액상 전해질이 적용된 경우에도 동일하게 나타나는 것을 확인하였다. 도 8b를 참조하면, Li||Cu 반쪽전지에서는 리튬염(LiTFSI)에 포함된 음이온(TFSI-)의 분해로부터 기인한 CF3 피크 및 Li-S 피크가 관찰된 반면에 Li-SCL(실시예4)||Cu 반쪽전지에서는 TFSI-의 분해로부터 기인한 부산물이 포함되지 않는 것이 관찰되었다.
이와 같이, 단이온 전도성 유무기 복합 겔은 전해질의 환원적 분해를 효과적으로 억제시키는 것이 확인되었다.
이어서, Li||Li 대칭셀 및 Li-SCL(실시예 1 및 실시예 4)||SCL(실시예 1 및 실시예 4)-Li 대칭셀의 성능을 각각 에테르 액상 전해질 및 카보네이트 액상 전해질을 적용하여 평가하였다.
도 9a 및 도 9b는 각각 에테르 액상 전해질이 적용된 Li||Li 대칭셀과 Li-SCL(실시예 1)||SCL(실시예 1)-Li 대칭셀의 성능 평가 결과 및 리튬금속 상에 전착된(plated) 리튬의 SEM 이미지를 도시한 도면이고, 도 9c 및 도 9d는 각각 카보네이트 액상 전해질이 적용된 Li||Li 대칭셀과 Li-SCL(실시예 4)||SCL(실시예 4)-Li 대칭셀의 성능 평가 결과 및 리튬금속 상에 전착된(plated) 리튬의 SEM 이미지를 도시한 도면이다.
도 9a 및 도 9c에서 알 수 있듯이, 리튬금속 상에 단이온 전도성 유무기 복합 겔이 구비됨에 따라 전지의 사이클 특성이 현저히 향상된 것을 확인하였다. 특히, 에테르 액상 전해질이 적용된 경우 Li 금속으로만 구성된 Li||Li 대칭셀은 140 시간에서 전지의 과전압이 갑자기 증가하는 것이 관찰된 반면에 리튬금속 상에 실시예 1에 따른 단이온 전도성 유무기 복합 겔이 구비된 Li-SCL(실시예 1)||SCL(실시예 1)-Li 대칭셀은 500 시간 이상 사이클 특성이 안정적으로 나타나는 것이 관찰되었다.
또한, 리튬금속 상에 전착된 리튬의 모폴로지 특성은 도 9b 및 도 9d에 도시된 바와 같이, Li||Li 대칭셀과 달리 Li-SCL(실시예 1 및 실시예 4)||SCL(실시예 1 및 실시예 4)-Li 대칭셀에서는 상대적으로 큰 크기의 Li 그레인들이 치밀하게 적층되어 현저히 낮은 거칠기로 편평하게 전착된 것이 관찰되었다.
그러나 추가적으로 액상 전해질에 포함된 용매에 따라 Li||Li 대칭셀과 Li-SCL(실시예 1 및 실시예 4)||SCL(실시예 1 및 실시예 4)-Li 대칭셀의 성능 평가를 시험한 결과 전술한 리튬금속 상에 단이온 전도성 유무기 복합 겔이 구비되어 나타나는 긍정적인 효과는 액상 전해질에 불소화 용매가 포함될 경우에만 나타나는 것이 관찰되었다.
도 10a 및 도 10b는 각각 에테르 액상 전해질에 불소화 용매인 TFTFE 포함 유무에 따른 Li||Li 대칭셀과 Li-SCL(실시예 1)||SCL(실시예 1)-Li 대칭셀의 성능 평가 및 카보네이트 액상 전해질에 불소화 용매인 FEC 포함 유무에 따른 Li||Li 대칭셀과 Li-SCL(실시예 4)||SCL(실시예 4)-Li 대칭셀의 성능 평가 결과를 도시한 도면이다.
도 10a 및 도 10b에서 알 수 있듯이, 리튬금속 상에 단이온 전도성 유무기 복합 겔이 구비되어 나타나는 전지의 사이클 특성 향상은 액상 전해질에 불소화 용매가 포함되었을 때 구현되는 것이 관찰되었다.
이로부터, 종래에 알려진 리튬금속 상에 전착되는 리튬의 모폴로지 특성은 리튬금속 상에 위치하는 보호층의 기계적 모듈러스 특성 또는 리튬이온 전이성의 영향보다는 상술한 바와 같이, 단이온 전도성 유무기 복합 겔에 포함된 Li+의 배위 구조와 더불어 액상 전해질에 포함된 불소화 용매에 의해 액상 전해질에 포함된 리튬염 음이온의 환원적 분해를 효과적으로 억제시킴과 동시에 리튬금속 전극 표면으로 용매 분자의 끌림(drag)을 동반하지 않고, SEI 막 구조 형성에 영향을 미치기 때문인 것으로 판단된다.
(실시예 5) 코인형 전지 제조
니켈·코발트·망간(NCM) 계열 캐소드(cathode)에 대한 단이온 전도성 유무기 복합 겔의 효능 평가를 위해 LiNi0.5Mn0.3Co0.2O2 (NCM532) 캐소드(21.47 mg cm-2 areal loading, NCM523 : Super C65 : PVDF=94:3:3), 단이온 전도성 유무기 복합 겔을 포함하는 실시예 4의 애노드 및 PE(Polyethylene) 분리막(Asahi, 19 μm)을 이용하여 카보네이트 액상 전해액과 함께 0.5 C 충전 및 1 C 방전에서 3.0 내지 4.3 V 전압범위의 2032 코인형 완전 전지를 제조하였다.
이 때, 캐소드의 면적 용량은 3.63 mAh/cm2이고, 캐소드 용량 대비 애노드의 용량의 비(N/P ratio)는 2.15였으며, 전지 용량 대비 전해질 주입량(E/C ratio)은 3.5 gAh-1이었다.
도 11은 일 실시예에 따라 제조된 전지의 구조를 모식적으로 나타낸 도면이다.
(비교예 3)
실시예 5와 동일하게 실시하되, 애노드를 단이온 전도성 유무기 복합 겔이 포함되지 않은 리튬금속을 사용한 것을 제외하고는 동일하게 실시하였다.
(실험예 3) 2032 코인형 완전 전지의 성능 평가
도 12는 실시예 5 및 비교예 3의 사이클 특성 결과를 도시한 도면이다.
이 때, 사이클 특성은 25 ℃에서 0.5 C 정전류 - 4.3V 정전압(CC-CV) 충전 및 1.0 C 방전 조건하에 측정하였다.
도 12를 참조하면, 비교예 3의 경우는 알려진 바와 같이, 카보네이트 액상 전해질에서 나타나는 현상과 유사하게 40 사이클 후에 방전 용량이 급격히 저하되는 것이 관찰된 반면에 실시예 5의 경우는 150 사이클 및 250 사이클에서 각각 91 % 및 82 %의 용량 유지율을 나타내 비교예 3 대비 현저히 우수한 사이클 특성을 갖는 것을 확인하였다. 또한, 250 사이클 이후에도 평균 쿨롱 효율(CE)이 99.8% 이상인 것을 확인하였다.
추가적으로 실시예 5의 전지에 대하여 0.2 내지 3.0 C 범위의 다양한 방전속도에서 전지특성을 분석한 결과 비교예 3의 율속 특성(rate capability)과 실질적으로 유사한 것을 확인하였고, 1.0 C rate 에서의 방전 용량 및 면적 용량은 각각 167.3 mAh g-1 및 3.4 mAh cm-2 인 것을 확인하였다.
즉, 실시예 5의 경우는 비교예 3과 실질적으로 동일한 충방전 속도 특성을 보임과 동시에 비교예 3 대비 현저히 우수한 충방전 사이클 특성을 보이는 것을 알 수 있다.
나아가 앞서 확인된 바와 같이, 완전 전지 내에서 충방전 사이클에 따른 전해질의 환원적 분해 거동을 분석하기 위해 1H, 11B, and 19F 핵자기 공명분광법(NMR spectroscopy)을 이용하여 전해질 내의 각 구성 성분의 잔류량을 확인하였고, 그 결과를 도 13에 도시하였다.
도 13에 도시된 바와 같이, 충방전 사이클 이후, 전해질에 포함된 EC 및 DMC의 잔류량은 비교예 3 대비 실시예 5에서 현저히 높은 것을 알 수 있고, 50 사이클 이후에 사이클 진행 전 기준으로 FEC의 잔류량 비교시 실시예 5의 경우는 71.6%로 확인된 반면에 비교예 3의 경우는 6.7%가 잔류하는 것으로 확인되었다. 또한, LiTFSI 및 LiBOB의 잔류량 역시 비교예 3 대비 실시예 5에서 높은 것이 관찰되는데 이로부터 리튬염 음이온의 분해 역시 효과적으로 억제되는 것을 알 수 있다.
도 14a 및 도 14b는 각각 비교예 3 및 실시예 5의 완전충전 및 30사이클 후 완전 방전시킨 후 애노드의 SEM 이미지를 도시한 도면이다.
이 때, 완전충전은 0.2 C로 첫번째 충전에서 수행된 것이고, 30 사이클은 0.5 C 충전 및 1.0 C 방전 사이클로 진행하였다.
도 14a 및 도 14b를 참조하면, 비교예 3의 경우는 첫번째 완전 충전 상태에서 마이크로 크기의 위스커 형상의 Li이 전착된 것이 관찰된 반면에 실시예 5에서는 20 μm 크기의 플랫 형상의 Li이 치밀하게 전착되어 리튬 덴드라이트가 형성되지 않는 것을 알 수 있다. 또한, 실시예 5의 단면 SEM 이미지에서 알 수 있듯이 Li이 18.5 μm의 두께로 매우 치밀하게 40 μm 두께의 리튬금속 상에 전착된 것을 알 수 있다.
30 사이클의 충방전 이후의 SEM 이미지를 살펴보면 비교예 3은 리튬금속 전극의 초기 두께를 기준으로 70%가 사라진 것이 확인된 반면에 실시예 5는 초기 두께 기준 91.5% 수준으로 남아있는 것이 관찰되었고, 120 사이클 이후에도 73% 수준으로 리튬금속 전극이 남아있는 것을 확인하였다.
흥미롭게도 분해가 억제된 전해질의 구성 성분은 리튬금속 전극뿐 아니라 캐소드 전해질 계면(cathode electrolyte interface, CEI)막 형성에 기여하여 캐소드 전극의 내구성 향상에도 영향을 미치는 것이 확인되었다.
이러한 현상을 관찰하기 위해 30 사이클 충방전 이후, 완전 충전된 비교예 3 및 실시예 5의 캐소드에 대하여 XPS 분석을 수행하였다.
도 15a는 비교예 3 및 실시예 5의 캐소드에 대한 C1s, O1s, F1s 및 S2p XPS 스펙트럼을 도시한 도면이다.
도 15a를 참조하면, C1s 및 F1s XPS 스펙트럼에서 실시예 5는 비교예 3 대비 카보네이트 피크(290 eV) 및 LiF 피크(685 eV)의 신호세기가 더 강한 것이 관찰되는데, 이는 BOB에 의한 EC(에틸렌카보네이트)의 개환 중합(ring-opening polymerization)에 의해 형성된 poly(EC) 및 FEC의 산화분해에 의해 형성된 LiF를 포함하는 CEI 막이 실시예 5에서 형성되었기 때문이다.
이와 같이, LiF가 풍부한 CEI 막이 형성된 실시예 5의 캐소드는 도 15a의 O1s 및 F1s XPS 스펙트럼에 나타난 바와 같이 비교예 3 대비 더 강한 신호세기를 보이는 O-NCM 피크(529 eV) 및 PVDF 피크(687 eV)가 나타나는 것을 알 수 있는데 이로부터 실시예 5에 형성된 CEI 막에 의해 캐소드에서 전해질의 분해가 억제되는 것을 알 수 있다.
이와 더불어, 실시예 5는 비교예 3 대비 -CF3 및 S 성분에 대한 피크의 신호 세기는 더 약한 것을 알 수 있는데 이로부터 TFSI-의 산화분해 역시 억제되는 것을 알 수 있다.
도 15b는 본 발명의 일 구현예에 따른 전지 구동에 있어 전해질의 거동을 개략적으로 나타낸 개략도이다. 앞서 상술한 바와 같이, 리튬금속 상에 위치하는 단이온 유무기 복합 겔이 위치함에 따라 전해질에 포함된 EC, FEC 및 LiBOB의 분해를 효과적으로 억제시킬 수 있고, 분해가 억제된 EC, FEC 및 LiBOB는 다시 CEI 막 형성에 기여하여 캐소드 표면에서의 전해질 분해 역시 방지할 수 있는 장점이 있다.
이러한 장점은 최소한계량의 전해질(Lean electrolyte) 리튬 전지에 적용되어 전해질 분해가 효과적으로 억제되기 때문에 리튬 전지의 수명을 현저히 향상시킬 수 있는 것이다.
(실시예 6) 파우치형 전지 제조
단이온 전도성 유무기 복합 겔을 포함하는 실시예 4의 애노드를 40 mm x 60 mm 크기로 절단하고, 30 mm x 50 mm 크기의 NMC 532를 캐소드로 하여 애노드, 분리막(PE, Asahi, 19 μm) 및 캐소드를 적층시킨 후 알루미늄 파우치 팩에 패킹한 다음 EC/DEC(1:1, v/v) 혼합용매에 1.0 M의 LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)가 용해되고, 10wt%의 FEC(fluoroethylene carbonate) 및 3wt%의 LiBOB(lithium bis(oxalato)borate) 첨가된 카보네이트 액상 전해질 100 μl (2.15 g Ah-1)을 주입하여 파우치형 전지를 제조하였다.
이 때, 캐소드의 면적 용량은 3.7 mAh/cm2이고, 캐소드 용량 대비 애노드의 용량의 비(N/P ratio)는 2.15였으며, 전지 용량 대비 전해질 주입량(E/C ratio)은 2.15 gAh-1이었다.
(비교예 4)
실시예 6과 동일하게 실시하되, 애노드를 단이온 전도성 유무기 복합 겔이 포함되지 않은 리튬금속을 사용한 것을 제외하고는 동일하게 실시하였다.
(실험예 4) 최소한계량 전해질(Lean electrolyte)이 주입된 파우치형 리튬 전지의 성능 평가
도 16a 및 도 16b는 각각 실시예 6에 따라 제조된 파우치형 전지와 전지 구조의 모식도 및 첫번째 0.1C 충전 및 방전에서의 전압 프로파일을 도시한 도면이다.
도 16b에 나타난 바와 같이, 실시예 6의 비용량(specific capacity)은 0.1C에서 184.3 mAh g-1인 것을 확인하였고, 또한 비에너지 밀도(specific energy density) 및 체적 에너지밀도(volumetric energy density)는 각각 361 Wh/kg 및 1126 Wh/l 인 것을 확인하였다.
도 17은 실시예 6 및 비교예 4의 사이클 특성 결과를 도시한 도면이다.
이 때, 사이클 특성은 25 ℃에서 0.2 C 충전 및 1.0 C 방전 조건하에 측정하였다.
비교예 4의 경우에는 전해질 고갈에 의해 단지 10 사이클 만에 급격한 용량 저하 현상이 나타난 반면에 실시예 6에서는 150 사이클에서 용량 유지율이 97%를 나타내고, 350 사이클에서 82%의 용량 유지율 특성이 나타나는 것을 확인하였다. 이로부터 실시예 6은 전해질 분해가 효과적으로 억제되어 전해질 고갈에 따른 사이클 특성 저하를 현저히 방지할 수 있음을 알 수 있고, 최소한계량 전해질의 리튬금속 전지에서도 사이클 특성이 500 사이클 이후에도 안정적으로 구현될 수 있음을 확인하였다.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (18)

  1. 단이온 전도성 단량체를 포함하는 중합성 조성물로부터 중합된 고분자 메트릭스;
    상기 고분자 메트릭스에 분산 함입되되, 인접하는 입자간 상호 접촉되어 네트워크를 이루는 단이온 전도성 무기입자; 및
    리튬염, 용매 및 불소계 첨가제를 포함하는 액상 전해액으로부터 기인한 용매화된 리튬이온;을 포함하는 단이온 전도성 유무기 복합 겔.
  2. 제1항에 있어서,
    상기 네트워크를 이루는 단이온 전도성 무기입자는 나노미터 스케일의 공극을 포함하는 단이온 전도성 유무기 복합 겔.
  3. 제2항에 있어서,
    상기 공극의 크기는 500 nm 이하인 단이온 전도성 유무기 복합 겔.
  4. 제1항에 있어서,
    상기 고분자 메트릭스 및 단이온 전도성 무기입자 간 계면에서 유도된 공간 전하 영역(space charge region)에서 상기 리튬이온은 약한 배위(week coordination)구조를 가지는 것인 단이온 전도성 유무기 복합 겔.
  5. 제4항에 있어서,
    상기 약한 배위 구조는 상기 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자와의 리튬이온의 배위 수가 2 이하를 만족하는 것인 단이온 전도성 유무기 복합 겔.
  6. 제5항에 있어서,
    상기 약한 배위 구조에 의해 상기 리튬염의 음이온, 용매에 포함된 분자 및 중합된 고분자의 환원적 분해가 억제되는 단이온 전도성 유무기 복합 겔.
  7. 제4항에 있어서,
    상기 단이온 전도성 유무기 복합 겔의 이온 전도도는 1 내지 5 mS/cm인 단이온 전도성 유무기 복합 겔.
  8. 제1항에 있어서,
    상기 단이온 전도성 무기입자의 평균입경은 200 내지 1000 nm인 단이온 전도성 유무기 복합 겔.
  9. 제1항에 있어서,
    상기 단이온 전도성 무기입자는 리튬-알루미늄-게르마늄 인산염(LAGP), 리튬-알루미늄-티나늄 인산염((LATP), 리튬-인 황화물(LPS), 리튬-게르마늄-인 황화물(LGPS), 리튬-란타늄-지르코늄 산화물(LLZO), 리튬-란타늄-탄탈륨-지르코네이트(LLZTO) 및 리튬-란타늄-티타네이트(LLTO) 중에서 선택되는 어느 하나 이상인 단이온 전도성 유무기 복합 겔.
  10. 제1항에 있어서,
    상기 단이온 전도성 단량체는 하기 화학식 1로 표현되는 화합물인 단이온 전도성 유무기 복합 겔.
    (화학식 1)
    Figure PCTKR2023001727-appb-img-000016
    (화학식 1에서 R1 및 R2는 서로 독립적으로 H, F, CH3 또는 CF3를 의미한다)
  11. 제1항에 있어서,
    상기 고분자 메트릭스 : 단이온 전도성 무기입자의 중량비는 1 : 3 내지 6인 단이온 전도성 유무기 복합 겔.
  12. 제1항에 있어서,
    상기 단이온 전도성 유무기 복합 겔은 리튬 함유 전극 상에 위치하여 보호막을 형성하는 단이온 전도성 유무기 복합 겔.
  13. 리튬금속;
    상기 리튬금속 상에 위치하는 제1항 내지 제12항 중 어느 한 항에 따른 단이온 전도성 유무기 복합 겔을 포함하는 보호막;을 포함하는 전극 구조체.
  14. 제13항에 있어서,
    상기 보호막의 두께는 2 내지 10 μm인 전극 구조체.
  15. 제14항의 전극 구조체를 포함하는 리튬이차전지.
  16. 리튬금속 및 상기 리튬금속 상에 위치하는 제1항 내지 제12항 중 어느 한 항에 따른 단이온 전도성 유무기 복합 겔을 보호막으로 포함하는 애노드;
    캐소드;
    상기 애노드 및 캐소드 사이에 위치하는 분리막; 및
    불소계 첨가제가 함유된 액상의 전해액;을 포함하는 이차전지.
  17. 제16항에 있어서,
    상기 불소계 첨가제는 플루오로에틸렌 카보네이트(FEC), 1,1,2,2-테트라플루오로에틸-2,2,2,3-테트라플루오로프로필 에테르(TTE), 비스(2,2,2-트리플루오로에틸) 에테르(BTFE), 1,1,2,2-테트라플루오로에틸-2,2,2-트리플루오로에틸 에테르(TFTFE), 메톡시노나플루오로부탄(MOFB) 및 에톡시노나플루오로부탄(EOFB)으로 이루어진 군에서 선택되는 어느 하나 이상인 이차전지.
  18. 제16항에 있어서,
    상기 이차전지가 전지 용량 대비 전해액 주입량인 E/C ratio가 2.15gAh-1일 경우, 150 충방전 사이클에서 상기 이차전지의 용량 유지율은 95% 이상인 이차전지.
PCT/KR2023/001727 2022-02-11 2023-02-07 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지 WO2023153766A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0018058 2022-02-11
KR20220018058 2022-02-11
KR1020220145729A KR20230121540A (ko) 2022-02-11 2022-11-04 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지
KR10-2022-0145729 2022-11-04

Publications (1)

Publication Number Publication Date
WO2023153766A1 true WO2023153766A1 (ko) 2023-08-17

Family

ID=87564654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001727 WO2023153766A1 (ko) 2022-02-11 2023-02-07 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지

Country Status (1)

Country Link
WO (1) WO2023153766A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122674A (ko) * 2011-04-29 2012-11-07 삼성전자주식회사 리튬 이차 전지용 음극, 그 제조방법 및 이를 채용한 리튬 이차 전지
KR20170126404A (ko) * 2016-05-09 2017-11-17 삼성전자주식회사 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지
KR20210092928A (ko) * 2020-01-17 2021-07-27 한국과학기술원 리튬 금속 전지용 단이온 전도성 유무기 복합보호막의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122674A (ko) * 2011-04-29 2012-11-07 삼성전자주식회사 리튬 이차 전지용 음극, 그 제조방법 및 이를 채용한 리튬 이차 전지
KR20170126404A (ko) * 2016-05-09 2017-11-17 삼성전자주식회사 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지
KR20210092928A (ko) * 2020-01-17 2021-07-27 한국과학기술원 리튬 금속 전지용 단이온 전도성 유무기 복합보호막의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LECHARTIER MARINE, PORCARELLI LUCA, ZHU HAIJIN, FORSYTH MARIA, GUÉGUEN AURÉLIE, CASTRO LAURENT, MECERREYES DAVID: "Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity", MATERIALS ADVANCES, vol. 3, no. 2, 24 January 2022 (2022-01-24), pages 1139 - 1151, XP093083868, DOI: 10.1039/D1MA00857A *
MERRILL LAURA C., CHEN XI CHELSEA, ZHANG YIMAN, FORD HUNTER O., LOU KUN, ZHANG YUBIN, YANG GUANG, WANG YANGYANG, WANG YAN, SCHAEFE: "Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart", ACS APPLIED ENERGY MATERIALS, vol. 3, no. 9, 28 September 2020 (2020-09-28), pages 8871 - 8881, XP055799896, ISSN: 2574-0962, DOI: 10.1021/acsaem.0c01358 *

Similar Documents

Publication Publication Date Title
WO2019004699A1 (ko) 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020149705A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020085726A1 (ko) 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극
WO2023153766A1 (ko) 단이온 전도성 유무기 복합 겔, 이를 포함하는 전극 구조체 및 이를 포함하는 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021091215A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021125478A1 (ko) 이차전지용 전해액 첨가제 및 이를 포함하는 이차전지용 전해액
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2022015072A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023200238A1 (ko) 리튬 이차전지
WO2024136520A1 (ko) 전극조립체, 및 이를 포함하는 리튬 이차전지
WO2024117826A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022080854A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2022260373A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23753114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE