WO2023153282A1 - Inspection device, inspection method, trained model generating device, inspection program, and trained model generating program - Google Patents

Inspection device, inspection method, trained model generating device, inspection program, and trained model generating program Download PDF

Info

Publication number
WO2023153282A1
WO2023153282A1 PCT/JP2023/003157 JP2023003157W WO2023153282A1 WO 2023153282 A1 WO2023153282 A1 WO 2023153282A1 JP 2023003157 W JP2023003157 W JP 2023003157W WO 2023153282 A1 WO2023153282 A1 WO 2023153282A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
measurement
measured
measured value
resistance
Prior art date
Application number
PCT/JP2023/003157
Other languages
French (fr)
Japanese (ja)
Inventor
昌史 小林
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023153282A1 publication Critical patent/WO2023153282A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the present invention relates to an inspection device, an inspection method, a learned model generation device, an inspection program, and a learned model generation program, and for example, to an inspection device for inspecting inductor elements.
  • Patent Document 1 discloses that the AC resistance and inductance of an inductor element to be inspected are measured, the Q value is calculated using the measured values, and the quality of the inductor element is determined based on the calculated Q value.
  • An inspection device is disclosed.
  • Patent Document 1 as a method of measuring the AC resistance of an inductor element, an estimated value of the contact resistance of a measuring probe used in the measurement by the two-terminal method is obtained from the measured value of the AC resistance measured by the two-terminal method. Calculating the AC resistance by subtraction is described. Further, in Patent Document 1, an estimated value of contact resistance is calculated by subtracting a measured value of DC resistance measured by a two-terminal method from a measured value of DC resistance measured by a four-terminal method, and an estimated value of contact resistance is multiplied by a coefficient of 0 or more and 1 or less to correct the measured value of AC resistance.
  • the inspection device disclosed in Patent Document 1 corrects the measured value of the AC resistance on the premise that the relationship between the series resistance and the AC resistance in the inductor element is linear. However, the relationship between the series resistance and the AC resistance of the actual inductor element is unknown. For example, if the relationship is non-linear, there is a possibility that the measured value of the AC resistance will not be properly corrected. . In addition, the inspection device disclosed in Patent Document 1 corrects the measured value of AC resistance using a value obtained by multiplying the estimated value of contact resistance by a coefficient in order to avoid overcorrection of AC resistance. If the coefficients are not appropriate, AC resistance correction may not be performed properly.
  • the present invention has been made in view of the above-described problems, and aims to improve the reliability of inspection of electronic components.
  • An inspection apparatus comprises a first measurement value of the DC resistance of a measurement object measured by a four-terminal method, and a second measurement value of the DC resistance of the measurement object measured by a two-terminal method.
  • a data acquisition unit that acquires a measured value and a third measured value of the AC resistance of the measurement object measured by the two-terminal method, and the third measured value based on the input first measured value and the second measured value a storage unit that stores a trained model for causing a computer to calculate a measured value; and the first measured value that is acquired by the data acquisition unit based on the trained model that is stored in the storage unit. and an estimating unit that calculates an estimated value of the third measured value corresponding to the second measured value.
  • the inspection device According to the inspection device according to the present invention, it is possible to improve the reliability of inspection of electronic components.
  • FIG. 1 is a diagram showing the configuration of a measurement system including a learned model generation device and an inspection device according to an embodiment
  • FIG. It is a figure which shows an example of a structure of the learned model production
  • 6 is a flow chart showing the flow of generation of a trained model by the trained model generating device according to the embodiment; It is a figure which shows an example of a structure of the data-processing control apparatus in the inspection apparatus which concerns on embodiment.
  • FIG. 5 is a flow chart showing the flow of inspection by the inspection apparatus 2 according to the embodiment.
  • An inspection apparatus (2) measures a first measurement value (Rdc4) of the DC resistance of an object to be measured (DUT) measured by the four-terminal method, and by the two-terminal method
  • the third measurement is performed based on the first measurement value and the second measurement value acquired by the data acquisition unit according to the estimated value of the third measurement value.
  • a correction unit (24) may be further provided for performing a correction process of correcting the measured value and outputting the corrected third measured value as the value of the AC resistance of the object to be measured.
  • the learned model includes a first model (g(Rdc4, Rdc2)) representing a resistance component caused by a measurement system using a two-terminal method, and the object to be measured. and a second model (h(Rdc4)) representing a resistance component caused by the first model based on the first measured value and the second measured value obtained by the data obtaining unit.
  • the resistance component (Rc) caused by the measurement system by the two-terminal method is calculated according to the above, and as the correction process, the third measured value is corrected based on the resistance component caused by the measurement system by the two-terminal method.
  • the first model uses the first measured value and the second measured value as explanatory variables, and the resistance component caused by the measurement system according to the two-terminal method.
  • the second model is a regression model in which the first measured value is an explanatory variable and the value of the resistance component caused by the object to be measured is a regression model in which the objective variable is the value of the first
  • the first model and the second model are adjusted by machine-learning measured data for learning (34_1 to 34_n) in which the third measured value is associated with the first measured value and the second measured value. May contain parameters.
  • the correction unit calculates the estimated value of the third measurement value calculated by the estimation unit and the third measurement value obtained by the data acquisition unit.
  • ) from the three measured values may be calculated, and the correction process may be performed when the error is smaller than the threshold value (Rth).
  • the inspection device (2) includes a first measurement value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and a data acquisition unit (21) for acquiring a second measured value (Rdc2) of the DC resistance of the object to be measured and a third measured value (Rs) of the AC resistance of the object to be measured measured by the two-terminal method; , a storage unit (22) for storing a first model (35) indicating a correspondence relationship between the first measured value and the second measured value and the third measured value; and the first model stored in the storage unit (22).
  • the first model uses the first measured value and the second measured value as explanatory variables, and the value of the resistance component resulting from the measurement system according to the two-terminal method. and a third model having the first measured value as an explanatory variable and the value of the resistance component caused by the object to be measured as an objective variable, wherein the correction unit includes the correction
  • the correction unit includes the correction
  • a resistance component caused by the measurement system by the two-terminal method is calculated according to the second model, and the two-terminal method
  • the third measured value may be corrected based on the resistance component caused by the measurement system, and the corrected third measured value may be output as the value of the AC resistance of the object to be measured.
  • the trained model generation device (3) provides the first measured value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and the Learning measurement data (34_1) in which the third measurement value (Rs) of the AC resistance of the measurement object measured by the two-terminal method is associated with the second measurement value (Rdc2) of the DC resistance of the measurement object that has been measured 34_n), and machine-learning the measured data for learning to obtain the third measured data based on the input data including the first measured value and the second measured value.
  • a trained model generation unit (32) for generating a trained model (35) for causing a computer to function to calculate the measured value.
  • the trained model uses the first measured value and the second measured value as explanatory variables, and the resistance caused by the measurement system by the two-terminal method.
  • a first regression model (g (Rdc4, Rdc2)) whose objective variable is the value of the component
  • a second regression model g (Rdc4, Rdc2)
  • h(Rdc4) a regression model (h(Rdc4)) wherein the learned model generation unit adjusts the learned parameters of the first regression model and the second regression model by performing machine learning on the learning measurement data.
  • An inspection method includes a first measurement value (Rdc4) of the DC resistance of a measurement object measured by a four-terminal method, and the measurement object measured by a two-terminal method
  • a first step (S11 to S14) of acquiring a second measured value (Rdc2) of the DC resistance of and a third measured value (Rs) of the AC resistance of the measurement object measured by the two-terminal method, and input said first measured value obtained by said first step based on a trained model (35) for operating a computer to estimate said third measured value based on said first measured value and said second measured value;
  • a third step of correcting the third measured value based on the obtained first measured value and the second measured value, and outputting the corrected third measured value as an AC resistance value (Rsr) of the object to
  • An inspection method includes a first measurement value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and the measurement measured by the two-terminal method
  • a first step (S11 to S14) of acquiring a second measured value (Rdc2) of the DC resistance of the object and a third measured value (Rs) of the AC resistance of the object measured by the two-terminal method; the first measured value and the second measurement obtained in the first step, based on a first model (35) showing the correspondence relationship between the first measured value and the second measured value and the third measured value;
  • An inspection program is characterized by causing a computer to execute each step in the inspection method described in [10] or [11] above.
  • a trained model generation method includes a first measurement value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and Measurement data for learning (34_1 to 34_n) in which the third measurement value (Rs) of the AC resistance of the measurement object measured by the two-terminal method is associated with the second measurement value (Rdc2) of the DC resistance of the measurement object and performing machine learning on the learning measurement data acquired in the first step, based on the input data including the first measurement value and the second measurement value and a second step (S3) of generating a trained model (35) for activating a computer to calculate said third measure.
  • a trained model generation program is characterized by causing a computer to execute each step in the trained model generation method described in [13] above.
  • FIG. 1 is a diagram showing the configuration of an inspection system 1 including a trained model generation device 3 and an inspection device 2 according to an embodiment.
  • the inspection system 1 shown in FIG. 1 is a system for inspecting the quality of an object to be measured (hereinafter also referred to as "DUT").
  • an inspection system 1 includes a trained model generation device 3 that generates a trained model by learning measurement data for learning based on a plurality of measurement results of a DUT by machine learning, and a trained model that has been generated. and an inspection device 2 for inspecting the DUT using a.
  • the inspection device 2 is a device that measures the electrical characteristics of the DUT and inspects the quality of the DUT based on the measurement results.
  • the inspection device 2 is a device (a so-called chip taping machine) that inspects the quality of small electronic components (chip components) and packages the chip components determined to be non-defective in a state ready for shipment.
  • the DUT is an inductor element (eg, chip inductor element)
  • inductor element eg, chip inductor element
  • the inspection device 2 measures the electrical characteristics of the inductor element as the DUT using the learned model described later.
  • the inspection apparatus 2 includes a data processing control device 10, a first measurement section 11, a second measurement section 12, an operation section 13, an output section 14, and a transport mechanism 15, as shown in FIG. .
  • the first measurement unit 11 is a device that measures the electrical characteristics of an inductor element as a DUT by the four-terminal method.
  • an impedance measuring instrument such as a resistance meter or an LCR meter capable of measuring impedance by the four-terminal method can be exemplified.
  • the second measurement unit 12 is a device that measures the electrical characteristics of an inductor element as a DUT by the two-terminal method.
  • an impedance measuring instrument such as an LCR meter capable of measuring impedance by a two-terminal method can be exemplified.
  • first measurement unit 11 and the second measurement unit 12 are not limited to the above examples as long as they are devices capable of measuring electrical characteristics such as impedance of the DUT.
  • the first measurement unit 11 measures the DC resistance of the inductor element as the DUT by the four-terminal method in accordance with the instruction from the data processing control device 10 .
  • the first measurement unit 11 includes a moving mechanism (not shown) that moves the probes 61a to 61d, a current output unit and a voltage detection unit (not shown), and a measurement value calculation that calculates a measurement value based on the detection result. (not shown).
  • the movement mechanism of the first measurement unit 11 connects one terminal of the inductor element transported to the predetermined measurement position.
  • the probes 61a and 61c are brought into contact, and the other terminals of the inductor elements are brought into contact with the probes 61b and 61d.
  • the current output section of the first measuring section 11 supplies a DC current to the inductor element via the probes 61a and 61b.
  • the voltage detection section of the first measurement section 11 detects the voltage value between the inductor terminals through the probes 61c and 61d when the DC current is supplied to the inductor element.
  • the measured value calculator of the first measuring unit 11 calculates a measured value Rdc4 of the DC resistance of the inductor element based on the detected voltage value and the current value of the DC current supplied to the inductor element.
  • the second measurement unit 12 measures the DC resistance, AC resistance, and inductance of the inductor element as the DUT according to the instruction from the data processing control device 10 by the two-terminal method.
  • the second measurement unit 12 includes a moving mechanism (not shown) that moves the probes 62a and 62b, a current output unit and a voltage detection unit (not shown), and a measurement value calculator that calculates a measurement value based on the detection result. (not shown).
  • the movement mechanism of the second measurement unit 12 connects one terminal of the inductor element transported to the predetermined measurement position.
  • the probe 62a is brought into contact, and the other terminal of the inductor element is brought into contact with the probe 62b.
  • the current output section of the second measuring section 12 supplies a DC current to the inductor element via the probes 62a and 62b, and the voltage detecting section of the second measuring section 12 detects the voltage value between both terminals of the inductor element. are detected via probes 62a and 62b.
  • the measured value calculator of the second measuring unit 12 calculates a measured value Rdc2 of the DC resistance of the inductor element based on the detected voltage value and the current value of the DC current supplied to the inductor element.
  • the current output section of the second measuring section 12 outputs an alternating current to the inductor element through the probe.
  • the voltage detection section of the second measurement section 12 detects the AC voltage value between both terminals of the inductor element via the probes 62a and 62b.
  • the measured value calculator of the second measuring unit 12 calculates the detected AC voltage value (voltage effective value), the AC current value (current effective value) of the AC current supplied to the inductor element, and the position of the AC voltage and the AC current.
  • a measured value Rs of the AC resistance and a measured value L of the inductance of the inductor element are calculated based on the phase difference.
  • the data processing control device 10 may perform the above calculations by the measurement value calculation units of the first measurement unit 11 and the second measurement unit 12 .
  • the operation unit 13 is an input interface for the user to operate the inspection device 2 .
  • Various buttons, a touch panel, and the like can be exemplified as the operation unit 13 .
  • the user sets various inspection conditions and the like for inspecting an inductor element as a DUT in the inspection device 2, and instructs the inspection device 2 to perform and stop inspection and the like. can be done.
  • the output unit 14 is a functional unit for outputting various information such as inspection conditions and inspection results in the inspection device 2 .
  • the output unit 14 is, for example, a display device equipped with an LCD (Liquid Crystal Display) or an organic EL.
  • the output unit 14 displays information such as inspection results on the screen according to the control by the data processing control device 10 when the user operates the operation unit 13 to instruct execution of inspection of the DUT.
  • the output unit 14 may be a display device having a touch panel that realizes a part of the functions of the operation unit 13.
  • the output unit 14 may include a communication circuit or the like for outputting data such as test results to the outside by wire or wirelessly.
  • the transport mechanism 15 is a device that transports the inductor element to be inspected to an appropriate location within the inspection device 2 under the control of the data processing control device 10 .
  • the transport mechanism 15 transports the inductor element to be inspected to a predetermined measurement position by the first measurement unit 11 .
  • the transport mechanism 15 transports the inductor element to be inspected to a predetermined measurement position by the second measurement unit 12 .
  • the transport mechanism 15 transports inductor elements determined to be non-defective among the inductor elements that have been inspected to a position for packaging, and transports the packaged inductor elements to a predetermined location in the next step.
  • the data processing control device 10 is a functional unit that comprehensively controls each functional unit in the inspection device 2 and performs various data processing for inspection of the DUT.
  • the data processing control device 10 is a program processing device having a processor such as a CPU, storage devices such as ROM, RAM, and flash memory, and peripheral circuits such as timers.
  • Examples of program processing devices include MCUs and FPGAs.
  • the data processing control device 10 acquires the measurement results from the first measurement unit 11 and the second measurement unit 12, calculates an index indicating the performance of the inductor element based on the acquired measurement results, and based on the calculated index, Determining whether the inductor element to be inspected is good or bad.
  • the index indicating the performance of the inductor element is, for example, the Q value.
  • the data processing control device 10 of the inspection device 2 provides an index (Q value) indicating the performance of the inductor element to be inspected based on the measurement results of the first measurement unit 11 and the second measurement unit 12. is calculated, if necessary, the measured value Rs of the AC resistance measured by the second measuring unit 12 is corrected using a pre-generated learned model.
  • FIG. 2 is a diagram showing an example of the configuration of the learned model generation device 3 in the inspection system 1 according to the embodiment.
  • the trained model generation device 3 is realized by, for example, an information processing device (computer) such as a server or a personal computer (PC), and generates a plurality of learning measurement data 34_1 to 34_n ( n is an integer equal to or greater than 2), and machine-learning the generated measurement data for learning based on a predetermined algorithm to generate a trained model 35 .
  • a computer such as a server or a personal computer (PC)
  • PC personal computer
  • the trained model generation device 3 and the inspection device 2 are arranged side by side in FIG. No need.
  • the inspection device 2 and the trained model generation device 3 may be installed at different locations and connected via a communication network such as a LAN or the Internet.
  • the inspection device 2 and the learned model generation device 3 may transmit and receive various data such as measurement data by the inspection device 2 and the learned model 35 to and from each other via a communication network.
  • the inspection device 2 and the learned model generation device 3 do not have to be electrically connected to each other during inspection of the DUT.
  • measurement data by the inspection device 2 and various data such as the learned model 35 may be exchanged via a storage medium such as a memory card.
  • the learned model 35 is a model for estimating the measured value Rs of the AC resistance of the inductor element to be inspected.
  • the trained model 35 generated by the trained model generation device 3 may be distributed via a network, or may be stored in a computer-readable storage medium (non-transitory computer readable medium) such as a memory card. It may be written in and circulated.
  • the trained model generation device 3 has, for example, a learning measurement data acquisition unit 31, a trained model generation unit 32, and a storage unit 33 as functional blocks for generating a trained model 35.
  • Each of these functional blocks is composed of hardware resources such as a CPU and a memory that constitute an information processing device as the trained model generation device 3, and software installed in the information processing device (including a trained model generation program). It is realized by collaborating with various programs).
  • the learning measurement data acquisition unit 31 is a functional unit that acquires the learning measurement data 34_1 to 34_n necessary for generating the trained model 35.
  • the measured data for learning 34_1 to 34_n are the measured value Rdc4 (first measured value) of the DC resistance of the DUT measured by the four-terminal method and the measured value Rdc2 (first measured value) of the DC resistance of the DUT measured by the two-terminal method. 2 measured value) and the measured value Rs (third measured value) of the AC resistance of the DUT measured by the two-terminal method.
  • learning measurement data 34_1 to 34_n are not distinguished, they are simply referred to as "learning measurement data 34".
  • the learning measurement data acquisition unit 31 acquires the data 41 of the measured value Rdc4 of the DC resistance of the inductor element measured by the four-terminal method, for example, via wireless or wired communication (not shown) or a storage medium such as a memory card. , a data pair including data 42 of the measured value Rdc2 of the DC resistance of the inductor element measured by the two-terminal method and data 43 of the measured value Rs of the AC resistance measured by the two-terminal method.
  • the learning measurement data acquisition unit 31 acquires a data pair for each inspected inductor element. As data pairs, for example, measurement results of inductor elements inspected by the inspection apparatus 2 or the like in the past may be used.
  • the learning measurement data acquisition unit 31 associates the DC resistance measurement values Rdc4 and Rdc2 included in the acquired data pair with the AC resistance measurement value Rs included in the data pair as a correct value, thereby obtaining one Generate measurement data for learning 34 .
  • the learning measurement data acquisition unit 31 generates learning measurement data 34_1 to 34_n for each measurement result of the inspected inductor element, and stores the learning measurement data 34_1 to 34_n in the storage unit 33 .
  • the learning measurement data acquiring unit 31 receives the learning measurement data 34 generated by another information processing device or the like via communication or a storage medium. may be obtained by
  • the trained model generation unit 32 is a functional unit that generates a trained model 35 by performing machine learning on a plurality of learning measurement data 34_1 to 34_n acquired by the learning measurement data acquisition unit 31.
  • the trained model 35 is a program generated by machine learning based on a predetermined algorithm.
  • the predetermined algorithm include polynomial regression, multiple regression, and the like.
  • the trained model 35 includes a measured value Rdc4 (first measured value) of the DC resistance of the DUT measured by the four-terminal method and a measured value Rdc2 (second measured value) of the DC resistance of the DUT measured by the two-terminal method.
  • the learned model 35 performs calculations based on predetermined learned parameters on the input measurement data (measured values Rdc4 and Rdc2 of the DC resistance), and quantifies the AC resistance based on the measurement data. It is a program for causing an information processing device (computer) to function so as to output the calculated value (estimated value).
  • the learned model 35 includes a model representing the resistance component Rc caused by the measurement system by the two-terminal method and a model representing the resistance component caused by the object to be measured (DUT).
  • the resistance component caused by the measurement system by the two-terminal method includes, for example, the resistance component of the line composed of cables, probes, etc. existing between the second measuring section 12 and the DUT, and the contact between the probe and the DUT. and a resistance component (so-called contact resistance) caused by the state.
  • the model (first model) representing the resistance component Rc caused by the measurement system by the two-terminal method is, for example, the measured value Rdc4 (first measured value) of the DC resistance by the four-terminal method and the measured value of the DC resistance by the two-terminal method.
  • Rdc2 (second measured value) is an explanatory variable
  • the value of the resistance component caused by the measurement system by the two-terminal method is a regression model as an objective variable.
  • the model representing the resistance component (Rc) caused by the measurement system by the two-terminal method is a function for calculating the resistance component Rc caused by the measurement system by the two-terminal method from the measured values Rdc4 and Rdc2 of the DC resistance. .
  • a model (second model) representing the resistance component caused by the DUT has, for example, the DC resistance measured value Rdc4 (first measured value) by the four-terminal method as an explanatory variable, and the value of the resistance component caused by the DUT as the objective variable. It is a regression model with In other words, the model representing the resistance component caused by the DUT is a function that estimates the value of the AC resistance caused by the DUT from the measured value Rdc4 of the DC resistance by the four-terminal method.
  • the model representing the resistance component (Rc) due to the measurement system by the two-terminal method is g (Rdc4, Rdc2) and the model representing the resistance component due to the DUT is h (Rdc4)
  • the measured value of the AC resistance is estimated.
  • the estimated value Rse of the measured value of the AC resistance is the resistance component Rc due to the measurement system by the two-terminal method obtained by the model g (Rdc4, Rdc2) and the resistance due to the DUT obtained by the model h (Rdc4). It is represented by the sum of the components.
  • Model g (Rdc4, Rdc2) and model h (Rdc4) contain learned parameters.
  • the learned parameters are mechanically adjusted so as to calculate the estimated value Rse of the AC resistance measurement value using the learning measurement data 34_1 to 34_n as inputs to the learning program (the program based on the predetermined algorithm).
  • the learned model generation unit 32 adjusts the learned parameters of the model g (Rdc4, Rdc2) and the model h (Rdc4) by performing machine learning on the learning measurement data 34_1 to 34_n.
  • the trained model generation unit 32 first generates an estimated value Rse of the measured value of the AC resistance calculated by inputting the learning measurement data 34_1 to 34_n into the regression model, and the measured value of the AC resistance which is the correct value. A difference (error) from the value Rs is calculated.
  • the learned model generation unit 32 generates the regression model by sequentially updating the learned parameters (coefficients) of the regression model so that the calculated error becomes smaller, for example, by the error back propagation method, It is stored in the storage unit 33 as a trained model 35 .
  • the storage unit 33 is a functional unit for storing various data such as the learning measurement data 34_1 to 34_n necessary for generating the trained model 35 and the generated trained model 35.
  • the storage unit 33 is configured to be accessible from the outside, for example.
  • the inspection device 2 can read and acquire the learned model 35 from the storage unit 33 by communicating with the trained model generation device 3 . Further, for example, the inspection device 2 can write the data of the measurement results and the like to the storage unit 33 by communicating with the trained model generation device 3 .
  • FIG. 3 is a flow chart showing the flow of generation of the learned model 35 by the trained model generation device 3 according to the embodiment.
  • the learning measurement data acquisition unit 31 acquires learning measurement data 34_1 to 34_n (step S1). Specifically, as described above, the learning measurement data acquisition unit 31 acquires a data pair including the DC resistance measurement values Rdc4 and Rdc2 and the AC resistance measurement value Rs of inductor elements tested in the past, Learning measurement data 34 is generated by adding the AC resistance measurement value Rs as a correct value to the DC resistance measurement values Rdc4 and Rdc2 based on the acquired data pair.
  • the trained model generation device 3 determines whether or not the necessary number of learning measurement data 34 to generate the trained model 35 has been generated (step S2). For example, the trained model generation device 3 is preset with the number of learning measurement data 34 required to generate a trained model 35, and the trained model generation device 3 generates the learning measurement data 34 is generated, the number of generations is incremented by +1. Then, the trained model generation device 3 determines whether or not the number of times of generation that has been counted has reached the number of data set in advance, thereby determining whether or not the required number of measurement data for learning 34 has been generated. do.
  • step S2 If the required number of learning measurement data 34 has not been generated (step S2: NO), the trained model generating device 3 returns to step S1 to obtain data pairs related to new inductor element measurement results. Then, generation of the learning measurement data 34 regarding the inductor element is repeated (steps S1 and S2).
  • step S2 when the required number of learning measurement data 34 has been generated (step S2: YES), the trained model generation device 3 performs learning using the plurality of learning measurement data 34 generated in step S1.
  • a finished model 35 is generated (step S3).
  • the learned model generation unit 32 performs machine learning based on a predetermined algorithm on the plurality of learning measurement data 34_1 to 34_n created in step S1 by the method described above, thereby generating the learned model 35 to create
  • the learned model generation unit 32 stores the learned model 35 in the storage unit 33 when sufficient accuracy is obtained for the learned model 35 .
  • the trained model 35 generated in step S3 is registered in the inspection device 2 (step S4).
  • the learned model generation device 3 stores the The stored learned model 35 is transmitted to the inspection device 2 , and the learned model 35 received by the inspection device 2 is stored in the storage unit in the data processing control device 10 .
  • the registration of the learned model 35 in the inspection apparatus 2 may be performed using a storage medium such as a memory card, as described above.
  • the learned model generation program for causing the computer (information processing device) as the trained model generation device 3 to execute the above-described steps (S1 to S4) may be distributed via a network. However, it may be distributed by being written in a computer-readable storage medium (non-transitory computer readable medium) such as a memory card.
  • the learned model 35 for inspecting the inductor element is generated by the method described above.
  • FIG. 4 is a diagram showing an example of the configuration of the data processing control device 10 in the inspection device 2 according to the embodiment.
  • the data processing control device 10 of the inspection device 2 has, for example, a data acquisition unit 21, a storage unit 22, an estimation unit 23, a correction unit 24, and a determination unit 25.
  • These functional units are implemented by, for example, a program processing device as the data processing control device 10, in which the CPU executes various calculations according to programs stored in a memory and controls peripheral circuits such as counters. be.
  • the data acquisition unit 21 is a functional unit that acquires various data necessary for calculating an index (Q value) indicating the performance of the inductor element to be inspected.
  • the data acquisition unit 21 acquires, for example, the measured value Rdc4 of the DC resistance of the DUT measured by the first measurement unit 11 by the four-terminal method, and stores it in the storage unit 22 .
  • the data acquisition unit 21 obtains, for example, a measured value Rdc2 of the DC resistance of the DUT measured by the second measuring unit 12 by the two-terminal method and a measured value Rs of the AC resistance of the DUT measured by the second measuring unit 12 by the two-terminal method. , and the measured value L of the inductance of the DUT measured by the second measurement unit 12 by the two-terminal method, and stored in the storage unit 22 as measurement data 50 to be inspected. Further, the data acquisition unit 21 acquires, for example, the trained model 35 generated by the trained model generation device 3 and stores it in the storage unit 22 .
  • the storage unit 22 is a functional unit for storing various data necessary for calculating an index (Q value) indicating the performance of the inductor element to be inspected, the calculated Q value, and the like.
  • the storage unit 22 stores the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element, the measured value Rs of the AC resistance of the inductor element, and the measured value L of the inductance of the inductor element, which are acquired by the data acquiring unit 21. , and the trained model 35 are stored respectively. Further, the storage unit 22 stores, for example, an estimated value Rse of a measured value of AC resistance, an estimated value of a resistance component Rc caused by a measurement system using a two-terminal method, an AC resistance value Rsr, and a Q value, which will be described later. remembered.
  • the estimation unit 23 is a functional unit that estimates the measured value of the AC resistance of the inductor element to be inspected. Based on the learned model 35 stored in the storage unit 22, the estimation unit 23 calculates the measured values of the AC resistance corresponding to the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element to be inspected acquired by the data acquisition unit 21. Calculate the estimated value Rse. Specifically, the estimation unit 23 inputs (substitutes) the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element to be inspected acquired by the data acquisition unit 21 into the learned model 35 (function). The value is stored in the storage unit 22 as an estimated value Rse of the measured AC resistance.
  • the correction unit 24 is a functional unit for correcting the measured value Rs of the AC resistance.
  • the correction unit 24 corrects the measured value Rs of the AC resistance based on the measured values Rdc4 and Rdc2 of the DC resistance acquired by the data acquisition unit 21 according to the estimated value Rse of the measured value of the AC resistance, and obtains the corrected AC resistance
  • a correction process is performed to output the measured value Rs of the DUT as the value Rsr of the AC resistance of the DUT.
  • the correction unit 24 calculates 2 A resistance component Rc due to a measurement system based on the terminal method is calculated. Data of the calculated resistance component Rc is stored in the storage unit 22, for example.
  • the correction unit 24 corrects the measured value Rs of the AC resistance of the inductor element to be inspected based on the resistance component Rc caused by the measurement system using the two-terminal method according to the estimated value Rse of the measured value of the AC resistance. Then, the corrected AC resistance measurement value Rs is output as the AC resistance value Rsr of the inductor element to be inspected.
  • the correction unit 24 determines the error
  • the correction unit 24 compares the error
  • the threshold Rth is an arbitrary preset value.
  • is smaller than the threshold value Rth, it can be considered that the AC resistance estimation accuracy of the learned model 35 is high with respect to the measurement result of the inductor element to be inspected. That is, it is considered that the model g (Rdc4, Rdc2) included in the trained model 35 has high estimation accuracy of the resistance component Rc due to the measurement system by the two-terminal method.
  • the correction unit 24 performs correction processing. Specifically, the correction unit 24 calculates the resistance component Rc caused by the measurement system by the two-terminal method using the model g (Rdc4, Rdc2), and calculates the calculated resistance component Rc caused by the measurement system by the two-terminal method. is used to correct the measured value Rs (third measured value) of the AC resistance.
  • the resistance component Rc caused by the measurement system by the two-terminal method is calculated using the model g (Rdc4, Rdc2), and the calculated resistance component Rc caused by the measurement system by the two-terminal method is used to If the resistance measurement value Rs (third measurement value) is corrected, the correction may be erroneous, and the AC resistance value Rsr may not be obtained appropriately.
  • the judgment unit 25 is a functional unit for judging whether the DUT (inductor element) is good or bad.
  • the determination unit 25 expresses the performance of the inductor element to be inspected based on the AC resistance value Rsr of the inductor element to be inspected and the measured inductance value L of the inductor element to be inspected, which are output from the correction unit 24.
  • a Q value (Q ⁇ L/Rsr), which is an index, is calculated.
  • the judging unit 25 judges the quality of the inductor element to be inspected by, for example, comparing the calculated Q value with a predetermined reference value.
  • the determining unit 25 controls the transport mechanism 15 to package the DUT determined as a non-defective product into a state ready for shipment by a packaging device (not shown).
  • FIG. 5 is a flow chart showing the flow of inspection by the inspection device 2 according to the embodiment.
  • the data processing control device 10 starts inspection of the inductor element to be inspected.
  • the data processing control device 10 controls the first measuring unit 11 to measure the DC resistance of the inductor element to be inspected by the four-terminal method (step S11). For example, the data processing control device 10 controls the transport mechanism 15 according to an instruction signal from the operation unit 13 to transport the inductor element to be inspected to a predetermined measurement position in the first measurement unit 11 . After that, the data processing control device 10 controls the first measuring unit 11 to measure the DC resistance of the inductor element to be inspected by the four-terminal method, and acquires the measured value Rdc4 of the DC resistance.
  • the data processing control device 10 controls the second measuring unit 12 to measure the DC resistance of the inductor element to be inspected by the two-terminal method (step S12).
  • the data processing control device 10 controls the transport mechanism 15 to transport the inductor element to be inspected to a predetermined measurement position in the second measuring section 12 .
  • the data processing control device 10 controls the second measuring section 12 to measure the DC resistance of the inductor element to be inspected by the two-terminal method, and acquires the measured value Rdc2 of the DC resistance.
  • the data processing control device 10 controls the second measuring unit 12 to measure the measured value Rs of the AC resistance and the measured value L of the inductance of the inductor element to be inspected by the two-terminal method (step S13). .
  • the data processing control device 10 controls the second measuring unit 12 to measure the AC resistance of the inductor element to be inspected, A measurement value Rs of AC resistance and a measurement value L of inductance are obtained respectively.
  • the data processing control device 10 controls the second measuring section 12 to measure the DC resistance of the inductor element to be inspected by the two-terminal method in the same manner as in step S12 (step S14).
  • the measured values Rdc4 and Rdc2 of the DC resistance, the measured value Rs of the AC resistance, and the measured value L of the inductance acquired by the data processing control device 10 in steps S11 to S14 are stored as the measured data 50 of the inductor element to be inspected. 22.
  • the data processing control device 10 calculates an estimated value Rse of the measured AC resistance of the inductor element to be inspected based on the measurement data 50 of the inductor element to be inspected (step S15). Specifically, the estimating unit 23 inputs the measured values Rdc4 and Rdc2 of the direct current resistance acquired in steps S11 and S12 (S14) to the learned model 35 by the method described above, so that from the learned model 35 An estimated value Rse of the measured value of the output AC resistance is obtained.
  • the estimating unit 23 compares, for example, the measured value Rdc2 of the DC resistance measured in step S12 with the measured value Rdc2 of the DC resistance measured in step S14, and uses the smaller measured value Rdc2 of the DC resistance.
  • An estimated value Rse of the measured value of AC resistance may be calculated.
  • the correction unit 24 determines whether or not the difference
  • the correction unit 24 uses the model g (Rdc4, Rdc2) to calculate the resistance caused by the measurement system by the two-terminal method.
  • a component Rc is calculated (step S17). Specifically, the correction unit 24 inputs the measured values Rdc4 and Rdc2 of the direct current resistance obtained in steps S11 and S12 (S14) to the model g (Rdc4, Rdc2), so that the measurement system using the two-terminal method A resulting resistance component Rc is obtained.
  • the determination unit 25 determines the Q of the inductor element to be inspected based on the AC resistance value Rsr output from the correction unit 24 in step S18 or step S19 and the measured inductance value L acquired in step S13. A value is calculated (step S20). After that, the judging section 25 judges whether the inductor element to be inspected is good or bad based on the Q value calculated in step S20. Inductor elements determined to be non-defective are transported by transport mechanism 15 and packaged.
  • the inspection program for causing the computer (information processing device) as the data processing control device 10 to execute the steps (S11 to S21) described above may be distributed via a network, or may be stored in a memory card. It may be distributed by being written on a computer-readable storage medium (non-transitory computer readable medium) such as.
  • the learned model generation device 3 includes the model g (Rdc4, Rdc2) for calculating the resistance component caused by the measurement system by the two-terminal method, and the DUT (inductor element).
  • the model g (Rdc4, Rdc2) is a regression model with the measured values Rdc4 and Rdc2 of the DC resistance as explanatory variables and the value of the resistance component resulting from the measurement system by the two-terminal method as the objective variable.
  • the model h(Rdc4) is a regression model with the measured value Rdc4 of the DC resistance as an explanatory variable and the value of the resistance component caused by the DUT as an objective variable.
  • the model g (Rdc4, Rdc2) and the model h (Rdc4) are adjusted by machine learning a plurality of learning measurement data 34_1 to 34_n in which the measured DC resistance values Rdc4 and Rdc2 are associated with the measured AC resistance values Rs. contains the learned parameters (coefficients).
  • the trained model 35 can be represented by a simpler function, so it is possible to avoid black boxing of the trained model 35, which is a concern in machine learning.
  • the inspection device 2 estimates the measured value of the AC resistance of the DUT using the learned model 35 generated by the trained model generation device 3, and the estimation result , the model g (Rdc4, Rdc2) included in the learned model 35 is used to calculate the resistance component Rc due to the measurement system by the two-terminal method. Then, the inspection apparatus 2 corrects the measured value Rs of the AC resistance based on the calculated resistance component Rc caused by the measurement system by the two-terminal method, and outputs the corrected value as the value of the AC resistance of the DUT.
  • the inspection device 2 calculates the error
  • is smaller than the threshold value Rth, output the AC resistance measured value Rs corrected based on the resistance component Rc caused by the measurement system by the two-terminal method as the AC resistance value Rsr ( Rse ⁇ Rc). do.
  • the error between the measured value of AC resistance and the estimated value based on the learned model 35 is Correction of the measured values of AC resistance is performed only for small inductor elements, that is, inductor elements for which it is considered appropriate to apply the learned model 35 (model g(Rdc4, Rdc2)). As a result, overcorrection can be prevented, and a more accurate AC resistance value can be obtained.
  • the learned model generation device 3 and the inspection device 2 according to the present embodiment it is possible to improve the reliability of inspection of electronic components.
  • the model (learned model 35) used for inspection by the inspection apparatus 2 may be a function indicating the correspondence between the measured values Rdc4 and Rdc2 of the direct current resistance and the measured value Rs of the alternating current resistance. It may be a model generated by
  • the inspection device 2 inspects the inductor element by the same method as above using models including models g (Rdc4, Rdc2) and h (Rdc4) whose coefficients are adjusted by a method other than machine learning. good too.
  • the inspection apparatus 2 integrates the components such as the data processing control device 10, the first measurement unit 11, the second measurement unit 12, the operation unit 13, the output unit 14, and the transport mechanism 15.
  • the data processing control device 10, the operation unit 13, and the output unit 14 are realized by a first device (for example, an information processing device such as a PC), and the first measurement unit 11, the second measurement unit 12, and the transport mechanism 15 may be implemented by a separate second device different from the first device.
  • the first device and the second device may be connected via a wired or wireless network.
  • Rdc4 measured value of DC resistance by 4-terminal method
  • Rs measured value of AC resistance by 2-terminal method
  • Rse estimated value of measured value of AC resistance by 2-terminal method
  • Rsr value of AC resistance
  • Rth threshold.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The present invention improves reliability of inspection of electronic parts. An inspection device (2) calculates an estimation value (Rse) of a measured value of alternating current resistance, using a trained model (35) that causes a computer to function so as to calculate a measured value (Rs) of alternating current resistance of a measurement object measured by a two-terminal method, on the basis of a measured value (Rdc4) of direct current resistance of the measurement object measured by a four-terminal method and a measured value (Rdc2) of direct current resistance of the measurement object measured by the two-terminal method.

Description

検査装置、検査方法、学習済みモデル生成装置、検査用プログラム、および学習済みモデル生成用プログラムInspection device, inspection method, trained model generation device, inspection program, and trained model generation program
 本発明は、検査装置、検査方法、学習済みモデル生成装置、検査用プログラム、および学習済みモデル生成用プログラムに関し、例えば、インダクタ素子を検査する検査装置に関する。 The present invention relates to an inspection device, an inspection method, a learned model generation device, an inspection program, and a learned model generation program, and for example, to an inspection device for inspecting inductor elements.
 従来、チップインダクタ等の電子部品の電気的特性を測定し、測定結果に基づいて電子部品の良否の判定を行う検査装置が知られている。例えば、特許文献1には、検査対象のインダクタ素子の交流抵抗およびインダクタンスを測定するとともに、それらの測定値を用いてQ値を算出し、算出したQ値に基づいてインダクタ素子の良否を判定する検査装置が開示されている。 Conventionally, inspection devices are known that measure the electrical characteristics of electronic components such as chip inductors and judge the quality of electronic components based on the measurement results. For example, Patent Document 1 discloses that the AC resistance and inductance of an inductor element to be inspected are measured, the Q value is calculated using the measured values, and the quality of the inductor element is determined based on the calculated Q value. An inspection device is disclosed.
 特許文献1には、インダクタ素子の交流抵抗を測定する手法として、2端子法によって測定した交流抵抗の測定値から、2端子法によって測定する際に使用した測定用プローブの接触抵抗の推定値を減算することによって交流抵抗を算出することが記載されている。また、特許文献1には、4端子法によって測定した直流抵抗の測定値から2端子法によって測定した直流抵抗の測定値を減算することによって接触抵抗の推定値を算出し、接触抵抗の推定値に0以上1以下の係数を乗算した値を用いて交流抵抗の測定値を補正することが記載されている。 In Patent Document 1, as a method of measuring the AC resistance of an inductor element, an estimated value of the contact resistance of a measuring probe used in the measurement by the two-terminal method is obtained from the measured value of the AC resistance measured by the two-terminal method. Calculating the AC resistance by subtraction is described. Further, in Patent Document 1, an estimated value of contact resistance is calculated by subtracting a measured value of DC resistance measured by a two-terminal method from a measured value of DC resistance measured by a four-terminal method, and an estimated value of contact resistance is multiplied by a coefficient of 0 or more and 1 or less to correct the measured value of AC resistance.
特許第6949675号公報Japanese Patent No. 6949675
 特許文献1に開示された検査装置は、インダクタ素子における直列抵抗と交流抵抗との関係が線形であることを前提に交流抵抗の測定値を補正している。しかしながら、実際のインダクタ素子の直列抵抗と交流抵抗との関係は不明であり、例えば、その関係が非線形であった場合には、交流抵抗の測定値の補正が適切に行われない可能性がある。また、特許文献1に開示された検査装置は、交流抵抗の過補正を回避するために、接触抵抗の推定値に係数を乗算した値を用いて交流抵抗の測定値を補正しているが、その係数が適切でない場合、交流抵抗の補正が適切に行われない可能性がある。 The inspection device disclosed in Patent Document 1 corrects the measured value of the AC resistance on the premise that the relationship between the series resistance and the AC resistance in the inductor element is linear. However, the relationship between the series resistance and the AC resistance of the actual inductor element is unknown. For example, if the relationship is non-linear, there is a possibility that the measured value of the AC resistance will not be properly corrected. . In addition, the inspection device disclosed in Patent Document 1 corrects the measured value of AC resistance using a value obtained by multiplying the estimated value of contact resistance by a coefficient in order to avoid overcorrection of AC resistance. If the coefficients are not appropriate, AC resistance correction may not be performed properly.
 本発明は、上述した課題に鑑みてなされたものであり、電子部品の検査の信頼性を向上させることを目的とする。 The present invention has been made in view of the above-described problems, and aims to improve the reliability of inspection of electronic components.
 本発明の代表的な実施の形態に係る検査装置は、4端子法によって測定した測定対象物の直流抵抗の第1測定値と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値とを取得するデータ取得部と、入力した前記第1測定値および前記第2測定値に基づいて前記第3測定値を算出するようにコンピュータを機能させるための学習済みモデルを記憶する記憶部と、前記記憶部に記憶された前記学習済みモデルに基づいて、前記データ取得部によって取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値を算出する推定部とを備えることを特徴とする。 An inspection apparatus according to a representative embodiment of the present invention comprises a first measurement value of the DC resistance of a measurement object measured by a four-terminal method, and a second measurement value of the DC resistance of the measurement object measured by a two-terminal method. A data acquisition unit that acquires a measured value and a third measured value of the AC resistance of the measurement object measured by the two-terminal method, and the third measured value based on the input first measured value and the second measured value a storage unit that stores a trained model for causing a computer to calculate a measured value; and the first measured value that is acquired by the data acquisition unit based on the trained model that is stored in the storage unit. and an estimating unit that calculates an estimated value of the third measured value corresponding to the second measured value.
 本発明に係る検査装置によれば、電子部品の検査の信頼性を向上させることが可能となる。 According to the inspection device according to the present invention, it is possible to improve the reliability of inspection of electronic components.
実施の形態に係る学習済みモデル生成装置および検査装置を備えた測定システムの構成を示す図である。1 is a diagram showing the configuration of a measurement system including a learned model generation device and an inspection device according to an embodiment; FIG. 実施の形態に係る検査システムにおける学習済みモデル生成装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the learned model production|generation apparatus in the inspection system which concerns on embodiment. 実施の形態に係る学習済みモデル生成装置による学習済みモデルの生成の流れを示すフローチャートである。6 is a flow chart showing the flow of generation of a trained model by the trained model generating device according to the embodiment; 実施の形態に係る検査装置におけるデータ処理制御装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the data-processing control apparatus in the inspection apparatus which concerns on embodiment. 図5は、実施の形態に係る検査装置2による検査の流れを示すフローチャートである。FIG. 5 is a flow chart showing the flow of inspection by the inspection apparatus 2 according to the embodiment.
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. Outline of Embodiment First, an outline of a representative embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on the drawings corresponding to constituent elements of the invention are described with parentheses.
 〔1〕本発明の代表的な実施の形態に係る検査装置(2)は、4端子法によって測定した測定対象物(DUT)の直流抵抗の第1測定値(Rdc4)と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値(Rdc2)と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値(Rs)とを取得するデータ取得部(21)と、入力した前記第1測定値および前記第2測定値に基づいて前記第3測定値を算出するようにコンピュータを機能させるための学習済みモデル(35)を記憶する記憶部(22)と、前記記憶部に記憶された前記学習済みモデルに基づいて、前記データ取得部によって取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値(Rse)を算出する推定部(23)と、を備えることを特徴とする。 [1] An inspection apparatus (2) according to a representative embodiment of the present invention measures a first measurement value (Rdc4) of the DC resistance of an object to be measured (DUT) measured by the four-terminal method, and by the two-terminal method A data acquisition unit (21) for acquiring a second measured value (Rdc2) of the DC resistance of the measured object and a third measured value (Rs) of the AC resistance of the measured object measured by the two-terminal method. a storage unit (22) for storing a trained model (35) for causing a computer to calculate the third measured value based on the input first measured value and the second measured value; calculating an estimated value (Rse) of the third measured value corresponding to the first measured value and the second measured value acquired by the data acquisition unit, based on the trained model stored in the storage unit; and an estimation unit (23).
 〔2〕上記〔1〕に記載の検査装置において、前記第3測定値の推定値に応じて、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する補正処理を行う補正部(24)を更に備えてもよい。 [2] In the inspection apparatus according to [1] above, the third measurement is performed based on the first measurement value and the second measurement value acquired by the data acquisition unit according to the estimated value of the third measurement value. A correction unit (24) may be further provided for performing a correction process of correcting the measured value and outputting the corrected third measured value as the value of the AC resistance of the object to be measured.
 〔3〕上記〔2〕に記載の検査装置において、前記学習済みモデルは、2端子法による測定系に起因する抵抗成分を表す第1モデル(g(Rdc4,Rdc2))と、前記測定対象物に起因する抵抗成分を表す第2モデル(h(Rdc4))とを含み、前記補正部は、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第1モデルにしたがって前記2端子法による測定系に起因する抵抗成分(Rc)を算出するとともに、前記補正処理として、前記2端子法による測定系に起因する抵抗成分に基づいて前記第3測定値を補正してもよい。 [3] In the inspection apparatus described in [2] above, the learned model includes a first model (g(Rdc4, Rdc2)) representing a resistance component caused by a measurement system using a two-terminal method, and the object to be measured. and a second model (h(Rdc4)) representing a resistance component caused by the first model based on the first measured value and the second measured value obtained by the data obtaining unit. The resistance component (Rc) caused by the measurement system by the two-terminal method is calculated according to the above, and as the correction process, the third measured value is corrected based on the resistance component caused by the measurement system by the two-terminal method. may
 〔4〕上記〔3〕に記載の検査装置において、前記第1モデルは、前記第1測定値と前記第2測定値とを説明変数とし、前記2端子法による測定系に起因する抵抗成分の値を目的変数とする回帰モデルであり、前記第2モデルは、前記第1測定値を説明変数とし、前記測定対象物に起因する抵抗成分の値を目的変数とする回帰モデルであり、前記第1モデルおよび前記第2モデルは、前記第1測定値および前記第2測定値に前記第3測定値を対応付けた学習用測定データ(34_1~34_n)を機械学習することによって調整された学習済みパラメータを含んでいてもよい。 [4] In the inspection apparatus described in [3] above, the first model uses the first measured value and the second measured value as explanatory variables, and the resistance component caused by the measurement system according to the two-terminal method. The second model is a regression model in which the first measured value is an explanatory variable and the value of the resistance component caused by the object to be measured is a regression model in which the objective variable is the value of the first The first model and the second model are adjusted by machine-learning measured data for learning (34_1 to 34_n) in which the third measured value is associated with the first measured value and the second measured value. May contain parameters.
 〔5〕上記〔2〕乃至〔4〕の何れかに記載の検査装置において、前記補正部は、前記推定部によって算出した前記第3測定値の推定値と前記データ取得部によって取得した前記第3測定値との誤差(|Rse-Rs|)を算出し、前記誤差が閾値(Rth)より小さい場合に、前記補正処理を行ってもよい。 [5] In the inspection apparatus according to any one of [2] to [4] above, the correction unit calculates the estimated value of the third measurement value calculated by the estimation unit and the third measurement value obtained by the data acquisition unit. The error (|Rse-Rs|) from the three measured values may be calculated, and the correction process may be performed when the error is smaller than the threshold value (Rth).
 〔6〕本発明の代表的な別の実施の形態に係る検査装置(2)は、4端子法によって測定した測定対象物の直流抵抗の第1測定値(Rdc4)と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値(Rdc2)と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値(Rs)とを取得するデータ取得部(21)と、前記第1測定値および前記第2測定値と前記第3測定値との対応関係を示す第1モデル(35)を記憶する記憶部(22)と、前記記憶部に記憶された前記第1モデルに基づいて、前記データ取得部によって取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値(Rse)を算出する推定部(23)と、前記推定部によって算出した前記第3測定値の推定値と前記データ取得部によって取得した前記第3測定値との誤差(|Rse-Rs|)を算出し、前記誤差が閾値(Rth)より小さい場合に、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する補正処理を行う補正部(24)と、を備えることを特徴とする。 [6] The inspection device (2) according to another representative embodiment of the present invention includes a first measurement value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and a data acquisition unit (21) for acquiring a second measured value (Rdc2) of the DC resistance of the object to be measured and a third measured value (Rs) of the AC resistance of the object to be measured measured by the two-terminal method; , a storage unit (22) for storing a first model (35) indicating a correspondence relationship between the first measured value and the second measured value and the third measured value; and the first model stored in the storage unit (22). an estimating unit (23) for calculating an estimated value (Rse) of the third measured value corresponding to the first measured value and the second measured value acquired by the data acquiring unit, based on a model; Calculate the error (|Rse-Rs|) between the estimated value of the third measured value calculated by and the third measured value acquired by the data acquisition unit, and if the error is smaller than the threshold value (Rth), Correction for correcting the third measured value based on the first measured value and the second measured value obtained by the data obtaining unit, and outputting the corrected third measured value as an AC resistance value of the measurement object. and a correction unit (24) that performs processing.
 〔7〕上記〔6〕に記載の検査装置において、前記第1モデルは、前記第1測定値と前記第2測定値とを説明変数とし、2端子法による測定系に起因する抵抗成分の値を目的変数とする第2モデルと、前記第1測定値を説明変数とし、前記測定対象物に起因する抵抗成分の値を目的変数とする第3モデルとを含み、前記補正部は、前記補正処理として、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第2モデルにしたがって前記2端子法による測定系に起因する抵抗成分を算出するとともに当該2端子法による測定系に起因する抵抗成分に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力してもよい。 [7] In the inspection apparatus described in [6] above, the first model uses the first measured value and the second measured value as explanatory variables, and the value of the resistance component resulting from the measurement system according to the two-terminal method. and a third model having the first measured value as an explanatory variable and the value of the resistance component caused by the object to be measured as an objective variable, wherein the correction unit includes the correction As a process, based on the first measured value and the second measured value acquired by the data acquisition unit, a resistance component caused by the measurement system by the two-terminal method is calculated according to the second model, and the two-terminal method The third measured value may be corrected based on the resistance component caused by the measurement system, and the corrected third measured value may be output as the value of the AC resistance of the object to be measured.
 〔8〕本発明の代表的な実施の形態に係る学習済みモデル生成装置(3)は、4端子法によって測定した測定対象物の直流抵抗の第1測定値(Rdc4)、および2端子法によって測定した前記測定対象物の直流抵抗の第2測定値(Rdc2)に、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値(Rs)を対応付けた学習用測定データ(34_1~34_n)を取得する学習用測定データ取得部(31)と、前記学習用測定データを機械学習することにより、前記第1測定値および前記第2測定値を含む入力データに基づいて前記第3測定値を算出するようにコンピュータを機能させるための学習済みモデル(35)を生成する学習済みモデル生成部(32)と、を備えることを特徴とする。 [8] The trained model generation device (3) according to the representative embodiment of the present invention provides the first measured value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and the Learning measurement data (34_1) in which the third measurement value (Rs) of the AC resistance of the measurement object measured by the two-terminal method is associated with the second measurement value (Rdc2) of the DC resistance of the measurement object that has been measured 34_n), and machine-learning the measured data for learning to obtain the third measured data based on the input data including the first measured value and the second measured value. a trained model generation unit (32) for generating a trained model (35) for causing a computer to function to calculate the measured value.
 〔9〕上記〔8〕に記載の学習済みモデル生成装置において、前記学習済みモデルは、前記第1測定値と前記第2測定値とを説明変数とし、2端子法による測定系に起因する抵抗成分の値を目的変数とする第1回帰モデル(g(Rdc4,Rdc2))と、前記第1測定値を説明変数とし、前記測定対象物に起因する抵抗成分の値を目的変数とする第2回帰モデル(h(Rdc4))とを含み、前記学習済みモデル生成部は、前記学習用測定データを機械学習することにより、前記第1回帰モデルおよび前記第2回帰モデルの学習済みパラメータを調整してもよい。 [9] In the trained model generation device according to [8] above, the trained model uses the first measured value and the second measured value as explanatory variables, and the resistance caused by the measurement system by the two-terminal method. A first regression model (g (Rdc4, Rdc2)) whose objective variable is the value of the component, and a second regression model (g (Rdc4, Rdc2)) whose explanatory variable is the first measured value and whose objective variable is the value of the resistance component caused by the measurement object. and a regression model (h(Rdc4)), wherein the learned model generation unit adjusts the learned parameters of the first regression model and the second regression model by performing machine learning on the learning measurement data. may
 〔10〕本発明の代表的な実施の形態に係る検査方法は、4端子法によって測定した測定対象物の直流抵抗の第1測定値(Rdc4)と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値(Rdc2)と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値(Rs)とを取得する第1ステップ(S11~S14)と、入力した前記第1測定値および前記第2測定値に基づいて前記第3測定値を推定するようにコンピュータを機能させるための学習済みモデル(35)に基づいて、前記第1ステップによって取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値(Rse)を算出する第2ステップ(S15)と、前記第3測定値の推定値に応じて、前記第1ステップにおいて取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値(Rsr)として出力する第3ステップ(S17,S18)と、を含むことを特徴とする。 [10] An inspection method according to a representative embodiment of the present invention includes a first measurement value (Rdc4) of the DC resistance of a measurement object measured by a four-terminal method, and the measurement object measured by a two-terminal method A first step (S11 to S14) of acquiring a second measured value (Rdc2) of the DC resistance of and a third measured value (Rs) of the AC resistance of the measurement object measured by the two-terminal method, and input said first measured value obtained by said first step based on a trained model (35) for operating a computer to estimate said third measured value based on said first measured value and said second measured value; A second step (S15) of calculating an estimated value (Rse) of the third measured value corresponding to the measured value and the second measured value, and according to the estimated value of the third measured value, in the first step A third step of correcting the third measured value based on the obtained first measured value and the second measured value, and outputting the corrected third measured value as an AC resistance value (Rsr) of the object to be measured. (S17, S18).
 〔11〕本発明の代表的な別の実施の形態に係る検査方法は、4端子法によって測定した測定対象物の直流抵抗の第1測定値(Rdc4)と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値(Rdc2)と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値(Rs)とを取得する第1ステップ(S11~S14)と、前記第1測定値および前記第2測定値と前記第3測定値との対応関係を示す第1モデル(35)に基づいて、前記第1ステップにおいて取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値(Rse)を算出する第2ステップ(S15)と、前記第2ステップにおいて算出した前記第3測定値の推定値と前記第1ステップにおいて取得した前記第3測定値との誤差(|Rse-Rs|)を算出する第3ステップ(S16)と、前記誤差が閾値(Rth)より小さい場合に、前記第1ステップにおいて取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する第4ステップ(S17,S18)と、前記誤差が前記閾値より大きい場合に、前記第1ステップにおいて取得した前記第3測定値を前記測定対象物の交流抵抗の値として出力する第5ステップ(S19)と、を含むことを特徴とする。 [11] An inspection method according to another representative embodiment of the present invention includes a first measurement value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and the measurement measured by the two-terminal method A first step (S11 to S14) of acquiring a second measured value (Rdc2) of the DC resistance of the object and a third measured value (Rs) of the AC resistance of the object measured by the two-terminal method; the first measured value and the second measurement obtained in the first step, based on a first model (35) showing the correspondence relationship between the first measured value and the second measured value and the third measured value; A second step (S15) of calculating an estimated value (Rse) of the third measured value corresponding to the value, and the estimated value of the third measured value calculated in the second step and the obtained in the first step A third step (S16) of calculating an error (|Rse−Rs|) with a third measured value, and if the error is smaller than a threshold value (Rth), the first measured value obtained in the first step and a fourth step (S17, S18) of correcting the third measured value based on the second measured value and outputting the corrected third measured value as the value of the AC resistance of the object to be measured; and a fifth step (S19) of outputting the third measured value obtained in the first step as the value of the AC resistance of the object to be measured when the measured value is greater than a threshold value.
 〔12〕本発明の代表的な実施の形態に係る検査用プログラムは、コンピュータに、上記〔10〕または〔11〕に記載の検査方法における各ステップを実行させることを特徴する。 [12] An inspection program according to a representative embodiment of the present invention is characterized by causing a computer to execute each step in the inspection method described in [10] or [11] above.
 〔13〕本発明の代表的な実施の形態に係る学習済みモデル生成方法は、4端子法によって測定した測定対象物の直流抵抗の第1測定値(Rdc4)、および2端子法によって測定した前記測定対象物の直流抵抗の第2測定値(Rdc2)に、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値(Rs)を対応付けた学習用測定データ(34_1~34_n)を取得する第1ステップ(S1~S2)と、前記第1ステップにおいて取得した前記学習用測定データを機械学習することにより、前記第1測定値および前記第2測定値を含む入力データに基づいて前記第3測定値を算出するようにコンピュータを機能させるための学習済みモデル(35)を生成する第2ステップ(S3)と、を含むことを特徴とする。 [13] A trained model generation method according to a representative embodiment of the present invention includes a first measurement value (Rdc4) of the DC resistance of the measurement object measured by the four-terminal method, and Measurement data for learning (34_1 to 34_n) in which the third measurement value (Rs) of the AC resistance of the measurement object measured by the two-terminal method is associated with the second measurement value (Rdc2) of the DC resistance of the measurement object and performing machine learning on the learning measurement data acquired in the first step, based on the input data including the first measurement value and the second measurement value and a second step (S3) of generating a trained model (35) for activating a computer to calculate said third measure.
 〔14〕本発明の代表的な実施の形態に係る学習済みモデル生成用プログラムは、コンピュータに、上記〔13〕に記載の学習済みモデル生成方法における各ステップを実行させることを特徴とする。 [14] A trained model generation program according to a representative embodiment of the present invention is characterized by causing a computer to execute each step in the trained model generation method described in [13] above.
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。
2. Specific Examples of Embodiments Specific examples of embodiments of the present invention will be described below with reference to the drawings. In the following description, constituent elements common to each embodiment are denoted by the same reference numerals, and repeated descriptions are omitted.
 図1は、実施の形態に係る学習済みモデル生成装置3および検査装置2を備えた検査システム1の構成を示す図である。 FIG. 1 is a diagram showing the configuration of an inspection system 1 including a trained model generation device 3 and an inspection device 2 according to an embodiment.
 図1に示す検査システム1は、測定対象物(以下、「DUT」とも称する。)の良否を検査するシステムである。図1に示すように、検査システム1は、DUTの複数の測定結果に基づく学習用測定データを機械学習によって学習して学習済みモデルを生成する学習済みモデル生成装置3と、生成した学習済みモデルを用いてDUTの検査を行う検査装置2とを備えている。 The inspection system 1 shown in FIG. 1 is a system for inspecting the quality of an object to be measured (hereinafter also referred to as "DUT"). As shown in FIG. 1, an inspection system 1 includes a trained model generation device 3 that generates a trained model by learning measurement data for learning based on a plurality of measurement results of a DUT by machine learning, and a trained model that has been generated. and an inspection device 2 for inspecting the DUT using a.
 検査装置2は、DUTの電気的特性を測定し、その測定結果に基づいてDUTの良否を検査する装置である。例えば、検査装置2は、小型の電子部品(チップ部品)の良否を検査し、良品と判定したチップ部品を出荷可能な状態にパッケージングする装置(所謂チップテーピング機)である。 The inspection device 2 is a device that measures the electrical characteristics of the DUT and inspects the quality of the DUT based on the measurement results. For example, the inspection device 2 is a device (a so-called chip taping machine) that inspects the quality of small electronic components (chip components) and packages the chip components determined to be non-defective in a state ready for shipment.
 本実施の形態において、DUTがインダクタ素子(例えば、チップインダクタ素子)である場合を例にとり説明するが、これに限定されるものではない。 In the present embodiment, the case where the DUT is an inductor element (eg, chip inductor element) will be described as an example, but it is not limited to this.
 検査装置2は、後述する学習済みモデルを用いて、DUTとしてのインダクタ素子の電気的特性を測定する。具体的に、検査装置2は、図1に示すように、データ処理制御装置10、第1測定部11、第2測定部12、操作部13、出力部14、および搬送機構15を備えている。 The inspection device 2 measures the electrical characteristics of the inductor element as the DUT using the learned model described later. Specifically, the inspection apparatus 2 includes a data processing control device 10, a first measurement section 11, a second measurement section 12, an operation section 13, an output section 14, and a transport mechanism 15, as shown in FIG. .
 第1測定部11は、DUTとしてのインダクタ素子の電気的特性を4端子法によって測定する装置である。第1測定部11としては、4端子法によるインピーダンスの測定が可能な抵抗計やLCRメータ等のインピーダンス測定器を例示することができる。 The first measurement unit 11 is a device that measures the electrical characteristics of an inductor element as a DUT by the four-terminal method. As the first measurement unit 11, an impedance measuring instrument such as a resistance meter or an LCR meter capable of measuring impedance by the four-terminal method can be exemplified.
 第2測定部12は、DUTとしてのインダクタ素子の電気的特性を2端子法によって測定する装置である。第2測定部12としては、2端子法によるインピーダンスの測定が可能なLCRメータ等のインピーダンス測定器を例示することができる。 The second measurement unit 12 is a device that measures the electrical characteristics of an inductor element as a DUT by the two-terminal method. As the second measuring unit 12, an impedance measuring instrument such as an LCR meter capable of measuring impedance by a two-terminal method can be exemplified.
 なお、第1測定部11および第2測定部12は、DUTのインピーダンス等の電気的特性を測定可能な装置であればよく、上述の例に限定されない。 Note that the first measurement unit 11 and the second measurement unit 12 are not limited to the above examples as long as they are devices capable of measuring electrical characteristics such as impedance of the DUT.
 第1測定部11は、データ処理制御装置10からの指示に応じて、DUTとしてのインダクタ素子の直流抵抗を4端子法によって測定する。例えば、第1測定部11は、プローブ61a~61dを移動させる移動機構(不図示)と、電流出力部および電圧検出部(不図示)と、検出結果に基づいて測定値を算出する測定値算出部(不図示)とを有している。 The first measurement unit 11 measures the DC resistance of the inductor element as the DUT by the four-terminal method in accordance with the instruction from the data processing control device 10 . For example, the first measurement unit 11 includes a moving mechanism (not shown) that moves the probes 61a to 61d, a current output unit and a voltage detection unit (not shown), and a measurement value calculation that calculates a measurement value based on the detection result. (not shown).
 第1測定部11は、例えば、データ処理制御装置10から測定実行の指示を受け付けた場合に、第1測定部11の移動機構が、所定の測定位置に搬送されたインダクタ素子の一方の端子にプローブ61a,61cを接触させるとともに、インダクタ素子の他方の端子にプローブ61b,61dを接触させる。次に、第1測定部11の電流出力部が、プローブ61a,61bを介して直流電流をインダクタ素子に供給する。第1測定部11の電圧検出部は、直流電流をインダクタ素子に供給したときのインダクタ端子間の電圧値をプローブ61c,61dを介して検出する。第1測定部11の測定値算出部は、検出した電圧値とインダクタ素子に供給した直流電流の電流値とに基づいて、インダクタ素子の直流抵抗の測定値Rdc4を算出する。 For example, when the first measurement unit 11 receives an instruction to perform measurement from the data processing control device 10, the movement mechanism of the first measurement unit 11 connects one terminal of the inductor element transported to the predetermined measurement position. The probes 61a and 61c are brought into contact, and the other terminals of the inductor elements are brought into contact with the probes 61b and 61d. Next, the current output section of the first measuring section 11 supplies a DC current to the inductor element via the probes 61a and 61b. The voltage detection section of the first measurement section 11 detects the voltage value between the inductor terminals through the probes 61c and 61d when the DC current is supplied to the inductor element. The measured value calculator of the first measuring unit 11 calculates a measured value Rdc4 of the DC resistance of the inductor element based on the detected voltage value and the current value of the DC current supplied to the inductor element.
 第2測定部12は、データ処理制御装置10からの指示に応じて、DUTとしてのインダクタ素子の直流抵抗、交流抵抗、およびインダクタンスを2端子法によって測定する。例えば、第2測定部12は、プローブ62a,62bを移動させる移動機構(不図示)と、電流出力部および電圧検出部(不図示)と、検出結果に基づいて測定値を算出する測定値算出部(不図示)とを有している。 The second measurement unit 12 measures the DC resistance, AC resistance, and inductance of the inductor element as the DUT according to the instruction from the data processing control device 10 by the two-terminal method. For example, the second measurement unit 12 includes a moving mechanism (not shown) that moves the probes 62a and 62b, a current output unit and a voltage detection unit (not shown), and a measurement value calculator that calculates a measurement value based on the detection result. (not shown).
 例えば、第2測定部12は、データ処理制御装置10から測定実行の指示を受け付けた場合に、第2測定部12の移動機構が、所定の測定位置に搬送されたインダクタ素子の一方の端子にプローブ62aを接触させるとともに、インダクタ素子の他方の端子にプローブ62bを接触させる。次に、第2測定部12の電流出力部が、プローブ62a,62bを介して直流電流をインダクタ素子に供給し、第2測定部12の電圧検出部が、インダクタ素子の両端子間の電圧値をプローブ62a,62bを介して検出する。第2測定部12の測定値算出部は、検出した電圧値とインダクタ素子に供給した直流電流の電流値とに基づいて、インダクタ素子の直流抵抗の測定値Rdc2を算出する。 For example, when the second measurement unit 12 receives an instruction to perform measurement from the data processing control device 10, the movement mechanism of the second measurement unit 12 connects one terminal of the inductor element transported to the predetermined measurement position. The probe 62a is brought into contact, and the other terminal of the inductor element is brought into contact with the probe 62b. Next, the current output section of the second measuring section 12 supplies a DC current to the inductor element via the probes 62a and 62b, and the voltage detecting section of the second measuring section 12 detects the voltage value between both terminals of the inductor element. are detected via probes 62a and 62b. The measured value calculator of the second measuring unit 12 calculates a measured value Rdc2 of the DC resistance of the inductor element based on the detected voltage value and the current value of the DC current supplied to the inductor element.
 また、第2測定部12の移動機構によってインダクタ素子の両端子にプローブ62a,62bをそれぞれ接触させた状態において、第2測定部12の電流出力部が、プローブを介して交流電流をインダクタ素子に供給し、第2測定部12の電圧検出部が、インダクタ素子の両端子間の交流電圧値をプローブ62a,62bを介して検出する。第2測定部12の測定値算出部は、検出した交流電圧値(電圧実効値)と、インダクタ素子に供給した交流電流の交流電流値(電流実効値)と、交流電圧と交流電流との位相差と、に基づいてインダクタ素子の交流抵抗の測定値Rsおよびインダクタンスの測定値Lを算出する。 In addition, in a state in which the probes 62a and 62b are brought into contact with both terminals of the inductor element by the moving mechanism of the second measuring section 12, the current output section of the second measuring section 12 outputs an alternating current to the inductor element through the probe. The voltage detection section of the second measurement section 12 detects the AC voltage value between both terminals of the inductor element via the probes 62a and 62b. The measured value calculator of the second measuring unit 12 calculates the detected AC voltage value (voltage effective value), the AC current value (current effective value) of the AC current supplied to the inductor element, and the position of the AC voltage and the AC current. A measured value Rs of the AC resistance and a measured value L of the inductance of the inductor element are calculated based on the phase difference.
 なお、第1測定部11および第2測定部12の一部の機能は、データ処理制御装置10によって実現してもよい。例えば、第1測定部11および第2測定部12の各測定値算出部による上記演算は、データ処理制御装置10が実行してもよい。 Some functions of the first measurement unit 11 and the second measurement unit 12 may be realized by the data processing control device 10. For example, the data processing control device 10 may perform the above calculations by the measurement value calculation units of the first measurement unit 11 and the second measurement unit 12 .
 操作部13は、ユーザが検査装置2を操作するための入力インターフェースである。操作部13としては、各種のボタンやタッチパネル等を例示することができる。例えば、ユーザが操作部13を操作することにより、DUTとしてのインダクタ素子を検査するための各種検査条件等を検査装置2に設定するとともに、検査等の実行および停止を検査装置2に指示することができる。 The operation unit 13 is an input interface for the user to operate the inspection device 2 . Various buttons, a touch panel, and the like can be exemplified as the operation unit 13 . For example, by operating the operation unit 13, the user sets various inspection conditions and the like for inspecting an inductor element as a DUT in the inspection device 2, and instructs the inspection device 2 to perform and stop inspection and the like. can be done.
 出力部14は、検査装置2における検査条件や検査結果などの各種情報を出力するための機能部である。出力部14は、例えば、LCD(Liquid Crystal Display)や有機ELを備えた表示装置である。例えば、出力部14は、ユーザによる操作部13の操作によってDUTの検査の実行が指示された場合に、データ処理制御装置10による制御に応じて検査結果等の情報を画面に表示する。 The output unit 14 is a functional unit for outputting various information such as inspection conditions and inspection results in the inspection device 2 . The output unit 14 is, for example, a display device equipped with an LCD (Liquid Crystal Display) or an organic EL. For example, the output unit 14 displays information such as inspection results on the screen according to the control by the data processing control device 10 when the user operates the operation unit 13 to instruct execution of inspection of the DUT.
 なお、出力部14は、操作部13としての一部の機能を実現するタッチパネルを備えた表示装置であってもよい。また、出力部14は、検査結果等のデータを有線または無線によって外部に出力する通信回路等を含んでいてもよい。 It should be noted that the output unit 14 may be a display device having a touch panel that realizes a part of the functions of the operation unit 13. In addition, the output unit 14 may include a communication circuit or the like for outputting data such as test results to the outside by wire or wirelessly.
 搬送機構15は、データ処理制御装置10の制御に応じて、検査装置2内の適切な箇所に検査対象のインダクタ素子を搬送する装置である。例えば、第1測定部11による測定を行う際に、搬送機構15は、検査対象のインダクタ素子を第1測定部11による所定の測定位置まで搬送する。また、例えば、第2測定部12による測定を行う際に、搬送機構15は、検査対象のインダクタ素子を第2測定部12による所定の測定位置まで搬送する。更に、搬送機構15は、検査が終了したインダクタ素子のうち良品と判定されたインダクタ素子をパッケージングするための位置まで搬送し、パッケージングしたインダクタ素子を次の工程における所定の場所まで搬送する。 The transport mechanism 15 is a device that transports the inductor element to be inspected to an appropriate location within the inspection device 2 under the control of the data processing control device 10 . For example, when performing measurement by the first measurement unit 11 , the transport mechanism 15 transports the inductor element to be inspected to a predetermined measurement position by the first measurement unit 11 . Further, for example, when the second measurement unit 12 performs measurement, the transport mechanism 15 transports the inductor element to be inspected to a predetermined measurement position by the second measurement unit 12 . Further, the transport mechanism 15 transports inductor elements determined to be non-defective among the inductor elements that have been inspected to a position for packaging, and transports the packaged inductor elements to a predetermined location in the next step.
 データ処理制御装置10は、検査装置2内の各機能部を統括的に制御するとともに、DUTの検査のための各種のデータ処理を行う機能部である。例えば、データ処理制御装置10は、CPU等のプロセッサと、ROMやRAM、フラッシュメモリ等の記憶装置と、タイマ等の周辺回路とを有するプログラム処理装置である。プログラム処理装置としては、例えば、MCUやFPGA等を例示することができる。 The data processing control device 10 is a functional unit that comprehensively controls each functional unit in the inspection device 2 and performs various data processing for inspection of the DUT. For example, the data processing control device 10 is a program processing device having a processor such as a CPU, storage devices such as ROM, RAM, and flash memory, and peripheral circuits such as timers. Examples of program processing devices include MCUs and FPGAs.
 データ処理制御装置10は、第1測定部11および第2測定部12による測定結果を取得し、取得した測定結果に基づいてインダクタ素子の性能を示す指標を算出するとともに、算出した指標に基づいて検査対象のインダクタ素子の良否を判定する。ここで、インダクタ素子の性能を示す指標は、例えば、Q値である。 The data processing control device 10 acquires the measurement results from the first measurement unit 11 and the second measurement unit 12, calculates an index indicating the performance of the inductor element based on the acquired measurement results, and based on the calculated index, Determining whether the inductor element to be inspected is good or bad. Here, the index indicating the performance of the inductor element is, for example, the Q value.
 上述したように、2端子法によってインダクタ素子の交流抵抗を測定した場合、その測定値は、2端子法による測定系に起因する抵抗成分の影響を受ける。そこで、本実施の形態に係る検査装置2のデータ処理制御装置10は、第1測定部11および第2測定部12による測定結果に基づいて検査対象のインダクタ素子の性能を示す指標(Q値)を算出する際に、必要に応じて、予め生成された学習済みモデルを用いて第2測定部12によって測定した交流抵抗の測定値Rsを補正する。 As described above, when the AC resistance of an inductor element is measured by the two-terminal method, the measured value is affected by the resistance component caused by the measurement system by the two-terminal method. Therefore, the data processing control device 10 of the inspection device 2 according to the present embodiment provides an index (Q value) indicating the performance of the inductor element to be inspected based on the measurement results of the first measurement unit 11 and the second measurement unit 12. is calculated, if necessary, the measured value Rs of the AC resistance measured by the second measuring unit 12 is corrected using a pre-generated learned model.
 ここで、データ処理制御装置10が行う、学習済みモデルを用いた交流抵抗の測定値Rsの補正について詳細に説明する前に、学習済みモデルの生成方法について説明する。 Here, before describing in detail the correction of the AC resistance measurement value Rs using the learned model performed by the data processing control device 10, the method of generating the learned model will be described.
 図2は、実施の形態に係る検査システム1における学習済みモデル生成装置3の構成の一例を示す図である。 FIG. 2 is a diagram showing an example of the configuration of the learned model generation device 3 in the inspection system 1 according to the embodiment.
 学習済みモデル生成装置3は、例えば、サーバやパーソナルコンピュータ(PC)等の情報処理装置(コンピュータ)によって実現され、インストールされた学習済みモデル生成用プログラムにしたがって複数の学習用測定データ34_1~34_n(nは2以上の整数)を生成するとともに、生成した学習用測定データを所定のアルゴリズムに基づいて機械学習することにより、学習済みモデル35を生成する装置である。 The trained model generation device 3 is realized by, for example, an information processing device (computer) such as a server or a personal computer (PC), and generates a plurality of learning measurement data 34_1 to 34_n ( n is an integer equal to or greater than 2), and machine-learning the generated measurement data for learning based on a predetermined algorithm to generate a trained model 35 .
 なお、説明の都合上、図1において学習済みモデル生成装置3と検査装置2とを並べて配置しているが、学習済みモデル生成装置3と検査装置2とは、必ずしも同じ場所に設置されている必要はない。例えば、検査装置2と学習済みモデル生成装置3とが互いに異なる場所に設置され、LANやインターネット等の通信ネットワークを介して接続されていてもよい。この場合、検査装置2と学習済みモデル生成装置3とは、検査装置2による測定データや学習済みモデル35等の各種データを通信ネットワークを介して互いに送受信してもよい。 For convenience of explanation, the trained model generation device 3 and the inspection device 2 are arranged side by side in FIG. No need. For example, the inspection device 2 and the trained model generation device 3 may be installed at different locations and connected via a communication network such as a LAN or the Internet. In this case, the inspection device 2 and the learned model generation device 3 may transmit and receive various data such as measurement data by the inspection device 2 and the learned model 35 to and from each other via a communication network.
 また、DUTの検査時において、検査装置2と学習済みモデル生成装置3とが互いに電気的に接続されていなくてもよい。例えば、検査前または検査後において、検査装置2による測定データや学習済みモデル35等の各種データのやり取りをメモリカード等の記憶媒体を介して行ってもよい。 In addition, the inspection device 2 and the learned model generation device 3 do not have to be electrically connected to each other during inspection of the DUT. For example, before or after inspection, measurement data by the inspection device 2 and various data such as the learned model 35 may be exchanged via a storage medium such as a memory card.
 本実施の形態において、学習済みモデル35は、検査対象のインダクタ素子の交流抵抗の測定値Rsを推定するためのモデルである。なお、学習済みモデル生成装置3によって生成された学習済みモデル35は、ネットワークを介して流通可能であってもよいし、メモリカード等のコンピュータが読み取り可能な記憶媒体(Non-transitory computer readable medium)に書き込まれて流通可能であってもよい。 In the present embodiment, the learned model 35 is a model for estimating the measured value Rs of the AC resistance of the inductor element to be inspected. The trained model 35 generated by the trained model generation device 3 may be distributed via a network, or may be stored in a computer-readable storage medium (non-transitory computer readable medium) such as a memory card. It may be written in and circulated.
 学習済みモデル生成装置3は、学習済みモデル35を生成するための機能ブロックとして、例えば、学習用測定データ取得部31、学習済みモデル生成部32、および記憶部33を有している。これらの各機能ブロックは、学習済みモデル生成装置3としての情報処理装置を構成するCPUやメモリ等のハードウェア資源が、上記情報処理装置にインストールされたソフトウエア(学習済みモデル生成用プログラムを含む各種プログラム)と協働することによって、実現される。 The trained model generation device 3 has, for example, a learning measurement data acquisition unit 31, a trained model generation unit 32, and a storage unit 33 as functional blocks for generating a trained model 35. Each of these functional blocks is composed of hardware resources such as a CPU and a memory that constitute an information processing device as the trained model generation device 3, and software installed in the information processing device (including a trained model generation program). It is realized by collaborating with various programs).
 学習用測定データ取得部31は、学習済みモデル35の生成に必要な学習用測定データ34_1~34_nを取得する機能部である。 The learning measurement data acquisition unit 31 is a functional unit that acquires the learning measurement data 34_1 to 34_n necessary for generating the trained model 35.
 ここで、学習用測定データ34_1~34_nは、4端子法によって測定したDUTの直流抵抗の測定値Rdc4(第1測定値)と、2端子法によって測定したDUTの直流抵抗の測定値Rdc2(第2測定値)とに、2端子法によって測定したDUTの交流抵抗の測定値Rs(第3測定値)を対応付けたデータ対である。
 以下の説明において、各学習用測定データ34_1~34_nを区別しない場合には、単に、「学習用測定データ34」と表記する。
Here, the measured data for learning 34_1 to 34_n are the measured value Rdc4 (first measured value) of the DC resistance of the DUT measured by the four-terminal method and the measured value Rdc2 (first measured value) of the DC resistance of the DUT measured by the two-terminal method. 2 measured value) and the measured value Rs (third measured value) of the AC resistance of the DUT measured by the two-terminal method.
In the following description, when the learning measurement data 34_1 to 34_n are not distinguished, they are simply referred to as "learning measurement data 34".
 学習用測定データ取得部31は、例えば、図示されない無線または有線の通信、またはメモリカード等の記憶媒体を介して、4端子法によって測定されたインダクタ素子の直流抵抗の測定値Rdc4のデータ41と、2端子法によって測定されたインダクタ素子の直流抵抗の測定値Rdc2のデータ42と、2端子法によって測定された交流抵抗の測定値Rsのデータ43とを含むデータ対を取得する。学習用測定データ取得部31は、検査されたインダクタ素子毎にデータ対を取得する。データ対としては、例えば、過去に検査装置2等によって検査されたインダクタ素子の測定結果を用いればよい。 The learning measurement data acquisition unit 31 acquires the data 41 of the measured value Rdc4 of the DC resistance of the inductor element measured by the four-terminal method, for example, via wireless or wired communication (not shown) or a storage medium such as a memory card. , a data pair including data 42 of the measured value Rdc2 of the DC resistance of the inductor element measured by the two-terminal method and data 43 of the measured value Rs of the AC resistance measured by the two-terminal method. The learning measurement data acquisition unit 31 acquires a data pair for each inspected inductor element. As data pairs, for example, measurement results of inductor elements inspected by the inspection apparatus 2 or the like in the past may be used.
 学習用測定データ取得部31は、例えば、取得したデータ対に含まれる直流抵抗の測定値Rdc4,Rdc2に、当該データ対に含まれる交流抵抗の測定値Rsを正解値として対応付けることにより、一つの学習用測定データ34を生成する。学習用測定データ取得部31は、検査されたインダクタ素子の測定結果毎に学習用測定データ34_1~34_nを生成し、記憶部33に記憶する。 For example, the learning measurement data acquisition unit 31 associates the DC resistance measurement values Rdc4 and Rdc2 included in the acquired data pair with the AC resistance measurement value Rs included in the data pair as a correct value, thereby obtaining one Generate measurement data for learning 34 . The learning measurement data acquisition unit 31 generates learning measurement data 34_1 to 34_n for each measurement result of the inspected inductor element, and stores the learning measurement data 34_1 to 34_n in the storage unit 33 .
 なお、学習用測定データ取得部31は、上述したように、自ら学習用測定データ34を生成する代わりに、別の情報処理装置等によって生成された学習用測定データ34を通信または記憶媒体を介して取得してもよい。 As described above, instead of generating the learning measurement data 34 by itself, the learning measurement data acquiring unit 31 receives the learning measurement data 34 generated by another information processing device or the like via communication or a storage medium. may be obtained by
 学習済みモデル生成部32は、学習用測定データ取得部31によって取得した複数の学習用測定データ34_1~34_nを機械学習することにより、学習済みモデル35を生成する機能部である。 The trained model generation unit 32 is a functional unit that generates a trained model 35 by performing machine learning on a plurality of learning measurement data 34_1 to 34_n acquired by the learning measurement data acquisition unit 31.
 学習済みモデル35は、所定のアルゴリズムに基づく機械学習によって生成されたプログラムである。所定のアルゴリズムとしては、多項式回帰や重回帰等を例示することができる。 The trained model 35 is a program generated by machine learning based on a predetermined algorithm. Examples of the predetermined algorithm include polynomial regression, multiple regression, and the like.
 本実施の形態において、学習済みモデル35は、4端子法によって測定したDUTの直流抵抗の測定値Rdc4(第1測定値)と2端子法によって測定したDUTの直流抵抗の測定値Rdc2(第2測定値)とを含む入力データに基づいて、2端子法によって測定したDUTの交流抵抗の測定値Rsを推定するように、コンピュータ(MPU等)を機能させるための関数である。 In this embodiment, the trained model 35 includes a measured value Rdc4 (first measured value) of the DC resistance of the DUT measured by the four-terminal method and a measured value Rdc2 (second measured value) of the DC resistance of the DUT measured by the two-terminal method. A function for causing a computer (MPU, etc.) to estimate the measured value Rs of the AC resistance of the DUT measured by the two-terminal method, based on the input data including the measured value).
 換言すれば、学習済みモデル35は、入力された測定データ(直流抵抗の測定値Rdc4,Rdc2)に対して、所定の学習済みパラメータに基づく演算を行い、当該測定データに基づく交流抵抗を定量化した値(推定値)を出力するように、情報処理装置(コンピュータ)を機能させるためのプログラムである。 In other words, the learned model 35 performs calculations based on predetermined learned parameters on the input measurement data (measured values Rdc4 and Rdc2 of the DC resistance), and quantifies the AC resistance based on the measurement data. It is a program for causing an information processing device (computer) to function so as to output the calculated value (estimated value).
 例えば、学習済みモデル35は、2端子法による測定系に起因する抵抗成分Rcを表すモデルと、測定対象物(DUT)に起因する抵抗成分を表すモデルとを含む。 For example, the learned model 35 includes a model representing the resistance component Rc caused by the measurement system by the two-terminal method and a model representing the resistance component caused by the object to be measured (DUT).
 ここで、2端子法による測定系に起因する抵抗成分には、例えば、第2測定部12とDUTとの間に存在するケーブルやプローブ等から成る線路の抵抗成分と、プローブとDUTとの接触状態に起因する抵抗成分(所謂接触抵抗)と、が含まれる。 Here, the resistance component caused by the measurement system by the two-terminal method includes, for example, the resistance component of the line composed of cables, probes, etc. existing between the second measuring section 12 and the DUT, and the contact between the probe and the DUT. and a resistance component (so-called contact resistance) caused by the state.
 2端子法による測定系に起因する抵抗成分Rcを表すモデル(第1モデル)は、例えば、4端子法による直流抵抗の測定値Rdc4(第1測定値)と2端子法による直流抵抗の測定値Rdc2(第2測定値)とを説明変数とし、2端子法による測定系に起因する抵抗成分の値を目的変数とする回帰モデルである。換言すれば、2端子法による測定系に起因する抵抗成分(Rc)を表すモデルは、直流抵抗の測定値Rdc4,Rdc2から2端子法による測定系に起因する抵抗成分Rcを算出する関数である。 The model (first model) representing the resistance component Rc caused by the measurement system by the two-terminal method is, for example, the measured value Rdc4 (first measured value) of the DC resistance by the four-terminal method and the measured value of the DC resistance by the two-terminal method. Rdc2 (second measured value) is an explanatory variable, and the value of the resistance component caused by the measurement system by the two-terminal method is a regression model as an objective variable. In other words, the model representing the resistance component (Rc) caused by the measurement system by the two-terminal method is a function for calculating the resistance component Rc caused by the measurement system by the two-terminal method from the measured values Rdc4 and Rdc2 of the DC resistance. .
 DUTに起因する抵抗成分を表すモデル(第2モデル)は、例えば、4端子法による直流抵抗の測定値Rdc4(第1測定値)を説明変数とし、DUTに起因する抵抗成分の値を目的変数とする回帰モデルである。換言すれば、DUTに起因する抵抗成分を表すモデルは、4端子法による直流抵抗の測定値Rdc4からDUTに起因する交流抵抗の値を推定する関数である。 A model (second model) representing the resistance component caused by the DUT has, for example, the DC resistance measured value Rdc4 (first measured value) by the four-terminal method as an explanatory variable, and the value of the resistance component caused by the DUT as the objective variable. It is a regression model with In other words, the model representing the resistance component caused by the DUT is a function that estimates the value of the AC resistance caused by the DUT from the measured value Rdc4 of the DC resistance by the four-terminal method.
 2端子法による測定系に起因する抵抗成分(Rc)を表すモデルをg(Rdc4,Rdc2)、DUTに起因する抵抗成分を表すモデルをh(Rdc4)としたとき、交流抵抗の測定値の推定値Rseを算出するための関数としての学習済みモデル35は、例えば、Rse=g(Rdc4,Rdc2)+h(Rdc4)と表すことができる。 When the model representing the resistance component (Rc) due to the measurement system by the two-terminal method is g (Rdc4, Rdc2) and the model representing the resistance component due to the DUT is h (Rdc4), the measured value of the AC resistance is estimated. The learned model 35 as a function for calculating the value Rse can be expressed as, for example, Rse=g(Rdc4, Rdc2)+h(Rdc4).
 すなわち、交流抵抗の測定値の推定値Rseは、モデルg(Rdc4,Rdc2)によって求めた2端子法による測定系に起因する抵抗成分Rcと、モデルh(Rdc4)によって求めたDUTに起因する抵抗成分との和によって表される。 That is, the estimated value Rse of the measured value of the AC resistance is the resistance component Rc due to the measurement system by the two-terminal method obtained by the model g (Rdc4, Rdc2) and the resistance due to the DUT obtained by the model h (Rdc4). It is represented by the sum of the components.
 モデルg(Rdc4,Rdc2)およびモデルh(Rdc4)は、学習済みパラメータを含む。学習済みパラメータとは、学習用測定データ34_1~34_nを学習用プログラム(上記所定のアルゴリズムに基づくプログラム)に対する入力として用いて、交流抵抗の測定値の推定値Rseを算出するように機械的に調整された、モデルg(Rdc4,Rdc2)およびモデルh(Rdc4)の係数である。 Model g (Rdc4, Rdc2) and model h (Rdc4) contain learned parameters. The learned parameters are mechanically adjusted so as to calculate the estimated value Rse of the AC resistance measurement value using the learning measurement data 34_1 to 34_n as inputs to the learning program (the program based on the predetermined algorithm). are the coefficients of model g(Rdc4, Rdc2) and model h(Rdc4) obtained by
 学習済みモデル生成部32は、学習用測定データ34_1~34_nを機械学習することにより、モデルg(Rdc4,Rdc2)およびモデルh(Rdc4)の学習済みパラメータを調整する。 The learned model generation unit 32 adjusts the learned parameters of the model g (Rdc4, Rdc2) and the model h (Rdc4) by performing machine learning on the learning measurement data 34_1 to 34_n.
 例えば、学習済みモデル生成部32は、先ず、学習用測定データ34_1~34_nを回帰モデルにそれぞれ入力することによって算出された交流抵抗の測定値の推定値Rseと、正解値である交流抵抗の測定値Rsとの差(誤差)を算出する。次に、学習済みモデル生成部32は、例えば誤差逆伝搬法によって、算出した誤差が小さくなるように上記回帰モデルの学習済みパラメータ(係数)を逐次更新することにより、上記回帰モデルを生成し、学習済みモデル35として記憶部33に記憶する。 For example, the trained model generation unit 32 first generates an estimated value Rse of the measured value of the AC resistance calculated by inputting the learning measurement data 34_1 to 34_n into the regression model, and the measured value of the AC resistance which is the correct value. A difference (error) from the value Rs is calculated. Next, the learned model generation unit 32 generates the regression model by sequentially updating the learned parameters (coefficients) of the regression model so that the calculated error becomes smaller, for example, by the error back propagation method, It is stored in the storage unit 33 as a trained model 35 .
 記憶部33は、学習済みモデル35を生成するために必要な学習用測定データ34_1~34_nや生成された学習済みモデル35等の各種データを記憶するための機能部である。 The storage unit 33 is a functional unit for storing various data such as the learning measurement data 34_1 to 34_n necessary for generating the trained model 35 and the generated trained model 35.
 記憶部33は、例えば、外部からアクセス可能に構成されている。例えば、検査装置2が学習済みモデル生成装置3と通信を行うことにより、検査装置2が記憶部33から学習済みモデル35を読み出して取得することが可能となっている。また、例えば、検査装置2が学習済みモデル生成装置3と通信を行うことにより、検査装置2が測定結果のデータ等を記憶部33に書き込むことが可能となっている。 The storage unit 33 is configured to be accessible from the outside, for example. For example, the inspection device 2 can read and acquire the learned model 35 from the storage unit 33 by communicating with the trained model generation device 3 . Further, for example, the inspection device 2 can write the data of the measurement results and the like to the storage unit 33 by communicating with the trained model generation device 3 .
 図3は、実施の形態に係る学習済みモデル生成装置3による学習済みモデル35の生成の流れを示すフローチャートである。 FIG. 3 is a flow chart showing the flow of generation of the learned model 35 by the trained model generation device 3 according to the embodiment.
 図3に示すように、先ず、学習済みモデル生成装置3において、学習用測定データ取得部31が学習用測定データ34_1~34_nを取得する(ステップS1)。具体的には、上述したように、学習用測定データ取得部31が、過去に検査されたインダクタ素子の直流抵抗の測定値Rdc4,Rdc2および交流抵抗の測定値Rsを含むデータ対を取得し、取得したデータ対に基づいて、直流抵抗の測定値Rdc4,Rdc2に交流抵抗の測定値Rsを正解値として付与することにより、学習用測定データ34を生成する。 As shown in FIG. 3, first, in the trained model generation device 3, the learning measurement data acquisition unit 31 acquires learning measurement data 34_1 to 34_n (step S1). Specifically, as described above, the learning measurement data acquisition unit 31 acquires a data pair including the DC resistance measurement values Rdc4 and Rdc2 and the AC resistance measurement value Rs of inductor elements tested in the past, Learning measurement data 34 is generated by adding the AC resistance measurement value Rs as a correct value to the DC resistance measurement values Rdc4 and Rdc2 based on the acquired data pair.
 次に、学習済みモデル生成装置3は、学習済みモデル35を生成するために必要な数の学習用測定データ34が生成されたか否かを判定する(ステップS2)。例えば、学習済みモデル生成装置3には、学習済みモデル35を生成するために必要な学習用測定データ34のデータ数が予め設定されており、学習済みモデル生成装置3は、学習用測定データ34を生成する度に、生成回数を+1インクリメントする。そして、学習済みモデル生成装置3は、カウントした生成回数が予め設定されたデータ数に到達したか否かを判定することにより、必要な数の学習用測定データ34が生成されたか否かを判定する。 Next, the trained model generation device 3 determines whether or not the necessary number of learning measurement data 34 to generate the trained model 35 has been generated (step S2). For example, the trained model generation device 3 is preset with the number of learning measurement data 34 required to generate a trained model 35, and the trained model generation device 3 generates the learning measurement data 34 is generated, the number of generations is incremented by +1. Then, the trained model generation device 3 determines whether or not the number of times of generation that has been counted has reached the number of data set in advance, thereby determining whether or not the required number of measurement data for learning 34 has been generated. do.
 必要な数の学習用測定データ34が生成されてない場合には(ステップS2:NO)、学習済みモデル生成装置3は、ステップS1に戻り、新たなインダクタ素子の測定結果に係るデータ対を取得して、インダクタ素子に関する学習用測定データ34を生成することを繰り返す(ステップS1,S2)。 If the required number of learning measurement data 34 has not been generated (step S2: NO), the trained model generating device 3 returns to step S1 to obtain data pairs related to new inductor element measurement results. Then, generation of the learning measurement data 34 regarding the inductor element is repeated (steps S1 and S2).
 一方、必要な数の学習用測定データ34が生成された場合には(ステップS2:YES)、学習済みモデル生成装置3は、ステップS1で生成した複数の学習用測定データ34を用いて、学習済みモデル35を生成する(ステップS3)。具体的には、学習済みモデル生成部32が、上述した手法により、ステップS1において作成された複数の学習用測定データ34_1~34_nを所定のアルゴリズムに基づいて機械学習することにより、学習済みモデル35を作成する。 On the other hand, when the required number of learning measurement data 34 has been generated (step S2: YES), the trained model generation device 3 performs learning using the plurality of learning measurement data 34 generated in step S1. A finished model 35 is generated (step S3). Specifically, the learned model generation unit 32 performs machine learning based on a predetermined algorithm on the plurality of learning measurement data 34_1 to 34_n created in step S1 by the method described above, thereby generating the learned model 35 to create
 そして、学習済みモデル生成部32は、学習済みモデル35について充分な精度が得られた場合には、その学習済みモデル35を記憶部33に記憶する。 Then, the learned model generation unit 32 stores the learned model 35 in the storage unit 33 when sufficient accuracy is obtained for the learned model 35 .
 次に、ステップS3において生成された学習済みモデル35を検査装置2に登録する(ステップS4)。例えば、ユーザによる、検査装置2の操作部13または学習済みモデル生成装置3の入力装置(例えば、タッチパネルやキーボード、マウス等)に対する操作に応じて、学習済みモデル生成装置3が、記憶部33に記憶された学習済みモデル35を検査装置2に送信し、検査装置2が受信した学習済みモデル35をデータ処理制御装置10内の記憶部に記憶する。なお、学習済みモデル35の検査装置2への登録は、上述したように、メモリカード等の記憶媒体を用いて行ってもよい。 Next, the trained model 35 generated in step S3 is registered in the inspection device 2 (step S4). For example, the learned model generation device 3 stores the The stored learned model 35 is transmitted to the inspection device 2 , and the learned model 35 received by the inspection device 2 is stored in the storage unit in the data processing control device 10 . Note that the registration of the learned model 35 in the inspection apparatus 2 may be performed using a storage medium such as a memory card, as described above.
 なお、学習済みモデル生成装置3としてのコンピュータ(情報処理装置)に上述した各ステップ(S1~S4)を実行させるための学習済みモデル生成用プログラムは、ネットワークを介して流通可能であってもよいし、メモリカード等のコンピュータが読み取り可能な記憶媒体(Non-transitory computer readable medium)に書き込まれて流通可能であってもよい。 The learned model generation program for causing the computer (information processing device) as the trained model generation device 3 to execute the above-described steps (S1 to S4) may be distributed via a network. However, it may be distributed by being written in a computer-readable storage medium (non-transitory computer readable medium) such as a memory card.
 以上説明した手法により、インダクタ素子の検査のための学習済みモデル35が生成される。 The learned model 35 for inspecting the inductor element is generated by the method described above.
 次に、検査装置2による学習済みモデル35を用いた交流抵抗の測定値Rsの補正について詳細に説明する。 Next, the correction of the AC resistance measurement value Rs using the learned model 35 by the inspection device 2 will be described in detail.
 図4は、実施の形態に係る検査装置2におけるデータ処理制御装置10の構成の一例を示す図である。 FIG. 4 is a diagram showing an example of the configuration of the data processing control device 10 in the inspection device 2 according to the embodiment.
 図4に示すように、検査装置2のデータ処理制御装置10は、例えば、データ取得部21、記憶部22、推定部23、補正部24、および判定部25を有する。これらの機能部は、例えば、データ処理制御装置10としてのプログラム処理装置において、CPUが、メモリに記憶されたプログラムにしたがって各種演算を実行するとともにカウンタ等の周辺回路を制御することにより、実現される。 As shown in FIG. 4, the data processing control device 10 of the inspection device 2 has, for example, a data acquisition unit 21, a storage unit 22, an estimation unit 23, a correction unit 24, and a determination unit 25. These functional units are implemented by, for example, a program processing device as the data processing control device 10, in which the CPU executes various calculations according to programs stored in a memory and controls peripheral circuits such as counters. be.
 データ取得部21は、検査対象のインダクタ素子の性能を示す指標(Q値)を算出するために必要な各種データを取得する機能部である。 The data acquisition unit 21 is a functional unit that acquires various data necessary for calculating an index (Q value) indicating the performance of the inductor element to be inspected.
 データ取得部21は、例えば、第1測定部11が4端子法によって測定したDUTの直流抵抗の測定値Rdc4を取得し、記憶部22に記憶する。データ取得部21は、例えば、第2測定部12が2端子法によって測定したDUTの直流抵抗の測定値Rdc2と、第2測定部12が2端子法によって測定したDUTの交流抵抗の測定値Rsと、第2測定部12が2端子法によって測定したDUTのインダクタンスの測定値Lとをそれぞれ取得し、検査対象の測定データ50として記憶部22に記憶する。また、データ取得部21は、例えば、学習済みモデル生成装置3によって生成された学習済みモデル35を取得し、記憶部22に記憶する。 The data acquisition unit 21 acquires, for example, the measured value Rdc4 of the DC resistance of the DUT measured by the first measurement unit 11 by the four-terminal method, and stores it in the storage unit 22 . The data acquisition unit 21 obtains, for example, a measured value Rdc2 of the DC resistance of the DUT measured by the second measuring unit 12 by the two-terminal method and a measured value Rs of the AC resistance of the DUT measured by the second measuring unit 12 by the two-terminal method. , and the measured value L of the inductance of the DUT measured by the second measurement unit 12 by the two-terminal method, and stored in the storage unit 22 as measurement data 50 to be inspected. Further, the data acquisition unit 21 acquires, for example, the trained model 35 generated by the trained model generation device 3 and stores it in the storage unit 22 .
 記憶部22は、検査対象のインダクタ素子の性能を示す指標(Q値)を算出するために必要な各種データおよび算出されたQ値等を記憶するための機能部である。 The storage unit 22 is a functional unit for storing various data necessary for calculating an index (Q value) indicating the performance of the inductor element to be inspected, the calculated Q value, and the like.
 上述したように、記憶部22には、データ取得部21によって取得された、インダクタ素子の直流抵抗の測定値Rdc4,Rdc2、インダクタ素子の交流抵抗の測定値Rs、インダクタ素子のインダクタンスの測定値L、および学習済みモデル35が、それぞれ記憶される。また、記憶部22には、例えば、後述する、交流抵抗の測定値の推定値Rse、2端子法による測定系に起因する抵抗成分Rcの推定値、交流抵抗の値Rsr、およびQ値がそれぞれ記憶される。 As described above, the storage unit 22 stores the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element, the measured value Rs of the AC resistance of the inductor element, and the measured value L of the inductance of the inductor element, which are acquired by the data acquiring unit 21. , and the trained model 35 are stored respectively. Further, the storage unit 22 stores, for example, an estimated value Rse of a measured value of AC resistance, an estimated value of a resistance component Rc caused by a measurement system using a two-terminal method, an AC resistance value Rsr, and a Q value, which will be described later. remembered.
 推定部23は、検査対象のインダクタ素子の交流抵抗の測定値を推定する機能部である。推定部23は、記憶部22に記憶された学習済みモデル35に基づいて、データ取得部21によって取得した検査対象のインダクタ素子の直流抵抗の測定値Rdc4,Rdc2に対応する交流抵抗の測定値の推定値Rseを算出する。具体的には、推定部23は、データ取得部21によって取得した検査対象のインダクタ素子の直流抵抗の測定値Rdc4,Rdc2を学習済みモデル35(関数)に入力(代入)することによって得られた値を、交流抵抗の測定値の推定値Rseとして記憶部22に記憶する。 The estimation unit 23 is a functional unit that estimates the measured value of the AC resistance of the inductor element to be inspected. Based on the learned model 35 stored in the storage unit 22, the estimation unit 23 calculates the measured values of the AC resistance corresponding to the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element to be inspected acquired by the data acquisition unit 21. Calculate the estimated value Rse. Specifically, the estimation unit 23 inputs (substitutes) the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element to be inspected acquired by the data acquisition unit 21 into the learned model 35 (function). The value is stored in the storage unit 22 as an estimated value Rse of the measured AC resistance.
 補正部24は、交流抵抗の測定値Rsを補正するための機能部である。
 補正部24は、交流抵抗の測定値の推定値Rseに応じて、データ取得部21によって取得した直流抵抗の測定値Rdc4,Rdc2に基づいて交流抵抗の測定値Rsを補正し、補正した交流抵抗の測定値RsをDUTの交流抵抗の値Rsrとして出力する補正処理を行う。
The correction unit 24 is a functional unit for correcting the measured value Rs of the AC resistance.
The correction unit 24 corrects the measured value Rs of the AC resistance based on the measured values Rdc4 and Rdc2 of the DC resistance acquired by the data acquisition unit 21 according to the estimated value Rse of the measured value of the AC resistance, and obtains the corrected AC resistance A correction process is performed to output the measured value Rs of the DUT as the value Rsr of the AC resistance of the DUT.
 より具体的には、補正部24は、先ず、データ取得部21によって取得した検査対象のインダクタ素子の直流抵抗の測定値Rdc4,Rdc2に基づいて、上述したモデルg(Rdc4,Rdc2)にしたがって2端子法による測定系に起因する抵抗成分Rcを算出する。算出した抵抗成分Rcのデータは、例えば、記憶部22に記憶される。 More specifically, first, based on the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element to be inspected acquired by the data acquisition unit 21, the correction unit 24 calculates 2 A resistance component Rc due to a measurement system based on the terminal method is calculated. Data of the calculated resistance component Rc is stored in the storage unit 22, for example.
 次に、補正部24は、交流抵抗の測定値の推定値Rseに応じて、2端子法による測定系に起因する抵抗成分Rcに基づいて検査対象のインダクタ素子の交流抵抗の測定値Rsを補正し、補正した交流抵抗の測定値Rsを検査対象のインダクタ素子の交流抵抗の値Rsrとして出力する。 Next, the correction unit 24 corrects the measured value Rs of the AC resistance of the inductor element to be inspected based on the resistance component Rc caused by the measurement system using the two-terminal method according to the estimated value Rse of the measured value of the AC resistance. Then, the corrected AC resistance measurement value Rs is output as the AC resistance value Rsr of the inductor element to be inspected.
 例えば、補正部24は、推定部23によって算出した交流抵抗の測定値の推定値Rseと、データ取得部21によって取得した交流抵抗の測定値Rs(第3測定値)との誤差|Rse-Rs|を算出し、誤差|Rse-Rs|を評価する。具体的には、補正部24は、誤差|Rse-Rs|と閾値Rthとを比較する。閾値Rthは、予め設定された任意の値である。 For example, the correction unit 24 determines the error |Rse−Rs between the estimated value Rse of the AC resistance measurement value calculated by the estimation unit 23 and the AC resistance measurement value Rs (third measurement value) acquired by the data acquisition unit 21. | is calculated, and the error |Rse-Rs| is evaluated. Specifically, the correction unit 24 compares the error |Rse-Rs| with the threshold value Rth. The threshold Rth is an arbitrary preset value.
 ここで、誤差|Rse-Rs|が閾値Rthより小さい場合、検査対象のインダクタ素子の測定結果に対して、学習済みモデル35による交流抵抗の推定精度が高いと考えることができる。すなわち、学習済みモデル35に含まれるモデルg(Rdc4,Rdc2)による、2端子法による測定系に起因する抵抗成分Rcの推定精度が高いと考えられる。 Here, if the error |Rse-Rs| is smaller than the threshold value Rth, it can be considered that the AC resistance estimation accuracy of the learned model 35 is high with respect to the measurement result of the inductor element to be inspected. That is, it is considered that the model g (Rdc4, Rdc2) included in the trained model 35 has high estimation accuracy of the resistance component Rc due to the measurement system by the two-terminal method.
 そこで、誤差|Rse-Rs|が閾値Rthより小さい場合には、補正部24は、補正処理を行う。具体的には、補正部24は、モデルg(Rdc4,Rdc2)を用いて2端子法による測定系に起因する抵抗成分Rcを算出し、算出した2端子法による測定系に起因する抵抗成分Rcを用いて交流抵抗の測定値Rs(第3測定値)を補正する。 Therefore, when the error |Rse-Rs| is smaller than the threshold value Rth, the correction unit 24 performs correction processing. Specifically, the correction unit 24 calculates the resistance component Rc caused by the measurement system by the two-terminal method using the model g (Rdc4, Rdc2), and calculates the calculated resistance component Rc caused by the measurement system by the two-terminal method. is used to correct the measured value Rs (third measured value) of the AC resistance.
 例えば、補正部24は、先ず、検査対象のインダクタ素子の直流抵抗の測定値Rdc4,Rdc2をモデルg(Rdc4,Rdc2)に入力(代入)することによって得られた値を、2端子法による測定系に起因する抵抗成分Rcとする。次に、補正部24は、データ取得部21によって取得した交流抵抗の測定値Rs(第3測定値)から2端子法による測定系に起因する抵抗成分Rcを減算することによって得られた値を、交流抵抗の値Rsr(=Rs-Rc)として出力する。 For example, the correction unit 24 first inputs (substitutes) the measured values Rdc4 and Rdc2 of the DC resistance of the inductor element to be inspected into the model g (Rdc4 and Rdc2) to measure the values obtained by the two-terminal method. It is assumed that the resistance component caused by the system is Rc. Next, the correction unit 24 calculates the value obtained by subtracting the resistance component Rc caused by the measurement system by the two-terminal method from the AC resistance measurement value Rs (third measurement value) obtained by the data obtaining unit 21. , as an AC resistance value Rsr (=Rs-Rc).
 一方、誤差|Rse-Rs|が閾値Rthより大きい場合には、検査対象のインダクタ素子に対して、学習済みモデル35による交流抵抗の推定精度が低いと考えられる。すなわち、学習済みモデル35に含まれるモデルg(Rdc4,Rdc2)による、2端子法による測定系に起因する抵抗成分Rcの推定精度が低いと考えられる。
 この場合に、仮に、モデルg(Rdc4,Rdc2)を用いて2端子法による測定系に起因する抵抗成分Rcを算出し、算出した2端子法による測定系に起因する抵抗成分Rcを用いて交流抵抗の測定値Rs(第3測定値)を補正したとすると、誤った補正となり、適切に交流抵抗の値Rsrを求めることができないおそれがある。
On the other hand, if the error |Rse-Rs| is larger than the threshold value Rth, it is considered that the accuracy of AC resistance estimation by the learned model 35 is low for the inductor element to be inspected. That is, it is considered that the estimation accuracy of the resistance component Rc due to the measurement system by the two-terminal method by the model g (Rdc4, Rdc2) included in the trained model 35 is low.
In this case, it is assumed that the resistance component Rc caused by the measurement system by the two-terminal method is calculated using the model g (Rdc4, Rdc2), and the calculated resistance component Rc caused by the measurement system by the two-terminal method is used to If the resistance measurement value Rs (third measurement value) is corrected, the correction may be erroneous, and the AC resistance value Rsr may not be obtained appropriately.
 そこで、誤差|Rse-Rs|が閾値Rthより大きい場合には、補正部24は、補正処理を行うことなく、データ取得部21によって取得した交流抵抗の測定値Rsを検査対象のインダクタ素子の交流抵抗の値Rsr(=Rs)として出力する。 Therefore, when the error |Rse−Rs| is larger than the threshold value Rth, the correction unit 24 converts the measured value Rs of the AC resistance acquired by the data acquisition unit 21 into the AC value of the inductor element to be inspected without performing the correction process. Output as a resistance value Rsr (=Rs).
 判定部25は、DUT(インダクタ素子)の良否を判定するための機能部である。
 判定部25は、補正部24から出力された検査対象のインダクタ素子の交流抵抗の値Rsrと、検査対象のインダクタ素子のインダクタンスの測定値Lとに基づいて、検査対象のインダクタ素子の性能を表す指標であるQ値(Q=ωL/Rsr)を算出する。
The judgment unit 25 is a functional unit for judging whether the DUT (inductor element) is good or bad.
The determination unit 25 expresses the performance of the inductor element to be inspected based on the AC resistance value Rsr of the inductor element to be inspected and the measured inductance value L of the inductor element to be inspected, which are output from the correction unit 24. A Q value (Q=ωL/Rsr), which is an index, is calculated.
 判定部25は、例えば、算出したQ値を予め定められている基準値と比較することによって検査対象のインダクタ素子の良否判定を行う。判定部25は、搬送機構15を制御することにより、良品と判定したDUTを図外のパッケージング装置によって出荷可能な状態にパッケージングする。 The judging unit 25 judges the quality of the inductor element to be inspected by, for example, comparing the calculated Q value with a predetermined reference value. The determining unit 25 controls the transport mechanism 15 to package the DUT determined as a non-defective product into a state ready for shipment by a packaging device (not shown).
 次に、検査装置2によるDUTの検査処理の流れについて説明する。 Next, the flow of DUT inspection processing by the inspection device 2 will be described.
 図5は、実施の形態に係る検査装置2による検査の流れを示すフローチャートである。 FIG. 5 is a flow chart showing the flow of inspection by the inspection device 2 according to the embodiment.
 例えば、ユーザが検査装置2の操作部13を操作してDUT(インダクタ素子)の検査の実行を指示した場合、データ処理制御装置10が、検査対象のインダクタ素子の検査を開始する。 For example, when the user operates the operation unit 13 of the inspection device 2 to instruct execution of inspection of a DUT (inductor element), the data processing control device 10 starts inspection of the inductor element to be inspected.
 先ず、データ処理制御装置10が、第1測定部11を制御することにより、検査対象のインダクタ素子の直流抵抗を4端子法によって測定させる(ステップS11)。例えば、データ処理制御装置10は、操作部13からの指示信号に応じて搬送機構15を制御することにより、検査対象のインダクタ素子を第1測定部11における所定の測定位置に搬送させる。その後、データ処理制御装置10は、第1測定部11を制御して、4端子法により、検査対象のインダクタ素子の直流抵抗を測定させ、直流抵抗の測定値Rdc4を取得する。 First, the data processing control device 10 controls the first measuring unit 11 to measure the DC resistance of the inductor element to be inspected by the four-terminal method (step S11). For example, the data processing control device 10 controls the transport mechanism 15 according to an instruction signal from the operation unit 13 to transport the inductor element to be inspected to a predetermined measurement position in the first measurement unit 11 . After that, the data processing control device 10 controls the first measuring unit 11 to measure the DC resistance of the inductor element to be inspected by the four-terminal method, and acquires the measured value Rdc4 of the DC resistance.
 次に、データ処理制御装置10が、第2測定部12を制御することにより、検査対象のインダクタ素子の直流抵抗を2端子法によって測定させる(ステップS12)。例えば、データ処理制御装置10は、搬送機構15を制御することにより、検査対象のインダクタ素子を第2測定部12における所定の測定位置に搬送させる。その後、データ処理制御装置10は、第2測定部12を制御して、2端子法により検査対象のインダクタ素子の直流抵抗を測定させ、直流抵抗の測定値Rdc2を取得する。 Next, the data processing control device 10 controls the second measuring unit 12 to measure the DC resistance of the inductor element to be inspected by the two-terminal method (step S12). For example, the data processing control device 10 controls the transport mechanism 15 to transport the inductor element to be inspected to a predetermined measurement position in the second measuring section 12 . After that, the data processing control device 10 controls the second measuring section 12 to measure the DC resistance of the inductor element to be inspected by the two-terminal method, and acquires the measured value Rdc2 of the DC resistance.
 次に、データ処理制御装置10が、第2測定部12を制御することにより、検査対象のインダクタ素子の交流抵抗の測定値Rsおよびインダクタンスの測定値Lを2端子法によって測定させる(ステップS13)。例えば、検査対象のインダクタ素子をステップS12と同様の測定位置に配置した状態において、データ処理制御装置10が、第2測定部12を制御して、検査対象のインダクタ素子の交流抵抗を測定させ、交流抵抗の測定値Rsおよびインダクタンスの測定値Lをそれぞれ取得する。 Next, the data processing control device 10 controls the second measuring unit 12 to measure the measured value Rs of the AC resistance and the measured value L of the inductance of the inductor element to be inspected by the two-terminal method (step S13). . For example, in a state in which the inductor element to be inspected is placed at the same measurement position as in step S12, the data processing control device 10 controls the second measuring unit 12 to measure the AC resistance of the inductor element to be inspected, A measurement value Rs of AC resistance and a measurement value L of inductance are obtained respectively.
 次に、データ処理制御装置10が、第2測定部12を制御して、ステップS12と同様の手法により、検査対象のインダクタ素子の直流抵抗を2端子法によって測定させる(ステップS14)。 Next, the data processing control device 10 controls the second measuring section 12 to measure the DC resistance of the inductor element to be inspected by the two-terminal method in the same manner as in step S12 (step S14).
 ステップS11~S14においてデータ処理制御装置10が取得した、直流抵抗の測定値Rdc4,Rdc2、交流抵抗の測定値Rs、およびインダクタンスの測定値Lは、検査対象のインダクタ素子の測定データ50として記憶部22に記憶される。 The measured values Rdc4 and Rdc2 of the DC resistance, the measured value Rs of the AC resistance, and the measured value L of the inductance acquired by the data processing control device 10 in steps S11 to S14 are stored as the measured data 50 of the inductor element to be inspected. 22.
 次に、データ処理制御装置10が、検査対象のインダクタ素子の測定データ50に基づいて、検査対象のインダクタ素子の交流抵抗の測定値の推定値Rseを算出する(ステップS15)。具体的には、推定部23が、上述した手法により、ステップS11およびステップS12(S14)において取得した直流抵抗の測定値Rdc4,Rdc2を学習済みモデル35に入力することにより、学習済みモデル35から出力された交流抵抗の測定値の推定値Rseを得る。 Next, the data processing control device 10 calculates an estimated value Rse of the measured AC resistance of the inductor element to be inspected based on the measurement data 50 of the inductor element to be inspected (step S15). Specifically, the estimating unit 23 inputs the measured values Rdc4 and Rdc2 of the direct current resistance acquired in steps S11 and S12 (S14) to the learned model 35 by the method described above, so that from the learned model 35 An estimated value Rse of the measured value of the output AC resistance is obtained.
 このとき、推定部23は、例えば、ステップS12において測定した直流抵抗の測定値Rdc2とステップS14において測定した直流抵抗の測定値Rdc2とを比較し、小さい方の直流抵抗の測定値Rdc2を用いて交流抵抗の測定値の推定値Rseを算出してもよい。 At this time, the estimating unit 23 compares, for example, the measured value Rdc2 of the DC resistance measured in step S12 with the measured value Rdc2 of the DC resistance measured in step S14, and uses the smaller measured value Rdc2 of the DC resistance. An estimated value Rse of the measured value of AC resistance may be calculated.
 次に、補正部24が、ステップS15において算出した交流抵抗の測定値の推定値RseとステップS13において取得した交流抵抗の測定値Rsとの差|Rse-Rs|が閾値Rthよりも小さいか否かを判定する(ステップS16)。 Next, the correction unit 24 determines whether or not the difference |Rse-Rs| (step S16).
 差|Rse-Rs|が閾値Rthよりも小さい場合(ステップS16:YES)、補正部24は、モデルg(Rdc4,Rdc2)を用いて、2端子法による2端子法による測定系に起因する抵抗成分Rcを算出する(ステップS17)。具体的には、補正部24は、ステップS11およびステップS12(S14)において取得した直流抵抗の測定値Rdc4,Rdc2をモデルg(Rdc4,Rdc2)に入力することにより、2端子法による測定系に起因する抵抗成分Rcを得る。 If the difference |Rse−Rs| is smaller than the threshold value Rth (step S16: YES), the correction unit 24 uses the model g (Rdc4, Rdc2) to calculate the resistance caused by the measurement system by the two-terminal method. A component Rc is calculated (step S17). Specifically, the correction unit 24 inputs the measured values Rdc4 and Rdc2 of the direct current resistance obtained in steps S11 and S12 (S14) to the model g (Rdc4, Rdc2), so that the measurement system using the two-terminal method A resulting resistance component Rc is obtained.
 次に、補正部24は、ステップS17において算出した2端子法による測定系に起因する抵抗成分Rcを用いて、ステップS13において取得した交流抵抗の測定値Rsを補正し、補正した値を交流抵抗の値Rsrとして出力する補正処理を行う(ステップS18)。具体的には、補正部24は、ステップS13において取得した交流抵抗の測定値RsからステップS17において算出した2端子法による測定系に起因する抵抗成分Rcを減算して得られた値を交流抵抗の値Rsr(=Rs-Rc)として出力する。 Next, the correction unit 24 corrects the measured value Rs of the AC resistance obtained in step S13 using the resistance component Rc due to the measurement system by the two-terminal method calculated in step S17, and converts the corrected value to the AC resistance is output as a value Rsr (step S18). Specifically, the correction unit 24 subtracts the resistance component Rc due to the measurement system by the two-terminal method calculated in step S17 from the measured value Rs of the AC resistance obtained in step S13, and converts the value obtained by subtracting the value to the AC resistance. is output as the value Rsr (=Rs-Rc).
 一方、差|Rse-Rs|が閾値Rthよりも大きい場合(ステップS16:NO)には、補正部24は、補正処理を行うことなく、ステップS13において取得した交流抵抗の測定値Rsを交流抵抗の値Rsr(=Rs)として出力する(ステップS19)。 On the other hand, if the difference |Rse-Rs| is output as a value Rsr (=Rs) of (step S19).
 次に、判定部25が、ステップS18またはステップS19において補正部24から出力された交流抵抗の値Rsrと、ステップS13において取得したインダクタンスの測定値Lとに基づいて、検査対象のインダクタ素子のQ値を算出する(ステップS20)。その後、判定部25は、ステップS20において算出したQ値に基づいて、検査対象のインダクタ素子の良否判定を行う。良品と判定されたインダクタ素子は、搬送機構15によって搬送され、パッケージングされる。 Next, the determination unit 25 determines the Q of the inductor element to be inspected based on the AC resistance value Rsr output from the correction unit 24 in step S18 or step S19 and the measured inductance value L acquired in step S13. A value is calculated (step S20). After that, the judging section 25 judges whether the inductor element to be inspected is good or bad based on the Q value calculated in step S20. Inductor elements determined to be non-defective are transported by transport mechanism 15 and packaged.
 なお、上述した各ステップ(S11~S21)をデータ処理制御装置10としてのコンピュータ(情報処理装置)に実行させるための検査用プログラムは、ネットワークを介して流通可能であってもよいし、メモリカード等のコンピュータが読み取り可能な記憶媒体(Non-transitory computer readable medium)に書き込まれて流通可能であってもよい。 The inspection program for causing the computer (information processing device) as the data processing control device 10 to execute the steps (S11 to S21) described above may be distributed via a network, or may be stored in a memory card. It may be distributed by being written on a computer-readable storage medium (non-transitory computer readable medium) such as.
 以上、本実施の形態に係る検査システム1において、学習済みモデル生成装置3は、2端子法による測定系に起因する抵抗成分を算出するモデルg(Rdc4,Rdc2)と、DUT(インダクタ素子)に起因する抵抗成分を算出するモデルh(Rdc4)とを含む学習済みモデル35を、4端子法によって測定したDUTの直流抵抗の測定値Rdc4と2端子法によって測定したDUTの直流抵抗の測定値Rdc2に、2端子法によって測定したDUTの交流抵抗の測定値Rsをラベリングして生成された複数の学習用測定データ34_1~34_nを機械学習することによって生成する。 As described above, in the inspection system 1 according to the present embodiment, the learned model generation device 3 includes the model g (Rdc4, Rdc2) for calculating the resistance component caused by the measurement system by the two-terminal method, and the DUT (inductor element). A trained model 35 including a model h (Rdc4) for calculating a resistance component caused by Then, a plurality of learning measurement data 34_1 to 34_n generated by labeling the measured value Rs of the AC resistance of the DUT measured by the two-terminal method are generated by machine learning.
 これによれば、インダクタ素子の直流抵抗の測定値Rdc4,Rdc2と交流抵抗の測定値Rsとの関係が非線形であっても、直流抵抗の測定値Rdc4,Rdc2と交流抵抗の測定値Rsとの関係を適切に表した学習済みモデル35(関数)を得ることができる。 According to this, even if the relationship between the measured values Rdc4, Rdc2 of the DC resistance of the inductor element and the measured value Rs of the AC resistance is non-linear, the relationship between the measured values Rdc4, Rdc2 of the DC resistance and the measured value Rs of the AC resistance A trained model 35 (function) that appropriately represents the relationship can be obtained.
 また、学習済みモデル35において、モデルg(Rdc4,Rdc2)は、直流抵抗の測定値Rdc4,Rdc2を説明変数とし、2端子法による測定系に起因する抵抗成分の値を目的変数とする回帰モデルであり、モデルh(Rdc4)は、直流抵抗の測定値Rdc4を説明変数とし、DUTに起因する抵抗成分の値を目的変数とする回帰モデルである。モデルg(Rdc4,Rdc2)およびモデルh(Rdc4)は、直流抵抗の測定値Rdc4,Rdc2に交流抵抗の測定値Rsを対応付けた複数の学習用測定データ34_1~34_nを機械学習することによって調整された学習済みパラメータ(係数)を含む。 In the trained model 35, the model g (Rdc4, Rdc2) is a regression model with the measured values Rdc4 and Rdc2 of the DC resistance as explanatory variables and the value of the resistance component resulting from the measurement system by the two-terminal method as the objective variable. and the model h(Rdc4) is a regression model with the measured value Rdc4 of the DC resistance as an explanatory variable and the value of the resistance component caused by the DUT as an objective variable. The model g (Rdc4, Rdc2) and the model h (Rdc4) are adjusted by machine learning a plurality of learning measurement data 34_1 to 34_n in which the measured DC resistance values Rdc4 and Rdc2 are associated with the measured AC resistance values Rs. contains the learned parameters (coefficients).
 これによれば、より単純な関数によって学習済みモデル35を表すことができるので、機械学習において心配される学習済みモデル35のブラックボックス化を回避することができる。 According to this, the trained model 35 can be represented by a simpler function, so it is possible to avoid black boxing of the trained model 35, which is a concern in machine learning.
 また、本実施の形態に係る検査システム1において、検査装置2は、学習済みモデル生成装置3によって生成された学習済みモデル35を用いてDUTの交流抵抗の測定値を推定するとともに、その推定結果に応じて、学習済みモデル35に含まれるモデルg(Rdc4,Rdc2)を用いて2端子法による2端子法による測定系に起因する抵抗成分Rcを算出する。そして、検査装置2は、算出した2端子法による測定系に起因する抵抗成分Rcに基づいて交流抵抗の測定値Rsを補正し、補正後の値をDUTの交流抵抗の値として出力する。 Further, in the inspection system 1 according to the present embodiment, the inspection device 2 estimates the measured value of the AC resistance of the DUT using the learned model 35 generated by the trained model generation device 3, and the estimation result , the model g (Rdc4, Rdc2) included in the learned model 35 is used to calculate the resistance component Rc due to the measurement system by the two-terminal method. Then, the inspection apparatus 2 corrects the measured value Rs of the AC resistance based on the calculated resistance component Rc caused by the measurement system by the two-terminal method, and outputs the corrected value as the value of the AC resistance of the DUT.
 これによれば、過去のインダクタ素子の測定結果を機械学習することによって生成した高精度のモデルg(Rdc4,Rdc2)に基づき算出した2端子法による測定系に起因する抵抗成分Rcを用いて、交流抵抗の測定値Rsを補正するので、従来の手法よりも正確に、交流抵抗の値を得ることができる。 According to this, using the resistance component Rc due to the measurement system by the two-terminal method calculated based on the highly accurate model g (Rdc4, Rdc2) generated by machine learning the past measurement results of the inductor element, Since the measured value Rs of the AC resistance is corrected, the value of the AC resistance can be obtained more accurately than the conventional method.
 また、検査装置2は、学習済みモデル35に基づいて推定した交流抵抗の測定値の推定値Rseと、実際に測定した交流抵抗の測定値Rsとの誤差|Rse-Rs|を算出し、誤差|Rse-Rs|が閾値Rthより小さい場合に、2端子法による測定系に起因する抵抗成分Rcに基づいて補正した交流抵抗の測定値Rsを交流抵抗の値Rsr(=Rse-Rc)として出力する。一方、誤差|Rse-Rs|が閾値Rthより大きい場合には、検査装置2は、実際に測定した交流抵抗の測定値Rsを交流抵抗の値Rsr(=Rs)として出力する。 In addition, the inspection device 2 calculates the error |Rse-Rs| When |Rse−Rs| is smaller than the threshold value Rth, output the AC resistance measured value Rs corrected based on the resistance component Rc caused by the measurement system by the two-terminal method as the AC resistance value Rsr (=Rse−Rc). do. On the other hand, when the error |Rse−Rs| is larger than the threshold value Rth, the inspection device 2 outputs the actually measured AC resistance value Rs as the AC resistance value Rsr (=Rs).
 これによれば、検査対象の全てのインダクタ素子に対して一律に、交流抵抗の実測値の補正が行われるのではなく、交流抵抗の実測値と学習済みモデル35に基づく推定値との誤差が小さいインダクタ素子、すなわち学習済みモデル35(モデルg(Rdc4,Rdc2))を適用することが妥当と考えられるインダクタ素子に対してのみ、交流抵抗の実測値の補正が行われることになる。これにより、過補正を防止することができ、より正確な交流抵抗の値を得ることができる。 According to this, instead of uniformly correcting the measured value of AC resistance for all the inductor elements to be inspected, the error between the measured value of AC resistance and the estimated value based on the learned model 35 is Correction of the measured values of AC resistance is performed only for small inductor elements, that is, inductor elements for which it is considered appropriate to apply the learned model 35 (model g(Rdc4, Rdc2)). As a result, overcorrection can be prevented, and a more accurate AC resistance value can be obtained.
 このように、本実施の形態に係る学習済みモデル生成装置3および検査装置2によれば、電子部品の検査の信頼性を向上させることができる。 Thus, according to the learned model generation device 3 and the inspection device 2 according to the present embodiment, it is possible to improve the reliability of inspection of electronic components.
 ≪実施の形態の拡張≫
 以上、本願発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
<<Expansion of Embodiment>>
The invention made by the inventor of the present application has been specifically described above based on the embodiment, but the invention is not limited to it, and it goes without saying that various modifications can be made without departing from the gist of the invention. .
 例えば、検査装置2が検査に用いるモデル(学習済みモデル35)は、直流抵抗の測定値Rdc4,Rdc2と交流抵抗の測定値Rsとの対応関係を示す関数であればよく、機械学習以外の手法によって生成したモデルであってもよい。例えば、検査装置2は、機械学習以外の手法によって係数を調整したモデルg(Rdc4,Rdc2),h(Rdc4)を含むモデルを用いて、上記と同様の手法により、インダクタ素子の検査を行ってもよい。 For example, the model (learned model 35) used for inspection by the inspection apparatus 2 may be a function indicating the correspondence between the measured values Rdc4 and Rdc2 of the direct current resistance and the measured value Rs of the alternating current resistance. It may be a model generated by For example, the inspection device 2 inspects the inductor element by the same method as above using models including models g (Rdc4, Rdc2) and h (Rdc4) whose coefficients are adjusted by a method other than machine learning. good too.
 また、上記実施の形態では、検査装置2が、データ処理制御装置10、第1測定部11、第2測定部12、操作部13、出力部14、および搬送機構15等の構成要素を一体とした装置である場合を例示したが、検査装置2を構成する一部の構成要素が他の構成要素と別体として構成されていてもよい。例えば、データ処理制御装置10、操作部13、および出力部14を第1装置(例えば、PC等の情報処理装置)によって実現し、第1測定部11、第2測定部12、および搬送機構15を、第1装置とは異なる別の第2装置によって実現してもよい。この場合、第1装置と第2装置とは、有線または無線によるネットワークを介して接続されていてもよい。 Further, in the above-described embodiment, the inspection apparatus 2 integrates the components such as the data processing control device 10, the first measurement unit 11, the second measurement unit 12, the operation unit 13, the output unit 14, and the transport mechanism 15. Although the case where it is the apparatus which carried out was illustrated as an example, some components which comprise the inspection apparatus 2 may be comprised separately from other components. For example, the data processing control device 10, the operation unit 13, and the output unit 14 are realized by a first device (for example, an information processing device such as a PC), and the first measurement unit 11, the second measurement unit 12, and the transport mechanism 15 may be implemented by a separate second device different from the first device. In this case, the first device and the second device may be connected via a wired or wireless network.
 上述のフローチャートは、動作を説明するための一例を示すものであって、これに限定されない。すなわち、フローチャートの各図に示したステップは具体例であって、このフローに限定されるものではない。例えば、一部の処理の順番が変更されてもよいし、各処理間に他の処理が挿入されてもよいし、一部の処理が並列に行われてもよい。 The above-mentioned flowchart is an example for explaining the operation, and is not limited to this. That is, the steps shown in each diagram of the flowchart are specific examples, and the flow is not limited to this flow. For example, the order of some processes may be changed, other processes may be inserted between each process, and some processes may be performed in parallel.
 1…検査システム、2…検査装置、3…学習済みモデル生成装置、10…データ処理制御装置、11…第1測定部、12…第2測定部、13…操作部、14…出力部、15…搬送機構、21…データ取得部、22…記憶部、23…推定部、24…補正部、25…判定部、31…学習用測定データ取得部、32…学習済みモデル生成部、33…記憶部、34,34_1~34_n…学習用測定データ、35…学習済みモデル、50…測定データ、Rc…2端子法による測定系に起因する抵抗成分、Rdc2…2端子法による直流抵抗の測定値、Rdc4…4端子法による直流抵抗の測定値、Rs…2端子法による交流抵抗の測定値、Rse…2端子法による交流抵抗の測定値の推定値、Rsr…交流抵抗の値、Rth…閾値。 DESCRIPTION OF SYMBOLS 1... Inspection system, 2... Inspection apparatus, 3... Trained model generation apparatus, 10... Data processing control apparatus, 11... First measurement unit, 12... Second measurement unit, 13... Operation unit, 14... Output unit, 15 Conveyance mechanism 21 Data acquisition unit 22 Storage unit 23 Estimation unit 24 Correction unit 25 Judgment unit 31 Measurement data acquisition unit for learning 32 Trained model generation unit 33 Storage part, 34, 34_1 to 34_n ... learning measurement data, 35 ... learned model, 50 ... measurement data, Rc ... resistance component caused by the measurement system by the two-terminal method, Rdc2 ... measured value of DC resistance by the two-terminal method, Rdc4: measured value of DC resistance by 4-terminal method, Rs: measured value of AC resistance by 2-terminal method, Rse: estimated value of measured value of AC resistance by 2-terminal method, Rsr: value of AC resistance, Rth: threshold.

Claims (14)

  1.  4端子法によって測定した測定対象物の直流抵抗の第1測定値と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値とを取得するデータ取得部と、
     入力した前記第1測定値および前記第2測定値に基づいて前記第3測定値を算出するようにコンピュータを機能させるための学習済みモデルを記憶する記憶部と、
     前記記憶部に記憶された前記学習済みモデルに基づいて、前記データ取得部によって取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値を算出する推定部と、を備える
     検査装置。
    A first measurement value of the DC resistance of the measurement object measured by the four-terminal method, a second measurement value of the DC resistance of the measurement object measured by the two-terminal method, and the measurement object measured by the two-terminal method a data acquisition unit for acquiring a third measurement of AC resistance;
    a storage unit that stores a trained model for causing a computer to calculate the third measured value based on the input first measured value and the second measured value;
    an estimating unit that calculates an estimated value of the third measured value corresponding to the first measured value and the second measured value acquired by the data acquisition unit, based on the trained model stored in the storage unit; , an inspection device.
  2.  請求項1に記載の検査装置において、
     前記第3測定値の推定値に応じて、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する補正処理を行う補正部を更に備える
     検査装置。
    In the inspection device according to claim 1,
    According to the estimated value of the third measured value, correcting the third measured value based on the first measured value and the second measured value acquired by the data acquisition unit, and obtaining the corrected third measured value as the An inspection apparatus further comprising a correction unit that performs a correction process for outputting an AC resistance value of an object to be measured.
  3.  請求項2に記載の検査装置において、
     前記学習済みモデルは、2端子法による測定系に起因する抵抗成分を表す第1モデルと、前記測定対象物に起因する抵抗成分を表す第2モデルとを含み、
     前記補正部は、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第1モデルにしたがって前記2端子法による測定系に起因する抵抗成分を算出するとともに、前記補正処理として、前記2端子法による測定系に起因する抵抗成分に基づいて前記第3測定値を補正する
     検査装置。
    In the inspection device according to claim 2,
    The trained model includes a first model representing a resistance component caused by a measurement system using a two-terminal method, and a second model representing a resistance component caused by the object to be measured,
    The correction unit calculates a resistance component caused by the measurement system by the two-terminal method according to the first model based on the first measurement value and the second measurement value acquired by the data acquisition unit, and As the correction process, the inspection apparatus corrects the third measured value based on a resistance component caused by the measurement system according to the two-terminal method.
  4.  請求項3に記載の検査装置において、
     前記第1モデルは、前記第1測定値と前記第2測定値とを説明変数とし、前記測定系に起因する抵抗成分の値を目的変数とする回帰モデルであり、
     前記第2モデルは、前記第1測定値を説明変数とし、前記測定対象物に起因する抵抗成分の値を目的変数とする回帰モデルであり、
     前記第1モデルおよび前記第2モデルは、前記第1測定値および前記第2測定値に前記第3測定値を対応付けた一対のデータ対を機械学習することによって調整された学習済みパラメータを含む
     検査装置。
    In the inspection device according to claim 3,
    The first model is a regression model in which the first measured value and the second measured value are explanatory variables and the value of the resistance component caused by the measurement system is the objective variable,
    The second model is a regression model in which the first measured value is an explanatory variable and the value of the resistance component caused by the measurement object is an objective variable,
    The first model and the second model include learned parameters adjusted by machine learning a pair of data pairs in which the third measurement value is associated with the first measurement value and the second measurement value. inspection equipment.
  5.  請求項1乃至4の何れか一項に記載の検査装置において、
     前記補正部は、前記推定部によって算出した前記第3測定値の推定値と前記データ取得部によって取得した前記第3測定値との誤差を算出し、前記誤差が閾値より小さい場合に、前記補正処理を行う
     検査装置。
    In the inspection device according to any one of claims 1 to 4,
    The correction unit calculates an error between the estimated value of the third measurement value calculated by the estimation unit and the third measurement value acquired by the data acquisition unit, and if the error is smaller than a threshold, the correction Inspection equipment for processing.
  6.  4端子法によって測定した測定対象物の直流抵抗の第1測定値と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値とを取得するデータ取得部と、
     前記第1測定値および前記第2測定値と前記第3測定値との対応関係を示す第1モデルを記憶する記憶部と、
     前記記憶部に記憶された前記第1モデルに基づいて、前記データ取得部によって取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値を算出する推定部と、
     前記推定部によって算出した前記第3測定値の推定値と前記データ取得部によって取得した前記第3測定値との誤差を算出し、前記誤差が閾値より小さい場合に、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する補正処理を行う補正部と、を備える
     検査装置。
    A first measurement value of the DC resistance of the measurement object measured by the four-terminal method, a second measurement value of the DC resistance of the measurement object measured by the two-terminal method, and the measurement object measured by the two-terminal method a data acquisition unit for acquiring a third measurement of AC resistance;
    a storage unit that stores a first model indicating a correspondence relationship between the first measured value, the second measured value, and the third measured value;
    an estimating unit that calculates an estimated value of the third measured value corresponding to the first measured value and the second measured value acquired by the data acquisition unit, based on the first model stored in the storage unit; ,
    Calculate an error between the estimated value of the third measured value calculated by the estimating unit and the third measured value acquired by the data acquisition unit, and if the error is smaller than a threshold, acquire by the data acquisition unit a correction unit that performs a correction process of correcting the third measured value based on the first measured value and the second measured value and outputting the corrected third measured value as the value of the AC resistance of the measurement object; an inspection device.
  7.  請求項6に記載の検査装置において、
     前記第1モデルは、前記第1測定値と前記第2測定値とを説明変数とし、2端子法による測定系に起因する抵抗成分の値を目的変数とする第2モデルと、前記第1測定値を説明変数とし、前記測定対象物に起因する抵抗成分の値を目的変数とする第3モデルとを含み、
     前記補正部は、前記補正処理として、前記データ取得部によって取得した前記第1測定値および前記第2測定値に基づいて前記第2モデルにしたがって前記2端子法による測定系に起因する抵抗成分を算出するとともに当該2端子法による測定系に起因する抵抗成分に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する
     検査装置。
    In the inspection device according to claim 6,
    The first model includes the first measured value and the second measured value as explanatory variables, and a second model in which the value of the resistance component resulting from the measurement system according to the two-terminal method is the objective variable, and the first measurement a third model in which the value is an explanatory variable and the value of the resistance component caused by the object to be measured is an objective variable,
    As the correction process, the correction unit corrects a resistance component caused by the measurement system by the two-terminal method according to the second model based on the first measurement value and the second measurement value acquired by the data acquisition unit. an inspection device that calculates and corrects the third measured value based on the resistance component caused by the measurement system according to the two-terminal method, and outputs the corrected third measured value as the value of the AC resistance of the object to be measured.
  8.  4端子法によって測定した測定対象物の直流抵抗の第1測定値、および2端子法によって測定した前記測定対象物の直流抵抗の第2測定値に、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値を対応付けた学習用測定データを取得する学習用測定データ取得部と、
     前記学習用測定データを機械学習することにより、前記第1測定値および前記第2測定値を含む入力データに基づいて前記第3測定値を算出するようにコンピュータを機能させるための学習済みモデルを生成する学習済みモデル生成部と、を備える
     学習済みモデル生成装置。
    In addition to the first measured value of the DC resistance of the measurement object measured by the four-terminal method and the second measured value of the DC resistance of the measurement object measured by the two-terminal method, the a learning measurement data acquisition unit that acquires learning measurement data associated with the third measurement value of the AC resistance;
    A trained model for causing a computer to calculate the third measured value based on input data including the first measured value and the second measured value by machine learning the learning measured data. A trained model generating device, comprising: a trained model generation unit for generating.
  9.  請求項8に記載の学習済みモデル生成装置において、
     前記学習済みモデルは、前記第1測定値と前記第2測定値とを説明変数とし、2端子法による測定系に起因する抵抗成分の値を目的変数とする第1回帰モデルと、前記第1測定値を説明変数とし、前記測定対象物に起因する抵抗成分の値を目的変数とする第2回帰モデルとを含み、
     前記学習済みモデル生成部は、前記学習用測定データを機械学習することにより、前記第1回帰モデルおよび前記第2回帰モデルの学習済みパラメータを調整する
     学習済みモデル生成装置。
    In the trained model generation device according to claim 8,
    The trained model includes a first regression model having the first measured value and the second measured value as explanatory variables and a resistance component value resulting from a measurement system according to a two-terminal method as an objective variable; a second regression model in which the measured value is an explanatory variable and the value of the resistance component caused by the object to be measured is an objective variable;
    A learned model generating device, wherein the learned model generation unit adjusts the learned parameters of the first regression model and the second regression model by performing machine learning on the learning measurement data.
  10.  4端子法によって測定した測定対象物の直流抵抗の第1測定値と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値とを取得する第1ステップと、
     入力した前記第1測定値および前記第2測定値に基づいて前記第3測定値を推定するようにコンピュータを機能させるための学習済みモデルに基づいて、前記第1ステップによって取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値を算出する第2ステップと、
     前記第3測定値の推定値に応じて、前記第1ステップにおいて取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する第3ステップと、を含む
     検査方法。
    A first measurement value of the DC resistance of the measurement object measured by the four-terminal method, a second measurement value of the DC resistance of the measurement object measured by the two-terminal method, and the measurement object measured by the two-terminal method a first step of obtaining a third measurement of AC resistance;
    said first measurement obtained by said first step, based on a trained model for operating a computer to estimate said third measurement based on said input first and second measurements; a second step of calculating an estimate of the third measurement corresponding to the value and the second measurement;
    According to the estimated value of the third measured value, the third measured value is corrected based on the first measured value and the second measured value obtained in the first step, and the corrected third measured value is the and a third step of outputting the AC resistance value of the object to be measured.
  11.  4端子法によって測定した測定対象物の直流抵抗の第1測定値と、2端子法によって測定した前記測定対象物の直流抵抗の第2測定値と、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値とを取得する第1ステップと、
     前記第1測定値および前記第2測定値と前記第3測定値との対応関係を示す第1モデルに基づいて、前記第1ステップにおいて取得した前記第1測定値および前記第2測定値に対応する前記第3測定値の推定値を算出する第2ステップと、
     前記第2ステップにおいて算出した前記第3測定値の推定値と前記第1ステップにおいて取得した前記第3測定値との誤差を算出する第3ステップと、
     前記誤差が閾値より小さい場合に、前記第1ステップにおいて取得した前記第1測定値および前記第2測定値に基づいて前記第3測定値を補正し、補正した第3測定値を前記測定対象物の交流抵抗の値として出力する第4ステップと、
     前記誤差が前記閾値より大きい場合に、前記第1ステップにおいて取得した前記第3測定値を前記測定対象物の交流抵抗の値として出力する第5ステップと、を含む
     検査方法。
    A first measurement value of the DC resistance of the measurement object measured by the four-terminal method, a second measurement value of the DC resistance of the measurement object measured by the two-terminal method, and the measurement object measured by the two-terminal method a first step of obtaining a third measurement of AC resistance;
    Corresponding to the first measured value and the second measured value obtained in the first step based on a first model showing a correspondence relationship between the first measured value and the second measured value and the third measured value a second step of calculating an estimate of the third measurement of
    a third step of calculating an error between the estimated value of the third measured value calculated in the second step and the third measured value obtained in the first step;
    when the error is smaller than a threshold, correcting the third measured value based on the first measured value and the second measured value obtained in the first step; A fourth step of outputting as the value of the AC resistance of
    and a fifth step of outputting the third measurement value obtained in the first step as a value of the AC resistance of the measurement object when the error is greater than the threshold value.
  12.  コンピュータに、請求項10または11に記載の検査方法における各ステップを実行させる
     検査用プログラム。
    An inspection program that causes a computer to execute each step in the inspection method according to claim 10 or 11.
  13.  4端子法によって測定した測定対象物の直流抵抗の第1測定値、および2端子法によって測定した前記測定対象物の直流抵抗の第2測定値に、2端子法によって測定した前記測定対象物の交流抵抗の第3測定値を対応付けた学習用測定データを取得する第1ステップと、
     前記第1ステップにおいて取得した前記学習用測定データを機械学習することにより、前記第1測定値および前記第2測定値を含む入力データに基づいて前記第3測定値を算出するようにコンピュータを機能させるための学習済みモデルを生成する第2ステップと、を含む
     学習済みモデル生成方法。
    In addition to the first measured value of the DC resistance of the measurement object measured by the four-terminal method and the second measured value of the DC resistance of the measurement object measured by the two-terminal method, the A first step of acquiring learning measurement data associated with a third measurement value of AC resistance;
    A computer functions to calculate the third measured value based on input data including the first measured value and the second measured value by performing machine learning on the learning measured data acquired in the first step. and a second step of generating a trained model for generating a trained model.
  14.  コンピュータに、請求項13に記載の学習済みモデル生成方法における各ステップを実行させる
     学習済みモデル生成用プログラム。
    A trained model generation program that causes a computer to execute each step in the trained model generation method according to claim 13.
PCT/JP2023/003157 2022-02-08 2023-02-01 Inspection device, inspection method, trained model generating device, inspection program, and trained model generating program WO2023153282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018170 2022-02-08
JP2022018170A JP7308314B1 (en) 2022-02-08 2022-02-08 Inspection device, inspection method, learned model generation device, inspection program, and learned model generation program.

Publications (1)

Publication Number Publication Date
WO2023153282A1 true WO2023153282A1 (en) 2023-08-17

Family

ID=87072581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003157 WO2023153282A1 (en) 2022-02-08 2023-02-01 Inspection device, inspection method, trained model generating device, inspection program, and trained model generating program

Country Status (2)

Country Link
JP (1) JP7308314B1 (en)
WO (1) WO2023153282A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147722A1 (en) * 2015-03-19 2016-09-22 日本電気株式会社 Estimating device, estimating method and program
JP2017096733A (en) * 2015-11-24 2017-06-01 日置電機株式会社 Measurement device and measurement method
JP2019086460A (en) * 2017-11-09 2019-06-06 日置電機株式会社 Processor, checker and processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147722A1 (en) * 2015-03-19 2016-09-22 日本電気株式会社 Estimating device, estimating method and program
JP2017096733A (en) * 2015-11-24 2017-06-01 日置電機株式会社 Measurement device and measurement method
JP2019086460A (en) * 2017-11-09 2019-06-06 日置電機株式会社 Processor, checker and processing method

Also Published As

Publication number Publication date
JP2023115771A (en) 2023-08-21
JP7308314B1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2023153282A1 (en) Inspection device, inspection method, trained model generating device, inspection program, and trained model generating program
JP6949675B2 (en) Processing equipment, inspection equipment and processing method
JP2012013647A (en) Battery inspection method and battery inspection apparatus
JP2009527209A (en) Method for detecting the inductance of an electric motor
JP7258197B1 (en) A data processing control device, an inspection device, a data processing control method, and a data processing control program.
JP5191805B2 (en) Inspection apparatus and inspection method
CN107569229B (en) Biological impedance measuring method and device and electronic equipment
TWI774291B (en) Secondary battery inspection method and secondary battery inspection device
JPH08233868A (en) Method and apparatus for setting magnetic field influence coefficient
JP2006242799A (en) Method for correcting measurement error, and device for measuring characteristics of electronic component
JP5458817B2 (en) Method of correcting electrical characteristic measurement error of electronic component and electronic component characteristic measuring apparatus
JP6752661B2 (en) Processing equipment, inspection systems and processing programs
JPH11295375A (en) Method for eliminating contact resistance in electrically inspecting device for wiring board
JP2014228508A (en) Measurement device and measurement method
CN116256623B (en) Chip electrical characteristic analysis system and method based on volt-ampere characteristic curve
JP2019090757A (en) Processing device, inspection device and processing method
JP2013205026A (en) Substrate inspection device and substrate inspection method
KR20180079003A (en) Real Time Insulation of Electronical installation Inspect System
JPH07122657B2 (en) Comparing reference value for quality judgment and tolerance correction method in circuit board inspection device
TWI464439B (en) System and method for checking a machine
JP2010145290A (en) Sensor characteristic correction device and material testing machine
CN117893513A (en) PCB detection method and system based on visual neural network algorithm
JP2018025511A (en) Interfering wave electric power measurement device, method, and program
JP6320862B2 (en) Inspection apparatus and inspection method
Dai et al. Analog circuit fault diagnosis based on noise measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752747

Country of ref document: EP

Kind code of ref document: A1