JP2017096733A - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
JP2017096733A
JP2017096733A JP2015228323A JP2015228323A JP2017096733A JP 2017096733 A JP2017096733 A JP 2017096733A JP 2015228323 A JP2015228323 A JP 2015228323A JP 2015228323 A JP2015228323 A JP 2015228323A JP 2017096733 A JP2017096733 A JP 2017096733A
Authority
JP
Japan
Prior art keywords
voltage
measurement
current
value
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015228323A
Other languages
Japanese (ja)
Other versions
JP6570981B2 (en
Inventor
康良 鎌田
Yasuyoshi Kamata
康良 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2015228323A priority Critical patent/JP6570981B2/en
Publication of JP2017096733A publication Critical patent/JP2017096733A/en
Application granted granted Critical
Publication of JP6570981B2 publication Critical patent/JP6570981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure a capacitance value, etc., while a defined voltage is accurately applied to a capacitor component, etc., to be measured.SOLUTION: A measurement device of the present invention comprises: a voltage generation unit 2 for generating an AC voltage Vm for measurement that is applied to an electronic component 11; a voltage detection unit 3 for detecting an end-to-end voltage V1 developed between both ends of the electronic component 11 due to that a measurement current Im flows when the AC voltage Vm for measurement is applied; a current detection unit 4 for detecting the measurement current Im; and a processing unit 5 for executing a measurement process to measure the capacitance Value C of a capacitor as the electronic component 11 on the basis of the frequencies f of the end-to-end voltage V1, measurement current Im, and AC voltage Vm for measurement. The processing unit 5 executes a phase difference detection process to detect a phase difference θ between the end-to-end voltage V1 and the measurement current Im, and on the occasion of the measurement process, causes the voltage generation unit 2 to generate the AC voltage Vm for measurement with a corrected defined voltage value Vrc that is a defined voltage value Vr, used when measuring the capacitance value C, that is multiplied by 1/sinθ.SELECTED DRAWING: Figure 1

Description

本発明は、キャパシタやインダクタなどの測定対象のインピーダンスを測定する測定装置および測定方法に関するものである。   The present invention relates to a measuring apparatus and a measuring method for measuring impedance of a measuring object such as a capacitor and an inductor.

この種の測定装置として、本願出願人は下記特許文献1に開示された測定装置を既に提案している。この測定装置は、キャパシタ(コンデンサ)を測定対象としてその静電容量を測定する静電容量測定装置であり、測定用交流信号を供給可能な発振器(交流信号供給部)と、測定用交流信号の印加時において測定対象を流れる電流を電流電圧変換する増幅回路(電流電圧変換部)と、測定用交流信号の印加時において測定対象の両端間に発生する両端間電圧を検出する電圧検出部と、測定用交流信号の周波数、電流電圧変換部によって電流電圧変換された電圧の波形および両端間電圧の波形に基づいて測定対象のインピーダンスと静電容量を測定する制御部とを備えている。   As this type of measuring apparatus, the applicant of the present application has already proposed the measuring apparatus disclosed in Patent Document 1 below. This measuring device is a capacitance measuring device that measures a capacitance of a capacitor (capacitor) as a measurement target, and includes an oscillator (AC signal supply unit) capable of supplying a measuring AC signal, and a measuring AC signal. An amplifying circuit (current-voltage converter) that converts the current flowing through the measurement target at the time of application, a voltage detection unit that detects a voltage across the measurement target when the measurement AC signal is applied; A control unit is provided that measures the impedance and capacitance of the measurement object based on the frequency of the AC signal for measurement, the waveform of the voltage that has been converted from current to voltage by the current-voltage conversion unit, and the waveform of the voltage between both ends.

ところで、測定対象によっては電圧依存性(測定時に印加される電圧の電圧値によって流れる電流、ひいては測定されるインピーダンスや静電容量が変化する性質)があるものがあり(例えば積層セラミックコンデンサなど)、このような測定対象を測定する際には規定の定電圧(例えばJISなどの規格で規定された定電圧)を正確に印加する必要がある。このため、この種の測定対象を測定する場合には、例えば制御部が交流信号供給部から供給される測定用交流信号の振幅を制御することにより、電圧検出部で検出している両端間電圧が規定の定電圧となるようにしている。   By the way, depending on the object to be measured, there is a voltage dependency (current flowing depending on the voltage value of the voltage applied at the time of measurement, and the property that the measured impedance or capacitance changes) (for example, a multilayer ceramic capacitor). When measuring such a measurement object, it is necessary to accurately apply a specified constant voltage (for example, a constant voltage specified by a standard such as JIS). For this reason, when measuring this type of measurement object, for example, the voltage between both ends detected by the voltage detection unit is controlled by the control unit controlling the amplitude of the measurement AC signal supplied from the AC signal supply unit. Is set to the specified constant voltage.

特開2007−121125号公報(第4−6頁、第1図)JP 2007-121125 A (page 4-6, FIG. 1)

ところが、上記のようにして両端間電圧を定電圧にする構成を採用する測定装置には、以下のような改善すべき課題が存在している。すなわち、この測定装置では、電圧検出部で検出している両端間電圧が規定の定電圧となるようにしているが、測定装置がインピーダンスを2端子法で測定する場合には、電圧検出部に接続されるプローブと交流信号供給部に接続されるプローブとが共通となることから、このプローブと測定対象の端子との間の接触抵抗やこのプローブの配線抵抗(測定対象に対して直列の状態で存在している抵抗)での電圧降下分が両端間電圧に含まれている。また、測定装置がインピーダンスを2端子法および4端子法のいずれの方法で測定する場合においても測定対象がキャパシタの場合にはキャパシタ成分だけでなく抵抗成分がこのキャパシタ成分と直列の状態で存在しており、測定対象がインダクタの場合にはインダクタ成分だけでなく抵抗成分がこのインダクタ成分と直列の状態で存在しているため、この抵抗成分での電圧降下分が両端間電圧に含まれている。つまり、電圧検出部で検出している両端間電圧は、キャパシタ成分やインダクタ成分(以下、キャパシタ成分等という)に印加されている電圧と、キャパシタ成分等に対して直列に配設されている抵抗成分での電圧降下分(この抵抗成分に印加されている電圧)の合成電圧となっている。したがって、この測定装置には、規定の電圧を測定対象のキャパシタ成分やインダクタ成分に正確に印加した状態でのキャパシタンス値やインダクタンス値の測定が困難であり、これを改善すべきとの課題が存在している。   However, there are the following problems to be improved in the measuring apparatus adopting the configuration in which the voltage between both ends is made constant as described above. That is, in this measuring device, the voltage between both ends detected by the voltage detector is set to a specified constant voltage, but when the measuring device measures the impedance by the two-terminal method, the voltage detector Since the probe to be connected and the probe connected to the AC signal supply unit are common, the contact resistance between this probe and the terminal to be measured and the wiring resistance of this probe (in series with respect to the measurement object) The voltage drop across the resistor) is included in the voltage between both ends. In addition, when the measuring device measures the impedance by either the two-terminal method or the four-terminal method, when the measurement target is a capacitor, not only the capacitor component but also the resistance component exists in series with the capacitor component. When the measurement target is an inductor, not only the inductor component but also the resistance component exists in series with this inductor component, so the voltage drop at this resistance component is included in the voltage across the two ends . In other words, the voltage between both ends detected by the voltage detection unit is the resistance applied in series with the voltage applied to the capacitor component or the inductor component (hereinafter referred to as capacitor component) and the capacitor component. This is the combined voltage of the voltage drop in the component (the voltage applied to this resistance component). Therefore, it is difficult for this measuring device to measure the capacitance value and the inductance value in a state where a specified voltage is accurately applied to the capacitor component and inductor component to be measured, and there is a problem that this should be improved. doing.

本発明は、かかる課題に鑑みてなされたものであり、測定対象のキャパシタ成分等に規定の電圧を正確に印加した状態でキャパシタンス値等を測定し得る測定装置および測定方法を提供することを主目的とする。   The present invention has been made in view of such a problem, and mainly provides a measuring apparatus and a measuring method capable of measuring a capacitance value or the like in a state where a specified voltage is accurately applied to a capacitor component or the like to be measured. Objective.

上記目的を達成すべく請求項1記載の測定装置は、測定対象に印加する測定用交流電圧を生成する電圧生成部と、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出部と、前記測定電流を検出する電流検出部と、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて、前記測定対象としてのキャパシタのキャパシタンス値を測定する測定処理を実行する処理部とを備えている測定装置であって、前記処理部は、前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出処理を実行し、かつ前記測定処理を実行する際には、前記キャパシタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記電圧生成部に前記測定用交流電圧を生成させる。   In order to achieve the above object, the measuring device according to claim 1 is configured such that a measuring current flows when the measuring AC voltage is applied to the measuring object, and a measuring current flows when the measuring AC voltage is applied. Based on the voltage detection unit for detecting the voltage between both ends generated between both ends of the measurement object, the current detection unit for detecting the measurement current, the voltage between the both ends, the measurement current, and the frequency of the AC voltage for measurement, A measuring unit including a processing unit that performs a measurement process for measuring a capacitance value of a capacitor as the measurement target, wherein the processing unit includes a phase difference θ between the voltage between both ends and the measurement current. When the phase difference detection process for detecting the phase difference is executed and the measurement process is executed, the voltage value of the AC voltage for measurement when the capacitance value is measured is defined in advance. The pressure value at 1 / sin [theta multiplied by the correction specified voltage to generate the measuring AC voltage to the voltage generator.

また、請求項2記載の測定装置は、測定対象に印加する測定用交流電圧を生成する電圧生成部と、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出部と、前記測定電流を検出する電流検出部と、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて、前記測定対象としてのインダクタのインダクタンス値を測定する測定処理を実行する処理部とを備えている測定装置であって、前記処理部は、前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出処理を実行し、かつ前記測定処理を実行する際には、前記インダクタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記電圧生成部に前記測定用交流電圧を生成させる。   In addition, the measuring apparatus according to claim 2 includes a voltage generator that generates an AC voltage for measurement to be applied to the measurement target, and a measurement current that flows when the AC voltage for measurement is applied. Based on the voltage detection unit for detecting the voltage between both ends generated between, the current detection unit for detecting the measurement current, the frequency between the both end voltage, the measurement current and the AC voltage for measurement, as the measurement object And a processing unit that executes a measurement process for measuring an inductance value of the inductor of the inductor, wherein the processing unit detects a phase difference θ between the voltage between both ends and the measurement current. When the phase difference detection process is performed and the measurement process is performed, a specified voltage value defined in advance as the voltage value of the AC voltage for measurement when the inductance value is measured is 1 / s. In nθ multiplied by the correction specified voltage to generate the measuring AC voltage to the voltage generator.

また、請求項3記載の測定方法は、測定対象に測定用交流電圧を印加する印加ステップと、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出ステップと、前記測定電流を検出する電流検出ステップと、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて前記測定対象としてのキャパシタのキャパシタンス値を測定する測定ステップとを実行する測定方法であって、前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出ステップを実行し、前記測定ステップを実行する際には、前記印加ステップにおいて、前記キャパシタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記測定用交流電圧を印加する。   In addition, the measuring method according to claim 3 is generated between both ends of the measuring object by applying a measuring AC voltage to the measuring object and a measuring current flowing when the measuring AC voltage is applied. A voltage detection step for detecting a voltage between both ends, a current detection step for detecting the measurement current, and a capacitance of the capacitor as the measurement object based on the frequency between the both-end voltage, the measurement current, and the AC voltage for measurement. A measurement step of measuring a value, wherein a phase difference detection step of detecting a phase difference θ between the voltage between both ends and the measurement current is executed, and when the measurement step is executed In the applying step, a specified voltage value that is specified in advance as a voltage value of the AC voltage for measurement when the capacitance value is measured. / Applying an AC voltage for the measurement by sinθ multiplied by the correction specified voltage.

また、請求項4記載の測定方法は、測定対象に測定用交流電圧を印加する印加ステップと、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出ステップと、前記測定電流を検出する電流検出ステップと、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて前記測定対象としてのインダクタのインダクタンス値を測定する測定ステップとを実行する測定方法であって、前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出ステップを実行し、前記測定ステップを実行する際には、前記印加ステップにおいて、前記インダクタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記測定用交流電圧を印加する。   Further, the measurement method according to claim 4 is generated between both ends of the measurement object by applying an application step of applying the measurement AC voltage to the measurement object and a measurement current flowing when the measurement AC voltage is applied. A voltage detecting step for detecting a voltage between both ends, a current detecting step for detecting the measurement current, and an inductance of the inductor as the measurement object based on the frequency between the both ends voltage, the measurement current, and the AC voltage for measurement. A measurement step of measuring a value, wherein a phase difference detection step of detecting a phase difference θ between the voltage between both ends and the measurement current is executed, and when the measurement step is executed Is a predetermined voltage value that is previously defined as the voltage value of the AC voltage for measurement when the inductance value is measured in the applying step. / Applying an AC voltage for the measurement by sinθ multiplied by the correction specified voltage.

請求項1記載の測定装置および請求項3記載の測定方法では、両端間電圧と測定電流との間の位相差θを検出する位相差検出処理(位相差検出ステップ)を実行し、測定処理(測定ステップ)を実行する際には、測定対象であるキャパシタのキャパシタンス値を測定する際の測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で電圧生成部に測定用交流電圧を生成させる。   In the measurement apparatus according to claim 1 and the measurement method according to claim 3, a phase difference detection process (phase difference detection step) for detecting a phase difference θ between the voltage between both ends and the measurement current is executed, and the measurement process ( When the measurement step) is executed, a corrected specified voltage value obtained by multiplying the specified voltage value previously defined as the voltage value of the AC voltage for measurement when measuring the capacitance value of the capacitor to be measured by 1 / sin θ times. The voltage generator is caused to generate an AC voltage for measurement.

したがって、この測定装置および測定方法によれば、測定対象であるキャパシタのキャパシタ成分の両端間に実際に印加される電圧の電圧値を正確に規定電圧値とした状態でキャパシタンス値を測定することができる。   Therefore, according to this measuring apparatus and measuring method, the capacitance value can be measured in a state where the voltage value of the voltage actually applied across the capacitor component of the capacitor to be measured is accurately set to the specified voltage value. it can.

請求項2記載の測定装置および請求項4記載の測定方法では、両端間電圧と測定電流との間の位相差θを検出する位相差検出処理(位相差検出ステップ)を実行し、測定処理(測定ステップ)を実行する際には、測定対象であるインダクタのインダクタンス値を測定する際の測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で電圧生成部に測定用交流電圧を生成させる。   In the measurement apparatus according to claim 2 and the measurement method according to claim 4, a phase difference detection process (phase difference detection step) for detecting a phase difference θ between the voltage between both ends and the measurement current is executed, and the measurement process ( (Measurement step) is performed with a corrected specified voltage value obtained by multiplying a specified voltage value previously defined as a voltage value of the AC voltage for measurement when measuring the inductance value of the inductor to be measured by 1 / sin θ. The voltage generator is caused to generate an AC voltage for measurement.

したがって、この測定装置および測定方法によれば、測定対象であるインダクタのインダクタ成分の両端間に実際に印加される電圧の電圧値を正確に規定電圧値とした状態でインダクタンス値を測定することができる。   Therefore, according to this measuring apparatus and measuring method, it is possible to measure the inductance value in a state where the voltage value of the voltage actually applied between both ends of the inductor component of the inductor to be measured is accurately set to the specified voltage value. it can.

測定装置1の構成図である。1 is a configuration diagram of a measuring device 1.

以下、添付図面を参照して、測定装置および測定方法の実施の形態について説明する。   Hereinafter, embodiments of a measurement apparatus and a measurement method will be described with reference to the accompanying drawings.

測定装置の一例としての測定装置1は、図1に示すように、一例として、電圧生成部2、電圧検出部3、電流検出部4、処理部5、記憶部6および出力部7を備え、測定対象としての電子部品11の特性値を測定する。測定対象となる電子部品11としては、キャパシタとインダクタが存在し、キャパシタが電子部品11のときにはキャパシタンス値が特性値として測定され、インダクタが電子部品11のときにはインダクタンス値が特性値として測定される。以下では、キャパシタを電子部品11とし、そのキャパシタンス値Cを特性値として測定する例を挙げて説明する。   As shown in FIG. 1, the measurement apparatus 1 as an example of the measurement apparatus includes, as an example, a voltage generation unit 2, a voltage detection unit 3, a current detection unit 4, a processing unit 5, a storage unit 6, and an output unit 7. A characteristic value of the electronic component 11 as a measurement target is measured. The electronic component 11 to be measured includes a capacitor and an inductor. When the capacitor is the electronic component 11, the capacitance value is measured as a characteristic value, and when the inductor is the electronic component 11, the inductance value is measured as the characteristic value. Hereinafter, an example in which the capacitor is the electronic component 11 and the capacitance value C is measured as a characteristic value will be described.

電圧生成部2は、一例として、振幅を任意に設定可能な交流電圧生成器で構成されて、一定の周波数fの交流電圧を設定された振幅で測定用交流電圧Vmとして生成して不図示の一対の出力端子間から出力する。また、電圧生成部2は、外部から入力される電圧設定データDsで示される振幅で測定用交流電圧Vmを生成して出力する。なお、以下では、発明の理解を容易にするため、測定用交流電圧Vmの振幅(電圧値)についても符号Vmを付するものとする。また、電圧生成部2は、各出力端子に接続された一対の電圧印加用プローブPL1,PL2を介して電子部品11(キャパシタ)の各端子11a,11b間に測定用交流電圧Vmを印加する。   As an example, the voltage generator 2 is composed of an AC voltage generator whose amplitude can be arbitrarily set, and generates an AC voltage having a constant frequency f as a measurement AC voltage Vm with a set amplitude, not shown. Output from between a pair of output terminals. The voltage generator 2 generates and outputs the measurement AC voltage Vm with the amplitude indicated by the voltage setting data Ds input from the outside. In the following description, in order to facilitate understanding of the invention, the amplitude (voltage value) of the measurement AC voltage Vm is also denoted by Vm. The voltage generator 2 applies the measurement AC voltage Vm between the terminals 11a and 11b of the electronic component 11 (capacitor) via a pair of voltage application probes PL1 and PL2 connected to the output terminals.

電圧検出部3は、不図示の一対の電圧検出端子が一対の電圧印加用プローブPL1,PL2のうちの対応するプローブPLに接続されて、この一対の電圧印加用プローブPL1,PL2を介して電子部品11の各端子11a,11bに接続されている。この構成により、電圧検出部3は、測定用交流電圧Vmの印加状態のときに交流電流である測定電流Imが電子部品11に流れることによって電子部品11の両端間に発生する交流電圧である両端間電圧V1を電圧印加用プローブPL1,PL2を介して検出すると共に、この両端間電圧V1の電圧値(振幅)に比例して電圧値(振幅)が変化する交流信号である電圧検出信号Vvを生成して出力する。なお、以下では、発明の理解を容易にするため、両端間電圧V1の振幅(電圧値)についても符号V1を付するものとする。この場合、この両端間電圧V1には、各電圧印加用プローブPL1,PL2の抵抗成分および各電圧印加用プローブPL1,PL2と電子部品11の各端子11a,11bとの間の各接触抵抗(図1では、この抵抗成分および接触抵抗の合成抵抗を模式的に抵抗R1,R2として表している)での電圧降下分が含まれている。また、測定対象となっている電子部品11としてキャパシタは、後述するように、本来のキャパシタ成分11cに抵抗成分11dが直列接続された等価回路で一般的に表されるため、この抵抗成分11dでの電圧降下分についても、両端間電圧V1に含まれている。なお、一般的には、この抵抗成分11dは上記の抵抗R1,R2に比べて抵抗値が小さいため、この抵抗値が無視し得る程度に十分に小さいときには、抵抗成分11dでの電圧降下分については考慮しないこともできる。また、電流検出部4での電圧降下は極めて小さいため、この電圧降下分については無視するものとする。   The voltage detection unit 3 includes a pair of voltage detection terminals (not shown) connected to the corresponding probe PL of the pair of voltage application probes PL1 and PL2, and via the pair of voltage application probes PL1 and PL2. It is connected to each terminal 11a, 11b of the component 11. With this configuration, the voltage detection unit 3 has both ends that are AC voltages generated between both ends of the electronic component 11 when the measurement current Im that is an AC current flows to the electronic component 11 when the measurement AC voltage Vm is applied. A voltage detection signal Vv, which is an AC signal whose voltage value (amplitude) changes in proportion to the voltage value (amplitude) of the voltage V1 between both ends, is detected via the voltage application probes PL1 and PL2. Generate and output. In the following, in order to facilitate understanding of the invention, the amplitude (voltage value) of the voltage V1 between both ends is also denoted by V1. In this case, the voltage V1 between both ends includes the resistance components of the voltage application probes PL1 and PL2, and the contact resistances between the voltage application probes PL1 and PL2 and the terminals 11a and 11b of the electronic component 11 (see FIG. 1, the combined resistance of the resistance component and the contact resistance is schematically represented as resistors R1 and R2). Further, as will be described later, the capacitor as the electronic component 11 to be measured is generally represented by an equivalent circuit in which the resistance component 11d is connected in series to the original capacitor component 11c. This voltage drop is also included in the voltage V1 between both ends. In general, the resistance component 11d has a resistance value smaller than those of the resistors R1 and R2. Therefore, when the resistance value is sufficiently small to be negligible, a voltage drop in the resistance component 11d is obtained. Can not be considered. Further, since the voltage drop at the current detector 4 is extremely small, this voltage drop is ignored.

電流検出部4は、測定用交流電圧Vmの印加状態のときに電圧印加用プローブPL1,PL2を介して電子部品11に流れる測定電流Imを検出すると共に、この測定電流Imの電流値(振幅)に比例して電圧値(振幅)が変化する交流信号である電流検出信号Viを生成して出力する。なお、本例では、電流検出部4は、図1に示すように電圧印加用プローブPL2側に配設されているが、電圧印加用プローブPL1側に配設されていてもよい。また、以下では、発明の理解を容易にするため、測定電流Imの振幅(電流値)についても符号Imを付するものとする。   The current detector 4 detects the measurement current Im flowing through the electronic component 11 via the voltage application probes PL1 and PL2 when the measurement AC voltage Vm is applied, and the current value (amplitude) of the measurement current Im. The current detection signal Vi, which is an AC signal whose voltage value (amplitude) changes in proportion to, is generated and output. In this example, the current detection unit 4 is arranged on the voltage application probe PL2 side as shown in FIG. 1, but may be arranged on the voltage application probe PL1 side. In the following description, in order to facilitate understanding of the invention, the amplitude (current value) of the measurement current Im is also denoted by the symbol Im.

処理部5は、例えば、A/D変換器およびコンピュータ(いずれも図示せず)を備えて構成されて、電圧検出信号Vvおよび電流検出信号Viを入力すると共に、電圧検出信号Vvをサンプリングすることによってその瞬時値を示す電圧波形データDvに変換し、かつ電流検出信号Viをサンプリングすることによってその瞬時値を示す電流波形データDiに変換して、少なくとも電圧検出信号Vvの一周期分の電圧波形データDvおよび電流波形データDiを記憶部6に記憶させる波形データ取得処理を実行する。また、処理部5は、記憶部6に記憶させた電圧波形データDvおよび電流波形データDiに基づいて、両端間電圧V1と測定電流Imとの間の位相差θ(測定用交流電圧Vmと測定電流Imとの間の位相差でもある)を検出する位相差検出処理を実行して、検出した位相差θを記憶部6に記憶させる。また、処理部5は、電圧設定データDsを電圧生成部2に出力して、電圧生成部2から出力される測定用交流電圧Vmの電圧値Vmを設定する電圧設定処理を実行する。また、処理部5は、電圧波形データDv、電流波形データDi、位相差θおよび測定用交流電圧Vmの既知の周波数fに基づいて、電子部品11(キャパシタ)のキャパシタンス値Cを測定すると共に出力部7に出力する測定処理を実行する。   The processing unit 5 includes, for example, an A / D converter and a computer (both not shown), inputs the voltage detection signal Vv and the current detection signal Vi, and samples the voltage detection signal Vv. Is converted into voltage waveform data Dv indicating the instantaneous value by sampling, and by converting the current detection signal Vi into current waveform data Di indicating the instantaneous value by sampling, a voltage waveform corresponding to at least one cycle of the voltage detection signal Vv. A waveform data acquisition process for storing the data Dv and the current waveform data Di in the storage unit 6 is executed. Further, the processing unit 5 determines the phase difference θ between the voltage V1 between both ends and the measurement current Im (measurement AC voltage Vm and measurement) based on the voltage waveform data Dv and the current waveform data Di stored in the storage unit 6. The phase difference detection process for detecting the phase difference between the current Im and the current Im is executed, and the detected phase difference θ is stored in the storage unit 6. Further, the processing unit 5 outputs the voltage setting data Ds to the voltage generation unit 2 and executes a voltage setting process for setting the voltage value Vm of the measurement AC voltage Vm output from the voltage generation unit 2. The processing unit 5 measures and outputs the capacitance value C of the electronic component 11 (capacitor) based on the voltage waveform data Dv, the current waveform data Di, the phase difference θ, and the known frequency f of the measurement AC voltage Vm. The measurement process output to the unit 7 is executed.

記憶部6は、例えば、書き換え可能な記憶装置(ハードディスク装置やRAMなど)で構成されて、処理部5のための動作プログラム、キャパシタンス値Cの測定に際して電子部品11(キャパシタ)に印加すべき測定用交流電圧Vmの電圧値Vmについての規定電圧値Vrを予め記憶する。また、記憶部6は、周波数fについても記憶する。   The storage unit 6 is composed of, for example, a rewritable storage device (such as a hard disk device or a RAM), and an operation program for the processing unit 5 and measurement to be applied to the electronic component 11 (capacitor) when measuring the capacitance value C. The specified voltage value Vr for the voltage value Vm of the AC voltage Vm for use is stored in advance. The storage unit 6 also stores the frequency f.

出力部7は、一例として液晶ディスプレイ装置などの表示装置で構成されて、処理部5から出力されたキャパシタンス値Cを画面に表示する。なお、外部装置にデータを送信するインタフェース装置で出力部7を構成して、測定されたキャパシタンス値Cを出力部7を介して外部装置に出力する構成を採用することもできるし、リムーバブルメディアにデータを記憶するインターフェース装置で出力部7を構成して、測定されたキャパシタンス値Cを出力部7を介してリムーバブルメディアに記憶する構成を採用することもできる。   The output unit 7 includes a display device such as a liquid crystal display device as an example, and displays the capacitance value C output from the processing unit 5 on the screen. In addition, it is possible to adopt a configuration in which the output unit 7 is configured by an interface device that transmits data to an external device, and the measured capacitance value C is output to the external device via the output unit 7. It is also possible to adopt a configuration in which the output unit 7 is configured by an interface device that stores data, and the measured capacitance value C is stored in the removable medium via the output unit 7.

次に、測定装置1の動作と併せて、測定方法について、図面を参照して説明する。   Next, together with the operation of the measuring apparatus 1, a measuring method will be described with reference to the drawings.

電圧生成部2および電圧検出部3が電圧印加用プローブPL1,PL2を介して電子部品11に接続されている状態において、処理部5は、まず、最初の電圧設定処理を実行する。この電圧設定処理では、処理部5は、記憶部6から規定電圧値Vrを読み出すと共にこの規定電圧値Vrを示す電圧設定データDsを電圧生成部2に出力して、電圧生成部2から出力される測定用交流電圧Vmの電圧値Vmを規定電圧値Vrに設定する。これにより、電圧生成部2は、電圧値Vmを規定電圧値Vrに設定して測定用交流電圧Vmを生成して電子部品11の両端間(両端子11a,11b間)に印加する。   In a state where the voltage generation unit 2 and the voltage detection unit 3 are connected to the electronic component 11 via the voltage application probes PL1 and PL2, the processing unit 5 first executes an initial voltage setting process. In this voltage setting process, the processing unit 5 reads the specified voltage value Vr from the storage unit 6 and outputs voltage setting data Ds indicating the specified voltage value Vr to the voltage generation unit 2, and is output from the voltage generation unit 2. The voltage value Vm of the measurement AC voltage Vm is set to the specified voltage value Vr. Thus, the voltage generator 2 sets the voltage value Vm to the specified voltage value Vr, generates the measurement AC voltage Vm, and applies it to both ends of the electronic component 11 (between both terminals 11a and 11b).

次いで、処理部5は、この状態において最初の波形データ取得処理を実行する。この波形データ取得処理では、処理部5は、電圧検出信号Vvおよび電流検出信号Viを入力してサンプリングすることによって電圧波形データDvおよび電流波形データDiに変換し、この各波形データDv,Diについて電圧検出信号Vvの一周期分を記憶部6に記憶させる。   Next, the processing unit 5 executes the first waveform data acquisition process in this state. In this waveform data acquisition process, the processing unit 5 receives and samples the voltage detection signal Vv and the current detection signal Vi to convert them into voltage waveform data Dv and current waveform data Di, and each of the waveform data Dv and Di One cycle of the voltage detection signal Vv is stored in the storage unit 6.

続いて、処理部5は、位相差検出処理を実行する(位相差検出ステップ)。この位相差検出処理では、処理部5は、記憶部6に記憶させた電圧波形データDvおよび電流波形データDiに基づいて、両端間電圧V1と測定電流Imとの間の位相差θ(測定用交流電圧Vmと測定電流Imとの間の位相差でもある)を検出すると共に、検出した位相差θを記憶部6に記憶させる。   Subsequently, the processing unit 5 executes a phase difference detection process (phase difference detection step). In this phase difference detection process, the processing unit 5 is based on the voltage waveform data Dv and the current waveform data Di stored in the storage unit 6, and the phase difference θ between the voltage V1 between both ends and the measurement current Im (for measurement) (Which is also a phase difference between the AC voltage Vm and the measurement current Im), and the detected phase difference θ is stored in the storage unit 6.

次いで、処理部5は、2回目の電圧設定処理を実行する。この電圧設定処理では、処理部5は、まず、記憶部6から規定電圧値Vrおよび位相差θを読み出すと共に規定電圧値Vrを1/sinθ倍した補正規定電圧値Vrcを算出する。次いで、処理部5は、この補正規定電圧値Vrcを示す電圧設定データDsを電圧生成部2に出力して、電圧生成部2から出力される測定用交流電圧Vmの電圧値Vmをこの補正規定電圧値Vrcに設定する。これにより、電圧生成部2は、電圧値Vmを補正規定電圧値Vrcに設定して測定用交流電圧Vmを生成して電子部品11の両端間(両端子11a,11b間)に印加する(印加ステップ)。   Next, the processing unit 5 executes a second voltage setting process. In this voltage setting process, the processing unit 5 first reads the specified voltage value Vr and the phase difference θ from the storage unit 6 and calculates a corrected specified voltage value Vrc obtained by multiplying the specified voltage value Vr by 1 / sin θ. Next, the processing unit 5 outputs the voltage setting data Ds indicating the corrected specified voltage value Vrc to the voltage generating unit 2, and the voltage value Vm of the measurement AC voltage Vm output from the voltage generating unit 2 is this corrected specified value. Set to voltage value Vrc. As a result, the voltage generator 2 sets the voltage value Vm to the corrected specified voltage value Vrc, generates the measurement AC voltage Vm, and applies it to both ends of the electronic component 11 (between both terminals 11a and 11b). Step).

このようにして、電圧生成部2に対して、規定電圧値Vrに代えて補正規定電圧値Vrcを電圧値Vmとして測定用交流電圧Vmを印加させる理由について説明する。測定対象となっている電子部品11としてキャパシタは、図1に示すように、本来のキャパシタ成分11cに抵抗成分11dが直列接続された等価回路で一般的に表される。また、電子部品11には、上記した抵抗R1,R2が等価的に直列に接続されている。つまり、キャパシタ成分11cには、抵抗R1,R2および抵抗成分11dの直列合成抵抗が直列に接続されている。このため、電子部品11の両端間(両端子11a,11b間)に規定電圧値Vrを印加したとしても、規定電圧値Vrは上記の直列合成抵抗とキャパシタ成分11cとで分圧されることから、キャパシタ成分11cの両端間に実際に印加される電圧Vcは、Vr×sinθ(このθは、上記の位相差検出処理で求められる両端間電圧V1と測定電流Imとの間の位相差)となって、規定電圧値Vrよりも低い電圧となる。そこで、電圧生成部2から出力される測定用交流電圧Vmの電圧値Vmを、規定電圧値Vrを予め1/sinθ倍した補正規定電圧値Vrc(=Vr×(1/sinθ))に規定して出力させることで、キャパシタ成分11cの両端間に実際に印加される電圧Vcを、下記式のように規定電圧値Vrとしている。
Vc=Vrc×sinθ=Vr×(1/sinθ))×sinθ=Vr
The reason why the AC voltage Vm for measurement is applied to the voltage generator 2 with the corrected specified voltage value Vrc as the voltage value Vm instead of the specified voltage value Vr will be described. As shown in FIG. 1, a capacitor as an electronic component 11 to be measured is generally represented by an equivalent circuit in which a resistance component 11d is connected in series to an original capacitor component 11c. In addition, the above-described resistors R1 and R2 are equivalently connected in series to the electronic component 11. That is, a series combined resistance of the resistors R1 and R2 and the resistor component 11d is connected in series to the capacitor component 11c. For this reason, even if the specified voltage value Vr is applied between both ends of the electronic component 11 (between both terminals 11a and 11b), the specified voltage value Vr is divided by the series combined resistor and the capacitor component 11c. The voltage Vc actually applied between both ends of the capacitor component 11c is Vr × sin θ (where θ is the phase difference between the voltage V1 between the both ends obtained by the above-described phase difference detection process and the measurement current Im). Thus, the voltage is lower than the specified voltage value Vr. Therefore, the voltage value Vm of the measurement AC voltage Vm output from the voltage generator 2 is defined as a corrected specified voltage value Vrc (= Vr × (1 / sin θ)) obtained by multiplying the specified voltage value Vr by 1 / sin θ in advance. The voltage Vc actually applied across the capacitor component 11c is set to the specified voltage value Vr as shown in the following equation.
Vc = Vrc × sin θ = Vr × (1 / sin θ)) × sin θ = Vr

続いて、処理部5は、上記した2回目の電圧設定処理の実行後に、2回目の波形データ取得処理を実行する。この波形データ取得処理では、処理部5は、電圧検出信号Vvおよび電流検出信号Viを入力してサンプリングすることによって電圧波形データDvおよび電流波形データDiに変換し、この各波形データDv,Diについて電圧検出信号Vvの一周期分を記憶部6に記憶させる(電圧検出ステップおよび電流検出ステップ)。   Subsequently, the processing unit 5 executes the second waveform data acquisition process after executing the second voltage setting process. In this waveform data acquisition process, the processing unit 5 receives and samples the voltage detection signal Vv and the current detection signal Vi to convert them into voltage waveform data Dv and current waveform data Di, and each of the waveform data Dv and Di One cycle of the voltage detection signal Vv is stored in the storage unit 6 (voltage detection step and current detection step).

次いで、処理部5は、測定処理を実行する(測定ステップ)。この測定処理では、処理部5は、まず、記憶部6に記憶されている電圧波形データDvおよび電流波形データDi(2回目の波形データ取得処理で取得した波形データ)に基づいて、測定用交流電圧Vmの実効値Vrmと測定電流Imの実効値Irmとを算出する。次いで、処理部5は、算出した各実効値Vrm,Irmに基づいて、電子部品11のインピーダンスZ(=Vrm/Irm)を算出する。続いて、処理部5は、算出したインピーダンスZと記憶部6に記憶されている位相差θとに基づいて、電子部品11のリアクタンスX(=Z×sinθ)を算出する。次いで、処理部5は、算出したリアクタンスXと既知の周波数f(記憶部6に記憶されている周波数f)とに基づいて、電子部品11のキャパシタンス値C(=1/(2π×f×X))を算出して記憶部6に記憶させる。このようにして算出されたキャパシタンス値Cは、電子部品11のキャパシタ成分11cの両端間に印加されている電圧Vcが規定電圧値Vrのときの値であるため、電子部品11のキャパシタンス値を正確に表したものとなっている。最後に、処理部5は、算出したキャパシタンス値Cを出力部7に出力して表示させる。これにより、電子部品11のキャパシタンス値Cの測定が完了する。   Next, the processing unit 5 performs a measurement process (measurement step). In this measurement process, the processing unit 5 first determines the alternating current for measurement based on the voltage waveform data Dv and the current waveform data Di (waveform data acquired in the second waveform data acquisition process) stored in the storage unit 6. The effective value Vrm of the voltage Vm and the effective value Irm of the measurement current Im are calculated. Next, the processing unit 5 calculates the impedance Z (= Vrm / Irm) of the electronic component 11 based on the calculated effective values Vrm and Irm. Subsequently, the processing unit 5 calculates the reactance X (= Z × sin θ) of the electronic component 11 based on the calculated impedance Z and the phase difference θ stored in the storage unit 6. Next, the processing unit 5 determines the capacitance value C (= 1 / (2π × f × X) of the electronic component 11 based on the calculated reactance X and the known frequency f (frequency f stored in the storage unit 6). )) Is calculated and stored in the storage unit 6. The capacitance value C calculated in this way is a value when the voltage Vc applied across the capacitor component 11c of the electronic component 11 is the specified voltage value Vr, and thus the capacitance value of the electronic component 11 is accurately determined. It is shown in Finally, the processing unit 5 outputs the calculated capacitance value C to the output unit 7 for display. Thereby, the measurement of the capacitance value C of the electronic component 11 is completed.

このように、この測定装置1および測定方法では、両端間電圧V1と測定電流Imとの間の位相差θを検出する位相差検出処理(位相差検出ステップ)を実行し、測定処理(測定ステップ)を実行する際には、電圧生成部2に対する電圧設定処理(印加ステップ)において、電子部品11のキャパシタンス値Cを測定する際の測定用交流電圧Vmの電圧値Vmとして予め規定されている規定電圧値Vrを1/sinθ倍した補正規定電圧値Vrcで電圧生成部2に測定用交流電圧Vmを生成させる。   As described above, in the measurement apparatus 1 and the measurement method, the phase difference detection process (phase difference detection step) for detecting the phase difference θ between the voltage V1 between both ends and the measurement current Im is executed, and the measurement process (measurement step) is performed. ) In the voltage setting process (application step) for the voltage generator 2, a pre-defined rule as the voltage value Vm of the AC voltage Vm for measurement when measuring the capacitance value C of the electronic component 11. The voltage generator 2 is caused to generate the measurement AC voltage Vm with the corrected specified voltage value Vrc obtained by multiplying the voltage value Vr by 1 / sin θ.

したがって、この測定装置1および測定方法によれば、測定対象である電子部品11としてのキャパシタのキャパシタ成分11cの両端間に実際に印加される電圧Vcの電圧値を正確に規定電圧値Vrとした状態で電子部品11のキャパシタンス値Cを測定することができる。これにより、この測定装置1および測定方法によれば、例えば積層セラミックコンデンサのような電圧依存性がある測定対象についても、そのキャパシタ成分11cの両端間に正確に規定電圧値Vrを印加した状態での正確なキャパシタンス値Cを測定することができる。   Therefore, according to the measuring apparatus 1 and the measuring method, the voltage value of the voltage Vc actually applied across the capacitor component 11c of the capacitor as the electronic component 11 to be measured is accurately set to the specified voltage value Vr. The capacitance value C of the electronic component 11 can be measured in the state. Thereby, according to this measuring apparatus 1 and the measuring method, for example, a voltage-dependent measuring object such as a multilayer ceramic capacitor is applied with the specified voltage value Vr accurately applied between both ends of the capacitor component 11c. The accurate capacitance value C can be measured.

なお、測定対象となる電子部品11としてキャパシタを例に挙げて説明したが、この測定装置1および測定方法は、インダクタが測定対象となる電子部品11の場合に対しても適用することができ、この場合には、電子部品11としてのキャパシタを測定対象とする際と同様にして、位相差検出ステップおよび印加ステップを実行することにより、抵抗成分と直列に存在するインダクタのインダクタ成分に対して規定電圧値Vrを印加した状態でインダクタの正確なインダクタンス値を測定することができる。   In addition, although the capacitor has been described as an example of the electronic component 11 to be measured, the measurement apparatus 1 and the measurement method can be applied to the case where the inductor is the electronic component 11 to be measured. In this case, the phase difference detection step and the application step are executed in the same manner as when the capacitor as the electronic component 11 is set as the measurement target, thereby defining the inductor component of the inductor existing in series with the resistance component. An accurate inductance value of the inductor can be measured in a state where the voltage value Vr is applied.

また、測定装置1がインピーダンスZを2端子法で測定する例を挙げて説明したが、インピーダンスZを4端子法で測定する場合にも適用することができ、この場合には、キャパシタ成分11cに直列接続されている抵抗成分11dでの電圧降下分(測定対象がインダクタの場合にはインダクタ成分に直列接続されている抵抗成分での電圧降下分)を無視できない状況下においても、測定対象である電子部品11のキャパシタ成分11c(またはインダクタ成分)に正確に規定電圧値Vrを印加した状態でそのキャパシタンス値(またはインダクタンス値)を正確に測定することができる。   Moreover, although the measuring apparatus 1 gave and demonstrated the example which measures the impedance Z by a 2 terminal method, it can apply also when measuring the impedance Z by a 4 terminal method, In this case, it is applied to the capacitor component 11c. It is a measurement target even in a situation where the voltage drop at the resistance component 11d connected in series (the voltage drop at the resistance component connected in series to the inductor component when the measurement target is an inductor) cannot be ignored. The capacitance value (or inductance value) can be accurately measured in a state where the specified voltage value Vr is accurately applied to the capacitor component 11c (or inductor component) of the electronic component 11.

1 測定装置
2 電圧生成部
3 電圧検出部
4 電流検出部
5 処理部
11 電子部品(測定対象)
C キャパシタンス値
f 周波数
Im 測定電流
V1 両端間電圧
Vm 測定用交流電圧
Vr 規定電圧値
Vrc 補正規定電圧値
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Voltage generation part 3 Voltage detection part 4 Current detection part 5 Processing part 11 Electronic component (measurement object)
C Capacitance value f Frequency Im Measurement current V1 Voltage between both ends Vm Measurement AC voltage Vr Specified voltage value Vrc Correction specified voltage value

Claims (4)

測定対象に印加する測定用交流電圧を生成する電圧生成部と、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出部と、前記測定電流を検出する電流検出部と、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて、前記測定対象としてのキャパシタのキャパシタンス値を測定する測定処理を実行する処理部とを備えている測定装置であって、
前記処理部は、前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出処理を実行し、かつ前記測定処理を実行する際には、前記キャパシタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記電圧生成部に前記測定用交流電圧を生成させる測定装置。
A voltage generator that generates a measurement AC voltage to be applied to the measurement object, and a voltage that detects a voltage across the measurement object when a measurement current flows when the measurement AC voltage is applied. A measurement process for measuring a capacitance value of the capacitor as the measurement target based on the frequency of the detection unit, the current detection unit for detecting the measurement current, the voltage between both ends, the measurement current, and the AC voltage for measurement; A measuring device including a processing unit to be executed,
The processing unit performs a phase difference detection process for detecting a phase difference θ between the voltage between both ends and the measurement current, and when the measurement process is performed, A measuring apparatus for causing the voltage generating unit to generate the AC voltage for measurement with a corrected specified voltage value obtained by multiplying a specified voltage value specified in advance as a voltage value of the AC voltage for measurement by 1 / sin θ.
測定対象に印加する測定用交流電圧を生成する電圧生成部と、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出部と、前記測定電流を検出する電流検出部と、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて、前記測定対象としてのインダクタのインダクタンス値を測定する測定処理を実行する処理部とを備えている測定装置であって、
前記処理部は、前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出処理を実行し、かつ前記測定処理を実行する際には、前記インダクタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記電圧生成部に前記測定用交流電圧を生成させる測定装置。
A voltage generator that generates a measurement AC voltage to be applied to the measurement object, and a voltage that detects a voltage across the measurement object when a measurement current flows when the measurement AC voltage is applied. And a measurement process for measuring an inductance value of the inductor as the measurement object based on a frequency of the detection unit, a current detection unit for detecting the measurement current, the voltage between both ends, the measurement current, and the AC voltage for measurement. A measuring device including a processing unit to be executed,
The processing unit executes a phase difference detection process for detecting a phase difference θ between the voltage between both ends and the measurement current, and when the measurement process is executed, A measuring apparatus for causing the voltage generating unit to generate the AC voltage for measurement with a corrected specified voltage value obtained by multiplying a specified voltage value specified in advance as a voltage value of the AC voltage for measurement by 1 / sin θ.
測定対象に測定用交流電圧を印加する印加ステップと、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出ステップと、前記測定電流を検出する電流検出ステップと、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて前記測定対象としてのキャパシタのキャパシタンス値を測定する測定ステップとを実行する測定方法であって、
前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出ステップを実行し、
前記測定ステップを実行する際には、前記印加ステップにおいて、前記キャパシタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記測定用交流電圧を印加する測定方法。
An application step of applying a measurement AC voltage to the measurement object; and a voltage detection step of detecting a voltage across the measurement object when a measurement current flows when the measurement AC voltage is applied. A measurement step of performing a current detection step of detecting the measurement current, and a measurement step of measuring a capacitance value of the capacitor as the measurement object based on the frequencies of the voltage between both ends, the measurement current, and the AC voltage for measurement. A method,
Performing a phase difference detection step of detecting a phase difference θ between the voltage between the both ends and the measurement current;
When executing the measurement step, a corrected specified voltage value obtained by multiplying a specified voltage value, which is specified in advance as the voltage value of the AC voltage for measurement at the time of measuring the capacitance value in the applying step, by 1 / sin θ. A measurement method in which the alternating voltage for measurement is applied.
測定対象に測定用交流電圧を印加する印加ステップと、前記測定用交流電圧の印加状態のときに測定電流が流れることによって前記測定対象の両端間に発生する両端間電圧を検出する電圧検出ステップと、前記測定電流を検出する電流検出ステップと、前記両端間電圧、前記測定電流および前記測定用交流電圧の周波数に基づいて前記測定対象としてのインダクタのインダクタンス値を測定する測定ステップとを実行する測定方法であって、
前記両端間電圧と前記測定電流との間の位相差θを検出する位相差検出ステップを実行し、
前記測定ステップを実行する際には、前記印加ステップにおいて、前記インダクタンス値を測定する際の前記測定用交流電圧の電圧値として予め規定されている規定電圧値を1/sinθ倍した補正規定電圧値で前記測定用交流電圧を印加する測定方法。
An application step of applying a measurement AC voltage to the measurement object; and a voltage detection step of detecting a voltage across the measurement object when a measurement current flows when the measurement AC voltage is applied. A measurement step of performing a current detection step of detecting the measurement current, and a measurement step of measuring an inductance value of the inductor as the measurement object based on the frequencies of the voltage between both ends, the measurement current, and the AC voltage for measurement. A method,
Performing a phase difference detection step of detecting a phase difference θ between the voltage between the both ends and the measurement current;
When executing the measurement step, a corrected specified voltage value obtained by multiplying a specified voltage value, which is specified in advance as the voltage value of the AC voltage for measurement at the time of measuring the inductance value, by 1 / sin θ in the applying step. A measurement method in which the alternating voltage for measurement is applied.
JP2015228323A 2015-11-24 2015-11-24 Measuring apparatus and measuring method Active JP6570981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015228323A JP6570981B2 (en) 2015-11-24 2015-11-24 Measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228323A JP6570981B2 (en) 2015-11-24 2015-11-24 Measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2017096733A true JP2017096733A (en) 2017-06-01
JP6570981B2 JP6570981B2 (en) 2019-09-04

Family

ID=58817243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228323A Active JP6570981B2 (en) 2015-11-24 2015-11-24 Measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP6570981B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577561A (en) * 2022-02-08 2023-08-11 日置电机株式会社 Data processing control device, inspection device, data processing control method, and program
WO2023153282A1 (en) * 2022-02-08 2023-08-17 日置電機株式会社 Inspection device, inspection method, trained model generating device, inspection program, and trained model generating program
WO2023204018A1 (en) * 2022-04-22 2023-10-26 株式会社Screenホールディングス Impedance measurement apparatus and impedance measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824556B1 (en) * 1969-03-10 1973-07-21
US4473796A (en) * 1981-03-02 1984-09-25 Ford Aerospace & Communications Corporation Resistance and capacitance measuring device
JP2003139811A (en) * 2001-11-02 2003-05-14 Hioki Ee Corp Method, apparatus, and system for measuring impedance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824556B1 (en) * 1969-03-10 1973-07-21
US4473796A (en) * 1981-03-02 1984-09-25 Ford Aerospace & Communications Corporation Resistance and capacitance measuring device
JP2003139811A (en) * 2001-11-02 2003-05-14 Hioki Ee Corp Method, apparatus, and system for measuring impedance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577561A (en) * 2022-02-08 2023-08-11 日置电机株式会社 Data processing control device, inspection device, data processing control method, and program
WO2023153282A1 (en) * 2022-02-08 2023-08-17 日置電機株式会社 Inspection device, inspection method, trained model generating device, inspection program, and trained model generating program
JP2023115772A (en) * 2022-02-08 2023-08-21 日置電機株式会社 Data processing control device, inspection device, data processing control method, and data processing control program
WO2023204018A1 (en) * 2022-04-22 2023-10-26 株式会社Screenホールディングス Impedance measurement apparatus and impedance measurement method

Also Published As

Publication number Publication date
JP6570981B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6570981B2 (en) Measuring apparatus and measuring method
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP6304956B2 (en) Resistance measuring device and resistance measuring method
JP7080757B2 (en) Impedance measuring device and impedance measuring method
JP5726658B2 (en) Measuring apparatus and measuring method
JP6341812B2 (en) Measuring apparatus and signal type discrimination method
JP4369909B2 (en) Magnetic property measuring method and measuring instrument
WO2017161870A1 (en) Method and apparatus for frequency adjustment
JP2007315981A (en) Measuring device and inspection device
JP2015137989A (en) Signal switching circuit and impedance measurement device
JP2018060516A (en) Method of constructing equivalent circuit of capacitor, and simulation method and apparatus thereof
CN109613347B (en) Excitation characteristic detection method and device of transformer
JP3964538B2 (en) Impedance measuring device
JP2007121125A (en) Current detector and capacitance measurement device
US6842014B2 (en) Methods for determining inductance and resistance of an inductor
JP2011185625A (en) Inspection device
JP2011038969A (en) Impedance measuring device
JP5172724B2 (en) Surge test equipment
JP6657822B2 (en) Inductor simulation model
CN110824250A (en) Device for measuring inductance L and ESR in large frequency range
JP2007292673A (en) Measuring apparatus
JP2017194419A (en) Voltage measurement device
JP6529232B2 (en) Welding current measuring device, resistance welding monitoring device and resistance welding control device
JP2014025772A (en) Physical quantity measuring device and physical quantity measuring method
JP2007278977A (en) Measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190807

R150 Certificate of patent or registration of utility model

Ref document number: 6570981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250