WO2023153229A1 - 液処理方法、吐出調整方法及び液処理装置 - Google Patents

液処理方法、吐出調整方法及び液処理装置 Download PDF

Info

Publication number
WO2023153229A1
WO2023153229A1 PCT/JP2023/002482 JP2023002482W WO2023153229A1 WO 2023153229 A1 WO2023153229 A1 WO 2023153229A1 JP 2023002482 W JP2023002482 W JP 2023002482W WO 2023153229 A1 WO2023153229 A1 WO 2023153229A1
Authority
WO
WIPO (PCT)
Prior art keywords
ejection
treatment liquid
processing
liquid
working fluid
Prior art date
Application number
PCT/JP2023/002482
Other languages
English (en)
French (fr)
Inventor
洋 丸本
賢治 福島
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023153229A1 publication Critical patent/WO2023153229A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present disclosure relates to a liquid processing method, an ejection adjustment method, and a liquid processing apparatus.
  • Discharge of the processing liquid from the discharge nozzle to the substrate can be turned on/off by opening and closing a valve provided in the flow path on the upstream side of the discharge nozzle (see Patent Document 1, for example).
  • a valve capable of switching ON/OFF of the ejection of the processing liquid from the ejection nozzle for example, a pneumatic switching valve that opens and closes the flow path according to the pressure of the supplied working fluid (compressed air, etc.) can be used. .
  • the discharge stop behavior of the treatment liquid in the discharge nozzle can be adjusted, for example, by adjusting the opening degree of the fluid flow path through which the working fluid supplied to the pneumatic switching valve described above flows. is often determined based on the manager's experience.
  • ejection stop time When stopping the ejection of the treatment liquid from the ejection nozzles, it takes a reasonable amount of time (hereinafter also referred to as “ejection stop time") from the transmission of the ejection stop signal until the ejection of the treatment liquid from the ejection nozzles is completely stopped. It takes During this discharge stop time, an abnormality such as droplets falling from the discharge nozzle may occur, and the administrator may be required to visually check for such an abnormality.
  • the present disclosure provides an advantageous technology for stably grasping the ejection stop behavior of the treatment liquid from the ejection nozzles.
  • One aspect of the present disclosure is a step of sending a processing liquid to a discharge nozzle via a processing liquid valve and discharging the processing liquid from the discharge nozzle toward a substrate, wherein the processing liquid valve is configured to operate as a working fluid to be supplied.
  • the flow of the processing liquid in the flow path leading to the discharge nozzle is controlled in accordance with the pressure, and the fluid pressure adjustment unit adjusts the pressure of the working fluid supplied to the processing liquid valve in accordance with the variably settable adjustment parameter.
  • a step of adjusting the fluctuation behavior a step of stopping the ejection of the treatment liquid from the ejection nozzle by limiting the amount of the treatment liquid sent to the ejection nozzle via the treatment liquid valve; obtaining correlation data between a working fluid parameter indicating the fluctuation behavior of the pressure of the working fluid obtained by measuring the pressure of the supplied working fluid and the adjustment parameter.
  • FIG. 1 is a schematic diagram of an example of a processing system.
  • FIG. 2 is a diagram showing a schematic configuration of an example of a liquid supply system in a processing unit.
  • FIG. 3 is a diagram for explaining the discharge stop time.
  • FIG. 4 is a diagram showing an example of the relationship between the degree of opening of the fluid flow path adjusted by the fluid pressure adjusting section and the ejection stop time.
  • FIG. 5 is a diagram showing an example of the relationship between the passage of time and the working fluid pressure, which is the measurement result of the fluid pressure measuring unit, when the ejection of the treatment liquid from the ejection nozzle is stopped.
  • FIG. 1 is a schematic diagram of an example of a processing system.
  • FIG. 2 is a diagram showing a schematic configuration of an example of a liquid supply system in a processing unit.
  • FIG. 3 is a diagram for explaining the discharge stop time.
  • FIG. 4 is a diagram showing an example of the relationship between the degree of opening of the fluid flow path adjusted by the fluid pressure
  • FIG. 6 is a graph showing an example of the relationship between the opening degree of the fluid flow path adjusted by the fluid pressure adjustment section and the damping factor for the results shown in FIG.
  • FIG. 7 is a graph showing an example of the relationship between the opening degree of the fluid flow path and the damping factor only for the results indicated by "Q2" to "Q17" among the results shown in FIG.
  • FIG. 8 is a perspective view showing a specific configuration example of the processing unit.
  • FIG. 9 is a diagram showing an example relationship between the passage of time and the intensity of the reflected light obtained by the light measurement unit.
  • FIG. 10 is a diagram showing an example of the relationship between the passage of time, the working fluid pressure, and the intensity of reflected light when the ejection of the treatment liquid from the ejection nozzle is stopped.
  • FIG. 9 is a diagram showing an example of the relationship between the passage of time, the working fluid pressure, and the intensity of reflected light when the ejection of the treatment liquid from the ejection nozzle is stopped.
  • FIG. 11 is a diagram showing an example of the relationship between the passage of time, the working fluid pressure, and the intensity of reflected light when the ejection of the treatment liquid from the ejection nozzle is stopped.
  • FIG. 12 is a diagram showing an example of the relationship between the delay time and the discharge stop time.
  • FIG. 13 is a diagram showing an example of the relationship between the attenuation rate, the delay time, and the discharge stop time.
  • FIG. 14 is a diagram illustrating a processing flow of the first application example.
  • FIG. 15 is a diagram illustrating a processing flow of the second application example.
  • FIG. 16 is a diagram showing an example of correlation between attenuation rate and delay time.
  • FIG. 17 is a diagram showing an example of the relationship between the attenuation rate, the delay time, and the discharge stop time.
  • FIG. 18 is a diagram showing a processing flow of the third application example.
  • FIG. 19 shows an example of the relationship between the passage of time and the working fluid pressure and the intensity of reflected light when the ejection of the treatment liquid from the ejection nozzle is stopped. It is a figure when there is no fall.
  • FIG. 20 shows an example of the relationship between the passage of time and the working fluid pressure and the intensity of reflected light when the ejection of the treatment liquid from the ejection nozzle is stopped. It is a figure in case there is a fall.
  • FIG. 21 is a diagram showing a processing flow of the fifth application example.
  • FIG. 22 is a diagram showing an example of the relationship between the passage of time and the attenuation rate/delay time, and particularly shows the case where there is no significant difference in the temporal fluctuations of the attenuation rate and delay time.
  • FIG. 23 is a diagram showing an example of the relationship between time and attenuation rate/delay time, and particularly shows a case where there is a significant difference in chronological fluctuations of the attenuation rate and delay time.
  • FIG. 1 is a diagram showing an outline of an example of the processing system 80.
  • FIG. 1 is a diagram showing an outline of an example of the processing system 80.
  • the processing system 80 shown in FIG. 1 has a loading/unloading station 91 and a processing station 92 .
  • the loading/unloading station 91 includes a loading section 81 having a plurality of carriers C, and a transport section 82 provided with a first transport mechanism 83 and a delivery section 84 .
  • Each carrier C accommodates a plurality of substrates W in a horizontal state.
  • the substrate W is typically composed of a semiconductor wafer, a glass substrate, or the like, but is not limited thereto.
  • the processing station 92 is provided with a plurality of processing units 10 installed on both sides of the transport path 86 and a second transport mechanism 85 that reciprocates on the transport path 86 .
  • the substrate W is picked up from the carrier C by the first transport mechanism 83 and placed on the delivery section 84 , and taken out from the delivery section 84 by the second transport mechanism 85 . Then, the substrate W is carried into the corresponding processing unit 10 by the second transport mechanism 85 and subjected to the predetermined liquid processing in the corresponding processing unit 10 . After that, the substrate W is taken out from the corresponding processing unit 10 by the second transport mechanism 85 and placed on the transfer section 84 , and then returned to the carrier C of the placing section 81 by the first transport mechanism 83 .
  • the processing system 80 includes a control section 93 .
  • the control unit 93 is configured by a computer, for example, and has an arithmetic processing unit and a storage unit.
  • the storage unit of the control unit 93 stores programs and data for various processes performed by the processing system 80 .
  • the arithmetic processing unit of the control unit 93 appropriately reads and executes programs stored in the storage unit, thereby controlling various mechanisms of the processing system 80 and performing various processes.
  • the programs and data stored in the storage unit of the control unit 93 may have been recorded on a computer-readable storage medium and may have been installed from the storage medium into the storage unit.
  • Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), and memory cards.
  • Two or more of the plurality of processing units 10 in the processing system 80 described above may have the same configuration, may have different configurations, or may perform the same processing. Alternatively, processing different from each other may be performed.
  • Each processing unit 10 can perform various liquid processes on the substrate W by applying various processing liquids (eg, chemical liquid, rinse liquid, cleaning liquid, etc.) to the substrate W.
  • processing liquids eg, chemical liquid, rinse liquid, cleaning liquid, etc.
  • FIG. 2 is a diagram showing a schematic configuration of an example of a liquid supply system in the processing unit 10. As shown in FIG.
  • the processing unit (liquid processing apparatus) 10 includes a discharge nozzle 20 for discharging the processing liquid Lp toward the processing surface Sp of the substrate W (for example, the upper surface of the substrate W).
  • a processing liquid valve 21 , a constant pressure valve 24 , a flow meter 25 , a first supply valve 26 and a second supply valve 27 are provided in the processing liquid flow path Cp connected to the ejection nozzle 20 .
  • the flow meter 25 On the downstream side of the first supply valve 26 and the second supply valve 27, the flow meter 25, the constant pressure valve 24, the processing liquid valve 21 and the discharge nozzle 20 are provided in this order from the upstream side to the downstream side. .
  • the terms “upstream” and “downstream” here refer to the flow of the treatment liquid Lp in the treatment liquid flow path Cp when the treatment liquid Lp is ejected from the ejection nozzle 20 .
  • the first supply valve 26 and the second supply valve 27 are respectively provided in two branch channels provided in parallel in the processing liquid channel Cp, and control the flow of the processing liquid Lp in the corresponding branch channels.
  • Each of the first supply valve 26 and the second supply valve 27 can be configured by, for example, an on/off valve, and under the control of the control unit 93 (see FIG. 1), the flow of the treatment liquid Lp in the corresponding branch flow path is turned on. (fully open) and off (fully closed) can be switched.
  • the flow meter 25 and the constant pressure valve 24 are downstream of the first supply valve 26 and the second supply valve 27, and a single flow path in which two branched flow paths provided with the first supply valve 26 and the second supply valve 27 converge. provided in part.
  • the flow meter 25 measures the flow rate (that is, flow velocity) of the treatment liquid Lp in the treatment liquid flow path Cp and transmits the measurement result to the control section 93 . Even if the pressure of the processing liquid Lp in the processing liquid flow path Cp on the upstream side of the constant pressure valve 24 is higher than the set pressure, the constant pressure valve 24 reduces the pressure of the processing liquid Lp in the processing liquid flow path Cp on the downstream side to the set pressure. adjust.
  • the processing liquid valve 21 controls the flow of the processing liquid Lp in the processing liquid channel Cp according to the pressure of the working fluid Lw supplied from the fluid supply section 28 via the fluid channel Cw.
  • the opening degree of the processing liquid flow path Cp adjusted by the processing liquid valve 21 varies.
  • the flow rate of the processing liquid Lp sent changes.
  • the processing liquid Lp sent to the ejection nozzle 20 via the processing liquid valve 21 is restricted according to the opening degree of the processing liquid flow path Cp adjusted by the processing liquid valve 21 in this way.
  • the processing liquid valve 21 adjusts the opening degree of the processing liquid channel Cp to “0 (zero)” (that is, when the processing liquid channel Cp is fully closed)
  • the processing liquid valve 21 sends the discharge nozzle 20 to the processing liquid.
  • the liquid Lp is not sent, and the ejection of the processing liquid Lp from the ejection nozzle 20 is stopped.
  • the variation speed of the opening degree of the processing liquid flow path Cp adjusted by the processing liquid valve 21 changes according to the variation behavior of the pressure of the working fluid Lw supplied to the processing liquid valve 21 .
  • the opening degree of the processing liquid flow path Cp also fluctuates rapidly, and as a result, the processing liquid Lp from the ejection nozzle 20 The ejection state also changes abruptly.
  • the pressure of the working fluid Lw supplied to the processing liquid valve 21 fluctuates moderately
  • the opening degree of the processing liquid flow path Cp fluctuates at a moderate speed, and as a result, the processing liquid Lp from the discharge nozzle 20
  • the ejection state of the liquid also changes gradually.
  • the processing liquid valve 21 of the present embodiment is composed of a pneumatic switching valve (on-off valve) that uses compressed air as the working fluid Lw, and is also called a stop valve or a dispense valve.
  • a pneumatic switching valve on-off valve
  • the processing liquid valve 21 turns on (fully open) the flow of the processing liquid Lp in the processing liquid flow path Cp and Off (fully closed) can be switched.
  • the processing liquid valve 21 of this example adjusts the opening degree of the processing liquid flow path Cp to be smaller as the pressure of the working fluid Lw supplied to the processing liquid valve 21 is lower.
  • the working fluid Lw is not limited to compressed air, and any fluid (liquid and gas) can be used as the working fluid Lw.
  • the processing liquid Lp is sent to the ejection nozzle 20 via the processing liquid valve 21 and ejected from the ejection nozzle 20 toward the processing surface Sp of the substrate W.
  • a fluid pressure adjusting unit 22 and a fluid pressure measuring unit 23 are provided in the fluid channel Cw.
  • the fluid pressure adjustment unit 22 adjusts the fluctuation behavior of the pressure of the working fluid Lw supplied to the processing liquid valve 21 according to a variably settable adjustment parameter.
  • the fluid pressure adjustment unit 22 can employ the opening degree of the fluid channel Cw (for example, the opening degree of an opening/closing device that changes the cross-sectional area of the fluid channel Cw) as such an adjustment parameter.
  • the adjustment parameters of the fluid pressure adjustment unit 22 may be changed manually by the administrator or mechanically under the control of the control unit 93.
  • the rotation for example, the number of rotations and/or the rotation angle
  • the opening degree of the fluid channel Cw can be adjusted.
  • the fluid pressure adjustment unit 22 that adjusts the fluctuation behavior of the pressure of the working fluid Lw supplied to the treatment liquid valve 21 in this way controls the flow rate fluctuation of the treatment liquid Lp that is sent from the treatment liquid valve 21 to the ejection nozzle 20. Functions as a speed controller.
  • the fluid pressure measurement unit 23 is provided in a portion of the fluid flow path Cw upstream of the treatment liquid valve 21 and downstream of the fluid pressure adjustment unit 22, and measures the pressure of the working fluid Lw supplied to the treatment liquid valve 21. is measured, and the measurement result is transmitted to the control unit 93 .
  • upstream and downstream herein refer to the flow of the working fluid Lw toward the treatment liquid valve 21 in the fluid flow path Cw.
  • the control unit 93 (see FIG. 1) measures the pressure of the working fluid Lw supplied to the treatment liquid valve 21 based on the measurement result of the fluid pressure measuring unit 23 (that is, the pressure of the working fluid Lw). A parameter (that is, an attenuation rate b1, which will be described later) is acquired. The control unit 93 then obtains correlation data between the working fluid parameter (that is, the damping rate b1) and the adjustment parameter of the fluid pressure adjustment unit 22 (that is, the degree of opening of the fluid channel Cw).
  • FIG. 3 is a diagram for explaining the discharge stop time.
  • the control unit 93 controls the fluid supply unit 28 so that the fluid supply unit 28 passes the treatment liquid valve through the fluid flow path Cw.
  • the pressure of the working fluid Lw supplied to 21 is lowered.
  • the control unit 93 issues a discharge stop signal to the fluid supply unit 28 (see “Dispense stop” in FIG. 3), until the discharge of the treatment liquid Lp from the discharge nozzle 20 is completely stopped, , it takes a considerable amount of time (that is, the ejection stop time).
  • FIG. 4 is a diagram showing an example of the relationship between the degree of opening of the fluid flow path Cw (horizontal axis: “fluid flow path opening") adjusted by the fluid pressure adjusting section 22 and the discharge stop time (vertical axis). is.
  • the “ejection stop time” refers to the behavior of stopping the ejection of the treatment liquid Lp from the ejection nozzles 20 when the ejection of the treatment liquid Lp from the ejection nozzles 20 is stopped. It was acquired by confirming the imaging data by the inventor.
  • FIG. 5 shows the passage of time (“time”; horizontal axis) when the ejection of the treatment liquid Lp from the ejection nozzle 20 is stopped, and the working fluid pressure (i.e., the treatment liquid
  • FIG. 10 is a diagram showing an example of the relationship between the pressure of the working fluid Lw supplied to the valve 21;
  • the pressure of the working fluid Lw increases toward the upper side.
  • FIG. 5 shows a plurality of results (“Qn” (where “n” is an integer from 0 to 20)) obtained by changing the degree of opening of the fluid flow path Cw by the fluid pressure adjustment unit 22.
  • Qn results obtained by changing the degree of opening of the fluid flow path Cw by the fluid pressure adjustment unit 22.
  • the opening degree of the fluid channel Cw is proportionally adjusted larger.
  • the results shown in FIG. 5 were obtained by using the processing liquid valve 21 that adjusts the opening degree of the processing liquid flow path Cp to be smaller as the pressure of the working fluid Lw supplied to the processing liquid valve 21 is lower.
  • the larger the opening of the fluid flow path Cw adjusted by the fluid pressure adjusting unit 22 that is, the larger the subscript “n” of “Qn”), the higher the working fluid pressure. sharply decreases in a short time.
  • the pressure of the working fluid Lw tends to decrease exponentially over time, except when the fluid channel Cw is fully closed (“Q0”).
  • FIG. 6 shows the opening degree of the fluid channel Cw adjusted by the fluid pressure adjusting unit 22 (“fluid channel opening”; horizontal axis) and the attenuation factor b1 (“attenuation factor”; vertical axis) for the results shown in FIG. 5 is a graph showing an example relationship between .
  • the point indicated by “0" on the left side indicates that the fluid channel Cw is fully closed, and the opening degree of the fluid channel Cw increases toward the right side (that is, the fluid pressure
  • the substantial cross-sectional area of the fluid flow channel Cw adjusted by the adjustment unit 22 is large.
  • negative values are shown from the point indicated by “0” on the upper side to the lower side, and the absolute value of the attenuation factor b1 increases toward the lower side.
  • FIG. 7 is a graph showing an example of the relationship between the "fluid flow path opening" and the “attenuation factor” for only the results indicated by "Q2" to "Q17" among the results shown in FIG.
  • FIG. rate generally shows a linear relationship (proportional relationship).
  • the attenuation rate b1 represents the slope of the attenuation curve N(t) of the above equation (1), is an index indicating the closing speed of the treatment liquid flow path Cp by the treatment liquid valve 21, and influences the discharge stop time. .
  • the attenuation rate b1 is a parameter derived from the "pressure value of the working fluid Lw supplied to the treatment liquid valve 21", which is the measurement result of the fluid pressure measurement unit 23, and is log data over time. Records can be kept.
  • the liquid processing method and the discharge adjusting method performed by the processing unit 10 shown in FIG. to discharge the treatment liquid Lp.
  • the ejection of the treatment liquid Lp from the ejection nozzles 20 is stopped.
  • the damping rate b1 indicating the fluctuation behavior of the pressure of the working fluid Lw is acquired.
  • Correlation data between the attenuation factor b1 and the adjustment parameter (fluid flow path opening) of the fluid pressure adjustment unit 22 is obtained.
  • FIG. 8 is a perspective view showing a specific configuration example of the processing unit 10.
  • a plurality of ejection units 30 are arranged inside the processing chamber 31.
  • Each ejection unit 30 comprises one or more ejection nozzles 20 .
  • Each ejection unit 30 is rotatably provided under the control of the control unit 93, and the ejection nozzle 20 is positioned to eject the processing liquid Lp from above the substrate W toward the processing surface Sp. and a retracted position retracted from above W.
  • FIG. 8 shows a state in which the ejection nozzles 20 of each ejection unit 30 are positioned at the retracted position.
  • the processing chamber 31 is formed with a substrate loading/unloading section 32 that can be opened and closed.
  • the board entrance/exit section 32 opens and closes under the control of the control section 93 (see FIG. 1).
  • the substrate W is moved between the inside and outside of the processing chamber 31 via the substrate loading/unloading portion 32 in the open state, and is rotatably supported within the processing chamber 31 by a substrate support portion (not shown).
  • the processing chamber 31 is further provided with a light measurement unit 33 including a light emitting section 33a and a light receiving section 33b.
  • a light measurement unit 33 including a light emitting section 33a and a light receiving section 33b.
  • the processing surface Sp of the substrate W supported by the substrate supporting unit in the processing chamber 31 is irradiated with light (detection light) from the light emitting unit 33a, and the light receiving unit 33b is irradiated from the processing surface Sp.
  • the intensity of the reflected light R is repeatedly detected over time.
  • the detected light that is, the reflected light R
  • the detection result of the intensity of the reflected light R obtained in this manner is sent from the light measurement unit 33 (especially the light receiving section 33b) to the control section 93.
  • the control unit 93 determines the discharge state of the treatment liquid Lp from the discharge nozzle 20 when stopping the discharge of the treatment liquid Lp from the discharge nozzle 20 based on the detection result of the intensity of the reflected light R acquired by the light measurement unit 33. judge based on The intensity of the reflected light R when the processing liquid Lp does not exist on the processing surface Sp of the substrate W is higher than the intensity of the reflected light R when the processing liquid Lp exists on the processing surface Sp. Therefore, based on the detected intensity of the reflected light R, it is possible to determine the state (for example, the amount) of the processing liquid Lp on the processing surface Sp, and thus the ejection state of the processing liquid Lp from the ejection nozzles 20 can be determined. can.
  • FIG. 9 is a diagram showing an example of the relationship between the passage of time (“time”; horizontal axis) and the intensity of the reflected light R acquired by the light measurement unit 33 (“reflected light intensity”; vertical axis). be.
  • FIG. 9 shows results Pm1 to Pm3 in which the light measurement unit 33 detects and acquires the intensity of the reflected light R at different frequencies (detection time intervals).
  • the detection time interval for result Pm1 is shorter than the detection time intervals for results Pm2 and Pm3, eg, 250 ⁇ s.
  • the detection time interval for the result Pm2 is longer than the detection time intervals for the results Pm1 and Pm3, eg, 1 ms.
  • the detection time interval of result Pm3 is longer than the detection time interval of result Pm1 and shorter than the detection time interval of result Pm2, eg, 500 ⁇ s.
  • Each of the results Pm1 to Pm3 shown in FIG. 9 is based on the detection results of the reflected light R by the light measurement unit 33 obtained while the substrate W is being rotated by the substrate support. That is, each of the results Pm1 to Pm3 is obtained under the condition that the processing liquid Lp on the processing surface Sp is gradually shaken off from the substrate W as the substrate W rotates.
  • FIG. 9 shows the time range Tp during which the processing liquid Lp is discharged from the discharge nozzle 20 toward the processing surface Sp of the substrate W. As shown in FIG.
  • the processing surface Sp detected by the light measurement unit 33 corresponds to the time range Tp during which the processing liquid Lp is discharged from the discharge nozzle 20 toward the processing surface Sp of the substrate W.
  • the intensity of the reflected light R from is reduced. Therefore, based on the detection result of the intensity of the reflected light R from the processing surface Sp obtained by the light measurement unit 33, the amount of the treatment liquid Lp from the ejection nozzle 20 when the ejection of the treatment liquid Lp from the ejection nozzle 20 is stopped is determined. It is possible to evaluate the ejection state of
  • FIG. 10 and 11 show the passage of time (“time”; horizontal axis), working fluid pressure Q, and intensity J of reflected light R (“operation Fig. 10 is a diagram showing an example of the relationship between "fluid pressure and reflected light intensity" (vertical axis).
  • FIG. 11 shows the time range before and after the ejection of the treatment liquid Lp from the ejection nozzle 20 is completely stopped, and the width of the horizontal axis (“time”) per unit time is wider than in FIG. 10 .
  • the working fluid pressure Q in FIGS. 10 and 11 is based on the measurement results of the fluid pressure measuring unit 23 (see FIG. 2), similar to the results shown in FIG. , representing the pressure of the working fluid Lw supplied to the processing liquid valve 21 .
  • the intensity J of the reflected light R in FIGS. 10 and 11 is the measurement result of the light measurement unit 33 (see FIG. 8), and represents the intensity of the reflected light R received by the light receiving section 33b.
  • the inventor of the present invention confirmed the discharge state of the treatment liquid Lp from the discharge nozzle 20 based on the imaging data of the high-sensitivity camera.
  • the intensity J of the reflected light R measured by the light measurement unit 33 began to rise sharply in accordance with the timing when the ejection of the treatment liquid Lp from the ejection nozzle 20 was completely stopped. Strictly speaking, the timing at which the intensity J of the reflected light R measured by the light measurement unit 33 started to rise was delayed from the timing at which the ejection of the treatment liquid Lp from the ejection nozzle 20 completely stopped.
  • An index time (that is, a delay time Td) indicating the time interval from when the discharge stop signal is issued until the intensity J of the reflected light R rises sharply, and when the discharge of the treatment liquid Lp from the discharge nozzle 20 is completely stopped. There is a correlation with the time (ejection stop time).
  • the delay time Td can be represented, for example, by the time from when the discharge stop signal is issued until the intensity J of the reflected light R detected by the light measurement unit 33 exceeds the intensity reference value.
  • the intensity reference value here is not limited and can be appropriately set by the administrator, and is equal to or less than the intensity of the reflected light R detected by the light measurement unit 33 in the absence of the processing liquid Lp on the processing surface Sp of the substrate W. is set to
  • FIG. 12 is a diagram showing an example of the relationship between the delay time Td (horizontal axis) and the discharge stop time (vertical axis).
  • “ejection stop time” refers to the behavior of stopping the ejection of the treatment liquid Lp from the ejection nozzles 20 when the ejection of the treatment liquid Lp from the ejection nozzles 20 is stopped. It was obtained by confirming the data by the inventor. The “delay time” was obtained based on the detection result of the light measurement unit 33.
  • the "delay time” and the “ejection stop time” generally show a linear relationship (proportional relationship). Therefore, the "delay time” can be used as an index indicating the "ejection stop time”.
  • results shown in FIG. 12 had a slightly large RMSE (Root-Mean-Square Error).
  • the RMSE can be sufficiently small.
  • FIG. 13 is a diagram showing an example of the relationship between the attenuation rate b1 (horizontal axis) in the above formula (1), the delay time Td, and the discharge stop time Ts (vertical axis).
  • the "attenuation rate” is obtained based on the detection result of the fluid pressure measurement unit 23, and the "delay time” and “discharge stop time” are obtained in the same manner as in FIG. 12 above.
  • each of the delay time Td and the discharge stop time Ts has a unique correlation (for example, an exponential correlation) with the attenuation rate b1.
  • a step of discharging the processing liquid Lp toward the processing surface Sp of is performed.
  • a step of stopping the ejection of the treatment liquid Lp from the ejection nozzle 20 is performed by limiting the amount of the treatment liquid Lp sent to the ejection nozzle 20 via the treatment liquid valve 21 according to the ejection stop signal.
  • the processing surface Sp is irradiated with the detection light
  • the intensity of the reflected light R from the processing surface Sp is detected over time, and the discharge nozzle 20 stops discharging the treatment liquid Lp from the discharge nozzle 20
  • the ejection state of the treatment liquid Lp from the nozzle is determined based on the detection result of the intensity of the reflected light R.
  • the judgment reference time here is not limited, and can be appropriately set by the administrator. For example, a time equal to or longer than the above-described delay time Td may be set as the disconnection reference time.
  • FIG. 14 is a diagram illustrating a processing flow of the first application example.
  • the adjustment parameter of the fluid pressure adjustment unit 22 (the opening degree of the fluid flow path Cw ) is appropriate.
  • the pressure of the working fluid Lw supplied from the fluid supply unit 28 to the fluid flow path Cw is adjusted to stop the ejection of the treatment liquid Lp from the ejection nozzle 20 (ejection stop processing) is performed (S1 in FIG. 14).
  • the pressure of the working fluid Lw supplied to the treatment liquid valve 21 is measured by the fluid pressure measurement section 23 and the measurement result is sent from the fluid pressure measurement section 23 to the control section 93 .
  • the control unit 93 calculates the attenuation rate b1 of the pressure of the working fluid Lw while the ejection stop processing is being performed based on the measurement result of the fluid pressure measurement unit 23 (S2). Specifically, the correlation result (see FIG. 5) of the “time” and the “working fluid pressure” obtained based on the measurement result of the fluid pressure measurement unit 23 is used as the attenuation curve N
  • the attenuation factor b1 is calculated by fitting based on (t).
  • the controller 93 determines whether the calculated attenuation factor b1 is within the allowable range (S3).
  • the allowable range here can be determined based on any method, and may be determined based on correlation data acquired in the past, for example. That is, based on whether or not the calculated attenuation rate b1 is within an allowable range determined based on the past correlation data, the , the ejection state of the treatment liquid Lp may be determined.
  • the liquid processing is continued under the control of the control unit 93, and the liquid is directed from the discharge nozzle 20 to the substrate W as necessary. Then, the treatment liquid Lp is discharged (S4).
  • an alarm is issued to the administrator by displaying an alarm message on a display (not shown) or by sounding an alarm sound from an audio device (not shown).
  • the adjustment parameter (opening degree of the fluid flow path Cw) of the fluid pressure adjustment section 22 is adjusted so that the attenuation factor b1 falls within the allowable range.
  • the setting of the adjustment parameter of the fluid pressure adjusting unit 22 is adjusted based on the determination result of the discharge state of the treatment liquid Lp from the discharge nozzle 20 when the discharge of the treatment liquid Lp from the discharge nozzle 20 is stopped. be.
  • the fluid pressure is adjusted based on the damping rate b1.
  • the adjustment parameter of the portion 22 (opening degree of the fluid channel Cw) is adjusted. That is, there is a step of determining the discharge state of the treatment liquid Lp from the discharge nozzle 20 when the discharge of the treatment liquid Lp from the discharge nozzle 20 is stopped based on whether or not the attenuation rate b1 is within the allowable range. done.
  • the treatment liquid valve 21 is managed, and the treatment liquid valve 21 is managed. Digital management of treatment liquid ejection from the ejection nozzles 20 can be performed.
  • FIG. 15 is a diagram illustrating a processing flow of the second application example.
  • FIG. 16 is a diagram showing an example of the correlation between the attenuation rate b1 (horizontal axis) and the delay time Td (vertical axis).
  • the ejection state of the treatment liquid Lp from the ejection nozzle 20 when the ejection of the treatment liquid Lp from the ejection nozzle 20 is stopped is determined based on the delay time Td, and the adjustment parameter of the fluid pressure adjustment unit 22 is adjusted. be done. Thereby, the discharge stop time is optimally adjusted.
  • control unit 93 first acquires a plurality of learning data relating to the correlation between the delay time Td and the attenuation factor b1 (S11 in FIG. 15).
  • the ejection stop process is performed a plurality of times, and the delay time Td and the attenuation rate b1 are acquired in each ejection stop process and stored as records in the storage unit.
  • the first delay time and the first attenuation rate are acquired in the first ejection stop process
  • the second delay time and the second attenuation rate are acquired in the second ejection stop process
  • the third delay time and the second attenuation rate are acquired in the third ejection stop process.
  • Three delay times and a third decay rate are obtained.
  • the control unit 93 acquires the correlation data of the delay time Td and the attenuation rate b1 from the acquired plurality of learning data (S12).
  • the correlation data line of the delay time Td and the attenuation rate b1 is acquired from the plot data based on the first to third attenuation rates and the first to third delay times.
  • the correlation data line here can be derived based on any method, and may be derived by fitting using a known model formula (model curve), for example.
  • the controller 93 calculates the attenuation rate (that is, the target attenuation rate) corresponding to the adjustment delay time (S13).
  • the adjustment delay time here is, for example, the delay time corresponding to the "target discharge stop time” set by the administrator, and the delay time is the “correlation data between the delay time Td and the discharge stop time (Fig. 12)”. Then, the target attenuation rate corresponding to the adjusted delay time is acquired based on the "correlation data of the delay time Td and the attenuation rate b1 (see FIG. 16)" acquired in the processing step S12 described above.
  • the opening degree of the fluid flow path Cw is adjusted so as to correspond to the target attenuation rate (S14). That is, based on "correlation data between the opening degree of the fluid flow path Cw and the attenuation rate b1 (see FIGS. 6 and 7)", the opening degree of the fluid flow path Cw corresponding to the target attenuation rate is acquired, and the fluid The adjustment parameter of the fluid pressure adjustment unit 22 is adjusted so as to realize the opening degree of the flow path Cw.
  • This processing step S14 may be performed under the control of the control unit 93 wholly or partially. For example, even if both the acquisition of the adjustment parameter (opening degree of the fluid flow path Cw) corresponding to the target attenuation rate and the adjustment of the adjustment parameter of the fluid pressure adjustment unit 22 are mechanically performed under the control of the control unit 93 good. Alternatively, the adjustment parameter (opening degree of the fluid flow path Cw) corresponding to the target attenuation rate is obtained by the control unit 93, but the adjustment parameter of the fluid pressure adjustment unit 22 is manually adjusted by the administrator. good too.
  • ejection stop processing is performed under the control of the control section 93, and the delay time Td is acquired based on the detection result of the light measurement unit 33 (see FIG. 8) (S15). That is, the delay time Td corresponding to the adjustment parameter (opening degree of the fluid flow path Cw) of the fluid pressure adjustment unit 22 adjusted in the processing step S14 is obtained based on the detection result of the light measurement unit 33.
  • the control unit 93 determines whether or not the delay time Td acquired in the processing step S15 is within the allowable range (S16). That is, the ejection state of the treatment liquid Lp from the ejection nozzle 20 when the ejection of the treatment liquid Lp from the ejection nozzle 20 is stopped is determined based on whether the delay time Td is within the allowable range.
  • the allowable range here is not limited, and can be set by the administrator, for example.
  • the allowable range can be determined based on the adjustment delay time (see FIG. 16) used when calculating the target attenuation rate in the processing step S13.
  • a range of ⁇ P2% (“P2” is an arbitrary value) of the adjustment delay time may be set as the “allowable range” used in this processing step S16.
  • the adjustment for ejection of the target ejection nozzle 20 is completed, and under the control of the control unit 93, the attenuation rate b1 at the time of adjustment completion and the delay
  • the time Td is stored in the storage unit.
  • the ejection adjustment for the ejection nozzle 20 to be adjusted next is performed based on the processing steps S11 to S18 described above.
  • the difference in the ejection characteristics of the treatment liquid Lp among the ejection nozzles 20 is reduced, and the treatment liquid Lp is uniformly ejected from the plurality of ejection nozzles 20. It becomes possible to do
  • the controller 93 adds the ejection data used in the determination in step S16 to the learning data (S17). Processing step S12 is performed.
  • the target attenuation rate calculated in the processing step S13 and the delay time Td acquired in the processing step S15 are newly used as learning data indicating the correlation between the attenuation rate b1 and the delay time Td. to add.
  • the correlation data reflecting the newly added learning data that is, the updated correlation data
  • the subsequent processing steps S13 to S16 are updated. Based on correlation data.
  • the adjustment parameter of the fluid pressure adjustment unit 22 (the opening) settings are adjusted.
  • FIG. 17 is a diagram showing an example of the relationship between the attenuation rate b1 (horizontal axis), the delay time Td, and the discharge stop time Ts (vertical axis).
  • FIG. 18 is a diagram showing a processing flow of the third application example.
  • the process It is determined whether or not the liquid valve 21 and the fluid pressure adjusting section 22 are abnormal. Thereby, failures of the processing liquid valve 21 and the fluid pressure adjusting section 22 can be detected.
  • the correlation between the pressure attenuation rate b1 of the working fluid Lw supplied to the treatment liquid valve 21, the delay time Td, and the discharge stop time Ts is represented by the graph line shown in FIG. 17, for example. (Normal graph line).
  • the attenuation rate b1, the delay time Td, and the ejection stop time Ts obtained when there is an abnormality in the ejection stop process deviate from such a normal graph line (see symbol “E" in FIG. 17). Therefore, when the actually obtained "correlation data of the attenuation rate b1 and the delay time Td" greatly deviates from the normal graph line, an abnormality such as a failure occurs in the processing liquid valve 21 and/or the fluid pressure adjustment unit 22. presumed to be
  • the treatment liquid valve 21 is operated under the control of the control unit 93 to stop the ejection of the treatment liquid Lp from the ejection nozzle 20 (S21 in FIG. 18).
  • control unit 93 acquires the attenuation rate b1 and the delay time Td based on the detection result of the fluid pressure measurement unit 23 and the detection result of the light measurement unit 33 obtained while the discharge stop processing is being performed. (S22).
  • the control unit 93 determines whether or not the correlation data of the attenuation factor b1 and the delay time Td thus obtained are within the allowable range (S23). That is, the discharge state of the treatment liquid Lp from the discharge nozzle 20 when stopping the discharge of the treatment liquid Lp from the discharge nozzle 20 is determined based on whether the combined data of the attenuation rate b1 and the delay time Td is within the allowable range. is judged.
  • the allowable range here is not limited, and can be set by the administrator, for example.
  • the distance on the graph for example, the shortest distance , it is possible to define an acceptable range.
  • the liquid processing is continued under the control of the control unit 93, and the ejection nozzle 20 discharges the treatment liquid Lp (S24).
  • FIG. 19 shows an example of the relationship between the passage of time (horizontal axis) and the working fluid pressure Q and the intensity J of reflected light R (vertical axis) when the ejection of the treatment liquid Lp from the ejection nozzle 20 is stopped. , and there is no unintended drop of droplets from the discharge nozzle 20.
  • FIG. FIG. 20 shows an example of the relationship between the passage of time (horizontal axis) and the working fluid pressure Q and the intensity J of reflected light R (vertical axis) when the ejection of the treatment liquid Lp from the ejection nozzle 20 is stopped. , and is a diagram when there is an unintended drop of droplets from the ejection nozzle 20.
  • FIG. 20 shows an example of the relationship between the passage of time (horizontal axis) and the working fluid pressure Q and the intensity J of reflected light R (vertical axis) when the ejection of the treatment liquid Lp from the ejection nozzle 20 is stopped. , and is a
  • the droplets of the treatment liquid Lp fall unintentionally from the ejection nozzle 20 and fall onto the substrate W.
  • the intensity of the reflected light R from the processing surface Sp is affected.
  • control unit 93 analyzes the intensity of the reflected light R from the processing surface Sp of the substrate W based on the detection result of the light measurement unit 33 acquired while the ejection stop processing is being performed, and determines whether the ejection nozzle 20 The presence or absence of droplets of the treatment liquid Lp falling from is monitored.
  • the judgment reference time here is not limited, and can be appropriately set by the administrator.
  • the judgment reference time has a length equal to or longer than the ejection stop time so as to cover the entire period from the timing when the ejection stop signal is issued until the ejection of the treatment liquid Lp from the ejection nozzle 20 is completely stopped. You may
  • the control unit 93 performs analysis based on the magnitude of the intensity of the reflected light R acquired by the light measurement unit 33, the change behavior over time, and/or any other arbitrary point of view, so that the discharge nozzle 20 It is preferable to monitor whether or not the droplets of the treatment liquid Lp have fallen.
  • the controller 93 can perform arbitrary processing. Typically, an alarm is issued, or information indicating the fact of unintended drop of a droplet or identification information of the substrate W on which the droplet has landed is stored as a record in the storage unit.
  • the administrator can recognize the fact that droplets are unintentionally dropped from the ejection nozzle 20, and the processing liquid valve 21 and the fluid pressure adjustment unit 22 maintenance, etc. can be performed as appropriate. Note that such recorded information may be read from the storage section as necessary and used for any other processing.
  • control unit 93 determines that the number of times the intensity of the reflected light R detected by the light measurement unit 33 exceeds the judgment reference value during the period from the timing when the discharge stop signal is issued until the judgment reference time elapses is the judgment reference number of times. may be controlled so that an alarm is issued when the
  • the judgment reference value and the judgment reference number here are values that can be appropriately set by the administrator, and the judgment reference value and the judgment reference number are determined based on the value and the number of times that do not cause substantial adverse effects on the liquid treatment. preferably.
  • the judgment reference value if the amount of unintended droplets from the discharge nozzle 20 is so small that it does not matter, an alarm will not be issued and liquid processing will not be hindered. is possible.
  • the judgment reference number of times if the number of unintentional drops from the ejection nozzle 20 does not pose a problem, an alarm will not be issued and liquid processing will not be hindered. It is possible to
  • FIG. 21 is a diagram showing a processing flow of the fifth application example.
  • FIG. 22 is a diagram showing an example of the relationship between the passage of time (horizontal axis) and the attenuation rate b1/delay time Td (vertical axis). indicate the case.
  • FIG. 23 is a diagram showing an example of the relationship between time (horizontal axis) and attenuation rate b1/delay time Td (vertical axis). show.
  • the display of "attenuation rate/delay time” indicates that the parameter assigned to the vertical axis is “attenuation rate” or "delay time”.
  • the need for readjustment of the adjustment parameters of the fluid pressure adjustment unit 22 is determined based on the attenuation rate b1 and the delay time Td, and changes over time of the treatment liquid valve 21 and the fluid pressure adjustment unit 22 are determined. is evaluated.
  • the substrate W is transported to the substrate supporting portion in the processing unit 10 (S31 in FIG. 21), the processing liquid Lp is discharged from the discharge nozzle 20, and the processing liquid Lp is applied to the processing surface Sp of the substrate W. (S32).
  • the processing liquid Lp is applied to the processing surface Sp
  • the substrate W is rotated by the substrate supporting portion, and the rotation of the substrate W gradually shakes off the processing liquid Lp from the processing surface Sp.
  • the output setting of the sensor (wafer sensor) installed in the processing unit 10 may be adjusted after the substrate W is supported by the substrate support section and before the processing liquid Lp is applied to the processing surface Sp.
  • the control unit 93 determines whether the attenuation rate b1 and the delay time Td are within the allowable range (S34).
  • the specific determination method here is not limited, and it may be determined whether each of the attenuation rate b1 and the delay time Td is within the allowable range, or the combined data of the attenuation rate b1 and the delay time Td is within the allowable range. It may be determined whether it is within or not (see FIG. 17).
  • the controller 93 determines whether or not there is a significant difference in the temporal variation of the attenuation rate b1 and/or the delay time Td. (S36).
  • the method for determining whether or not there is a significant difference in the change over time of the attenuation rate b1 and/or the delay time Td is not limited, typically, such a significant difference is determined based on the magnitude of the slope of the regression line. It is possible to determine whether or not there is a difference.
  • the attenuation rate b1 and/or the delay time Td can be determined that there is a significant difference in the temporal variation of the delay time Td.
  • the attenuation rate b1 and/or the delay time Td It can be determined that there is no significant difference in the temporal variation of the time Td.
  • the significant difference judgment reference value here can be appropriately set by an administrator, and any value greater than 0 can be adopted as the significance judgment reference value.
  • the processing unit 10 When there is no significant difference in the change over time of the attenuation rate b1 and the delay time Td (No in S36), the processing unit 10 performs normal operation under the control of the control section 93 (S38).
  • the control unit 93 issues an alarm (alarm suggesting change over time). Further, in this case, the controller 93 estimates the time during which the attenuation rate b1 and/or the delay time Td is expected to deviate from the allowable range (estimated allowable range deviation time) (S37).
  • the method of calculating the expected allowable range deviation time is not limited.
  • an extension line of a regression line calculated from values obtained over time for the attenuation rate b1 and/or the delay time Td and an upper threshold value or a lower threshold value determined based on the adjustment value.
  • the time indicated by the intersection point may be the expected tolerance deviation time.
  • the upper limit threshold and lower limit threshold are not limited, and can be appropriately set by the administrator.
  • the administrator can grasp the time-dependent change of the processing liquid valve 21 and the fluid pressure adjustment unit 22, and take measures such as maintenance as necessary. It can be performed.
  • the step of acquiring temporal information suggesting temporal changes in the treatment liquid valve 21 is performed based on temporal changes in the attenuation rate b1 and/or the delay time Td.
  • the above-described series of processes S31 to S38 may be performed at any timing that requires checking for abnormal conditions and predicting the timing of occurrence of abnormal conditions, or may be performed periodically. For example, when the processing unit 10 is started (which may include returning from an idling state), immediately after maintenance processing, or immediately after liquid processing of a predetermined number or a predetermined number of lots of substrates W is continuously performed, the above-described series of operations may be performed. , the processes S31 to S38 may be performed.
  • the technical categories that embody the above technical ideas are not limited.
  • the above technical ideas may be embodied by a computer program for causing a computer to execute one or more procedures (steps) included in the method of manufacturing or using the above apparatus.
  • the above technical idea may be embodied by a computer-readable non-transitory recording medium in which such a computer program is recorded.

Abstract

処理液バルブを介して吐出ノズルに処理液を送って、吐出ノズルから基板に向けて処理液を吐出する。処理液バルブは、供給される作動流体の圧力に応じて、吐出ノズルにつながる流路における処理液の流れをコントロールする。流体圧力調整部が、可変的に設定可能な調整パラメータに応じて、処理液バルブに供給される作動流体の圧力の変動挙動を調整する。処理液バルブを介して吐出ノズルに送る処理液を制限することで、吐出ノズルからの処理液の吐出を停止する。流体圧力測定部が処理液バルブに供給される作動流体の圧力を測定することで取得される作動流体の圧力の変動挙動を示す作動流体パラメータと、調整パラメータと、の間の相関データを取得する。

Description

液処理方法、吐出調整方法及び液処理装置
 本開示は、液処理方法、吐出調整方法及び液処理装置に関する。
 吐出ノズルよりも上流側の流路に設けられるバルブの開閉によって、吐出ノズルから基板への処理液の吐出のオン/オフを行うことができる(例えば特許文献1参照)。
 吐出ノズルからの処理液の吐出のオン/オフを切り替え可能なバルブとして、例えば、供給される作動流体(圧縮エアなど)の圧力に応じて流路を開閉する空気式切替弁を利用可能である。
特開2001-267236号公報
 吐出ノズルにおける処理液の吐出停止挙動は、例えば上述の空気式切替弁に供給される作動流体が流れる流体流路の開度を調節することで調整可能であるが、そのような流路開度は管理者の経験に基づいて決められることが多い。
 吐出ノズルからの処理液の吐出を停止する際、吐出停止信号の送信から、吐出ノズルからの処理液の吐出が完全に停止するまでには、相応の時間(以下「吐出停止時間」とも称する)がかかる。この吐出停止時間において、吐出ノズルからの液滴の落下等の異常が生じうるが、そのような異常の有無を管理者が目視により確認することを求められることもある。
 上述のように流体流路の開度決定及び処理液の吐出停止挙動の確認が手動的に行われている状況下では、実際の作業の労力及び質が管理者の経験や能力によって左右され不安定になりやすい。
 本開示は、吐出ノズルからの処理液の吐出停止挙動を安定的に把握するのに有利な技術を提供する。
 本開示の一態様は、処理液バルブを介して吐出ノズルに処理液を送って、吐出ノズルから基板に向けて処理液を吐出する工程であって、処理液バルブは、供給される作動流体の圧力に応じて、吐出ノズルにつながる流路における処理液の流れをコントロールし、流体圧力調整部が、可変的に設定可能な調整パラメータに応じて、処理液バルブに供給される作動流体の圧力の変動挙動を調整する、工程と、処理液バルブを介して吐出ノズルに送る処理液を制限することで、吐出ノズルからの処理液の吐出を停止する工程と、流体圧力測定部が処理液バルブに供給される作動流体の圧力を測定することで取得される作動流体の圧力の変動挙動を示す作動流体パラメータと、調整パラメータと、の間の相関データを取得する工程と、を含む液処理方法に関する。
 本開示によれば、吐出ノズルからの処理液の吐出停止挙動を安定的に把握するのに有利である。
図1は、処理システムの一例の概略を示す図である。 図2は、処理ユニットにおける液供給系の一例の概略構成を示す図である。 図3は、吐出停止時間を説明するための図である。 図4は、流体圧力調整部により調整される流体流路の開度と、吐出停止時間との間の関係例を示す図である。 図5は、吐出ノズルからの処理液の吐出を停止する場合の、時間の経過と、流体圧力測定部の測定結果である作動流体圧との間の関係例を示す図である。 図6は、図5に示す結果に関する、流体圧力調整部により調整される流体流路の開度と減衰率との間の関係例を示すグラフである。 図7は、図6に示す結果のうち「Q2」~「Q17」によって示される結果のみに関し、流体流路開度と減衰率との間の関係例を示すグラフである。 図8は、処理ユニットの具体的な構成例を示す斜視図である。 図9は、時間の経過と、光測定ユニットによって取得される反射光の強度との間の関係例を示す図である。 図10は、吐出ノズルからの処理液の吐出を停止する場合の、時間の経過と、作動流体圧及び反射光の強度との間の関係例を示す図である。 図11は、吐出ノズルからの処理液の吐出を停止する場合の、時間の経過と、作動流体圧及び反射光の強度との間の関係例を示す図である。 図12は、ディレイ時間と、吐出停止時間との間の関係例を示す図である。 図13は、減衰率と、ディレイ時間及び吐出停止時間との間の関係例を示す図である。 図14は、第1応用例の処理フローを示す図である。 図15は、第2応用例の処理フローを示す図である。 図16は、減衰率とディレイ時間との間の相関例を示す図である。 図17は、減衰率と、ディレイ時間及び吐出停止時間との間の関係例を示す図である。 図18は、第3応用例の処理フローを示す図である。 図19は、吐出ノズルからの処理液の吐出を停止する場合の、時間の経過と、作動流体圧及び反射光の強度との間の関係例を示し、特に吐出ノズルからの意図しない液滴の落下がない場合の図である。 図20は、吐出ノズルからの処理液の吐出を停止する場合の、時間の経過と、作動流体圧及び反射光の強度との間の関係例を示し、特に吐出ノズルからの意図しない液滴の落下がある場合の図である。 図21は、第5応用例の処理フローを示す図である。 図22は、時間の経過と減衰率/ディレイ時間との間の関係例を示す図であり、特に減衰率及びディレイ時間の経時的変動に有意差がない場合を示す。 図23は、時間と減衰率/ディレイ時間との間の関係例を示す図であり、特に減衰率及びディレイ時間の経時的変動に有意差がある場合を示す。
 以下、図面を参照して本開示の実施形態について説明する。
 図1は、処理システム80の一例の概略を示す図である。
 図1に示す処理システム80は、搬入出ステーション91及び処理ステーション92を有する。搬入出ステーション91は、複数のキャリアCを具備する載置部81と、第1搬送機構83及び受渡部84が設けられている搬送部82とを含む。各キャリアCには、複数の基板Wが水平状態で収容されている。基板Wは、典型的には半導体ウェハやガラス基板等によって構成されるが、限定されない。処理ステーション92には、搬送路86の両側に設置されている複数の処理ユニット10と、搬送路86を往復移動する第2搬送機構85とが設けられている。
 基板Wは、第1搬送機構83によりキャリアCから取り出されて受渡部84に載せられ、第2搬送機構85によって受渡部84から取り出される。そして基板Wは、第2搬送機構85によって対応の処理ユニット10に搬入され、対応の処理ユニット10において所定の液処理が施される。その後、基板Wは、第2搬送機構85によって対応の処理ユニット10から取り出されて受渡部84に載せられ、その後、第1搬送機構83によって載置部81のキャリアCに戻される。
 処理システム80は制御部93を備える。制御部93は、例えばコンピュータによって構成され、演算処理部及び記憶部を具備する。制御部93の記憶部には、処理システム80で行われる各種処理のためのプログラム及びデータが記憶される。制御部93の演算処理部は、記憶部に記憶されているプログラムを適宜読み出して実行することにより、処理システム80の各種機構を制御して各種処理を行う。
 制御部93の記憶部に記憶されるプログラム及びデータは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から記憶部にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、例えばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)及びメモリカードなどがある。
 上述の処理システム80において複数の処理ユニット10のうちの2以上は、お互いに同じ構成を有してもよいし、お互いに異なる構成を有してもよいし、お互いに同じ処理を行ってもよいし、お互いに異なる処理を行ってもよい。各処理ユニット10は、各種の処理液(例えば薬液、リンス液及び洗浄液など)を基板Wに付与することで、様々な液処理を基板Wに施すことが可能である。
 図2は、処理ユニット10における液供給系の一例の概略構成を示す図である。
 処理ユニット(液処理装置)10は、基板Wの処理面Sp(例えば基板Wの上面)に向けて処理液Lpを吐出する吐出ノズル20を備える。
 吐出ノズル20につながる処理液流路Cpには、処理液バルブ21、定圧弁24、流量計25、第1供給バルブ26及び第2供給バルブ27が設けられている。第1供給バルブ26及び第2供給バルブ27の下流側において、流量計25、定圧弁24、処理液バルブ21及び吐出ノズル20が、この順番で、上流側から下流側に向かって設けられている。ここでの「上流」及び「下流」の用語は、吐出ノズル20から処理液Lpを吐出する際の処理液流路Cpにおける処理液Lpの流れを基準とする。
 第1供給バルブ26及び第2供給バルブ27は、処理液流路Cpのうち並列的に設けられる2つの分岐流路にそれぞれ設けられ、対応の分岐流路における処理液Lpの流れをコントロールする。第1供給バルブ26及び第2供給バルブ27の各々は、例えばオンオフ弁によって構成可能であり、制御部93(図1参照)の制御下で、対応の分岐流路における処理液Lpの流れのオン(全開)及びオフ(全閉)を切り替えることができる。
 流量計25及び定圧弁24は、第1供給バルブ26及び第2供給バルブ27の下流側で、第1供給バルブ26及び第2供給バルブ27が設けられる2つの分岐流路が合流する単一流路部分に設けられる。流量計25は、処理液流路Cpにおける処理液Lpの流量(すなわち流速)を測定し、測定結果を制御部93に送信する。定圧弁24は、定圧弁24よりも上流側の処理液流路Cpにおける処理液Lpの圧力が設定圧力より大きくても、下流側の処理液流路Cpにおける処理液Lpの圧力を設定圧力に調整する。
 処理液バルブ21は、流体流路Cwを介して流体供給部28から供給される作動流体Lwの圧力に応じて、処理液流路Cpにおける処理液Lpの流れをコントロールする。
 すなわち処理液バルブ21に供給される作動流体Lwの圧力に応じて、処理液バルブ21により調整される処理液流路Cpの開度が変動し、その結果、処理液バルブ21から吐出ノズル20に送られる処理液Lpの流量が変わる。このように処理液バルブ21により調整される処理液流路Cpの開度に応じて、処理液バルブ21を介して吐出ノズル20に送られる処理液Lpが制限される。例えば処理液バルブ21によって処理液流路Cpの開度が「0(ゼロ)」に調整される場合(すなわち処理液流路Cpが全閉の場合)、処理液バルブ21から吐出ノズル20に処理液Lpは送られず、吐出ノズル20からの処理液Lpの吐出は停止される。
 処理液バルブ21により調整される処理液流路Cpの開度の変動速度は、処理液バルブ21に供給される作動流体Lwの圧力の変動挙動に応じて変わる。例えば処理液バルブ21に供給される作動流体Lwの圧力の変動が急激な場合、処理液流路Cpの開度の変動速度も急激になり、結果的に、吐出ノズル20からの処理液Lpの吐出状態も急激に変わる。一方、処理液バルブ21に供給される作動流体Lwの圧力の変動が緩やかな場合、処理液流路Cpの開度の変動速度も緩やかになり、結果的に、吐出ノズル20からの処理液Lpの吐出状態も緩やかに変わる。
 本実施形態の処理液バルブ21は、作動流体Lwとして圧縮エアを利用する空気式切替弁(オンオフ弁)によって構成され、ストップバルブ或いはディスペンスバルブとも称される。制御部93の制御下で、処理液バルブ21に供給される作動流体Lwの圧力が変えられることで、処理液バルブ21は、処理液流路Cpにおける処理液Lpの流れのオン(全開)及びオフ(全閉)を切り替えることができる。特に本例の処理液バルブ21は、処理液バルブ21に供給される作動流体Lwの圧力が低いほど、処理液流路Cpの開度をより小さく調整する。
 なお作動流体Lwは圧縮エアには限定されず、任意の流体(液体及び気体)を作動流体Lwとして使用しうる。
 このように処理液Lpは、処理液バルブ21を介して吐出ノズル20に送られ、吐出ノズル20から基板Wの処理面Spに向けて吐出される。
 流体流路Cwには、流体圧力調整部22及び流体圧力測定部23が設けられる。
 流体圧力調整部22は、可変的に設定可能な調整パラメータに応じて、処理液バルブ21に供給される作動流体Lwの圧力の変動挙動を調整する。具体的には、流体圧力調整部22は、そのような調整パラメータとして、流体流路Cwの開度(例えば流体流路Cwの断面積を変える開閉具の開度)を採用することができる。
 流体圧力調整部22の調整パラメータの変更は、管理者により手動的に行われてもよいし、制御部93の制御下で機械的に行われてもよい。例えば流体圧力調整部22がニードルバルブによって構成される場合、当該ニードルバルブの開度調節ねじの回転(例えば回転数及び/又は回転角度)を手動により又は専用の電動デバイス(図示省略)により調節することで、流体流路Cwの開度を調整できる。
 このようにして処理液バルブ21に供給される作動流体Lwの圧力の変動挙動を調整する流体圧力調整部22は、処理液バルブ21から吐出ノズル20に送られる処理液Lpの流量変動をコントロールするスピードコントローラとして機能する。
 流体圧力測定部23は、流体流路Cwのうち処理液バルブ21よりも上流側且つ流体圧力調整部22よりも下流側の部分に設けられ、処理液バルブ21に供給される作動流体Lwの圧力を測定し、測定結果を制御部93に送信する。ここでの「上流」及び「下流」の用語は、流体流路Cwにおいて処理液バルブ21に向かう作動流体Lwの流れを基準とする。
 制御部93(図1参照)は、流体圧力測定部23の測定結果(すなわち作動流体Lwの圧力)に基づいて、処理液バルブ21に供給される作動流体Lwの圧力の変動挙動を示す作動流体パラメータ(すなわち後述の減衰率b1)を取得する。そして制御部93は、作動流体パラメータ(すなわち減衰率b1)と、流体圧力調整部22の調整パラメータ(すなわち流体流路Cwの開度)との間の相関データを取得する。
 図3は、吐出停止時間を説明するための図である。
 図2に示す例において、吐出ノズル20からの処理液Lpの吐出を停止する場合、制御部93は流体供給部28を制御して、流体供給部28から流体流路Cwを介して処理液バルブ21に供給される作動流体Lwの圧力を下げる。この場合、制御部93が流体供給部28に向けて吐出停止信号を発してから(図3の「ディスペンスストップ」参照)、吐出ノズル20からの処理液Lpの吐出が完全に停止するまでには、相応の時間(すなわち吐出停止時間)がかかる。
 これは、流体圧力調整部22が調整する流体流路Cwの開度に応じて、処理液バルブ21と流体圧力調整部22との間の流体流路Cwの部分における作動流体Lw(すなわち処理液バルブ21に供給される作動流体Lw)の圧力の変動挙動が変わるからである。したがって流体圧力調整部22が調整する流体流路Cwの開度に応じて、処理液バルブ21が処理液流路Cpにおける処理液Lpの流れをオンからオフに完全に切り替える速度(すなわち処理液バルブ21のクローズ速度)が変わる。
 図4は、流体圧力調整部22により調整される流体流路Cwの開度(横軸:「流体流路開度」)と、吐出停止時間(縦軸)との間の関係例を示す図である。
 図4に示すグラフの横軸に関し、グラフの原点から離れるほど、流体圧力調整部22により調整される流体流路Cwの開度が大きい(すなわち流体圧力調整部22によって調整される流体流路Cwの実質的な断面積が大きい)ことを示す。図4に示すグラフの縦軸に関し、グラフの原点から離れるほど、吐出停止時間が長いことを示す。なお図4において「吐出停止時間」は、吐出ノズル20からの処理液Lpの吐出を停止する際に吐出ノズル20からの処理液Lpの吐出停止挙動を、高感度カメラを使って撮像し、その撮像データを本件発明者が確認することで取得された。
 図4から明らかなように、流体流路Cwの開度と吐出停止時間との間には、指数関数的な相関が認められる。すなわち流体流路Cwの開度が大きくなるに従って、吐出停止時間が指数関数的に低減し、流体流路Cwの開度が小さくなるに従って、吐出停止時間が指数関数的に増大する関係がある。
 図5は、吐出ノズル20からの処理液Lpの吐出を停止する場合の、時間の経過(「時間」;横軸)と、流体圧力測定部23の測定結果である作動流体圧(すなわち処理液バルブ21に供給される作動流体Lwの圧力;縦軸)との間の関係例を示す図である。
 図5に示すグラフの横軸に関し、制御部93が流体供給部28に向けて吐出停止信号を発したタイミングを原点(=0.0s)として、原点から右側に離れるほど、吐出停止信号が発せられてからの経過時間が長いことを示す。図5に示すグラフの縦軸に関し、上側ほど作動流体Lwの圧力が大きいことを示す。
 図5には、流体圧力調整部22よって流体流路Cwの開度を変えることで得られた複数の結果(「Qn」(ただし「n」は0以上20以下の整数))が示されている。図5において「Qn」の添え字の「n」が大きいほど、流体流路Cwがより大きく開かれた状態で得られた結果を示し、「Q0」から「Q20」に向かって「n」の値が大きくなるに従って、流体流路Cwの開度は比例的に大きく調整されている。
 特に「Q0」は、流体流路Cwの開度が「0」であって、流体流路Cwが全閉状態に置かれている場合の結果を示す。「Q20」は、流体圧力調整部22が流体流路Cwの開度を狭めておらず、流体流路Cwが全開状態に置かれている場合の結果を示す。なお図5において「Q6」~「Q19」の表示は割愛されているが、図5において「Q0」~「Q20」の表示が割り当てられるそれぞれのグラフラインは、この順番で並んでいる。
 図5に示す結果は、処理液バルブ21に供給される作動流体Lwの圧力が低いほど、処理液流路Cpの開度をより小さく調整する処理液バルブ21を使って得られた。特に、処理液バルブ21により調整される処理液流路Cpの開度を「0」(全閉)にするために、処理液バルブ21に供給される作動流体Lwの圧力(作動流体圧)は「1.0atm(=1.01325×10Pa)」に調整される。
 図5からも明らかなように、流体圧力調整部22によって調整される流体流路Cwの開度が大きいほど(すなわち「Qn」の添え字の「n」が大きいほど)、作動流体圧はより短時間で急激に減少する。特に、流体流路Cwが全閉の場合(「Q0」)を除き、作動流体Lwの圧力は、時間の経過によって指数関数的に減少する傾向を示す。
 下記の式(1)で表される減衰曲線N(t)に基づいて、図5に示す流体流路Cwの各開度(「Q0」~「Q20」参照)における「時間」及び「作動流体圧」の相関結果のフィッティングを行った。
 式(1) N(t)=b0×exp(b1×t)
 上記式(1)において「b0」はスケール(切片)を表し、「b1」は減衰率(傾き)を表し、「t」は時間(経過時間)を表し、「exp(b1×t)」は指数関数「e(b1×t)」を表す。
 図6は、図5に示す結果に関する、流体圧力調整部22により調整される流体流路Cwの開度(「流体流路開度」;横軸)と減衰率b1(「減衰率」;縦軸)との間の関係例を示すグラフである。
 図6に示すグラフの横軸に関し、左側の「0」で示される箇所は流体流路Cwが全閉であることを示し、右側に行くほど流体流路Cwの開度が大きい(すなわち流体圧力調整部22によって調整される流体流路Cwの実質的な断面積が大きい)ことを示す。図6に示すグラフの縦軸に関し、上側の「0」で示される箇所から下は負の値を示し、下側に行くほど上記の減衰率b1の絶対値が大きいことを示す。
 なお図6において「Q3」~「Q16」の表示は割愛されているが、図6において「Q0」~「Q20」の表示が割り当てられるそれぞれのプロット点は、この順番で、グラフライン上で並んでいる。
 図7は、図6に示す結果のうち「Q2」~「Q17」によって示される結果のみに関し、「流体流路開度」と「減衰率」との間の関係例を示すグラフである。
 作動流体Lwの圧力挙動が不安定になりやすい流体流路Cwの全閉及び全開に近い状態を考慮から除外した場合、図7からも明らかなように、「流体流路開度」及び「減衰率」は概ね線形関係(比例関係)を示す。
 上記の減衰率b1は、上記の式(1)の減衰曲線N(t)の傾きを表し、処理液バルブ21による処理液流路Cpのクローズ速度を示す指標であり、吐出停止時間を左右する。減衰率b1は、上述のように、流体圧力測定部23の測定結果である「処理液バルブ21に供給される作動流体Lwの圧力値」から導出されるパラメータであり、ログデータとして経時的に記録保持することが可能である。
 したがって減衰率b1のログデータを活用することで、処理液バルブ21のクローズ速度を監視したり、流体圧力調整部22の調整パラメータの設定を最適化したり、その他の演算処理や状態監視を可能にしたりすることができる。
 上述のように、図2に示す処理ユニット10によって行われる液処理方法及び吐出調整方法によれば、処理液バルブ21を介して吐出ノズル20に処理液Lpを送って、吐出ノズル20から基板Wに向けて処理液Lpを吐出する。その後、吐出停止信号に応じて、処理液バルブ21を介して吐出ノズル20に送る処理液Lpを制限することで、吐出ノズル20からの処理液Lpの吐出を停止する。そして流体圧力測定部23が処理液バルブ21に供給される作動流体Lwの圧力を測定することで、作動流体Lwの圧力の変動挙動を示す上記減衰率b1が取得される。そして減衰率b1と、流体圧力調整部22の調整パラメータ(流体流路開度)との間の相関データが取得される。
 次に、基板Wの処理面Spからの反射光の強度(光量)に基づいて、吐出ノズル20からの処理液Lpの吐出停止挙動を把握する装置及び方法について説明する。
 図8は、処理ユニット10の具体的な構成例を示す斜視図である。
 図8に示す処理ユニット10では、複数の吐出ユニット30(具体的には3つの吐出ユニット30)が処理チャンバ31内に配置される。
 各吐出ユニット30は、1以上の吐出ノズル20を具備する。各吐出ユニット30は、制御部93の制御下で旋回可能に設けられており、吐出ノズル20を、基板Wの上方から処理面Spに向けて処理液Lpを吐出するための吐出位置と、基板Wの上方から退避した退避位置と、に位置づける。図8には、各吐出ユニット30の吐出ノズル20が退避位置に位置づけられている状態が示されている。
 処理チャンバ31には、開閉可能な基板入出部32が形成されている。基板入出部32は、制御部93(図1参照)の制御下で開閉する。基板Wは、開状態の基板入出部32を介して処理チャンバ31の内側と外側との間を移動させられ、処理チャンバ31内では基板支持部(図示省略)によって回転可能に支持される。
 処理チャンバ31には、更に、発光部33a及び受光部33bを含む光測定ユニット33が設けられている。制御部93の制御下で、処理チャンバ31内で基板支持部により支持されている基板Wの処理面Spに発光部33aからの光(検出光)が照射され、受光部33bが処理面Spからの反射光Rを受光して当該反射光Rの強度を経時的に繰り返し検出する。ここでの検出光(すなわち反射光R)は、レーザ光、LED光、或いは他の任意の光である。このようにして取得される反射光Rの強度の検出結果は、光測定ユニット33(特に受光部33b)から制御部93に送られる。
 制御部93は、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態を、光測定ユニット33によって取得される反射光Rの強度の検出結果に基づいて判断する。基板Wの処理面Sp上に処理液Lpが存在しない場合の反射光Rの強度は、処理面Sp上に処理液Lpが存在する場合の反射光Rの強度よりも強い。そのため、反射光Rの検出強度に基づいて、処理面Sp上の処理液Lpの状態(例えば量)を判断することができ、ひいては吐出ノズル20からの処理液Lpの吐出状態を判断することができる。
 図9は、時間の経過(「時間」;横軸)と、光測定ユニット33によって取得される反射光Rの強度(「反射光強度」;縦軸)との間の関係例を示す図である。
 図9に示すグラフの横軸に関し、「0」の位置から右側に離れるほど、より長い時間が経過していることを示す。図9に示すグラフの縦軸に関し、「0」の位置から上側に離れるほど、より強度の強い反射光Rが光測定ユニット33(すなわち受光部33b)によって検出されていることを示す。
 図9には、光測定ユニット33が反射光Rの強度を検出取得する頻度(検出時間間隔)がお互いに異なる結果Pm1~Pm3が示されている。結果Pm1の検出時間間隔は、結果Pm2、Pm3の検出時間間隔よりも短く、例えば250μsである。結果Pm2の検出時間間隔は、結果Pm1、Pm3の検出時間間隔よりも長く、例えば1msである。結果Pm3の検出時間間隔は、結果Pm1の検出時間間隔よりも長く且つPm2の検出時間間隔よりも短く、例えば500μsである。
 図9に示す結果Pm1~Pm3の各々は、基板Wが基板支持部により回転させられている状態で取得された光測定ユニット33による反射光Rの検出結果に基づいている。すなわち結果Pm1~Pm3の各々は、基板Wの回転によって、処理面Sp上の処理液Lpが徐々に基板Wから振り切られる状況下で得られている。
 図9には、吐出ノズル20から基板Wの処理面Spに向けて処理液Lpが吐出されている時間範囲Tpが示されている。
 図9からも明らかなように、吐出ノズル20から基板Wの処理面Spに向けて処理液Lpが吐出されている時間範囲Tpに対応するように、光測定ユニット33によって検出される処理面Spからの反射光Rの強度が低下する。そのため、光測定ユニット33によって取得される処理面Spからの反射光Rの強度の検出結果に基づいて、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態を評価することが可能である。
 図10及び図11は、吐出ノズル20からの処理液Lpの吐出を停止する場合の、時間の経過(「時間」;横軸)と、作動流体圧Q及び反射光Rの強度J(「作動流体圧及び反射光強度」;縦軸)との間の関係例を示す図である。図11は、吐出ノズル20からの処理液Lpの吐出が完全に停止する前後の時間範囲を示し、図10に比べて、単位時間当たりの横軸(「時間」)の幅が大きい。
 図10及び図11における作動流体圧Qは、上述の図5に示される結果(特に「Q4」によって示される結果)と同様に、流体圧力測定部23(図2参照)の測定結果に基づいており、処理液バルブ21に供給される作動流体Lwの圧力を表す。一方、図10及び図11における反射光Rの強度Jは、光測定ユニット33(図8参照)の測定結果であり、受光部33bが受光した反射光Rの強度を表す。
 図10及び図11の横軸(時間)に関し、制御部93が流体供給部28に向けて吐出停止信号を発したタイミング(図10及び図11の「ディスペンスストップ」参照)が「0.0s」に設定されている。
 本件発明者は、高感度カメラの撮像データに基づいて、吐出ノズル20からの処理液Lpの吐出の状態を確認した。その結果、経過時間が「0.8s」のあたりから、0.01s(=10ms)のオーダーで、吐出ノズル20からの処理液Lpの吐出状態(具体的には吐出ノズル20から延びる液柱の状態)が急激に変化していた。
 そして吐出ノズル20からの処理液Lpの吐出が完全に停止したタイミングに応じて、光測定ユニット33によって測定される反射光Rの強度Jが急激に上昇を開始した。なお、厳密には、光測定ユニット33によって測定される反射光Rの強度Jの上昇開始タイミングは、吐出ノズル20からの処理液Lpの吐出の完全停止タイミングから遅れた。
 上述の図10及び図11に示す結果からも明らかなように、制御部93が流体供給部28に向けて吐出停止信号を発してから、吐出ノズル20からの処理液Lpの吐出が完全に停止するまでには、相応の時間(すなわち吐出停止時間(図3参照))がかかる。
 吐出停止信号が発せられてから反射光Rの強度Jが急激に上昇するまでの時間間隔を示す指標時間(すなわちディレイ時間Td)と、吐出ノズル20からの処理液Lpの吐出が完全に停止する時間(吐出停止時間)との間には、相関がある。
 ディレイ時間Tdは、例えば、吐出停止信号が発せられてから、光測定ユニット33によって検出される反射光Rの強度Jが強度基準値を超えるまでの時間によって表されることが可能である。ここでの強度基準値は限定されず、管理者が適宜設定可能であり、基板Wの処理面Sp上に処理液Lpが存在しない状態で光測定ユニット33によって検出される反射光Rの強度以下に設定される。
 図12は、ディレイ時間Td(横軸)と、吐出停止時間(縦軸)との間の関係例を示す図である。
 図12において「吐出停止時間」は、吐出ノズル20からの処理液Lpの吐出を停止する際の吐出ノズル20からの処理液Lpの吐出停止挙動を、高感度カメラを使って撮像し、その撮像データを本件発明者が確認することで取得された。「ディレイ時間」は、光測定ユニット33の検出結果に基づいて取得された。
 図12からも明らかなように、「ディレイ時間」と「吐出停止時間」とは概ね線形関係(比例関係)を示す。したがって「ディレイ時間」は、「吐出停止時間」を示す指標として利用可能である。
 なお図12に示す結果は、RMSE(Root-Mean-Square Error)が多少大きかった。ただし光測定ユニット33の測定時間間隔を、吐出ノズル20における液柱変化の時間オーダー(上述の例では10ms)と同程度に決めることで(例えば測定時間間隔を10msに設定することで)、RMSEを十分に小さくしうる。
 図13は、上記式(1)における減衰率b1(横軸)と、ディレイ時間Td及び吐出停止時間Ts(縦軸)との間の関係例を示す図である。
 図13において「減衰率」は、流体圧力測定部23の検出結果に基づいて取得され、「ディレイ時間」及び「吐出停止時間」は、上述の図12と同様に求められた。
 図13に示すグラフの横軸に関し、右側の「0」で示される箇所から左は負の値を示し、左側に行くほど減衰率b1の絶対値が大きいことを示す。図13に示すグラフの縦軸に関し、下側の「0.0s」から上側に行くほどディレイ時間Td及び吐出停止時間Tsが長いことを示す。
 図13からも明らかなように、ディレイ時間Td及び吐出停止時間Tsの各々は、減衰率b1に対して特有の相関(例えば指数関数的な相関)を有する。
 上述のように、図8に示す処理ユニット10によって行われる液処理方法及び吐出調整方法によれば、処理液バルブ21を介して吐出ノズル20に処理液Lpを送って、吐出ノズル20から基板Wの処理面Spに向けて処理液Lpを吐出する工程が行われる。その後、吐出停止信号に応じて、処理液バルブ21を介して吐出ノズル20に送る処理液Lpを制限することで、吐出ノズル20からの処理液Lpの吐出を停止する工程が行われる。その一方で、処理面Spに検出光が照射されて、処理面Spからの反射光Rの強度が経時的に検出され、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態が、反射光Rの強度の検出結果に基づいて判断される。
 例えば吐出停止信号が発せられたタイミングから判断基準時間が経過した時点における反射光Rの強度の検出結果に基づいて、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態を判断することも可能である。ここでの判断基準時間は限定されず、管理者によって適宜設定可能であり、例えば上述のディレイ時間Td以上の時間が断基準時間に設定されてもよい。
 次に、上述の「吐出ノズルからの処理液の吐出停止挙動を把握する技術」の応用例について説明する。
 以下で説明される各応用例は上述の技術に基づいて行われ、既述の技術内容については再度の説明は省略される。また応用例間で共通する技術に関し、先行の応用例で説明した技術内容は、後述の応用例における再度の説明は省略される。また応用例同士が部分的に又は全体的に適宜組み合わされてもよい。
[第1応用例]
 図14は、第1応用例の処理フローを示す図である。
 本例では、吐出ノズル20からの処理液Lpの吐出を停止する際における「作動流体Lwの圧力の減衰率b1」に基づいて、流体圧力調整部22の調整パラメータ(流体流路Cwの開度)が適切か否かが判定される。
 すなわち、まず制御部93の制御下で、流体供給部28から流体流路Cwに供給される作動流体Lwの圧力が調整されて、吐出ノズル20からの処理液Lpの吐出を停止する処理(吐出停止処理)が行われる(図14のS1)。
 この吐出停止処理の間、処理液バルブ21に供給される作動流体Lwの圧力が流体圧力測定部23によって測定され、測定結果が流体圧力測定部23から制御部93に送られる。
 そして制御部93によって、吐出停止処理が行われている間の作動流体Lwの圧力の減衰率b1が、流体圧力測定部23の測定結果に基づいて算出される(S2)。具体的には、流体圧力測定部23の測定結果に基づいて取得される「時間」及び「作動流体圧」の相関結果(図5参照)を、上記式(1)で表される減衰曲線N(t)に基づいてフィッティングすることで、減衰率b1が算出される。
 そして制御部93によって、算出された減衰率b1が許容範囲内か否かが判定される(S3)。ここでの許容範囲は、任意の方法に基づいて決められることが可能であり、例えば過去に取得された相関データに基づいて定められてもよい。すなわち、算出された減衰率b1が、過去の相関データに基づいて定められる許容範囲に含まれるか否かに基づいて、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態が判断されてもよい。
 一例として、処理ユニット10の正常稼働時に取得された「流体圧力調整部22により調整される流体流路Cwの開度」及び「減衰率b1」の相関データ(正常相関データ)に基づき、「減衰率b1」に対応する「流体流路Cwの開度の初期調整値」が得られる。そして、初期調整値の±P1%(「P1」は任意の値)の範囲に対応する減衰率b1の範囲が、正常相関データに基づいて取得され、上記判定(S3)で用いられる「許容範囲」に設定されてもよい。
 上記判定において、減衰率b1が許容範囲内であると判定される場合(S3のYes)、制御部93の制御下で、液処理は続行され、必要に応じて吐出ノズル20から基板Wに向けて処理液Lpが吐出される(S4)。
 一方、減衰率b1が許容範囲内ではないと判定される場合(S3のNo)、制御部93の制御下で、アラームが出力されて、管理者に装置設定の調整の見直し(メンテナンス)を促す(S5)。
 アラームの具体的な形態は限定されない。典型的には、ディスプレイ(図示省略)にアラームメッセージが表示されたり、音声デバイス(図示省略)からアラーム音が鳴らされたりすることで、管理者に向けてアラームが発せられる。
 管理者は、そのようなアラームを認識すると、処理ユニット10の装置設定の調整を見直す。典型的には、減衰率b1が許容範囲内に収まるように、流体圧力調整部22の調整パラメータ(流体流路Cwの開度)が調整される。このように、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態の判断結果に基づいて、流体圧力調整部22の調整パラメータの設定が調整される。
 以上説明したように、減衰率b1(作動流体パラメータ)及び流体圧力調整部22の調整パラメータ(流体流路Cwの開度)の過去の相関データに照らして、減衰率b1に基づいて流体圧力調整部22の調整パラメータ(流体流路Cwの開度)が調整される。すなわち、減衰率b1が許容範囲内に含まれるか否かに基づいて、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態を判断する工程が行われる。
 上述のように流体圧力測定部23の測定結果から得られる「作動流体Lwの圧力の減衰率b1のログデータ」に基づいて、吐出停止時間の変動を監視し、処理液バルブ21の管理、ひいては吐出ノズル20における処理液吐出のデジタル管理を行うことができる。
[第2応用例]
 図15は、第2応用例の処理フローを示す図である。図16は、減衰率b1(横軸)とディレイ時間Td(縦軸)との間の相関例を示す図である。
 本例ではディレイ時間Tdに基づいて、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態が判断され、流体圧力調整部22の調整パラメータが調整される。これにより吐出停止時間が最適に調整される。
 すなわち、まず制御部93によって、ディレイ時間Td及び減衰率b1の相関に関する複数の学習データが取得される(図15のS11)。
 具体的には、複数回の吐出停止処理が行われ、各吐出停止処理において、ディレイ時間Td及び減衰率b1が取得され、記憶部に記録として記憶される。例えば、1回目の吐出停止処理において第1ディレイ時間及び第1減衰率が取得され、2回目の吐出停止処理において第2ディレイ時間及び第2減衰率が取得され、3回目の吐出停止処理において第3ディレイ時間及び第3減衰率が取得される。
 そして制御部93によって、取得された複数の学習データから、ディレイ時間Td及び減衰率b1の相関データが取得される(S12)。例えば図16に示すように、第1~第3減衰率及び第1~第3ディレイ時間に基づくプロットデータから、ディレイ時間Td及び減衰率b1の相関データラインが取得される。ここでの相関データラインは、任意の手法に基づいて導出可能であり、例えば既知のモデル式(モデル曲線)を使ったフィッティングにより導出されてもよい。
 そして制御部93によって、調整ディレイ時間に対応する減衰率(すなわちターゲット減衰率)が算出される(S13)。
 ここでの調整ディレイ時間は、例えば管理者が設定した「目標とする吐出停止時間」に対応するディレイ時間であり、当該ディレイ時間は「ディレイ時間Tdと吐出停止時間との間の相関データ(図12参照)」に基づいて取得可能である。そして、上述の処理ステップS12で取得された「ディレイ時間Td及び減衰率b1の相関データ(図16参照)」に基づいて、調整ディレイ時間に対応するターゲット減衰率が取得される。
 そして、流体流路Cwの開度が、ターゲット減衰率に対応するように調整される(S14)。すなわち「流体流路Cwの開度と減衰率b1との間の相関データ(図6及び図7参照)」に基づき、ターゲット減衰率に対応する流体流路Cwの開度が取得され、当該流体流路Cwの開度を実現するように流体圧力調整部22の調整パラメータが調整される。
 本処理ステップS14は、全体的に又は部分的に、制御部93の制御下で行われてもよい。例えば、ターゲット減衰率に対応する調整パラメータ(流体流路Cwの開度)の取得及び流体圧力調整部22の調整パラメータの調整の両方が、制御部93の制御下で機械的に行われてもよい。或いは、ターゲット減衰率に対応する調整パラメータ(流体流路Cwの開度)の取得は制御部93によって行われるが、流体圧力調整部22の調整パラメータの調整は管理者によって手動的に行われてもよい。
 その後、制御部93の制御下で吐出停止処理が行われ、光測定ユニット33(図8参照)の検出結果に基づいて、ディレイ時間Tdが取得される(S15)。すなわち、上記処理ステップS14で調整された流体圧力調整部22の調整パラメータ(流体流路Cwの開度)に対応するディレイ時間Tdが、光測定ユニット33の検出結果に基づいて取得される。
 そして制御部93によって、上記処理ステップS15で取得されたディレイ時間Tdが許容範囲内か否かが判定される(S16)。すなわち吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態が、ディレイ時間Tdが許容範囲に含まれるか否かに基づいて判断される。
 ここでの許容範囲は限定されず、例えば管理者によって設定可能である。例えば、上記処理ステップS13においてターゲット減衰率を算出する際に用いた調整ディレイ時間(図16参照)を基準に、許容範囲を定めることが可能である。一例として、調整ディレイ時間の±P2%(「P2」は任意の値)の範囲が、本処理ステップS16で用いられる「許容範囲」に設定されてもよい。
 ディレイ時間Tdが許容範囲内であると判定される場合(S16のYes)、対象の吐出ノズル20の吐出に関する調整が完了し、制御部93の制御下で、調整完了時の減衰率b1及びディレイ時間Tdが記憶部に記憶される。
 そして、必要に応じて、次の調整対象の吐出ノズル20についての吐出調整が、上述の処理ステップS11~S18に基づいて行われる。このようにして複数の吐出ノズル20の吐出調整を行うことで、吐出ノズル20間における処理液Lpの吐出特性の差を低減して、複数の吐出ノズル20からの均一的な処理液Lpの吐出を行うことが可能になる。
 一方、ディレイ時間Tdが許容範囲内にはないと判定される場合(S16のNo)、制御部93によって、処理ステップS16の判定時に使用した吐出データが学習データに追加され(S17)、再び上記処理ステップS12が行われる。
 具体的には、吐出データとして、上記処理ステップS13で算出したターゲット減衰率と、上記処理ステップS15で取得したディレイ時間Tdとを、減衰率b1及びディレイ時間Tdの相関を示す学習データとして新たに追加する。これにより、その後に再度行われる処理ステップS12では、新たに追加された当該学習データが反映された相関データ(すなわち更新された相関データ)が取得され、その後の処理ステップS13~S16は更新された相関データに基づいて行われる。
 その結果、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態の判断結果に基づいて、流体圧力調整部22の調整パラメータ(流体流路Cwの開度)の設定が調整される。
[第3応用例]
 図17は、減衰率b1(横軸)と、ディレイ時間Td及び吐出停止時間Ts(縦軸)との間の関係例を示す図である。図18は、第3応用例の処理フローを示す図である。
 本例では、予め取得されている「減衰率b1及びディレイ時間Tdの正常な相関データ」と、実際に取得される「減衰率b1及びディレイ時間Tdの相関データ」とを比較することで、処理液バルブ21及び流体圧力調整部22の異常の有無が判定される。これにより、処理液バルブ21及び流体圧力調整部22の故障を検知することができる。
 吐出停止処理が正常且つ適切に行われる場合、処理液バルブ21に供給される作動流体Lwの圧力の減衰率b1、ディレイ時間Td及び吐出停止時間Tsの相関は、例えば図17に示されるグラフライン(正常グラフライン)によって表される。
 一方、吐出停止処理に異常が生じている場合に取得される減衰率b1、ディレイ時間Td及び吐出停止時間Tsは、そのような正常グラフラインから外れる(図17の符号「E」参照)。したがって、実際に取得される「減衰率b1及びディレイ時間Tdの相関データ」が正常グラフラインから大きく外れる場合には、処理液バルブ21及び/又は流体圧力調整部22に故障などの異常が生じていると推定される。
 具体的には、まず制御部93の制御下で処理液バルブ21を動作させて、吐出ノズル20からの処理液Lpの吐出を停止する吐出停止処理が行われる(図18のS21)。
 そして制御部93により、吐出停止処理が行われている間に得られた流体圧力測定部23の検出結果及び光測定ユニット33の検出結果に基づいて、減衰率b1及びディレイ時間Tdが取得される(S22)。
 そして制御部93により、このようにして取得される減衰率b1及びディレイ時間Tdの相関データが許容範囲内か否かが判定される(S23)。すなわち減衰率b1及びディレイ時間Tdの組み合わせデータが許容範囲に含まれるか否かに基づいて、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態が判断される。
 ここでの許容範囲は限定されず、例えば管理者によって設定可能である。例えば、事前に取得されている「減衰率b1及びディレイ時間Tdに関する正常グラフライン」と「取得される減衰率b1及びディレイ時間Tdのプロット位置E」との間のグラフ上の距離(例えば最短距離)に基づいて、許容範囲を定めることが可能である。
 上記判定において、減衰率b1及びディレイ時間Tdの相関データが許容範囲内であると判定される場合(S23のYes)、制御部93の制御下で液処理は続行され、必要に応じて吐出ノズル20から処理液Lpが吐出される(S24)。
 一方、取得される減衰率b1及びディレイ時間Tdの相関データが許容範囲から外れると判定される場合(S23のNo)、制御部93の制御下で、アラームが発せられる(S25)。管理者は、そのようなアラームによって処理液バルブ21の異常を認識し、流体圧力調整部22の調整の見直し(メンテナンス)の必要性が喚起される。
[第4応用例]
 図19は、吐出ノズル20からの処理液Lpの吐出を停止する場合の、時間の経過(横軸)と、作動流体圧Q及び反射光Rの強度J(縦軸)との間の関係例を示し、特に意図しない吐出ノズル20からの液滴の落下がない場合の図である。図20は、吐出ノズル20からの処理液Lpの吐出を停止する場合の、時間の経過(横軸)と、作動流体圧Q及び反射光Rの強度J(縦軸)との間の関係例を示し、特に意図しない吐出ノズル20からの液滴の落下がある場合の図である。
 吐出ノズル20からの処理液Lpの吐出を停止する処理が行われている吐出停止時間(図3参照)において、吐出ノズル20から処理液Lpの液滴が意図せずに落下して基板Wの処理面Spに着地すると、処理面Spからの反射光Rの強度は影響を受ける。
 例えば、そのような液滴が処理面Spに着地する直前までは、基板Wの回転によって処理面Sp上の処理液Lpの量が徐々に減り、光測定ユニット33によって検出される反射光Rの強度は上昇する傾向を示す。そのような状況において、処理液Lpの液滴が意図せずに処理面Spに着地すると、光測定ユニット33が検出する反射光Rの強度は一旦降下し、その後再び上昇する傾向を示す(図20の符号「Jd」参照)。
 このように吐出停止処理が行われている間に、吐出ノズル20から処理液Lpの液滴が意図せずに落下すると、光測定ユニット33により検出される反射光Rの強度は不安定な挙動を示す。
 したがって制御部93は、吐出停止処理が行われている間に取得される光測定ユニット33の検出結果に基づいて、基板Wの処理面Spからの反射光Rの強度を解析し、吐出ノズル20からの処理液Lpの液滴の落下の有無を監視する。
 具体的には、吐出停止信号が発せられたタイミングから判断基準時間が経過するまでの間における反射光Rの強度の検出結果に基づいて、吐出ノズル20からの処理液Lpの吐出を停止する際における吐出ノズル20からの処理液Lpの吐出状態が判断される。ここでの判断基準時間は限定されず、管理者によって適宜設定可能である。例えば、判断基準時間は、吐出停止信号が発せられたタイミングから、吐出ノズル20からの処理液Lpの吐出が完全に停止するまでの全体をカバーするように、吐出停止時間以上の長さを有してもよい。
 意図せずに吐出ノズル20から落下する液滴の態様は様々であり、そのような液滴の落下に起因する「光測定ユニット33により検出される反射光Rの強度の乱れ方」も一定ではない。そのため制御部93は、光測定ユニット33によって取得される反射光Rの強度の大きさ、経時的な変化挙動、及び/又は他の任意の観点に基づいて解析を行うことで、吐出ノズル20からの処理液Lpの液滴の落下の有無を監視することが好ましい。
 上述のようにして吐出ノズル20からの意図しない液滴の落下が検出された場合、制御部93は、任意の処理を行うことが可能である。典型的には、アラームが発せられたり、意図しない液滴の落下の事実を示す情報や当該液滴が着地した基板Wの識別情報が記憶部に記録として記憶されたりする。
 管理者は、そのようなアラームや記憶部における記録情報に基づいて、吐出ノズル20からの意図しない液滴の落下の事実を認識することが可能であり、処理液バルブ21及び流体圧力調整部22のメンテナンス等を適宜行うことができる。なお、そのような記録情報は、記憶部から必要に応じて読み出され、他の任意の処理のために使われてもよい。
 なお、吐出ノズル20からの意図しない微小液滴の落下が数回程度(例えば1~2回程度)発生しても、液処理上は特に問題がない場合もありうる。そのような場合にアラームが発せられると、本来的には不要な液処理の中断を招き、却って液処理が阻害されることもある。
 そのため制御部93は、吐出停止信号が発せられたタイミングから判断基準時間が経過するまでの間に、光測定ユニット33により検出される反射光Rの強度が判断基準値を上回る回数が判断基準回数を超える場合に、アラームを発するように制御を行ってもよい。
 ここでの判断基準値及び判断基準回数は、管理者によって適宜設定可能な値であり、液処理に実質的な弊害をもたらさないような値及び回数に基づいて判断基準値及び判断基準回数が決められることが好ましい。判断基準値を適切に設定することで、吐出ノズル20からの意図しない液滴の量が問題にならない程度の微少量であれば、アラームが発せられずに、液処理を阻害しないようにすることが可能である。同様に、判断基準回数を適切に設定することで、吐出ノズル20からの意図しない液滴の落下の回数が問題にならない程度の回数であれば、アラームが発せられずに、液処理を阻害しないようにすることが可能である。
[第5応用例]
 図21は、第5応用例の処理フローを示す図である。図22は、時間の経過(横軸)と減衰率b1/ディレイ時間Td(縦軸)との間の関係例を示す図であり、特に減衰率及びディレイ時間の経時的変動に有意差がない場合を示す。図23は、時間(横軸)と減衰率b1/ディレイ時間Td(縦軸)との間の関係例を示す図であり、特に減衰率及びディレイ時間の経時的変動に有意差がある場合を示す。
 図22及び図23の縦軸に関し、「減衰率/ディレイ時間」の表示は、縦軸に割り当てられるパラメータが「減衰率」又は「ディレイ時間」であることを示す。
 本例では、減衰率b1及びディレイ時間Tdに基づいて流体圧力調整部22の調整パラメータの再調整の要否が判断されるのに加え、処理液バルブ21及び流体圧力調整部22の経時的変化が評価される。
 すなわち、基板Wが処理ユニット10内の基板支持部に搬送され(図21のS31)、吐出ノズル20から処理液Lpが吐出されて、当該処理液Lpが基板Wの処理面Spに付与される(S32)。処理液Lpが処理面Spに付与される際、基板Wは基板支持部により回転させられており、基板Wの回転によって処理面Spから処理液Lpが徐々に振り切られる。なお、基板Wが基板支持部により支持された後、処理面Spに処理液Lpを付与する前に、処理ユニット10に据え付けられたセンサ(ウエハセンサ)の出力設定が調整されてもよい。
 その後、制御部93の制御下で、上述のようにして吐出停止処理が行われる際に、上記の減衰率b1及びディレイ時間Tdが取得され、取得された減衰率b1及びディレイ時間Tdが記憶部に保存されて記録される(S33)。
 その後、制御部93によって、減衰率b1及びディレイ時間Tdが許容範囲内か否かが判定される(S34)。ここでの具体的な判定手法は限定されず、減衰率b1及びディレイ時間Tdの各々が許容範囲内か否かが判定されてもよいし、減衰率b1及びディレイ時間Tdの組み合わせデータが許容範囲内か否かが判定されてもよい(図17参照)。
 減衰率b1及びディレイ時間Tdが許容範囲内にない場合(S34のNo)、制御部93の制御下でアラーム(再調整アラーム)が発せられて(S35)、管理者は、処理液バルブ21及び/又は流体圧力調整部22の調整等(メンテナンス)が促される。
 減衰率b1及びディレイ時間Tdが許容範囲内にある場合(S34のYes)、制御部93によって、減衰率b1及び/又はディレイ時間Tdの経時的な変動に有意差があるか否かが判定される(S36)。
 減衰率b1及び/又はディレイ時間Tdの経時的な変動に有意差がない場合、図22に示すように、減衰率b1及び/又はディレイ時間Tdに関し、経時的に複数回取得される実際の値が、許容範囲内で調整値の近傍で偏りなく散らばる。一方、減衰率b1及び/又はディレイ時間Tdの経時的な変動に有意差がある場合、図23に示すように、減衰率b1及び/又はディレイ時間Tdに関して経時的に複数回取得される実際の値が、経時的に、調整値から徐々に大きく乖離する。
 減衰率b1及び/又はディレイ時間Tdの経時的な変動に有意差があるか否かの判定手法は限定されないが、典型的には、回帰直線の傾きの大きさに基づいて、そのような有意差の有無を判定可能である。
 例えば、減衰率b1及び/又はディレイ時間Tdに関して経時的に取得される値から算出される対応の回帰直線の傾きの絶対値が、有意差判断基準値よりも大きい場合、減衰率b1及び/又はディレイ時間Tdの経時的な変動に有意差があると判定可能である。一方、減衰率b1及び/又はディレイ時間Tdに関して経時的に取得される値から算出される対応の回帰直線の傾きの絶対値が、有意差判断基準値以下の場合、減衰率b1及び/又はディレイ時間Tdの経時的な変動に有意差がないと判定可能である。ここでの有意差判断基準値は、管理者によって適宜設定可能であり、0よりも大きな任意の値を有意差判断基準値として採用可能である。
 減衰率b1及びディレイ時間Tdの経時的な変動に有意差がない場合(S36のNo)、制御部93の制御下で処理ユニット10は平常運転を行う(S38)。
 一方、減衰率b1及びディレイ時間Tdの経時的な変動に有意差がある場合(S36のYes)、制御部93によって、アラーム(経時的変化示唆アラーム)が発せられる。またこの場合、制御部93によって、減衰率b1及び/又はディレイ時間Tdが許容範囲から外れると予想される時間(予想許容範囲逸脱時間)が見積もられる(S37)。
 ここでの予想許容範囲逸脱時間の算出方法は限定されない。例えば図23に示すように、減衰率b1及び/又はディレイ時間Tdに関して経時的に取得される値から算出される回帰直線の延長ラインと、調整値を基準に定められる上限閾値又は下限閾値との交点が示す時間を、予想許容範囲逸脱時間としてもよい。ここでの上限閾値及び下限閾値は限定されず、管理者によって適宜設定可能である。
 管理者は、経時的変化示唆アラームや見積もれた予想許容範囲逸脱時間に基づいて、処理液バルブ21及び流体圧力調整部22の経時的変化を把握することができ、必要に応じてメンテナンス等の対処を行うことができる。
 上述のように本例では、減衰率b1及び/又はディレイ時間Tdの経時的な変化に基づいて、処理液バルブ21の経時的変化を示唆する経時情報を取得する工程が行われる。
 上述の一連の処理S31~S38によって、処理液バルブ21及び流体圧力調整部22の状態異常の有無をチェックできるとともに、状態異常の発生タイミングを予想できる。上述の一連の処理S31~S38は、そのような状態異常のチェック及び状態異常の発生タイミングの予想が必要とされる任意のタイミングで行われてもよいし、定期的に行われてもよい。例えば、処理ユニット10の始動時(アイドリング状態からの復帰時を含みうる)、メンテナンス処理直後、連続的に所定数又は所定ロット数の基板Wの液処理が行われた直後などに、上述の一連の処理S31~S38が行われてもよい。
 本明細書で開示されている実施形態及び変形例はすべての点で例示に過ぎず限定的には解釈されないことに留意されるべきである。上述の実施形態及び変形例は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態での省略、置換及び変更が可能である。例えば上述の実施形態及び変形例が全体的に又は部分的に組み合わされてもよく、また上述以外の実施形態が上述の実施形態又は変形例と組み合わされてもよい。また、本明細書に記載された本開示の効果は例示に過ぎず、その他の効果がもたらされてもよい。
 上述の技術的思想を具現化する技術的カテゴリーは限定されない。例えば上述の装置を製造する方法或いは使用する方法に含まれる1又は複数の手順(ステップ)をコンピュータに実行させるためのコンピュータプログラムによって、上述の技術的思想が具現化されてもよい。またそのようなコンピュータプログラムが記録されたコンピュータが読み取り可能な非一時的(non-transitory)な記録媒体によって、上述の技術的思想が具現化されてもよい。

Claims (19)

  1.  処理液バルブを介して吐出ノズルに処理液を送って、前記吐出ノズルから基板に向けて前記処理液を吐出する工程であって、前記処理液バルブは、供給される作動流体の圧力に応じて、前記吐出ノズルにつながる流路における前記処理液の流れをコントロールし、流体圧力調整部が、可変的に設定可能な調整パラメータに応じて、前記処理液バルブに供給される前記作動流体の圧力の変動挙動を調整する、工程と、
     前記処理液バルブを介して前記吐出ノズルに送る前記処理液を制限することで、前記吐出ノズルからの前記処理液の吐出を停止する工程と、
     流体圧力測定部が前記処理液バルブに供給される前記作動流体の圧力を測定することで取得される前記作動流体の圧力の変動挙動を示す作動流体パラメータと、前記調整パラメータと、の間の相関データを取得する工程と、
     を含む液処理方法。
  2.  過去の前記相関データに照らして、前記作動流体パラメータに基づいて前記調整パラメータを調整する工程を含む請求項1に記載の液処理方法。
  3.  前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態を、前記作動流体パラメータが許容範囲に含まれるか否かに基づいて判断する工程を含む請求項1又は2に記載の液処理方法。
  4.  前記許容範囲は、過去に取得された前記相関データに基づいて定められる請求項3に記載の液処理方法。
  5.  前記作動流体パラメータが前記許容範囲から外れる場合にアラームを発する工程を含む請求項3又は4に記載の液処理方法。
  6.  前記作動流体パラメータの経時的な変化に基づいて、前記処理液バルブの経時的変化を示唆する経時情報を取得する工程を含む請求項1~5のいずれか一項に記載の液処理方法。
  7.  処理液バルブを介して吐出ノズルに処理液を送って、前記吐出ノズルから基板の処理面に向けて前記処理液を吐出する工程であって、前記処理液バルブは、供給される作動流体の圧力に応じて、前記吐出ノズルにつながる流路における前記処理液の流れをコントロールし、流体圧力調整部が、可変的に設定可能な調整パラメータに応じて、前記処理液バルブに供給される前記作動流体の圧力の変動挙動を調整する、工程と、
     吐出停止信号に応じて、前記処理液バルブを介して前記吐出ノズルに送る前記処理液を制限することで、前記吐出ノズルからの前記処理液の吐出を停止する工程と、
     前記処理面に光を照射して、前記処理面からの反射光の強度を経時的に検出し、前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態を、前記反射光の強度の検出結果に基づいて判断する工程と、
     を含む液処理方法。
  8.  前記処理面上に前記処理液が存在しない場合の前記反射光の強度は、前記処理面上に前記処理液が存在する場合の前記反射光の強度よりも強い請求項7に記載の液処理方法。
  9.  前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態は、前記吐出停止信号が発せられたタイミングから前記反射光の強度が強度基準値を超えるまでの時間を示すディレイ時間に基づいて、判断される請求項7又は8に記載の液処理方法。
  10.  前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態は、前記ディレイ時間が許容範囲に含まれるか否かに基づいて、判断される請求項9に記載の液処理方法。
  11.  前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態は、流体圧力測定部が前記処理液バルブに供給される前記作動流体の圧力を測定することで取得される前記作動流体の圧力の変動挙動を示す作動流体パラメータ及び前記ディレイ時間が許容範囲に含まれるか否かに基づいて判断される請求項9に記載の液処理方法。
  12.  前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態は、前記吐出停止信号が発せられたタイミングから判断基準時間が経過した時点における前記反射光の強度の検出結果に基づいて判断される請求項7~11のいずれか一項に記載の液処理方法。
  13.  前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態は、前記吐出停止信号が発せられたタイミングから判断基準時間が経過するまでの間における前記反射光の強度の検出結果に基づいて判断される請求項7~12のいずれか一項に記載の液処理方法。
  14.  前記吐出停止信号が発せられたタイミングから判断基準時間が経過するまでの間に、前記反射光の強度が判定基準値を上回る回数が判断基準回数を超える場合に、アラームを発する工程を含む請求項7~13のいずれか一項に記載の液処理方法。
  15.  前記ディレイ時間の経時的な変化に基づいて、前記処理液バルブの経時的変化を示唆する経時情報を取得する工程を含む請求項9~11のいずれか一項に記載の液処理方法。
  16.  処理液バルブを介して吐出ノズルに処理液を送って、前記吐出ノズルから前記処理液を吐出する工程であって、前記処理液バルブは、供給される作動流体の圧力に応じて、前記吐出ノズルにつながる流路における前記処理液の流れをコントロールし、流体圧力調整部が、可変的に設定可能な調整パラメータに応じて、前記処理液バルブに供給される前記作動流体の圧力の変動挙動を調整する、工程と、
     前記処理液バルブを介して前記吐出ノズルに送る前記処理液を制限することで、前記吐出ノズルからの前記処理液の吐出を停止する工程と、
     流体圧力測定部が前記処理液バルブに供給される前記作動流体の圧力を測定することで取得される前記作動流体の圧力の変動挙動を示す作動流体パラメータと、前記調整パラメータと、の間の相関データを取得する工程と、
     前記相関データに基づいて、前記調整パラメータの設定を調整する工程と、
     を含む吐出調整方法。
  17.  処理液バルブを介して吐出ノズルに処理液を送って、前記吐出ノズルから基板の処理面に向けて前記処理液を吐出する工程であって、前記処理液バルブは、供給される作動流体の圧力に応じて、前記吐出ノズルにつながる流路における前記処理液の流れをコントロールし、流体圧力調整部が、可変的に設定可能な調整パラメータに応じて、前記処理液バルブに供給される前記作動流体の圧力の変動挙動を調整する、工程と、
     吐出停止信号に応じて、前記処理液バルブを介して前記吐出ノズルに送る前記処理液を制限することで、前記吐出ノズルからの前記処理液の吐出を停止する工程と、
     前記処理面に光を照射して、前記処理面からの反射光の強度を経時的に検出し、前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態を、前記反射光の強度の検出結果に基づいて判断する工程と、
     前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態の判断結果に基づいて、前記調整パラメータの設定を調整する工程と、
     を含む吐出調整方法。
  18.  基板に向けて処理液を吐出する吐出ノズルと、
     供給される作動流体の圧力に応じて、前記吐出ノズルにつながる流路における前記処理液の流れをコントロールする処理液バルブと、
     可変的に設定可能な調整パラメータに応じて、前記処理液バルブに供給される前記作動流体の圧力の変動挙動を調整する流体圧力調整部と、
     前記処理液バルブに供給される前記作動流体の圧力を測定する流体圧力測定部と、
     前記流体圧力測定部が前記処理液バルブに供給される前記作動流体の圧力を測定することで取得される前記作動流体の圧力の変動挙動を示す作動流体パラメータと、前記調整パラメータと、の間の相関データを取得する制御部と、
     を備える液処理装置。
  19.  基板の処理面に向けて処理液を吐出する吐出ノズルと、
     吐出停止信号に応じて前記吐出ノズルに送る前記処理液を制限することで、前記吐出ノズルからの前記処理液の吐出を停止する吐出バルブと、
     前記処理面に光を照射して、前記処理面からの反射光の強度を経時的に検出する光検出ユニットと、
     前記吐出ノズルからの前記処理液の吐出を停止する際における前記吐出ノズルからの前記処理液の吐出状態を、前記光検出ユニットによって取得される前記反射光の強度の検出結果に基づいて判断する制御部と、
     を備える液処理装置。
PCT/JP2023/002482 2022-02-08 2023-01-26 液処理方法、吐出調整方法及び液処理装置 WO2023153229A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018227 2022-02-08
JP2022018227 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153229A1 true WO2023153229A1 (ja) 2023-08-17

Family

ID=87564088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002482 WO2023153229A1 (ja) 2022-02-08 2023-01-26 液処理方法、吐出調整方法及び液処理装置

Country Status (2)

Country Link
TW (1) TW202338927A (ja)
WO (1) WO2023153229A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221201A (ja) * 2000-02-04 2001-08-17 Yokogawa Electric Corp 電空ポジショナ
JP2018185793A (ja) * 2017-04-24 2018-11-22 東京エレクトロン株式会社 処理装置、異常検知方法および記憶媒体
WO2021241228A1 (ja) * 2020-05-27 2021-12-02 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221201A (ja) * 2000-02-04 2001-08-17 Yokogawa Electric Corp 電空ポジショナ
JP2018185793A (ja) * 2017-04-24 2018-11-22 東京エレクトロン株式会社 処理装置、異常検知方法および記憶媒体
WO2021241228A1 (ja) * 2020-05-27 2021-12-02 株式会社Screenホールディングス 基板処理方法および基板処理装置

Also Published As

Publication number Publication date
TW202338927A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
JP2836963B2 (ja) フィルタエレメントの完全性を迅速に試験する方法及び装置
NL2014610B1 (en) Device and Method for Measuring the Moisture in Die Casting Molds.
JP5824372B2 (ja) 処理装置及びプロセス状態の確認方法
KR100318619B1 (ko) 설비고장진단방법과그장치및고장진단기능을가진반도체제조장치
US9429247B2 (en) Acoustically-monitored semiconductor substrate processing systems and methods
JP2015509641A (ja) 自己確認型質量流量制御器および自己確認型質量流量計を提供するためのシステムおよび方法
WO2023153229A1 (ja) 液処理方法、吐出調整方法及び液処理装置
AU2021221947A1 (en) Monitoring equilibrium and dispensement of a fluid dispensement system to improve quality and efficiency
US6098964A (en) Method and apparatus for monitoring the condition of a vaporizer for generating liquid chemical vapor
EP3712572B1 (en) System and method for filling containers with a precise amount of fluid
US20220127980A1 (en) Lubricant delivery system and method
JP3890138B2 (ja) 流量コントローラ
JP7199149B2 (ja) 処理装置、異常検知方法および記憶媒体
KR20200137544A (ko) 원자층 증착을 위한 다이아프램 밸브의 응답 산출 장치
JPH10216605A (ja) 薬液回転塗布装置
JPH08145300A (ja) 基板処理装置
CN108735631B (zh) 处理装置、异常探测方法以及存储介质
JPH10247614A (ja) 処理装置
JP2024026827A (ja) 基板液処理装置及び基板液処理方法
CN209623664U (zh) 镀膜系统
CN108176535A (zh) 监测排出头的位置和位移的涂覆装置以及控制其的方法
JP2005209970A (ja) レジスト被塗布体の加熱装置およびそのモニタリング方法
JP2004151029A (ja) 粉体測定装置
JPH11108708A (ja) 流量測定装置および基板処理装置
CN112780820A (zh) 压电阀、流体控制装置以及压电阀的诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752694

Country of ref document: EP

Kind code of ref document: A1