WO2023153073A1 - 部品異常検知システム、自動分析装置、及び部品異常検知方法 - Google Patents
部品異常検知システム、自動分析装置、及び部品異常検知方法 Download PDFInfo
- Publication number
- WO2023153073A1 WO2023153073A1 PCT/JP2022/046035 JP2022046035W WO2023153073A1 WO 2023153073 A1 WO2023153073 A1 WO 2023153073A1 JP 2022046035 W JP2022046035 W JP 2022046035W WO 2023153073 A1 WO2023153073 A1 WO 2023153073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abnormality detection
- detection system
- sensor
- component
- sample
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 title description 51
- 239000007788 liquid Substances 0.000 claims abstract description 143
- 238000012545 processing Methods 0.000 claims abstract description 86
- 238000007689 inspection Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 145
- 238000005259 measurement Methods 0.000 claims description 128
- 239000000523 sample Substances 0.000 claims description 114
- 238000006243 chemical reaction Methods 0.000 claims description 46
- 230000035945 sensitivity Effects 0.000 claims description 37
- 238000004140 cleaning Methods 0.000 claims description 19
- 230000002159 abnormal effect Effects 0.000 claims description 16
- 230000003750 conditioning effect Effects 0.000 claims description 16
- 238000007599 discharging Methods 0.000 claims description 6
- 239000012491 analyte Substances 0.000 claims description 2
- 239000013062 quality control Sample Substances 0.000 claims 1
- 230000032258 transport Effects 0.000 description 68
- 239000003153 chemical reaction reagent Substances 0.000 description 67
- 230000008569 process Effects 0.000 description 37
- 238000003908 quality control method Methods 0.000 description 22
- 238000012546 transfer Methods 0.000 description 22
- 230000007246 mechanism Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 239000007795 chemical reaction product Substances 0.000 description 13
- 230000006870 function Effects 0.000 description 10
- 239000013610 patient sample Substances 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 230000007723 transport mechanism Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004020 luminiscence type Methods 0.000 description 7
- 239000003599 detergent Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000011088 calibration curve Methods 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000023555 blood coagulation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000013075 data extraction Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000012774 diagnostic algorithm Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- -1 samples Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/08—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
Definitions
- the present invention relates to a component abnormality detection system, an automatic analyzer, and a component abnormality detection method.
- An automatic analyzer generally consists of more than 1,000 types of parts. When some parts fail, it is necessary to repair or replace the failed parts as soon as possible in order to reduce the downtime of the autoanalyzer.
- Patent Document 1 a failure prediction algorithm is generated from data related to the occurrence of failures in an automatic analyzer, and this algorithm is used to detect failures such as breakage of parts based on at least one data of calibration and quality control of the automatic analyzer. is disclosed.
- Automatic analyzers may be equipped with a liquid transport system that supplies and discharges liquids such as samples, reagents, and cleaning solutions to, for example, sensors (flow cells, etc.) that measure samples.
- the liquid transport system is composed of parts such as a channel for passing liquid, a plurality of valves for opening and closing the channel, and a syringe for sucking and discharging liquid. These components of the liquid transport system are usually replaced periodically, and a mechanism for positively detecting failures of the components of the liquid transport system is generally not implemented in automatic analyzers.
- An object of the present invention is to provide a parts abnormality detection system capable of detecting an abnormality in parts of a liquid transport system, an automatic analyzer equipped with this parts abnormality detection system, and a parts abnormality detection method.
- the present invention provides a parts abnormality detection system for detecting an abnormality in a part of a liquid transport system that draws liquid into and discharges liquid from a sample inspection sensor of an automatic analyzer, wherein the sensor and a processing device for processing the data recorded in the storage device.
- FIG. 2 is a plan view schematically showing a configuration example of an automatic analyzer to which the component abnormality detection system according to the first embodiment is applied; Schematic diagram of the liquid transfer system provided in the automatic analyzer shown in FIG. Schematic diagram of the sensor used for sample measurement in the automatic analyzer shown in Figure 1 Timing chart representing the measurement cycle in the automatic analyzer shown in FIG. Block diagram showing the data processing flow in the automatic analyzer shown in FIG.
- Diagram showing an example of time-series data of luminescence intensity measured during sample measurement A diagram showing an example of time-series data of voltage values measured during sample measurement
- Diagram showing an example of time-series data of resistance values measured during sample measurement Block diagram showing the processing flow of part abnormality detection in the server Flowchart representing the detailed procedure of the flow of FIG.
- the parts abnormality detection system is a system for detecting an abnormality in a part of a liquid transport system that draws liquid into and discharges liquid from a liquid sample inspection sensor of an automatic analyzer.
- a liquid sample test sensor provided in an automatic analyzer is, for example, a biochemical analyzer, an immunological analyzer, a blood coagulation time measuring device, an ISE measuring device, or the like, which is used to measure biological sample analysis items.
- An example of a sensor is a flow cell type sensor for electrochemiluminescence measurements. This flow cell type sensor includes, for example, a flow cell, electrodes (a reference electrode, a counter electrode and a working electrode) provided in the flow cell, and a photoelectric conversion sensor (such as a photomultiplier tube) arranged on the opposite side of the flow cell from the reference electrode.
- Consists of In this type of sensor in addition to the measured value of the analysis item of the sample (concentration of the component to be analyzed), when a voltage is applied between the reference electrode and the working electrode, an analog electric signal ( current value, voltage value and resistance value) is output as a response value.
- sensor outputs analog electrical signals output from the sensor are generated at multiple timings during the measurement cycle of the same sample, for example, during sample measurement, sensor cleaning, and electrode conditioning.
- the components of the liquid transport system that draws in and discharges liquid from the above sensors are the diagnostic targets of the component abnormality detection system.
- the liquid transport system includes, for example, a channel through which the liquid passes, a plurality of valves that open and close the channel, and a syringe that creates a pressure difference in the channel for sucking and discharging the liquid.
- the liquid transported by the liquid transport system includes a sample, a reagent, and a washing liquid. Samples include at least one (one or more) of patient specimens (blood, urine, etc.), calibration samples (standard samples), QC (Quality Control) samples, and dummy samples.
- a calibration sample is a prepared sample that is measured to create a calibration curve when calibrating an automatic analyzer.
- a QC sample is a prepared sample that is measured during QC on an automated analyzer.
- a dummy sample is a predetermined sample that is measured as a preparatory operation before measurement of a patient specimen.
- the component abnormality detection system can be configured, for example, with a computer equipped with an automatic analyzer.
- a single or multiple computers (servers, etc.) connected to the computer provided in the automatic analyzer via a network (local area network, global network, etc.) can constitute the parts abnormality detection system.
- a computer provided in the automatic analyzer and at least one computer connected thereto may constitute a parts abnormality detection system.
- the component abnormality detection system includes a storage device (RAM, ROM, HHD, SSD, or other storage medium) that stores the sensor output data, and a processing device (CPU, etc.) that processes the data recorded in the storage device. included. Based on the output of the liquid sample inspection sensor in the automatic analysis device, the processing device detects an abnormality in the components of the liquid transfer system, for example, the valve. In addition to the sensor output data, the storage device stores a part abnormality detection program, various data used in the algorithm of the program, and the like.
- a set value (threshold value) is set in advance based on the relationship between the sensor output and the component abnormality, and the algorithm simply compares the sensor output with the set value to determine the presence or absence of a component abnormality. can be applied.
- an algorithm that calculates the statistical value of sensor output data as an index and detects an abnormality in the components of the liquid transfer system, such as a valve, based on this statistical value.
- sensor output data extracted during a set period is read out from the storage device, the variation in the data during the set period is calculated as the above statistical value, and if the statistical value is greater than or equal to the set value, there is an abnormality in the parts of the liquid transport system.
- An algorithm for determining that there is The set period is a period set in advance and stored in the storage device, and is, for example, a period ending at the present time (last 24 hours, etc.).
- At least one of the sensor outputs obtained during the above-described measurement, washing, and conditioning can be used as the sensor output on which the statistical values are based.
- the timing at which the sensor output is obtained determines which component is abnormal in the liquid transport system or the type of abnormality (abnormality mode).
- abnormality mode can also be estimated.
- it can be based on a single sensor output it is possible to estimate an abnormal component or abnormal mode of the liquid transport system based on multiple sensor outputs output from the sensor at multiple timings during the measurement cycle of the same sample. is also conceivable.
- the type of alarm related to the sensor output to be statistically targeted can be selected and the sensitivity of abnormality detection can be adjusted.
- the processing unit selects the type of alarm according to the set sensitivity and stats the sensor output related to the selected alarm.
- a configuration is exemplified in which an abnormality in a part is detected by From the viewpoint of adjusting the anomaly detection sensitivity, a configuration in which the processing device adjusts a set value (a value to be compared with a statistical value for anomaly determination) to adjust the anomaly detection sensitivity is also conceivable.
- the processing device changes the set value according to the set sensitivity.
- a configuration in which the sensitivity is adjusted by changing both the type of alarm and the set value is also conceivable.
- a configuration is exemplified in which data of combinations of alarm types and set values are associated with set sensitivities and stored in a storage device, and the processing device changes the alarm types and set values according to the set sensitivities.
- component anomaly detection described above is not necessarily limited to computer systems, but can also be embodied as methods.
- the user it is possible for the user to view the log data of the sensor output and judge the abnormality of the parts of the liquid transport system based on the sensor output picked up by paying attention to the presence or absence of an alarm.
- the present invention can be applied to automated analyzers.
- detection units mounted on automatic analyzers include biochemical analyzers and immunological analyzers.
- applications may include an automatic analyzer equipped with a mass spectrometer used for clinical examination, a coagulation analyzer for measuring blood coagulation time, and the like.
- the present invention can also be applied to a compound type automatic analyzer equipped with a plurality of types of these various detection units, and an automatic analysis system including at least one automatic analyzer.
- a specific embodiment of the component abnormality detection system of the present invention will be described below with reference to the drawings.
- FIG. 1 is a plan view schematically showing a configuration example of an automatic analyzer to which a component abnormality detection system according to the first embodiment is applied.
- the autoanalyzer 1 shown in FIG. a detection unit 10 , a controller 21 , an operation device 22 and a control device 30 .
- the transport line 2 is a device that transports the rack R, and transports the rack R to the sample dispensing position by the sample dispensing nozzle 6 .
- a plurality of sample containers C1 for holding samples can be installed in the rack R.
- a configuration for line-conveying the sample is exemplified, but a disk-shaped conveying unit that rotates to convey the sample may be provided.
- the incubator 3 is a rotary table-shaped device in which the reaction containers C2 are installed, and a plurality of reaction containers C2 can be installed in a ring.
- the incubator 3 is rotationally driven by a driving device (not shown) to rotate, and can move any reaction container C2 to a plurality of predetermined positions such as a dispensing position by the sample dispensing nozzle 6 .
- the first transport mechanism 4 is a device that transports the sample dispensing tip T and the reaction container C2.
- the first transport mechanism 4 is operable in three axial directions of XYZ along rails, and between the incubator 3, the stirring mechanism M, the disposal position D, the tip mounting position P and the tray 5, the sample dispensing tip T and the reaction vessel C2.
- the stirring mechanism M is a device for stirring the sample contained in the reaction vessel C2.
- the discard position D is a position provided with a discard hole for discarding the used sample pipetting tip T and the reaction container C2.
- the tip attachment position P is a position for attaching the sample dispensing tip T to the sample dispensing nozzle 6 .
- the tray 5 is a container that accommodates a plurality of unused sample dispensing tips T and reaction containers C2.
- An unused reaction container C2 picked up from the tray 5 is placed at a predetermined position in the incubator 3 by the first transport mechanism 4.
- an unused sample dispensing tip T picked up from the tray 5 is transported to the first transport mechanism 4 and installed at the tip mounting position P. As shown in FIG.
- the sample dispensing nozzle 6 is a device that aspirates and discharges the sample.
- the sample dispensing nozzle 6 is configured to be rotatable and vertically movable. The tip of the nozzle is moved above the tip mounting position P and lowered, and the sample dispensing tip T prepared at the tip mounting position P is moved to the nozzle. Press it into the tip and attach it.
- the sample pipetting tip T is attached to the tip of the nozzle, the sample pipetting nozzle 6 moves the tip of the nozzle above the sample container C1 placed on the rack R and lowers it, thereby sucking a predetermined amount of sample from the sample container C1.
- the sample dispensing nozzle 6 moves the tip of the nozzle upward and down the incubator 3 to discharge the sample into an unused reaction container C2 installed in the incubator 3 .
- the sample pipetting nozzle 6 moves the tip of the nozzle above the disposal position D, and discards the used sample pipetting tip T into the disposal hole.
- the reagent disk 7 is a rotary table-like device on which a plurality of reagent containers C3 are installed.
- the reagent disk 7 is covered with a disk cover 7a (partially cut away in FIG. 1) to keep the inside at a predetermined temperature.
- the disk cover 7a is provided with an opening (not shown) at a reagent suction position 7b set near the incubator 3. As shown in FIG.
- the reagent dispensing nozzle 8 is a device that aspirates and discharges the reagent.
- the reagent dispensing nozzle 8 can rotate and move vertically in the same way as the sample dispensing nozzle 6.
- the tip of the nozzle is moved to the reagent aspirating position 7b of the reagent disk 7 and lowered.
- a predetermined amount of reagent is sucked from the reagent container C3.
- the tip of the reagent dispensing nozzle 8 is pulled up from the reagent container C3, moved to a predetermined position in the incubator 3 and lowered, and the reagent is discharged into the sample-containing reaction container C2 transported to this position.
- the reaction container C2 into which the sample and the reagent are injected is transported to a predetermined position by the rotation of the incubator 3, and transferred to the stirring mechanism M by the first transport mechanism 4.
- the stirring mechanism M stirs and mixes the sample and the reagent inside the reaction container C2, for example, by rotating the reaction container C2.
- the reaction container C2 that has been stirred is transferred to a predetermined position in the incubator 3 again by the first transfer mechanism 4. As shown in FIG.
- the second transport mechanism 9 is a device that transfers the reaction container C2 between the incubator 3 and the detection unit 10, and has a configuration that allows rotation and vertical movement.
- the second transport mechanism 9 picks up the reaction container C2 containing the reaction liquid after a predetermined reaction time has passed after returning to the incubator 3 after mixing the sample and the reagent, and transfers it to the detection unit 10 .
- the detection unit 10 is a measuring instrument that measures measurement items such as specific biological components and chemical substances contained in the reaction liquid inside the reaction container C2.
- An abnormality detection target in the present embodiment is a component of a liquid transport system (described later) used in this detection unit 10 .
- the controller 21 is a computer (forming a unit with the mechanism section 91) associated with the mechanism section 91 of the automatic analyzer 1 (discuss, transport mechanism, dispensing nozzle, detection unit 10, etc. described above).
- the controller 21 controls the mechanism section 91 of the automatic analyzer 1 according to signals input from the operation device 22 and signals input from the control device 30 according to user's operations.
- the control device 30 is a computer configured including a storage device 31 such as RAM, ROM, HDD, SSD, etc., a processing device 32 such as a CPU, etc., and is connected to the mechanism section 91 of the automatic analyzer 1 via the controller 21. It is This control device 30 controls each device of the mechanism section 91 of the automatic analyzer 1, and records and processes data input from the detection unit 10 and the like.
- the control device 30 may form a unit with the mechanism section 91 and the controller 21 of the automatic analyzer 1, or may be installed separately from the mechanism section 91 of the automatic analyzer 1 and directly connected to the controller 21 by wire or wirelessly. may occur.
- the control device 30 is connected to the server 40 via the communication interface 33, the network NW, and the communication interface 43.
- the server 40 is also a computer including a storage device 41 such as RAM, ROM, HDD, SSD, etc., a processing device 42 such as a CPU, and the like.
- the server 40 is equipped with an abnormality detection function for components of the liquid transport system used in the automatic analyzer 1 .
- the server 40 records the data of the electrical signal output by the sensor 11 of the automatic analyzer 1 in the storage device 41, processes the data recorded in the storage device 41 in the processing device 42, and processes the data in the automatic analyzer based on the sensor output. 1 detects an abnormality in the parts of the liquid transport system (described later).
- FIG. 2 is a schematic diagram of a liquid transport system provided in the automatic analyzer shown in FIG.
- a detection unit 10 of the automatic analyzer 1 includes a flow cell type sensor 11 (described later), a liquid transfer system 12 and a turntable 13 .
- the configurations of the turntable 13 and the liquid transport system 12 will be described.
- the turntable 13 is provided with an auxiliary reagent container RG that stores an auxiliary reagent and a detergent container CL that stores a cleaning liquid, and also has a standby position SP and a reaction container setting position SM.
- the auxiliary reagent is a chemical solution for causing the reaction product in the reaction solution to emit light.
- the cleaning liquid is a liquid for cleaning the channel of the liquid transport system 12 and the flow cell of the sensor 11 .
- a reaction container C2 transferred from the incubator 3 is installed at the reaction container installation position SM.
- the turntable 13 is equipped with a driving device (not shown), and is driven by the driving device controlled by a signal from the controller 21 to rotate and move up and down.
- the reaction container C2, the detergent container CL, or the auxiliary reagent container RG is transported to the liquid suction position of the liquid transport system 12 in a timely manner, and the standby position SP is adjusted.
- the liquid transport system 12 includes channels F1 to F6 through which the liquid passes, a plurality of valves V1 and V2 that open and close these channels, and a syringe SY that creates a pressure difference in the channels for sucking and discharging the liquid.
- the channel F ⁇ b>1 is a channel (pipe) for sending the sucked liquid to the sensor 11 , and has a suction nozzle (not shown) attached to its tip and connected to the sensor 11 at the other end.
- the flow path F2 is connected to the sensor 11 on the side opposite to the flow path F1, and connects the sensor 11 and the valve V1.
- the flow path F3 connects the valves V1 and V2.
- the flow path F4 connects the valve V2 and a drain tank (not shown).
- the flow path F5 branches from the flow path F3 and connects the flow path F3 and the syringe SY.
- the flow path F6 connects the syringe SY and a system water supply pump (not shown).
- the valves V1 and V2 are, for example, solenoid valves, and normally open solenoid valves can be used, but in this embodiment, they are normally closed solenoid valves.
- the valve V1 is opened and the syringe SY is driven for suction.
- Liquid is aspirated from a container such as C2.
- the valve V1 is closed and the valve is opened and the syringe SY is driven to discharge, the liquid sucked into the flow paths F3 and F5 is discharged to the drain tank.
- FIG. 3 is a schematic diagram of a sensor used for sample measurement in the automatic analyzer shown in FIG.
- a detection unit 10 of the automatic analyzer 1 is provided with a flow cell type sensor 11 .
- the sensor 11 includes a flow cell FC, three electrodes (a reference electrode E1, a counter electrode E2, and a working electrode E3) provided inside the flow cell FC, and a photoelectric conversion sensor (for example, photomultiplier tube) PT.
- a photoelectric conversion sensor for example, photomultiplier tube
- the three electrodes are controlled by the potentiostat 15 to have the target voltage.
- a specific voltage is applied between the reference electrode E1 and the working electrode E3 by the potentiostat 15 while the reaction product RP of the sample and the reagent in the reaction solution is collected by the reference electrode E1, the reaction product RP emits light.
- a photoelectric conversion sensor PT is arranged on the opposite side (upper side in FIG. 3) of the reference electrode E1 across the flow cell FC, and the luminescence intensity of the reaction product RP is detected by this photoelectric conversion sensor PT.
- the luminescence intensity detected by the photoelectric conversion sensor PT is digitized by the A/D converter 18, and is stored in the storage device 31 (or the storage device of the sensor 11) as raw data of the measured values of the measurement items through the raw data recording process P1. is recorded along with the date and time of measurement.
- the potentiostat 15 measures the current value, voltage value and resistance value generated between the counter electrode E2 and the working electrode E3 by applying a voltage between the reference electrode E1 and the working electrode E3.
- the current value, the voltage value and the resistance value generated between the counter electrode E2 and the working electrode E3 are used as raw data. It is recorded in the recording process P1.
- the automatic analyzer 1 is started by turning on the power.
- the reagent container C3 is installed and the reagent is initially filled, the temperature inside the reagent disk 7 is adjusted, the internal standard solution is continuously measured by applying a constant voltage to the electrode, and the potential of the electrode of the sensor 11 is stabilized. and perform maintenance as necessary.
- -Measurement cycle- 4 is a timing chart showing a measurement cycle in the automatic analyzer shown in FIG. 1.
- FIG. 4 As described above, calibration, QC measurement, and patient sample measurement are performed in a timely manner from the time the device is started up until it is shut down. Measurements are performed. As shown in FIG. 4, the measurement operation in each step is performed in a series of cycles of electrode conditioning, sample introduction, measurement, and washing.
- the auxiliary reagent container RG is transported to the suction position of the liquid transport system 12 by the operation of the turntable 13 .
- the valve V1 is opened while the valve V2 is closed, the syringe SY is driven to aspirate the auxiliary reagent from the auxiliary reagent container RG, and the auxiliary reagent is introduced into the flow cell FC.
- the potentiostat 15 applies a voltage of a specific pattern to the electrodes for a certain period of time, and the electrodes are brought into a state suitable for measurement.
- both the valves V1 and V2 are closed, and the suction operation by the syringe SY and the application of voltage to the electrodes are stopped. Also, the sensor output is recorded while the voltage is applied to the electrodes.
- the reaction container C2 installed at the reaction container installation position SM is transported to the suction position of the liquid transport system 12 by the operation of the turntable 13.
- the valve V1 is opened while the valve V2 remains closed, the syringe SY is driven to suck the reaction solution from the reaction container C2, and the reaction solution is introduced into the flow cell FC.
- the auxiliary reagent container RG is conveyed to the suction position of the liquid conveying system 12 by the operation of the turntable 13 while the valve V1 is open.
- the syringe SY is driven to aspirate the auxiliary reagent from the auxiliary reagent container RG and introduce the auxiliary reagent into the flow cell FC.
- the valves V1 and V2 are closed, and the suction operation by the syringe SY is stopped.
- the standby position SP is moved to the suction position of the liquid transport system 12 by the operation of the turntable 13, and the voltage necessary for the luminescence reaction of the reaction product RP captured by the reference electrode E1 in the sample introduction process is applied to the potentiostat. 15. Also, the sensor output is recorded while the voltage is applied to the electrodes.
- the valve V2 is opened while the valve V1 is closed, and the syringe SY is driven to discharge the auxiliary reagent and the like into the drain tank.
- both the valves V1 and V2 are closed, and the detergent container CL is conveyed to the suction position of the liquid conveying system 12 by the operation of the turntable 13 .
- the valve V1 is opened while the valve V2 remains closed, the syringe SY is driven, the cleaning liquid is sucked from the detergent container CL, and the cleaning liquid is introduced into the flow cell FC.
- a voltage pattern different from that in the electrode conditioning step is applied to the electrodes for a certain period of time while the cleaning liquid is flowing through the flow cell FC so that the reaction product RP does not remain in the flow cell FC.
- the reaction product RP and the like adhering to the electrode are peeled off, and the peeled reaction product RP is washed away with the cleaning liquid and discharged from the flow cell FC.
- the sensor output is recorded while the voltage is applied to the electrodes, and both the valves V1 and V2 are closed when the suction of the cleaning liquid is completed.
- valve V1 is closed, the valve V2 is opened, and the cleaning liquid is discharged to the drain tank by the syringe SY. Finally, valve V2 is closed to return to the state prior to the start of the electrode conditioning process.
- the voltage applied to the electrode is controlled in a complicated manner at multiple timings by the potentiostat 15 during the same measurement cycle. .
- a complex voltage pattern is precisely and repeatedly applied to the electrodes along with the measurement of the sample (patient sample, standard sample, QC sample, dummy sample, etc.), resulting in voltage, current, An electrical signal such as resistance or a measured value of the concentration of the component to be analyzed is output.
- the parts abnormality detection system of the present embodiment detects an abnormality of the parts of the liquid transport system 12 based on the output of the sensor 11 during measurement with these alarms.
- an abnormality in the parts of the liquid transport system 12 is detected based only on the sensor output related to the measurement for which the alarm is given.
- FIG. 5 is a block diagram showing the processing flow in the automatic analyzer shown in FIG. Data is input to the control device 30 of the automatic analyzer 1 from the sensor 11 , mechanism section 91 , sample data reader 92 , reagent data reader 93 , and UI (user interface) 94 .
- Data recorded in the raw data recording process P1 is input to the control device 30 at any time as an input from the sensor 11 .
- the data input from the sensor 11 to the control device 30 includes not only the data of the measurement cycle of the measurement of the patient specimen, but also the data of each type of measurement, such as QC measurement and calibration, as well as the preparatory operation performed immediately before the measurement of the patient specimen. Also included are data from measurement cycles of dummy measurements that are
- the mechanism unit 91 is a general term for each piece of hardware (the sample dispensing nozzle 6, the incubator 3, etc.) mounted on the automatic analyzer 1.
- the data input from the mechanism section 91 to the control device 30 include, for example, the operation timing, operation amount and current value of each motor, sensor signals used for controlling each motor, and opening/closing timing of fluid valves (valves V1, V2, etc.). and log data such as current values.
- the sample data reader 92 is a device (for example, a barcode or RFID reader) that reads sample registration data, and is provided in the automatic analyzer 1 .
- a storage medium such as a bar code or RFID is attached to the sample container C1, and the sample data reader 92 reads sample data recorded in the storage medium.
- Data read by the sample data reader 92 and input to the control device 30 is, for example, a sample ID.
- the reagent data reader 93 is a device (for example, a bar code or RFID reader) that reads reagent registration data, and is provided in the automatic analyzer 1 .
- a storage medium such as a bar code or RFID is attached to the reagent container C3, and the reagent data reader 93 reads reagent data recorded in the storage medium.
- the data read by the reagent data reader 93 and input to the controller 30 are, for example, reagent IDs, lot numbers, expiration dates, and the like.
- the UI 94 consists of a monitor and an input device provided in the automatic analyzer 1, and is used by the user to browse data and input data to the control device 30.
- Various data can be input to the control device 30 using the UI 94.
- Examples of data related to reagents and auxiliary reagents include reagent IDs, lot numbers, expiration dates, on-board expiration dates, required remaining amounts, and the like.
- Examples of sample-related data include a sample ID, a measurement type (patient sample measurement, QC measurement, calibration, dummy measurement, etc.) for the sample ID, measurement items, and the like.
- processing executed by the processing device 32 includes, for example, sensor output conversion processing P2 and sensor output recording processing P3.
- processing executed by the processing device 32 includes an operation log recording processing P4, a reagent data recording processing P5, a sample data recording processing P6, an alarm data recording processing P7, and a log file generation processing P8. Each processing will be described in order below.
- the processing device 32 converts the sensor output (raw data) input from the sensor 11 into a valid value.
- the sensor output input from the sensor 11 is each raw data of emission intensity, current value, voltage value, and resistance value.
- FIG. 6 is an example of time-series data of emission intensity measured when measuring a sample
- FIG. 7 is an example of time-series data of voltage values
- FIG. 8 is an example of time-series data of current values
- the horizontal axis of each figure corresponds to time, and the time change of each value is represented.
- the controller 30 applies a voltage to the electrodes at a specific timing from the start of measurement to obtain data.
- a predetermined voltage is applied to the reference electrode E1 and the working electrode E3 at the timing of the 41st sensor output from the start of measurement counted in the sensor output period.
- the processing device 32 converts the sensor output (raw data) input from the sensor 11 for each measurement into the next two data stored in advance in the storage device 31 (for example, ROM). Convert to EV value (effective value) using the formula.
- the processing device 32 assigns a measurement ID to each measurement, and records the raw data and effective value of the measurement value in the storage device 31 in association with the measurement ID.
- the processing device 32 records the operation log input from the mechanism section 91 and the sensor 11 in the storage device 31.
- the operation log input from the mechanical unit 91 or the like includes, for example, the operation timing and operation amount of each motor, the current value of the motor, the signal of the sensor for controlling the operation of the motor, and the operation of the fluid valve (valves V1, V2, etc.). It includes opening/closing timing, current value, and the like.
- the processing device 32 compares the reagent data input from the reagent data reading device 93 with the condition data recorded in advance in the storage device 31, and if the condition data is matched, The reagent is recorded in the storage device 31 as a usable reagent.
- the condition data for matching the reagent data includes reagent ID, lot number, expiration date, on-board expiration date, required remaining amount, etc., and is input by the UI 94 or another computer and sent to the control device via the communication interface 33. 30 and recorded in the storage device 31 .
- the processing device 32 records the history of the used reagent in the storage device 31 for each measurement ID. As a result, the raw data and effective values of the measurement values and the data of the reagent used for the measurement are linked via the measurement ID.
- sample data recording process P6 the processing device 32 compares the sample data input from the sample data reading device 92 with the condition data recorded in advance in the storage device 31, and if the condition data is matched, The sample is recorded in the storage device 31 as a measurable sample, and the measurement is performed as appropriate.
- the condition data for comparing the sample data includes the sample ID, measurement type (QC measurement, patient sample measurement, etc.), measurement items, etc., which are input by the UI 94 or another computer and sent to the control device 30 via the communication interface 33. , and recorded in the storage device 31 .
- Alarm data recording process the processing device 32 determines whether there is an abnormality in the measurement each time the measurement is performed (each time a control voltage is applied between the reference electrode E1 and the working electrode E3 of the sensor 11). . If there is an abnormality in the measurement, alarm data is added to the data set related to the measurement determined to be abnormal and recorded in the storage device 31 .
- the presence or absence of an abnormality in measurement can be determined, for example, by presetting the measured value (concentration of the component to be analyzed), the EV value of the current generated when the control voltage is applied to the electrode, and the EV value of the luminescence amount of the reaction product. It is determined by comparing with the value.
- the An alarm is applied to the data set of the sensor 11 output.
- the EV value of the current value generated between the counter electrode E2 and the working electrode E3 is higher than the set value, and when the luminescence amount of the reaction product RP is lower than the set value, it is determined that there is an abnormality in the measurement, An alarm is attached to the data set of sensor outputs acquired in this measurement.
- the alarm data includes information on the content of the abnormality (excessive measured value/excessive measured value/excessive current EV value/excessive light emission amount EV value).
- the processing device 32 In the log file generation processing P8, the processing device 32 generates data necessary for detecting an abnormality in the parts of the liquid transport system, such as raw data output from the sensor 11, among the data stored in the storage device 31. , alarm data, measurement type, etc. are aggregated for each measurement (each measurement timing in the measurement cycle) to generate a log file. Also, the processing device 32 transmits the log file to the server 40 via the communication interface 33 and the network NW. A log file is created for each measurement, uploaded sequentially, and accumulated in the server 40 .
- FIG. 10 is a block diagram showing a processing flow of part abnormality detection by the server.
- the component abnormality detection function is executed by the server 40 , and the server 40 configures the component abnormality detection system of the liquid transport system 12 .
- the processing device 42 Upon receiving the log file from the automatic analyzer 1, the processing device 42 records the log file in the storage device 41 in the log file storage process P21.
- the processing device 42 extracts diagnostic data, which is the basis for detecting an abnormality in the components of the liquid transfer system 12, from the log file stored in the storage device 41. Extract data.
- the processing device 42 sequentially stores the extracted diagnostic data in the storage device 41.
- the processing device 42 counts the number of alarms during the set period based on the extracted diagnostic data.
- the set period is a period ending at the present (for example, the most recent 24 hours).
- the set number is a preset value (eg, 20).
- the processing device 42 diagnoses the state of the parts of the liquid transfer system 12 based on the diagnostic data for the set period in the component abnormality diagnosis process P25.
- the diagnosis result (presence or absence of component abnormality) is transmitted to the automatic analyzer 1 via the communication interface 43 and the network NW, and notified to the user or the like via the display of the UI 94 . It is also possible to display the diagnostic results on the UI (user interface) 44 of the server 40 .
- the UI 44 of the server 40 is similar to the UI 94 of the control device 30 of the automatic analyzer 1.
- FIG. 11 is a flow chart showing detailed procedures of the flow of FIG.
- the processing device 42 acquires sensor output data sets from the automatic analyzer 1 and sequentially records the acquired data sets in the storage device 41 (step S11).
- the procedure of step S11 corresponds to the log file storage process P21 described with reference to FIG.
- the processing device 42 determines whether the data set contains alarm data (step S12). If the alarm data is provided, the processing device 42 extracts the data as diagnostic data and stores it in the storage device 41 (step S13).
- the procedures of steps S12 and S13 correspond to the diagnostic data extraction process P22 and the diagnostic data storage process P23 described with reference to FIG.
- the processing device 42 counts the number of alarms generated during the set period (last 24 hours) based on the extracted diagnostic data, and determines whether the number of alarms during the set period has reached the set number (20) or more. (Step S14). If the number of alarms generated during the set period is less than the set number and the components of the liquid transport system 12 are estimated to be normal, the processing device 42 continues to repeat the processing of steps S11 to S14. Conversely, if the number of alarms generated during the set period reaches the set number or more and an abnormality in the components of the liquid transfer system 12 is suspected, the processing device 42 proceeds to the procedure for diagnosing the components of the liquid transfer system 12 .
- the procedure of step S14 corresponds to the data counting process P24 described with reference to FIG.
- the processing device 42 When moving to the procedure for diagnosing the parts of the liquid transport system 12, the processing device 42 first calculates statistical values for evaluating the state of the parts based on the sensor output data.
- This statistical method can be changed as appropriate, but in the present embodiment, sensor output data extracted during a set period is read from the storage device 42, and variations in the data during the set period are calculated as statistical values.
- an algorithm is used in which the extracted diagnostic data during the set period are statistically collected (step S15), and the variation coefficient CV is calculated as the statistical value (variation) based on the values (step S16). exemplified.
- step S15 the standard deviation of the sensor output (current EV value in FIG. 8) is obtained using the following equation.
- the processing device 42 divides the calculated standard deviation by the average value of the EV values to calculate the variation coefficient CV (the following equation).
- the processing device 42 After obtaining the statistical value (variation coefficient CV in this embodiment) for evaluating the state of the parts, the processing device 42 detects an abnormality in the parts of the liquid transport system 12 based on the statistical value.
- the variation coefficient CV is compared with a preset set value to determine whether the variation count CV is equal to or greater than the set value (step S17). If the statistical value is less than the set value, it is assumed that the parts of the liquid transfer system 12 are functioning normally, but if the variation coefficient CV is equal to or greater than the set value, the parts of the liquid transfer system 12 are suspected to be abnormal. .
- the component abnormality detection system is configured in consideration of this point, and when the variation coefficient CV is equal to or greater than the set value, the processing device 42 transmits display data to the UI 44 or UI 94, and the component abnormality of the liquid transport system 12 is The user is notified of the suspicion (step S18), and the flow ends. If the variation coefficient CV is less than the set value, the processing device 42 returns to step S11 and continues the processing of steps S11-S17.
- FIG. 12 is a diagram showing an example of an abnormality detection condition setting screen.
- the setting screen illustrated in the figure is displayed on the UI 44 (FIG. 10) of the server 40, and the UI 44 can set and save abnormality detection conditions for the parts of the liquid transport system 12.
- FIG. The setting screen can be displayed on the UI of a computer that can access the server 40, such as the UI 94 of the control device 30 of the automatic analyzer 1, so that the abnormality detection conditions can be set from the UI 94 or the like.
- the setting screen of FIG. 12 is an example, and it is also possible to set condition items other than the items illustrated in the figure.
- the setting screen of FIG. 12 can be shared by all automatic analyzers connected to the server 40, or can be prepared for each ID of the automatic analyzer.
- an abnormality detection target component of the liquid transport system 12 can be set in an area displayed as "abnormality detection target".
- One or more of the three items of "flow path”, "solenoid valve”, and “syringe” can be selected as the component to be subjected to abnormality detection.
- "Flow path” corresponds to flow paths F1 to F6
- "solenoid valve” corresponds to valves V1 and V2
- "syringe” corresponds to syringe SY.
- Detection mode One or more of the two items of "abnormal mode detection” and “abnormal location detection” can be selected as an abnormality detection method.
- Abnormal mode detection is a method for detecting what kind of abnormality the detected abnormality is
- abnormal location detection is a method for detecting which part of the liquid transport system 12 is abnormal.
- Abnormality mode refers to the mode of abnormality (what kind of abnormality).
- the automatic analyzer 1 can acquire sensor output data at multiple timings (electrode conditioning/measurement/washing) during the measurement cycle of the same sample. It is possible to estimate the component in which an abnormality is observed and the abnormality mode depending on which of these multiple timings the acquired data is given an alarm.
- valve V1 in one measurement cycle, when an alarm is given to the measurement during electrode conditioning, the valve V1 is not opened and the inside of the flow cell FC is not replaced with the auxiliary reagent (while being filled with the cleaning solution). is suspected to have taken place. Even when an alarm is issued during concentration measurement, it is suspected that the measurement was performed without opening the valve V1 and introducing the reaction liquid into the flow cell FC. In these cases, an abnormality is found in the valve V1, and a failure in the opening operation of the valve V1 is suspected as the abnormality mode.
- valve V2 When an alarm is given to the measurement during washing, the valve V2 does not open and the syringe SY operates with the auxiliary reagent or reaction liquid enclosed between the valves V1 and V2, resulting in a pressure rise between the valves V1 and V2. , there is a possibility that the liquid flowed back when the valve V1 was opened and the cleaning liquid was not sucked. In this case, an abnormality is found in the valve V2, and it is suspected that the valve V2 fails to open properly as the abnormality mode. If liquid leakage occurs in the flow paths F1-F6, or if the syringe SY malfunctions, the replacement operation of the liquid inside the flow cell FC may not be performed normally, which may affect the sensor output.
- Experiments, simulations, or the like are used to identify patterns that can affect data acquired at what timing when an abnormality occurs in which component of the liquid transport system 12 . 41 can be stored.
- the processing device 42 determines an abnormal component of the liquid transport system 12 and its abnormal mode based on sensor output data acquired at least one of a plurality of timings. can do.
- the sensitivity of abnormality detection can be set in the area labeled "Detection Sensitivity".
- the sensitivity of abnormality detection can be set alternatively from three levels of "high”, “middle” and "low".
- the processing device 42 adjusts the anomaly detection sensitivity by changing the set period for counting the number of alarms in step S14 of FIG. In this case, the longer the set period, the higher the detection sensitivity. For example, when setting the setting period of the detection sensitivity “high” to 48 hours, the setting period of the detection sensitivity “medium” to 24 hours, and the setting period of the detection sensitivity “low” to 12 hours, the processing device 42 sets the detection sensitivity.
- the setting period is alternatively selected from among 48 hours, 24 hours and 12 hours depending on the situation.
- the detection sensitivity can also be adjusted according to the type of alarm related to the sensor output targeted for statistics. 6 to 9, in the automatic analyzer 1, at the same measurement opportunity, a plurality of types of electrical signals such as light emission amount, current value, voltage value, resistance value, etc. are output from the sensor 11, A predetermined judgment is made based on these values, and alarm data is provided when an abnormality is found. Specifically, as exemplified above, when the measured value is higher than the appropriate value, when the measured value is lower than the appropriate value, when the EV value of the current generated in the electrode is higher than the appropriate value, the luminescence amount of the reaction product An alarm is recorded if the EV value of is lower than the correct value. For example, in step S13 of FIG.
- the examination sensitivity also changes depending on which of the plurality of types of alarms is given and the data to be extracted as diagnostic data. For example, all 4 types of alarms are set for "high” detection sensitivity, 2 or 3 types of predetermined alarms are set for “medium” detection sensitivity, and 1 or 2 types of predetermined alarms are set for "low” detection sensitivity.
- a configuration is conceivable in which an alarm is selected and the detection sensitivity is adjusted according to the setting of the detection sensitivity. It is also possible to combine the type of alarm with the set period, and adjust the detection sensitivity by selecting the alarm and the set period by the processing device 42 according to the setting of the detection sensitivity.
- diagnostic data can be extracted from the measurement of at least one type of specimen, calibration sample, QC sample, or dummy sample, but sensitivity adjustment is performed by selecting the type of sample related to diagnostic data. It is also possible.
- the components of the liquid transport system 12 are diagnosed after statisticizing sensor outputs extracted as diagnostic data, erroneous detection of abnormalities is suppressed and the automatic analyzer 1 is stopped unnecessarily. can reduce the chances of
- the variation in sensor output data (in this example, the CV value) extracted from the set period is calculated as a statistical value, and if the statistical value is equal to or greater than the set value, there is an abnormality in the parts of the liquid transport system 12.
- the diagnostic data will vary widely. In the present embodiment, by diagnosing components using variations in the diagnostic data as an indicator, it is possible to detect an abnormality in the components of the liquid transport system 12 at an early stage.
- the automatic analyzer 1 can be flexibly operated, for example, by setting the test sensitivity to be low.
- it is possible to set anomaly detection targets and detection modes it is possible to detect anomalies and anomaly modes by targeting specific parts that are particularly concerned about their condition, investigate the durability of each part, and optimize regular inspection intervals. You can also
- the output of the sensor 11 can be included in the diagnostic data. can be secured and the accuracy of anomaly detection can be improved. Further, as described above, it is possible to determine the component in which an abnormality has occurred and the abnormality mode depending on the timing at which the alarm was given.
- This embodiment differs from the first embodiment in that the automatic analyzer 1 is provided with an abnormality detection system for the parts of the liquid transport system 12 .
- the processing displayed in the abnormality detection function F in the drawing is a series of processing related to the functions that the server 40 (FIG. 10) was responsible for in the first embodiment.
- Data and processes assigned to the storage device 41 and the processing device 42 in the first embodiment regarding the abnormality detection function are assigned to the storage device 31 and the processing device 32 of the control device 30 in the present embodiment.
- the diagnostic algorithm for detecting an abnormality in the components of the liquid transport system 12 is the same as in the first embodiment, and the user or the like is notified of the detection result through the UI 94 .
- this embodiment is the same as the first embodiment, and can obtain the same effects as the first embodiment.
- the set period for extracting diagnostic data does not necessarily have to be the period ending at the present. If there is a period of particular interest, it is conceivable to designate a predetermined period up to a certain point in the past as the set period so that anomaly detection can be executed based on sensor output log data.
- the functions for setting anomaly detection targets, detection modes, and detection sensitivity are not necessarily required to obtain the basic effect (1), and unnecessary functions can be omitted as appropriate.
- diagnostic data including all data obtained at multiple timings during the measurement cycle has been described, but this setting can also be changed as appropriate.
- diagnostic data may be extracted from only data relating to one or two of the time of sample measurement, the time of sensor 11 cleaning, and the time of electrode conditioning.
- sample measurement opportunity data as diagnostic data without distinguishing between patient samples, calibration samples, QC samples, and dummy samples
- this setting can also be changed as appropriate.
- the configuration may be such that the data of one, two, or three sample measurement occasions specified among the patient sample, calibration sample, QC sample, and dummy sample are extracted as diagnostic data.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
本実施形態に係る部品異常検知システムは、自動分析装置の液体試料検査用のセンサに対して液体を吸入し排出する液体搬送系の部品の異常を検知するシステムである。
本発明は自動分析装置に適用され得る。自動分析装置に搭載される検出ユニットとしては、例えば生化学分析装置や免疫分析装置等が挙げられる。但し、これは一例であり、本発明は以下に説明する実施形態に限定されるものではなく、試薬との反応結果に基づいて試料を分析する検出ユニットを搭載した自動分析装置に広く適用され得る。例えば、臨床検査に用いる質量分析装置や血液の凝固時間を測定する凝固分析装置等を搭載した自動分析装置も適用対象に含まれ得る。また、これら各種の検出ユニットを複数種搭載した複合型の自動分析装置や、少なくとも1つの自動分析装置を含む自動分析システムにも本発明は適用可能である。以下に図面を用いて、本発明の部品異常検知システムの具体的な実施形態を説明する。
図1は第1実施形態に係る部品異常検知システムの適用対象となる自動分析装置の一構成例を模式的に表す平面図である。同図の自動分析装置1は、搬送ライン2、インキュベータ(反応ディスク)3、第1搬送機構4、トレイ5、試料分注ノズル6、試薬ディスク7、試薬分注ノズル8、第2搬送機構9、検出ユニット10、コントローラ21、操作装置22及び制御装置30を備えている。
図2は図1に示した自動分析装置に備わった液体搬送系の模式図である。自動分析装置1の検出ユニット10には、フローセル型のセンサ11(後述)、液体搬送系12及びターンテーブル13が備わっている。ここでは、ターンテーブル13と液体搬送系12の構成を説明する。
図3は図1に示した自動分析装置で試料の測定に使用されるセンサの模式図である。自動分析装置1の検出ユニット10には、フローセル型のセンサ11が備わっている。センサ11は、フローセルFCと、フローセルFCの内部に備わった3つの電極(参照極E1、対極E2、作用極E3)と、反応生成物RPの発光強度を測定する光電変換センサ(例えば光電子増倍管)PTとを含んで構成される。
未知の試料である患者検体に含まれる分析対象成分を高精度に定性分析及び定量分析するために、較正やQC測定が適時に行われる。例えば定量分析の場合、自動分析装置1は以下の(1)-(5)のような作業手順で日々運用される。
まず、電源を投入して自動分析装置1を立ち上げる。また、試薬容器C3を設置して試薬を初期充填したり、試薬ディスク7の内部の温度調節をしたり、電極に一定電圧をかけて内部標準液を連続測定しセンサ11の電極の電位が安定しているかを点検したり、必要に応じてメンテナンスしたりする。
測定項目(分析対象成分)の濃度が既知である高濃度の標準試料と低濃度の標準試料を測定する。これら測定により、測定項目の濃度とセンサ11(光電変換センサPT)の出力との関係式(検量線)を作成する。但し、較正の頻度は測定項目により異なり、例えば各測定項目についての較正が周期的に(例えば1月周期で)順番に行われる。
測定項目の濃度が取り得る範囲が既知で濃度レベルの異なる複数のQC試料を測定し、較正で作成した検量線を用いてQC試料中の測定項目の濃度を演算する。演算された濃度がQC試料の既知の濃度範囲内であるかをチェックすることで、検量線が適切であるかを確認する。QC測定は、患者検体の測定結果を保証するための状態確認の位置付けであることから、頻繁に実施される。例えば、複数の測定項目を並行して1-3回/日の頻度でQC測定が行われる。
測定項目の濃度が未知である患者検体を測定し、検量線を用いて測定項目の濃度を演算する。この患者検体測定の前に、いわゆるバックグラウンド測定又はダミー測定を行い、自動分析装置1の状態を確認する場合もある。
必要に応じて自動分析装置1の各部の清掃や点検等を行い、電源を落として自動分析装置1を立ち下げる。
図4は図1に示した自動分析装置における測定サイクルを表すタイミングチャートである。
上記の通り、装置を立ち上げてから立ち下げるまでの間、較正、QC測定、患者検体測定が適時に行われ、それぞれ工程で試料(患者検体、標準試料、QC試料、又はダミー試料等)の測定が実施される。各工程の測定動作は、図4に示したように、電極コンディショニング、試料導入、測定、洗浄の一連のサイクルで実施される。
自動分析装置1には、電極コンディショニング、測定、洗浄の各工程において異常が見られる場合にアラームが記録される。具体的には、測定値(分析対象成分の濃度)が適正範囲から外れている場合(高い場合、低い場合)、電圧印加時に生じる電流のEV値が適正値より高い場合、及び反応生成物RPの発光量のEV値が適正値より低い場合に、アラームが記録される。例えば電極コンディショニングの工程で計測される電流値は、仮にフローセルFCの内部の液体が洗浄液から補助試薬に置換されていない場合、検出電流が正常値(例えば10mA程度)から増加し得る(例えば15mA程度)。本実施形態の部品異常検知システムは、これらアラームが付与された測定の際のセンサ11の出力に基づいて液体搬送系12の部品の異常を検知する。特に本実施形態においては、センサ11の出力のうち、アラームが付与された測定に係るセンサ出力のみに基づいて液体搬送系12の部品の異常を検知する。
センサ出力変換処理P2において、処理装置32は、センサ11から入力されるセンサ出力(生データ)を有効値に変換する。センサ11から入力されるセンサ出力は、発光強度、電流値、電圧値、抵抗値の各生データである。
センサ出力記録処理P3において、処理装置32は、測定毎に測定IDを割り振り、測定IDと紐づけて測定値の生データ及び有効値を記憶装置31に記録する。
動作ログ記録処理P4において、処理装置32は、機構部91及びセンサ11から入力される動作ログを記憶装置31に記録する。機構部91等から入力される動作ログには、例えば各モータの動作タイミングや動作量、モータの電流値、モータの動作を制御するためのセンサの信号、流体バルブ(バルブV1,V2等)の開閉タイミングや電流値等が含まれる。
試薬データ記録処理P5において、処理装置32は、試薬データ読取装置93から入力された試薬データを、予め記憶装置31に記録された条件データに突き合わせ、条件データに合致する場合に使用可能な試薬として記憶装置31に記録する。試薬データを突き合わせる条件データは、試薬のIDやロット番号、有効期限、オンボード有効期限、必要な残量等であり、UI94により又は他のコンピュータで入力されて通信インターフェース33を介して制御装置30に入力され、記憶装置31に記録される。また、試薬データ記録処理P5において、処理装置32は、使用された試薬の履歴を測定ID毎に記憶装置31に記録する。これにより、測定値の生データ及び有効値と測定に使用された試薬のデータとが測定IDを介して紐づく。
試料データ記録処理P6において、処理装置32は、試料データ読取装置92から入力された試料データを、予め記憶装置31に記録された条件データに突き合わせ、条件データに合致する場合に測定可能な試料として記憶装置31に記録し、適時に測定を実行する。試料データを突き合わせる条件データは、試料ID、測定種別(QC測定、患者検体の測定等)、測定項目等であり、UI94により又は他のコンピュータで入力されて通信インターフェース33を介して制御装置30に入力され、記憶装置31に記録される。
アラームデータ記録処理P7において、処理装置32は、測定の都度(センサ11の参照極E1及び作用極E3の間に制御電圧を印加する度に)測定について異常の有無を判定する。測定に異常がある場合、異常と判定された測定に係るデータセットにアラームのデータが付与され、記憶装置31に記録される。測定の異常の有無は、例えば、測定値(分析対象成分の濃度)、電極に制御電圧を印加した際に生じる電流のEV値、反応生成物の発光量のEV値を、それぞれ予め設定した設定値と比較して判定される。例えば、測定値がその設定値(適正範囲の上限値)より高い場合、測定値がその設定値(適正範囲の下限値)より低い場合、測定に異常があると判定され、この測定で取得されたセンサ11の出力のデータセットにアラームが付与される。また、対極E2及び作用極E3の間に生じる電流値のEV値がその設定値より高い場合、反応生成物RPの発光量がその設定値より低い場合も、測定に異常があると判定され、この測定で取得されたセンサ出力のデータセットにアラームが付与される。アラームのデータには、異常の内容(測定値が過大/測定値が過小/電流EV値が過大/発光量EV値が過小)の情報が含まれる。
ログファイル生成処理P8において、処理装置32は、記憶装置31に記憶されたデータのうち、液体搬送系の部品の異常検知に必要なデータ、例えばセンサ11から出力される生データやアラームデータ、測定種別等を測定(測定サイクルの各測定タイミング)毎に集約してログファイルを生成する。また、処理装置32は、通信インターフェース33及びネットワークNWを介してログファイルをサーバ40に送信する。ログファイルは、測定毎に作成されて逐次アップロードされ、サーバ40に蓄積される。
図10はサーバによる部品異常検知の処理フローを表すブロック図である。本実施形態において、部品異常検知機能はサーバ40で実行され、サーバ40が液体搬送系12の部品の異常検知システムを構成する。自動分析装置1からログファイルを受信すると、処理装置42は、ログファイル格納処理P21においてログファイルを記憶装置41に記録する。続く診断用データ抽出処理P22において、処理装置42は、記憶装置41に格納されたログファイルから液体搬送系12の部品の異常検知の基礎とする診断用データ、具体的にはアラームが付与されたデータを抽出する。続く診断用データ格納処理P23において、処理装置42は、抽出した診断用データを記憶装置41に逐次格納する。
図11は図10のフローの詳細手順を表すフローチャートである。
図12は異常検知条件の設定画面の一例を表す図である。同図に例示した設定画面は、サーバ40のUI44(図10)に表示され、UI44によって液体搬送系12の部品の異常検知条件の設定や保存をすることができる。設定画面は、自動分析装置1の制御装置30のUI94等、サーバ40にアクセス可能なコンピュータのUIに表示させ、UI94等から異常検知条件を設定できる構成とすることも可能である。図12の設定画面は一例であり、同図に例示された項目以外の条件項目を設定できるようにすることもできる。また、図12の設定画面は、サーバ40に接続された全ての自動分析装置で共用することもできるし、自動分析装置のID毎に用意することもできる。
図12に示した設定画面では、「異常検知対象」と表示されたエリアで液体搬送系12の異常検知対象部品を設定することができる。異常検知の対象とする部品は、「流路」、「電磁弁」及び「シリンジ」の3項目から1つ以上を選択することができる。「流路」は流路F1-F6、「電磁弁」はバルブV1,V2、「シリンジ」はシリンジSYに該当する。
また、同図の設定画面では、「検知感度」と表示されたエリアで異常検知の感度を設定することができる。異常検知の感度としては、「高」、「中」及び「低」の3段階の中から択一的に設定できる。
(1)本実施形態によれば、自動分析装置1の試料検査用のセンサ11が出力する電気信号に基づいて、センサ11に対して液体を吸入し排出する液体搬送系12の部品の異常を検知することができる。これにより、液体搬送系12の故障等に伴う自動分析装置1のダウンタイムを予防的に抑制することができる。
本実施形態が第1実施形態と相違する点は、液体搬送系12の部品の異常検知システムが自動分析装置1に備わっている点である。図中の異常検知機能Fに表示した処理が、第1実施形態でサーバ40(図10)が担っていた機能に関する一連の処理である。異常検知機能に関して第1実施形態で記憶装置41及び処理装置42に割り振られていたデータや処理は、本実施形態では例えば制御装置30の記憶装置31や処理装置32に割り振られる。液体搬送系12の部品の異常検知の診断アルゴリズムは第1実施形態と同様であり、検知結果はUI94を通じてユーザ等に通知される。
以上においては、アラームが付与されたデータを診断用データとして選択的に抽出し、これらのデータを基に液体搬送系12の部品の異常検知をする例を説明した。しかし、第1実施形態で説明した基本的効果(1)を得る上では、アラームの付与を診断用データの条件にする必要は必ずしもない。例えば、アラームの有無に関わらず所定条件で若しくはランダムに、又は一律に設定期間のセンサ出力を抽出し、これら抽出したデータに基づいて液体搬送系12の部品の異常検知をするアルゴリズムを適用することもできる。
Claims (19)
- 自動分析装置の試料検査用のセンサに対して液体を吸入し排出する液体搬送系の部品の異常を検知する部品異常検知システムであって、
前記センサが出力する電気信号のデータを記憶する記憶装置と、
前記記憶装置に記録されたデータを処理する処理装置とを備え、
前記処理装置は、
前記電気信号に基づいて前記液体搬送系の部品の異常を検知する
部品異常検知システム。 - 請求項1の部品異常検知システムにおいて、
前記処理装置は、
前記電気信号のデータの統計値を演算し、
前記統計値に基づいて前記液体搬送系の部品の異常を検知する
部品異常検知システム。 - 請求項2の部品異常検知システムにおいて、
前記処理装置は、
設定期間から抽出された前記電気信号のデータを前記記憶装置から読み出し、
前記設定期間のデータのばらつきを前記統計値として演算し、
前記統計値が設定値以上である場合に前記液体搬送系の部品に異常があると判定する
部品異常検知システム。 - 請求項3の部品異常検知システムにおいて、
前記設定期間は、現在を終期とする期間である部品異常検知システム。 - 請求項3の部品異常検知システムにおいて、
前記処理装置は、前記設定値を変更して異常検知の感度を調整する部品異常検知システム。 - 請求項2の部品異常検知システムにおいて、
前記統計値は、アラームが付与された測定時に前記センサが出力した電気信号を用いて統計した値である部品異常検知システム。 - 請求項6の部品異常検知システムにおいて、
前記処理装置は、統計対象とする電気信号に係る前記アラームの種類を選択して異常検知の感度を調整する部品異常検知システム。 - 請求項2の部品異常検知システムにおいて、
前記統計値は、アラームが付与された試料の測定時に前記センサが出力した電気信号のみを用いて統計した値である部品異常検知システム。 - 請求項1の部品異常検知システムにおいて、
前記処理装置は、同一試料の測定サイクル中に複数のタイミングで前記センサが出力する電気信号のうち、少なくとも1つの電気信号に基づき前記液体搬送系の異常部品又は異常の態様を示す異常モードを推定する部品異常検知システム。 - 請求項9の部品異常検知システムにおいて、
前記複数のタイミングは、試料の測定時、前記センサの洗浄時、及び電極のコンディショニング時である部品異常検知システム。 - 請求項1の部品異常検知システムにおいて、
前記センサは、
フローセルと、
前記フローセルに備わった参照極、対極及び作用極と、
前記フローセルを挟んで前記参照極と反対側に配置した光電変換センサと
を含んで構成される部品異常検知システム。 - 請求項11の部品異常検知システムにおいて、
前記電気信号は、前記参照極と前記作用極との間に電圧を印加すると前記対極及び前記作用極の間に生じる電流値、電圧値又は抵抗値である部品異常検知システム。 - 請求項1の部品異常検知システムにおいて、
前記電気信号は、試料の測定時、前記センサの洗浄時、又は電極のコンディショニング時に前記センサが出力する信号である部品異常検知システム。 - 請求項1の部品異常検知システムにおいて、
前記試料は、検体、較正用試料、精度管理試料、又はダミー試料である部品異常検知システム。 - 請求項1の部品異常検知システムにおいて、
前記液体搬送系は、
前記液体を通す流路と、
前記流路を開閉する複数のバルブと、
前記液体を吸引及び吐出するための圧力差を前記流路に生じさせるシリンジと
を含んで構成される部品異常検知システム。 - 請求項15の部品異常検知システムにおいて、
前記部品は、前記バルブである部品異常検知システム。 - 請求項1の部品異常検知システムにおいて、
異常検知条件を設定可能に構成されたユーザインターフェースを備える部品異常検知システム。 - 検体測定用のセンサと、
前記センサに対して液体を吸入し排出する液体搬送系と、
前記液体搬送系の部品の異常を検知する部品異常検知システムと
を備えた自動分析装置あって、
前記部品異常検知システムは、
前記センサが出力する電気信号のデータを記憶する記憶装置と、
前記記憶装置に記録されたデータを処理する処理装置とを備え、
前記処理装置は、
前記電気信号に基づいて前記液体搬送系の部品の異常を検知する
自動分析装置。 - 自動分析装置の検体測定用のセンサに対して液体を吸入し排出する液体搬送系の部品の異常を検知する部品異常検知方法であって、
前記センサが出力する電気信号のデータを記録し、
前記電気信号に基づいて前記液体搬送系の部品の異常を検知する
部品異常検知方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023580090A JPWO2023153073A1 (ja) | 2022-02-14 | 2022-12-14 | |
CN202280089791.2A CN118575082A (zh) | 2022-02-14 | 2022-12-14 | 部件异常检测系统、自动分析装置以及部件异常检测方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-020783 | 2022-02-14 | ||
JP2022020783 | 2022-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023153073A1 true WO2023153073A1 (ja) | 2023-08-17 |
Family
ID=87564237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046035 WO2023153073A1 (ja) | 2022-02-14 | 2022-12-14 | 部品異常検知システム、自動分析装置、及び部品異常検知方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023153073A1 (ja) |
CN (1) | CN118575082A (ja) |
WO (1) | WO2023153073A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127126A (ja) * | 1995-10-31 | 1997-05-16 | Hitachi Ltd | 免疫学的自動分析装置 |
JP2011047911A (ja) * | 2009-08-28 | 2011-03-10 | Sysmex Corp | 自動分析装置 |
JP2019504315A (ja) * | 2015-12-31 | 2019-02-14 | ジェン−プローブ・インコーポレーテッド | サンプルを分析し、光信号検出器の性能を監視するシステム及び方法 |
JP2019536049A (ja) | 2016-12-02 | 2019-12-12 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 生物学的試料を分析する自動分析装置のための故障状態予測 |
WO2020066449A1 (ja) * | 2018-09-25 | 2020-04-02 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
-
2022
- 2022-12-14 WO PCT/JP2022/046035 patent/WO2023153073A1/ja active Application Filing
- 2022-12-14 CN CN202280089791.2A patent/CN118575082A/zh active Pending
- 2022-12-14 JP JP2023580090A patent/JPWO2023153073A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127126A (ja) * | 1995-10-31 | 1997-05-16 | Hitachi Ltd | 免疫学的自動分析装置 |
JP2011047911A (ja) * | 2009-08-28 | 2011-03-10 | Sysmex Corp | 自動分析装置 |
JP2019504315A (ja) * | 2015-12-31 | 2019-02-14 | ジェン−プローブ・インコーポレーテッド | サンプルを分析し、光信号検出器の性能を監視するシステム及び方法 |
JP2019536049A (ja) | 2016-12-02 | 2019-12-12 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 生物学的試料を分析する自動分析装置のための故障状態予測 |
WO2020066449A1 (ja) * | 2018-09-25 | 2020-04-02 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023153073A1 (ja) | 2023-08-17 |
CN118575082A (zh) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3901587B2 (ja) | 自動分析装置および自動分析装置におけるデータ管理方法 | |
US9599631B2 (en) | Automatic analyzer | |
US9335335B2 (en) | Automatic analyzer | |
US10989708B2 (en) | Automated analysis device | |
JP4490069B2 (ja) | 臨床検査システム | |
CN115144603A (zh) | 自动分析装置以及自动分析方法 | |
JP7219760B2 (ja) | 自動分析装置 | |
JP6567890B2 (ja) | 自動分析装置 | |
EP3101431B1 (en) | Automatic analytical apparatus | |
CN110383075B (zh) | 自动分析装置 | |
WO2007119785A1 (ja) | 自動分析装置の分析支援用液体の品質管理方法および自動分析装置 | |
WO2016017291A1 (ja) | 自動分析装置 | |
WO2023153073A1 (ja) | 部品異常検知システム、自動分析装置、及び部品異常検知方法 | |
JP2010266271A (ja) | 異常原因推定方法、分析システム、情報管理サーバ装置 | |
WO2022230282A1 (ja) | 自動分析装置 | |
WO2022270267A1 (ja) | 診断システム、自動分析装置及び診断方法 | |
CN113574390B (zh) | 数据解析方法、数据解析系统以及计算机 | |
JP2006506717A (ja) | 分析プロセスの品質管理を行なうための方法およびその方法を実施するための装置 | |
WO2020129537A1 (ja) | 自動分析装置、及び分析方法 | |
JP4557995B2 (ja) | 自動分析装置 | |
CN112955749B (zh) | 异常判定方法和自动分析装置 | |
WO2022185919A1 (ja) | 自動分析装置、および検体の分注方法 | |
JP5778617B2 (ja) | 分析システム、分析方法及び分析プログラム | |
JP2009222451A (ja) | 自動分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22926087 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023580090 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022926087 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022926087 Country of ref document: EP Effective date: 20240916 |