WO2023153051A1 - ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置 - Google Patents

ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置 Download PDF

Info

Publication number
WO2023153051A1
WO2023153051A1 PCT/JP2022/043978 JP2022043978W WO2023153051A1 WO 2023153051 A1 WO2023153051 A1 WO 2023153051A1 JP 2022043978 W JP2022043978 W JP 2022043978W WO 2023153051 A1 WO2023153051 A1 WO 2023153051A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
window
adhesive layer
base material
glass
Prior art date
Application number
PCT/JP2022/043978
Other languages
English (en)
French (fr)
Inventor
孝伸 矢野
拓也 森
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023153051A1 publication Critical patent/WO2023153051A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present disclosure relates to a window substrate containing glass, a multilayer window, a multilayer window with an adhesive layer, and a display device including a multilayer window.
  • a display device may include a window from the viewpoint of protecting constituent members such as an optical film, a touch sensor, and a display panel.
  • the viewing-side surface of such displays usually corresponds to the surface of the window.
  • the window may also have a multi-layer structure, including, for example, a transparent substrate such as a resin film or glass.
  • Patent document 1 includes a flexible display panel for displaying images and a window disposed on a display surface of the flexible display panel, the window comprising a first protective layer and a thin film glass disposed on the first protective layer.
  • a display device is proposed that includes a layer and a second protective layer disposed over the thin glass layer. It is taught that the first protective layer may comprise a first impact absorbing layer and the second protective layer may comprise a second impact absorbing layer.
  • FIG. 3b includes a second protective layer (LPF2) comprising a thin glass layer (TG), a hard coat layer (HC) and a second shock absorbing layer (UCF) disposed therebetween, and the thin glass
  • a window (WM2) is described comprising a first protective layer (LPF) arranged below the layer (TG).
  • the first protective layer (LPF1) comprises a first shock absorbing layer (LCF1) and an inner adhesive layer disposed between the thin glass layer (TG) and the first shock absorbing layer (LCF1) (IAM).
  • the surface on the viewing side of the display device is sometimes required to have high scratch resistance. Therefore, it is preferable that the hardness of the surface of the window corresponding to the viewing side surface of the display device is high.
  • a window containing glass is sometimes used from the viewpoint of easily obtaining a relatively high surface hardness.
  • the window is required not to transmit an impact to a member (for example, a display panel or a laminate including the display panel) placed under the window (on the side opposite to the viewing side).
  • a member for example, a display panel or a laminate including the display panel
  • glass is brittle and has low flexibility. Therefore, when an impact is applied to the window, it sufficiently absorbs or disperses the impact force and prevents defects (cracks in the glass, peeling between the glass and the resin film, etc.) on the glass or its surroundings. It is difficult to
  • a first aspect of the present disclosure is a window substrate including a structure in which glass and a resin film (resin film 2A) are laminated,
  • the window base material has an impact absorption rate of 12% or more as determined by a pen drop test at 25°C, It relates to a base material for a window in which neither cracking of the glass nor separation between the glass and the resin film (resin film 2A) occurs in the pen drop test.
  • a second aspect of the present disclosure comprises at least a first base material, the window base material as a second base material, and a first adhesive layer interposed between the first base material and the second base material.
  • a multi-layer window comprising: The first substrate relates to a multi-layer window, including a viewing side surface of the multi-layer window.
  • a third aspect of the present disclosure provides a multi-layer window as described above; a release liner laminated to the side opposite the viewing side of the multilayer window; and a third adhesive layer interposed between the multilayer window and the release liner.
  • a fourth aspect of the present disclosure is a multi-layer window as described above; a display panel or laminate comprising a display panel laminated on the side opposite to the viewing side of the multilayer window; and a third adhesive layer interposed between the multilayer window and the display panel or the laminate.
  • a window base material a multilayer window, a multilayer window with an adhesive layer, and a display device including a multilayer window, which are excellent in shock absorption and suppress the generation of defects in the glass or its surroundings.
  • FIG. 1 is a schematic cross-sectional view of a display device including a window substrate (or multilayer window) according to a first embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic cross-sectional view of a display device including a window substrate (or multilayer window) according to a second embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of a display device including a window substrate (or multilayer window) according to a third embodiment of the present disclosure
  • the window base material of the present disclosure includes a structure in which glass and resin film 2A are laminated.
  • the impact absorption rate of the window base material determined by a pen drop test at 25° C. is 12% or more. In the pen drop test, neither cracking of the glass nor separation between the glass and the resin film 2A occurs.
  • the product of the average value M2A of the tensile storage modulus of the resin film 2A at 25° C. and the frequency range of 2 kHz or more and 20 kHz or less and the thickness T2A of the resin film 2A: M2A ⁇ TA2 is 50 GPa. ⁇ ⁇ m ⁇ MA2 ⁇ TA2 ⁇ 250 GPa ⁇ m may be satisfied.
  • the window substrate may include glass arranged on the viewing side, the resin film 2A, and the adhesive layer 2A interposed between the glass and the resin film 2A. good.
  • the product of the average value M2A of the tensile storage modulus of the resin film 2A and the thickness T2A of the resin film 2A in the frequency range of 2 kHz to 20 kHz at 25 ° C.: ⁇ m may be satisfied.
  • the thickness T2A of the resin film 2A may be 60 ⁇ m or more and 100 ⁇ m or less.
  • the window substrate may include glass arranged on the viewing side, the resin film 2A, and the adhesive layer 2A interposed between the glass and the resin film 2A. good.
  • the indentation elastic modulus of the adhesive layer 2A at 25°C may be 0.05 MPa or more and 1 MPa or less.
  • the window substrate may include the resin film 2A arranged on the viewing side, glass, and an adhesive layer 2A interposed between the resin film 2A and the glass. good.
  • the window substrate further includes a resin film 2B disposed on the side opposite to the viewing side of the glass, and an adhesive layer 2B or adhesive layer 2B interposed between the glass and the resin film 2B. layer 2B.
  • the thickness T2B of the resin film 2B may be 40 ⁇ m or more and 100 ⁇ m or less.
  • the resin film 2B may be a polyester film having an indentation elastic modulus at 25°C of 0.2 GPa or more and 1.5 GPa or less.
  • the thickness T2A of the resin film 2A may be 40 ⁇ m or more and 100 ⁇ m or less.
  • the indentation elastic modulus of the adhesive layer 2A at 25° C. may be 0.1 GPa or more and 10 GPa or less. .
  • the average value M2A of the tensile storage modulus of the resin film 2A at 25° C. and in the frequency range of 2 kHz or more and 20 kHz or less is 0.1 GPa or more and 10 GPa or less. There may be.
  • the resin film 2A may be a polyester film having an indentation elastic modulus at 25°C of 0.2 GPa or more and 1.5 GPa or less.
  • a multilayer window of the present disclosure comprises: a first substrate; the window substrate according to any one of (1) to (14) above as a second substrate; and a first adhesive layer interposed between the two substrates.
  • the first substrate comprises the viewing side surface of the multilayer window.
  • the indentation elastic modulus of the first adhesive layer at 25°C may be 0.05 MPa or more and 1 MPa or less.
  • the first base material may include a first resin film.
  • the average value M1 of the tensile storage modulus of the first resin film at 25° C. and in the frequency range of 2 kHz or more and 20 kHz or less may be 3 GPa or more and 10 GPa or less.
  • the thickness T1 of the first resin film may be 30 ⁇ m or more and 100 ⁇ m or less.
  • the first resin film may contain a polyimide resin.
  • the multi-layer window with an adhesive layer of the present disclosure comprises the multi-layer window according to any one of (15) to (18) above, a release liner laminated on the side opposite to the viewing side of the multi-layer window, a third adhesive layer interposed between the multilayer window and the release liner.
  • a display device of the present disclosure includes the multilayer window according to any one of (15) to (18) above, and a display panel or a display panel laminated on the side opposite to the viewing side of the multilayer window. a laminate; and a third adhesive layer interposed between the multilayer window and the display panel or laminate.
  • the window substrate, multilayer window, adhesive layer-attached multilayer window, and display device of the present disclosure including the above (1) to (20), will be described more specifically. At least one of the above (1) to (20) may be combined with at least one of the elements described below within a technically consistent range.
  • a window base material according to the first aspect of the present disclosure includes a structure in which glass and a resin film are laminated.
  • the impact absorption rate of the window base material determined by a pen drop test at 25° C. is 12% or more. In the pen drop test described above, neither cracking of the glass nor separation between the glass and the resin film occurs.
  • a multilayer window according to a second aspect of the present disclosure includes at least a first substrate, a second substrate, and a first adhesive layer interposed between the first substrate and the second substrate.
  • the first substrate includes the viewing side surface of the multilayer window.
  • the window substrate according to the first aspect is used, for example, as the second substrate of the multilayer window according to the second aspect.
  • the resin film contained in the window substrate corresponds to the resin film 2A of the multilayer window.
  • the resin film included in the window base material may be referred to as a resin film 2A.
  • the impact absorption rate of the base material for windows (second base material) is a laminate (laminate A) obtained by laminating a protective base material on the surface of the base material for windows (second base material) on the viewing side via an adhesive layer. And it is obtained from a pen drop test using each laminate (laminate B) of the adhesive layer and the protective base material. More specifically, in the pen drop test at 25 ° C. of each laminate, the peak value SA of the impact load of the laminate A and the peak value SB of the impact load of the laminate B are obtained, and from these peak values
  • the glass contained in the base material for windows is layered glass such as sheet-like or film-like.
  • the base material for windows may be referred to as a second base material.
  • the second base material includes a laminated structure of glass and the resin film 2A, and the impact absorption rate of the second base material is set within a specific range. This makes it possible to suppress defects in the glass or its surroundings in addition to excellent impact absorption. In particular, for multi-layer windows containing glass, even if the impact force itself is not very large, when a fast impact force such as that applied in a pen drop test is applied to the surface of the multi-layer window, the speed of propagation of the impact force is affected by the impact. It has become clear that defects such as cracks and delamination are likely to occur when stress is applied to the glass or its periphery, which is inferior in flexibility and brittleness, because the speed of absorbing or dispersing the stress cannot catch up.
  • the use of the second substrate makes it possible to ensure excellent impact absorption and to suppress defects in the glass or its surroundings, especially when such a rapid impact force is applied to the multilayer window.
  • the second base material includes at least a structure in which glass and resin film 2A are laminated.
  • the second base material may include the resin film 2B in addition to the glass and the resin film 2A.
  • the glass and each resin film are laminated via an adhesive layer or an adhesive layer.
  • the glass may be arranged on the viewing side of the resin film 2A, or the resin film 2A may be arranged on the viewing side of the glass. In the latter case, the glass may be sandwiched between the resin films 2A and 2B.
  • the adhesive layer interposed between the glass and the resin film 2A may be referred to as the adhesive layer 2A
  • the adhesive layer interposed between the glass and the resin film 2A may be referred to as the adhesive layer 2A.
  • the adhesive layer interposed between the glass and the resin film 2B may be referred to as the adhesive layer 2B
  • the adhesive layer interposed between the glass and the resin film 2A may be referred to as the adhesive layer 2B.
  • the first adhesive layer is the adhesive layer located on the most visible side.
  • the first base material may include a resin film (hereinafter sometimes referred to as a first resin film).
  • the laminated portion of the glass and the resin film 2A (or the laminated portion of the glass and the resin films 2A and 2B) located on the side opposite to the viewing side with respect to the first adhesive layer is the second substrate. called.
  • each member in the lamination direction (in other words, the average thickness direction of each member) of each member constituting the window substrate, the multilayer window, the adhesive layer-attached multilayer window, and the display device, each member Alternatively, the relative positional relationship of the layers that make up each member is expressed by the expression "visible side” or “opposite side to the visible side” of the window substrate, multilayer window, adhesive layer-attached multilayer window, or display device.
  • the multilayer window with an adhesive layer includes a multilayer window, a release liner laminated on the opposite side of the multilayer window from the viewing side, and an adhesive layer interposed therebetween (third adhesive layer).
  • the multi-layer window with an adhesive layer can be obtained, for example, by peeling off the release liner and passing through the third adhesive layer a member other than the multi-layer window constituting the display device or a laminate (optical film, touch sensor, display panel, or any of these). (such as a laminate comprising at least two of the members) to form a display device.
  • Impact absorption and defects in the glass or its surroundings include the position of the glass in the laminated structure of the second substrate, the characteristics of the resin film 2A, whether the layer interposed between the glass and the resin film 2A is the adhesive layer 2A. , or whether it is the adhesive layer 2A.
  • the average value M2A of the tensile storage elastic modulus in the frequency range of 2 kHz or more and 20 kHz or less of the resin film 2A and the thickness of the resin film 2A The product of T2A: By setting M2A ⁇ T2A to a specific range (for example, the range of 50 GPa ⁇ ⁇ m ⁇ MA2 ⁇ TA2 ⁇ 250 GPa ⁇ ⁇ m), while ensuring excellent impact absorption, the glass or its surroundings The effect of suppressing defects can be enhanced.
  • M2A ⁇ T2A indicates the stress absorbability or dispersibility of the resin film 2A when deformation stress is applied at a relatively high speed, in other words, it can be said to be an index indicating the easiness of deformation of the resin film 2A.
  • the adhesive layer is a layer formed by curing a curable adhesive (in other words, a layer of a cured product) and does not have fluidity.
  • the adhesive layer is a layer formed of a non-hardening adhesive and has fluidity.
  • the shear storage modulus of the adhesive layer at 25°C is usually 10 MPa or less, may be 1 MPa or less, or may be 0.1 MPa or less.
  • the shear storage modulus of the adhesive layer is within this range, high adhesiveness can be ensured, and unlike the case of a hardened adhesive layer, even when a force such as an impact force is propagated, the adhesive layer is deformed appropriately. , easy to absorb or disperse stress.
  • the shear storage modulus of each adhesive layer at 25°C may be 0.001 MPa or more.
  • the shear storage modulus of the adhesive layer at 25° C. is greater than 10 MPa, may be 100 MPa or more, and is usually about 1 GPa.
  • the adhesive layer means one having such a shear storage elastic modulus.
  • the adhesive layer is distinguished from the adhesive layer by the shear storage modulus.
  • the second base material includes, for example, glass arranged on the viewing side, the resin film 2A, and the adhesive layer 2A interposed between the glass and the resin film 2A.
  • M2A ⁇ T2A of the resin film 2A may satisfy 70 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m.
  • the second base material having such a laminated structure since the glass and the resin film 2A are bonded with the adhesive layer 2A (that is, the cured product), most of the impact force applied to the glass is quickly transferred to the resin film 2A.
  • the thickness T2A of the resin film 2A may be 60 ⁇ m or more and 100 ⁇ m or less.
  • the resin film 2A since the resin film 2A has an appropriate thickness T2A, it is easy to adjust M2A ⁇ T2A within the above range, and the appropriate deformation of the resin film 2A facilitates absorption or dispersion of the stress due to the impact.
  • the second base material may include, for example, glass arranged on the viewing side, the resin film 2A, and the adhesive layer 2A interposed between the glass and the resin film 2A.
  • M2A ⁇ T2A may satisfy 50 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m.
  • the adhesive layer 2A has fluidity and is softer than the adhesive layer, which is a cured product. Further, when M2A ⁇ T2A is 50 GPa ⁇ m or more, excessive flexibility of the resin film 2A is suppressed, and the flexibility and hardness can be kept within an appropriate range. When the impact force is transmitted to the resin film 2A, the resin film 2A deforms appropriately and can effectively support the deformation of the glass.
  • the thickness T2A of the resin film 2A may be 40 ⁇ m or more and 100 ⁇ m or less. Since the resin film 2A has an appropriate thickness T2A, it is easy to adjust M2A ⁇ T2A within the above range, and the adhesive layer 2A and the resin film 2A can more easily absorb or disperse the stress due to the impact. In the second embodiment, since the adhesive layer 2A exists between the glass and the resin film 2A, even if the thickness T2A of the resin film 2A is smaller than in the case of the adhesive layer 2A, the stress due to the impact can be absorbed or can be dispersed.
  • the second base material may include, for example, the resin film 2A arranged on the viewing side, glass, and the adhesive layer 2A interposed between the resin film 2A and the glass.
  • M2A ⁇ T2A may satisfy 50 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m.
  • M2A ⁇ T2A is 50 GPa ⁇ m or more, excessive flexibility of the resin film 2A is suppressed, and the flexibility and hardness can be kept within an appropriate range.
  • the resin film 2A is arranged on the viewing side of the glass, even if an impact is applied from the surface of the multilayer window on the viewing side, the resin film 2A is appropriately deformed to effectively absorb the stress.
  • the thickness T2A of the resin film 2A may be 40 ⁇ m or more and 100 ⁇ m or less. Since the resin film 2A has an appropriate thickness T2A, it is easy to adjust M2A ⁇ T2A within the above range. Therefore, the resin film 2A can more easily absorb or disperse the stress due to the impact. In the third embodiment, since the resin film 2A exists on the viewing side of the glass, even if the thickness T2 of the resin film 2A is smaller than in the first embodiment, the stress due to the impact is absorbed or dispersed. be able to.
  • the second base further includes a resin film 2B arranged on the side opposite to the viewing side of the glass, and an adhesive layer 2B or adhesive layer 2B interposed between the glass and the resin film 2B. may contain.
  • the resin film 2B can further enhance the effect of protecting the glass.
  • the thickness T2B of the resin film 2B may be 40 ⁇ m or more and 100 ⁇ m or less. Since the resin film 2B has an appropriate thickness T2B, even when the stress due to the impact is transmitted to the resin film 2B, the resin film 2B is deformed to absorb or disperse the stress due to the impact. more effective to protect.
  • the resin film 2B may be a polyester film having an indentation modulus at 25°C of 0.2 GPa or more and 1.5 GPa or less. Since the resin film 2B has appropriate flexibility and hardness, even if the stress due to the impact is transmitted to the resin film 2B, the resin film 2B is deformed to absorb or disperse the stress due to the impact. The effect of protecting the glass is further enhanced.
  • the average value M2A of the tensile storage modulus of the resin film 2A may be 0.1 GPa or more and 10 GPa or less. In this case, the resin film 2A is more likely to be more effective in absorbing or dispersing stress due to impact.
  • the resin film 2A may be a polyester film having an indentation elastic modulus of 0.2 GPa or more and 1.5 GPa or less at 25°C. In this case, since the resin film 2A has appropriate flexibility and hardness, the resin film 2A can more easily absorb or disperse the stress due to the impact. Also, it is easy to adjust M2A ⁇ T2A to a range suitable for each embodiment.
  • the indentation elastic modulus at 25°C of the adhesive layer 2A interposed between the glass and the resin film 2A may be 0.05 MPa or more and 1 MPa or less.
  • the adhesive layer 2A not only enhances the impact absorption, but also facilitates the absorption or dispersion of stress due to impact.
  • the adhesive layer 2A suppresses local deformation of the glass, and can more effectively suppress cracking of the glass.
  • the indentation elastic modulus at 25°C of the adhesive layer 2A interposed between the glass and the resin film 2A may be 0.1 GPa or more and 10 GPa or less.
  • the indentation elastic modulus of the adhesive layer 2A when the indentation elastic modulus of the adhesive layer 2A is within such a range, the impact force applied to the glass is easily propagated to the resin film 2A, and the stress is smoothly absorbed or dispersed by the resin film 2A. can do.
  • the indentation modulus of the adhesive layer 2A when the indentation modulus of the adhesive layer 2A is within the above range, the effect of suppressing delamination at the interface between the resin film 2A and the adhesive layer 2A or at the interface between the adhesive layer 2A and the glass increases.
  • the present disclosure also includes a multilayer window containing the above base material for windows (second base material).
  • the multilayer window includes at least a first base material, the window base material (second base material), and a first adhesive layer interposed therebetween.
  • the first substrate comprises the viewing side surface of the multilayer window.
  • the indentation elastic modulus at 25°C of the first adhesive layer interposed between the first base material and the second base material may be 0.05 MPa or more and 1 MPa or less.
  • the first adhesive layer has appropriate flexibility or hardness, so that the impact absorption is enhanced, and stress due to impact is further absorbed or easier to disperse.
  • the first base material may contain the first resin film.
  • the average value M1 of the tensile storage modulus of the first resin film at 25° C. and in the frequency range of 2 kHz or more and 20 kHz or less may be 3 GPa or more and 10 GPa or less.
  • the thickness T1 of the first resin film may be 30 ⁇ m or more and 100 ⁇ m or less. In these cases, the first resin film easily imparts high hardness to the first base material including the surface of the window on the viewer side, which is advantageous in enhancing the scratch resistance of the surface of the multilayer window on the viewer side.
  • the first base material may contain a hard coat layer.
  • the hard coat layer is a thin coating layer formed at least on the surface of the first substrate on the viewing side, and is distinguished from the first resin film.
  • the first resin film may contain, for example, polyimide resin. In this case, higher scratch resistance of the multilayer window is likely to be obtained.
  • the present disclosure also includes the multi-layer window with an adhesive layer and the display device, including the multi-layer window.
  • the display device includes a multilayer window, a display panel laminated on the side opposite to the viewing side of the multilayer window or a laminate including the display panel, and a third adhesive layer interposed between the multilayer window and the display panel or laminate. and including.
  • a display device may be obtained, for example, by peeling off the release liner from the multi-layer window with the adhesive layer and bonding the multi-layer window and the display panel or laminate via the third adhesive layer.
  • the thickness of the window base material, the multilayer window, the adhesive layer-attached multilayer window, and the display device, and the thickness of the members or layers constituting these are referred to as the window base material, the multilayer window, and the adhesive layer-attached multilayer window.
  • the member (or layer) located on the viewing side of the display panel or the material thereof includes a transparent member (or layer) or a transparent material. material is used.
  • a transparent member (or layer) means a member (or layer) having a total light transmittance of 80% or more. The total light transmittance can be measured according to JIS K 7136K:2000.
  • a transparent material means a material having a total light transmittance of 80% or more for members (or layers) constituting a display device formed of this transparent material.
  • a 1st base material contains a 1st resin film, for example.
  • the first substrate typically does not contain glass.
  • Examples of the first resin film include a transparent resin film.
  • the average value M1 of the tensile storage modulus of the first resin film at 25°C and the frequency range of 2 kHz to 20 kHz is, for example, 3 GPa to 10 GPa, and may be 3 GPa to 8 GPa.
  • M1 is within such a range, the first base material is likely to have high hardness, and the scratch resistance is likely to be enhanced.
  • the average value M1 of the tensile storage modulus of the first resin film is the frequency range of 2 kHz or more and 20 kHz or less when the frequency dispersion data of the tensile storage modulus at 25 ° C. is obtained using the measurement sample of the first resin film. is the average value in
  • a test is performed under the following conditions using the following equipment. Measure the tensile storage modulus of the sample at the following multiple frequencies, and obtain temperature distribution data for each frequency.
  • Apparatus Multifunctional dynamic viscoelasticity measuring device DMS6100 manufactured by Hitachi High-Tech Science Co., Ltd. Temperature range: -150°C to +100°C Heating rate: 2°C/min Mode: Tensile Sample width: 10 mm Distance between chucks: 20mm Frequency: 1Hz, 2Hz, 5Hz, 10Hz, 20Hz, 28Hz Strain amplitude: 10 ⁇ m Atmosphere: N 2 (flow rate: 250 mL/min) A master curve corresponding to the frequency dispersion data at 25° C.
  • a sample for measurement is prepared by preparing a first resin film and cutting it into a shape of 50 mm in length and 10 mm in width. If the first resin film to be analyzed is not available separately, a sample is prepared by removing the first resin film from the multilayer window or display panel. For cutting the first resin film, for example, a multi-purpose test piece cutting machine manufactured by Dumbbell Co., Ltd. is used.
  • the thickness T1 of the first resin film is, for example, 20 ⁇ m or more and 200 ⁇ m or less, and may be 30 ⁇ m or more and 100 ⁇ m or less.
  • M1 is 3 GPa or more and 10 GPa or less
  • T1 is 30 ⁇ m or more and 100 ⁇ m or less, it is easy to ensure a high hardness of the first base material, which is advantageous in enhancing the scratch resistance of the surface on the viewing side of the multilayer window. be.
  • Windows for display devices are required to have high transparency (high total light transmittance and low haze, etc.) and high hardness.
  • a material that satisfies these physical properties is used for the material of the first resin film.
  • the resin constituting the transparent resin film include at least one selected from the group consisting of polyimide resins, polyester resins (polyethylene terephthalate resin, etc.), acrylic resins, and cyclic polyolefin resins.
  • the resin constituting the transparent resin film is not limited to these.
  • the first resin film may contain a polyimide resin from the viewpoint of easily obtaining higher hardness and easily ensuring high scratch resistance on the surface of the multilayer window on the viewing side.
  • the first base material may contain a hard coat layer. From the viewpoint of facilitating the prevention of breakage of the first base material, the hard coat layer may be provided at least on the surface of the first resin film on the viewing side.
  • the thickness of the hard coat layer is, for example, 1 ⁇ m or more and 100 ⁇ m or less, and may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of each hard coat layer may be set within the above range.
  • the hard coat layer is formed, for example, by applying a curable coating agent to the surface of the underlying layer (for example, the first resin film) and curing it.
  • a coating agent for optical films can be used.
  • coating agents include, but are not limited to, acrylic coating agents, melamine coating agents, urethane coating agents, epoxy coating agents, silicone coating agents, and inorganic coating agents.
  • the coating agent may contain known additives used in hard coat layers.
  • the indentation elastic modulus at 25° C. of the first adhesive layer interposed between the first base material and the second base material is, for example, 0.01 MPa or more and 2 MPa or less, and 0.02 MPa or more and 1.5 MPa or less. good too.
  • the first adhesive layer can easily absorb the stress due to impact, and in addition to increasing the impact absorption, the first adhesive layer has an appropriate hardness, so that the stress can be absorbed. The remaining stress is distributed and transmitted to the second base material.
  • the indentation modulus may be 0.01 MPa or more (or 0.05 MPa or more) or 1 MPa or less, or 0.05 MPa or more and 0.5 MPa or less.
  • the indentation modulus of the first adhesive layer can be measured by a nanoindenter method using a measurement sample. The measurement is performed by pressing the first adhesive layer of the measurement sample from the side with an indenter under the following conditions and analyzing the load-displacement curve obtained.
  • Apparatus Triboindenter (manufactured by Hysitron Inc.) Sample size: length 10mm x width 10mm Indenter: Concial (spherical indenter: curvature radius 10 ⁇ m) Measurement method: single indentation measurement Measurement temperature: 25°C Indentation depth of indenter: 5000 nm Analysis: Oliver Pharr analysis based on load-displacement curves
  • a sample obtained by subjecting a side surface of a laminate (10 mm long ⁇ 10 mm wide) of the first substrate and the first adhesive layer to focused ion beam (FIB) processing is used. If the adhesive constituting the first base material and the first adhesive layer cannot be obtained for the laminate to be analyzed, the multilayer window or display device is cut to the above size, and the side surface is manufactured by FIB processing. You may use the sample which carried out. FIB processing is performed under the following conditions.
  • FIB processing device Helios G4 UX manufactured by Thermo Fisher Scientific Accelerating voltage: FIB 30 kV Processing temperature: -160°C After the processing, the sample is returned to room temperature and taken out from the apparatus, and then the indentation modulus is measured by pressing an indenter from the side surface of the FIB-processed first adhesive layer.
  • the shear storage modulus of the first adhesive layer at 25°C is, for example, within the range described above.
  • the shear storage modulus of the first adhesive layer at 25° C. may be, for example, 0.005 MPa or more and 0.2 MPa or less, or 0.01 MPa or more and 0.1 MPa or less.
  • the shear storage modulus of the adhesive layer can be measured according to JIS K 7244-1:1998. Specifically, first, a molded article having a thickness of about 1.5 mm is produced using an adhesive layer or an adhesive that constitutes the adhesive layer. A disc having a diameter of 7.9 mm is punched out of this molding to prepare a test piece. This test piece is sandwiched between parallel plates, and the viscoelasticity is measured under the following conditions using a dynamic viscoelasticity measuring device (for example, "Advanced Rheometric Expansion System (ARES)" manufactured by Rheometric Scientific) at 25°C. Determine the shear storage modulus at Note that the storage elastic modulus of the adhesive layer is also determined in the same manner as in the case of the adhesive layer.
  • a dynamic viscoelasticity measuring device for example, "Advanced Rheometric Expansion System (ARES)" manufactured by Rheometric Scientific
  • the first adhesive layer is composed of an adhesive.
  • the type of adhesive is not particularly limited, and examples include acrylic adhesives, rubber adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinylpyrrolidone adhesives, and polyacrylamide adhesives. , and cellulosic adhesives.
  • Adhesives include, for example, base polymers, cross-linking agents, additives (e.g., tackifiers, coupling agents, polymerization inhibitors, cross-linking retarders, catalysts, plasticizers, softeners, fillers, colorants, metal powders, UV absorbers, light stabilizers, antioxidants, antidegradants, surfactants, antistatic agents, surface lubricants, leveling agents, corrosion inhibitors, particles of inorganic or organic materials (metal compound particles (metal oxide particles, etc.), resin particles, etc.)).
  • additives e.g., tackifiers, coupling agents, polymerization inhibitors, cross-linking retarders, catalysts, plasticizers, softeners, fillers, colorants, metal powders, UV absorbers, light stabilizers, antioxidants, antidegradants, surfactants, antistatic agents, surface lubricants, leveling agents, corrosion inhibitors, particles of inorganic or organic materials (metal compound particles (metal oxide particles, etc.),
  • the thickness of the first adhesive layer may be 5 ⁇ m or more (or 10 ⁇ m or more) and 50 ⁇ m or less, or may be 10 ⁇ m or more and 40 ⁇ m or less (or 30 ⁇ m or less). When the thickness of the first adhesive layer is within such a range, the first adhesive layer can also absorb or disperse the stress associated with the impact when the first substrate is impacted.
  • the adhesive constituting the first adhesive layer is applied so as to cover one main surface of the underlying layer (first resin film or second base material), or in a sheet form. It can be formed by transferring a molded adhesive.
  • the second base material corresponding to the window base material of the present disclosure includes a laminated structure of glass and resin film 2A.
  • a member or layer constituting the second substrate is required to have high transparency (high total light transmittance, low haze, etc.), and moderate flexibility and hardness.
  • a member (or layer) that satisfies these physical properties is used for each member (or layer).
  • the impact absorption rate of the second substrate determined by a pen drop test at 25°C is 12% or more, and may be 12.5% or more.
  • the upper limit of the impact absorption rate of the second base material is not particularly limited, and may be, for example, 30% or less, or 25% or less. These lower and upper limits can be combined arbitrarily.
  • the pen drop test is performed at 25° C. by vertically dropping a ball point pen onto the surface of the sample for measurement.
  • the sample is placed so that the surface opposite to the viewing side is in contact with the surface of the acceleration sensor.
  • the ballpoint pen is dropped onto the surface of the sample on the viewing side.
  • the SA value and SB value are the peak values when the change in impact load over time in the pen drop test of each sample of laminate A and laminate B is measured using an acceleration sensor placed on a stainless steel plate. Equivalent to.
  • the change in impact load over time is recorded by a recorder connected to the sensor.
  • the measurement conditions for the pen drop test and the acceleration sensor are as follows.
  • Ballpoint pen weight 7g, ball diameter 0.7mm (Oil-based ballpoint pen “BK407 Black” manufactured by Pentel Co., Ltd.) Drop height: 20cm Acceleration sensor: PCB ICP (registered trademark) (Integrated Circuit Piezoelectric) sensor (model: 480C02) Recorder: Memory HiCorder manufactured by Hioki Electric Co., Ltd. (Model: MR8870) Impact load measurement (storage) interval: 0.001 ms Measurement time: 0.000ms to 1.0ms
  • a sample for measurement of the laminate B is formed by forming an acrylic hard coat layer having a thickness of 10 ⁇ m on one surface of a transparent polyimide film having a thickness of 50 ⁇ m (average tensile storage modulus M1: 6.5 GPa), A 25 ⁇ m thick acrylic adhesive layer (indentation modulus (25° C.): 0.11 MPa, shear storage modulus (25° C.): 0.03 MPa) is formed on the surface, and the resulting laminate (B1) is 25 mm long. It is formed by cutting to a size of 25 mm in width.
  • the sample for measurement of the laminate B uses the first base material produced by the procedure of "(a) Production of the first base material” in Example 1 below as a protective base material, and the first base material is 1 Form an acrylic adhesive layer with a thickness of 25 ⁇ m on the surface opposite to the viewing side of the base material (surface opposite to the hard coat layer) and cut it into a size of 25 mm long ⁇ 25 mm wide. be done.
  • a layer of an acrylic adhesive composition prepared by the procedure of "(c) Preparation of adhesive” in Example 1 below is applied to the surface opposite to the viewing side of the first substrate. Formed by transcription.
  • a sample for measurement of the laminate A is obtained by attaching the laminate B1 formed by the above procedure to the surface of the window base material (second base material) to be analyzed on the viewing side via an acrylic adhesive layer. is formed by cutting the obtained laminate (laminate A1) into a size of 25 mm long ⁇ 25 mm wide. If the window base material (second base material) to be analyzed or the materials or members constituting it cannot be obtained, the laminated body corresponding to the window base material (second base material) from the multilayer window or display device Samples may be prepared by exfoliating portions.
  • the glass or its surrounding defects are detected from the surface of the viewing side of the laminate A after the above pen drop test of the laminate A using an optical microscope. It is confirmed.
  • the second base material has a laminated structure of the glass and the resin film 2A arranged on the viewer side, a laminated structure of the resin film 2A arranged on the viewer side and the glass, or a resin film 2A and the resin film arranged on the viewer side.
  • a laminate structure of the film 2B and glass interposed therebetween may be included.
  • the second base material includes the glass and the resin film 2A arranged on the viewing side
  • the glass and the resin film 2A are adhered by the adhesive layer 2A or the adhesive layer 2A interposed therebetween.
  • the second substrate includes the resin film 2A and the glass arranged on the viewing side
  • the resin film 2A and the glass are adhered by the adhesive layer 2A.
  • the second base material may further include a resin film 2B. The glass and the resin film 2B are adhered by the adhesive layer 2B or the adhesive layer 2B.
  • glass examples of the glass contained in the second base include a thin glass substrate.
  • the thickness of the glass is, for example, 5 ⁇ m or more and 60 ⁇ m or less, may be 10 ⁇ m or more and 50 ⁇ m or less, or may be 10 ⁇ m or more and 40 ⁇ m or less.
  • the composition of the glass is not particularly limited.
  • glasses are soda lime glass, borate glass, aluminosilicate glass, and quartz glass.
  • the glass may be alkali-free glass or low-alkali glass. From the viewpoint of easily obtaining high transparency, the total content of alkali metal components (e.g., Na 2 O, K 2 O, Li 2 O) in the glass is, for example, 15% by mass or less, and 10% by mass or less. There may be.
  • the second base material includes glass arranged on the viewing side, a resin film 2A, and an adhesive layer 2A interposed therebetween.
  • the second base material includes glass arranged on the viewing side, a resin film 2A, and an adhesive layer 2A interposed therebetween.
  • the third embodiment includes a resin film 2A arranged on the viewing side, glass, and an adhesive layer 2A interposed therebetween.
  • the indentation modulus of the adhesive layer 2A at 25° C. may be 0.1 GPa or more and 10 GPa or less, 1 GPa or more and 10 GPa or less, or 2.5 GPa or more and 7 GPa or less.
  • the indentation elastic modulus of the adhesive layer 2A when the indentation elastic modulus of the adhesive layer 2A is within such a range, the stress due to the impact applied to the glass is quickly propagated to the resin film 2A and smoothly absorbed or dispersed by the resin film 2A. can be done.
  • the indentation elastic modulus of the adhesive layer 2A when the indentation elastic modulus of the adhesive layer 2A is within the above range, the effect of suppressing delamination between the resin film 2A and the glass increases.
  • the indentation modulus of the adhesive layer 2A can be measured according to the indentation modulus of the first adhesive layer.
  • an indenter a Berkovich (triangular pyramid) is used, and the indentation depth of the indenter is set to 50 nm.
  • a measurement sample a sample (length 10 mm ⁇ width 10 mm) in which only the adhesive layer 2A is formed on glass is used.
  • the adhesive layer 2A is formed by applying an adhesive that constitutes the adhesive layer 2A to glass and curing it completely, and the resulting laminated body is cut and FIB-processed. If the adhesive that constitutes the adhesive layer 2A to be analyzed cannot be obtained, a sample made from a multi-layer window or a display device may be used.
  • the shear storage modulus of the adhesive layer 2A at 25°C is, for example, within the range described above.
  • the shear storage elastic modulus of the adhesive layer 2A at 25° C. may be 100 MPa or more and 15 GPa or less, or may be 500 MPa or more and 10 GPa or less.
  • the adhesive layer 2A can be formed, for example, by applying a curable adhesive to the main surface of the underlying layer (specifically, one of the glass and the resin film 2A), laminating the other, and curing.
  • Examples of adhesives used for the adhesive layer 2A include active energy ray-curable adhesives (ultraviolet-curable adhesives, electron beam-curable adhesives, etc.) and heat-curable adhesives.
  • Such adhesives include acrylic adhesives, epoxy adhesives, urethane adhesives, and the like. However, the adhesive is not limited to these only.
  • the thickness of the adhesive layer 2A is, for example, 0.5 ⁇ m or more and 10 ⁇ m or less, may be 0.8 ⁇ m or more and 5 ⁇ m or less, or may be 0.8 ⁇ m or more (or 1 ⁇ m or more) and 2 ⁇ m or less.
  • the indentation elastic modulus of the adhesive layer 2A at 25° C. is, for example, 0.01 MPa or more and 2 MPa or less, and may be 0.02 MPa or more and 1.5 MPa or less.
  • the indentation elastic modulus is in such a range, in addition to enhancing the impact absorption of the second base material, the pressure-sensitive adhesive layer 2A can more easily absorb or disperse stress due to impact, thereby suppressing cracking of the glass. increases. From the viewpoint of obtaining a higher effect, the indentation modulus may be 0.01 MPa or more (or 0.05 MPa or more) or more and 1 MPa or less, or may be 0.05 MPa or more and 0.5 MPa or less.
  • the indentation modulus of the adhesive layer 2A can be measured according to the indentation modulus of the first adhesive layer.
  • a sample for measurement a sample obtained by cutting a laminated body in which an adhesive layer 2A is attached to glass into a size of 10 mm long ⁇ 10 mm wide and performing FIB processing on the side surface is used. If the adhesive layer 2A to be analyzed is not available, a sample made from a multi-layer window or display device may be used.
  • the shear storage modulus of the adhesive layer 2A at 25°C is, for example, within the range described above, and may be selected from the range described for the first adhesive layer.
  • the adhesive layer 2A is composed of an adhesive.
  • the adhesive includes those described for the first adhesive layer.
  • the description of the first adhesive layer can also be referred to for the components of the adhesive.
  • the thickness of the adhesive layer 2A may be 5 ⁇ m or more (or 10 ⁇ m or more) and 50 ⁇ m or less, or may be 10 ⁇ m or more and 40 ⁇ m or less (or 30 ⁇ m or less).
  • the stress due to the impact can be absorbed to some extent by the adhesive layer 2A, and the stress that cannot be absorbed is easily transmitted to the resin film 2A, and the stress is absorbed by the resin film 2A. Can be effectively absorbed or dispersed.
  • an adhesive constituting the adhesive layer 2A is applied so as to cover one main surface of the underlying layer (glass or resin film 2A), or a sheet-shaped adhesive is applied. It can be formed by transferring.
  • the average value M2A of the tensile storage modulus of the resin film 2A at 25° C. and the frequency range of 2 kHz or more and 20 kHz or less is, for example, 0.1 GPa or more and 10 GPa or less, and 0.2 GPa or more (or 0.5 GPa or more) and 6 GPa or less. 0.8 GPa or more and 3 GPa or less (or 2 GPa or less), or 0.9 GPa or more and 1.5 GPa or less.
  • M2A is within such a range, the resin film 2A is likely to be more effective in absorbing or dispersing stress due to impact. In addition, it is easy to ensure high impact absorption of the second base material.
  • the average value M2A of the tensile storage modulus of the resin film 2A is obtained in the same procedure as in the case of the first resin film, except that the measurement sample of the resin film 2A is used.
  • a sample for measurement is produced by preparing the resin film 2A and cutting it into a shape of 100 mm in length ⁇ 10 mm in width.
  • a multi-purpose test piece cutting machine manufactured by Dumbbell Co. is used for cutting the resin film 2A. If the resin film 2A to be analyzed cannot be obtained separately, a sample is prepared from the resin film 2A taken from the second substrate, multilayer window or display panel.
  • the thickness T2A of the resin film 2A may be 30 ⁇ m or more and 150 ⁇ m or less, 40 ⁇ m or more and 100 ⁇ m or less, or 40 ⁇ m or more and 90 ⁇ m or less.
  • the product of M2A and T2A When the product of M2A and T2A is within a specific range, it becomes easier to obtain excellent impact resistance and to suppress defects in the glass or its surroundings. In particular, depending on the position of the glass on the second substrate, whether the adhesion between the glass and the resin film 2A is by the adhesive layer 2A or by the adhesive layer 2A, etc., the product of M2A and T2A is within a specific range. In some cases, better impact resistance is likely to be obtained and defects in or around the glass are more likely to be suppressed.
  • M2A ⁇ T2A is 50 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 300 GPa ⁇ m, 65 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m, or 70 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m may be satisfied.
  • the resin film 2A can deform appropriately to absorb or disperse the stress due to the impact, and cracking of the glass can be more effectively suppressed.
  • M2A ⁇ T2A may be 250 GPa ⁇ m or less, 150 GPa ⁇ m or less, or 100 GPa ⁇ m or less.
  • M2A ⁇ T2A may be 40 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m, 50 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m, or 55 GPa ⁇ m ⁇ M2A. ⁇ T2A ⁇ 200 GPa ⁇ m, or 60 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m.
  • M2A ⁇ T2A is within such a range, excellent impact absorption can be obtained, and stress can be quickly absorbed or dispersed by both the adhesive layer 2A and the resin film 2A. Moreover, since the deformation of the resin film 2A is moderate, it becomes easier to suppress cracking of the glass.
  • M2A ⁇ T2A may be 250 GPa ⁇ m or less, 150 GPa ⁇ m or less, or 100 GPa ⁇ m or less.
  • M2A ⁇ T2A may be 50 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m, 55 GPa ⁇ m ⁇ M2A ⁇ T2A ⁇ 200 GPa ⁇ m, or 60 GPa ⁇ m ⁇ M2A. ⁇ T2A ⁇ 200 GPa ⁇ m may be satisfied.
  • M2A ⁇ T2A is within such a range, excellent impact absorption is obtained, distortion is less likely to occur at the adhesion interface, and the effect of suppressing delamination between the glass and the resin film 2A is further enhanced.
  • M2A ⁇ T2A may be 250 GPa ⁇ m or less, 150 GPa ⁇ m or less, or 100 GPa ⁇ m or less.
  • the thickness T2A of the resin film 2A within a specific range, it is easy to adjust M2A ⁇ T2A within the above range. Therefore, flexibility (or hardness) suitable for the layer structure of the second base material can be imparted to the resin film 2A.
  • the thickness T2A of the resin film 2A may be more than 50 ⁇ m and 100 ⁇ m or less, 60 ⁇ m or more and 100 ⁇ m or less, or 70 ⁇ m or more and 100 ⁇ m or less.
  • the thickness T2A of the resin film 2A when the thickness T2A of the resin film 2A is within such a range, the ability of the resin film 2A to absorb or disperse stress can be further enhanced.
  • the upper limit may be less than 100 ⁇ m and may be 90 ⁇ m or less.
  • the thickness T2A of the resin film 2A may be 40 ⁇ m or more and 100 ⁇ m or less, 50 ⁇ m or more and 100 ⁇ m or less (or less than 100 ⁇ m), or 50 ⁇ m or more and 90 ⁇ m or less. In the second embodiment, when the thickness T2A of the resin film 2A is within such a range, the resin film 2A together with the adhesive layer 2A can more easily absorb or disperse the stress due to the impact.
  • the thickness T2A of the resin film 2A may be 40 ⁇ m or more and 100 ⁇ m or less, 50 ⁇ m or more and 100 ⁇ m or less, or 50 ⁇ m or more and 90 ⁇ m or less. In the third embodiment, when the thickness T2A of the resin film 2A is within such a range, the effect of absorbing or dispersing the stress due to impact by the resin film 2A is further enhanced.
  • the resin film 2A includes, for example, a transparent resin film having moderate flexibility (and hardness). At least one resin selected from the group consisting of polyester resins, acrylic resins, and cyclic polyolefin resins can be used as the resin constituting the resin film 2A. However, the resin constituting the transparent resin film is not limited to these.
  • the resin film 2A preferably contains a polyester resin from the viewpoint of easily obtaining appropriate flexibility (and hardness).
  • the resin film 2A is preferably a polyester film having an indentation modulus at 25° C. of 0.2 GPa or more and 1.5 GPa or less (preferably 0.3 GPa or more and 1.5 GPa or less (or 1 GPa or less)).
  • a polyester film exhibiting such an indentation modulus or a polyester constituting this film may be referred to herein as a soft polyester film or a soft polyester, respectively.
  • the indentation modulus of the soft polyester film can be measured according to the case of the first adhesive layer.
  • a Berkovich triangular pyramid
  • an adhesive is applied to the glass, a soft polyester film is adhered, the adhesive is completely cured, the resulting laminate is cut into a size of 10 mm in length ⁇ 10 mm in width, and the side surface is FIB.
  • a sample obtained by processing is used. If the flexible polyester film to be analyzed is not available, samples made from multi-layer windows or displays may be used.
  • the soft polyester may contain, for example, aliphatic or chain-like monomer units (monomer units having no ring structure, etc.). Also, the soft polyester may contain a plasticizer as needed.
  • a flexible polyester film having a thickness of 100 ⁇ m may have a tensile elastic modulus according to ISO527-3 of 100 MPa or more, 200 MPa or more or 250 MPa or more, or 400 MPa or more or 500 MPa or more.
  • the soft polyester film that constitutes the resin film 2A may be an unstretched film, an extruded film, or an injection-molded film.
  • the indentation elastic modulus of the resin film 2A included in the second base material at 25° C. may be 0.1 GPa or more and 5 GPa or less (or 4.5 GPa or less), or 0.2 GPa or more and 2 GPa or less. 0.2 GPa or more and 1.5 GPa or less, or 0.3 GPa or more and 1.5 GPa or less (or 1 GPa or less).
  • the indentation elastic modulus is within such a range, the second base material is likely to have higher impact absorption properties, and the effect of absorbing or dispersing stress by the resin film 2A is further enhanced.
  • the indentation elastic modulus of the resin film 2A can be measured according to the indentation elastic modulus of the first adhesive layer. However, as an indenter, a Berkovich (triangular pyramid) is used. As a sample for measurement, an adhesive is applied to glass, the resin film 2A is adhered, the adhesive is completely cured, and the obtained laminate is cut into a size of 10 mm long x 10 mm wide, and the side surface is FIB processed. A sample obtained by If the resin film 2A to be analyzed cannot be obtained, a sample made from a multilayer window or a display device may be used.
  • the tensile storage modulus of the resin film 2A at a frequency of 10 Hz and 25° C. may be 0.1 GPa or more and 10 GPa or less, may be 0.2 GPa or more and 5 GPa or less, or may be 0.2 GPa or more and 2 GPa or less (or 1 GPa or less). ).
  • the tensile storage elastic modulus of the resin film 2A at a frequency of 10 Hz is within such a range, the resin film 2A is appropriately deformed, and the effect of absorbing or dispersing stress is likely to be obtained, and strain due to stress is accumulated. hard.
  • the tensile storage modulus of the resin film 2A at a frequency of 10 Hz and 25° C. is obtained according to the average value M2A of the tensile storage modulus of the resin film 2A.
  • the measurement frequency shall be 10 Hz.
  • the glass is arranged on the side opposite to the viewing side with respect to the resin film 2A, and the resin film 2B may be laminated on this glass.
  • the second substrate may further include a resin film 2B arranged on the opposite side of the glass to the viewing side.
  • An adhesive layer 2B or an adhesive layer 2B is interposed between the glass and the resin film 2B.
  • the resin film 2B can enhance the effect of protecting the glass.
  • the resin film 2B may be, for example, a transparent resin film having moderate flexibility (and hardness). At least one resin selected from the group consisting of polyester resins, acrylic resins, and cyclic polyolefin resins can be used as the resin constituting the resin film 2B. However, the resin constituting the transparent resin film is not limited to these.
  • the resin film 2B is preferably a soft polyester film from the viewpoint of easily obtaining appropriate flexibility (and hardness). Soft polyesters may include, for example, aliphatic or chain-like monomer units (such as monomer units that do not have a ring structure). As the soft polyester and soft polyester film, for example, the soft polyester and soft polyester film described for resin film 2A may be used, respectively.
  • the thickness T2B of the resin film 2B may be 30 ⁇ m or more and 150 ⁇ m or less.
  • the thickness T2B of the resin film 2B containing soft polyester may be 40 ⁇ m or more and 100 ⁇ m or less, or may be 50 ⁇ m or more and 100 ⁇ m or less (or 90 ⁇ m or less). In this case, even if the stress due to the impact is transmitted to the resin film 2B, the stress can be absorbed or dispersed, and the effect of protecting the glass is further enhanced.
  • Adhesive layer 2B and adhesive layer 2B For the adhesive layer 2B, the description of the first adhesive layer or the adhesive layer 2A can be referred to.
  • the indentation modulus at 25° C., the shear storage modulus at 25° C., and the thickness of the adhesive layer 2B may be selected from the range described for the adhesive layer 2A or the range described for the first adhesive layer.
  • the indentation modulus can be measured according to the case of the adhesive layer 2A.
  • the adhesive constituting the adhesive layer 2B the adhesive described for the first adhesive layer can be mentioned, and the description of the first adhesive layer can be referred to for the constituent components of the adhesive.
  • an adhesive constituting the adhesive layer 2B is applied so as to cover one main surface of the underlying layer (glass or resin film 2B), or a sheet-shaped adhesive is applied. It can be formed by transferring. At least two of the first adhesive layer, the adhesive layer 2A, and the adhesive layer 2B may be composed of the same adhesive, or may be composed of different adhesives.
  • the indentation modulus at 25° C., the shear storage modulus at 25° C., and the thickness of the adhesive layer 2B may be selected from the ranges described for the adhesive layer 2A.
  • the adhesive layer 2B can be formed, for example, by applying a curable adhesive to the main surface of the underlying layer (one of the glass and the resin film 2B), laminating the other, and curing.
  • the adhesive forming the adhesive layer 2B may be selected from the adhesives described for the adhesive layer 2A.
  • the adhesives forming the adhesive layer 2A and the adhesive layer 2B may be the same or different.
  • the multilayer window may include, if necessary, the first resin film, the resin films 2A and 2B, the hard coat layer, the glass, the first adhesive layer, the adhesive layers 2A and 2B, and layers other than the adhesive layers 2A and 2B (hereinafter referred to as referred to as Layer A).
  • Layer A includes an antireflection layer, an antiglare layer, an antifouling layer, an antisticking layer, a hue adjusting layer, an antistatic layer, an easy adhesion layer, a layer for preventing deposition of ions or oligomers, an antiscattering layer, a decorative layer, and the like. is mentioned.
  • the multi-layer window may contain one layer of layer A or may contain multiple layers.
  • Layer A may be included in the first substrate, depending on the function of layer A, and may be laminated to the surface of the second substrate opposite to the viewing side.
  • the layer A is arranged, for example, on the viewing side of the first resin film.
  • Layer A may be formed directly on a layer in contact with Layer A by coating or the like, or may be laminated via an adhesive layer or adhesive layer.
  • the thickness of the multilayer window is, for example, 50 ⁇ m or more and 600 ⁇ m or less, and may be 100 ⁇ m or more and 300 ⁇ m or less.
  • Multilayer window with adhesive layer (Third adhesive layer)
  • a third adhesive layer is disposed on the surface of the multi-layer window of the present disclosure opposite to the viewing side.
  • the description of the first adhesive layer or adhesive layer 2A can be referred to.
  • the indentation modulus at 25° C., the shear storage modulus at 25° C., and the thickness of the third adhesive layer may be selected from the range described for the adhesive layer 2A or the range described for the first adhesive layer.
  • the indentation modulus of the third adhesive layer can be measured in the same manner as the indentation modulus of the first adhesive layer.
  • a sample for measurement a sample obtained by attaching a third adhesive layer to glass, cutting the resulting laminate into a size of 10 mm long ⁇ 10 mm wide, and subjecting the side surface to FIB processing is used. If the third adhesive layer to be analyzed is not available, samples made from multi-layer windows or display devices may be used.
  • the adhesive constituting the third adhesive layer As the adhesive constituting the third adhesive layer, the adhesive described for the first adhesive layer can be mentioned, and the description of the first adhesive layer can be referred to for the constituent components of the adhesive.
  • the adhesive constituting the third adhesive layer is applied so as to cover the underlying layer (the surface of the multilayer window opposite to the viewing side or one main surface of the release liner). Alternatively, it can be formed by transferring a sheet-shaped adhesive.
  • the release liner is applied to the third adhesive such that the surface of the third adhesive layer opposite to the viewing side is covered with the release liner.
  • a multi-layer window with an adhesive layer is formed.
  • the third adhesive layer is formed on one main surface of the release liner, the third adhesive layer held by the release liner is adhered to the surface of the multilayer window opposite to the viewing side to form the multilayer window with the adhesive layer.
  • a window is formed.
  • the adhesive that constitutes the third adhesive layer may be the same as the adhesive that constitutes at least one of the first adhesive layer, the adhesive layer 2A, and the adhesive layer 2B, and is different from all the adhesives that constitute each layer. may be
  • a release liner is laminated via a third adhesive layer to the surface of the multilayer window opposite to the viewing side.
  • a release sheet comprising a base sheet and a release agent provided on at least one main surface of the base sheet is used.
  • the base sheet for example, the same material as the resin film exemplified as the first base film can be arbitrarily selected and used.
  • the release agent known release agents (eg, silicone-based release agents, fluorine-based release agents) can be used.
  • a display device of the present disclosure includes the multilayer window described above, a display panel or a laminate including the display panel, and a third adhesive layer interposed therebetween.
  • the display device may be formed, for example, by laminating members or layers constituting the display device, and a third adhesive layer is formed on one surface of the multilayer window and the display panel or the laminate including the display panel. , may be formed by pasting the other.
  • the release liner of the multi-layer window with the adhesive layer is peeled off from the third adhesive layer, and the display panel or the laminate including the display panel is attached to the exposed surface of the third adhesive layer to form the multi-layer window. good too.
  • Display panel Examples of the display panel include an image display panel.
  • a known image display panel is used as the image display panel.
  • Image display panels include, for example, organic electroluminescence (EL) panels.
  • EL organic electroluminescence
  • the display panel is not limited to these.
  • the laminate may be, for example, a laminate (first laminate) of a display panel and a sealing member (such as a thin film sealing layer).
  • the sealing member is normally arranged directly on the main surface of the image display panel on the viewing side.
  • the laminate may be a laminate (second laminate) of the display panel and the protective member.
  • Protective members include, for example, sheets or films (or substrates) that hold or protect panel members.
  • Examples of the protective member include a protective member that holds the panel member and has an appropriate strength for protecting the panel member.
  • the display device is a flexible image display device, a protective member having moderate flexibility that does not interfere with flexibility is used.
  • a resin sheet or the like is used as the protective member.
  • the material of the resin sheet is not particularly limited, and can be appropriately selected according to, for example, the type of display panel.
  • the laminate may be a panel member with a touch sensor.
  • the touch sensor-equipped panel member is, for example, a laminate (third laminate) having a structure in which a touch sensor and a display panel (such as the display panel described above) are integrated.
  • the touch sensor-equipped panel member may include the protective member described above.
  • the panel member with a touch sensor includes, for example, a member having a configuration in which an antistatic capacitive touch sensor of a metal mesh electrode is formed on a thin film sealing layer of an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • Each of the first laminate and the second laminate may further include a touch sensor.
  • Touch sensors include, for example, touch sensors used in the field of display devices. Examples of touch sensors include resistive type, capacitive type, optical type, and ultrasonic type touch sensors. However, touch sensors are not limited to these.
  • capacitive touch sensors usually have a transparent conductive layer.
  • Such touch sensors include, for example, a laminate of a transparent conductive layer and a transparent substrate.
  • transparent substrates include transparent resin films containing the resins exemplified for the first resin film.
  • the touch sensor may include other layers (hereinafter referred to as layer B) other than the transparent conductive layer and the transparent substrate, if necessary.
  • layer B may include other layers (hereinafter referred to as layer B) other than the transparent conductive layer and the transparent substrate, if necessary.
  • an undercoat layer or an oligomer precipitation prevention layer may be provided as layer B between the transparent conductive layer and the transparent substrate.
  • a layer B may be laminated on the surface of at least one of the transparent conductive layer and the transparent substrate.
  • layer B is not limited to only these layers.
  • Layer B may be laminated on the transparent conductive layer or the transparent substrate via an adhesive layer or adhesive layer, if necessary.
  • Each of the first laminate, second laminate and third laminate may further include an optical film.
  • Each of the first laminate and the second laminate may include a touch sensor and an optical film (specifically, a film having an optical function).
  • An optical film is usually a laminate containing at least one layer having an optical function.
  • Examples of optical films include those used in the field of display devices and the like.
  • Layers having optical functions include, for example, layers having optical anisotropy (eg, optically anisotropic films).
  • Examples of the layer having optical anisotropy include polarizers, retardation layers, viewing angle widening films, viewing angle limiting (peep prevention) films, brightness enhancement films, and optical compensation films, but are limited to these. not.
  • a laminate of two or more layers may be a laminate having two or more selected from these optically anisotropic layers. In a laminate of two or more layers, all of the layers having optical anisotropy may have different functions, or at least two layers may have the same function.
  • the laminate may include a polarizer and a retardation layer, or may include two retardation layers with different compositions.
  • the optical film may include a layer having at least one optical function and a substrate layer (or a protective layer for protection) that holds this layer.
  • a substrate layer or a protective layer for protection
  • a laminate of a layered polarizer and a substrate layer holding the polarizer is called a polarizer.
  • the optical film may contain at least a polarizer or a polarizing plate.
  • the optical film comprises a polarizer, at least one layer having optical anisotropy other than the polarizer (hereinafter referred to as layer C), and optionally at least one group.
  • a material layer may be provided.
  • the optical film may have a laminate of a polarizer and a substrate layer as a polarizing plate.
  • the layer C may be laminated on the polarizing plate via the substrate layer, or may be laminated on the polarizer without the substrate layer.
  • the polarizer is not particularly limited, and polarizers used in the field of image display devices can be used.
  • the polarizer include a film obtained by adsorbing a dichroic substance to a hydrophilic polymer film and uniaxially stretching the film, and an oriented polyene film.
  • Hydrophilic polymers constituting the hydrophilic polymer film include, for example, polyvinyl alcohol-based resins (including partially formalized polyvinyl alcohol-based resins) and partially saponified ethylene-vinyl acetate copolymers.
  • Dichroic substances include, for example, iodine and dichroic dyes.
  • Materials constituting the oriented polyene film include, for example, dehydrated polyvinyl alcohol resins and dehydrochlorinated polyvinyl chloride resins.
  • a thin polarizer having a thickness of 10 ⁇ m or less may be used as the polarizer.
  • Thin polarizers are described in, for example, JP-A-51-069644, JP-A-2000-338329, WO 2010/100917, JP 4691205, and JP 4751481.
  • a polarizer is mentioned.
  • a thin polarizer is obtained, for example, by a manufacturing method including a step of stretching a laminated state of a polyvinyl alcohol-based resin layer and a resin substrate layer, and a step of dyeing with a dichroic material.
  • a thin glass substrate, a transparent resin film, etc. are used as the base material layer.
  • the resin constituting the transparent resin film include the resins exemplified for the first resin film.
  • the resin constituting the base material layer is not limited to these.
  • FIG. 1 to 3 show display devices including multi-layer windows according to the first to third embodiments.
  • the layer structure of each display device will be described below.
  • the display device of the present disclosure is not limited to only these embodiments.
  • FIG. 1 is a schematic cross-sectional view of a display device including the window substrate or multilayer window of the first embodiment.
  • the display device 100 includes a multilayer window W1, a display panel (or a laminate including the display panel) 40, and a third adhesive layer 33 interposed therebetween.
  • the multilayer window W1 includes a first base material 1 arranged on the viewing side, a second base material (window base material) 2a laminated on the opposite side of the first base material 1 from the viewing side, and a and the first adhesive layer 13 interposed in.
  • the first base material 1 includes a first resin film 11 and a hard coat layer 12 formed on the surface of the first resin film 11 on the viewing side.
  • the viewer-side surface of the first base material corresponds to the viewer-side surface of the multilayer window W ⁇ b>1 and the display device 100 .
  • the second base material 2a includes a glass 22 arranged on the viewing side, a resin film 21 (resin film 2A), and an adhesive layer 23 (adhesive layer 2A) interposed therebetween.
  • the third adhesive layer 33 is formed on the surface of the resin film 21 (resin film 2A) of the multilayer window W1 opposite to the viewing side.
  • the release liner is separated from the third adhesive layer 33, and the third adhesive layer 33 is adhered to the viewing side surface of the display panel (or laminate including the display panel) 40.
  • the display device 100 can be formed by stacking the multilayer windows W1 such that
  • FIG. 2 is a schematic cross-sectional view of a display device including the window substrate or multilayer window of the second embodiment.
  • the display device 200 includes a multilayer window W2, a display panel (or a laminate including the display panel) 40, and a third adhesive layer 33 interposed therebetween.
  • FIG. 3 is a schematic cross-sectional view of a display device including a window substrate or multilayer window of a third embodiment.
  • the display device 300 includes a multilayer window W3, a display panel (or a laminate including the display panel) 40, and a third adhesive layer 33 interposed therebetween.
  • the multilayer windows W2 and W3 differ from the multilayer window W1 only in the structure of the window base material (second base material). For the structure other than the window base material (second base material), see the description of FIG. can.
  • the second base material 2b includes a glass 22 arranged on the viewing side, a resin film 21 (resin film 2A), and an adhesive layer 24 (adhesive layer 2A) interposed therebetween.
  • the second substrate 2c includes a resin film 21 (resin film 2A) arranged on the viewing side, glass 22, and an adhesive layer 23 (adhesive layer 2A) interposed therebetween.
  • the third adhesive layer 33 is formed on the surface of the glass 22 of the multilayer window W3 opposite to the viewing side.
  • the multilayer window W3 of the third embodiment further includes a resin film 2B laminated via an adhesive layer 2B or an adhesive layer 2B on the surface of the glass 22 opposite to the viewing side. may contain.
  • the third adhesive layer 33 is formed on the surface of the resin film 2B opposite to the viewing side.
  • first base material a transparent polyimide film (manufactured by KOLON, product name “C_50”, thickness (T1) 50 ⁇ m) as the first resin film 11 is used. was provided with a hard coat layer 12 (thickness: 10 ⁇ m).
  • the hard coat layer 12 was formed using a coating agent for hard coat layers. More specifically, first, a coating agent was applied to one side of a transparent polyimide film to form a coating layer, and the coating layer was heated together with the transparent polyimide film at 90° C. for 2 minutes. Next, a hard coat layer 12 was formed by irradiating the coating layer with ultraviolet rays using a high-pressure mercury lamp at an integrated light amount of 300 mJ/cm 2 . Thus, the first base material 1 was produced.
  • the coating agent for the hard coat layer includes 100 parts by mass of polyfunctional acrylate (manufactured by Aica Kogyo Co., Ltd., product name "Z-850-16") as a base resin, and a leveling agent (manufactured by DIC, trade name: GRANDIC PC -4100) and 3 parts by mass of a photopolymerization initiator (manufactured by IGM Resins B.V., trade name: Omnirad 907). Prepared by diluting with isobutyl ketone.
  • (b) Preparation of second base material (b-1) Preparation of adhesive Aliphatic alicyclic epoxy resin (Celoxide 2021P, epoxy equivalent 128 to 133 g / eq., manufactured by Daicel Co., Ltd.) 70 parts by mass, trifunctional fat Group epoxy resin (EHPE3150, epoxy equivalent 170 to 190 g / eq., manufactured by Daicel Co., Ltd.) 5 parts by weight, oxetane resin (Aron Oxetane (registered trademark), manufactured by Toagosei Co., Ltd.) 19 parts by weight, silane coupling agent ( KBM-403, 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by mass, and a photoacid generator (CPI101A, triarylsulfonium salt, manufactured by San-Apro Co., Ltd.) 2 parts by mass.
  • EHPE3150 epoxy equivalent 170
  • an epoxy adhesive composition was prepared.
  • (b-2) Fabrication of Second Substrate As the glass 22, a thin glass plate (G-leaf (registered trademark) manufactured by Nippon Electronic Glass Co., Ltd., thickness 30 ⁇ m) was prepared.
  • As the resin film 21 (resin film 2A) a film made of the material shown in Table 1 and having a thickness T2A shown in Table 1 was prepared.
  • the resin film 21 formed of the material shown in Table 1 used in each example is as follows.
  • the resin film 21 containing soft polyester is formed only of soft polyester, and the indentation elastic modulus of the soft polyester at 25° C. is the same value as the indentation elastic modulus of the resin film 2A shown in Table 1.
  • PES1 Film made of transparent soft polyester (OKY200, manufactured by Bell Polyester Products Co., Ltd.) (injection molding, unstretched, tensile modulus of 100 ⁇ m thick sheet conforming to ISO527-3: 271 MPa)
  • PES2 Film made of transparent soft polyester (OKY300, manufactured by Bell Polyester Products Co., Ltd.) (injection molding, unstretched, tensile modulus of 100 ⁇ m thick sheet conforming to ISO527-3: 561 MPa)
  • TPU Polyurethane elastomer sheet (manufactured by Seedam Co., Ltd., DUS605)
  • PET polyethylene terephthalate film (manufactured by Mitsubishi Chemical Corporation, biaxially stretched film, Diafoil (registered trademark) S100)
  • Comparative Example 1 only the thin glass plate (G-leaf (registered trademark) manufactured by Nippon Electronic Glass Co., Ltd., thickness 30 ⁇ m) was used as the second base material.
  • Example 1 and Comparative Examples 2 to 4 the second base material was produced by the following procedure. First, the epoxy adhesive composition prepared in (b-1) above is applied to one surface of the glass 22, and the obtained coating film is sandwiched between the glass 22 and the resin film 21 (resin film 2A). , the resin film 21 was overlaid. In this state, the coating film was irradiated with ultraviolet rays from the glass 22 side to be cured, thereby forming an adhesive layer 2A sandwiched between the glass 22 and the resin film 21 . The thickness of the adhesive layer 2A measured by the procedure described above was 1 ⁇ m. Thus, the second base material 2a was produced. The indentation elastic modulus at 25° C. of the adhesive layer 2A obtained by the procedure described above was 4.9 GPa.
  • the acrylic oligomer had a weight average molecular weight of 5100 and a glass transition temperature (Tg) of 130°C.
  • base polymer composition 43 parts by weight of lauryl acrylate, 44 parts by weight of 2-ethylhexyl acrylate, 6 parts by weight of 4-hydroxybutyl acrylate, and 7 parts by weight of N-vinyl-2-pyrrolidone, and IGM Resins B.I. V. 0.015 parts by mass of "Omnirad 184" manufactured by Co., Ltd. was mixed and polymerized by irradiating ultraviolet rays to obtain a base polymer composition (polymerization rate: about 10%).
  • the base material for the window (second base material)
  • the glass 22 and the resin film 2A formed of the material shown in Table 1 were used, and the acrylic pressure-sensitive adhesive composition prepared in Example 1 (c) was used.
  • a second base material 2b including an adhesive layer 2A formed by bonding by pressing was used.
  • a multilayer window was produced and evaluated in the same manner as in Example 1 except for these.
  • the indentation elastic modulus of the adhesive layer 2A at 25° C. measured by the procedure described above was 0.11 MPa
  • the shear storage elastic modulus at 25° C. was 0.03 MPa
  • the thickness was 25 ⁇ m.
  • the resin film 21 (resin film 2A) side surface of the second base material The first base material 1 and the second base material (the second base material 2c) were superimposed so that the first adhesive layer 13 was in contact with the first base material 1 and the second base material. Except for this, a multilayer window was produced and evaluated in the same manner as in Example 1.
  • Table 1 shows the results of Examples and Comparative Examples.
  • Examples 1 to 5 are E1 to E5
  • Comparative Examples 1 to 7 are C1 to C7.
  • the impact absorption rate of the second substrate is high (12% or more), and there are no defects in the glass or its surroundings. had been suppressed.
  • the impact absorption rate of the second base material was low, or the effect of suppressing defects in the glass or its surroundings was low. In this way, the second substrate (window substrate) or multi-layer window having excellent impact absorption and suppressed defects in the glass or its surroundings can be obtained in the Examples, despite the glass being included.
  • the window base material of the present disclosure is suitable for use as a base material for window members of display devices.
  • a multilayer window comprising a window substrate is suitable for use as a window member in a display device.
  • the uses of window substrates and multilayer windows are not necessarily limited to these.
  • first substrate 11 first resin film 12: hard coat layer 13: first adhesive layer 2a, 2b, 2c: second substrate ( base material for windows) 21: Resin film 2A 22: Glass 23: Adhesive layer 2A 24: Adhesive layer 2A 33: Third adhesive layer 40: Display panel or laminate containing display panel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

ウィンドウ用基材は、ガラスと樹脂フィルムとが積層された構造を含む。25℃でのペン落下試験で求められる前記ウィンドウ用基材の衝撃吸収率は12%以上である。前記ペン落下試験において、前記ガラスの割れおよび前記ガラスと前記樹脂フィルム2Aとのはく離のいずれも生じない。

Description

ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置
 本開示は、ガラスを含むウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウおよび多層ウィンドウを含む表示装置に関する。
 表示装置は、光学フィルム、タッチセンサ、表示パネルなどの構成部材を保護する観点から、ウィンドウを含む場合がある。そのような表示装置の視認側の表面は、通常、ウィンドウの表面に相当する。ウィンドウは、多層構造を有している場合もあり、例えば、樹脂フィルムまたはガラスなどの透明基材を含む。
 特許文献1は、映像を表示するフレキシブル表示パネルと前記フレキシブル表示パネルの表示面に配置されたウィンドウを含み、前記ウィンドウは、第1保護層と、前記第1保護層上に配置された薄膜ガラス層と、この薄膜ガラス層上に配置された第2保護層を含む表示装置を提案している。第1保護層は第1衝撃吸収層を含んでもよく、第2保護層は第2衝撃吸収層を含んでもよいことが教示されている。図3bには、薄ガラス層(TG)とハードコート層(HC)とこれらの間に配置される第2衝撃吸収層(UCF)とを含む第2保護層(LPF2)を含むとともに、薄ガラス層(TG)の下側に配置された第1保護層(LPF)を含むウィンドウ(WM2)が記載されている。ウィンドウ(WM2)では、第1保護層(LPF1)は、第1衝撃吸収層(LCF1)と、薄ガラス層(TG)と第1衝撃吸収層(LCF1)との間に配置された内側接着層(IAM)とを有する。
韓国公開特許第10-2020-0072643号公報(請求項1、4および6、図3b、[0072]~[0085])
 表示装置の視認側の表面には、高い耐擦傷性が求められることがある。そのため、表示装置の視認側の表面に相当するウィンドウの表面の硬度は高いことが好ましい。比較的高い表面硬度が得られ易い観点から、ガラスを含むウィンドウが用いられることがある。また、ウィンドウには、ウィンドウの下(視認側とは反対側)に配置される部材(例えば、表示パネル、または表示パネル含む積層体など)に衝撃を伝えないようにすることも求められる。しかし、ガラスは脆く、柔軟性が低い。そのため、ウィンドウに衝撃が加わった場合に、その衝撃力を十分に吸収または分散しつつ、さらにガラスまたはその周辺に欠陥(ガラスの割れ、ガラスと樹脂フィルムとの間におけるはく離など)が生じないようにすることは難しい。
 本開示の第1側面は、ガラスと樹脂フィルム(樹脂フィルム2A)とが積層された構造を含むウィンドウ用基材であって、
 25℃でのペン落下試験で求められる前記ウィンドウ用基材の衝撃吸収率は12%以上であり、
 前記ペン落下試験において、前記ガラスの割れおよび前記ガラスと前記樹脂フィルム(樹脂フィルム2A)とのはく離のいずれも生じない、ウィンドウ用基材に関する。
 本開示の第2側面は、第1基材と、第2基材としての上記ウィンドウ用基材と、前記第1基材および前記第2基材の間に介在する第1粘着層とを少なくとも含む多層ウィンドウであって、
 前記第1基材は、前記多層ウィンドウの視認側の表面を含む、多層ウィンドウに関する。
 本開示の第3側面は、上記の多層ウィンドウと、
 前記多層ウィンドウの視認側とは反対側に積層されたはく離ライナーと、
 前記多層ウィンドウと前記はく離ライナーとの間に介在する第3粘着層と、を含む、粘着層付多層ウィンドウに関する。
 本開示の第4側面は、上記の多層ウィンドウと、
 前記多層ウィンドウの視認側とは反対側に積層された表示パネルまたは表示パネルを含む積層体と、
 前記多層ウィンドウと前記表示パネルまたは前記積層体との間に介在する第3粘着層と、を含む、表示装置に関する。
 衝撃吸収性に優れるとともに、ガラスまたはその周辺の欠陥が生じることが抑制されたウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置を提供できる。
本開示の第1実施形態に係るウィンドウ用基材(または多層ウィンドウ)を含む表示装置の断面模式図である。 本開示の第2実施形態に係るウィンドウ用基材(または多層ウィンドウ)を含む表示装置の断面模式図である。 本開示の第3実施形態に係るウィンドウ用基材(または多層ウィンドウ)を含む表示装置の断面模式図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 (1)本開示のウィンドウ用基材は、ガラスと樹脂フィルム2Aとが積層された構造を含む。25℃でのペン落下試験で求められるウィンドウ用基材の衝撃吸収率は12%以上である。ペン落下試験において、ガラスの割れおよびガラスと樹脂フィルム2Aとのはく離のいずれも生じない。
 (2)上記(1)において、樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと樹脂フィルム2Aの厚さT2Aとの積:M2A×TA2は、50GPa・μm≦MA2×TA2≦250GPa・μmを充足してもよい。
 (3)上記(1)または(2)において、ウィンドウ用基材は、視認側に配置されたガラスと、樹脂フィルム2Aと、ガラスおよび樹脂フィルム2Aの間に介在する接着層2Aとを含んでもよい。樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと樹脂フィルム2Aの厚さT2Aとの積:M2A×T2Aは、70GPa・μm≦M2A×T2A≦200GPa・μmを充足してもよい。
 (4)上記(3)において、樹脂フィルム2Aの厚さT2Aは、60μm以上100μm以下であってもよい。
 (5)上記(1)または(2)において、ウィンドウ用基材は、視認側に配置されたガラスと、樹脂フィルム2Aと、ガラスおよび樹脂フィルム2Aの間に介在する粘着層2Aとを含んでもよい。樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと樹脂フィルム2Aの厚さT2Aとの積:M2A×T2Aは、50GPa・μm≦M2A×T2A≦200GPa・μmを充足してもよい。
 (6)上記(5)において、粘着層2Aの25℃における押込み弾性率は、0.05MPa以上1MPa以下であってもよい。
 (7)上記(1)または(2)において、ウィンドウ用基材は、視認側に配置された樹脂フィルム2Aと、ガラスと、樹脂フィルム2Aおよびガラスの間に介在する接着層2Aとを含んでもよい。樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと樹脂フィルム2Aの厚さT2Aとの積:M2A×T2Aは、50GPa・μm≦M2A×T2A≦200GPa・μmを充足してもよい。
 (8)上記(7)において、ウィンドウ用基材は、さらに、ガラスの視認側とは反対側に配置された樹脂フィルム2Bと、ガラスと樹脂フィルム2Bとの間に介在する粘着層2Bまたは接着層2Bとを含んでもよい。
 (9)上記(8)において、樹脂フィルム2Bの厚さT2Bは、40μm以上100μm以下であってもよい。
 (10)上記(8)または(9)において、樹脂フィルム2Bは、25℃における押込み弾性率が0.2GPa以上1.5GPa以下のポリエステルフィルムであってもよい。
 (11)上記(5)~(10)のいずれか1つにおいて、樹脂フィルム2Aの厚さT2Aは、40μm以上100μm以下であってもよい。
 (12)上記(3)、(4)、および(7)~(11)のいずれか1つにおいて、接着層2Aの25℃における押込み弾性率は、0.1GPa以上10GPa以下であってもよい。
 (13)上記(1)~(12)のいずれか1つにおいて、樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aは、0.1GPa以上10GPa以下であってもよい。
 (14)上記(1)~(13)のいずれか1つにおいて、樹脂フィルム2Aは、25℃における押込み弾性率が0.2GPa以上1.5GPa以下のポリエステルフィルムであってもよい。
 (15)本開示の多層ウィンドウは、第1基材と、第2基材としての上記(1)~(14)のいずれか1つに記載のウィンドウ用基材と、第1基材および第2基材の間に介在する第1粘着層とを少なくとも含む。第1基材は、多層ウィンドウの視認側の表面を含む。
 (16)上記(15)において、第1粘着層の25℃における押込み弾性率は、0.05MPa以上1MPa以下であってもよい。
 (17)上記(15)または(16)において、第1基材は、第1樹脂フィルムを含んでもよい。第1樹脂フィルムの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M1は、3GPa以上10GPa以下であってもよい。第1樹脂フィルムの厚さT1は、30μm以上100μm以下であってもよい。
 (18)上記(15)~(17)のいずれか1つにおいて、第1樹脂フィルムは、ポリイミド樹脂を含んでもよい。
 (19)本開示の粘着層付多層ウィンドウは、上記(15)~(18)のいずれか1つに記載の多層ウィンドウと、多層ウィンドウの視認側とは反対側に積層されたはく離ライナーと、多層ウィンドウとはく離ライナーとの間に介在する第3粘着層と、を含む。
 (20)本開示の表示装置は、上記(15)~(18)のいずれか1つに記載の多層ウィンドウと、多層ウィンドウの視認側とは反対側に積層された表示パネルまたは表示パネルを含む積層体と、多層ウィンドウと表示パネルまたは積層体との間に介在する第3粘着層と、を含む。
 以下に、上記(1)~(20)を含めて、本開示のウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウおよび表示装置についてより具体的に説明する。技術的に矛盾のない範囲で、上記(1)~(20)の少なくとも1つと、以下に記載する要素の少なくとも1つとを組み合わせてもよい。
 図面を参照する場合、各図面において、各構成要素の形状または寸法は、実際と同一の縮尺比で表したものではない。各構成要素の特徴を明確にするために、これらの寸法の相対的な関係性は、模式的かつ強調して示されている。
 本開示の第1側面に係るウィンドウ用基材は、ガラスと樹脂フィルムとが積層された構造を含む。25℃でのペン落下試験で求められるウィンドウ用基材の衝撃吸収率は12%以上である。上記のペン落下試験において、ガラスの割れおよびガラスと樹脂フィルムとのはく離のいずれも生じない。
 本開示の第2側面に係る多層ウィンドウは、第1基材と、第2基材と、第1基材および第2基材の間に介在する第1粘着層とを少なくとも含む。ここで、第1基材は、多層ウィンドウの視認側の表面を含む。上記の第1側面に係るウィンドウ用基材は、例えば、第2側面に係る多層ウィンドウの第2基材として用いられる。この場合、ウィンドウ用基材に含まれる樹脂フィルムは、多層ウィンドウの樹脂フィルム2Aに相当する。以下、ウィンドウ用基材に含まれる上記の樹脂フィルムを樹脂フィルム2Aと称することがある。
 ウィンドウ用基材(第2基材)の衝撃吸収率は、ウィンドウ用基材(第2基材)の視認側の表面に粘着層を介して保護基材を積層した積層体(積層体A)および、この粘着層と保護基材との積層体(積層体B)のそれぞれを用いたペン落下試験から求められる。より具体的には、各積層体の25℃でのペン落下試験において、積層体Aの衝撃荷重のピーク値SAと、積層体Bの衝撃荷重のピーク値SBとを求め、これらのピーク値から下記式を用いてウィンドウ用基材(第2基材)の衝撃吸収率が求められる。
  衝撃吸収率(%)={(SA-SB)/SA}×100
 ペン落下試験は、後述の手順で行われる。
 なお、ウィンドウ用基材(第2基材)に含まれるガラスとは、シート状またはフィルム状といった層状のガラスである。以下、ウィンドウ用基材を、第2基材と称する場合がある。
 本開示では、第2基材がガラスと樹脂フィルム2Aとの積層構造を含むとともに、第2基材の衝撃吸収率を特定の範囲とする。これによって、優れた衝撃吸収性に加えて、ガラスまたはその周辺の欠陥を抑制することができる。特に、ガラスを含む多層ウィンドウでは、衝撃力自体はそれほど大きくない場合でも、ペン落下試験などで加わるような速い衝撃力が多層ウィンドウの表面に加わったときに、衝撃力の伝播速度に、衝撃による応力を吸収または分散する速度が追いつかずに、柔軟性や脆性に劣るガラスまたはその周辺に応力が加わることで、割れやはく離などの欠陥が生じ易いことが明らかとなった。第2基材を用いると、特に、多層ウィンドウにこのような速い衝撃力が加わった場合において、優れた衝撃吸収性を確保できるとともに、ガラスまたはその周辺の欠陥を抑制することができる。
 第2基材は、ガラスと樹脂フィルム2Aとが積層された構造を少なくとも含んでいる。第2基材は、ガラスと樹脂フィルム2Aに加えて、樹脂フィルム2Bとを含んでもよい。第2基材において、ガラスと各樹脂フィルムとは、接着層または粘着層を介して積層されている。第2基材において、ガラスが樹脂フィルム2Aよりも視認側に配置されていてもよく、樹脂フィルム2Aがガラスよりも視認側に配置されていてもよい。後者の場合、樹脂フィルム2Aと樹脂フィルム2Bとでガラスが挟持されていてもよい。本明細書中、ガラスと樹脂フィルム2Aとの間に介在する接着層を接着層2Aと称し、ガラスと樹脂フィルム2Aとの間に介在する粘着層を粘着層2Aと称することがある。また、ガラスと樹脂フィルム2Bとの間に介在する接着層を接着層2Bと称し、ガラスと樹脂フィルム2Aとの間に介在する粘着層を粘着層2Bと称することがある。
 多層ウィンドウにおいて、最も視認側に位置する粘着層を第1粘着層とする。このとき、第1粘着層と接触し、かつ第1粘着層よりも視認側に位置する部分を第1基材と称する。第1基材は、樹脂フィルム(以下、第1樹脂フィルムと称する場合がある)を含んでもよい。また、多層ウィンドウにおいて、第1粘着層よりも視認側とは反対側に位置する、ガラスと樹脂フィルム2Aとの積層部分(またはガラスと樹脂フィルム2Aおよび2Bとの積層部分)を第2基材と称する。
 なお、本明細書中、ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウおよび表示装置を構成する各部材の積層方向(換言すれば、各部材の平均的な厚さ方向)において、各部材または各部材を構成する層の相対的な位置関係を、ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、または表示装置の「視認側」または「視認側とは反対側」という表現を用いて表すことがある。また、本明細書中、粘着層付多層ウィンドウは、多層ウィンドウと、多層ウィンドウの視認側とは反対側に積層されたはく離ライナーと、これらの間に介在する粘着層(第3粘着層)とを有する。粘着層付多層ウィンドウは、例えば、はく離ライナーをはく離して、第3粘着層を介して、表示装置を構成する多層ウィンドウ以外の部材または積層体(光学フィルム、タッチセンサ、表示パネル、またはこれらの部材の少なくとも2つを含む積層体など)に貼り付けることによって、表示装置を形成するのに適している。
 衝撃吸収性およびガラスまたはその周辺の欠陥には、第2基材の積層構造におけるガラスの位置、樹脂フィルム2Aの特性、ガラスと樹脂フィルム2Aとの間に介在する層が接着層2Aであるのか、または粘着層2Aであるのかなどの要素が大きく影響する。特に、ガラスの位置およびガラスと樹脂フィルム2Aとの間に介在する層の種類に応じて、樹脂フィルム2Aの2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと樹脂フィルム2Aの厚さT2Aとの積:M2A×T2Aを特定の範囲(例えば、50GPa・μm≦MA2×TA2≦250GPa・μmの範囲)にすることで、優れた衝撃吸収性を確保しながら、ガラスまたはその周辺の欠陥を抑制する効果を高めることができる。上記の周波数範囲では、比較的速い速度の変形応力が加わったときの樹脂フィルム2Aの粘弾性の変化を把握することができる。変形応力の吸収性または分散性は、樹脂フィルムの厚さT2Aにも影響される。そのため、M2A×T2Aは、比較的速い速度の変形応力が加わった場合の樹脂フィルム2Aの応力の吸収性または分散性を示し、換言すると、樹脂フィルム2Aの変形のし易さを示す指標と言える。
 なお、接着層は、硬化性の接着剤を硬化させることにより形成された層(換言すると、硬化物の層)であり、流動性を有さない。一方、粘着層は、非硬化性の接着剤で形成された層であり、流動性を有する。
 本明細書において、粘着層の25℃におけるせん断貯蔵弾性率は、通常、10MPa以下であり、1MPa以下であってもよく、0.1MPa以下であってもよい。粘着層のせん断貯蔵弾性率がこのような範囲である場合、高い接着性を確保できるとともに、硬化した接着層の場合とは異なり、衝撃力などの力が伝播した場合でも、適度に変形して、応力を吸収または分散し易い。各粘着層の25℃におけるせん断貯蔵弾性率は、0.001MPa以上であってもよい。
 一方、接着層の25℃におけるせん断貯蔵弾性率は、10MPaより大きく、100MPa以上であってもよく、通常、1GPa程度である。本明細書中、接着層とは、このようなせん断貯蔵弾性率を有するものを意味するものとする。
 このように、粘着層は、接着層とはせん断貯蔵弾性率により区別される。
 本開示の第1実施形態では、第2基材は、例えば、視認側に配置されたガラスと、樹脂フィルム2Aと、ガラスおよび樹脂フィルム2Aの間に介在する接着層2Aとを含む。この場合、樹脂フィルム2AのM2A×T2Aは、70GPa・μm≦M2A×T2A≦200GPa・μmを充足してもよい。このような積層構造を有する第2基材では、ガラスと樹脂フィルム2Aとが接着層2A(つまり、硬化物)で接着されているため、ガラスに加わる衝撃力のほとんどが、樹脂フィルム2Aに速やかに伝播すると考えられる。M2A×T2Aが70GPa・μm以上であることで、樹脂フィルム2Aが過度に柔軟になることが抑制され、柔軟性および硬さを適度な範囲に保つことができる。樹脂フィルム2Aが適度に変形して衝撃による応力を吸収または分散することができるため、ガラス変形を効果的に支えることができ、その結果、ガラスの割れをより効果的に抑制できる。M2A×T2Aが200GPa・μm以下であることで、樹脂フィルム2Aが過度に硬くなることが抑制される。そのため、樹脂フィルム2Aが衝撃による応力を吸収することができる。
 第1実施形態において、樹脂フィルム2Aの厚さT2Aは、60μm以上100μm以下であってもよい。この場合、樹脂フィルム2Aが適度な厚さT2Aを有することで、M2A×T2Aを上記の範囲に調節し易く、樹脂フィルム2Aの適度な変形によって衝撃による応力をさらに吸収または分散し易い。
 本開示の第2実施形態で、第2基材は、例えば、視認側に配置されたガラスと、樹脂フィルム2Aと、ガラスおよび樹脂フィルム2Aの間に介在する粘着層2Aとを含んでもよい。この場合、M2A×T2Aは、50GPa・μm≦M2A×T2A≦200GPa・μmを充足してもよい。粘着層2Aは流動性を有し、硬化物である接着層に比較すると柔軟である。また、M2A×T2Aが50GPa・μm以上であることで、樹脂フィルム2Aが過度に柔軟になることが抑制され、柔軟性および硬さを適度な範囲に保つことができる。衝撃力が樹脂フィルム2Aに伝わると、樹脂フィルム2Aが適度に変形して、ガラス変形を効果的に支えることができ、その結果、ガラスの割れをより効果的に抑制できる。M2A×T2Aが200GPa・μm以下であることで、樹脂フィルム2Aが過度に硬くなることが抑制される。よって、樹脂フィルムが衝撃による応力を吸収することができる。このように、粘着層2Aおよび樹脂フィルム2Aの双方によって衝撃による応力を吸収または分散することができ、ガラスの割れをより効果的に抑制できる。
 第2実施形態において、樹脂フィルム2Aの厚さT2Aは、40μm以上100μm以下であってもよい。樹脂フィルム2Aが適度な厚さT2Aを有することで、M2A×T2Aを上記の範囲に調節し易く、粘着層2Aおよび樹脂フィルム2Aによって衝撃による応力をさらに吸収または分散し易い。第2実施形態では、ガラスと樹脂フィルム2Aとの間に粘着層2Aが存在するため、接着層2Aの場合と比べると、樹脂フィルム2Aの厚さT2Aが小さくても、衝撃による応力を吸収または分散することができる。
 本開示の第3実施形態では、第2基材は、例えば、視認側に配置された樹脂フィルム2Aと、ガラスと、樹脂フィルム2Aおよびガラスの間に介在する接着層2Aとを含んでもよい。この場合、M2A×T2Aは、50GPa・μm≦M2A×T2A≦200GPa・μmを充足してもよい。M2A×T2Aが50GPa・μm以上であることで、樹脂フィルム2Aが過度に柔軟になることが抑制され、柔軟性および硬さを適度な範囲に保つことができる。これに加えて、樹脂フィルム2Aがガラスよりも視認側に配置されていることで、多層ウィンドウの視認側の表面から衝撃が加わっても、樹脂フィルム2Aが適度に変形して応力を効果的に吸収または分散することができる。また、M2A×T2Aが200GPa・μm以下であることで、樹脂フィルム2Aが過度に硬くなることが抑制される。そのため、樹脂フィルム2Aによって衝撃による応力を効果的に吸収することができる。これらによって、ガラスの割れをより効果的に抑制できる。一方で、樹脂フィルム2Aとガラスとは接着層2Aで接着されているため、樹脂フィルム2Aだけで衝撃による応力を吸収できない場合には、樹脂フィルム2Aの変形によって分散された応力が、硬い接着層2Aまたはガラスにまで伝わる。この場合、樹脂フィルム2Aと接着層2Aとの界面または接着層2Aとガラスとの界面を挟んで歪みが生じ易く、これらの界面の少なくとも一方において、はく離が生じ易い。このような場合であっても、M2A×T2Aが上記の範囲であることで、界面におけるはく離を抑制することができる。なお、いずれの界面ではく離が起こる場合にも、樹脂フィルム2Aとガラスとの間ではく離が起こることから、いずれかの界面で起こるはく離を、本明細書中、樹脂フィルムとガラスとの間のはく離と称することがある。
 第3実施形態において、樹脂フィルム2Aの厚さT2Aは、40μm以上100μm以下であってもよい。樹脂フィルム2Aが適度な厚さT2Aを有することで、M2A×T2Aを上記の範囲に調節し易い。そのため、樹脂フィルム2Aによって衝撃による応力をさらに吸収または分散し易い。第3実施形態では、ガラスよりも視認側に樹脂フィルム2Aが存在するため、第1実施形態の場合と比べると、樹脂フィルム2Aの厚さT2が小さくても、衝撃による応力を吸収または分散することができる。
 第3実施形態では、第2基材は、ガラスの視認側とは反対側に配置された樹脂フィルム2Bと、ガラスと樹脂フィルム2Bとの間に介在する粘着層2Bまたは接着層2Bとをさらに含んでもよい。樹脂フィルム2Bによって、ガラスの保護効果をさらに高めることができる。
 第3実施形態において、樹脂フィルム2Bの厚さT2Bは、40μm以上100μm以下であってもよい。樹脂フィルム2Bが適度な厚さT2Bを有することで、衝撃による応力が樹脂フィルム2Bにまで伝わった場合でも、樹脂フィルム2Bが変形して、衝撃による応力を吸収または分散することができ、ガラスを保護する効果がさらに高まる。
 樹脂フィルム2Bは、25℃における押込み弾性率が、0.2GPa以上1.5GPa以下のポリエステルフィルムであってもよい。樹脂フィルム2Bが適度な柔軟性および硬さを有することで、衝撃による応力が樹脂フィルム2Bにまで伝わった場合でも、樹脂フィルム2Bが変形して、衝撃による応力を吸収または分散することができ、ガラスを保護する効果がさらに高まる。
 本開示において、樹脂フィルム2Aの引張貯蔵弾性率の平均値M2Aは、0.1GPa以上10GPa以下であってもよい。この場合、樹脂フィルム2Aにおいて、衝撃による応力を吸収または分散するより高い効果が得られ易い。
 樹脂フィルム2Aは、25℃における押込み弾性率が0.2GPa以上1.5GPa以下のポリエステルフィルムであってもよい。この場合、樹脂フィルム2Aが適度な柔軟性および硬さを有することで、樹脂フィルム2Aによって衝撃による応力をさらに吸収または分散し易い。また、M2A×T2Aを各実施形態に適した範囲に調節し易い。
 ガラスと樹脂フィルム2Aとの間に介在する粘着層2Aの25℃における押込み弾性率は、0.05MPa以上1MPa以下であってもよい。粘着層2Aの押込み弾性率がこのような範囲である場合、粘着層2Aによって、衝撃吸収性が高まることに加え、衝撃による応力をさらに吸収または分散し易くなる。粘着層2Aによって、ガラスが局所で変形することが抑制され、ガラスの割れをより効果的に抑制できる。
 ガラスと樹脂フィルム2Aとの間に介在する接着層2Aの25℃における押込み弾性率は、0.1GPa以上10GPa以下であってもよい。第1実施形態では、接着層2Aの押込み弾性率がこのような範囲である場合、ガラスに加わった衝撃力が樹脂フィルム2Aに速やかに伝播され易く、樹脂フィルム2Aによって応力をスムーズに吸収または分散することができる。第3実施形態では、接着層2Aの押込み弾性率が上記の範囲である場合、樹脂フィルム2Aと接着層2Aとの界面、または接着層2Aとガラスとの界面におけるはく離を抑制する効果が高まる。
 本開示には、上記のウィンドウ用基材(第2基材)を含む多層ウィンドウも包含される。多層ウィンドウは、第1基材と上記のウィンドウ用基材(第2基材)と、これらの間に介在する第1粘着層とを少なくとも含む。第1基材は、多層ウィンドウの視認側の表面を含む。
 第1基材と第2基材との間に介在する第1粘着層の25℃における押込み弾性率は、0.05MPa以上1MPa以下であってもよい。第1粘着層の押込み弾性率がこのような範囲である場合、第1粘着層が適度な柔軟性または硬さを有することで、衝撃吸収性が高まることに加え、衝撃による応力をさらに吸収または分散し易くなる。
 第1基材は、第1樹脂フィルムを含んでもよい。第1樹脂フィルムの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M1は、3GPa以上10GPa以下であってもよい。第1樹脂フィルムの厚さT1は、30μm以上100μm以下であってもよい。これらの場合、第1樹脂フィルムはウィンドウの視認側の表面を含む第1基材に高い硬度を付与し易いため、多層ウィンドウの視認側の表面の耐擦傷性を高める上で有利である。なお、第1基材には、ハードコート層が含まれていてもよい。ハードコート層は、少なくとも、第1基材の視認側の表面に形成される薄いコーティング層であり、第1樹脂フィルムとは区別される。
 第1樹脂フィルムは、例えば、ポリイミド樹脂を含んでもよい。この場合、多層ウィンドウのより高い耐擦傷性が得られ易い。
 本開示には、多層ウィンドウを含む上記の粘着層付多層ウィンドウおよび表示装置も包含される。
 表示装置は、多層ウィンドウと、多層ウィンドウの視認側とは反対側に積層された表示パネルまたは表示パネルを含む積層体と、多層ウィンドウと表示パネルまたは積層体との間に介在する第3粘着層と、を含む。このような表示装置は、例えば、粘着層付多層ウィンドウからはく離ライナーをはく離して、第3粘着層を介して多層ウィンドウと表示パネルまたは積層体とを接着させることによって得てもよい。
 本明細書中、ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウおよび表示装置の厚さ、これらを構成する部材または層の厚さは、ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、または表示装置の断面を切り出し、当該断面の走査型電子顕微鏡(Scanning Electron Microscope:SEM)による画像に基づいて測定される平均厚さを意味する。平均厚さは、上記断面の画像において、任意の複数箇所(例えば、5箇所)で厚さを測定し、平均化することによって求められる。
 表示装置では、表示パネルの高い視認性を確保する観点から、多くの場合、表示パネルよりも視認側に位置する部材(または層)もしくはその材料には、透明な部材(または層)もしくは透明な材料が使用される。透明な部材(または層)とは、全光線透過率が80%以上である部材(または層)を意味する。全光線透過率はJIS K 7136K:2000に準拠して測定できる。透明な材料とは、この透明な材料で形成される表示装置を構成する部材(または層)の全光線透過率が80%以上である材料を意味する。
[多層ウィンドウ]
(第1基材)
 (第1樹脂フィルム)
 第1基材は、例えば、第1樹脂フィルムを含む。第1基材には、通常、ガラスは含まれない。第1樹脂フィルムとしては、例えば、透明樹脂フィルムが挙げられる。
 第1樹脂フィルムの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M1は、例えば、3GPa以上10GPa以下であり、3GPa以上8GPa以下であってもよい。M1がこのような範囲である場合、第1基材の高い硬度が得られ易く、耐擦傷性を高めやすい。
 第1樹脂フィルムの引張貯蔵弾性率の平均値M1は、第1樹脂フィルムの測定用サンプルを用い、引張貯蔵弾性率の25℃における周波数分散データを求めたときの、2kHz以上20kHz以下の周波数範囲における平均値である。
 より具体的には、まず、測定用サンプルを用いて、下記の装置により下記の条件で試験を行う。下記の複数の周波数で、サンプルの引張貯蔵弾性率を測定し、周波数毎の温度分散のデータを取得する。
 装置:日立ハイテクサイエンス社製 多機能動的粘弾性測定装置 DMS6100
 温度範囲:-150℃~+100℃
 昇温速度:2℃/min
 モード:引張
 サンプル幅:10mm
 チャック間距離:20mm
 周波数:1Hz、2Hz、5Hz、10Hz、20Hz、28Hz
 歪振幅:10μm
 雰囲気:N(流速:250mL/min)
 得られた温度分散のデータを、上記測定装置に搭載された解析ソフト「Muse」の「マスターカーブ解析」に従って、25℃における周波数分散のデータに相当するマスターカーブを得る。このマスターカーブから、2kHz以上20kHz以下の周波数範囲における平均値を求め、引張貯蔵弾性率の平均値M1とする。
 なお、測定用サンプルは、第1樹脂フィルムを準備し、長さ50mm×幅10mmの形状にカットすることにより作製される。分析対象の第1樹脂フィルムを単独で入手できない場合には、多層ウィンドウまたは表示パネルから第1樹脂フィルムを取り出してサンプルが作製される。第1樹脂フィルムのカットには、例えば、ダンベル社製の多目的試験片裁断機が用いられる。
 第1樹脂フィルムの厚さT1は、例えば、20μm以上200μm以下であり、30μm以上100μm以下であってもよい。M1が3GPa以上10GPa以下である場合に、T1を30μm以上100μm以下とすると、第1基材の高い硬度を確保し易いため、多層ウィンドウの視認側の表面における耐擦傷性を高める上で有利である。
 表示装置のウィンドウには、高い透明性(高い全光線透過率および低いへイズなど)、および高い硬度が求められる。第1樹脂フィルムの材質には、これらの物性を満たすものが使用される。透明樹脂フィルムを構成する樹脂としては、例えば、ポリイミド樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート樹脂など)、アクリル樹脂、および環状ポリオレフィン樹脂からなる群より選択される少なくとも一種が挙げられる。しかし、透明樹脂フィルムを構成する樹脂はこれらのみに限定されない。より高い硬度が得られ易く、多層ウィンドウの視認側の表面における高い耐擦傷性を確保し易い観点から、第1樹脂フィルムは、ポリイミド樹脂を含んでもよい。
 (ハードコート層)
 第1基材は、ハードコート層を含んでもよい。第1基材の破損を防止し易い観点から、ハードコート層は、少なくとも第1樹脂フィルムの視認側の表面に設けられていてもよい。
 ハードコート層の厚みは、例えば、1μm以上100μm以下であり、1μm以上50μm以下であってもよい。多層ウィンドウが複数のハードコート層を含む場合、各ハードコート層の厚みは上記の範囲で設定してもよい。
 ハードコート層は、例えば、硬化性のコーティング剤を下地となる層(例えば、第1樹脂フィルム)の表面に塗布し、硬化させることにより形成される。
 コーティング剤としては、例えば、光学フィルム用途のコーティング剤が利用できる。コーティング剤として、例えば、アクリル系コーティング剤、メラミン系コーティング剤、ウレタン系コーティング剤、エポキシ系コーティング剤、シリコーン系コーティング剤、無機系コーティング剤が挙げられるが、これらのみに限定されない。コーティング剤は、ハードコート層に用いられる公知の添加剤を含んでもよい。
(第1粘着層)
 第1基材と第2基材との間に介在する第1粘着層の25℃における押込み弾性率は、例えば、0.01MPa以上2MPa以下であり、0.02MPa以上1.5MPa以下であってもよい。押込み弾性率がこのような範囲である場合、第1粘着層によって衝撃による応力を吸収し易く、衝撃吸収性が高まることに加え、第1粘着層が適度な硬さを有することで、吸収しきれなかった応力は第2基材に分散されて伝わる。衝撃による応力を吸収または分散する効果がさらに高まる観点からは、押込み弾性率は、0.01MPa以上(または0.05MPa以上)1MPa以下であってもよく、0.05MPa以上0.5MPa以下であってもよい。
 第1粘着層の押込み弾性率は、測定用サンプルを用いて、ナノインデンター法によって測定できる。測定は、下記の条件で、測定用サンプルの第1粘着層を側面から圧子で押圧し、求められる荷重-変位曲線を解析することによって行われる。
 装置:Triboindenter(Hysitron Inc.製)
 サンプルサイズ:縦10mm×横10mm
 圧子:Concial(球形圧子:曲率半径10μm)
 測定方法:単一押し込み測定
 測定温度:25℃
 圧子の押込深さ:5000nm
 解析:荷重-変位曲線に基づくOliver Pharr解析
 測定用サンプルとしては、第1基材と第1粘着層との積層体(縦10mm×横10mm)の側面に集束イオンビーム(Focused Ion Beam:FIB)加工を行ったサンプルが用いられる。分析対象の積層体について第1基材と第1粘着層を構成する粘着剤とを入手できない場合には、多層ウィンドウや表示装置を上記のサイズにカットし、側面にFIB加工を行うことによって作製したサンプルを用いてもよい。FIB加工は、下記の条件で行われる。
 FIB加工装置:Thermo Fisher Scientific社製,Helios G4 UX
 加速電圧:FIB 30kV
 加工温度:-160℃
 加工後、サンプルを室温に戻して装置から取り出し、その後、FIB加工された第1粘着層の側面から圧子を押し込むことによって押込み弾性率の測定を行う。
 第1粘着層の25℃におけるせん断貯蔵弾性率は、例えば、上述の範囲である。第1粘着層の25℃におけるせん断貯蔵弾性率は、例えば、0.005MPa以上0.2MPa以下であってもよく、0.01MPa以上0.1MPa以下であってもよい。
 本明細書中、粘着層のせん断貯蔵弾性率は、JIS K 7244-1:1998に準拠して測定できる。具体的には、まず、粘着層または粘着層を構成する粘着剤を用いて、厚さ約1.5mmの成形物を作製する。この成形物を直径7.9mmの円盤状に打ち抜いて、試験片を作製する。この試験片を、パラレルプレートに挟み込み、動的粘弾測定装置(例えば、Rheometric Scientific社製「Advanced Rheometric Expansion System(ARES)」)を用いて、下記の条件で粘弾性の測定を行い、25℃におけるせん断貯蔵弾性率を求める。なお、接着層の貯蔵弾性率も、粘着層の場合に準じて求められる。
 (測定条件)
 変形モード:ねじり
 測定周波数:1Hz
 測定温度:-40℃~+150℃
 昇温速度:5℃/分
 第1粘着層は、粘着剤により構成される。粘着剤の種類は特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、およびセルロース系粘着剤が挙げられる。粘着剤は、例えば、ベースポリマー、架橋剤、添加剤(例えば、粘着付与剤、カップリング剤、重合禁止剤、架橋遅延剤、触媒、可塑剤、軟化剤、充填剤、着色剤、金属粉、紫外線吸収剤、光安定剤、酸化防止剤、劣化防止剤、界面活性剤、帯電防止剤、表面潤滑剤、レベリング材、腐食防止剤、無機または有機系材料の粒子(金属化合物粒子(金属酸化物粒子など)、樹脂粒子など))を含んでもよい。粘着剤の構成成分は、これらのみに限定されない。
 第1粘着層の厚さは、5μm以上(または10μm以上)50μm以下であってもよく、10μm以上40μm以下(または30μm以下)であってもよい。第1粘着層の厚さがこのような範囲である場合、第1基材に衝撃が加わった場合に、第1粘着層によっても衝撃に伴う応力を吸収または分散することができる。
 第1粘着層は、例えば、下地となる層(第1樹脂フィルムまたは第2基材)の一方の主面を覆うように、第1粘着層を構成する粘着剤を塗布したり、シート状に成形された粘着剤を転写したりすることによって形成できる。
(第2基材)
 本開示のウィンドウ用基材に相当する第2基材は、ガラスと樹脂フィルム2Aとの積層構造を含む。第2基材を構成する部材または層には、高い透明性(高い全光線透過率および低いへイズなど)、および適度な柔軟性および硬さが求められる。各部材(または層)には、これらの物性を満たす部材(または層)が使用される。
 25℃でのペン落下試験で求められる第2基材の衝撃吸収率は、12%以上であり、12.5%以上であってもよい。第2基材の衝撃吸収率の上限は、特に制限されず、例えば、30%以下であってもよく、25%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 ペン落下試験は、25℃で、測定用サンプルの表面にボールペンのボールを下にして垂直落下させることによって行われる。サンプルは、視認側とは反対側の表面が加速度センサーの表面に接触するように配置される。ボールペンは、サンプルの視認側の表面に落下させる。SA値およびSB値は、積層体Aおよび積層体Bのそれぞれのサンプルのペン落下試験での衝撃荷重の経時変化を、ステンレス板上に載置した加速度センサーを用いて測定したときのピーク値に相当する。衝撃荷重の経時変化は、センサーに接続したレコーダで記録する。ペン落下試験および加速度センサーによる測定条件は下記の通りである。
 ボールペン:重さ7g、ボール直径0.7mm(ぺんてる株式会社製の油性ボールペン「BK407黒」)
 落下高さ:20cm
 加速度センサー:PCB社製のICP(登録商標)(Integrated Circuit Piezoelectric)センサー(モデル:480C02)
 レコーダ:日置電機株式会社製のメモリハイコーダ(モデル:MR8870)
 衝撃荷重の測定(保存)間隔:0.001ms
 測定時間:0.000ms~1.0ms
 積層体Bの測定用サンプルは、厚さ50μmの透明ポリイミドフィルム(引張貯蔵弾性率の平均値M1:6.5GPa)の一方の表面に厚さ10μmのアクリル系ハードコート層を形成し、他方の表面に厚さ25μmのアクリル系粘着層(押込み弾性率(25℃):0.11MPa、せん断貯蔵弾性率(25℃):0.03MPa)を形成し、得られる積層体(B1)を縦25mm×横25mmのサイズにカットすることによって形成される。より具体的には、積層体Bの測定用サンプルは、後述の実施例1の「(a)第1基材の作製」の手順で作製された第1基材を保護基材として用い、第1基材の視認側とは反対側の表面(ハードコート層とは反対側の表面)に、厚さ25μmのアクリル系粘着層を形成し、縦25mm×横25mmのサイズにカットすることによって形成される。アクリル系粘着層は、後述の実施例1の「(c)粘着剤の調製」の手順で調製されたアクリル系粘着組成物の層を、第1基材の視認側とは反対側の表面に転写することによって形成される。
 積層体Aの測定用サンプルは、分析対象のウィンドウ用基材(第2基材)の視認側の表面に、上記の手順で形成される積層体B1を、アクリル系粘着層を介して貼り付け、得られる積層体(積層体A1)を縦25mm×横25mmのサイズにカットすることによって形成される。分析対象のウィンドウ用基材(第2基材)もしくはこれを構成する材料または部材が入手できない場合には、多層ウィンドウや表示装置からウィンドウ用基材(第2基材)に該当する積層体の部分を剥離してサンプルを作製してもよい。
 なお、ペン落下試験におけるガラスまたはその周辺の欠陥(ガラスの割れまたはガラスのはく離など)は、上記の積層体Aのペン落下試験後に、積層体Aの視認側の表面から、光学顕微鏡を用いて確認される。
 第2基材は、視認側に配置されたガラスと樹脂フィルム2Aとの積層構造、視認側に配置された樹脂フィルム2Aとガラスとの積層構造、または視認側に配置された樹脂フィルム2Aと樹脂フィルム2Bとこれらの間に介在するガラスとの積層構造などを含んでもよい。
 第2基材が、視認側に配置されたガラスと樹脂フィルム2Aとを含む場合、ガラスと樹脂フィルム2Aとは、これらの間に介在する接着層2Aまたは粘着層2Aにより接着される。第2基材が、視認側に配置された樹脂フィルム2Aとガラスとを含む場合、樹脂フィルム2Aとガラスとは接着層2Aにより接着される。この場合、第2基材は、さらに樹脂フィルム2Bを含んでもよい。ガラスと樹脂フィルム2Bとは、粘着層2Bまたは接着層2Bにより接着される。
 (ガラス)
 第2基材に含まれるガラスとしては、例えば、薄ガラス基板が挙げられる。
 ガラスの厚さは、例えば、5μm以上60μm以下であり、10μm以上50μm以下であってもよく、10μm以上40μm以下であってもよい。
 ガラスの組成は、特に限定されない。ガラスの例は、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、および石英ガラスである。ガラスは、無アルカリガラスでもよく、低アルカリガラスでもよい。高い透明性が得られ易い観点から、ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の合計含有率は、例えば、15質量%以下であり、10質量%以下であってもよい。
 第1実施形態では、第2基材は、視認側に配置されたガラスと、樹脂フィルム2Aと、これらの間に介在する接着層2Aとを含む。第2実施形態では、第2基材は、視認側に配置されたガラスと、樹脂フィルム2Aと、これらの間に介在する粘着層2Aとを含む。第3実施形態では、視認側に配置された樹脂フィルム2Aと、ガラスと、これらの間に介在する接着層2Aとを含む。
 (接着層2A)
 接着層2Aの25℃における押込み弾性率は、0.1GPa以上10GPa以下であってもよく、1GPa以上10GPa以下であってもよく、2.5GPa以上7GPa以下であってもよい。第1実施形態では、接着層2Aの押込み弾性率がこのような範囲である場合、ガラスに加わった衝撃による応力が速やかに樹脂フィルム2Aに伝播され、樹脂フィルム2Aによってスムーズに吸収または分散することができる。第3実施形態では、接着層2Aの押込み弾性率が上記の範囲である場合、樹脂フィルム2Aとガラスとの間におけるはく離を抑制する効果が高まる。
 接着層2Aの押込み弾性率は、第1粘着層の押込み弾性率の場合に準じて測定できる。ただし、圧子としては、Berkovich(三角錐)を使用し、圧子の押込深さは50nmとする。測定用サンプルとしては、ガラスに接着層2Aのみを形成したサンプル(縦10mm×横10mm)が用いられる。ガラスに接着層2Aを構成する接着剤を塗布して完全に硬化させることによって、接着層2Aを形成し、得られた積層体をカットし、FIB加工することによって得られる。分析対象の接着層2Aを構成する接着剤が入手できない場合には、多層ウィンドウや表示装置から作製したサンプルを用いてもよい。
 接着層2Aの25℃におけるせん断貯蔵弾性率は、例えば、上述の範囲である。接着層2Aの25℃におけるせん断貯蔵弾性率は、100MPa以上15GPa以下であってもよく、500MPa以上10GPa以下であってもよい。
 接着層2Aは、例えば、下地となる層(具体的には、ガラスおよび樹脂フィルム2Aの一方)の主面に硬化型の接着剤を塗布し、他方を積層し、硬化させることによって形成できる。
 接着層2Aに用いられる接着剤としては、例えば、活性エネルギー線硬化型接着剤(紫外線硬化型接着剤、電子線硬化型接着剤など)、熱硬化型接着剤が挙げられる。このような接着剤としては、アクリル系接着剤、エポキシ系接着剤、ウレタン系接着剤などが挙げられる。しかし、接着剤は、これらのみに限定されない。
 接着層2Aの厚さは、例えば、0.5μm以上10μm以下であり、0.8μm以上5μm以下であってもよく、0.8μm以上(または1μm以上)2μm以下であってもよい。
 (粘着層2A)
 粘着層2Aの25℃における押込み弾性率は、例えば、0.01MPa以上2MPa以下であり、0.02MPa以上1.5MPa以下であってもよい。押込み弾性率がこのような範囲である場合、第2基材による衝撃吸収性が高まることに加え、粘着層2Aによって、衝撃による応力をさらに吸収または分散し易くなり、ガラスの割れを抑制する効果が高まる。より高い効果が得られる観点からは、押込み弾性率は、0.01MPa以上(または0.05MPa以上)以上1MPa以下であってもよく、0.05MPa以上0.5MPa以下であってもよい。
 粘着層2Aの押込み弾性率は、第1粘着層の押込み弾性率の場合に準じて測定できる。測定用サンプルとしては、ガラスに粘着層2Aを貼付した積層体を縦10mm×横10mmのサイズにカットし、側面にFIB加工を行ったサンプルが用いられる。分析対象の粘着層2Aが入手できない場合には、多層ウィンドウや表示装置から作製したサンプルを用いてもよい。
 粘着層2Aの25℃におけるせん断貯蔵弾性率は、例えば、上述の範囲であり、第1粘着層について記載した範囲から選択してもよい。
 粘着層2Aは、粘着剤により構成される。粘着剤としては、第1粘着層について記載した粘着剤が挙げられる。粘着剤の構成成分についても第1粘着層についての説明を参照できる。
 粘着層2Aの厚さは、5μm以上(または10μm以上)50μm以下であってもよく、10μm以上40μm以下(または30μm以下)であってもよい。粘着層2Aの厚さがこのような範囲である場合、衝撃による応力を粘着層2Aでもある程度吸収することができるとともに、吸収しきれない応力が樹脂フィルム2Aに伝わり易く、樹脂フィルム2Aにより応力を効果的に吸収または分散することができる。
 粘着層2Aは、例えば、下地となる層(ガラスまたは樹脂フィルム2A)の一方の主面を覆うように、粘着層2Aを構成する粘着剤を塗布したり、シート状に成形された粘着剤を転写したりすることによって形成できる。
 (樹脂フィルム2A)
 樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aは、例えば、0.1GPa以上10GPa以下であり、0.2GPa以上(または0.5GPa以上)6GPa以下であってもよく、0.8GPa以上3GPa以下(または2GPa以下)であってもよく、0.9GPa以上1.5GPa以下であってもよい。M2Aがこのような範囲である場合、樹脂フィルム2Aにおいて、衝撃による応力を吸収または分散するより高い効果が得られ易い。また、第2基材の高い衝撃吸収性を確保し易い。
 樹脂フィルム2Aの引張貯蔵弾性率の平均値M2Aは、樹脂フィルム2Aの測定用サンプルを用いる以外は、第1樹脂フィルムの場合と同様の手順で求められる。測定用サンプルは、樹脂フィルム2Aを準備し、長さ100mm×幅10mmの形状にカットすることにより作製される。樹脂フィルム2Aのカットには、例えば、ダンベル社製の多目的試験片裁断機が用いられる。分析対象の樹脂フィルム2Aを単独で入手できない場合には、第2基材、多層ウィンドウまたは表示パネルから取り出した樹脂フィルム2Aからサンプルが作製される。
 樹脂フィルム2Aの厚さT2Aは、30μm以上150μm以下であってもよく、40μm以上100μm以下であってもよく、40μm以上90μm以下であってもよい。
 M2AとT2Aと積が特定の範囲である場合に、優れた耐衝撃性が得られ易くなるとともに、ガラスまたはその周辺の欠陥を抑制し易くなる。特に、第2基材におけるガラスの位置、ガラスと樹脂フィルム2Aとの間の接着が接着層2Aによるか、または粘着層2Aによるか、などに応じて、M2AとT2Aと積が特定の範囲である場合には、より優れた耐衝撃性が得られ易くなるとともに、ガラスまたはその周辺の欠陥をさらに抑制し易くなる。
 より具体的には、第1実施形態では、M2A×T2Aは、50GPa・μm<M2A×T2A≦300GPa・μm、65GPa・μm≦M2A×T2A≦200GPa・μm、または70GPa・μm≦M2A×T2A≦200GPa・μmを充足してもよい。このような範囲では、樹脂フィルム2Aが適度に変形して衝撃による応力を吸収または分散することができ、ガラスの割れをより効果的に抑制することができる。上記の範囲において、M2A×T2Aは、250GPa・μm以下、150GPa・μm以下、または100GPa・μm以下であってもよい。
 第2実施形態では、M2A×T2Aは、40GPa・μm<M2A×T2A≦200GPa・μmであってもよく、50GPa・μm≦M2A×T2A≦200GPa・μmであってもよく、55GPa・μm≦M2A×T2A≦200GPa・μmであってもよく、60GPa・μm≦M2A×T2A≦200GPa・μmであってもよい。M2A×T2Aがこのような範囲である場合、優れた衝撃吸収性が得られるとともに、粘着層2Aおよび樹脂フィルム2Aの双方によって応力を速やかに吸収または分散することができる。また、樹脂フィルム2Aの変形が適度であるため、ガラスの割れをさらに抑制し易くなる。上記の範囲において、M2A×T2Aは、250GPa・μm以下、150GPa・μm以下、または100GPa・μm以下であってもよい。
 第3実施形態では、M2A×T2Aは、50GPa・μm≦M2A×T2A≦200GPa・μmであってもよく、55GPa・μm≦M2A×T2A≦200GPa・μmであってもよく、60GPa・μm≦M2A×T2A≦200GPa・μmであってもよい。M2A×T2Aがこのような範囲である場合、優れた衝撃吸収性が得られるとともに、接着界面における歪みが生じ難く、ガラスと樹脂フィルム2Aとの間におけるはく離を抑制する効果がさらに高まる。上記の範囲において、M2A×T2Aは、250GPa・μm以下、150GPa・μm以下、または100GPa・μm以下であってもよい。
 実施形態によって、樹脂フィルム2Aの厚さT2Aを特定の範囲とすることで、M2A×T2Aを上記の範囲に調節し易い。そのため、第2基材の層構造に適した柔軟性(または硬さ)を樹脂フィルム2Aに付与できる。
 例えば、第1実施形態では、樹脂フィルム2Aの厚さT2Aは、50μmを超え100μm以下であってもよく、60μm以上100μm以下であってもよく、70μm以上100μm以下であってもよい。第1実施形態において、樹脂フィルム2Aの厚さT2Aがこのような範囲である場合、樹脂フィルム2Aによる応力の吸収性または分散性をさらに高めることができる。上記のT2Aの範囲において、上限は、100μm未満であってもよく、90μm以下であってもよい。
 第2実施形態では、樹脂フィルム2Aの厚さT2Aは、40μm以上100μm以下であってもよく、50μm以上100μm以下(または100μm未満)であってもよく、50μm以上90μm以下であってもよい。第2実施形態において、樹脂フィルム2Aの厚さT2Aがこのような範囲である場合、粘着層2Aとともに樹脂フィルム2Aによって、衝撃による応力を、より吸収または分散し易くなる。
 第3実施形態では、樹脂フィルム2Aの厚さT2Aは、40μm以上100μm以下であってもよく、50μm以上100μm以下であってもよく、50μm以上90μm以下であってもよい。第3実施形態において、樹脂フィルム2Aの厚さT2Aがこのような範囲である場合、樹脂フィルム2Aによって衝撃による応力を吸収または分散する効果がさらに高まる。
 本開示において、樹脂フィルム2Aとしては、例えば、適度な柔軟性(および硬さ)を有する透明樹脂フィルムが挙げられる。樹脂フィルム2Aを構成する樹脂としては、ポリエステル樹脂、アクリル樹脂、および環状ポリオレフィン樹脂からなる群より選択される少なくとも一種が挙げられる。しかし、透明樹脂フィルムを構成する樹脂はこれらのみに限定されない。適度な柔軟性(および硬さ)が得られ易い観点からは、樹脂フィルム2Aは、ポリエステル樹脂を含むことが好ましい。特に、樹脂フィルム2Aは、25℃における押込み弾性率が0.2GPa以上1.5GPa以下(好ましくは0.3GPa以上1.5GPa以下(または1GPa以下))のポリエステルフィルムであることが好ましい。このような押込み弾性率を示すポリエステルフィルムまたはこのフィルムを構成するポリエステルを、それぞれ、本明細書では、軟質ポリエステルフィルムまたは軟質ポリエステルと称することがある。
 軟質ポリエステルフィルムの押込み弾性率は、第1粘着層の場合に準じて測定できる。ただし、圧子としては、Berkovich(三角錐)を使用する。測定用のサンプルとしては、ガラスに接着剤を塗布して軟質ポリエステルフィルムを接着し、接着剤を完全に硬化させ、得られる積層体を、縦10mm×横10mmのサイズにカットし、側面をFIB加工することによって得られるサンプルが用いられる。分析対象の軟質ポリエステルフィルムが入手できない場合には、多層ウィンドウや表示装置から作製したサンプルを用いてもよい。
 軟質ポリエステルは、例えば、脂肪族または鎖状のモノマー単位(環構造を有さないモノマー単位など)を含んでもよい。また、軟質ポリエステルは、必要に応じて、可塑剤を含んでもよい。厚さ100μmの軟質ポリエステルフィルムのISO527-3に準拠した引張弾性率は、100MPa以上であってもよく、200MPa以上または250MPa以上であってもよく、400MPa以上または500MPa以上であってもよい。樹脂フィルム2Aを構成する軟質ポリエステルフィルムは、未延伸フィルムであってもよく、押出成形フィルムであってもよく、射出成形フィルムであってもよい。
 本開示において、第2基材に含まれる樹脂フィルム2Aの25℃における押込み弾性率は、0.1GPa以上5GPa以下(または4.5GPa以下)であってもよく、0.2GPa以上2GPa以下であってもよく、0.2GPa以上1.5GPa以下であってもよく、0.3GPa以上1.5GPa以下(または1GPa以下)であってもよい。押込み弾性率がこのような範囲である場合、第2基材のより高い衝撃吸収性が得られ易いことに加え、樹脂フィルム2Aによって応力を吸収または分散する効果がさらに高まる。
 樹脂フィルム2Aの押込み弾性率は、第1粘着層の押込み弾性率の場合に準じて測定できる。ただし、圧子としては、Berkovich(三角錐)を使用する。測定用サンプルとしては、ガラスに接着剤を塗布して樹脂フィルム2Aを接着し、接着剤を完全に硬化させ、得られる積層体を、縦10mm×横10mmのサイズにカットし、側面をFIB加工することによって得られるサンプルが用いられる。分析対象の樹脂フィルム2Aが入手できない場合には、多層ウィンドウや表示装置から作製したサンプルを用いてもよい。
 樹脂フィルム2Aの周波数10Hzおよび25℃における引張貯蔵弾性率は、0.1GPa以上10GPa以下であってもよく、0.2GPa以上5GPa以下であってもよく、0.2GPa以上2GPa以下(または1GPa以下)であってもよい。周波数10Hzのときの樹脂フィルム2Aの引張貯蔵弾性率がこのような範囲である場合、樹脂フィルム2Aが適度に変形して、応力を吸収または分散する効果が得られ易く、応力による歪みが蓄積され難い。樹脂フィルム2Aの周波数10Hzおよび25℃における引張貯蔵弾性率は、樹脂フィルム2Aの引張貯蔵弾性率の平均値M2Aの場合に準じて求められる。ただし、測定周波数は10Hzとする。
 (樹脂フィルム2B)
 第3実施形態では、ガラスが樹脂フィルム2Aに対して視認側とは反対側に配置されており、このガラスに対して樹脂フィルム2Bを積層してもよい。換言すると、第2基材は、さらに、ガラスの視認側とは反対側に配置された樹脂フィルム2Bを含んでもよい。ガラスと樹脂フィルム2Bとの間には、粘着層2Bまたは接着層2Bを介在させる。樹脂フィルム2Bによって、ガラスの保護効果を高めることができる。
 樹脂フィルム2Bとしては、例えば、適度な柔軟性(および硬さ)を有する透明樹脂フィルムが挙げられる。樹脂フィルム2Bを構成する樹脂としては、ポリエステル樹脂、アクリル樹脂、および環状ポリオレフィン樹脂からなる群より選択される少なくとも一種が挙げられる。しかし、透明樹脂フィルムを構成する樹脂はこれらのみに限定されない。適度な柔軟性(および硬さ)が得られ易い観点からは、樹脂フィルム2Bは、軟質ポリエステルフィルムであることが好ましい。軟質ポリエステルは、例えば、脂肪族または鎖状のモノマー単位(環構造を有さないモノマー単位など)を含んでもよい。軟質ポリエステルおよび軟質ポリエステルフィルムとしては、それぞれ、例えば、樹脂フィルム2Aについて記載した軟質ポリエステルおよび軟質ポリエステルフィルムを使用してもよい。
 樹脂フィルム2Bの厚さT2Bは、30μm以上150μm以下であってもよい。軟質ポリエステルを含む樹脂フィルム2Bの厚さT2Bは、40μm以上100μm以下であってもよく、50μm以上100μm以下(または90μm以下)であってもよい。この場合、衝撃による応力が樹脂フィルム2Bにまで伝わった場合でも、応力を吸収または分散することができ、ガラスを保護する効果がさらに高まる。
 (粘着層2Bおよび接着層2B)
 粘着層2Bについては、第1粘着層または粘着層2Aについての説明を参照できる。粘着層2Bの25℃における押込み弾性率、25℃におけるせん断貯蔵弾性率、厚さは、粘着層2Aについて記載した範囲または第1粘着層について記載した範囲から選択してもよい。押込み弾性率は粘着層2Aの場合に準じて測定できる。粘着層2Bを構成する粘着剤としては、第1粘着層について記載した粘着剤が挙げられ、粘着剤の構成成分についても第1粘着層についての説明を参照できる。粘着層2Bは、例えば、下地となる層(ガラスまたは樹脂フィルム2B)の一方の主面を覆うように、粘着層2Bを構成する粘着剤を塗布したり、シート状に成形された粘着剤を転写したりすることによって形成できる。第1粘着層、粘着層2Aおよび粘着層2Bの少なくとも2つを構成する粘着剤は同じであってもよく、各層を構成する粘着剤は全て異なっていてもよい。
 接着層2Bについては、接着層2Aについての説明を参照できる。接着層2Bの25℃における押込み弾性率、25℃におけるせん断貯蔵弾性率、厚さは、接着層2Aについて記載した範囲から選択してもよい。接着層2Bは、例えば、下地となる層(ガラスおよび樹脂フィルム2Bの一方)の主面に硬化型の接着剤を塗布し、他方を積層し、硬化させることによって形成できる。接着層2Bを形成する接着剤としては、接着層2Aについて記載した接着剤から選択してもよい。接着層2Aおよび接着層2Bのそれぞれを形成する接着剤は同じであってもよく、異なっていてもよい。
 (その他)
 多層ウィンドウは、必要に応じて、第1樹脂フィルム、樹脂フィルム2Aおよび2B、ハードコート層、ガラス、第1粘着層、接着層2Aおよび2B、粘着層2Aおよび2B以外の他の層(以下、層Aと称する。)を含んでもよい。層Aとしては、反射防止層、防眩層、防汚層、スティッキング防止層、色相調整層、帯電防止層、易接着層、イオンまたはオリゴマー等の析出防止層、飛散防止層、加飾層などが挙げられる。多層ウィンドウは、層Aを1層含んでいてもよく、複数層含んでいてもよい。層Aは、層Aの機能に応じて、第1基材が含んでもよく、第2基材の視認側とは反対側の表面に積層されていてもよい。第1基材が層Aを含む場合、層Aは、例えば、第1樹脂フィルムよりも視認側に配置される。層Aは、層Aと接触する層上に、コーティングなどにより直接形成されていてもよく、接着層または粘着層を介して積層されていてもよい。
 多層ウィンドウの厚さは、例えば、50μm以上600μm以下であり、100μm以上300μm以下であってもよい。
[粘着層付多層ウィンドウ]
(第3粘着層)
 本開示の粘着層付多層ウィンドウでは、本開示の上記多層ウィンドウの視認側とは反対側の表面に第3粘着層が配置されている。
 第3粘着層については、第1粘着層または粘着層2Aについての説明を参照できる。第3粘着層の25℃における押込み弾性率、25℃におけるせん断貯蔵弾性率、厚さは、粘着層2Aについて記載した範囲または第1粘着層について記載した範囲から選択してもよい。
 第3粘着層の押込み弾性率は、第1粘着層の押込み弾性率の場合に準じて測定できる。測定用サンプルとしては、ガラスに第3粘着層を貼り付け、得られる積層体を、縦10mm×横10mmのサイズにカットし、側面をFIB加工することによって得られるサンプルが用いられる。分析対象の第3粘着層が入手できない場合には、多層ウィンドウや表示装置から作製したサンプルを用いてもよい。
 第3粘着層を構成する粘着剤としては、第1粘着層について記載した粘着剤が挙げられ、粘着剤の構成成分についても第1粘着層についての説明を参照できる。第3粘着層は、例えば、下地となる層(多層ウィンドウの視認側とは反対側の表面またははく離ライナーの一方の主面)を覆うように、第3粘着層を構成する粘着剤を塗布したり、シート状に成形された粘着剤を転写したりすることによって形成できる。
 第3粘着層を多層ウィンドウの視認側とは反対側の表面に形成した場合には、第3粘着層の視認側とは反対側の表面をはく離ライナーで覆うように、はく離ライナーを第3粘着層に貼り付けることによって、粘着層付多層ウィンドウが形成される。はく離ライナーの一方の主面に第3粘着層を形成した場合には、はく離ライナーに保持された第3粘着層を多層ウィンドウの視認側とは反対側の表面に貼り付けることによって粘着層付多層ウィンドウが形成される。
 第3粘着層を構成する粘着剤は、第1粘着層、粘着層2Aおよび粘着層2Bの少なくとも1つを構成する粘着剤と同じであってもよく、各層を構成する粘着剤の全てと異なっていてもよい。
(はく離ライナー)
 はく離ライナーは、多層ウィンドウの視認側とは反対側の表面に第3粘着層を介して積層されている。
 はく離ライナーとしては、例えば、基材シートと基材シートの少なくとも一方の主面に配されたはく離剤とを備えるはく離シートが用いられる。基材シートは、例えば、第1基材フィルムとして例示した樹脂フィルムと同様の材料を任意に選択して用いることができる。はく離剤としては、公知のはく離剤(例えば、シリコーン系はく離剤、フッ素系はく離剤)が挙げられる。
[表示装置]
 本開示の表示装置は、上記の多層ウィンドウと、表示パネルまたは表示パネルを含む積層体と、これらの間に介在する第3粘着層とを含む。第3粘着層については、上記の粘着層付多層ウィンドウの第3粘着層の説明を参照できる。表示装置は、例えば、表示装置を構成する部材または層を積層することで形成してもよく、多層ウィンドウと表示パネルまたは表示パネルを含む積層体との一方の表面に第3粘着層を形成し、他方を貼り付けることで形成してもよい。また、粘着層付多層ウィンドウのはく離ライナーを第3粘着層からはく離して、露出した第3粘着層の表面に、表示パネルまたは表示パネルを含む積層体を多層ウィンドウに貼り付けることによって形成してもよい。
 (表示パネル)
 表示パネルとしては、例えば、画像表示パネルが挙げられる。画像表示パネルとしては、公知の画像表示パネルが使用される。画像表示パネルとしては、例えば、有機エレクトロルミネッセンス(EL:Electro Luminescence)パネルが挙げられる。しかし、表示パネルは、これらのみに限定されない。
 (表示パネルを含む積層体)
 積層体は、例えば、表示パネルと封止部材(薄膜封止層など)との積層体(第1積層体)であってもよい。封止部材は、通常、画像表示パネルの視認側の主面に直接配置されている。
 積層体は、表示パネルと保護部材との積層体(第2積層体)であってもよい。保護部材としては、例えば、パネル部材を保持または保護するシートまたはフィルム(もしくは基板)が挙げられる。保護部材としては、例えば、パネル部材を保持するとともに、パネル部材を保護するための適度な強度を有する保護部材が挙げられる。表示装置がフレキシブル画像表示装置である場合には、屈曲性を妨げない適度な柔軟性を有する保護部材が用いられる。保護部材としては、樹脂シートなどが用いられる。樹脂シートの材質は、特に制限されず、例えば、表示パネルの種類に応じて適宜選択できる。
 積層体は、タッチセンサ付パネル部材であってもよい。タッチセンサ付パネル部材は、例えば、タッチセンサと表示パネル(上記の表示パネルなど)とが一体化した構造を有する積層体(第3積層体)である。タッチセンサ付パネル部材は、上記の保護部材を備えていてもよい。タッチセンサ付パネル部材には、例えば、有機発光ダイオード(OLED:Organic Light Emitting Diode)の薄膜封止層上にメタルメッシュ電極の制電容量式タッチセンサを形成した構成の部材も包含される。タッチセンサとしては、後述のタッチセンサを用いてもよい。
 第1積層体および第2積層体のそれぞれは、さらにタッチセンサを含んでもよい。タッチセンサとしては、例えば、表示装置の分野などで用いられるタッチセンサが挙げられる。タッチセンサとして、例えば、抵抗膜方式、静電容量方式、光学方式、または超音波方式のものが挙げられる。しかし、タッチセンサは、これらのみに限定されない。
 例えば、静電容量方式のタッチセンサは、通常、透明導電層を備えている。このようなタッチセンサとしては、例えば、透明導電層と透明基材との積層体が挙げられる。透明基材としては、例えば、第1樹脂フィルムについて例示した樹脂を含む透明樹脂フィルムが挙げられる。
 タッチセンサは、必要に応じて、透明導電層および透明基材以外の他の層(以下、層Bと称する)を含んでもよい。例えば、透明導電層と透明基材との間に、層Bとして、アンダーコート層またはオリゴマー析出防止層を設けてもよい。また、透明導電層および透明基材の少なくとも一方の表面に、層Bを積層してもよい。ただし、層Bはこれらの層のみに限定されない。層Bは、必要に応じて、接着層または粘着層を介して、透明導電層または透明基材に積層してもよい。
 第1積層体、第2積層体および第3積層体のそれぞれは、さらに光学フィルムを含んでもよい。第1積層体および第2積層体のそれぞれは、タッチセンサと光学フィルム(具体的には、光学的機能を有するフィルム)とを含んでもよい。
 光学フィルムは、通常、光学的機能を有する少なくとも1つの層を含む積層体である。光学フィルムとしては、表示装置の分野などで利用されるものが挙げられる。光学的機能を有する層としては、例えば、光学異方性を有する層(例えば、光学異方性フィルム)が挙げられる。光学異方性を有する層としては、例えば、偏光子、位相差層、視野角拡大フィルム、視野角制限(覗き見防止)フィルム、輝度向上フィルム、光学補償フィルムが挙げられるが、これらのみに限定されない。2つ以上の層の積層体は、これらの光学異方性を有する層から選択される2つ以上を有する積層体であってもよい。2つ以上の層の積層体において、光学異方性を有する層の全てが異なる機能を有してもよく、少なくとも2つの層が同じ機能を有してもよい。例えば、積層体は、偏光子と位相差層とを含んでいてもよく、組成の異なる2つの位相差層を含んでもよい。
 光学フィルムは、少なくとも1つの光学的機能を有する層とこの層を保持する基材層(または保護する保護層)とを含んでいてもよい。例えば、層状の偏光子と偏光子を保持する基材層との積層体は、偏光板と呼ばれる。光学フィルムは、少なくとも偏光子または偏光板を含んでもよい。
 光学フィルムは、上述の光学異方性を有する層のうち、偏光子と、偏光子以外の光学異方性を有する少なくとも1つの層(以下、層Cと称する)と、必要により少なくとも1つの基材層とを備えていてもよい。光学フィルムは、偏光子と基材層との積層体を偏光板として有していてもよい。
 層Cは、基材層を介して偏光板に積層されていてもよく、基材層を介さずに偏光子に積層されていてもよい。
 偏光子としては、特に制限されず、画像表示装置の分野などで利用される偏光子が利用できる。偏光子としては、例えば、親水性高分子フィルムに二色性物質を吸着させて一軸延伸したフィルム、ポリエン系配向フィルムが挙げられる。親水性高分子フィルムを構成する親水性高分子としては、例えば、ポリビニルアルコール系樹脂(部分ホルマール化ポリビニルアルコール系樹脂も含む)、エチレン-酢酸ビニル共重合体の部分ケン化物が挙げられる。二色性物質としては、例えば、ヨウ素、二色性染料が挙げられる。ポリエン系配向フィルムを構成する材料としては、例えば、ポリビニルアルコール系樹脂の脱水処理物、ポリ塩化ビニル系樹脂の脱塩酸処理物が挙げられる。
 偏光子として、厚みが10μm以下の薄型偏光子を用いてもよい。薄型偏光子としては、例えば、特開昭51-069644号公報、特開2000-338329号公報、国際公開第2010/100917号パンフレット、特許第4691205号公報、特許第4751481号公報に記載されている偏光子が挙げられる。薄型偏光子は、例えば、ポリビニルアルコール系樹脂層と樹脂基材層とを積層させた状態で延伸する工程と、二色性材料により染色する工程とを含む製法により得られる。
 基材層としては、薄ガラス基板、透明樹脂フィルムなどが用いられる。透明樹脂フィルムを構成する樹脂としては、例えば、第1樹脂フィルムについて例示した樹脂が挙げられる。しかし、基材層を構成する樹脂は、これらのみに限定されない。
 図1~図3に、第1~第3実施形態の多層ウィンドウを含む表示装置を示す。以下に、各表示装置の層構造について説明する。しかし、本開示の表示装置は、これらの実施形態のみに限定されない。
 図1は、第1実施形態のウィンドウ用基材または多層ウィンドウを含む表示装置の概略断面図である。表示装置100は、多層ウィンドウW1と、表示パネル(または表示パネルを含む積層体)40と、これらの間に介在する第3粘着層33とを含む。多層ウィンドウW1は、視認側に配置された第1基材1と、第1基材1の視認側とは反対側に積層された第2基材(ウィンドウ用基材)2aと、これらの間に介在する第1粘着層13とを含む。第1基材1は、第1樹脂フィルム11と第1樹脂フィルム11の視認側の表面に形成されたハードコート層12とを含む。第1基材の視認側の表面(より具体的にはハードコート層12の表面)は、多層ウィンドウW1および表示装置100の視認側の表面に相当する。第1実施形態では、第2基材2aは、視認側に配置されたガラス22と、樹脂フィルム21(樹脂フィルム2A)と、これらの間に介在する接着層23(接着層2A)とを含む。第3粘着層33は、多層ウィンドウW1の樹脂フィルム21(樹脂フィルム2A)の視認側とは反対側の表面に形成されている。多層ウィンドウW1と第3粘着層33との積層体の第3粘着層33の視認側とは反対側の表面を覆うようにはく離ライナーを貼り付けた積層体は、粘着層付多層ウィンドウに相当する。例えば、このような粘着層付多層ウィンドウでは、はく離ライナーを第3粘着層33からはく離して、表示パネル(または表示パネルを含む積層体)40の視認側の表面に第3粘着層33を接着させるように多層ウィンドウW1を積層することで、表示装置100を形成できる。
 図2は、第2実施形態のウィンドウ用基材または多層ウィンドウを含む表示装置の概略断面図である。表示装置200は、多層ウィンドウW2と、表示パネル(または表示パネルを含む積層体)40と、これらの間に介在する第3粘着層33とを含む。図3は、第3実施形態のウィンドウ用基材または多層ウィンドウを含む表示装置の概略断面図である。表示装置300は、多層ウィンドウW3と、表示パネル(または表示パネルを含む積層体)40と、これらの間に介在する第3粘着層33とを含む。多層ウィンドウW2およびW3は、多層ウィンドウW1とはウィンドウ用基材(第2基材)の構成が異なるだけで、ウィンドウ用基材(第2基材)以外の構成は図1についての説明を参照できる。
 多層ウィンドウW2では、第2基材2bは、視認側に配置されたガラス22と、樹脂フィルム21(樹脂フィルム2A)と、これらの間に介在する粘着層24(粘着層2A)とを含む。
 多層ウィンドウW3では、第2基材2cは、視認側に配置された樹脂フィルム21(樹脂フィルム2A)と、ガラス22と、これらの間に介在する接着層23(接着層2A)とを含む。第3粘着層33は、多層ウィンドウW3のガラス22の視認側とは反対側の表面に形成されている。しかし、この場合に限らず、第3実施形態の多層ウィンドウW3は、さらに、ガラス22の視認側とは反対側の表面に、粘着層2Bまたは接着層2Bを介して積層された樹脂フィルム2Bを含んでもよい。この場合、第3粘着層33は、樹脂フィルム2Bの視認側とは反対側の表面に形成される。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例のみに限定されない。
《実施例1および比較例1~4》
(1)評価用サンプルの作製
 図1に示すような多層ウィンドウW1の評価用サンプルを以下の手順で作製した。
 (a)第1基材の作製
 第1基材1としては、第1樹脂フィルム11としての透明ポリイミドフィルム(KOLON社製、製品名「C_50」、厚さ(T1)50μm)の片面にアクリル系のハードコート層12(厚さ10μm)を設けたものを用いた。
 ハードコート層12は、ハードコート層用のコーティング剤を用いて形成した。より具体的には、まず、透明ポリイミドフィルムの片面にコーティング剤を塗布して塗布層を形成し、塗布層を透明ポリイミドフィルムとともに90℃で2分間加熱した。次いで、塗布層に高圧水銀ランプを用いて紫外線を積算光量300mJ/cmで照射することによってハードコート層12を形成した。このようにして第1基材1を作製した。
 なお、ハードコート層用のコーティング剤は、ベース樹脂としての多官能アクリレート(アイカ工業社製、製品名「Z-850-16」)100質量部、レベリング剤(DIC社製、商品名:GRANDIC PC-4100)5質量部、および光重合開始剤(IGM Resins B.V.社製、商品名:Omnirad 907)3質量部を混合し、乾燥固形分の割合が50質量%となるように、メチルイソブチルケトンで希釈することにより調製した。
 なお、既述の手順で求められる、第1樹脂フィルムの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M1は、7.5GPaであった。
 (b)第2基材の作製
 (b-1)接着剤の調製
 脂肪族脂環式エポキシ樹脂(セロキサイド2021P、エポキシ当量128~133g/eq.、株式会社ダイセル製)70質量部、3官能脂肪族エポキシ樹脂(EHPE3150、エポキシ当量170~190g/eq.、株式会社ダイセル製)5質量部、オキセタン系樹脂(アロンオキセタン(登録商標)、東亜合成株式会社製)19質量部、シランカップリング剤(KBM-403、3-グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製)4質量部、および光酸発生剤(CPI101A、トリアリールスルホニウム塩、サンアプロ株式会社製)2質量部を配合して、エポキシ接着剤組成物を調製した。
 (b-2)第2基材の作製
 ガラス22としては、薄ガラス板(日本電子硝子株式会社製、G-leaf(登録商標)、厚さ30μm)を準備した。樹脂フィルム21(樹脂フィルム2A)としては、表1に示す材質で形成された、表1に示す厚さT2Aを有するフィルムを準備した。各例で用いた表1に示す材質で形成された樹脂フィルム21は以下の通りである。なお、軟質ポリエステルを含む樹脂フィルム21は、軟質ポリエステルのみで形成されており、軟質ポリエステルの25℃における押込み弾性率は、表1に示される樹脂フィルム2Aの押込み弾性率と同じ値である。
 PES1:透明軟質ポリエステル(株式会社ベルポリエステルプロダクツ製、OKY200)製のフィルム(射出成形、未延伸、ISO527-3に準拠した厚さ100μmのシートの引張弾性率:271MPa)
 PES2:透明軟質ポリエステル(株式会社ベルポリエステルプロダクツ製、OKY300)製のフィルム(射出成形、未延伸、ISO527-3に準拠した厚さ100μmのシートの引張弾性率:561MPa)
 TPU:ポリウレタンエラストマーシート(シーダム株式会社製、DUS605)
 PET:ポリエチレンテレフタレートフィルム(三菱ケミカル株式会社製、二軸延伸フィルム、ダイアホイル(登録商標)S100)
 比較例1では、第2基材として、上記の薄ガラス板(日本電子硝子株式会社製、G-leaf(登録商標)、厚さ30μm)のみを用いた。
 実施例1および比較例2~4では、次の手順で第2基材を作製した。まず、ガラス22の片方の表面に、上記(b-1)で調製したエポキシ接着剤組成物を塗布し、得られた塗膜をガラス22と樹脂フィルム21(樹脂フィルム2A)とで挟むように、樹脂フィルム21を重ねた。この状態で、紫外線を、ガラス22側から塗膜に照射することによって、硬化させ、ガラス22と樹脂フィルム21とに挟まれた接着層2Aを形成した。既述の手順で測定される接着層2Aの厚さは1μmであった。このようにして第2基材2aを作製した。なお、既述の手順で求められる接着層2Aの25℃における押込み弾性率は、4.9GPaであった。
 (c)粘着剤の調製
 下記の手順で、アクリル系粘着剤組成物を調製した。
 (アクリル系オリゴマーの調製)
 モノマー成分としてメタクリル酸ジシクロペンタニル60質量部およびメタクリル酸メチル40質量部、連鎖移動剤としてα-チオグリセロール3.5質量部、および重合溶媒としてトルエン100質量部を混合し、窒素雰囲気下にて70℃で1時間撹拌した。次に、熱重合開始剤として2,2’-アゾビスイソブチロニトリル0.2質量部を投入し、70℃で2時間反応させた後、80℃に昇温して2時間反応させた。その後、反応液を130℃に加熱して、トルエン、連鎖移動剤および未反応モノマーを乾燥除去して、固形状のアクリル系オリゴマーを得た。アクリル系オリゴマーの重量平均分子量は5100であり、ガラス転移温度(Tg)は130℃であった。
 (ベースポリマー組成物の調製)
 ラウリルアクリレート43質量部、2-エチルヘキシルアクリレート44質量部、4-ヒドロキシブチルアクリレート6質量部、およびN-ビニル-2-ピロリドン7質量部、ならびに光重合開始剤としてIGM Resins B.V.社製「Omnirad 184」0.015質量部を混合し、紫外線を照射して重合を行うことにより、ベースポリマー組成物(重合率:約10%)を得た。
 (アクリル系粘着剤の調製)
 上記のベースポリマー組成物100質量部に、1,6-ヘキサンジオールジアクリレート0.07質量部、上記のアクリル系オリゴマー1質量部、およびシランカップリング剤(信越化学工業(株)製「KBM403J」)0.3質量部を添加し、均一に混合することにより、アクリル系粘着剤を調製した。
 (d)多層ウィンドウの作製
 上記(a)で得られた第1基材1の第1樹脂フィルム11の表面(視認側とは反対側の表面)に、上記(c)で調製したアクリル系粘着剤の層を転写することによって、第1粘着層13を形成した。第1粘着層13を挟むように、第1基材1に上記(b)で作製した第2基材2aを重ねることによって、多層ウィンドウW1を作製した。第1粘着層13の厚さは25μmであった。既述の手順で求められる第1粘着層の、25℃における押込み弾性率は、0.11MPaであり、25℃におけるせん断貯蔵弾性率は、0.03MPaであった。なお、比較例1では、第2基材2aに代えて、薄ガラス板を重ねることによって、多層ウィンドウを作製した。
(2)評価
 得られた多層ウィンドウ(上述の積層体A1に相当)、第1基材と第1粘着層との積層体(上述の積層体B1に相当)、第2基材または樹脂フィルム2Aを用いて、下記の評価を行った。
 (a)押込み弾性率、引張貯蔵弾性率
 既述の手順で、樹脂フィルム2Aの25℃における、押込み弾性率(GPa)、10Hzにおける引張貯蔵弾性率(GPa)、および引張貯蔵弾性率の平均値M2A(GPa)を求めた。また、M2Aと厚さT2Aとから、これらの積M2A×T2Aの値(GPa・μm)を算出した。
 (b)第2基材の衝撃吸収率
 既述の手順で、25℃にて積層体Aおよび積層体Bのサンプルを用いてペン落下試験を行い、各サンプルの衝撃荷重のピーク値SAおよびSBを求めた。これらのピーク値から、既述の手順で、第2基材の衝撃吸収率(%)を算出した。
 (c)ガラスまたはその周辺の欠陥
 上記(b)の積層体Aのペン落下試験において、試験後のガラスの割れおよびガラスと樹脂フィルム2Aとの間の剥がれの状態を、積層体Aの視認側の表面から光学顕微鏡で観察し、下記の基準で評価した。評価は、各例につき、3つのサンプル(積層体A)について行った。
 (ガラスの割れ)
 A:3つのサンプルの全てでガラスの割れが見られない。
 B:3つのサンプル中、2つでガラスの割れが見られない。
 C:3つのサンプル中、2つ以上でガラスの割れが見られる。
 (ガラスとフィルムとの間のはく離)
 A:3つのサンプルの全てでガラスと樹脂フィルム2Aとの間における剥がれが見られない。
 B:3つのサンプル中、2つでガラスと樹脂フィルム2Aとの間における剥がれが見られない。
 C:3つのサンプル中、2つ以上でガラスと樹脂フィルム2Aとの間における剥がれが見られる。
《実施例2~3および比較例5~6》
 実施例1の場合に準じて、図2に示すような多層ウィンドウW2を作製した。ウィンドウ用基材(第2基材)としては、ガラス22と、表1に示す材質で形成された樹脂フィルム2Aとを、実施例1の(c)で調製したアクリル系粘着剤組成物を用いて接着することによって形成した粘着層2Aを含む第2基材2bを用いた。これら以外は、実施例1の場合と同様に、多層ウィンドウを作製し、評価を行った。既述の手順で測定される25℃における粘着層2Aの押込み弾性率は、0.11MPaであり、25℃におけるせん断貯蔵弾性率は、0.03MPaであり、厚さは、25μmであった。
《実施例4~5および比較例7》
 実施例1の場合に準じて、図3に示すような多層ウィンドウW3を作製した。実施例1の場合に準じて作製した第1基材1と第2基材とを、第1粘着層13で接着する際に、第2基材の樹脂フィルム21(樹脂フィルム2A)側の表面が第1粘着層13と接触するように第1基材1と第2基材(第2基材2c)とを重ね合わせた。これ以外は、実施例1の場合と同様に、多層ウィンドウを作製し、評価を行った。
 実施例および比較例の結果を表1に示す。表1において、実施例1~5は、E1~E5であり、比較例1~7は、C1~C7である。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、第2基材の構成がいずれの場合にも、実施例では、第2基材の衝撃吸収率が高く(12%以上であり)、ガラスまたはその周辺における欠陥が抑制されていた。それに対して、比較例では、第2基材の衝撃吸収率が低いか、もしくはガラスまたはその周辺において欠陥の抑制効果が低くなった。このように、実施例では、ガラスを含むにも拘わらず、衝撃吸収率に優れ、ガラスまたはその周辺における欠陥が抑制された第2基材(ウィンドウ用基材)または多層ウィンドウが得られる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示のウィンドウ用基材は表示装置のウィンドウ部材の基材として用いるのに適している。ウィンドウ用基材を含む多層ウィンドウは、表示装置のウィンドウ部材として用いるのに適している。しかし、ウィンドウ用基材および多層ウィンドウの用途は、必ずしも、これらのみに限定されない。
100,200,300:表示装置
W1,W2,W3:多層ウィンドウ
1:第1基材
11:第1樹脂フィルム
12:ハードコート層
13:第1粘着層
2a,2b,2c:第2基材(ウィンドウ用基材)
21:樹脂フィルム2A
22:ガラス
23:接着層2A
24:粘着層2A
33:第3粘着層
40:表示パネルまたは表示パネルを含む積層体

Claims (20)

  1.  ガラスと樹脂フィルム2Aとが積層された構造を含むウィンドウ用基材であって、
     25℃でのペン落下試験で求められる前記ウィンドウ用基材の衝撃吸収率は12%以上であり、
     前記ペン落下試験において、前記ガラスの割れおよび前記ガラスと前記樹脂フィルム2Aとのはく離のいずれも生じない、ウィンドウ用基材。
  2.  前記樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと前記樹脂フィルム2Aの厚さT2Aとの積:M2A×TA2は、50GPa・μm≦MA2×TA2≦250GPa・μmを充足する、請求項1に記載のウィンドウ用基材。
  3.  視認側に配置された前記ガラスと、前記樹脂フィルム2Aと、前記ガラスおよび前記樹脂フィルム2Aの間に介在する接着層2Aとを含み、
     前記樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと前記樹脂フィルム2Aの厚さT2Aとの積:M2A×T2Aは、70GPa・μm≦M2A×T2A≦200GPa・μmを充足する、請求項1または2に記載のウィンドウ用基材。
  4.  前記樹脂フィルム2Aの厚さT2Aは、60μm以上100μm以下である、請求項3に記載のウィンドウ用基材。
  5.  視認側に配置された前記ガラスと、前記樹脂フィルム2Aと、前記ガラスおよび前記樹脂フィルム2Aの間に介在する粘着層2Aとを含み、
     前記樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと前記樹脂フィルム2Aの厚さT2Aとの積:M2A×T2Aは、50GPa・μm≦M2A×T2A≦200GPa・μmを充足する、請求項1または2に記載のウィンドウ用基材。
  6.  前記粘着層2Aの25℃における押込み弾性率は、0.05MPa以上1MPa以下である、請求項5に記載のウィンドウ用基材。
  7.  視認側に配置された前記樹脂フィルム2Aと、前記ガラスと、前記樹脂フィルム2Aおよび前記ガラスの間に介在する接着層2Aとを含み、
     前記樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aと前記樹脂フィルム2Aの厚さT2Aとの積:M2A×T2Aは、50GPa・μm≦M2A×T2A≦200GPa・μmを充足する、請求項1または2に記載のウィンドウ用基材。
  8.  さらに、前記ガラスの視認側とは反対側に配置された樹脂フィルム2Bと、前記ガラスと前記樹脂フィルム2Bとの間に介在する粘着層2Bまたは接着層2Bとを含む、請求項7に記載のウィンドウ用基材。
  9.  前記樹脂フィルム2Bの厚さT2Bは、40μm以上100μm以下である、請求項8に記載のウィンドウ用基材。
  10.  前記樹脂フィルム2Bは、25℃における押込み弾性率が0.2GPa以上1.5GPa以下のポリエステルフィルムである、請求項8または9に記載のウィンドウ用基材。
  11.  前記樹脂フィルム2Aの厚さT2Aは、40μm以上100μm以下である、請求項5~10のいずれか1項に記載のウィンドウ用基材。
  12.  前記接着層2Aの25℃における押込み弾性率は、0.1GPa以上10GPa以下である、請求項3、4、および7~11のいずれか1項に記載のウィンドウ用基材。
  13.  前記樹脂フィルム2Aの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M2Aは、0.1GPa以上10GPa以下である、請求項1~12のいずれか1項に記載のウィンドウ用基材。
  14.  前記樹脂フィルム2Aは、25℃における押込み弾性率が0.2GPa以上1.5GPa以下のポリエステルフィルムである、請求項1~13のいずれか1項に記載のウィンドウ用基材。
  15.  第1基材と、第2基材としての請求項1~14のいずれか1項に記載のウィンドウ用基材と、前記第1基材および前記第2基材の間に介在する第1粘着層とを少なくとも含む多層ウィンドウであって、
     前記第1基材は、前記多層ウィンドウの視認側の表面を含む、多層ウィンドウ。
  16.  前記第1粘着層の25℃における押込み弾性率は、0.05MPa以上1MPa以下である、請求項15に記載の多層ウィンドウ。
  17.  前記第1基材は、第1樹脂フィルムを含み、
     前記第1樹脂フィルムの25℃および2kHz以上20kHz以下の周波数範囲における引張貯蔵弾性率の平均値M1は、3GPa以上10GPa以下であり、
     前記第1樹脂フィルムの厚さT1は、30μm以上100μm以下である、請求項15または16に記載の多層ウィンドウ。
  18.  前記第1樹脂フィルムは、ポリイミド樹脂を含む、請求項15~17のいずれか1項に記載の多層ウィンドウ。
  19.  請求項15~18のいずれか1項に記載の多層ウィンドウと、
     前記多層ウィンドウの視認側とは反対側に積層されたはく離ライナーと、
     前記多層ウィンドウと前記はく離ライナーとの間に介在する第3粘着層と、を含む、粘着層付多層ウィンドウ。
  20.  請求項15~18のいずれか1項に記載の多層ウィンドウと、
     前記多層ウィンドウの視認側とは反対側に積層された表示パネルまたは表示パネルを含む積層体と、
     前記多層ウィンドウと前記表示パネルまたは前記積層体との間に介在する第3粘着層と、を含む、表示装置。
PCT/JP2022/043978 2022-02-10 2022-11-29 ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置 WO2023153051A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019994 2022-02-10
JP2022019994A JP2023117334A (ja) 2022-02-10 2022-02-10 ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置

Publications (1)

Publication Number Publication Date
WO2023153051A1 true WO2023153051A1 (ja) 2023-08-17

Family

ID=87564117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043978 WO2023153051A1 (ja) 2022-02-10 2022-11-29 ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置

Country Status (2)

Country Link
JP (1) JP2023117334A (ja)
WO (1) WO2023153051A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184180A (ja) * 2016-06-30 2016-10-20 日東電工株式会社 表示装置用保護基板
WO2018055998A1 (ja) * 2016-09-23 2018-03-29 日本板硝子株式会社 カバーガラス及びそれを用いたディスプレイ
JP2019504812A (ja) * 2016-01-15 2019-02-21 コーニング インコーポレイテッド 折畳式電子デバイス組立体、及びその折畳式電子デバイス組立体のためのカバー要素
JP2019532356A (ja) * 2016-09-21 2019-11-07 スリーエム イノベイティブ プロパティズ カンパニー ガラスを含む保護ディスプレイフィルム
US20200398530A1 (en) * 2018-02-14 2020-12-24 Corning Incorporated Foldable glass article including an optically transparent polymeric hard-coat and methods of making the same
WO2021033359A1 (ja) * 2019-08-20 2021-02-25 日東電工株式会社 ガラス層付積層体および該ガラス層付積層体を含む画像表示装置
KR102272739B1 (ko) * 2020-09-04 2021-07-05 에스케이이노베이션 주식회사 유리기판 적층체, 이의 제조방법 및 이를 포함하는 플렉서블 디스플레이 패널
JP2021181219A (ja) * 2020-05-15 2021-11-25 東レ株式会社 積層フィルム
JP2022007904A (ja) * 2020-06-24 2022-01-13 日東電工株式会社 光学積層体、粘着剤層付き光学積層体および画像表示装置
JP2022006687A (ja) * 2020-06-24 2022-01-13 日東電工株式会社 光学積層体および画像表示装置
JP7036889B1 (ja) * 2020-11-24 2022-03-15 日東電工株式会社 光学積層体
JP7036888B1 (ja) * 2020-11-24 2022-03-15 日東電工株式会社 光学積層体
JP2022044008A (ja) * 2020-09-04 2022-03-16 日東電工株式会社 画像表示装置およびその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504812A (ja) * 2016-01-15 2019-02-21 コーニング インコーポレイテッド 折畳式電子デバイス組立体、及びその折畳式電子デバイス組立体のためのカバー要素
JP2016184180A (ja) * 2016-06-30 2016-10-20 日東電工株式会社 表示装置用保護基板
JP2019532356A (ja) * 2016-09-21 2019-11-07 スリーエム イノベイティブ プロパティズ カンパニー ガラスを含む保護ディスプレイフィルム
WO2018055998A1 (ja) * 2016-09-23 2018-03-29 日本板硝子株式会社 カバーガラス及びそれを用いたディスプレイ
US20200398530A1 (en) * 2018-02-14 2020-12-24 Corning Incorporated Foldable glass article including an optically transparent polymeric hard-coat and methods of making the same
WO2021033359A1 (ja) * 2019-08-20 2021-02-25 日東電工株式会社 ガラス層付積層体および該ガラス層付積層体を含む画像表示装置
JP2021181219A (ja) * 2020-05-15 2021-11-25 東レ株式会社 積層フィルム
JP2022006687A (ja) * 2020-06-24 2022-01-13 日東電工株式会社 光学積層体および画像表示装置
JP2022007904A (ja) * 2020-06-24 2022-01-13 日東電工株式会社 光学積層体、粘着剤層付き光学積層体および画像表示装置
KR102272739B1 (ko) * 2020-09-04 2021-07-05 에스케이이노베이션 주식회사 유리기판 적층체, 이의 제조방법 및 이를 포함하는 플렉서블 디스플레이 패널
JP2022044008A (ja) * 2020-09-04 2022-03-16 日東電工株式会社 画像表示装置およびその製造方法
JP7036889B1 (ja) * 2020-11-24 2022-03-15 日東電工株式会社 光学積層体
JP7036888B1 (ja) * 2020-11-24 2022-03-15 日東電工株式会社 光学積層体

Also Published As

Publication number Publication date
JP2023117334A (ja) 2023-08-23

Similar Documents

Publication Publication Date Title
TWI721967B (zh) 附有黏著劑層之光學薄膜
WO2022113400A1 (ja) 光学積層体
JPWO2017047408A1 (ja) 複合偏光板及びそれを用いた液晶パネル
JP2012121144A (ja) 表面プロテクトフィルム付きフィルム並びに偏光板及びその製造方法
WO2022113401A1 (ja) 光学積層体
WO2021261101A1 (ja) 光学積層体および画像表示装置
TWI748682B (zh) 撓性影像顯示裝置及用於其之光學積層體
JP6934996B2 (ja) フレキシブル画像表示装置およびそれに用いる光学積層体
WO2023153051A1 (ja) ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置
WO2023153052A1 (ja) ウィンドウ用基材、多層ウィンドウ、粘着層付多層ウィンドウ、および多層ウィンドウを含む表示装置
WO2021261119A1 (ja) 光学積層体
JP6065966B2 (ja) 偏光板の製造方法
JP7311479B2 (ja) 光学積層体および粘着剤層付き光学積層体
TW202129953A (zh) 積層體及圖像顯示裝置
WO2021261118A1 (ja) 光学積層体および粘着剤層付き光学積層体
JP7198256B2 (ja) 光学積層体
JP7242934B2 (ja) 光学積層体
JP6903804B1 (ja) フレキシブル画像表示装置およびそれに用いる光学積層体
JP7177958B2 (ja) 光学積層体
JP6903830B1 (ja) フレキシブル画像表示装置およびそれに用いる光学積層体
TW202202883A (zh) 光學積層體、附黏著劑層之光學積層體及影像顯示裝置
KR20140142563A (ko) 표면 보호용 시트와 이의 제조 방법
KR20220015963A (ko) 적층체 및 화상 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926067

Country of ref document: EP

Kind code of ref document: A1