WO2023151666A1 - 马达驱动装置以及摄像模组 - Google Patents

马达驱动装置以及摄像模组 Download PDF

Info

Publication number
WO2023151666A1
WO2023151666A1 PCT/CN2023/075483 CN2023075483W WO2023151666A1 WO 2023151666 A1 WO2023151666 A1 WO 2023151666A1 CN 2023075483 W CN2023075483 W CN 2023075483W WO 2023151666 A1 WO2023151666 A1 WO 2023151666A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer frame
circuit board
shake
driving device
base
Prior art date
Application number
PCT/CN2023/075483
Other languages
English (en)
French (fr)
Inventor
何亮廷
吴宗翰
许乃文
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210131727.8A external-priority patent/CN116626846A/zh
Priority claimed from CN202210131725.9A external-priority patent/CN116626845A/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2023151666A1 publication Critical patent/WO2023151666A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • G03B9/06Two or more co-operating pivoted blades, e.g. iris type

Definitions

  • the present application relates to the technical field of camera modules, in particular to a motor drive device and a camera module.
  • the camera module used for the terminal is required to have better shooting performance.
  • the camera module should be miniaturized as much as possible.
  • the common functions are auto focus (focus) and optical image stabilization (optical image stabilization).
  • the action mechanisms used to achieve focus and optical image stabilization are often voice coil motors. That is, a magnet/coil structure, but multiple pairs of magnets and coils are arranged in the camera module, which will increase the complexity of the internal structure of the camera module, which is not conducive to the miniaturization of the camera module. How to optimize focus and optical anti-shake driving device is a research hotspot at present.
  • variable aperture device in the camera module is also a current research hotspot.
  • the variable aperture device can adjust the amount of light entering the optical lens according to the external environment. In a place with sufficient light, the incident hole of the variable aperture can be appropriately reduced to avoid overexposure. In a place with insufficient light, the variable aperture can be appropriately increased.
  • the entrance hole of the aperture is used to increase the amount of light entering the optical lens and avoid blurred pictures.
  • the action mechanism of the variable aperture device often adopts a magnet/coil structure, which needs to be powered by an external power source. How to supply power to the variable aperture device is also an urgent problem to be solved.
  • An object of the present application is to provide a motor drive device with simple circuit design, which is conducive to simplifying the connection between the motor drive device and external power supply equipment.
  • Another object of the present application is to provide a motor drive device suitable for solving the power supply problem of the variable aperture mechanism.
  • Another object of the present application is to provide a motor driving device, which is used to realize the functions of automatic focus, optical anti-shake and variable aperture of the optical lens.
  • Another object of the present application is to provide a motor drive device with a compact structure, which is beneficial to realize the miniaturization of the camera module.
  • Another object of the present application is to provide a motor drive device that improves the connection method between the outer frame and the base to achieve a stable connection between the outer frame and the base.
  • Another object of the present application is to provide a camera module with functions of auto focus, optical image stabilization and variable aperture.
  • Another object of the present application is to provide a compact camera module.
  • a motor drive device including:
  • a focusing drive mechanism used to drive an optical lens to move along the optical axis
  • variable aperture mechanism is used to adjust the amount of light passing through the optical lens
  • the lower line system located at the lower part of the motor drive device the lower line system is connected to the upper line system, and the lower line system is suitable to be connected to external power supply equipment.
  • the motor driving device further includes an optical anti-shake driving device for driving the optical lens to move along a direction perpendicular to the optical axis, and the optical anti-shake driving device is connected to the lower circuit system.
  • the lower line system and the upper line system are connected through at least one side shrapnel located on the side of the motor drive device.
  • the upper circuit system includes an upper circuit board, the upper circuit board has a second external interface and a focus drive interface, and the variable aperture mechanism is connected to the upper circuit board through the second external interface , the focus drive mechanism is connected to the upper circuit board through the focus drive interface.
  • the upper circuit board has at least one upper connection part, the upper connection part is connected to the lower line system, and the upper connection part is also connected to the second external interface.
  • the lower circuit system includes a lower circuit board and a first external interface
  • the lower circuit board has a lower connection part that is connected to the upper connection part in one-to-one correspondence
  • the first external interface includes a connection with the upper connection part.
  • the first pins of the lower wiring part are connected one by one, and the first pins are suitable for conducting and connecting with an external power supply device.
  • the upper circuit board has a plurality of upper connection parts
  • the second external interface includes a plurality of external connection terminals, each of the external connection terminals is connected to each of the upper connection parts in a one-to-one correspondence
  • the The variable aperture mechanism is conductively connected with each of the external terminals.
  • the upper line system includes a focus drive chip, a part of the interface of the focus drive chip is connected to the upper wiring part, and another part of the interface is connected to the focus drive interface.
  • the motor drive device includes:
  • the optical lens is adapted to be mounted on the inner frame
  • the upper wiring system is arranged on the inner frame, the lower wiring system is arranged on the base, and the upper wiring system and the lower wiring system are connected through side elastic pieces.
  • the upper wiring system includes an upper wiring board and at least one connecting elastic piece, the connecting elastic piece connects the inner frame and the outer frame, and the connecting elastic piece is suitable for elastic deformation to adapt to the inner frame and the outer frame.
  • the relative displacement of the outer frame, the connecting elastic piece also conducts the upper circuit board and the side elastic piece.
  • the side elastic piece connects the outer frame and the base, the side elastic piece is suitable for elastic deformation to adapt to the relative displacement between the outer frame and the base, and the connecting elastic piece is connected to the side
  • the elastic piece is conductively connected to the outer frame.
  • the upper circuit board has at least one upper wiring part
  • the lower circuit system includes a lower circuit board
  • the lower circuit board has at least one lower wiring part
  • the connecting elastic piece and the side elastic piece connect the The upper connection part and the lower connection part are electrically connected in a one-to-one correspondence.
  • the connecting elastic piece includes a first installation end arranged on the upper end surface of the inner frame, a second installation end arranged on the upper end surface of the outer frame, and elastically connecting the first installation end and the second installation end.
  • the elastic connection part of the end; the side elastic piece includes a first positioning end set on the base, a second positioning end set on the side of the outer frame, and elastically connecting the first positioning end and the second positioning end.
  • the elastic deformation part of the end; the first installation end is electrically connected to the upper wiring part, the second installation end is electrically connected to the second positioning end, and the first positioning end is electrically connected to the lower wiring part .
  • the lower circuit system further includes a first external interface, the first external interface is arranged on the lower circuit board or the base, the first external interface has at least one first pin, the The first pin is in conduction with the lower wiring part, and the first pin is suitable for conductively connecting with an external power supply device.
  • the first external interface is arranged on the base, and the first pin is connected to the lower circuit board through a conductor embedded in the base.
  • one side edge of the base has a pin mounting position
  • the first pin is arranged in the pin mounting position
  • one end of the pin extends to the outside of the base.
  • the motor driving device includes an optical anti-shake driving device for driving the optical lens to move along the direction perpendicular to the optical axis, and the lower circuit board has at least one optical anti-shake interface, and the optical anti-shake driving The device is connected to the lower circuit board through the optical anti-shake interface.
  • the first external interface includes a plurality of second pins
  • the lower circuit system includes an optical anti-shake driver chip
  • a part of the interface of the optical anti-shake driver chip is connected to the second pins, so Another part of the interface of the optical anti-shake driving chip is connected to the optical anti-shake interface.
  • the optical anti-shake driving device is a magnet/coil structure
  • the optical anti-shake driving device includes a plurality of optical anti-shake driving coils
  • the lower circuit board has a plurality of the optical anti-shake interfaces, each of which The optical anti-shake driving coils are respectively connected to the optical anti-shake driving chip through the corresponding optical anti-shake interfaces.
  • variable aperture mechanism includes an aperture drive mechanism, an aperture circuit board, and an aperture drive chip, the aperture drive chip and the aperture drive mechanism are connected through the aperture circuit board, and the aperture drive chip is also connected through the aperture circuit board.
  • the aperture circuit board is connected to the second external interface of the upper circuit board.
  • the aperture circuit board extends an aperture line interface in the direction of the second external interface of the upper circuit board, the aperture line interface is electrically connected to the second external interface, and the aperture circuit board is An FPC circuit board, the aperture circuit board is bent to make the aperture circuit interface close to the second external interface.
  • the outer frame extends toward the inner frame to form a plurality of supporting positions
  • the inner frame has a plurality of extensions extending toward each of the supporting positions
  • the inner frame passes through the extending parts Supported on the outer frame movably along the optical axis
  • the extension part of the inner frame has an inner frame accommodating hole for accommodating the focusing drive chip.
  • the bearing position of the outer frame has an outer frame accommodation hole opposite to the inner frame accommodation hole, and a position sensor for position detection is arranged in the outer frame accommodation hole .
  • the extension part of the inner frame has a coil line interface, and the coil line interface is electrically connected to the upper line system, and a part of the coil of the focusing drive mechanism is connected to the inner frame through a molding process. It is integrally formed and connected to the coil line interface.
  • the application provides a motor drive device, comprising:
  • the outer frame is movably supported on the base in a direction perpendicular to the optical axis, and has a first side wall and a second side wall parallel to each other;
  • At least one supporting element is arranged on the upper side of the base and movably supports the outer frame;
  • the inner frame is arranged inside the outer frame and is movable along the optical axis direction, and the optical lens is suitable for being arranged inside the inner frame;
  • a focusing drive mechanism used to drive the inner frame to move along the optical axis
  • An optical anti-shake driving mechanism used to drive the outer frame to move in a direction perpendicular to the optical axis
  • At least one pair of side elastic pieces are connected to the base and the outer frame, and the pair of side elastic pieces are respectively arranged on the first side wall and the second side wall, and the side
  • the side elastic piece is suitable for elastic deformation to adapt to the relative displacement between the outer frame and the base.
  • the motor driving device includes two pairs of side elastic pieces, and the two pairs of side elastic pieces are symmetrically arranged at both ends of the first side wall and the second side wall.
  • the motor driving device includes an upper wiring system arranged on the inner frame and a lower wiring system arranged on the base, and the two ends of the side elastic pieces are connected to the upper wiring system and the lower wiring system respectively. Conductive connection of the lower wiring system.
  • the side elastic piece includes a first positioning end electrically connected to the lower wiring system, a second positioning end electrically connected to the upper wiring system, and elastically connecting the first positioning end to the The elastic deformation part at the second positioning end, the elastic deformation part includes a first elastic part providing a deformation amount in a first direction and a second elastic part providing a deformation amount in a second direction, so that the side elastic piece is suitable for elastic deformation to adapt to displacement of the outer frame relative to the base in the first direction and the second direction.
  • first elastic portion extends along the optical axis direction, the first elastic portion is parallel to the first side wall or the second side wall, and the first direction is parallel to the first side wall or the second side wall.
  • the second side wall is vertical, the second elastic part is connected to the first elastic part, the second elastic part has a plurality of bending parts, and the second direction is in line with the first side wall or the first elastic part.
  • the second side walls are parallel.
  • the curved portion is S-shaped.
  • the upper circuit system includes an upper circuit board and at least one connecting elastic piece, the upper circuit board is arranged on the upper end surface of the inner frame, the connecting elastic piece connects the inner frame and the outer frame, the One end of the connecting elastic piece is electrically connected to the upper circuit board, and the other end is electrically connected to the side elastic piece.
  • the supporting element is a ball
  • the base is suitable for moving in a plane perpendicular to the optical axis.
  • the upper end surface of the base has at least one first ball groove
  • the bottom surface of the outer frame has a second ball groove opposite to the first ball groove
  • the first ball groove is connected to the second ball groove.
  • a ball movement chamber is defined between the grooves, and the balls are arranged in the ball movement chamber so that the outer frame is suitable for moving along the direction of the first ball groove or the second ball groove relative to the base. move.
  • extension directions of the first ball groove and the second ball groove are perpendicular to each other.
  • both side walls of the first ball groove along the extending direction are in contact with the balls, and both side walls of the second ball groove along the extending direction are in contact with the balls.
  • the four corners of the upper end surface of the base respectively have a base supporting part, and the base supporting part protrudes toward the direction of the outer frame, and the upper end surface of the base supporting part forms the first ball groove.
  • the motor drive device includes:
  • the outer frame moves in a direction orthogonal to the optical axis.
  • the motor driving device includes two pairs of common magnets, and the two pairs of common magnets are respectively arranged on a pair of side walls of the outer frame that are parallel to each other.
  • the motor drive device also includes at least one pair of optical anti-shake driving magnets, the pair of optical anti-shake driving magnets is arranged on the side wall of the outer frame that is not provided with the pair of shared magnets, and the optical anti-shake The pair of driving magnets is opposite to the optical anti-shake driving coil, and the interaction between the pair of optical anti-shake driving magnets and the optical anti-shake driving coil is suitable for driving the outer frame to move in a direction perpendicular to the optical axis.
  • the motor driving device includes two optical anti-shake drive magnet pairs, which are respectively arranged on a pair of opposite side walls of the outer frame that are not provided with the common magnet pair.
  • the motor driving device includes a plurality of the optical anti-shake driving coils, and each pair of the optical anti-shake driving magnets and each pair of common magnets are opposite to one of the optical anti-shake driving coils.
  • the thickness of the optical anti-shake drive magnet pair in the optical axis direction is smaller than the shared magnet pair, the top surface of the optical anti-shake drive magnet pair is lower than the top surface of the shared magnet pair, and the optical anti-shake drive magnet pair is lower than the top surface of the shared magnet pair.
  • a first magnetic yoke for strengthening the magnetic force circulation is arranged above the pair of shaking driving magnets.
  • a second yoke is further arranged below the pair of optical anti-shake driving magnets, and the second yoke is opposite to the first yoke.
  • first yoke and the second yoke are metal sheets, the first yoke is embedded in the outer frame, and the second yoke is arranged in the base.
  • the support element is a ball
  • the upper end surface of the base has at least one first ball groove
  • the bottom surface of the outer frame There is a second ball groove opposite to the first ball groove
  • a ball moving chamber is defined between the first ball groove and the second ball groove; the end of the first yoke extends to the outer In the second ball groove of the frame, and form the bottom surface of the second ball groove; the end of the second yoke extends into the first ball groove of the base, and forms the first ball groove The bottom surface of the ball groove.
  • the present application also provides a camera module, including an optical lens, a photosensitive assembly and the motor driving device, the motor driving device is arranged around the optical lens, and the photosensitive assembly is arranged below the motor driving device for for receiving the light collected by the optical lens and performing photoelectric conversion.
  • the present application also provides a camera module, including an optical lens, a photosensitive assembly and the motor driving device, the motor driving device is arranged around the optical lens, and the photosensitive assembly is arranged below the motor driving device for for receiving the light collected by the optical lens and performing photoelectric conversion.
  • Fig. 1 is the schematic diagram of an embodiment of the motor driving device of the present application
  • FIG. 2 is an exploded schematic diagram of an embodiment of the motor drive device of the present application
  • FIG. 3 is an exploded schematic diagram of an embodiment of the motor drive device of the present application.
  • FIG. 4 is an exploded schematic diagram of an embodiment of the motor drive device of the present application.
  • FIG. 5 is a cross-sectional view of the inner frame and the outer frame of the motor drive device of the present application.
  • FIG. 6 is a sectional view of the outer frame and the base of the motor drive device of the present application.
  • Fig. 7 is a partial top view of an embodiment of the motor drive device of the present application, showing the base, the upper circuit board and the coil arranged on the base;
  • Fig. 8 is a partial bottom view of an embodiment of the motor drive device of the present application, showing the outer frame and the magnets arranged on the outer frame;
  • Fig. 9 is a partial top view of an embodiment of the motor drive device of the present application, showing the outer frame arranged on the base;
  • Fig. 10 is a schematic diagram of an embodiment of the upper line system of the motor drive device of the present application.
  • Fig. 11 is a schematic diagram of an embodiment of the upper circuit system, the side shrapnel and the lower circuit system of the motor drive device of the present application;
  • Fig. 12 is a schematic diagram of the circuit connection between the variable aperture mechanism and the upper circuit system of the present application.
  • Fig. 13 is an exploded schematic diagram of an embodiment of the variable aperture mechanism of the present application.
  • Fig. 14 is an exploded view of an embodiment of the variable aperture device of the present application.
  • Fig. 15 is an exploded view of an embodiment of the variable aperture device of the present application.
  • Focus drive Chip 43, connecting shrapnel; 431, first installation end; 432, second installation end; 433, elastic connection part; 44, position sensor; 401, second external interface; 4011, SCL external terminal; 4012, SDA external terminal; 4013, VSS external terminal; 4014, VDD external terminal; 402, focus drive interface; 5, lower circuit system; 51, lower circuit board; 52, optical anti-shake driver chip; , the first external interface; 5011, the first pin; 5012, the second pin; 502, the optical image stabilization drive interface; 6, the side shrapnel; 61, the first positioning end; 62, the second positioning end; 63, Elastic deformation part; 631, first elastic part; 632, second elastic part; 7, optical anti-shake driving mechanism; 71, optical anti-shake driving coil; 711, first coil; 712, second coil; 72, shared magnet Pair; 73.
  • Optical anti-shake drive magnet pair 74. First yoke; 8. Focus drive mechanism; 81. Focus drive coil; 9. Shell; 90. Light hole of shell; 10. Iris mechanism; Mounting shell; 100, aperture aperture; 102, blades; 103, aperture circuit board; 1031, aperture line interface; 104, aperture drive mechanism; 1041, driver; 1042, drive magnet; 1043, drive coil; 105, Aperture drive chip; 106, locking sheet; 108, elastic element.
  • orientation words such as the terms “center”, “horizontal”, “longitudinal”, “length”, “width”, “thickness”, “upper”, “lower” , “Front”, “Back”, “Left”, “Right”, “Vertical”, “Horizontal”, “Top”, “Bottom”, “Inner”, “Outer”, “Clockwise”, “Counterclockwise ” and other indication orientations and positional relationships are based on the orientations or positional relationships shown in the drawings, which are only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, use a specific orientation The structure and operation should not be construed as limiting the specific protection scope of the application.
  • the vertical coordinate system (x, y, z) is used for description
  • the z-axis direction is the direction of the optical axis
  • the direction perpendicular to the optical axis refers to the direction perpendicular to the optical axis.
  • the direction perpendicular to the optical axis can be is any direction in the x-y plane, for example, it may be the x-axis direction or the y-axis direction.
  • the motor drive device shown in Figure 1-12 includes a base 1, an outer frame 2, an inner frame 3, an upper line system 4, a lower line system 5, side shrapnel 6, an optical anti-shake drive mechanism 7, and a focus drive mechanism 8 , housing 9 and variable aperture mechanism 10.
  • the motor driving device has a light hole for installing the optical lens (not shown in the figure), the optical anti-shake driving mechanism 7 is used to drive the optical lens to move along the direction perpendicular to the optical axis to realize the optical anti-shake function, and the focus driving mechanism 8 It is used to drive the optical lens to move along the optical axis to realize the automatic focusing function.
  • the variable aperture mechanism 10 can adjust the amount of light entering the optical lens according to the external light conditions during the shooting process, so as to obtain better imaging in different shooting environments Effect.
  • each component of the motor drive device avoids the setting of the light through hole Or have a corresponding through hole, so that the light through hole for installing the optical lens passes through the motor drive device.
  • the base 1 has a base light hole 11
  • the outer frame 2 is movably supported on the base 1 in the direction perpendicular to the optical axis
  • the outer frame 2 has an outer frame opposite to the base light hole 11
  • the inner frame 3 is arranged in the light through hole 22 of the outer frame so that it can move along the optical axis direction.
  • the inner frame 3 has the light through hole 31 of the inner frame opposite to the light through hole 11 of the base, and the optical lens is suitable for being installed inside Inside the light hole 31 of the frame.
  • the focusing drive mechanism 8 is used to drive the inner frame 3 to move along the optical axis.
  • the focus drive coil 81 of the focus drive mechanism 8 is arranged outside the side wall of the inner frame 3, and the outer frame 2 is provided with a magnet opposite to the focus drive coil 81, and the inner frame is driven by the interaction between the magnet and the coil. 3 moves along the optical axis relative to the outer frame 2.
  • the optical anti-shake driving mechanism 7 is used to drive the outer frame 2 to move along the direction perpendicular to the optical axis.
  • the optical anti-shake driving coil 71 of the optical anti-shake driving mechanism 7 is arranged on the base 1, and the outer frame 2 is provided with a magnet opposite to the optical anti-shake driving mechanism coil 71, utilizing the interaction between the magnet and the coil The outer frame 2 is driven to move relative to the base 1 in a direction perpendicular to the optical axis.
  • At least one shared magnet pair 72 is provided on the side wall of the outer frame 2, and the shared magnet pair 72 is opposite to the focusing drive coil 81 in the direction perpendicular to the optical axis, and the shared magnet pair 72 is connected to the optical anti-corrosion coil in the direction of the optical axis.
  • the first coil 711 of the shaking drive mechanism 7 is opposite.
  • the arrangement of the common magnet is beneficial to simplify the structure of the motor drive device and realize the miniaturization of the motor drive device.
  • the outer frame 2 is further provided with a pair of optical anti-shake driving magnets 73 , and the pair of optical anti-shake driving magnets 73 and the pair of common magnets 72 are arranged on different side walls of the outer frame 2 .
  • the optical anti-shake driving magnet pair 73 is opposite to the second coil 712 of the optical anti-shake driving mechanism 7 in the direction of the optical axis.
  • the interaction between the shared magnet pair 72 and the first coil 711 of the optical anti-shake driving mechanism 7 drives the outer frame 2 to move along the first direction, and the interaction between the optical anti-shake driving magnet pair 73 and the second coil 712 of the optical anti-shake driving mechanism 7 The action drives the outer frame 2 to move in the second direction.
  • the outer frame 2 has two pairs of parallel side walls, wherein a common pair of magnets 72 is respectively arranged on a pair of side walls parallel to each other, and a magnet pair 72 is arranged on the other pair of side walls parallel to each other.
  • An optical anti-shake drive magnet pair 73 is provided respectively.
  • the optical anti-shake drive mechanism 7 includes two first coils 711 and two second coils 712, the two first coils 711 are respectively arranged on opposite sides of the base 1, and the two second coils 712 are respectively arranged On the other two sides of the base 1 , the two first coils 711 are respectively opposite to the common pair of magnets 72 , and the two second coils 712 are respectively opposite to the pair of optical anti-shake driving magnets 73 .
  • the focus drive mechanism 8 has two focus drive coils 81 , and the two focus drive coils are arranged on opposite side walls of the inner frame 3 , so that the two focus drive coils 81 are respectively opposite to the two common magnet pairs 72 .
  • the driving force of the optical anti-shake driving mechanism 7 to the outer frame 2 can be increased, and at the same time, the accuracy of shake correction can be improved.
  • the top surface of the pair of optical anti-shake driving magnets 73 is lower than the top surface of the pair of common magnets 72, and a first yoke 74 is arranged above the pair of optical anti-shake driving magnets 73.
  • a magnetic yoke 74 is used to strengthen the magnetic force circulation of the optical anti-shake driving magnet pair 73 , and can also reduce the magnetic force interference generated by the shared magnet pair 72 .
  • the first yoke 74 is a metal sheet, and the first yoke 74 is embedded in the outer frame 2 . Embedding the first yoke 74 in the outer frame 2 is beneficial to improve the strength of the outer frame 2 .
  • a second yoke (not shown in the figure) is further arranged under the pair of optical anti-shake driving magnets 73 , and the second yoke is arranged on the base 1 opposite to the first yoke 74 .
  • the second yoke 75 is a metal sheet embedded in the base 1 . in optical image stabilization
  • the upper and lower sides of the moving magnet pair 73 are provided with yokes, which is beneficial to maintaining the force stability of the optical anti-shake driving magnet pair 73 .
  • the upper line system 4 is located at the upper part of the motor drive device
  • the lower line system 5 is located at the lower part of the motor drive device
  • the upper line system 4 and the lower line system 5 are connected.
  • the upper line system 4 and the lower line system 5 are connected through the side shrapnel 6 located on the side of the motor drive device.
  • the upper circuit system 4 is connected to the focusing drive mechanism 8 and the variable aperture mechanism 10
  • the lower circuit system 5 is connected to the optical anti-shake driving mechanism 7, and the lower circuit system 5 is also suitable for conducting with an external power supply device, so that the external electrical signal
  • the lower circuit system 5 is connected to the upper circuit system 4 , and then the upper circuit system 4 is respectively connected to the focusing drive mechanism 8 and the variable aperture mechanism 10 .
  • the upper wiring system 4 and the lower wiring system 5 are used to connect the focusing drive mechanism 8 and the variable aperture mechanism 10 with external power supply equipment, which is beneficial to reduce exposed wiring and save space.
  • the upper circuit system 4 includes an upper circuit board 41 , a focus driving chip 42 and a connecting elastic piece 43 .
  • the upper circuit board 41 has a second external interface 401 and a focus drive interface 402.
  • the variable aperture mechanism 10 is connected to the upper circuit board 41 through the second external interface 401, and the focus drive mechanism 8 is connected to the upper circuit board 41 through the focus drive interface 402. .
  • the upper circuit board 41 has at least one upper connection part, the upper connection part is connected with the lower circuit system 5 on the one hand, and connected with the second external interface 401 on the other hand, so that through the relay of the upper circuit board 41, the The electrical signal is conducted to the second external interface 401 from the lower line system 5 .
  • the upper circuit board 41 has a plurality of upper connection parts
  • the second external interface 401 includes a plurality of external connection terminals, and each external connection terminal is connected to each upper connection part in one-to-one correspondence, and the variable aperture mechanism 10 Conductively connected to each external terminal.
  • the second external interface 401 includes an SCL external terminal 4011 , an SDA external terminal 4012 , a VSS external terminal 4013 and a VDD external terminal 4014 .
  • the upper circuit board 41 has a first upper connection part 411, a second upper connection part 412, a third upper connection part 413 and a fourth upper connection part 414, the first upper connection part 411 is connected to the SCL external connection terminal 4011, and the second The upper connection part 412 is connected to the external terminal 4012 of SDA, the third upper connection part 413 is connected to the external terminal 4013 of VSS, and the fourth upper connection part 414 is connected to the external terminal 4014 of VDD.
  • a part of the interface of the focus driving chip 42 is connected to each upper wiring portion of the upper circuit board 41 , so that different electrical signals from the lower wiring system 5 are input to the focus driving chip 42 through each upper wiring portion.
  • Another part of the interface of the focus drive chip 42 is connected to the focus drive interface 402 of the upper circuit board 41 , so that the electrical signal of the focus drive chip 42 is output to the focus drive mechanism 8 through the focus drive interface 402 .
  • the coil of the focus drive mechanism 8 is electrically connected to the focus drive interface 402 , that is, the coil of the focus drive mechanism 8 is connected to the focus drive chip 42 through the upper circuit board 41 .
  • the focus drive chip 42 has an Out1 terminal 421, an Out2 terminal 422, an SCL terminal 423, an SDA terminal 424, a VSS terminal 425, and a VDD terminal 426.
  • the SCL terminal 423 is connected to the first upper connection part 411
  • the SDA terminal The terminal 424 is connected to the second upper connection part 412
  • the VSS terminal 425 is connected to the third upper connection part 413
  • the VDD terminal 426 is connected to the fourth upper connection part 414 .
  • the focus drive interface 402 has a first focus drive terminal 4021 and a second focus drive terminal 4022 that are connected to the Out1 terminal 421 and the Out2 terminal 422 respectively, and the positive and negative poles of the coil of the focus drive mechanism 8 are connected to the first focus drive terminal 402 respectively.
  • 4021 is connected to the second focus driving terminal 4022 .
  • the upper circuit board 41 is arranged on the upper end surface of the inner frame 3, and the connecting elastic piece 43 connects the inner frame 3 and the outer frame 2, and the connecting elastic piece 43 connects the The upper wiring portion on the upper circuit board 41 is in conduction with the side elastic piece 6 .
  • the connecting elastic piece 43 can realize the elastic connection between the inner frame 3 and the outer frame 2. When the inner frame 3 is displaced relative to the outer frame 2, the connecting elastic piece 43 can ensure that the inner frame 3 returns to its original position, that is, the connecting elastic piece 43 makes the inner frame 3 and the outer frame 2 maintain a relatively stable state.
  • the connecting elastic piece 43 also enables the electrical signal conduction between the upper circuit board 41 and the side elastic piece 6 , so that the electrical signal of the lower line system 5 reaches the upper circuit board 41 through the side elastic piece 6 and the connecting elastic piece 43 .
  • the number of the connecting elastic pieces 43 is consistent with the number of the side elastic pieces 6 , and each connecting elastic piece 43 is conductively connected with one side elastic piece 6 .
  • the number of connecting elastic pieces 43 is also consistent with the number of upper wiring portions of the upper circuit board 41 , and each connecting elastic piece 43 is conductively connected with an upper wiring portion.
  • the lower circuit system 5 includes a lower circuit board 51 , at least one optical image stabilization driver chip 52 and a first external interface 501 .
  • the lower circuit board 51 is arranged on the base 1 , and the side springs 6 are conductively connected with the lower circuit board 51 .
  • the lower circuit board 51 has a lower connection part corresponding to the upper connection part of the upper circuit board 41 one-to-one, and the connecting elastic piece 43 and the side elastic piece 6 electrically connect the upper connection part and the lower connection part in one-to-one correspondence.
  • the lower circuit board 51 has an optical anti-shake drive interface 502, and the optical anti-shake drive interface 502 is electrically connected to the optical anti-shake drive mechanism 7; the optical anti-shake drive chip 52 is connected to the optical anti-shake drive interface 502 , so that the optical anti-shake driving mechanism 7 conducts with the optical anti-shake driving chip 52 through the lower circuit board 51 .
  • the optical anti-shake driving mechanism 7 includes a plurality of coils
  • the lower circuit board 51 has a plurality of optical anti-shake driving interfaces 502
  • each optical anti-shake driving interface 502 conducts the coils of each optical anti-shake driving mechanism 7 To the optical anti-shake driver chip 52.
  • the optical anti-shake driving mechanism 7 includes several first coils 711 and several second coils 712
  • the lower circuit board 51 includes two optical anti-shake driving chips 52, each first coil 711 and each second coil 712 respectively It is connected to different optical anti-shake driving chips 52, so as to realize the independent control of the first coil 711 and the second coil 712.
  • the first external interface 501 is arranged on the lower circuit board 51 or the base 1 , and the external power supply device is adapted to be connected to the lower circuit board 51 through the first external interface 501 .
  • the first external interface 501 has at least one first pin 5011, the first pin 5011 is suitable for conductive connection with the external power supply equipment, and the first pin 5011 is connected to the lower terminal of the lower circuit board 51 in a one-to-one correspondence, so that The electrical signal of the external power supply device reaches the second external interface 401 through the first pin 5011, the line of the lower circuit board 51, the lower terminal, the side shrapnel 6, the connection spring 43, the upper terminal, and the line of the upper circuit board 41. various external terminals.
  • the first external interface 501 also has at least one second pin 5012, the second pin 5012 is suitable for conductive connection with the external power supply equipment, the second pin 5012 is connected with the optical anti-shake driver through the lower circuit board 51 Chip 52 is turned on.
  • the first external interface 501 is disposed on the base 1 , and the first pins 5011 and the second pins 5012 communicate with the lower circuit board 51 through conductors embedded in the base 1 .
  • the conductor embedded in the base 1 may be but not limited to a metal wire.
  • the first external interface 501 includes four first pins 5011 and four second pins 5012 .
  • one side edge of the base 1 has a pin mounting position 13 , and each first pin 5011 and second pin 5012 is disposed in the pin mounting position 13 .
  • One end of each first pin 5011 and second pin 5012 extends to the outside of the base 1 .
  • the base 1 has a chip accommodating hole 151 for accommodating the optical anti-shake driver chip 52 , and the optical anti-shake driver chip 52 is arranged in the chip accommodating hole 151 to facilitate the reduction of the motor.
  • the overall height of the drive unit is arranged in the chip accommodating hole 151 to facilitate the reduction of the motor.
  • the lower line system 5 further includes a capacitor 54 used in conjunction with the optical anti-shake driver chip 52, the base 1 has a capacitor accommodating hole 152 for accommodating the capacitor 54, and the capacitor 54 is arranged in the capacitor accommodating hole 152 It is beneficial to reduce the overall height of the motor drive device.
  • the connecting elastic piece 43 includes a first installation end 431 arranged on the upper end surface of the inner frame 3, a second installation end 432 arranged on the upper end surface of the outer frame 2, and elastically connecting the first installation end 431 and the second installation end.
  • the elastic connecting portion 433 of the end 432; the side elastic piece 6 includes a first positioning end 61 arranged on the base 1, a second positioning end 62 arranged on the side of the outer frame 2, and elastically connecting the first positioning end 61 and the second positioning end 62
  • the elastic deformation part 63 is shown in Figures 10 and 11
  • the first mounting end 431 of the connecting elastic piece 43 is electrically connected to the upper wiring portion of the upper circuit board 41, the second installing end 432 of the connecting elastic piece 43 is electrically connected to the second positioning end 62 of the side elastic piece 6, and the second positioning end 62 of the side elastic piece 6 is electrically connected.
  • a positioning end 61 is electrically connected to the lower wiring portion of the lower circuit board 51 .
  • the motor driving device further includes at least one supporting element, which is disposed on the upper side of the base 1 and movably supports the outer frame 2 .
  • the outer frame 2 has a first side wall and a second side wall parallel to each other, a pair of side elastic pieces 6 are arranged along the first side wall and the second side wall respectively, and the side elastic pieces 6 are suitable for elastic deformation to fit the outer frame 2 Relative displacement with base 1.
  • the motor driving device includes two pairs of side elastic pieces 6, and the two pairs of side elastic pieces 6 are symmetrically arranged at both ends of the first side wall and the second side wall.
  • the elastic deformation portion 63 of the side elastic piece 6 includes a first elastic portion 631 that provides deformation in the first direction and a second elastic portion 632 that provides deformation in the second direction, so that the side elastic piece 6 It is suitable for elastic deformation to adapt to the displacement of the outer frame 2 relative to the base 1 in the first direction and the second direction.
  • first elastic part 631 extends along the optical axis direction
  • first elastic part 631 is parallel to the first side wall or the second side wall of the outer frame 2
  • first direction is perpendicular to the first side wall or the second side wall
  • the second elastic part 632 is connected to the first elastic part 631 , and the second elastic part 632 has a plurality of curved parts, the curved parts are S-shaped, and the second direction is parallel to the first side wall or the second side wall. That is, the first direction and the second direction are perpendicular to each other.
  • the supporting element is a ball 122 , supported by the ball 122 , the base 1 is adapted to move in a plane perpendicular to the optical axis.
  • the function of reducing friction can be achieved by the ball 122 .
  • the active cooperation between the outer frame 2 and the base 1 through the structure of balls and ball grooves is beneficial to reduce the height of the motor drive device and realize the miniaturization of the overall structure. It is worth mentioning that the ball 122 can be single or multiple.
  • the upper end surface of the base 1 has at least one first ball groove 121
  • the bottom surface of the outer frame 2 has a second ball groove 21 opposite to the first ball groove 121
  • the gap between the first ball groove 121 and the second ball groove 21 is A ball moving chamber is defined, and the balls 122 are arranged in the ball moving chamber so that the outer frame 2 is suitable for moving along the direction of the first ball groove 121 or the second ball groove 21 relative to the base 1 .
  • extension directions of the first ball groove 121 and the second ball groove 21 are perpendicular to each other, so that the outer frame 2 is limited by the balls 122 and the ball moving chamber to displace in two directions perpendicular to each other.
  • the extension directions of the first ball groove 121 and the second ball groove 21 are respectively a first direction and a second direction.
  • both side walls of the first ball groove 121 along the extending direction are in contact with the balls 122
  • both side walls of the second ball groove 21 along the extending direction are in contact with the balls 122, that is, the first ball groove 121 restricts the balls 122 from Rolling along the extending direction of the first ball groove 121
  • the second ball groove 21 restricts the rolling of the balls 122 along the extending direction of the second ball groove 21 .
  • the four corners of the upper end surface of the base 1 respectively have a base support portion 12, the base support portion 12 protrudes toward the direction of the outer frame 2, the base support portion 12 is integrally formed with the base 1, and the upper end surface of the base support portion 12 A first ball groove 121 is formed.
  • the end of the first yoke 74 embedded in the outer frame 2 extends into the second ball groove 21 and forms the bottom surface of the second ball groove 21 .
  • the first magnetic yoke 74 made of metal has a smaller surface roughness than the outer frame 2 made of plastic, and the balls 122 are in contact with the surface of the first magnetic yoke 74 , which is beneficial to reduce the friction force when the balls 122 roll.
  • Arranging the first metal yoke 74 inside the outer frame 2 can also increase the strength of the plastic frame and improve the stability of the overall structure.
  • the end of the second yoke extends into the first ball groove 121 of the base 1 and forms the bottom surface of the first ball groove 121, which is beneficial to reduce the friction force when the ball 122 rolls, and the metal material
  • the second magnetic yoke is arranged inside the base 1, which can also increase the strength of the plastic base and improve the stability of the overall structure.
  • the outer frame 2 extends toward the inner frame 3 to form a plurality of supporting positions 23, and the inner frame 3 has a plurality of extensions 33 extending toward each supporting position 23, and the inner frame 3 rests on the outer frame 2 via an extension 33 so as to be movable along the optical axis.
  • the extension portion 33 of the inner frame 3 has an inner frame accommodating hole 34 for accommodating the focus driving chip 42 .
  • Accommodating the focus driving chip 42 in the extension portion 33 of the inner frame 3 is beneficial to reduce the overall height of the motor driving device.
  • the supporting position 23 of the outer frame 2 has an outer frame accommodation hole 25 opposite to the inner frame accommodation hole 34 , and a position sensor 44 for position detection is disposed in the outer frame accommodation hole 25 . Disposing the position sensor 44 in the supporting position 23 of the outer frame 2 is also beneficial to reduce the overall height of the motor driving device.
  • the extension portion 33 of the inner frame 3 has a coil line interface 35 , and the coil line interface 35 is conductively connected with the focusing drive interface 402 on the upper circuit board 41 .
  • a part of the coil of the focusing drive mechanism 8 is integrally formed with the inner frame 3 through a molding process, and is connected to the coil line interface 35 . It is worth mentioning that when the focus driving mechanism 8 includes multiple coils, each coil is connected to the coil line interface 35 .
  • the supporting position 23 is located on the side wall of the outer frame 2 where the pair of OIS driving magnets 73 is disposed, and the first yoke 74 is disposed between the supporting position 23 and the pair of OIS driving magnets 73 .
  • the first yoke 74 can be installed on the bottom surface of the bearing position 23 .
  • the casing 9 has a casing light hole 90, and the casing 9 is arranged on the base 1, so that the outer frame 2, the inner frame 3, the upper wiring system 4, the lower wiring system 5, the side shrapnel 6, the optical anti-shake driving mechanism 7 and the focusing
  • the driving mechanism 8 is held in a cavity between the housing 9 and the base 1 .
  • the housing 9 has a relief hole at a position opposite to the second external interface 401 to allow the circuit board of the variable aperture mechanism 10 to extend from above the housing 9 to the second external interface 401 .
  • the housing 9 has a pin reserved hole near the pin mounting position 13 to allow each pin of the first external interface 501 to extend out of the housing 9 and connect to an external power supply device.
  • variable aperture mechanism 10 includes an aperture driving mechanism 104, an aperture circuit board 103 and an aperture
  • the driving chip 105 , the aperture driving chip 105 and the aperture driving mechanism 104 are connected through the aperture circuit board 103 , and the aperture driving chip 105 is also connected with the second external interface 401 through the aperture circuit board 103 .
  • the aperture circuit board 103 extends out of the aperture circuit interface 1031 in the direction of the second external interface 401 of the upper circuit board 41 , and the aperture circuit interface 1031 is electrically connected to the second external interface 401 .
  • the aperture line interface 1031 includes four aperture line terminals, which are respectively the SCL aperture line terminal, the SDA aperture line terminal, the VSS aperture line terminal and the VDD aperture line terminal, which are respectively connected to the second The SCL external terminal 4011 , the SDA external terminal 4012 , the VSS external terminal 4013 and the VDD external terminal 4014 of the external interface 401 are conductively connected.
  • the aperture circuit board 103 is an FPC circuit board, which is suitable for bending so that the aperture circuit interface 1031 is close to the second external interface 401 .
  • the SCL aperture circuit terminal and the SDA aperture circuit terminal are located on one side of the aperture circuit board 103, and the VSS aperture circuit terminal and the VDD aperture circuit terminal are located on the other side of the aperture circuit board 103, that is, two groups of aperture circuits
  • the terminals are respectively located on two sides of the aperture circuit board 103 , and respectively extend from both sides of the light through hole to the upper circuit board 41 .
  • the upper circuit system 4 is mainly used to realize the conduction of the circuit of the variable aperture mechanism 10 and the circuit of the focus drive mechanism 8.
  • the two share a circuit board for conduction, which not only simplifies the design of the circuit, but also ensures the overall Miniaturization of structures.
  • the upper circuit system 4 and the lower circuit system 5 are communicated through the side elastic piece 6, thereby forming an integral circuit.
  • the first external interface 501 on the base 1 is welded with the external circuit, which is used to provide the entire motor drive device in the working process. in the current.
  • the variable aperture mechanism 10 includes an installation housing 101 , several blades 102 , an aperture circuit board 103 and an aperture driving mechanism 104 .
  • the middle part of the installation housing 101 forms an aperture aperture 100, and the blades 102 are movably arranged on the installation housing 101 to form an entrance hole with adjustable aperture.
  • the aperture driving mechanism 104 is used to drive the blades 102 to adjust the aperture of the incidence hole.
  • the circuit board 103 communicates with the aperture driving mechanism 104 for controlling the operation of the aperture driving mechanism 104 .
  • variable aperture mechanism 10 is held above the housing 9, and it can bear against the optical lens or the housing 9, which is not limited in the present application.
  • the aperture driving mechanism 104 is a driving mechanism with a magnet/coil structure.
  • the aperture driving mechanism 104 includes a driving member 1041 , a driving magnet 1042 and a driving coil 1043 .
  • the driving member 1041 is movably arranged on the installation housing 101, and is configured to drive the blade 102 to rotate to adjust the aperture of the incident hole;
  • the driving magnet 1042 is arranged on the driving member 1041;
  • the driving coil 1043 is arranged opposite to the driving magnet 1042,
  • the driving coil 1043 is arranged on the installation housing 101 or on the aperture circuit board 103, and the driving coil 1043 is electrically connected with the aperture circuit board 103, so that the driving member 1041 moves to drive the blades 102 through the interaction between the driving coil 1043 and the driving magnet 1042 rotate.
  • the size of the incident hole is automatically adjusted in advance so that the amount of light passing through the optical lens is appropriate, and then the optical anti-shake driving mechanism 7 and the focusing driving mechanism 8 are used Stabilize and focus, then image.
  • the diaphragm circuit board 103 and the diaphragm driving mechanism 104 of the variable diaphragm mechanism 10 of the present application are all arranged on the installation housing 101 so that the diaphragm light hole 100 is avoided, and the blades 102, the diaphragm driving mechanism 104 and the diaphragm circuit board 103 are arranged along the optical axis direction. set in the installation shell 101 in turn, In this way, the axial space of the installation housing 101 can be fully utilized to arrange various components, and the radial dimension of the variable aperture mechanism 10 can be avoided from being too large.
  • the bottom surface of the installation housing 101 opposite to the aperture circuit board 103 has accommodating holes for accommodating the components on the aperture circuit board 103, so that the components protruding from the aperture circuit board 103 and occupying a large space are accommodated in the installation housing 101
  • the aperture circuit board 103 is closely attached to the installation housing 101, which is beneficial to reduce the axial dimension of the variable aperture mechanism 10 and also protects components.
  • the diaphragm circuit board 103 and the driver 1041 are respectively arranged on both sides of the installation housing 103 along the optical axis direction, the bottom surface of the installation housing 103 has a coil through hole for accommodating the driving coil 1043, and the driving coil 1043 is arranged on the
  • the aperture circuit board 103 extends from the aperture circuit board 103 into the coil through hole, so that the driving coil 1043 is opposite to the driving magnet 1042 disposed on the bottom surface of the driving member 1041 .
  • the driving coil 1043 is arranged near the edge of the aperture circuit board 103 , and the side of the coil through hole communicates with the outside, which can simplify the structure of the installation case 101 and reduce the overall weight of the installation case 101 .
  • the driving member 1041 is circular and is rotatably disposed on the installation housing 101 .
  • the driving member 1041 has a mounting groove on the bottom surface opposite to the driving coil 1043, and the driving magnet 1043 is embedded in the mounting groove.
  • the driver 1041 is provided with a section of the driving magnet 1042 extending radially outward to form an enlarged end, so as to provide enough space for inserting the driving magnet 1042 .
  • the installation housing 101 forms a relief opening opposite to the enlarged end of the driver 1041, and the width of the relief opening is greater than the width of the enlarged end, so that when the driving member 1041 rotates, the enlarged end can make way Turn in the opening.
  • the setting of the relief opening is beneficial to reduce the size of the variable aperture mechanism 10 , avoiding interference with the installation housing 101 when the driving member 1041 rotates, and can also limit the rotation angle of the driving member 1041 .
  • each blade 102 There are multiple blades 102, one end of each blade 102 is rotatably connected to the mounting housing 101, and the other end extends above the aperture aperture 100, so that multiple blades 102 are combined to define an entrance hole with adjustable aperture, and each blade 102 and The driving member 1041 is connected so that when the driving member 1041 rotates, it drives the blades 102 to rotate to adjust the diameter of the incident hole.
  • the blade 102 has a positioning hole, and the installation housing 101 has a positioning post matched with the positioning hole.
  • the positioning post is used as an axis. That is, the blade 102 is rotatably connected to the installation housing 101 through the positioning hole and the positioning post.
  • the blade 102 also has a movable hole, and the driving member 1041 has a limit post that is slidably matched with the movable hole.
  • the movable hole has a stroke space for the limit post to slide.
  • the travel space of the active hole can limit the rotation angle of the blade 102 to ensure that the blade 102 can rotate within a preset angle range.
  • the aperture circuit board 103 is a flexible printed circuit board, and the flatness of the aperture circuit board 103 can be ensured by attaching to the bottom surface of the installation housing 101 . Further, the aperture circuit board 103 can be glued and fixed on the bottom surface of the installation housing 101 to increase the flatness of the aperture circuit board 103 .
  • positioning pieces are provided on the bottom surface of the installation housing 101, and circuit board positioning through holes are respectively provided on the corresponding positions of the aperture circuit board 103, so the aperture circuit can be positioned through the cooperation of the circuit board positioning through holes and the positioning pieces.
  • the installation position of the board 103 makes the assembly process more convenient.
  • variable aperture mechanism 10 further includes a locking piece 106, the locking piece 106 prevents the aperture aperture 100 from being arranged on the installation housing 101, and holds the blade 102 between the locking piece 106 and the installation housing. Between 101.
  • the provision of the locking piece 106 is beneficial to improve the overall stability of the variable aperture mechanism 10 and can also protect internal components.
  • black objects are arranged on the object-side surface of the locking piece 106, Used to prevent light reflections.
  • the installation housing 101 has a positioning block on the surface opposite to the locking piece 106, and the locking piece 106 forms a positioning groove at a position corresponding to the positioning block, and through the cooperation of the positioning block and the positioning groove, the locking piece 106 remains at the preset position of the installation housing 101 .
  • the locking piece 106 is provided with avoidance holes for preventing interference with the positioning post and the limiting post.
  • the positioning post and the limiting post In order to make the structure of the variable aperture mechanism 10 as compact as possible, it is necessary to reduce the gap between the locking piece 106 and the blade 102, and in order to improve the installation stability of the blade 102 and the positioning post and the limiting post, the positioning post and the limiting post The height of the positioning post should not be too low. Based on the above considerations, an avoidance hole is provided on the locking piece 106, which can make the height of the positioning post and the limit post exceed the blade 102, and can also avoid increasing the overall thickness of the variable aperture mechanism 10.
  • the aperture circuit board 103 and the locking piece 106 can be a ring structure, so as to be integrally arranged on the installation housing 101 around the light hole 100, and the aperture at the center of the ring is preferably not smaller than the maximum aperture of the incident hole, so that the incident hole The aperture determines the luminous flux.
  • the aperture circuit board 103 and the locking piece 106 can also be designed as separate parts, so as to be arranged on the installation housing 101 segmentally along the circumference.
  • the bottom surface of the driver 1041 has a first part
  • the installation housing 101 has a second part opposite to the first part
  • the driver 1041 and the installation housing 101 pass through the first part and the installation housing 101 in the direction of the optical axis.
  • the second part is in contact.
  • the first component and the second component are respectively a boss and a sliding groove, and when the driving member 1041 rotates relative to the installation housing 101 , the boss slides in the sliding groove.
  • the design of the boss and the chute can ensure that the contact area between the driver 1041 and the installation housing 101 is reduced without increasing the overall thickness, so that the internal space can be fully utilized, and through the connection between the boss and the chute Cooperating, the displacement of the driving member 1041 can also be limited to ensure that the driving member 1041 rotates along a preset direction within a preset angle range.
  • the first component and the second component are balls and ball grooves respectively, the balls are suitable for rolling in the ball grooves, and the ball grooves can limit the displacement of the balls to ensure that the driving member 1041 moves along the preset Orientation rotates within a preset angle range.
  • At least two pairs of the first component and the second component are arranged at equal intervals along the circumference of the aperture 10 to ensure the stability of the support.
  • an elastic element 108 may be provided between the installation housing 101 and the driver 1041, one end of the elastic element 108 is fixed on the driver 1041, the other end is fixed on the installation housing 101, and the elastic element 108 is fixed on the installation housing 101 It is at the same height as the installation position on the driver 1041, as shown in Figure 13, that is, after the elastic element 108 is installed, it is located in a plane perpendicular to the optical axis.
  • the elastic element 108 can make the driving member 1041 rotate relative to the installation housing 101 to return to the original state; and the elastic member 108 can also play a role in connecting the installation housing 101 and the driving member 1041,
  • the variable aperture mechanism 10 is subjected to an external force, it can ensure that the two do not move relative to each other, and various problems caused by collisions of internal components can be avoided.
  • a motor driving device including: a focus driving mechanism 8, which is used to drive an optical lens to move along the optical axis; a variable aperture mechanism 10, which is used to adjust the amount of light passing through the optical lens;
  • the lower line system 5 is suitable for conducting with the external power supply equipment.
  • the motor drive device uses the upper circuit system 4 and the lower circuit system 5 to connect the focusing drive mechanism 8 and the variable aperture mechanism 10 to external power supply equipment, which is beneficial to simplify the circuit design and realize the miniaturization of the overall structure.
  • a motor drive device including: a base 1; an outer frame 2, which is movably supported on the base 1 in a direction perpendicular to the optical axis, and has first side walls parallel to each other and The second side wall; at least one supporting element, arranged on the upper side of the base 1 and movably supporting the outer frame 2; the inner frame 3, arranged inside the outer frame 2 and movable along the optical axis direction, and the optical lens is suitable for being arranged on the inner frame 3 inside; focusing driving mechanism 8, used to drive the inner frame 3 to move along the optical axis; optical anti-shake driving mechanism 7, used to drive the outer frame 2 to move in the direction perpendicular to the optical axis; at least one pair of side shrapnel 6, the side
  • the side elastic pieces connect the base 1 and the outer frame 2 , and a pair of side elastic pieces 6 are respectively arranged on the first side wall and the second side wall.
  • the side elastic pieces 6 are suitable for elastic deformation to adapt to the relative displacement
  • the motor drive device realizes the movement of the outer frame 2 in a plane perpendicular to the optical axis by using the cooperation of the support element and the side elastic piece 6 .
  • the supporting element enables the outer frame 2 to be displaced in multiple directions relative to the base 1, and the side springs 6 make the connection between the outer frame 2 and the base 1 more stable, and after the displacement of the outer frame 2, it can drive the outer frame 2 to return to initial position.
  • the present application also provides a camera module, including the aforementioned motor drive device of the present application, an optical lens (not shown in the figure) and a photosensitive component (not shown in the figure) arranged in the light hole of the motor drive device ), the photosensitive component is arranged under the motor drive device and opposite to the light through hole 11 of the base, and the photosensitive component is used to receive the light converged by the optical lens and perform photoelectric conversion.
  • a camera module including the aforementioned motor drive device of the present application, an optical lens (not shown in the figure) and a photosensitive component (not shown in the figure) arranged in the light hole of the motor drive device ), the photosensitive component is arranged under the motor drive device and opposite to the light through hole 11 of the base, and the photosensitive component is used to receive the light converged by the optical lens and perform photoelectric conversion.

Abstract

一种马达驱动装置以及摄像模组,马达驱动装置包括对焦驱动机构(8),用于驱动一光学镜头沿光轴移动;可变光圈机构(10),用于调节光学镜头的通光量;位于马达驱动装置上部的上线路系统(4),上线路系统(4)分别与对焦驱动机构(8)和可变光圈机构(10)导通;位于马达驱动装置下部的下线路系统(5),下线路系统(5)与上线路系统(4)导通,下线路系统(5)适于与外部供电设备导通。线路设计简单,有利于简化马达驱动装置与外部供电设备的连接,且被设置能够解决可变光圈机构(10)的供电问题。

Description

马达驱动装置以及摄像模组 技术领域
本申请涉及摄像模组技术领域,尤其涉及一种马达驱动装置以及摄像模组。
背景技术
手机等终端设备中,拍照的需求日益提高,因此要求用于终端的摄像模组具有更好的拍摄性能。而且,由于移动终端设备的体积限制,在增加摄像模组功能、提高摄像模组拍摄性能的同时,还要尽可能做到摄像模组的小型化。
提高摄像模组拍摄性能的方式有多种,目前常见的功能是自动对焦(对焦)和光学防抖(光学防抖),目前实现对焦和光学防抖采用的动作机构常为音圈马达,也即磁铁/线圈结构,但是多对磁铁、线圈设置在摄像模组内,会增加摄像模组内部结构的复杂程度,不利于摄像模组的小型化。如何优化对焦、光学防抖驱动装置是目前的一个研究热点。
另外,为了提高摄像模组的拍摄性能,在摄像模组内增加可变光圈装置也是目前的一个研究热点。可变光圈装置可以根据外界环境调节光学镜头的进光量,在光线充足的地方,可以适当缩小可变光圈的入射孔,以避免出现过曝现象,在光线不足的地方,可以适当增大可变光圈的入射孔,以增加光学镜头的进光量,避免拍摄出的图片模糊。目前可变光圈装置的动作机构也常采用磁铁/线圈结构,需要由外部电源向其供电,如何对可变光圈装置进行供电也是目前亟待解决的问题。
发明内容
本申请的一个目的在于提供一种线路设计简单的马达驱动装置,有利于简化马达驱动装置与外部供电设备的连接。
本申请的另一个目的在于提供一种马达驱动装置,适于解决可变光圈机构的供电问题。
本申请的另一个目的在于提供一种马达驱动装置,其用于实现光学镜头的自动对焦、光学防抖和可变光圈的功能。
本申请的另一个目的在于提供一种结构紧凑的马达驱动装置,有利于实现摄像模组的小型化。
本申请的另一个目的在于提供一种马达驱动装置,改进外框架与底座的连接方式以实现外框架与底座的稳定连接。
本申请的另一个目的在于提供一种具有自动对焦、光学防抖以及可变光圈功能的摄像模组。
本申请的另一个目的在于提供一种结构紧凑的摄像模组。
为达到以上目的,本申请提供一种马达驱动装置,包括:
对焦驱动机构,用于驱动一光学镜头沿光轴移动;
可变光圈机构,用于调节所述光学镜头的通光量;
位于所述马达驱动装置上部的上线路系统,所述上线路系统分别与所述对焦驱动机构和所述可变光圈机构导通;
位于所述马达驱动装置下部的下线路系统,所述下线路系统与所述上线路系统导通,所述下线路系统适于与外部供电设备导通。
进一步地,所述马达驱动装置还包括用于驱动所述光学镜头沿光轴正交方向移动的光学防抖驱动装置,所述光学防抖驱动装置与所述下线路系统导通。
进一步地,所述下线路系统与所述上线路系统通过位于所述马达驱动装置侧面的至少一侧边弹片导通。
进一步地,所述上线路系统包括上线路板,所述上线路板上具有第二外部接口和对焦驱动接口,所述可变光圈机构通过所述第二外部接口导通至所述上线路板,所述对焦驱动机构通过所述对焦驱动接口导通至所述上线路板。
进一步地,所述上线路板具有至少一上接线部,所述上接线部与所述下线路系统导通,所述上接线部还与所述第二外部接口导通。
进一步地,所述下线路系统包括下线路板和第一外部接口,所述下线路板上具有与所述上接线部一一对应地导通的下接线部,所述第一外部接口包括与所述下接线部一一对应地导通的第一引脚,所述第一引脚适于与外部供电设备导通连接。
进一步地,所述上线路板具有多个上接线部,所述第二外部接口包括多个外部接线端,各所述外部接线端一一对应地与各所述上接线部导通,所述可变光圈机构与各所述外部接线端导电连接。
进一步地,所述上线路系统包括对焦驱动芯片,所述对焦驱动芯片的一部分接口与所述上接线部导通,另一部分接口与所述对焦驱动接口导通。
进一步地,所述马达驱动装置包括:
底座;
在光轴正交方向可移动地承靠在所述底座上的外框架;
设置在所述外框架内侧并沿着光轴方向可移动的内框架,所述光学镜头适于安装在所述内框架上;
所述上线路系统设置在所述内框架上,所述下线路系统设置在所述底座上,所述上线路系统和所述下线路系统通过侧边弹片导通。
进一步地,所述上线路系统包括上线路板以及至少一连通弹片,所述连通弹片连接所述内框架和所述外框架,所述连通弹片适于弹性变形以适应所述内框架与所述外框架的相对位移,所述连通弹片还将所述上线路板与所述侧边弹片导通。
进一步地,所述侧边弹片连接所述外框架和所述底座,所述侧边弹片适于弹性变形以适应所述外框架与所述底座的相对位移,所述连通弹片与所述侧边弹片在所述外框架上导电连接。
进一步地,所述上线路板上具有至少一上接线部,所述下线路系统包括下线路板,所述下线路板上具有至少一下接线部,所述连通弹片和所述侧边弹片将所述上接线部和所述下接线部一一对应地导电连接。
进一步地,所述连通弹片包括设置在所述内框架上端面的第一安装端、设置在所述外框架上端面的第二安装端以及弹性连接所述第一安装端和所述第二安装端的弹性连接部;所述侧边弹片包括设置在所述底座上的第一定位端、设置在所述外框架侧面的第二定位端以及弹性连接所述第一定位端和所述第二定位端的弹性变形部;所述第一安装端与所述上接线部导电连接,所述第二安装端与所述第二定位端导电连接,所述第一定位端与所述下接线部导电连接。
进一步地,所述下线路系统还包括第一外部接口,所述第一外部接口设置在所述下线路板或所述底座上,所述第一外部接口具有至少一第一引脚,所述第一引脚与所述下接线部导通,所述第一引脚适于与外部供电设备导电连接。
进一步地,所述第一外部接口设置在所述底座上,所述第一引脚与所述下线路板通过内埋于所述底座的导体实现导通。
进一步地,所述底座的一侧边缘具有引脚安装位,所述第一引脚设置在所述引脚安装位内,所述引脚的一端延伸到所述底座外侧。
进一步地,所述马达驱动装置包括用于驱动所述光学镜头沿光轴正交方向移动的光学防抖驱动装置,所述下线路板上具有至少一光学防抖接口,所述光学防抖驱动装置通过所述光学防抖接口导通至所述下线路板。
进一步地,所述第一外部接口包括多个第二引脚,所述下线路系统包括光学防抖驱动芯片,所述光学防抖驱动芯片的一部分接口与所述第二引脚导通,所述光学防抖驱动芯片的另一部分接口与所述光学防抖接口导通。
进一步地,所述光学防抖驱动装置为磁铁/线圈结构,所述光学防抖驱动装置包括多个光学防抖驱动线圈,所述下线路板上具有多个所述光学防抖接口,各所述光学防抖驱动线圈分别通过相应的所述光学防抖接口与所述光学防抖驱动芯片导通。
进一步地,所述可变光圈机构包括光圈驱动机构、光圈线路板和光圈驱动芯片,所述光圈驱动芯片与所述光圈驱动机构通过所述光圈线路板导通,所述光圈驱动芯片还通过所述光圈线路板与所述上线路板的所述第二外部接口导通。
进一步地,所述光圈线路板向所述上线路板的所述第二外部接口的方向延伸出光圈线路接口,所述光圈线路接口与所述第二外部接口导电连接,所述光圈线路板为FPC线路板,所述光圈线路板弯折以使所述光圈线路接口靠近所述第二外部接口。
进一步地,所述外框架向所述内框架的方向延伸形成多个承靠位,所述内框架具有向各所述承靠位延伸的多个延伸部,所述内框架通过所述延伸部可沿光轴移动地承靠在所述外框架上,所述内框架的所述延伸部具有用于容纳对焦驱动芯片的内框架容置孔。
进一步地,所述外框架的所述承靠位具有与所述内框架容置孔相对的外框架容置孔,用于进行位置检测的位置感测器设置在所述外框架容置孔内。
进一步地,所述内框架的所述延伸部上具有线圈线路接口,所述线圈线路接口与所述上线路系统导电连接,所述对焦驱动机构的线圈的一部分通过模塑工艺与所述内框架一体成型,并导通至所述线圈线路接口。
本申请提供一种马达驱动装置,包括:
底座;
外框架,在光轴正交方向可移动地承靠在所述底座上,并具有相互平行的第一侧壁和第二侧壁;
至少一支撑元件,设置在所述底座上侧并可移动地支撑所述外框架;
内框架,设置在所述外框架内侧并沿光轴方向可移动,光学镜头适于设置在所述内框架内侧;
对焦驱动机构,用于驱动所述内框架沿光轴方向移动;
光学防抖驱动机构,用于驱动所述外框架在光轴正交方向移动;
至少一对侧边弹片,所述侧边弹片连接所述底座和所述外框架,且一对所述侧边弹片分别设置于所述第一侧壁和所述第二侧壁,所述侧边弹片适于弹性变形以适应所述外框架与所述底座的相对位移。
进一步地,所述马达驱动装置包括两对所述侧边弹片,两对所述侧边弹片对称地设置在所述第一侧壁和所述第二侧壁的两端。
进一步地,所述马达驱动装置包括设置在所述内框架上的上线路系统和设置在所述底座上的下线路系统,所述侧边弹片的两端分别与所述上线路系统和所述下线路系统导电连接。
进一步地,所述侧边弹片包括与所述下线路系统导电连接的第一定位端部、与所述上线路系统导通连接的第二定位端以及弹性连接所述第一定位端和所述第二定位端的弹性变形部,所述弹性变形部包括提供第一方向变形量的第一弹性部和提供第二方向变形量的第二弹性部,从而所述侧边弹片适于弹性变形以适应所述外框架相对于所述底座在所述第一方向和所述第二方向的位移。
进一步地,所述第一弹性部沿光轴方向延伸,所述第一弹性部与所述第一侧壁或所述第二侧壁平行,所述第一方向与所述第一侧壁或所述第二侧壁垂直,所述第二弹性部与所述第一弹性部连接,所述第二弹性部具有多个弯曲部,所述第二方向与所述第一侧壁或所述第二侧壁平行。
进一步地,所述弯曲部呈S形。
进一步地,所述上线路系统包括上线路板以及至少一连通弹片,所述上线路板设置在所述内框架的上端面,所述连通弹片连接所述内框架和所述外框架,所述连通弹片的一端与所述上线路板导电连接,另一端与所述侧边弹片导电连接。
进一步地,所述支撑元件为滚珠,在所述滚珠的支撑下,所述底座适于在与光轴正交的平面内移动。
进一步地,所述底座的上端面具有至少一第一滚珠槽,所述外框架的底面具有与所述第一滚珠槽相对的第二滚珠槽,所述第一滚珠槽与所述第二滚珠槽之间界定一滚珠活动腔,所述滚珠设置在所述滚珠活动腔内,以使得所述外框架相对于所述底座适于沿所述第一滚珠槽或所述第二滚珠槽的方向移动。
进一步地,所述第一滚珠槽与所述第二滚珠槽的延伸方向互相垂直。
进一步地,所述第一滚珠槽沿延伸方向的两侧壁均与所述滚珠接触,所述第二滚珠槽沿延伸方向的两侧壁均与所述滚珠接触。
进一步地,所述底座上端面的四角分别具有一底座支撑部,所述底座支撑部向所述外框架的方向凸起,所述底座支撑部的上端面形成所述第一滚珠槽。
进一步地,所述马达驱动装置包括:
设置在所述外框架上的至少一共用磁铁对;
设置在所述内框架侧壁外侧的对焦驱动线圈,所述对焦驱动线圈与所述共用磁铁对相对,所述对焦驱动线圈与所述共用磁铁对的相互作用适于驱动所述内框架沿光轴方向移动;
设置在所述外框架下方的光学防抖驱动线圈,所述光学防抖驱动线圈与所述共用磁铁对相对,所述光学防抖驱动线圈与所述共用磁铁对的相互作用适于驱动所述外框架在光轴正交方向移动。
进一步地,所述马达驱动装置包括两所述共用磁铁对,两所述共用磁铁对分别设置在所述外框架一对相互平行的侧壁上。
进一步地,所述马达驱动装置还包括至少一光学防抖驱动磁铁对,所述光学防抖驱动磁铁对设置在所述外框架未设置所述共用磁铁对的侧壁上,所述光学防抖驱动磁铁对与所述光学防抖驱动线圈相对,所述光学防抖驱动磁铁对与所述光学防抖驱动线圈的相互作用适于驱动所述外框架在光轴正交方向移动。
进一步地,所述马达驱动装置包括两所述光学防抖驱动磁铁对,分别设置在所述外框架未设置所述共用磁铁对的一对相对的侧壁上。
进一步地,所述马达驱动装置包括多个所述光学防抖驱动线圈,每一所述光学防抖驱动磁铁对以及每一所述共用磁铁对与一所述光学防抖驱动线圈相对。
进一步地,所述光学防抖驱动磁铁对在光轴方向的厚度小于所述共用磁铁对,所述光学防抖驱动磁铁对的顶面低于所述共用磁铁对的顶面,所述光学防抖驱动磁铁对的上方设置有用于强化磁力循环的第一磁轭。
进一步地,所述光学防抖驱动磁铁对的下方还设置有第二磁轭,所述第二磁轭与所述第一磁轭相对。
进一步地,所述第一磁轭和所述第二磁轭为金属片,所述第一磁轭嵌设在所述外框架内,所述第二磁轭设置在所述底座内。
进一步地,所述支撑元件为滚珠,所述底座的上端面具有至少一第一滚珠槽,所述外框架的底面 具有与所述第一滚珠槽相对的第二滚珠槽,所述第一滚珠槽与所述第二滚珠槽之间界定一滚珠活动腔;所述第一磁轭的端部延伸到所述外框架的所述第二滚珠槽内,并形成所述第二滚珠槽的底面;所述第二磁轭的端部延伸到所述底座的所述第一滚珠槽内,并形成所述第一滚珠槽的底面。本申请还提供一种摄像模组,包括光学镜头、感光组件以及所述的马达驱动装置,所述马达驱动装置围绕所述光学镜头设置,所述感光组件设置在所述马达驱动装置的下方用于接收所述光学镜头汇聚的光线并进行光电转换。
本申请还提供一种摄像模组,包括光学镜头、感光组件以及所述的马达驱动装置,所述马达驱动装置围绕所述光学镜头设置,所述感光组件设置在所述马达驱动装置的下方用于接收所述光学镜头汇聚的光线并进行光电转换。
本申请的有益效果将在具体实施方式中进行详细介绍。
附图说明
图1为本申请的马达驱动装置的一个实施例的示意图;
图2为本申请的马达驱动装置的一个实施例的爆炸示意图;
图3为本申请的马达驱动装置的一个实施例的爆炸示意图;
图4为本申请的马达驱动装置的一个实施例的爆炸示意图;
图5为本申请的马达驱动装置的内框架和外框架的剖视图;
图6为本申请的马达驱动装置的外框架和底座的剖视图;
图7为本申请的马达驱动装置的一个实施例部分俯视图,显示了底座、设置在底座上的上线路板以及线圈;
图8为本申请的马达驱动装置的一个实施例部分仰视图,显示了外框架以及设置在外框架上的磁铁;
图9为本申请的马达驱动装置的一个实施例部分俯视图,显示了设置在底座上的外框架;
图10为本申请的马达驱动装置的上线路系统的一个实施例的示意图;
图11为本申请的马达驱动装置的上线路系统、侧边弹片以及下线路系统的一个实施例的示意图;
图12为本申请可变光圈机构与上线路系统的线路连接示意图;
图13为本申请的可变光圈机构的一个实施例的爆炸示意图;
图14为本申请的可变光圈装置的一个实施例的爆炸图;
图15为本申请的可变光圈装置的一个实施例的爆炸图;
图中:1、底座;11、底座通光孔;12、底座支撑部;121、第一滚珠槽;122、滚珠;13、引脚安装位;151、芯片容置孔;152、电容容置孔;2、外框架;21、第二滚珠槽;22、外框架通光孔;23、承靠位;25、外框架容置孔;3、内框架;31、内框架通光孔;33、延伸部;34、内框架容置孔;35、线圈线路 接口;4、上线路系统;41、上线路板;411、第一上接线部;412、第二上接线部;413、第三上接线部;414、第四上接线部;42、对焦驱动芯片;43、连通弹片;431、第一安装端;432、第二安装端;433、弹性连接部;44、位置感测器;401、第二外部接口;4011、SCL外部接线端;4012、SDA外部接线端;4013、VSS外部接线端;4014、VDD外部接线端;402、对焦驱动接口;5、下线路系统;51、下线路板;52、光学防抖驱动芯片;54、电容;501、第一外部接口;5011、第一引脚;5012、第二引脚;502、光学防抖驱动接口;6、侧边弹片;61、第一定位端;62、第二定位端;63、弹性变形部;631、第一弹性部;632、第二弹性部;7、光学防抖驱动机构;71、光学防抖驱动线圈;711、第一线圈;712、第二线圈;72、共用磁铁对;73、光学防抖驱动磁铁对;74、第一磁轭;8、对焦驱动机构;81、对焦驱动线圈;9、外壳;90、外壳通光孔;10、可变光圈机构;101、安装壳体;100、光圈通光孔;102、叶片;103、光圈线路板;1031、光圈线路接口;104、光圈驱动机构;1041、驱动件;1042、驱动磁铁;1043、驱动线圈;105、光圈驱动芯片;106、锁附片;108、弹性元件。
具体实施方式
下面,结合具体实施方式,对本申请做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
在本申请的描述中,需要说明的是,对于方位词,如有术语“中心”、“横向”、“纵向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示方位和位置关系为基于附图所示的方位或位置关系,仅是为了便于叙述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定方位构造和操作,不能理解为限制本申请的具体保护范围。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请的说明书和权利要求书中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中,使用垂直坐标系(x、y、z)来进行说明,z轴方向是光轴方向,光轴正交方向是指与光轴垂直的方向,本申请中光轴正交方向可以是x-y平面内的任一方向,例如可以是x轴方向或y轴方向。
如图1-12所示的马达驱动装置,包括底座1、外框架2、内框架3、上线路系统4、下线路系统5、侧边弹片6、光学防抖驱动机构7、对焦驱动机构8、外壳9以及可变光圈机构10。
马达驱动装置具有用于安装光学镜头(图中未示出)的通光孔,光学防抖驱动机构7用于驱动光学镜头沿光轴正交方向移动以实现光学防抖功能,对焦驱动机构8用于驱动光学镜头沿光轴方向移动以实现自动对焦功能,可变光圈机构10可在拍摄过程中根据外界光线情况调节光学镜头的进光量,进而在不同拍摄环境下均可获得较好的成像效果。本领域技术人员可以理解,马达驱动装置的各组件避让通光孔设置 或者具有相应的通孔,以使得安装光学镜头的通光孔贯穿马达驱动装置。
如图3、4所示,底座1具有底座通光孔11,外框架2在光轴正交方向可移动地承靠在底座1上,外框架2具有与底座通光孔11相对的外框架通光孔22,内框架3可沿光轴方向移动地设置在外框架通光孔22内,内框架3具有与底座通光孔11相对的内框架通光孔31,光学镜头适于安装在内框架通光孔31内。
对焦驱动机构8用于驱动内框架3沿光轴方向移动。在一个实施例中,对焦驱动机构8的对焦驱动线圈81设置在内框架3侧壁的外侧,外框架2上设置有与对焦驱动线圈81相对的磁铁,利用磁铁和线圈的相互作用驱动内框架3相对于外框架2沿光轴方向移动。
光学防抖驱动机构7用于驱动外框架2沿光轴正交方向移动。在一个实施例中,光学防抖驱动机构7的光学防抖驱动线圈71设置在底座1上,外框架2上设置有与光学防抖驱动机构线圈71相对的磁铁,利用磁铁和线圈的相互作用驱动外框架2相对于底座1在光轴正交方向移动。
在一些实施例中,外框架2的侧壁上设置有至少一共用磁铁对72,共用磁铁对72在光轴正交方向与对焦驱动线圈81相对,共用磁铁对72在光轴方向与光学防抖驱动机构7的第一线圈711相对。共用磁铁的设置有利于简化马达驱动装置的结构,实现马达驱动装置的小型化。
在一些实施例中,外框架2上还设置有光学防抖驱动磁铁对73,光学防抖驱动磁铁对73与共用磁铁对72设置在外框架2不同的侧壁上。光学防抖驱动磁铁对73在光轴方向与光学防抖驱动机构7的第二线圈712相对。
共用磁铁对72与光学防抖驱动机构7的第一线圈711的相互作用驱动外框架2沿第一方向移动,光学防抖驱动磁铁对73与光学防抖驱动机构7的第二线圈712的相互作用驱动外框架2沿第二方向移动。
在一个具体实施例中,如图8所示,外框架2具有两对相互平行侧壁,其中一对相互平行的侧壁上分别设置一共用磁铁对72,另一对相互平行的侧壁上分别设置一光学防抖驱动磁铁对73。如图7所示,光学防抖驱动机构7包括两个第一线圈711和两个第二线圈712,两个第一线圈711分别设置在底座1相对的两边,两个第二线圈712分别设置在底座1另外两边,从而两个第一线圈711分别与共用磁铁对72相对,两个第二线圈712分别与光学防抖驱动磁铁对73相对。对焦驱动机构8具有两个对焦驱动线圈81,两对焦驱动线圈设置在内框架3相背对两侧壁上,以使得两对焦驱动线圈81分别与两个共用磁铁对72相对。
通过增加第一线圈711和第二线圈712的数量,可以提高光学防抖驱动机构7对外框架2的驱动力,同时还利于提高抖动矫正的精度。
在一些实施例中,如图5所示,光学防抖驱动磁铁对73的顶面低于共用磁铁对72的顶面,在光学防抖驱动磁铁对73的上方设置第一磁轭74,第一磁轭74用于强化光学防抖驱动磁铁对73的磁力循环,同时也可以减少共用磁铁对72对其产生的磁力干扰。
在一些实施例中,如图6所示,第一磁轭74为一金属片,第一磁轭74嵌设在外框架2内。将第一磁轭74嵌设在外框架2内有利于提高外框架2的强度。
进一步地,光学防抖驱动磁铁对73的下方还设置第二磁轭(图中未示出),第二磁轭与第一磁轭74相对对设置在底座1上。在一些实施例中,第二磁轭75为一金属片,其嵌设在底座1内。在光学防抖驱 动磁铁对73的上下两侧均设置磁轭,有利于保持光学防抖驱动磁铁对73的受力稳定性。
如图3所示,上线路系统4位于马达驱动装置的上部,下线路系统5位于马达驱动装置的下部,上线路系统4和下线路系统5导通。优选地,上线路系统4和下线路系统5通光位于马达驱动装置侧面的侧边弹片6导通。
上线路系统4与对焦驱动机构8和可变光圈机构10导通,下线路系统5与光学防抖驱动机构7导通,下线路系统5还适于与外部供电设备导通,从而外部电信号通过下线路系统5导通至上线路系统4,再通过上线路系统4分别导通至对焦驱动机构8和可变光圈机构10。
本申请利用上线路系统4和下线路系统5将对焦驱动机构8和可变光圈机构10与外部供电设备导通,有利于减少裸露的线路,也更节省空间。
如图10所示,上线路系统4包括上线路板41、对焦驱动芯片42以及连通弹片43。
上线路板41上具有第二外部接口401和对焦驱动接口402,可变光圈机构10通过第二外部接口401导通至上线路板41,对焦驱动机构8通过对焦驱动接口402导通至上线路板41。
进一步地,上线路板41具有至少一上接线部,上接线部一方面与下线路系统5导通,另一方面与第二外部接口401导通,从而通过上线路板41的中继,使电信号由下线路系统5传导至第二外部接口401。
在一些实施例中,上线路板41具有多个上接线部,第二外部接口401包括多个外部接线端,各外部接线端一一对应地与各上接线部导通,可变光圈机构10与各外部接线端导电连接。
在一个具体实施例中,第二外部接口401包括SCL外部接线端4011、SDA外部接线端4012、VSS外部接线端4013和VDD外部接线端4014。上线路板41具有第一上接线部411、第二上接线部412、第三上接线部413和第四上接线部414,第一上接线部411与SCL外部接线端4011导通,第二上接线部412与SDA外部接线端4012导通,第三上接线部413与VSS外部接线端4013,第四上接线部414与VDD外部接线端4014导通。
对焦驱动芯片42的一部分接口与上线路板41的各上接线部导通,从而来自下线路系统5的不同的电信号通过各上接线部输入对焦驱动芯片42。对焦驱动芯片42的另一部分接口与上线路板41的对焦驱动接口402导通,从而对焦驱动芯片42电信号通过对焦驱动接口402输出至对焦驱动机构8。
在一个实施例中,对焦驱动机构8的线圈与对焦驱动接口402导电连接,也即对焦驱动机构8的线圈通过上线路板41与对焦驱动芯片42导通。
在一个具体实施例中,对焦驱动芯片42具有Out1端421、Out2端422、SCL端423、SDA端424、VSS端425和VDD端426,SCL端423与第一上接线部411导通,SDA端424与第二上接线部412导通,VSS端425与第三上接线部413导通,VDD端426与第四上接线部414导通。对焦驱动接口402具有分别与Out1端421和Out2端422导通第一对焦驱动接线端4021和第二对焦驱动接线端4022,对焦驱动机构8的线圈的正负极分别与第一对焦驱动接线端4021和第二对焦驱动接线端4022导通。
上线路板41设置在内框架3的上端面,连通弹片43连接内框架3和外框架2,且连通弹片43将 上线路板41上的上接线部与侧边弹片6导通。连通弹片43可以实现内框架3和外框架2的弹性连接,当内框架3相对于外框架2发生位移后,连通弹片43可以确保内框架3恢复到初始位置,也即连通弹片43使得内框架3与外框架2保持较为稳定的状态。此外,连通弹片43还实现上线路板41与侧边弹片6的电信号导通,从而下线路系统5的电信号通过侧边弹片6和连通弹片43到达上线路板41。
在一个优选实施例中,连通弹片43的数量与侧边弹片6的数量一致,每一连通弹片43与一侧边弹片6导电连接。连通弹片43的数量还与上线路板41的上接线部的数量一致,每一连通弹片43与一上接线部导电连接。
下线路系统5包括下线路板51、至少一光学防抖驱动芯片52以及第一外部接口501。
下线路板51设置在底座1上,侧边弹片6与下线路板51导电连接。
下线路板51具有与上线路板41的上接线部一一对应的下接线部,连通弹片43和侧边弹片6将上接线部和下接线部一一对应地导电连接。
如图7所示,下线路板51上具有光学防抖驱动接口502,光学防抖驱动接口502与光学防抖驱动机构7导电连接;光学防抖驱动芯片52与光学防抖驱动接口502导通,从而光学防抖驱动机构7通过下线路板51与光学防抖驱动芯片52导通。
在一个实施例中,光学防抖驱动机构7包括多个线圈,下线路板51具有多个光学防抖驱动接口502,各光学防抖驱动接口502将各光学防抖驱动机构7的线圈导通至光学防抖驱动芯片52。
在一个实施例中,光学防抖驱动机构7包括若干第一线圈711和若干第二线圈712,下线路板51包括两光学防抖驱动芯片52,各第一线圈711和各第二线圈712分别导通至不同的光学防抖驱动芯片52,从而实现第一线圈711和第二线圈712的独立控制。
第一外部接口501设置在下线路板51或者底座1上,外部供电设备适于通过第一外部接口501导通至下线路板51。
第一外部接口501具有至少一第一引脚5011,第一引脚5011适于与外部供电设备导电连接,第一引脚5011与下线路板51的下接线柱一一对应地导通,从而外部供电设备的电信号通过第一引脚5011、下线路板51的线路、下接线柱、侧边弹片6、连通弹片43、上接线柱、上线路板41的线路到达第二外部接口401的各个外部接线端。
如图3所示,第一外部接口501还具有至少一第二引脚5012,第二引脚5012适于与外部供电设备导电连接,第二引脚5012通过下线路板51与光学防抖驱动芯片52导通。
在一些实施例中,第一外部接口501设置在底座1上,各第一引脚5011和第二引脚5012与下线路板51通过内埋于底座1的导体实现导通。内埋于底座1的导体可以是但不限于金属线。
在一个具体实施例中,第一外部接口501包括四个第一引脚5011和四个第二引脚5012。
在一些实施例中,底座1的一侧边缘具有引脚安装位13,各第一引脚5011和第二引脚5012设置在引脚安装位13内。各第一引脚5011和第二引脚5012的一端延伸到底座1的外侧。
在一些实施例中,如图4所示,底座1上具有用于容纳光学防抖驱动芯片52的芯片容置孔151,光学防抖驱动芯片52设置在芯片容置孔151内有利于降低马达驱动装置的整体高度。
在一些实施例中,下线路系统5还包括与光学防抖驱动芯片52配合使用的电容54,底座1上具有用于容纳电容54的电容容置孔152,电容54设置在电容容置孔152内有利于降低马达驱动装置的整体高度。
如图10、11所示,连通弹片43包括设置在内框架3上端面的第一安装端431、设置在外框架2上端面的第二安装端432以及弹性连接第一安装端431和第二安装端432的弹性连接部433;侧边弹片6包括设置在底座1上的第一定位端61、设置在外框架2侧面的第二定位端62以及弹性连接第一定位端61和第二定位端62的弹性变形部63。连通弹片43的第一安装端431与上线路板41的上接线部导电连接,连通弹片43的第二安装端432与侧边弹片6的第二定位端62导电连接,侧边弹片6的第一定位端61与下线路板51的下接线部导电连接。
在一些实施例中,马达驱动装置还包括至少一支撑元件,其设置在底座1的上侧并可移动地支撑外框架2。外框架2具有相互平行的第一侧壁和第二侧壁,一对侧边弹片6分别沿第一侧壁和第二侧壁设置,侧边弹片6适于弹性变形以适于外框架2与底座1的相对位移。
在一个优选实施例中,马达驱动装置包括两对侧边弹片6,两对侧边弹片6对称地设置在第一侧壁和第二侧壁的两端。
进一步地,如图11所示,侧边弹片6的弹性变形部63包括提供第一方向变形量的第一弹性部631和提供第二方向变形量的第二弹性部632,从而侧边弹片6适于弹性变形以适应外框架2相对于底座1在第一方向和第二方向的位移。
进一步地,第一弹性部631沿光轴方向延伸,第一弹性部631与外框架2的第一侧壁或第二侧壁平行,第一方向与第一侧壁或第二侧壁垂直,第二弹性部632与第一弹性部631连接,第二弹性部632具有多个弯曲部,弯曲部呈S形,第二方向与第一侧壁或第二侧壁平行。也即第一方向与第二方向互相垂直。
在一个优选实施例中,如图3所示,支撑元件为滚珠122,在滚珠122的支撑下,底座1适于在于光轴正交的平面内移动。
通过滚珠122可以达到减小摩擦的作用。外框架2与底座1通过滚珠、滚珠槽结构进行活动配合有利于降低马达驱动装置的高度,实现整体结构的小型化。值得一提的是,滚珠122可以是单个也可以是多个。
进一步地,底座1的上端面具有至少一第一滚珠槽121,外框架2的底面具有与第一滚珠槽121相对的第二滚珠槽21,第一滚珠槽121与第二滚珠槽21之间界定一滚珠活动腔,滚珠122设置在滚珠活动腔内,以使得外框架2相对于底座1适于沿第一滚珠槽121或第二滚珠槽21的方向移动。
进一步地,第一滚珠槽121与第二滚珠槽21的延伸方向互相垂直,从而通过滚珠122和滚珠活动腔限定外框架2沿互相垂直的两方向进行位移。
在一个具体实施例中,第一滚珠槽121与第二滚珠槽21的延伸方向分别为第一方向和第二方向。
进一步地,第一滚珠槽121沿延伸方向的两侧壁均与滚珠122接触,第二滚珠槽21沿延伸方向的两侧壁均与滚珠122接触,也即第一滚珠槽121限制滚珠122沿着第一滚珠槽121的延伸方向滚动,第二滚珠槽21限制滚珠122沿着第二滚珠槽21的延伸方向滚动。
在一些实施例中,底座1上端面的四角分别具有一底座支撑部12,底座支撑部12向外框架2的方向凸起,底座支撑部12与底座1一体成型,底座支撑部12的上端面形成第一滚珠槽121。
在一些实施例中,如图6所示,嵌设在外框架2内的第一磁轭74的端部延伸到第二滚珠槽21内,并形成第二滚珠槽21的底面。金属材质的第一磁轭74比塑料材质的外框架2具有更小的表面粗糙度,滚珠122与第一磁轭74的表面接触,有利于减小滚珠122滚动时的摩擦力。将金属材质的第一磁轭74设置在外框架2的内部,还可增加塑料框架的强度,提高整体结构的稳定性。
在一些实施例中,第二磁轭端部延伸到底座1的第一滚珠槽121内,并形成第一滚珠槽121的底面,如此有利于减小滚珠122滚动时的摩擦力,将金属材质的第二磁轭设置在底座1的内部,还可增加塑料底座的强度,提高整体结构的稳定性。
在一些实施例中,如图5所示,外框架2向内框架3的方向延伸形成多个承靠位23,内框架3具有向各承靠位23延伸的多个延伸部33,内框架3通过延伸部33可沿光轴移动地承靠在外框架2上。
内框架3的延伸部33具有用于容纳对焦驱动芯片42的内框架容置孔34。将对焦驱动芯片42容纳在内框架3的延伸部33内,有利于降低马达驱动装置的整体高度。
进一步地,外框架2的承靠位23具有与内框架容置孔34相对的外框架容置孔25,用于进行位置检测的位置感测器44设置在外框架容置孔25内。将位置感测器44设置在外框架2的承靠位23内,也有利于降低马达驱动装置的整体高度。
进一步地,内框架3的延伸部33上具有线圈线路接口35,线圈线路接口35与上线路板41上的对焦驱动接口402导电连接。对焦驱动机构8的线圈的一部分通过模塑工艺与内框架3一体成型,并导通至线圈线路接口35。值得一提的是,当对焦驱动机构8包括多个线圈时,各个线圈均导通至线圈线路接口35。
在一些实施例中,承靠位23位于外框架2设置光学防抖驱动磁铁对73的侧壁,且第一磁轭74设置在承靠位23与光学防抖驱动磁铁对73之间。在一些实施例中,第一磁轭74可以安装在承靠位23的底面上。
外壳9具有外壳通光孔90,外壳9设置在底座1上,从而将外框架2、内框架3、上线路系统4、下线路系统5、侧边弹片6、光学防抖驱动机构7和对焦驱动机构8保持在外壳9与底座1之间的腔体内。
在一些实施例中,外壳9在于第二外部接口401相对的位置具有让位孔,以允许可变光圈机构10的线路板从外壳9上方延伸到第二外部接口401处。
在一些实施例中,外壳9在靠近引脚安装位13的位置处具有引脚预留孔,以允许第一外部接口501的各引脚延伸到外壳9外与外部供电设备连接。
在一个实施例中,如图12所示,可变光圈机构10包括光圈驱动机构104、光圈线路板103和光圈 驱动芯片105,光圈驱动芯片105与光圈驱动机构104通过光圈线路板103导通,光圈驱动芯片105还通过光圈线路板103与第二外部接口401导通。
进一步地,光圈线路板103向上线路板41的第二外部接口401的方向延伸出光圈线路接口1031,光圈线路接口1031与第二外部接口401导电连接。
在一个具体实施例中,光圈线路接口1031包括四个光圈线路接线端,分别为SCL光圈线路接线端、SDA光圈线路接线端、VSS光圈线路接线端和VDD光圈线路接线端,其分别与第二外部接口401的SCL外部接线端4011、SDA外部接线端4012、VSS外部接线端4013和VDD外部接线端4014导电连接。
进一步地,光圈线路板103为FPC线路板,其适于弯折以使光圈线路接口1031靠近第二外部接口401。
进一步地,SCL光圈线路接线端和SDA光圈线路接线端位于光圈线路板103的一侧,VSS光圈线路接线端和VDD光圈线路接线端位于光圈线路板103的另一侧,也即两组光圈线路接线端分别位于光圈线路板103的两侧,且分别从通光孔的两侧延伸到上线路板41。
本申请中,上线路系统4主要用于实现可变光圈机构10的线路和对焦驱动机构8的线路的导通,二者共用一个线路板导通,不仅可以简化线路的设计,还可以保证整体结构的小型化。此外,上线路系统4和下线路系统5又通过侧边弹片6连通,从而形成一个整体的回路,底座1上的第一外部接口501与外部电路焊接,用于提供整个马达驱动装置在工作过程中的电流。
在一个具体实施例中,如图13-15所示,可变光圈机构10包括安装壳体101、若干叶片102、光圈线路板103以及光圈驱动机构104。安装壳体101的中部形成光圈通光孔100,叶片102活动设置在安装壳体101上以形成孔径可调的入射孔,光圈驱动机构104用于驱动叶片102活动以调节入射孔的孔径,光圈线路板103与光圈驱动机构104连通,用于控制光圈驱动机构104的工作。
可变光圈机构10被保持在外壳9的上方,其可以承靠光学镜头,也可以承靠外壳9,本申请对此不做限制。
在一个优选实施例中,光圈驱动机构104为磁铁/线圈结构的驱动机构。具体地,光圈驱动机构104包括驱动件1041、驱动磁铁1042以及驱动线圈1043。驱动件1041活动设置在安装壳体101上,并被配置为活动时带动叶片102旋转以调节入射孔的孔径;驱动磁铁1042设置在驱动件1041上;驱动线圈1043与驱动磁铁1042相对地设置,驱动线圈1043设置在安装壳体101上或者光圈线路板103上,驱动线圈1043与光圈线路板103导电连通,从而通过驱动线圈1043与驱动磁铁1042的相互作用,使驱动件1041活动以带动叶片102旋转。
本申请的马达驱动装置在工作过程中,首先根据被摄物体所处的环境,提前自动调整好入射孔大小以使得光学镜头的通光量合适,再利用光学防抖驱动机构7和对焦驱动机构8进行防抖和对焦,然后进行成像。
本申请的可变光圈机构10的光圈线路板103和光圈驱动机构104均避让光圈通光孔100设置在安装壳体101上,叶片102、光圈驱动机构104以及光圈线路板103沿着光轴方向依次设置于安装壳体101, 如此可以充分利用安装壳体101的轴向空间设置各零部件,可以避免可变光圈机构10的径向尺寸过大。
安装壳体101与光圈线路板103相对的底面上具有用于容纳光圈线路板103上元件的容纳孔,从而将光圈线路板103上凸出的、占据较大空间的元件容纳于安装壳体101的容纳孔内,使得光圈线路板103与安装壳体101紧密贴合,有利于减小可变光圈机构10的轴向尺寸,也起到保护元器件的作用。
进一步地,光圈线路板103与驱动件1041沿光轴方向分别设置在安装壳体103的两侧,安装壳体103的底面上具有用于容纳驱动线圈1043的线圈通孔,驱动线圈1043设置在光圈线路板103上并从光圈线路板103延伸到线圈通孔内,以使得驱动线圈1043与设置在驱动件1041底面的驱动磁铁1042相对。进一步地,驱动线圈1043设置在光圈线路板103靠近边缘的位置,线圈通孔的侧面与外部连通,如此可以简化安装壳体101的结构,减少安装壳体101的整体重量。
驱动件1041呈圆环形,其可旋转地设置在安装壳体101上。驱动件1041在与驱动线圈1043相对的底面具有安装槽,驱动磁铁1043嵌入安装槽内。
驱动件1041设置驱动磁铁1042的一段沿径向向外延伸以形成扩大端,以便提供足够的空间嵌入驱动磁铁1042。进一步地,考虑到节约内部空间,安装壳体101与驱动件1041的扩大端相对地形成让位开口,让位开口的宽度大于扩大端的宽度,从而驱动件1041旋转时,扩大端可在让位开口内转动。让位开口的设置有利于减小可变光圈机构10的尺寸,避免驱动件1041旋转时与安装壳体101产生干涉,另外也可以对驱动件1041的旋转角度起到限位作用。
叶片102有多个,各叶片102的一端与安装壳体101可转动地连接,另一端延伸到光圈通光孔100上方,从而多个叶片102组合界定孔径可调的入射孔,各叶片102与驱动件1041连接以使得驱动件1041旋转时带动各叶片102旋转以调节入射孔的孔径。
叶片102上具有定位孔,安装壳体101上具有与定位孔配合的定位柱,叶片102转动时以定位柱为轴。也即,叶片102与安装壳体101通过定位孔和定位柱实现可转动地连接。叶片102上还具有活动孔,驱动件1041上具有与活动孔滑动配合的限位柱,活动孔具有供限位柱滑动的行程空间,驱动件1041旋转时限位柱在活动孔内移动并带动叶片102旋转。值得一提的是,活动孔的行程空间可以对叶片102的旋转角度进行限制,以确保叶片102在预设的角度范围之间进行旋转。
在一些实施例中,光圈线路板103为柔性印刷电路板,通过贴合安装壳体101的底面,可以确保光圈线路板103的平整性。进一步地,光圈线路板103可以粘接固定在安装壳体101的底面,以增加光圈线路板103的平整度。
进一步地,安装壳体101的底面上设置有定位件,在光圈线路板103相应的位置上分别设置有线路板定位通孔,因此可通过线路板定位通孔和定位件的配合来定位光圈线路板103的安装位置,如此使得组装过程更加便捷。
在一些实施例中,可变光圈机构10还包括锁附片106,锁附片106避让光圈通光孔100设置在安装壳体101上,并将叶片102保持在锁附片106与安装壳体101之间。通过设置锁附片106有利于提高可变光圈机构10的整体稳定性,也可以保护内部的元件。进一步地,锁附片106的物侧表面上设置有黑物, 用于防止光线反射。进一步地,安装壳体101在与锁附片106相对的表面上具有定位块,锁附片106在与定位块对应的位置处形成定位槽,通过定位块和定位槽的配合,将锁附片106保持在安装壳体101的预设位置。
进一步地,锁附片106上设置有用于防止和定位柱、限位柱产生干涉的避让孔。为了使可变光圈机构10的结构尽可能地紧凑,需要减小锁附片106与叶片102之间的空隙,而为了提高叶片102与定位柱和限位柱的安装稳定性,定位柱和限位柱的高度不宜过低,基于以上考虑,在锁附片106上设置避让孔,既可以使定位柱和限位柱的高度超过叶片102,也可以避免增加可变光圈机构10的整体厚度。
光圈线路板103、锁附片106可以为圆环构造,从而一体地围绕通光孔100设置在安装壳体101上,且圆环中心的孔径优选不小于入射孔的最大孔径,从而由入射孔的孔径决定光通量。光圈线路板103、锁附片106也可以设计为分体式,从而沿圆周分段地设置在安装壳体101上。
在一些实施例中,驱动件1041的底面具有第一部件,安装壳体101上具有与第一部件相对的第二部件,驱动件1041和安装壳体101在光轴方向上通过第一部件和第二部件接触。驱动件1041相对于安装壳体101旋转时,二者之间的摩擦力会增加对驱动力的要求,通过减小驱动件1041与安装壳体101之间的接触面积,有利于减小两者之间的摩擦力,本实施例的驱动件1041和安装壳体101通过第一部件和第二部件进行接触,可以减小驱动件1041相对于安装壳体101移动时的摩擦力。
在一些实施例中,第一部件和第二部件分别为凸台和滑槽,驱动件1041相对于安装壳体101旋转时,凸台在滑槽内滑动。凸台和滑槽的设计,可以确保不增加整体厚度的情况下,减小驱动件1041与安装壳体101之间的接触面积,实现了内部空间的充分利用,而且通过凸台与滑槽的配合,也可以对驱动件1041的位移进行限位,以确保驱动件1041沿着预设方向在预设角度范围内进行旋转。
在一些变形实施例中,第一部件和第二部件分别为滚珠和滚珠槽,滚珠适于在滚珠槽内滚动,滚珠槽可以对滚珠的位移进行限位,以确保驱动件1041沿着预设方向在预设角度范围内进行旋转。
进一步地,第一部件和第二部件的数量至少为两对且沿着光圈通光孔10的周向等间距设置,以保证支撑的稳定。
进一步地,安装壳体101与驱动件1041之间可设置弹性元件108,弹性元件108的一端固定在驱动件1041上,另一端固定在安装壳体101上,且弹性元件108在安装壳体101和驱动件1041上的安装位等高,如图13所示,也即弹性元件108安装后位于与光轴垂直的平面内,弹性元件108的作用为:提供驱动件1041回复初始位置的回弹力,也即在工作状态结束后,弹性元件108能够使驱动件1041相对于安装壳体101旋转以恢复到原始状态;而且弹性元件108也可以起到连接安装壳体101与驱动件1041的作用,当可变光圈机构10受到外力作用时,可以保证二者不发生相对移动,可以避免由内部元件碰撞引起的各种问题。
根据本申请的一个方面,提供一种马达驱动装置,包括:对焦驱动机构8,用于驱动一光学镜头沿光轴移动;可变光圈机构10,用于调节光学镜头的通光量;位于马达驱动装置上侧的上线路系统4,上线路系统4分别与对焦驱动机构8和可变光圈机构10导通;位于马达驱动装置下侧的下线路系统5,下线路系统5与上线路系统4导通,下线路系统5适于与外部供电设备导通。
该马达驱动装置利用上线路系统4和下线路系统5将对焦驱动机构8和可变光圈机构10导通至外部供电设备,有利于简化线路设计,实现整体结构的小型化。
根据本申请的另一个方面,提供一种马达驱动装置,包括:底座1;外框架2,在光轴正交方向可移动地承靠在底座1上,并具有相互平行的第一侧壁和第二侧壁;至少一支撑元件,设置在底座1上侧并可移动地支撑外框架2;内框架3,设置在外框架2内侧并沿光轴方向可移动,光学镜头适于设置在内框架3内侧;对焦驱动机构8,用于驱动内框架3沿光轴方向移动;光学防抖驱动机构7,用于驱动外框架2在光轴正交方向移动;至少一对侧边弹片6,侧边弹片连接底座1和外框架2,且一对侧边弹片6分别设置于第一侧壁和第二侧壁,侧边弹片6适于弹性变形以适应外框架2与底座1的相对位移。
该马达驱动装置利用支撑元件和侧边弹片6的配合,实现外框架2在光轴正交平面内的移动。支撑元件使得外框架2可相对于底座1在多个方向进行位移,侧边弹片6使外框架2与底座1的连接更为稳定,并在外框架2发生位移后,能够带动外框架2恢复到初始位置。
本申请还提供一种摄像模组,包括本申请前述的马达驱动装置、设置在所述马达驱动装置的通光孔内的光学镜头(图中未示出)以及感光组件(图中未示出),感光组件设置在马达驱动装置的下方并与底座通光孔11相对,感光组件用于接收光学镜头汇聚的光线并进行光电转换。
以上描述了本申请的基本原理、主要特征和本申请的优点。本行业的技术人员应该了解,本申请不受上述实施例的限制,上述实施例和说明书中描述的只是本申请的原理,在不脱离本申请精神和范围的前提下本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请的范围内。本申请要求的保护范围由所附的权利要求书及其等同物界定。

Claims (48)

  1. 一种马达驱动装置,其特征在于,包括:
    对焦驱动机构,用于驱动一光学镜头沿光轴移动;
    可变光圈机构,用于调节所述光学镜头的通光量;
    位于所述马达驱动装置上部的上线路系统,所述上线路系统分别与所述对焦驱动机构和所述可变光圈机构导通;
    位于所述马达驱动装置下部的下线路系统,所述下线路系统与所述上线路系统导通,所述下线路系统适于与外部供电设备导通。
  2. 根据权利要求1所述的马达驱动装置,其特征在于,所述马达驱动装置还包括用于驱动所述光学镜头沿光轴正交方向移动的光学防抖驱动装置,所述光学防抖驱动装置与所述下线路系统导通。
  3. 根据权利要求1所述的马达驱动装置,其特征在于,所述下线路系统与所述上线路系统通过位于所述马达驱动装置侧面的至少一侧边弹片导通。
  4. 根据权利要求1所述的马达驱动装置,其特征在于,所述上线路系统包括上线路板,所述上线路板上具有第二外部接口和对焦驱动接口,所述可变光圈机构通过所述第二外部接口导通至所述上线路板,所述对焦驱动机构通过所述对焦驱动接口导通至所述上线路板。
  5. 根据权利要求4所述的马达驱动装置,其特征在于,所述上线路板具有至少一上接线部,所述上接线部与所述下线路系统导通,所述上接线部还与所述第二外部接口导通。
  6. 根据权利要求5所述的马达驱动装置,其特征在于,所述下线路系统包括下线路板和第一外部接口,所述下线路板上具有与所述上接线部一一对应地导通的下接线部,所述第一外部接口包括与所述下接线部一一对应地导通的第一引脚,所述第一引脚适于与外部供电设备导通连接。
  7. 根据权利要求5所述的马达驱动装置,其特征在于,所述上线路板具有多个上接线部,所述第二外部接口包括多个外部接线端,各所述外部接线端一一对应地与各所述上接线部导通,所述可变光圈机构与各所述外部接线端导电连接。
  8. 根据权利要求5所述的马达驱动装置,其特征在于,所述上线路系统包括对焦驱动芯片,所述对焦驱动芯片的一部分接口与所述上接线部导通,另一部分接口与所述对焦驱动接口导通。
  9. 根据权利要求8所述的马达驱动装置,其特征在于,所述对焦驱动机构为磁铁/线圈结构,所述对焦驱动机构的线圈与所述对焦驱动接口导电连接,从而所述对焦驱动机构的线圈通过所述上线路板与所述对焦驱动芯片导通。
  10. 根据权利要求1-9任一所述的马达驱动装置,其特征在于,所述马达驱动装置包括:
    底座;
    在光轴正交方向可移动地承靠在所述底座上的外框架;
    设置在所述外框架内侧并沿着光轴方向可移动的内框架,所述光学镜头适于安装在所述内框架上;
    所述上线路系统设置在所述内框架上,所述下线路系统设置在所述底座上,所述上线路系统和所述下线路系统通过侧边弹片导通。
  11. 根据权利要求10所述的马达驱动装置,其特征在于,所述上线路系统包括上线路板以及至少一连通弹片,所述连通弹片连接所述内框架和所述外框架,所述连通弹片适于弹性变形以适应所述内框架与所述外框架的相对位移,所述连通弹片还将所述上线路板与所述侧边弹片导通。
  12. 根据权利要求11所述的马达驱动装置,其特征在于,所述侧边弹片连接所述外框架和所述底座,所述侧边弹片适于弹性变形以适应所述外框架与所述底座的相对位移,所述连通弹片与所述侧边弹片在所述外框架上导电连接。
  13. 根据权利要求12所述的马达驱动装置,其特征在于,所述上线路板上具有至少一上接线部,所述下线路系统包括下线路板,所述下线路板上具有至少一下接线部,所述连通弹片和所述侧边弹片将所述上接线部和所述下接线部一一对应地导电连接。
  14. 根据权利要求13所述的马达驱动装置,其特征在于,所述连通弹片包括设置在所述内框架上端面的第一安装端、设置在所述外框架上端面的第二安装端以及弹性连接所述第一安装端和所述第二安装端的弹性连接部;所述侧边弹片包括设置在所述底座上的第一定位端、设置在所述外框架侧面的第二定位端以及弹性连接所述第一定位端和所述第二定位端的弹性变形部;所述第一安装端与所述上接线部导电连接,所述第二安装端与所述第二定位端导电连接,所述第一定位端与所述下接线部导电连接。
  15. 根据权利要求13所述的马达驱动装置,其特征在于,所述下线路系统还包括第一外部接口,所述第一外部接口设置在所述下线路板或所述底座上,所述第一外部接口具有至少一第一引脚,所述第一引脚与所述下接线部导通,所述第一引脚适于与外部供电设备导电连接。
  16. 根据权利要求15所述马达驱动装置,其特征在于,所述第一外部接口设置在所述底座上,所述第一引脚与所述下线路板通过内埋于所述底座的导体实现导通。
  17. 根据权利要求16所述的马达驱动装置,其特征在于,所述底座的一侧边缘具有引脚安装位,所述第一引脚设置在所述引脚安装位内,所述引脚的一端延伸到所述底座外侧。
  18. 根据权利要求15所述的马达驱动装置,其特征在于,所述马达驱动装置包括用于驱动所述光学镜头沿光轴正交方向移动的光学防抖驱动装置,所述下线路板上具有至少一光学防抖接口,所述光学防抖驱动装置通过所述光学防抖接口导通至所述下线路板。
  19. 根据权利要求18所述的马达驱动装置,其特征在于,所述第一外部接口包括多个第二引脚,所述下线路系统包括光学防抖驱动芯片,所述光学防抖驱动芯片的一部分接口与所述第二引脚导通,所述光学防抖驱动芯片的另一部分接口与所述光学防抖接口导通。
  20. 根据权利要求19所述的马达驱动装置,其特征在于,所述光学防抖驱动装置为磁铁/线圈结构,所述光学防抖驱动装置包括多个光学防抖驱动线圈,所述下线路板上具有多个所述光学防抖接口,各所述光学防抖驱动线圈分别通过相应的所述光学防抖接口与所述光学防抖驱动芯片导通。
  21. 根据权利要求4所述的马达驱动装置,其特征在于,所述可变光圈机构包括光圈驱动机构、光圈线路板和光圈驱动芯片,所述光圈驱动芯片与所述光圈驱动机构通过所述光圈线路板导通,所述光圈驱动芯片还通过所述光圈线路板与所述上线路板的所述第二外部接口导通。
  22. 根据权利要求21所述的马达驱动装置,其特征在于,所述光圈线路板向所述上线路板的所述第二外部接口的方向延伸出光圈线路接口,所述光圈线路接口与所述第二外部接口导电连接,所述光圈线路板为FPC线路板,所述光圈线路板弯折以使所述光圈线路接口靠近所述第二外部接口。
  23. 根据权利要求10所述的马达驱动装置,其特征在于,所述外框架向所述内框架的方向延伸形成多个承靠位,所述内框架具有向各所述承靠位延伸的多个延伸部,所述内框架通过所述延伸部可沿光轴移动地承靠在所述外框架上,所述内框架的所述延伸部具有用于容纳对焦驱动芯片的内框架容置孔。
  24. 根据权利要求23所述的马达驱动装置,其特征在于,所述外框架的所述承靠位具有与所述内框架容置孔相对的外框架容置孔,用于进行位置检测的位置感测器设置在所述外框架容置孔内。
  25. 根据权利要求23所述的马达驱动装置,其特征在于,所述内框架的所述延伸部上具有线圈线路接口,所述线圈线路接口与所述上线路系统导电连接,所述对焦驱动机构的线圈的一部分通过模塑工艺与所述内框架一体成型,并导通至所述线圈线路接口。
  26. 一种摄像模组,其特征在于,包括光学镜头、感光组件以及如权利要求1-25任一所述的马达驱动装置,所述马达驱动装置围绕所述光学镜头设置,所述感光组件设置在所述马达驱动装置的下方用于接收所述光学镜头汇聚的光线并进行光电转换。
  27. 一种马达驱动装置,其特征在于,包括:
    底座;
    外框架,在光轴正交方向可移动地承靠在所述底座上,并具有相互平行的第一侧壁和第二侧壁;
    至少一支撑元件,设置在所述底座上侧并可移动地支撑所述外框架;
    内框架,设置在所述外框架内侧并沿光轴方向可移动,光学镜头适于设置在所述内框架内侧;
    对焦驱动机构,用于驱动所述内框架沿光轴方向移动;
    光学防抖驱动机构,用于驱动所述外框架在光轴正交方向移动;
    至少一对侧边弹片,所述侧边弹片连接所述底座和所述外框架,且一对所述侧边弹片分别设置于所述第一侧壁和所述第二侧壁,所述侧边弹片适于弹性变形以适应所述外框架与所述底座的相对位移。
  28. 根据权利要求27所述的马达驱动装置,其特征在于,所述马达驱动装置包括两对所述侧边弹片,两对所述侧边弹片对称地设置在所述第一侧壁和所述第二侧壁的两端。
  29. 根据权利要求27所述的马达驱动装置,其特征在于,所述马达驱动装置包括设置 在所述内框架上的上线路系统和设置在所述底座上的下线路系统,所述侧边弹片的两端分别与所述上线路系统和所述下线路系统导电连接。
  30. 根据权利要求29所述的马达驱动装置,其特征在于,所述侧边弹片包括与所述下线路系统导电连接的第一定位端部、与所述上线路系统导通连接的第二定位端以及弹性连接所述第一定位端和所述第二定位端的弹性变形部,所述弹性变形部包括提供第一方向变形量的第一弹性部和提供第二方向变形量的第二弹性部,从而所述侧边弹片适于弹性变形以适应所述外框架相对于所述底座在所述第一方向和所述第二方向的位移。
  31. 根据权利要求30所述的马达驱动装置,其特征在于,所述第一弹性部沿光轴方向延伸,所述第一弹性部与所述第一侧壁或所述第二侧壁平行,所述第一方向与所述第一侧壁或所述第二侧壁垂直,所述第二弹性部与所述第一弹性部连接,所述第二弹性部具有多个弯曲部,所述第二方向与所述第一侧壁或所述第二侧壁平行。
  32. 根据权利要求31所述的马达驱动装置,其特征在于,所述弯曲部呈S形。
  33. 根据权利要求29所述的马达驱动装置,其特征在于,所述上线路系统包括上线路板以及至少一连通弹片,所述上线路板设置在所述内框架的上端面,所述连通弹片连接所述内框架和所述外框架,所述连通弹片的一端与所述上线路板导电连接,另一端与所述侧边弹片导电连接。
  34. 根据权利要求27-33任一所述的马达驱动装置,其特征在于,所述支撑元件为滚珠,在所述滚珠的支撑下,所述底座适于在与光轴正交的平面内移动。
  35. 根据权利要求34所述的马达驱动装置,其特征在于,所述底座的上端面具有至少一第一滚珠槽,所述外框架的底面具有与所述第一滚珠槽相对的第二滚珠槽,所述第一滚珠槽与所述第二滚珠槽之间界定一滚珠活动腔,所述滚珠设置在所述滚珠活动腔内,以使得所述外框架相对于所述底座适于沿所述第一滚珠槽或所述第二滚珠槽的方向移动。
  36. 根据权利要求35所述的马达驱动装置,其特征在于,所述第一滚珠槽与所述第二滚珠槽的延伸方向互相垂直。
  37. 根据权利要求35所述的马达驱动装置,其特征在于,所述第一滚珠槽沿延伸方向的两侧壁均与所述滚珠接触,所述第二滚珠槽沿延伸方向的两侧壁均与所述滚珠接触。
  38. 根据权利要求35所述的马达驱动装置,其特征在于,所述底座上端面的四角分别具有一底座支撑部,所述底座支撑部向所述外框架的方向凸起,所述底座支撑部的上端面形成所述第一滚珠槽。
  39. 根据权利要求27-33任一所述的马达驱动装置,其特征在于,包括:
    设置在所述外框架上的至少一共用磁铁对;
    设置在所述内框架侧壁外侧的对焦驱动线圈,所述对焦驱动线圈与所述共用磁铁对相对,所述对焦驱动线圈与所述共用磁铁对的相互作用适于驱动所述内框架沿光轴方向移动;
    设置在所述外框架下方的光学防抖驱动线圈,所述光学防抖驱动线圈与所述共用磁铁对相对,所述光学防抖驱动线圈与所述共用磁铁对的相互作用适于驱动所述外框架在光轴正交方向移动。
  40. 根据权利要求39所述的马达驱动装置,其特征在于,所述马达驱动装置包括两所述共用磁铁对,两所述共用磁铁对分别设置在所述外框架一对相互平行的侧壁上。
  41. 根据权利要求39所述的马达驱动装置,其特征在于,还包括至少一光学防抖驱动磁铁对,所述光学防抖驱动磁铁对设置在所述外框架未设置所述共用磁铁对的侧壁上,所述光学防抖驱动磁铁对与所述光学防抖驱动线圈相对,所述光学防抖驱动磁铁对与所述光学防抖驱动线圈的相互作用适于驱动所述外框架在光轴正交方向移动。
  42. 根据权利要求41所述的马达驱动装置,其特征在于,所述马达驱动装置包括两所述光学防抖驱动磁铁对,分别设置在所述外框架未设置所述共用磁铁对的一对相对的侧壁上。
  43. 根据权利要求41所述的马达驱动装置,其特征在于,所述马达驱动装置包括多个所述光学防抖驱动线圈,每一所述光学防抖驱动磁铁对以及每一所述共用磁铁对与一所述光学防抖驱动线圈相对。
  44. 根据权利要求41所述的马达驱动装置,其特征在于,所述光学防抖驱动磁铁对在光轴方向的厚度小于所述共用磁铁对,所述光学防抖驱动磁铁对的顶面低于所述共用磁铁对的顶面,所述光学防抖驱动磁铁对的上方设置有用于强化磁力循环的第一磁轭。
  45. 根据权利要求44所述的马达驱动装置,其特征在于,所述光学防抖驱动磁铁对的下方还设置有第二磁轭,所述第二磁轭与所述第一磁轭相对。
  46. 根据权利要求45所述的马达驱动装置,其特征在于,所述第一磁轭和所述第二磁轭为金属片,所述第一磁轭嵌设在所述外框架内,所述第二磁轭设置在所述底座内。
  47. 根据权利要求46所述的马达驱动装置,其特征在于,所述支撑元件为滚珠,所述底座的上端面具有至少一第一滚珠槽,所述外框架的底面具有与所述第一滚珠槽相对的第二滚珠槽,所述第一滚珠槽与所述第二滚珠槽之间界定一滚珠活动腔;
    所述第一磁轭的端部延伸到所述外框架的所述第二滚珠槽内,并形成所述第二滚珠槽的底面;
    所述第二磁轭的端部延伸到所述底座的所述第一滚珠槽内,并形成所述第一滚珠槽的底面。
  48. 一种摄像模组,其特征在于,包括光学镜头、感光组件以及如权利要求27-47任一所述的马达驱动装置,所述马达驱动装置围绕所述光学镜头设置,所述感光组件设置在所述马达驱动装置的下方用于接收所述光学镜头汇聚的光线并进行光电转换。
PCT/CN2023/075483 2022-02-14 2023-02-10 马达驱动装置以及摄像模组 WO2023151666A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210131727.8A CN116626846A (zh) 2022-02-14 2022-02-14 马达驱动装置以及摄像模组
CN202210131725.9 2022-02-14
CN202210131727.8 2022-02-14
CN202210131725.9A CN116626845A (zh) 2022-02-14 2022-02-14 马达驱动装置以及摄像模组

Publications (1)

Publication Number Publication Date
WO2023151666A1 true WO2023151666A1 (zh) 2023-08-17

Family

ID=87563666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075483 WO2023151666A1 (zh) 2022-02-14 2023-02-10 马达驱动装置以及摄像模组

Country Status (1)

Country Link
WO (1) WO2023151666A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676402A (zh) * 2012-09-07 2014-03-26 三星电机株式会社 照相机模块
CN110858870A (zh) * 2018-08-22 2020-03-03 三星电机株式会社 光圈模块和包括光圈模块的相机模块
JP2021021846A (ja) * 2019-07-29 2021-02-18 株式会社タムロン レンズユニット、及びそれを備えたカメラモジュール
CN213210673U (zh) * 2019-12-06 2021-05-14 台湾东电化股份有限公司 光学系统
CN112886788A (zh) * 2021-03-08 2021-06-01 Oppo广东移动通信有限公司 音圈马达、摄像头及电子设备
CN113515001A (zh) * 2021-07-29 2021-10-19 上海比路电子股份有限公司 一种防抖马达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676402A (zh) * 2012-09-07 2014-03-26 三星电机株式会社 照相机模块
CN110858870A (zh) * 2018-08-22 2020-03-03 三星电机株式会社 光圈模块和包括光圈模块的相机模块
JP2021021846A (ja) * 2019-07-29 2021-02-18 株式会社タムロン レンズユニット、及びそれを備えたカメラモジュール
CN213210673U (zh) * 2019-12-06 2021-05-14 台湾东电化股份有限公司 光学系统
CN112886788A (zh) * 2021-03-08 2021-06-01 Oppo广东移动通信有限公司 音圈马达、摄像头及电子设备
CN113515001A (zh) * 2021-07-29 2021-10-19 上海比路电子股份有限公司 一种防抖马达

Similar Documents

Publication Publication Date Title
CN212115444U (zh) 一种摄像模组及电子设备
CN104407487A (zh) 一种通过纯平移运动实现光学防抖的音圈马达
CN113301232B (zh) 拍摄装置及电子设备
CN113489888A (zh) 摄像头模组及电子设备
CN113242373A (zh) 摄像模组和电子设备
CN114236741B (zh) 连续变焦马达、摄像装置及移动终端
WO2023151666A1 (zh) 马达驱动装置以及摄像模组
CN218162616U (zh) 一种摄像头模组和电子设备
CN217034386U (zh) 镜头驱动机构及其马达
CN113784047B (zh) 透镜装置的防抖机构、驱动、摄像装置及电子设备
CN214252704U (zh) 镜头模组
CN112748507B (zh) 照相机用透镜驱动装置、照相机及电子设备
CN117616764A (zh) 转动机构及其摄像模组、驱动装置及其电子设备
CN116931217A (zh) 透镜驱动装置
CN116626845A (zh) 马达驱动装置以及摄像模组
CN116626846A (zh) 马达驱动装置以及摄像模组
CN112835203A (zh) 一种驱动模块、摄像模组及电子设备
CN217443620U (zh) 镜头驱动机构及其支架
CN217467315U (zh) 镜头驱动机构及其电路板
WO2022088650A1 (zh) 图像传感器防抖组件、摄像装置及电子设备
US20230276129A1 (en) Camera device
CN217825083U (zh) 摄像模组及电子设备
CN219227384U (zh) 镜头驱动机构及其底座
CN219938448U (zh) 三轴防抖摄像驱动装置
WO2022257715A1 (zh) 感光芯片驱动装置及摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752444

Country of ref document: EP

Kind code of ref document: A1