WO2023151353A1 - 一种热解气或气化气自动储存及检测系统和方法 - Google Patents

一种热解气或气化气自动储存及检测系统和方法 Download PDF

Info

Publication number
WO2023151353A1
WO2023151353A1 PCT/CN2022/135761 CN2022135761W WO2023151353A1 WO 2023151353 A1 WO2023151353 A1 WO 2023151353A1 CN 2022135761 W CN2022135761 W CN 2022135761W WO 2023151353 A1 WO2023151353 A1 WO 2023151353A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
solenoid valve
gas storage
storage tank
detection
Prior art date
Application number
PCT/CN2022/135761
Other languages
English (en)
French (fr)
Inventor
王志伟
雷廷宙
韩宇辉
杨树华
陈高峰
李学琴
孙堂磊
张孟举
李辉
李在峰
Original Assignee
河南省科学院
河南工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南省科学院, 河南工业大学 filed Critical 河南省科学院
Publication of WO2023151353A1 publication Critical patent/WO2023151353A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems

Definitions

  • the invention belongs to the technical field of gas storage and detection, and in particular relates to a system and method for automatic storage and detection of pyrolysis gas or gasification gas.
  • Solid waste pyrolysis technology is a thermal degradation process of solid waste in the absence of oxygen or air to produce various gas components, tar and solid products, etc.
  • pyrolysis can release volatile gases with high energy density, condensable high-molecular-weight compounds and non-condensable low-molecular-weight products, namely pyrolysis gas, and carbon-containing solid products with high energy density.
  • gas can also be used for synthetic fuels and high value-added products.
  • the solid waste gasification technology can thermally decompose solid waste at medium and high temperatures, and at the same time combine with an appropriate gasification atmosphere (such as oxygen, air, H 2 O or CO 2 as syngas with high heat content (containing H 2 , CO, CO 2 , CH 4 , C 2 H 6 and other hydrocarbon gases), gasification technology is the main method to alleviate the consumption of non-renewable fossil fuels, similarly, gasification gas can be directly used to generate heat, synthetic fuel and High value-added products.
  • an appropriate gasification atmosphere such as oxygen, air, H 2 O or CO 2 as syngas with high heat content (containing H 2 , CO, CO 2 , CH 4 , C 2 H 6 and other hydrocarbon gases
  • the time of pyrolysis or gasification is related to the reaction temperature and the material.
  • the higher the reaction temperature the shorter the time required for pyrolysis or gasification to complete, and the easier it is for the material to be pyrolyzed (for example, biomass is easier to pyrolyze than waste tires. pyrolysis), the shorter the time required.
  • there are mainly two methods for detection of pyrolysis gas or gasification gas one is online detection, and the other is detection after gas storage. In the first few minutes of the solid waste pyrolysis or gasification process, the gas production is relatively large, and the requirements for detection methods and standards are relatively high.
  • Gas chromatography can be used to achieve high resolution and detection accuracy in the online detection of pyrolysis gas or gasification gas. However, it takes about 2.5 minutes to detect gases below C 4 with fast detection chromatography on the market, which often cannot meet the requirements of pyrolysis.
  • the production rate of gas or gasification gas; the number of gas storage tanks is selected according to the different materials and the reaction temperature of pyrolysis gas or gasification gas. The easier the material is to pyrolyze or gasify, the less gas storage tanks to choose; the reaction temperature The higher the option, the fewer gas tanks.
  • gas storage bags or gas storage tanks for detection multiple samples can be stored and then tested. However, the efficiency of manual gas storage is low, and when there are many gas samples collected, there will be many gas storage bags that are easily confused. Aiming at the characteristics of pyrolysis gas or gasification gas, it has not been reported to ingeniously conceive and invent an automatic storage and automatic detection system and method.
  • the present invention provides a pyrolysis gas or gasification gas automatic storage and automatic detection system and method, which has a simple and ingenious structure, a gas storage tank
  • the gas storage and deflation are convenient and fast, which can effectively overcome the shortcomings of low efficiency of manual gas storage and deflation, easy leakage and confusion of using gas storage bags, and inaccurate analysis of portable detectors, and solve the problem of gas chromatography detection time relative to heat.
  • the objective contradiction of long generation time of pyrolysis gas or gasification gas satisfies the continuity and accuracy of online detection of pyrolysis gas or gasification gas, and improves the efficiency of gas detection. Then improve the energy conversion and utilization efficiency of organic solid waste, accelerate the protection of the environment and the realization of the goal of carbon neutrality.
  • An automatic storage and detection system for pyrolysis gas or vaporized gas characterized in that it includes several gas storage tanks arranged in parallel, electromagnetic valves corresponding to the number of gas storage tanks, air pumps, gas chromatography, emptying processing devices, pressure Detection system, PLC control system; the inlet and outlet ends of each gas storage tank are respectively connected to the inlet solenoid valve and the outlet solenoid valve through the ventilation pipe; the first solenoid valve is connected to the suction pump through the ventilation pipeline, and the suction pump passes through the suction pipeline Connect to the gas source of pyrolysis gas or gasification gas; the second solenoid valve is connected to the gas source of flushing gas (such as argon) through the ventilation pipeline, and the third solenoid valve is a three-way solenoid valve, which can be connected to each storage tank through the ventilation pipeline respectively.
  • the first solenoid valve is connected to the suction pump through the ventilation pipeline, and the suction pump passes through the suction pipeline Connect to the gas source of pyrolysis gas or gasification
  • the outlet solenoid valve connected to the gas outlet end of the gas tank, the detection device (such as gas chromatography) or the emptying treatment device is connected; the pyrolysis gas or gasification gas passing through the first solenoid valve can pass through the vent pipe and the fourth part of the bypass pipe.
  • the solenoid valve and the inlet solenoid valve connected to the inlet end of each gas storage tank are connected, the bypass pipeline is connected in parallel with all gas storage tanks, and the argon gas passing through the second solenoid valve can pass through the ventilation pipeline and the fourth electromagnetic valve of the bypass pipeline.
  • each gas storage tank is connected to the pressure detection system through the pressure sensing line, the pressure detection system is connected to the PLC control system through the signal transmission line, and the PLC control system is connected through the electromagnetic Valve wires connect all solenoid valves.
  • the number of gas storage tanks is determined according to different reaction temperatures and materials, for example, usually 3-5 gas storage tanks; for waste plastic raw materials, 5-7 gas storage tanks; for waste tire raw materials, then For 6-8 gas storage tanks.
  • the PLC control system is used to start the automatic gas storage stage, the gas storage tank automatic detection stage and the detection follow-up stage, and perform sequence control, timing control, and pressure control of key links; the solenoid valve and the PLC control system are explosion-proof.
  • the PLC control system is used to start the automatic gas storage stage, the gas storage tank automatic detection stage and the detection follow-up stage to carry out sequence control, timing control and pressure control of key links.
  • the key links of the automatic gas storage stage include emptying the gas storage tank, standby the gas storage tank, and storing gas in the gas storage tank.
  • the operation of emptying the gas storage tank is as follows. Before the gas analysis in the previous gas storage tank is completed, the flushing task of the gas pipeline is completed, and the argon gas flushing electromagnetic valve is closed in turn, and the inlet valve and the inlet valve of the previous gas storage tank are closed. Outlet valve, and adjust the three-way valve to the gas chromatography direction. Repeat the above method until the gas in all gas storage tanks is analyzed.
  • the standby stage of the gas storage tank after it is determined that the gas storage tank is emptied, control the inlet solenoid valve and the outlet solenoid valve respectively connected to the inlet end and the gas outlet end of each gas storage tank to be closed, and then control the bypass
  • the fourth solenoid valve of the pipeline is in the open state, and the third solenoid valve is controlled to turn to the emptying direction;
  • the gas storage link of the gas storage tank before the pyrolysis gas and gasification gas are generated, the third solenoid valve is turned to the emptying treatment device; the solid waste pyrolysis gas or gasification gas system is started, and after the generated gas is passed through
  • the air pump is injected into the gas storage tank to start the gas storage stage.
  • the specific operation is: increase the speed of the air pump; wait for the air pump to run until the pyrolysis gas or gasification gas starts to be generated rapidly (about 30 seconds), and immediately close the bypass pipe.
  • the fourth solenoid valve open the solenoid valve at the inlet end and the solenoid valve at the gas outlet end of the first gas storage tank at the same time, and close the solenoid valve after the pressure detection system displays a predetermined value (for example, preset to 1 atmosphere), and at the same time Open the solenoid valve at the inlet end and the outlet end of the next gas storage tank immediately afterward; wait for the pump to run until the pyrolysis gas or gasification gas starts to rise rapidly (about 60 seconds), and immediately close the gas storage tank outlet
  • the pressure detection system displays a predetermined value for the pressure gauge (for example, 1 atmospheric pressure is preset)
  • the solenoid valve at the gas outlet and the solenoid valve at the gas outlet wait for the air pump to run until the pyrolysis gas or gasification gas starts to rise rapidly (about 90 seconds), and immediately close the solenoid valve at the gas outlet of the
  • the PLC control system performs gas release detection and pipeline flushing of the gas storage tanks one by one according to the detection time of the gas chromatography until all The gas in the gas tank is detected.
  • More specific operations are as follows: (1) After the on-line detection of pyrolysis gas or gasification gas is completed, use the PLC control system to turn off the air pump and the first solenoid valve in sequence, then open the second solenoid valve, and open the third solenoid valve alternately at intervals.
  • Valve to the emptying treatment device and to the direction of the gas chromatograph use argon to flush the chromatogram for 30-90 seconds, preferably 60 seconds; (2) utilize the PLC control system to close the second solenoid valve and the fourth solenoid valve in sequence, and keep the first solenoid valve Turn to gas chromatography, and analyze the gas in each gas storage tank in turn; (3) use the PLC control system to open the solenoid valve at the gas outlet end of the first gas storage tank to analyze the gas in the gas storage tank.
  • the gas enters the gas chromatograph when the detection is started and the detection curve is generated, adjust the third solenoid valve to the emptying processing device, and then open the solenoid valve and the second solenoid valve at the inlet end of the first gas storage tank in turn to carry out the first gas storage tank.
  • the flushing of the gas storage tank; to complete the flushing task, the second solenoid valve, the solenoid valve at the inlet end of the first gas storage tank and the solenoid valve at the gas outlet end of the first gas storage tank must be closed in sequence before the gas chromatograph of the gas storage tank is analyzed.
  • the third solenoid valve adjusts the third solenoid valve to the direction of gas chromatography; after that, open the solenoid valve at the inlet end and the solenoid valve at the gas outlet end of the next next gas storage tank to analyze the gas in the gas storage tank, and wait for the gas in the gas storage tank to be analyzed.
  • the third solenoid valve is adjusted to the emptying processing device, and the solenoid valve at the inlet end of the gas storage tank, the solenoid valve at the gas outlet end and the second solenoid valve are opened in turn to carry out the storage.
  • the gas used to flush the gas pipeline is argon.
  • the present invention has the following advantages:
  • the system and method for automatic storage and automatic detection of pyrolysis gas or gasification gas of the present invention have simple structure, ingenious design, and convenient and fast gas storage and discharge of gas storage tanks.
  • the present invention greatly improves work efficiency, avoids mistakes, and can effectively overcome the disadvantages of low efficiency of manual gas storage and deflation, easy leakage and confusion of using gas storage bags, and the like.
  • gas chromatography on-line detection it solves the problem of fast gas production of pyrolysis gas or gasification gas, and detection is required during the process of gas composition change, and the use of portable detectors often cannot meet the accuracy requirements; gas chromatography has high detection accuracy, but the detection time is too long. There is no problem with the speed of gas production.
  • the invention can solve the objective contradiction that the detection time of gas chromatography is longer than that of pyrolysis gas or gasification gas, thereby ensuring the continuity and accuracy of online detection of pyrolysis gas or gasification gas, and improving the gas detection efficiency. It is conducive to improving the energy conversion and utilization efficiency of organic solid waste, accelerating the protection of the environment and the realization of my country's carbon neutral goal.
  • Fig. 1 is a schematic diagram of an automatic storage and detection system for pyrolysis gas or gasification gas in a specific embodiment of the present invention.
  • the labels of the first to fifth gas storage tanks are 1-1, 1-2, 1-3, 1-4, 1-5 respectively;
  • the first solenoid valve controlling the source of pyrolysis gas or gasification gas is 2-0A
  • the second solenoid valve to control the source of argon is 2-0B
  • the three-way solenoid valve to control the gas chromatograph to 6 and the three-way solenoid valve to the emptying treatment device 7 is the third solenoid valve to be 2-0C, to control the air intake of each gas storage tank
  • the corresponding solenoid valves are 2-1A, 2-2A, 2-3A, 2-4A, 2-5A respectively, and the solenoid valves controlling the gas outlet of each gas storage tank are 2-1B, 2-2B, 2-3B, 2-4B, 2-5B;
  • the fourth electromagnetic valve of the bypass pipeline of all gas storage tanks is 2-6;
  • the PLC label of the control system is 3, the pressure detection system is 4, the air pump is 5, the gas chromatography is 6, and the emptying 7 is the processing
  • Embodiment 1 Pyrolysis gas or gasification gas automatic storage and automatic detection system
  • the pyrolysis gas or gasification gas automatic storage and detection system includes a number of gas storage tanks 1, a solenoid valve 2 connected to the inlet and outlet ends of each gas storage tank, a PLC control system 3, a pressure Detection system 4, air pump 5, gas chromatography 6, solenoid valve and PLC control system are explosion-proof.
  • the inlet end and the outlet end of each gas storage tank are respectively connected to the inlet solenoid valve and the outlet solenoid valve through the ventilation pipe.
  • the first gas storage tank 1-1 is respectively connected to the corresponding solenoid valve through the ventilation pipe.
  • the next second gas storage tank 1-2 is respectively connected to the corresponding electromagnetic valve 2-2A and 2-2B through the ventilation pipeline, and the subsequent third gas storage tank 1-3 is respectively connected to the corresponding electromagnetic valve through the ventilation pipeline.
  • the fourth gas storage tank 1-4 is respectively connected to the corresponding solenoid valves 2-4A and 2-4B through the ventilation pipeline, and the fifth gas storage tank 1-5 is respectively connected through the ventilation pipeline
  • the first solenoid valve 2-0A is connected to the suction pump 5 through the ventilation pipeline, and the suction pump 5 is connected to the gas source 9 of pyrolysis gas or gasification gas through the suction pipeline
  • the second The solenoid valve 2-0B is connected to the gas source 8 of argon gas through the ventilation pipeline
  • the third solenoid valve 2-0C is connected to the gas chromatography 6 or the emptying treatment device 7 through the ventilation pipeline; the pyrolysis gas or gas
  • the first to fifth gas storage tanks 1-1, 1-2, 1-3, 1-4, and 1-5 are respectively connected to the pressure detection system 4 through the pressure sensing line 10, and the pressure detection system 4 is connected to the PLC through the signal transmission line 11 Control system 3, PLC control system 3 connects all solenoid valves through solenoid valve wires 12.
  • the first solenoid valve is connected to the suction pump through the ventilation pipeline, and the suction pump is connected to the gas source of pyrolysis gas or gasification gas through the suction pipeline;
  • the second solenoid valve is connected to the gas source of argon gas through the ventilation pipeline, and
  • the third solenoid valve is a three-way
  • the solenoid valve can be connected to the outlet solenoid valve connected to the gas outlet end of each gas storage tank, gas chromatography or emptying treatment device through the ventilation pipeline;
  • the pyrolysis gas or gasification gas passing through the first solenoid valve can pass through the ventilation pipeline It is connected with the fourth solenoid valve of the bypass pipeline and the inlet solenoid valve connected with the inlet end of each gas storage tank, and the bypass pipeline can be connected with the inlet solenoid valve and the outlet solenoid valve of each gas storage tank respectively;
  • the argon gas of the solenoid valve can be connected to the fourth solenoid valve of the bypass pipe and the inlet solenoid valve connected to the
  • gas storage tanks are selected according to different reaction temperatures and materials.
  • General biomass raw materials 3-5 gas storage tanks; waste plastic raw materials: 5-7 gas storage tanks; waste tire raw materials: 6-8 gas storage tanks.
  • the gas storage and deflation of the gas storage tank are controlled through the solenoid valve , the opening, closing and flow direction of pyrolysis gas or vaporized gas and argon, and then gas storage or detection.
  • Embodiment 2 Method for automatic storage and automatic detection of pyrolysis gas or gasification gas
  • the detection method using the pyrolysis gas or gasification gas automatic storage and automatic detection system in Embodiment 1 is described as follows.
  • the method mainly includes two stages: the stage of automatic storage of pyrolysis gas or gasification gas, and the stage of automatic detection of gas in a gas storage tank.
  • the pressure detection system After the pressure detection system displays a certain value for 4 pressure gauges (1 atmospheric pressure, it takes about 10 seconds), close the solenoid valve 2-3A, and open the solenoid valve 2-4A and Solenoid valve 2-4B. Repeat the above method until the solenoid valve 2-5B is closed and the solenoid valve 2-6 is opened at the same time. Afterwards, the pumping speed of the pump is reduced to a certain level, and the solenoid valve 2-0C is turned to the gas chromatograph 6 for on-line detection of pyrolysis gas or gasification gas (the key gas production link has ended at this time).
  • on-line detection time period from the end of gas storage in the gas storage tank to the end of the set on-line detection
  • Valve 2-0C to GC 6 direction Afterwards, open the electromagnetic valve 2-2B of the gas storage tank 1-2, carry out the gas analysis in the gas storage tank 1-2, when the gas in the gas storage tank 1-2 enters the gas chromatograph 6, start detection and generate a detection curve, Adjust the solenoid valve 2-6 to the emptying treatment device 7, open the solenoid valve 2-2A and the solenoid valve 2-0B of the gas storage tank 1-2 in sequence, and carry out the flushing of the gas storage tank 1-2; Before the gas analysis of the gas tank 1-2 is completed, the solenoid valve 2-0B, the solenoid valves 2-2A and 2-2B of the gas storage tank 1-2 are closed in turn, and the solenoid valve 2-0C is adjusted to the direction of the gas chromatograph 6 . Repeat the above method until the gas analysis of all gas storage tanks is completed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种热解气或气化气的自动储存及检测系统和方法,涉及可燃气体储存与检测领域。该系统包括储气罐(1-1、1-2、1-3、1-4、1-5)、电磁阀、抽气泵(5)、压力检测系统(4)、PLC控制系统(3)。不同储气罐(1-1、1-2、1-3、1-4、1-5)通过通气管道分别连接对应的电磁阀,电磁阀通过通气管道连接抽气泵(5),抽气泵(5)通过抽气管道连接热解气或气化气的气源(9);电磁阀还连接氩气的气源(8)和气相色谱(6)或排空处理装置(7);储气罐(1-1、1-2、1-3、1-4、1-5)通过压力传感线(10)连接压力检测系统(4),PLC控制系统(3)通过电磁阀电线(12)连接所有电磁阀、压力检测系统(4)。利用PLC控制系统(3),通过电磁阀控制储气罐(1-1、1-2、1-3、1-4、1-5)的储气和放气、热解气或气化气及氩气的开启、关闭和流向,进而储气或检测。该系统结构简单巧妙,能有效满足在线检测连续性和精准性,提高可燃气体检测效率。

Description

一种热解气或气化气自动储存及检测系统和方法 技术领域
本发明属于气体储存与检测技术领域,具体涉及一种热解气或气化气自动储存及检测系统和方法。
背景技术
随着人类经济社会的快速发展,固体废弃物的产量和增量与日俱增,利用现代技术实现固体废弃物的高效能源转化是保护生态环境、减少对化石资源的长期依赖、应对气候变化和全球变暖的重要途径。高能量固体废物(如城市固体废物、工业废物、林业废物、农业废物)以及高能量固体废物(废橡胶、废轮胎和废塑料)的热能转化是固体废弃物规模化处理的快速途径。
固体废弃物热解技术是将固体废弃物在没有氧气或空气的情况下的热降解过程,产生各种气体成分、焦油和固体产物等。对于固体废弃物,热解能够释放出高能量密度的挥发性气体,可冷凝高分子量化合物和不可冷凝低分子量产品,即热解气,以及高能量密度的含碳固体产物等,其中热解成气除了直接用于热能生产外,还可用于合成燃料和高附加价值产品。固体废弃物气化技术可通过在中高温下对固体废弃物进行热分解,同时与适当的气化气氛(如氧气、空气、H 2O或CO 2为高热含量的合成气(含有H 2、CO、CO 2、CH 4、C 2H 6和其它碳氢化合物的气体),气化技术是缓解不可再生化石燃料消耗的主要方法,同样,气化气可以直接用于产生热能、合成燃料和高附加价值产品。
一般情况下,热解或气化的时间与反应温度、物料有关,反应温度越高热解或气化完成所需要的时间越短,物料越容易热解(如生物质相比废轮胎更容易热解),需要的时间也越短。目前,热解气或气化气的检测主要有两种方式,一种是在线检测的方式,一种是储气后再检测。固体废弃物热解或气化过程的前几分钟产气量较大,对检测手段和标准要求较高。
热解气或气化气的在线检测时利用气相色谱能够实现高分辨率和检测精度,然而目前市面上检测快的色谱需要大概2.5分钟时间才能检测出C 4以下的气体,往往不能满足热解气或气化气的产生速度;储气罐的数量根据物料不同、热解气或气化气的反应温度不同进行选择,物料越易热解或气化,选择储气罐越少;反应温度越高选择储气罐越少。利用储气袋或储气罐检测时可以储存多个样品之后再进行检测,然而采用手动储气的效率低,采集气体样品多的时候还会出现储气袋多易混淆的现象。目前针对热解气或气化气的特点,巧妙地构思发明出自动储存和自动检测系统及方法还未见报道。
发明内容
针对现有热解气或气化气储存和检测的缺陷和不足以及需求,本发明提供一种热解气或气化气自动储存及自动检测系统和方法,其具有结构简单巧妙,储气罐的储气和放气方便快捷,能有效克服手动储气和放气效率低、使用储气袋的易漏气和易混淆、便携式检测器分析不精确等缺点,解决气相色谱检测时间相对于热解气或气化气的产生时间长的客观矛盾,满足热解气或气化气的在线检测连续性和精准性,提高气体检测效率。进而提升有机固体废弃物的能源化和利用效率,加快保护环境和加速碳中和目标实现。
为解决上述技术问题,本发明采用的技术方案如下:
一种热解气或气化气自动储存及检测系统,其特征在于,包括若干平行排列的储气罐、与储气罐数量相应的电磁阀、抽气泵、气相色谱、排空处理装置、压力检测系统、PLC控制系统;每个储气罐的进气端和出气端分别通过通气管道分别连接进口电磁阀和出口电磁阀;第一电磁阀通过通气管道连接抽气泵,抽气泵通过抽气管道连接热解气或气化气的气源;第二电磁阀通过通气管道连接冲刷气体(如氩气)的气源,第三电磁阀为三通电磁阀,可分别通过通气管道与每个储气罐的出气端连接的出口电磁阀、检测装置(如气相色谱)或排空处理装置相连接;通过第一电磁阀的热解气或气化气可通过通气管道与旁通管道的第四电磁阀以及与每个储气罐的进气端连接的进口电磁阀相连,旁通管道与所有储气罐并联,通过第二电磁阀的氩气可通过通气管道与旁通管道的第四电磁阀以及与每个储气罐的进气端连接的进口电磁阀相连;各储气罐分别通过压力传感线连接压力检测系统,压力检测系统通过信号传输线连接PLC控制系统,PLC控制系统通过电磁阀电线连接所有电磁阀。
优选的,储气罐的数量根据不同的反应温度和物料来确定,例如通常为3-5个储气罐;对于废塑料原料,则为5-7个储气罐;对于废轮胎原料,则为6-8个储气罐。
优选的,PLC控制系统用于启动自动储气阶段、储气罐气体自动检测阶段和检测后续阶段,进行关键环节的顺序控制、定时控制、压力控制;电磁阀和PLC控制系统均为防爆级别。
优选的,利用PLC控制系统,启动自动储气阶段、储气罐气体自动检测阶段和检测后续阶段,进行关键环节的顺序控制、定时控制、压力控制。
优选的,所述自动储气阶段的关键环节包括储气罐置空环节、储气罐待用环节、储气罐储气环节。
优选的,所述储气罐置空环节操作如下,在上一个储气罐内气体分析完毕之前完成气体管路的冲刷任务,依次关闭氩气冲刷电磁阀,上一个储气罐的进口阀和出口阀,并调整三 通阀至气相色谱方向。重复以上方法,直至所有储气罐内气体分析完毕。
所述储气罐待用环节:待确定储气罐被置空后,控制每个储气罐的进气端和出气端分别连接的进口电磁阀和出口电磁阀为关闭状态,之后控制旁通管道的第四电磁阀为开启状态、控制第三电磁阀转向至排空方向;
所述储气罐储气环节:待热解气和气化气产生之前,第三电磁阀一直转向至排空处理装置;启动固体废弃物热解气或气化气系统,产生的气体后,通过抽气泵注入储气罐开始储气阶段,具体操作是:加大抽气泵的速度;等待抽气泵运行至热解气或气化气开始快速产生时(约30秒),立刻关闭旁通管道的第四电磁阀,同时打开为首的第一个储气罐进气端的电磁阀和出气端的电磁阀,待压力检测系统显示预定值后(例如预设为1个大气压),关闭该电磁阀,同时打开后续紧接的下一个储气罐的进气端的电磁阀和出气端的电磁阀;等待抽气泵运行至热解气或气化气开始快速上升(约60秒),立刻关闭该储气罐出气端的电磁阀,待压力检测系统为压力表显示预定值后(例如预设1个大气压),关闭该储气罐进气端的电磁阀,同时打开再后续紧接的下一个储气罐的进气端的电磁阀和出气端的电磁阀;等待抽气泵运行至热解气或气化气开始快速上升(约90秒),立刻关闭该储气罐出气端的电磁阀,待压力检测系统压力表显示预定值后(例如预设为1个大气压),关闭电磁阀该储气罐进气端的电磁阀,同时打开再后续紧接的储气罐的进气端的电磁阀和出气端的电磁阀;
优选的,进行后续的热解气或气化气的在线检测,具体是在储气结束后,PLC控制系统依据气相色谱检测时间,对储气罐进行逐个放气检测和管路冲刷,直至所有储气罐的气体被检测。
更具体的操作如下:(1)待热解气或气化气的在线检测结束后,利用PLC控制系统依次关闭抽气泵和第一电磁阀,之后开启第二电磁阀,间隔交替开启第三电磁阀至排空处理装置和至气相色谱方向,利用氩气冲刷色谱30-90秒,优选60秒;(2)利用PLC控制系统依次关闭第二电磁阀和第四电磁阀,保持第一电磁阀转向气相色谱,依次进行各个储气罐内气体的分析;(3)利用PLC控制系统开启为首的第一个储气罐出气端的电磁阀,进行储气罐内气体分析,待储气罐内的气体进入气相色谱,开始检测并生成检测曲线时,调整第三电磁阀至排空处理装置,然后依次开为首的第一个储气罐的进气端的电磁阀、第二电磁阀,进行为首的储气罐的冲刷;完成冲刷任务须在该储气罐的气体气相色谱内分析完毕之前,依次关闭第二电磁阀、为首的第一个储气罐进气端的电磁阀和出气端的电磁阀,并调整第三电磁阀至气相色谱方向;之后,开启后续紧接的下一个储气罐进气端的电磁阀、出气端的电磁阀,进行该储气罐内气体分析,待该储气罐内的气体进入气相色谱,开始检测并生成检测曲线时,调整第三电磁阀至排空处理装置,依次开该储气罐的进气端的电磁阀、出气端的电磁阀和第 二电磁阀,进行该储气罐的冲刷;完成冲刷任务须在该储气罐的气体分析完毕之前,依次关闭第二电磁阀、该储气罐进气端的电磁阀和出气端的电磁阀,并调整第三电磁阀至气相色谱方向;重复以上方法,直至所有储气罐的气体分析完毕。
优选的,冲刷气体管路的气体为氩气。
本发明与现有技术相比,具有如下优点:
本发明热解气或气化气自动储存和自动检测系统与方法,结构简单、设计巧妙、储气罐的储气和放气方便快捷。相比手动储气和放气,本发明大大提高工作效率,避免失误,能有效克服手动储气和放气效率低、使用储气袋的易漏气和易混淆等缺点。相比气相色谱在线检测,解决热解气或气化气产气快,气体成分变化过程中需要检测,利用便携式检测器往往不能满足精度要求;气相色谱检测精度高,但检测时间过长,跟不产气速度的问题。本发明可解决气相色谱检测时间相对于热解气或气化气的产生时间长的客观矛盾,从而保证了热解气或气化气的在线检测连续性和精准性,提高气体检测效率。有利于提升有机固体废弃物的能源化和利用效率,加快保护环境和加速我国碳中和目标的实现。
附图说明
图1为本发明具体实施方式中热解气或气化气自动储存和检测系统的示意图。
第一至第五储气罐标号分别为1-1、1-2、1-3、1-4、1-5;控制热解气或气化气来源的第一电磁阀为2-0A,控制氩气来源的第二电磁阀为2-0B,控制至气相色谱为6和至排空处理装置7的三通电磁阀为第三电磁阀为2-0C,控制各储气罐进气端的电磁阀相应分别依次为2-1A、2-2A、2-3A、2-4A、2-5A,控制各储气罐出气端的电磁阀分别依次为2-1B、2-2B、2-3B、2-4B、2-5B;所有储气罐的旁通管道第四电磁阀为2-6;控制系统PLC标号为3,压力检测系统为4,抽气泵为5,气相色谱为6,排空处理装置为7,氩气的气源为8,热解气或气化气的气源为9,压力传感线为10,信号传输线为11,电磁阀电线为12,通气管道为13。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一、热解气或气化气自动储存和自动检测系统
如图1所示,该热解气或气化气自动储存及检测系统包括若干个储气罐1、与各储气罐进气端和出气端连通的电磁阀2、PLC控制系统3、压力检测系统4、抽气泵5、气相色谱6,电磁阀和PLC控制系统为防爆级别。每个储气罐的进气端和出气端分别通过通气管道分别连接 进口电磁阀和出口电磁阀,图中所示,为首的第一储气罐1-1通过通气管道分别连接相应的电磁阀2-1A和2-1B,紧接着的第二储气罐1-2通过通气管道分别连接相应的电磁阀2-2A和2-2B,后续的第三储气罐1-3通过通气管道分别连接相应的电磁阀2-3A和2-3B,第四储气罐1-4通过通气管道分别连接相应的电磁阀2-4A和2-4B,第五储气罐1-5通过通气管道分别连接相应的电磁阀2-5A和2-5B;第一电磁阀2-0A通过通气管道连接抽气泵5,抽气泵5通过抽气管道连接热解气或气化气的气源9;第二电磁阀2-0B通过通气管道连接氩气的气源8,第三电磁阀2-0C通过通气管道连接气相色谱6或排空处理装置7;通过电磁阀2-0A的热解气或气化气可以通过通气管道与旁通管道的第四电磁阀2-6相连,通过第二电磁阀2-0B的氩气可以通过通气管道与旁通管道的第四电磁阀2-6相连;其中旁通管道可分别与各储气罐的进口电磁阀和出口电磁阀连通。
第一至第五储气罐1-1、1-2、1-3、1-4、1-5分别通过压力传感线10连接压力检测系统4,压力检测系统4通过信号传输线11连接PLC控制系统3,PLC控制系统3通过电磁阀电线12连接所有电磁阀。
第一电磁阀通过通气管道连接抽气泵,抽气泵通过抽气管道连接热解气或气化气的气源;第二电磁阀通过通气管道连接氩气的气源,第三电磁阀为三通电磁阀,可分别通过通气管道与每个储气罐的出气端连接的出口电磁阀、气相色谱或排空处理装置相连接;通过第一电磁阀的热解气或气化气可通过通气管道与旁通管道的第四电磁阀以及与每个储气罐的进气端连接的进口电磁阀相连,旁通管道可分别与各储气罐的进口电磁阀和出口电磁阀连通;通过第二电磁阀的氩气可通过通气管道与旁通管道的第四电磁阀以及与每个储气罐的进气端连接的进口电磁阀相连;各储气罐分别通过压力传感线连接压力检测系统,压力检测系统通过信号传输线连接PLC控制系统,气相色谱通过信号传输线连接PLC控制系统,PLC控制系统通过电磁阀电线连接所有电磁阀。
其中,根据不同的反应温度和物料,选择储气罐的数量。一般生物质原料:3-5个储气罐;废塑料原料:5-7个储气罐;废轮胎原料:6-8个储气罐。
利用PLC控制系统3,根据设定好的储气罐压力(如1个大气压)和气相色谱检测6的气体成分检测时间(如2.5分钟),通过电磁阀控制储气罐的储气和放气、热解气或气化气及氩气的开启、关闭和流向,进而储气或检测。
实施例二、热解气或气化气自动储存和自动检测的方法
利用实施例一的热解气或气化气自动储存和自动检测系统进行检测的方法描述如下。该方法主要包括热解气或气化气自动储存阶段、储气罐气体自动检测阶段的两个阶段。
一、储气阶段的关键环节如下:
(1)储气罐置空环节:通过PLC控制系统3控制电磁阀2-0C至排空处理装置7方向,控制电磁阀2-0A为关闭状态、电磁阀2-0B为开启状态、所有储气罐的所有电磁阀为开启状态;通入一定流量的氩气,利用氩气冲刷所有储气罐约1分钟,之后关闭电磁阀2-0B;调整氩气流量满足气相色谱6的进气流量,同时控制电磁阀2-0C转向至气相色谱6,通过气相色谱6分析所有储气罐(1-1、1-2、1-3、1-4、1-5)是否被置空(色谱分析检测不到氩气)。
(2)储气罐待用环节:待确定储气罐(1-1、1-2、1-3、1-4、1-5)被置空后,控制电磁阀2-1A、2-2A、2-3A、2-4A、2-5A和2-1B、2-2B、2-3B、2-4B、2-5B为关闭状态,之后控制旁通管道电磁阀2-6为开启状态、控制电磁阀2-0C转向至排空处理装置。
(3)储气罐储气环节:待热解气和气化气产生之前,电磁阀2-0C转向至排空处理装置7;立刻关闭旁通管道电磁阀2-6,同时打开电磁阀2-1A和2-1B;开始储气阶段,加大抽气泵5的速度至一定级别;等待抽气泵5运行至0.5分钟时,关闭电磁阀2-1B,待压力检测系统为4显示一定值后(1个大气压,大约需要10秒钟),关闭电磁阀2-1A,同时打开电磁阀2-2A和2-2B;等待抽气泵5运行至1分钟时,立刻关闭电磁阀2-2B,待压力检测系统为4压力表显示一定值后(1个大气压,大约需要10秒钟),关闭电磁阀2-2A,同时打开电磁阀2-3A和电磁阀2-3B;等待抽气泵5运行至1.5分钟时,立刻关闭电磁阀2-3B,待压力检测系统为4压力表显示一定值后(1个大气压,大约需要10秒钟),关闭电磁阀2-3A,同时打开电磁阀2-4A和电磁阀2-4B。重复以上方法,直至关闭电磁阀2-5B,同时打开电磁阀2-6。之后降低抽气泵的抽气速度为一定级别,电磁阀2-0C转向至气相色谱6,进行热解气或气化气的在线检测(此时关键产气环节已经结束)。
二、储气罐气体检测阶段的关键环节如下:
(1)待热解气或气化气的在线检测结束后(在线检测时间段:储气罐储气结束至设定的在线检测结束),利用PLC控制系统3,依次关闭抽气泵3和电磁阀2-0A,之后开启电磁阀2-0B,间隔交替开启电磁阀2-0C至气相色谱6方向和排空处理装置7方向,利用氩气冲刷气相色谱及通向气相色谱的通气管道1分钟左右。
(2)利用PLC控制系统3,依次关闭电磁阀2-0B和电磁阀2-6,保持电磁阀2-0C转向至气相色谱6方向,依次进行储气罐1-1、1-2、1-3、1-4、1-5内气体的分析。
(3)利用PLC控制系统3,开启储气罐1-1的电磁阀2-1B,进行储气罐1-1内气体分析,待储气罐1-1内的气体进入气相色谱6,开始检测并生成检测曲线时,调整电磁阀2-0C至排空处理装置7,依次开储气罐1-1的电磁阀2-0B和电磁阀2-6,进行储气罐1-1的冲刷; 完成冲刷任务须在储气罐1-1的气体气相色谱6内分析完毕之前,依次关闭电磁阀2-0B、储气罐1-1的电磁阀1-1A和1-1B,并调整电磁阀2-0C至气相色谱6方向。之后,开启储气罐1-2的电磁阀2-2B,进行储气罐1-2内气体分析,待储气罐1-2内的气体进入气相色谱6,开始检测并生成检测曲线时,调整电磁阀2-6至排空处理装置7,依次开储气罐1-2的电磁阀2-2A和电磁阀2-0B,进行储气罐1-2的冲刷;完成冲刷任务须在储气罐1-2的气体分析完毕之前,依次关闭电磁阀2-0B、储气罐1-2的电磁阀2-2A和2-2B,并调整电磁阀2-0C至气相色谱6方向。重复以上方法,直至所有储气罐的气体分析完毕。

Claims (8)

  1. 一种热解气或气化气自动储存及检测系统,其特征在于,包括若干平行排列的储气罐、与储气罐数量相应的电磁阀、抽气泵、气相色谱、排空处理装置、压力检测系统、PLC控制系统;每个储气罐的进气端和出气端分别通过通气管道分别连接进口电磁阀和出口电磁阀;第一电磁阀通过通气管道连接抽气泵,抽气泵通过抽气管道连接热解气或气化气的气源;第二电磁阀通过通气管道连接冲刷气体(如氩气)的气源,第三电磁阀为三通电磁阀,可分别通过通气管道与每个储气罐的出气端连接的出口电磁阀、检测装置(如气相色谱)或排空处理装置相连接;通过第一电磁阀的热解气或气化气可通过通气管道与旁通管道的第四电磁阀以及与每个储气罐的进气端连接的进口电磁阀相连,旁通管道与所有储气罐并联,通过第二电磁阀的氩气可通过通气管道与旁通管道的第四电磁阀以及与每个储气罐的进气端连接的进口电磁阀相连;各储气罐分别通过压力传感线连接压力检测系统,压力检测系统通过信号传输线连接PLC控制系统,PLC控制系统通过电磁阀电线连接所有电磁阀。
  2. 如权利要求1所述的热解气或气化气自动储存及检测系统,其特征在于,其中,储气罐的数量根据不同的反应温度和物料来确定,例如通常为3-5个储气罐;对于废塑料原料,则为5-7个储气罐;对于废轮胎原料,则为6-8个储气罐。
  3. 如权利要求1所述的热解气或气化气自动储存及检测系统,其特征在于,PLC控制系统用于启动自动储气阶段、储气罐气体自动检测阶段和检测后续阶段,进行关键环节的顺序控制、定时控制、压力控制;电磁阀和PLC控制系统均为防爆级别。
  4. 采用如权利要求1至3任一项所述的系统进行热解气或气化气自动储存及检测的方法,其特征在于,利用PLC控制系统,启动自动储气阶段、储气罐气体自动检测阶段和检测后续阶段,进行关键环节的顺序控制、定时控制、压力控制。
  5. 采用如权利要求4所述的方法,其特征在于,所述自动储气阶段的关键环节包括储气罐置空环节、储气罐待用环节、储气罐储气环节。
  6. 如权利要求5所述的方法,其特征在于,所述储气罐置空环节操作如下,在上一个储气罐内气体分析完毕之前完成气体管路的冲刷任务,依次关闭氩气冲刷电磁阀,上一个储气罐的进口阀和出口阀,并调整三通阀至气相色谱方向;重复以上方法,直至所有储气罐内气体分析完毕;更具体的操作如下:通过PLC控制系统控制第三电磁阀至排空处理装置,控制第一电磁阀为关闭状态、第二电磁阀为开启状态,且所有与储气罐的相连接的所有电磁阀为开启状态;通入氩气,利用氩气冲刷所有储气罐(优选为30-90秒,更优选为60秒);之后关闭第二电磁阀;调整氩气流量满足气相色谱的进气流量,同时控制第三电磁阀转向气相色谱,通过气相色谱分析所有储气罐是否被置空,至色谱分析检测不到氩气时该环节完成; 所述储气罐待用环节:待确定储气罐被置空后,控制每个储气罐的进气端和出气端分别连接的进口电磁阀和出口电磁阀为关闭状态,之后控制旁通管道的第四电磁阀为开启状态、控制第三电磁阀转向至排空方向;
    所述储气罐储气环节:待热解气和气化气产生之前,第三电磁阀一直转向至排空处理装置;启动固体废弃物热解气或气化气系统,产生的气体后,通过抽气泵注入储气罐开始储气阶段,具体操作是:加大抽气泵的速度;等待抽气泵运行至热解气或气化气开始快速产生时,立刻关闭旁通管道的第四电磁阀,同时打开为首的第一个储气罐进气端的电磁阀和出气端的电磁阀,待压力检测系统显示预定值后(例如预设为1个大气压),关闭该电磁阀,同时打开后续紧接的下一个储气罐的进气端的电磁阀和出气端的电磁阀;等待抽气泵运行至热解气或气化气开始快速上升,立刻关闭该储气罐出气端的电磁阀,待压力检测系统为压力表显示预定值后(例如预设1个大气压),关闭该储气罐进气端的电磁阀,同时打开再后续紧接的下一个储气罐的进气端的电磁阀和出气端的电磁阀;等待抽气泵运行至热解气或气化气开始快速上升,立刻关闭该储气罐出气端的电磁阀,待压力检测系统压力表显示预定值后(例如预设为1个大气压),关闭电磁阀该储气罐进气端的电磁阀,同时打开再后续紧接的储气罐的进气端的电磁阀和出气端的电磁阀;
    重复以上方法,直至关闭最后一个储气罐的进气端的电磁阀和出气端的电磁阀,同时打开第四电磁阀;之后降低抽气泵的抽气速度,第三电磁阀转向至气相色谱方向。
  7. 如权利要求5所述的方法,其特征在于,所述自动检测环节如下:进行后续的热解气或气化气的在线检测,具体是在储气结束后,PLC控制系统依据气相色谱检测时间,对储气罐进行逐个放气检测和管路冲刷,直至所有储气罐的气体被检测;
    更具体的操作如下:
    (1)待热解气或气化气的在线检测结束后,利用PLC控制系统依次关闭抽气泵和第一电磁阀,之后开启第二电磁阀,间隔交替开启第三电磁阀至排空处理装置和至气相色谱方向,利用氩气冲刷色谱30-90秒,优选60秒;
    (2)利用PLC控制系统依次关闭第二电磁阀和第四电磁阀,保持第一电磁阀转向气相色谱,依次进行各个储气罐内气体的分析;
    (3)利用PLC控制系统开启为首的第一个储气罐出气端的电磁阀,进行储气罐内气体分析,待储气罐内的气体进入气相色谱,开始检测并生成检测曲线时,调整第三电磁阀至排空处理装置,然后依次开为首的第一个储气罐的进气端的电磁阀、第二电磁阀,进行为首的储气罐的冲刷;完成冲刷任务须在该储气罐的气体气相色谱内分析完毕之前,依次关闭第二电磁阀、 为首的第一个储气罐进气端的电磁阀和出气端的电磁阀,并调整第三电磁阀至气相色谱方向;之后,开启后续紧接的下一个储气罐进气端的电磁阀、出气端的电磁阀,进行该储气罐内气体分析,待该储气罐内的气体进入气相色谱,开始检测并生成检测曲线时,调整第三电磁阀至排空处理装置,依次开该储气罐的进气端的电磁阀、出气端的电磁阀和第二电磁阀,进行该储气罐的冲刷;完成冲刷任务须在该储气罐的气体分析完毕之前,依次关闭第二电磁阀、该储气罐进气端的电磁阀和出气端的电磁阀,并调整第三电磁阀至气相色谱方向;重复以上方法,直至所有储气罐的气体分析完毕。
  8. 如权利要求6所述的热解气或气化气自动储存及检测系统,其特征在于,冲刷气体管路的气体为氩气。
PCT/CN2022/135761 2022-02-08 2022-12-01 一种热解气或气化气自动储存及检测系统和方法 WO2023151353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210119255.4 2022-02-08
CN202210119255.4A CN114487228B (zh) 2022-02-08 2022-02-08 一种热解气或气化气自动储存及检测系统和方法

Publications (1)

Publication Number Publication Date
WO2023151353A1 true WO2023151353A1 (zh) 2023-08-17

Family

ID=81479026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135761 WO2023151353A1 (zh) 2022-02-08 2022-12-01 一种热解气或气化气自动储存及检测系统和方法

Country Status (2)

Country Link
CN (1) CN114487228B (zh)
WO (1) WO2023151353A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487228B (zh) * 2022-02-08 2024-01-23 河南省科学院 一种热解气或气化气自动储存及检测系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131737A (ja) * 1990-09-22 1992-05-06 Shimadzu Corp 定流量サンプリング装置
JPH07113796A (ja) * 1993-10-14 1995-05-02 Mitsubishi Heavy Ind Ltd 自動ガス採取方法及び自動ガス分析方法
CN102680285A (zh) * 2012-06-01 2012-09-19 上海化工研究院 间歇式循环制气工艺的气体在线采样预处理方法和设备
CN105181856A (zh) * 2015-11-05 2015-12-23 广东电网有限责任公司电力科学研究院 用于单孔式六氟化硫电气设备绝缘气体的自动检测装置
CN209014525U (zh) * 2018-10-30 2019-06-21 中国气象局气象探测中心 用于气相色谱离线分析仪器的样品自动选择装置
CN110320332A (zh) * 2019-08-07 2019-10-11 欧阳烽 一种平衡式废气在线检测系统
CN110646530A (zh) * 2019-09-17 2020-01-03 河南中分仪器股份有限公司 色谱在线监测提供载气的空气源结构、监测设备及载气方法
CN210572219U (zh) * 2019-08-07 2020-05-19 深圳市晶灿生态环境科技有限公司 一种平衡式废气在线检测系统
CN114487228A (zh) * 2022-02-08 2022-05-13 河南省科学院 一种热解气或气化气自动储存及检测系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024650A (ja) * 2005-07-14 2007-02-01 Tokyo Electric Power Co Inc:The Lng成分の自動分析システム
CN100578215C (zh) * 2007-06-12 2010-01-06 中国科学院广州地球化学研究所 开放式天然气生成动力学研究装置及使用方法
CN106802344A (zh) * 2017-03-09 2017-06-06 中国海洋石油总公司 一种lng装卸用连续取样分析装置及使用方法
CN111024829B (zh) * 2018-10-09 2023-02-28 中国石油天然气股份有限公司 天然气品质检测系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131737A (ja) * 1990-09-22 1992-05-06 Shimadzu Corp 定流量サンプリング装置
JPH07113796A (ja) * 1993-10-14 1995-05-02 Mitsubishi Heavy Ind Ltd 自動ガス採取方法及び自動ガス分析方法
CN102680285A (zh) * 2012-06-01 2012-09-19 上海化工研究院 间歇式循环制气工艺的气体在线采样预处理方法和设备
CN105181856A (zh) * 2015-11-05 2015-12-23 广东电网有限责任公司电力科学研究院 用于单孔式六氟化硫电气设备绝缘气体的自动检测装置
CN209014525U (zh) * 2018-10-30 2019-06-21 中国气象局气象探测中心 用于气相色谱离线分析仪器的样品自动选择装置
CN110320332A (zh) * 2019-08-07 2019-10-11 欧阳烽 一种平衡式废气在线检测系统
CN210572219U (zh) * 2019-08-07 2020-05-19 深圳市晶灿生态环境科技有限公司 一种平衡式废气在线检测系统
CN110646530A (zh) * 2019-09-17 2020-01-03 河南中分仪器股份有限公司 色谱在线监测提供载气的空气源结构、监测设备及载气方法
CN114487228A (zh) * 2022-02-08 2022-05-13 河南省科学院 一种热解气或气化气自动储存及检测系统和方法

Also Published As

Publication number Publication date
CN114487228A (zh) 2022-05-13
CN114487228B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2023151353A1 (zh) 一种热解气或气化气自动储存及检测系统和方法
KR20170016976A (ko) 저압 바이오가스 샘플의 채취 및 조절을 위한 시스템
CN102042920B (zh) 一种微量氢气无分馏定量富集系统及其富集方法
CN110333313B (zh) 一种烟气污染物在线交替浓缩释放的处理方法
CN103743772B (zh) 一种固体有机物热解特性快速分析的系统与方法
CN100578215C (zh) 开放式天然气生成动力学研究装置及使用方法
CN206459008U (zh) 闪蒸汽回收装置
CN111811894A (zh) 电力变压器气体继电器中气体在线检测方法及装置
CN106525999A (zh) 气体气相色谱检测方法
CN104155404A (zh) 大气甲烷和一氧化碳分析系统和方法
CN106754324A (zh) 一种沼气发酵在线监控系统
CN103076404B (zh) 一种检测天然气中总潜在烃含量的方法
CN103994917A (zh) 一种用于岩石热解仪上的加热装置
CN107219245B (zh) 一种烃源岩有机碳热解分析装置
CN210427140U (zh) 一种烟气污染物在线交替浓缩释放装置
CN203798196U (zh) 一种易于检修的真空塔冷凝循环系统
CN203704553U (zh) Lng管线系统真空干燥装置
CN105368518A (zh) 一种用于垃圾填埋场气体净化和能源利用系统及其使用方法
Yang et al. Summary of VOCs Treatment Technology in Product Oil Depot
CN206177903U (zh) 多功能气体检测系统
CN103742784B (zh) 一种液化天然气储罐零排放装置及其工艺
CN216141473U (zh) 一种在线色谱分析仪排放丙烯气样的回收系统
CN111505188A (zh) 一种挥发性有机物VOCs多通道在线监测系统
CN210572145U (zh) 一种全气态下测量水中挥发性有机物的系统
CN221028272U (zh) 一种两段式气化实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925704

Country of ref document: EP

Kind code of ref document: A1