WO2023151331A1 - 一种超导磁体加热系统 - Google Patents

一种超导磁体加热系统 Download PDF

Info

Publication number
WO2023151331A1
WO2023151331A1 PCT/CN2022/131864 CN2022131864W WO2023151331A1 WO 2023151331 A1 WO2023151331 A1 WO 2023151331A1 CN 2022131864 W CN2022131864 W CN 2022131864W WO 2023151331 A1 WO2023151331 A1 WO 2023151331A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid helium
heater
superconducting magnet
heating system
liquid
Prior art date
Application number
PCT/CN2022/131864
Other languages
English (en)
French (fr)
Inventor
袁金辉
姚海锋
乐志良
段训琪
郑杰
朱雪松
刘照泉
许建益
Original Assignee
宁波健信超导科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波健信超导科技股份有限公司 filed Critical 宁波健信超导科技股份有限公司
Publication of WO2023151331A1 publication Critical patent/WO2023151331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the invention relates to the field of superconducting magnets, in particular to a superconducting magnet heating system.
  • the liquid helium is mainly heated and evaporated into cold helium gas, and the cold helium gas flows from the inside and outside of the metal current lead from bottom to top, thereby realizing the cooling of the metal current lead.
  • the existing liquid helium heating method is greatly affected by the amount of liquid helium. When the amount of liquid helium is small, the heating function cannot be realized, so that cold helium cannot be generated, which further affects the normal operation of the system.
  • the purpose of the present invention is to provide a heating system for a superconducting magnet, which is not affected by the amount of liquid helium and can effectively improve the safety of system operation.
  • the present invention provides the following technical solutions:
  • a heating system for a superconducting magnet comprising: a liquid helium container and a heater, the upper part of the liquid helium container is provided with a through hole for supplying cold current leads to pass through, and the heater is used for heating the side of the liquid helium container
  • the walls heat and transfer heat to the liquid helium in the liquid helium container to evaporate the liquid helium into cold helium for cooling the air-cooled current leads.
  • the heater is attached to the inner surface of the liquid helium container.
  • the heater is immersed in liquid helium or located outside the liquid helium.
  • the wire harness of the heater passes through the through hole.
  • the heater is attached to the outer surface of the liquid helium container.
  • an adsorber is provided on the outer surface of the liquid helium container, and the heater is a heating unit provided in the adsorber.
  • a heating system for a superconducting magnet includes: a liquid helium container and a heater, the upper part of the liquid helium container is provided with a through hole for the air-cooled current lead to pass through, and the heater is used to heat the side wall of the liquid helium container Heating and transferring the heat to the liquid helium in the liquid helium container to evaporate the liquid helium into cold helium for cooling the air-cooled current leads. Therefore, even if there is only a small amount of liquid helium in the liquid helium container, a sufficient amount of cold helium can be produced to ensure the normal cooling of the air-cooled current leads, thereby improving the safety of the system.
  • the heater does not heat the liquid helium directly, but by heating the side wall of the liquid helium container, it is not necessary to immerse the heater in the liquid helium, so the excitation and demagnetization functions at extremely low liquid levels can be realized, and the liquid helium can be reduced Filling volume, thereby reducing the cost of using liquid helium.
  • Fig. 1 is a schematic structural view of a superconducting magnet heating system provided by an embodiment of the present invention
  • Fig. 2 is the structural representation that heater is positioned at the bottom of liquid helium container inner surface
  • Fig. 3 is the structural representation that heater is positioned at the upper part of liquid helium container outer surface
  • Fig. 4 is the structural representation that heater is positioned at the bottom of liquid helium container outer surface
  • Fig. 5 is a schematic structural view of the heating unit of the adsorber after the heater is replaced.
  • 1 is the liquid helium container
  • 2 is the through hole
  • 3 is the air cooling current lead
  • 4 is the heater
  • 5 is the wire harness
  • 6 is the first wire harness adapter
  • 7 is the magnet wire harness
  • 8 is the magnet monitoring device
  • 9 is the vacuum cylinder
  • 10 is the outlet
  • 11 is the second wire harness adapter
  • 12 is the absorber.
  • Figure 1 is a schematic structural view of a superconducting magnet heating system provided by an embodiment of the present invention
  • Figure 2 is a schematic structural view of a heater located at the bottom of the inner surface of a liquid helium container
  • Figure 3 is a schematic view of the heating system
  • Figure 4 is a schematic structural view of the heater located on the lower part of the outer surface of the liquid helium container
  • Figure 5 is a schematic structural view of the adsorber's heating unit replacing the heater.
  • a specific embodiment of the present invention provides a superconducting magnet heating system, comprising: a liquid helium container 1 and a heater 4, the upper part of the liquid helium container 1 is provided with a through hole 2 for the air-cooled current lead 3 to penetrate,
  • the heater 4 is used to heat the side wall of the liquid helium container 1, and transfer the heat to the liquid helium in the liquid helium container 1, and the liquid helium is heated to evaporate cold helium gas, and the cold helium gas rises to cool the air-cooled current lead 3 . Therefore, even if there is only a small amount of liquid helium in the liquid helium container 1, cold helium gas can be generated to ensure the normal cooling of the air-cooled current lead 3, thereby improving the safety of the system.
  • the heater 4 does not directly heat the liquid helium, but by heating the side wall of the liquid helium container 1, it is not necessary to immerse the heater 4 in the liquid helium, so the excitation and demagnetization functions at extremely low liquid levels can be realized. Reduce the filling amount of liquid helium, thereby reducing the cost of using liquid helium.
  • the heater 4 is attached to the inner surface of the liquid helium container 1, and the heater 4 can be located at any position on the inner surface of the liquid helium container 1. As shown in Fig. 1 and Fig. 2, the heater 4 can be located in the liquid helium container 1, or the lower part of the inner surface of the liquid helium container 1, the heater 4 is immersed in the liquid helium or located outside the liquid helium.
  • the wire harness 5 of the heater 4 passes through the through hole 2 on the upper part of the liquid helium container 1, and is connected with the first wire harness adapter 6, and the first wire harness adapter 6 passes through
  • the magnet wire harness 7 is connected with the magnet monitoring device 8 , and the heating function of the heater 4 is controlled by the magnet monitoring device 8 .
  • the heater 4 can also be attached to the outer surface of the liquid helium container 1, as shown in Figure 3 and Figure 4, the heater 4 can be positioned at the top of the outer surface of the liquid helium container 1, or the outer surface of the liquid helium container 1 the lower part.
  • the outside of the heater 4 is provided with a vacuum cylinder 9, the outside of the vacuum cylinder 9 is provided with a suction port 10, the heater 4 is located in the vacuum cylinder 9, and the wire harness of the heater 4 passes through the suction port 10, and is transferred to the second wire harness.
  • the connector 11 is connected, and the second wire harness adapter 11 is connected with the magnet monitoring device 8 through the magnet wire harness 7 .
  • the wiring harness 5 of the heater 4 is drawn out through the drawer 10, so that the wiring in the magnet can be reduced.
  • the heater 4 can be closely attached to the inner surface or the outer surface of the liquid helium container 1 through a low-temperature-resistant adhesive tape or resin.
  • the outer surface of the liquid helium container 1 is provided with an adsorber 12, as shown in Figure 5, an activated carbon adsorbent and a heating unit are arranged in the adsorber 12, and the magnet needs to be evacuated through the suction port 10 during the production process.
  • the heating unit needs to be heated to decompose the adsorbed gas in the adsorbent, such as water vapor, etc.
  • the heating unit stops heating. Therefore, the side wall of the liquid helium container 1 can be heated by using the heating unit of the adsorber 12 , that is, the heater 4 is a heating unit provided in the adsorber 12 . This way is equivalent to canceling the heater 4, reducing the use of components, and reducing the cost and manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种超导磁体加热系统,包括:液氦容器和加热器,液氦容器的上部设有供气冷电流引线穿入的通孔,加热器用于对液氦容器的侧壁加热,并将热量传递给液氦容器内的液氦,以使液氦蒸发出用于冷却气冷电流引线的冷氦气。因此即便液氦容器内只存有少量的液氦,也可产生出足量的冷氦气,以保证气冷电流引线的正常冷却工作,进而提高了系统的安全性。由于加热器并非直接对液氦加热,而是通过对液氦容器的侧壁加热,无需将加热器浸泡在液氦内,因此可以实现极低液位时的励磁和退磁功能,可以减少液氦的填充量,从而降低液氦使用成本。

Description

一种超导磁体加热系统
本申请要求于2022年2月14日提交中国专利局、申请号为202210131820.9、申请名称为“一种超导磁体加热系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超导磁体领域,特别是涉及一种超导磁体加热系统。
背景技术
常规的液氦浸泡超导磁体,励磁及退磁时,采用可插拔的金属电流引线插入到超导磁体内的电流引线母头上,励磁或退磁的过程中,金属电流引线会发热,尤其是高电流的时候,发热量较大,如果不及时降温冷却,会影响磁体励磁的安全性,甚至会导致磁体失超。
目前主要通过加热液氦,蒸发成冷氦气,冷氦气从金属电流引线内部和外部从下往上流动,从而实现对金属电流引线的降温。但是现有的液氦加热方式,受液氦量的影响较大,当液氦量较少时,无法实现加热功能,从而无法产生冷氦气,进而影响系统的正常工作。
申请内容
本发明的目的是提供一种超导磁体加热系统,可以不受液氦量的影响,能够有效提高系统运行地安全性。
为解决上述技术问题,本发明提供了如下技术方案:
一种超导磁体加热系统,包括:液氦容器和加热器,所述液氦容器的上部设有供气冷电流引线穿入的通孔,所述加热器用于对所述液氦容器的侧壁加热,并将热量传递给所述液氦容器内的液氦,以使液氦蒸发出用于冷却所述气冷电流引线的冷氦气。
优选地,所述加热器贴附在所述液氦容器的内表面。
优选地,所述加热器浸没于液氦内或位于液氦外。
优选地,所述加热器的线束从所述通孔穿出。
优选地,所述加热器贴附在所述液氦容器的外表面。
优选地,所述液氦容器的外表面设有吸附器,所述加热器为所述吸附器内设置的加热单元。
与现有技术相比,上述技术方案具有以下优点:
本发明所提供的一种超导磁体加热系统,包括:液氦容器和加热器,液氦容器的上部设有供气冷电流引线穿入的通孔,加热器用于对液氦容器的侧壁加热,并将热量传递给液氦容器内的液氦,以使液氦蒸发出用于冷却气冷电流引线的冷氦气。因此即便液氦容器内只存有少量的液氦,也可产生出足量的冷氦气,以保证气冷电流引线的正常冷却工作,进而提高了系统的安全性。由于加热器并非直接对液氦加热,而是通过对液氦容器的侧壁加热,无需将加热器浸泡在液氦内,因此可以实现极低液位时的励磁和退磁功能,可以减少液氦的填充量,从而降低液氦使用成本。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的一种超导磁体加热系统的结构示意图;
图2为加热器位于液氦容器内表面的下部的结构示意图;
图3为加热器位于液氦容器外表面的上部的结构示意图;
图4为加热器位于液氦容器外表面的下部的结构示意图;
图5为吸附器的加热单元替换加热器后的结构示意图。
附图标记如下:
1为液氦容器,2为通孔,3为气冷电流引线,4为加热器,5为线束,6为第一线束转接头,7为磁体线束,8为磁体监控装置,9为真空筒,10为抽口,11为第二线束转接头,12为吸附器。
具体实施方式
为了使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施方式的限制。
请参考图1~图5,图1为本发明实施例所提供的一种超导磁体加热系统的结构示意图;图2为加热器位于液氦容器内表面的下部的结构示意图;图3为加热器位于液氦容器外表面的上部的结构示意图;图4为加热器位于液氦容器外表面的下部的结构示意图;图5为吸附器的加热单元替换加热器后的结构示意图。
本发明的一种具体实施方式提供了一种超导磁体加热系统,包括:液氦容器1和加热器4,液氦容器1的上部设有供气冷电流引线3穿入的通孔2,加热器4用于对液氦容器1的侧壁加热,并将热量传递给液氦容器1内的液氦,液氦受热蒸发出冷氦气,冷氦气上升,以冷却气冷电流引线3。因此即便液氦容器1内只存有少量的液氦,也可产生出冷氦气,以保证气冷电流引线3的正常冷却工作,进而提高了系统的安全性。由于加热器4并非直接对液氦加热,而是通过对液氦容器1的侧壁加热,无需将加热器4浸泡在液氦内,因此可以实现极低液位时的励磁和退磁功能,可以减少液氦的填充量,从而降低液氦使用成本。
其中,加热器4贴附在液氦容器1的内表面,加热器4可以位于液氦容器1内表面的任意一个位置处,如图1和图2所示,加热器4可以位于 液氦容器1的内表面的上部,或者液氦容器1的内表面的下部,加热器4浸没于液氦内或位于液氦外。当加热器4位于液氦容器1的内表面时,加热器4的线束5从液氦容器1上部的通孔2穿出,与第一线束转接头6连接,第一线束转接头6再通过磁体线束7与磁体监控装置8连接,通过磁体监控装置8来控制加热器4的加热功能。
此外,加热器4还可以贴附在液氦容器1的外表面,如图3和图4所示,加热器4可以位于液氦容器1的外表面的上部,或者液氦容器1的外表面的下部。其中加热器4的外部套设有真空筒9,真空筒9的外侧设有抽口10,加热器4位于真空筒9内,加热器4的线束通过抽口10穿出,与第二线束转接头11连接,第二线束转接头11再通过磁体线束7与磁体监控装置8连接。相对于加热器4的线束5从液氦容器1内穿出,通过抽口10引出加热器4的线束5,可以减少磁体内的布线。
其中,加热器4可以通过耐低温的胶布或者树脂紧贴在液氦容器1的内表面或外表面。
进一步地,液氦容器1的外表面设有吸附器12,如图5所示,吸附器12内有活性炭吸附剂和加热单元,磁体在生产过程中,需要通过抽口10进行抽真空,在抽真空过程中,需要给加热单元加热以解析吸附剂里已吸附的气体,如水蒸气等,抽真空结束之后,加热单元停止加热。因此可以通过利用吸附器12的加热单元来给液氦容器1的侧壁加热,即加热器4为吸附器12内设置的加热单元。该方式相当于取消了加热器4,减少了零部件的使用,降低了成本和制作工艺。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

  1. 一种超导磁体加热系统,其特征在于,包括:液氦容器(1)和加热器(4),所述液氦容器(1)的上部设有供气冷电流引线(3)穿入的通孔(2),所述加热器(4)用于对所述液氦容器(1)的侧壁加热,并将热量传递给所述液氦容器(1)内的液氦,以使液氦蒸发出用于冷却所述气冷电流引线(3)的冷氦气。
  2. 根据权利要求1所述的超导磁体加热系统,其特征在于,所述加热器(4)贴附在所述液氦容器(1)的内表面。
  3. 根据权利要求2所述的超导磁体加热系统,其特征在于,所述加热器(4)浸没于液氦内或位于液氦外。
  4. 根据权利要求2或3所述的超导磁体加热系统,其特征在于,所述加热器(4)的线束从所述通孔(2)穿出。
  5. 根据权利要求1所述的超导磁体加热系统,其特征在于,所述加热器(4)贴附在所述液氦容器(1)的外表面。
  6. 根据权利要求1所述的超导磁体加热系统,其特征在于,所述液氦容器(1)的外表面设有吸附器(12),所述加热器(4)为所述吸附器(12)内设置的加热单元。
PCT/CN2022/131864 2022-02-14 2022-11-15 一种超导磁体加热系统 WO2023151331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210131820.9 2022-02-14
CN202210131820.9A CN114171281B (zh) 2022-02-14 2022-02-14 一种超导磁体加热系统

Publications (1)

Publication Number Publication Date
WO2023151331A1 true WO2023151331A1 (zh) 2023-08-17

Family

ID=80489895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131864 WO2023151331A1 (zh) 2022-02-14 2022-11-15 一种超导磁体加热系统

Country Status (2)

Country Link
CN (1) CN114171281B (zh)
WO (1) WO2023151331A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171281B (zh) * 2022-02-14 2022-05-17 宁波健信核磁技术有限公司 一种超导磁体加热系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121917A (ja) * 2006-11-09 2008-05-29 Shinei Kk 恒温発生装置とその伝熱構造
CN101783220A (zh) * 2009-01-20 2010-07-21 西门子迈迪特(深圳)磁共振有限公司 一种冷却装置
CN102545725A (zh) * 2012-02-02 2012-07-04 中国科学院电工研究所 一种无液氦挥发的超导磁悬浮装置
US20190302204A1 (en) * 2018-03-29 2019-10-03 Siemens Healthcare Limited Power management for cryogen compressors
CN113764152A (zh) * 2021-09-15 2021-12-07 宁波健信核磁技术有限公司 一种超导磁体低温系统
CN114038645A (zh) * 2022-01-11 2022-02-11 宁波健信核磁技术有限公司 一种气冷电流引线及超导磁体系统
CN114171281A (zh) * 2022-02-14 2022-03-11 宁波健信核磁技术有限公司 一种超导磁体加热系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516487A (en) * 1978-07-24 1980-02-05 Toshiba Corp Superconductive equipment
JPH0730963B2 (ja) * 1986-05-06 1995-04-10 株式会社東芝 ヘリウム冷却装置
JPH0719686B2 (ja) * 1990-11-15 1995-03-06 三菱電機株式会社 極低温装置
JP3032610B2 (ja) * 1991-07-08 2000-04-17 富士電機株式会社 超電導装置の電流リード
JP3536230B2 (ja) * 1995-04-27 2004-06-07 中部電力株式会社 超電導装置
JP4814630B2 (ja) * 2005-12-21 2011-11-16 三菱電機株式会社 超電導電磁石装置
JP4398956B2 (ja) * 2006-07-10 2010-01-13 株式会社東芝 超電導磁石
JP4766129B2 (ja) * 2009-03-03 2011-09-07 山里産業株式会社 パイプヒータ装置の設置方法
JP5407691B2 (ja) * 2009-09-16 2014-02-05 東芝三菱電機産業システム株式会社 均熱処理装置
WO2013172148A1 (ja) * 2012-05-14 2013-11-21 株式会社 日立メディコ 磁気共鳴イメージング装置、磁気共鳴イメージング装置用ガス回収装置、および、磁気共鳴イメージング装置の運転方法
CN105378861B (zh) * 2013-07-11 2017-09-29 三菱电机株式会社 超导磁体
CN108630376A (zh) * 2018-03-29 2018-10-09 杭州汉胜科磁体设备有限公司 超导磁体二级冷却装置及二级冷却方法
CN214840074U (zh) * 2021-02-05 2021-11-23 氢合科技(广州)有限公司 一种高真空维持的液氦杜瓦

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121917A (ja) * 2006-11-09 2008-05-29 Shinei Kk 恒温発生装置とその伝熱構造
CN101783220A (zh) * 2009-01-20 2010-07-21 西门子迈迪特(深圳)磁共振有限公司 一种冷却装置
CN102545725A (zh) * 2012-02-02 2012-07-04 中国科学院电工研究所 一种无液氦挥发的超导磁悬浮装置
US20190302204A1 (en) * 2018-03-29 2019-10-03 Siemens Healthcare Limited Power management for cryogen compressors
CN113764152A (zh) * 2021-09-15 2021-12-07 宁波健信核磁技术有限公司 一种超导磁体低温系统
CN114038645A (zh) * 2022-01-11 2022-02-11 宁波健信核磁技术有限公司 一种气冷电流引线及超导磁体系统
CN114171281A (zh) * 2022-02-14 2022-03-11 宁波健信核磁技术有限公司 一种超导磁体加热系统

Also Published As

Publication number Publication date
CN114171281B (zh) 2022-05-17
CN114171281A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023151331A1 (zh) 一种超导磁体加热系统
US10568235B2 (en) On-board charger with heat dissipation structure
CN102866370B (zh) 超导磁体装置及磁共振成像系统
CN107186745A (zh) 真空吸附结构及机械手装置
CN106567043A (zh) 蒸镀装置及方法
CN206069992U (zh) 蒸镀装置
JPH01143310A (ja) 超電導マグネット装置
WO2022088335A1 (zh) 提高均温板传热效率的方法
CN207008524U (zh) 一种跨境电商云计算服务器散热装置
CN211128730U (zh) 一种具有散热功能的显示屏
CN211982386U (zh) 一种服务器液冷散热系统
CN210458437U (zh) 一种化纤侧吹风装置
WO2021099987A1 (zh) 一种用于磁共振成像设备的低温恒温器构造及磁共振成像设备
CN206961633U (zh) 一种电磁线圈散热系统
CN201846521U (zh) 一种ecr离子源的蒸发冷却装置
CN218539748U (zh) 一种液冷卧式横磁炉
CN213772191U (zh) 一种蒸镀腔体内冷却结构及蒸镀装置
CN207350968U (zh) 高效自动除氢太阳能真空集热管
CN219644442U (zh) 智能全自动电气控制加热控制柜
CN215116072U (zh) 一种变压器中溶解气体在线监测系统
CN210065919U (zh) 一种背板组件及cvd腔体
CN215328317U (zh) 一种金属铟的提纯装置
CN221275887U (zh) 一种用于mpcvd的气体抽空结构
CN218853842U (zh) 一种高温废气处理装置
CN207935785U (zh) 一种led灯的散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925682

Country of ref document: EP

Kind code of ref document: A1