WO2022088335A1 - 提高均温板传热效率的方法 - Google Patents

提高均温板传热效率的方法 Download PDF

Info

Publication number
WO2022088335A1
WO2022088335A1 PCT/CN2020/131401 CN2020131401W WO2022088335A1 WO 2022088335 A1 WO2022088335 A1 WO 2022088335A1 CN 2020131401 W CN2020131401 W CN 2020131401W WO 2022088335 A1 WO2022088335 A1 WO 2022088335A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
coupling agent
vapor chamber
titanate
liquid
Prior art date
Application number
PCT/CN2020/131401
Other languages
English (en)
French (fr)
Inventor
黄国创
王和志
吴高高
林昌伟
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022088335A1 publication Critical patent/WO2022088335A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • the invention relates to the field of electronic components, in particular to a method for improving the heat transfer efficiency of a temperature equalizing plate applied to electronic sound box products.
  • the vapor chamber of the related art is a heat conduction component that realizes rapid heat transfer by relying on its own internal working fluid phase change, mainly including upper and lower cover plates or metal tubes, sealing heads, liquid absorbing cores and heat transfer medium.
  • the capillary structure of the liquid absorbent core directly affects the performance of the temperature equalizing plate, and the capillary structure requires strong capillary force and low water flow resistance.
  • the surface of the liquid absorbent core of the vapor chamber of the related art is not sufficiently hydrophilic, resulting in poor heat transfer performance.
  • the purpose of the present invention is to provide a method for improving the heat transfer efficiency of the vapor chamber.
  • the present invention provides a method for improving the heat transfer efficiency of a vapor chamber.
  • the vapor chamber includes a shell with a built-in cavity, a heat transfer medium accommodated in the built-in cavity, and a metal
  • the liquid-absorbent wick with capillary structure includes the following steps:
  • Step S1 prepare a modified solution: put the modifier into a solvent to prepare a modified solution with a mass fraction of at least 1%, wherein the solvent is at least one of water, ethanol, propanol and acetone, and the modified solution is
  • the coupling agent is a coupling agent or a hydrophilic oxide
  • Step S2 modifying the liquid-absorbent core: placing the liquid-absorbent core in the modified solution to soak at least part of the liquid-absorbent core, and then taking it out to dry;
  • Step S3 sintering the modified liquid-absorbent core at high temperature: placing the modified liquid-absorbent core in the built-in cavity and sintering at high temperature in a high-temperature environment with a protective atmosphere or a reducing atmosphere,
  • the high temperature environment temperature is greater than the decomposition temperature of the coupling agent and less than the melting point temperature of the metal capillary structure;
  • Step S4 encapsulating the vapor chamber: injecting the heat transfer working medium into the built-in cavity, then evacuating and sealing the casing by welding.
  • the soaking time of the liquid absorbent core in the modification solution is at least 5 minutes.
  • the high temperature sintering time of the liquid absorbent core is at least 10 minutes.
  • the high temperature environment temperature is 600-900°C.
  • the coupling agent is a silane coupling agent having a siloxane structure.
  • the silane coupling agent with siloxane structure is ⁇ -aminopropyltriethoxysilane, phenyltrimethoxysilane, methacryloylpropyltrimethoxysilane, tetraethylorthosilicate Esters, vinyltrimethoxysilane, vinyltri-tert-butylperoxysilane, gamma-glycidyloxypropyltrimethoxysilane, dimethyldimethoxysilane, 3-(2-aminoethylamino ) propyltrimethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, vinyltrichlorosilane, p-chloromethyl at least one of phenyltrimethoxysilane, aminoethylaminopropyltrimethoxysilane, an
  • the coupling agent is a coupling agent having a zirconate structure.
  • the coupling agent with a zirconate structure is tetra-n-propyl zirconate, neopentyl(diallyl)oxytri(dioctyl)zirconium pyrophosphate, neopentyl(diallyl) at least one of oxytris(N-ethylenediamine)ethyl zirconate.
  • the coupling agent is a coupling agent having a titanate structure.
  • the coupling agent with a titanate structure is monoalkoxy titanate titanate, isopropyl tris(isooctanoyl) titanate, isopropyl tris(isooctanoyl) titanium acid ester, isopropyl tris(dodecylbenzenesulfonyl)titanate, neopentyl(diallyl)oxytris(dodecyl)benzenesulfonyl titanate, monoalkoxy pyrophosphate Isopropyl titanate, bis(dioctyl pyrophosphate acyloxy) ethylene titanate, neopentyl(diallyl) oxytri(dioctyl) phosphate titanate, chelated titanic acid At least one of the ester coupling agents.
  • the hydrophilic oxide is at least one of silica sol, SiO 2 , Al 2 O 3 , MgO, TiO 2 and ZrO.
  • step S2 the liquid-absorbing wick is placed in the modification solution and soaked for 10-30 min.
  • the protective atmosphere includes at least any one of N 2 and Ar, and the reducing atmosphere is H 2 .
  • a liquid absorbent core with a metal capillary structure is modified and sintered at a high temperature to obtain a liquid absorbent core with stronger hydrophilicity, and at the same time, the Its metal capillary structure enhances the capillary effect and further improves the heat transfer rate of the vapor chamber.
  • Fig. 1 is the flow chart of the method for improving the heat transfer efficiency of the vapor chamber according to the present invention
  • FIG. 2 is a schematic diagram of the structure of the temperature equalizing plate of the present invention.
  • the present invention provides a method for improving the heat transfer efficiency of the vapor chamber 100 .
  • the vapor chamber 100 includes a casing having a built-in cavity 10 , a heat transfer medium accommodated in the built-in cavity 10 , and a liquid absorbing wick 2 having a metal capillary structure.
  • the casing is made of metal material, and includes a lower cover 12 and an upper cover 11 covered on the lower cover 12 .
  • the upper cover 11 and the lower cover 12 are welded to enclose the built-in cavity 10 .
  • the temperature chamber 100 can be a flat VC temperature chamber composed of two layers of metal plates sandwiching a capillary wick, or a heat pipe formed by a metal tube with a built-in capillary wick, and the material of the metal plate may be different. It is selected from copper, copper alloy, stainless steel, nickel, nickel alloy, aluminum, aluminum alloy and the like.
  • the wick can be copper mesh, stainless steel mesh or other metal mesh for copper/stainless steel heat pipes, or copper mesh, foam copper, stainless steel mesh or other metal mesh for flat VC, or it can be etched The prepared capillary structure.
  • the method includes the following steps:
  • Step S1 prepare a modified solution: put the modifier into a solvent to prepare a modified solution with a mass fraction of at least 1%, wherein the solvent is at least one of water, ethanol, propanol and acetone, and the modified solution is
  • the coupling agent is a coupling agent or a hydrophilic oxide.
  • the coupling agent is a silane coupling agent having a siloxane structure.
  • the silane coupling agent with siloxane structure is ⁇ -aminopropyltriethoxysilane, phenyltrimethoxysilane, methacryloylpropyltrimethoxysilane, tetraethylorthosilicate Esters, vinyltrimethoxysilane, vinyltri-tert-butylperoxysilane, gamma-glycidyloxypropyltrimethoxysilane, dimethyldimethoxysilane, 3-(2-aminoethylamine propyl)propyltrimethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, vinyltrichlorosilane, p-chloromethyl at least one of phenyltrime
  • the coupling agent is a coupling agent having a zirconate structure.
  • the coupling agent with a zirconate structure is tetra-n-propyl zirconate, neopentyl(diallyl)oxytri(dioctyl)zirconium pyrophosphate, neopentyl(diallyl) at least one of oxytris(N-ethylenediamine)ethyl zirconate.
  • the coupling agent is a coupling agent having a titanate structure.
  • the coupling agent with a titanate structure is monoalkoxy titanate titanate, isopropyl tris(isooctanoyl) titanate, isopropyl tris(isooctanoyl) titanium acid ester, isopropyl tris(dodecylbenzenesulfonyl)titanate, neopentyl(diallyl)oxytris(dodecyl)benzenesulfonyl titanate, monoalkoxy pyrophosphate Isopropyl titanate, bis(dioctyl pyrophosphate acyloxy) ethylene titanate, neopentyl(diallyl) oxytri(dioctyl) phosphate titanate, chelated titanic acid At least one of the ester coupling agents.
  • the coupling agent can also be an aluminate coupling agent, an aluminum-titanium composite coupling agent, an aluminum zirconate coupling agent, and other composite coupling agents.
  • the hydrophilic oxide is at least one of silica sol, SiO 2 , Al 2 O 3 , MgO, TiO 2 and ZrO.
  • Step S2 modifying the liquid-absorbent core 2: put the liquid-absorbent core 2 in the modification solution to soak at least part of the liquid-absorbent core 2, and then take it out to dry.
  • the soaking time of the liquid absorbent core 2 in the modification solution is at least 5 minutes.
  • Step S3 sintering the modified liquid-absorbent core 2 at high temperature: placing the modified liquid-absorbent core 2 in the built-in cavity 10 and sintering the modified liquid-absorbent core 2 in a high-temperature environment with a protective atmosphere or a reducing atmosphere
  • High temperature sintering the high temperature sintering time of the liquid absorbent core 2 is at least 10 minutes.
  • the high temperature environment temperature is greater than the decomposition temperature of the coupling agent and less than the melting point temperature of the metal capillary structure, preferably, the high temperature environment temperature is 600-900°C;
  • the protective atmosphere includes N 2 , Ar At least any one; the reducing atmosphere can be H 2 .
  • the modifier is a coupling agent
  • the coupling agent under the action of high temperature sintering, the coupling agent is decomposed to generate SiO 2 with strong hydrophilicity, and the SiO 2 is closely attached to the absorbent core 2 to enhance its hydrophilicity
  • the micro-nano-structured SiO 2 improves the capillary structure of the liquid absorbent core 2 to a certain extent, enhances its capillary effect, and can improve the heat transfer efficiency of the vapor chamber 100 .
  • Step S4 encapsulating the temperature equalizing plate 100: injecting the heat transfer working medium into the built-in cavity 10, wherein, preferably, the filling rate is 30% to 80%;
  • the body is welded and sealed, that is, the lower cover 12 and the upper cover 11 are welded and sealed.
  • the method used in the present invention can not only improve the hydrophilicity of the liquid-absorbent core 2, reduce the contact angle of the liquid-absorbent core 2, enhance the wettability to water, but also improve the metal capillary structure of the liquid-absorbent core 2 and increase the capillary effect.
  • the method used in the present invention is simple and easy to operate, and can greatly enhance the heat transfer effect of the temperature equalizing plate 100. Next, it will be further described with reference to the following examples and comparative examples.
  • Step S1 sintering the liquid-absorbing core at high temperature: placing the liquid-absorbing core in the built-in cavity and performing high-temperature sintering for 10-120 min in a high-temperature environment with a protective atmosphere or a reducing atmosphere, and the high-temperature environment temperature is 600-900 °C °C;
  • Step S2 encapsulating the temperature equalizing plate: injecting the heat transfer working medium into the built-in cavity, then vacuuming and welding and sealing the shell, that is, the liquid absorbing wick in Comparative Example 1 did not pass through. modified.
  • Step S1 preparing a modified solution: after mixing 80 parts of ethanol and 10 parts of deionized water evenly, 10 parts of tetraethyl orthosilicate are added dropwise to prepare a modified solution with a mass fraction of 10%.
  • Step S2 modifying the liquid-absorbent core 2: put the liquid-absorbent core 2 in the modified solution to soak at least part of the liquid-absorbent core 2 for 10-30 minutes, and then take it out to dry.
  • Step S3 sintering the modified liquid-absorbent core 2 at high temperature: placing the modified liquid-absorbent core 2 in the built-in cavity and sintering the modified liquid-absorbent core 2 at a high temperature in a high-temperature environment with a protective atmosphere or a reducing atmosphere. Sintering for 10-120min, the high temperature environment temperature is 600 ⁇ 900°C;
  • Step S4 encapsulating the vapor chamber: injecting the heat transfer working medium into the built-in cavity, then evacuating and sealing the casing by welding.
  • Step S1 preparing a modification solution: after mixing 10 parts of ethanol and 10 parts of deionized water evenly, 80 parts of tetraethyl orthosilicate is added to prepare a modification solution with a mass fraction of 80%.
  • Step S2 modifying the liquid-absorbent core 2: put the liquid-absorbent core 2 in the modified solution to soak at least part of the liquid-absorbent core 2 for 10-30 minutes, and then take it out to dry.
  • Step S3 sintering the modified liquid-absorbent core 2 at high temperature: placing the modified liquid-absorbent core 2 in the built-in cavity and sintering the modified liquid-absorbent core 2 at a high temperature in a high-temperature environment with a protective atmosphere or a reducing atmosphere. Sintering for 10-120min, the high temperature environment temperature is 600 ⁇ 900°C;
  • Step S4 encapsulating the vapor chamber: injecting the heat transfer working medium into the built-in cavity, then evacuating and sealing the casing by welding.
  • Step S1 prepare a modified solution: after mixing 80 parts of ethanol and 10 parts of deionized water evenly, add 10 parts of ⁇ -aminopropyl triethoxysilane dropwise, and make it fully mixed to prepare a mass fraction of 10% modification solution.
  • Step S2 modifying the liquid-absorbent core 2: put the liquid-absorbent core 2 in the modified solution to soak at least part of the liquid-absorbent core 2 for 10-30 minutes, and then take it out to dry.
  • Step S3 sintering the modified liquid-absorbent core 2 at high temperature: placing the modified liquid-absorbent core 2 in the built-in cavity and sintering the modified liquid-absorbent core 2 at a high temperature in a high-temperature environment with a protective atmosphere or a reducing atmosphere. Sintering for 10-120min, the high temperature environment temperature is 600 ⁇ 900°C;
  • Step S4 encapsulating the vapor chamber: injecting the heat transfer working medium into the built-in cavity, then evacuating and sealing the casing by welding.
  • Step S1 preparing a modified solution: after mixing 40 parts of ethanol and 10 parts of deionized water evenly, 50 parts of a silica sol solution was added dropwise to make it fully mixed to prepare a modified solution with a mass fraction of 50%.
  • Step S2 modifying the liquid-absorbent core 2: put the liquid-absorbent core 2 in the modified solution to soak at least part of the liquid-absorbent core 2 for 10-30 minutes, and then take it out to dry.
  • Step S3 sintering the modified liquid-absorbent core 2 at high temperature: placing the modified liquid-absorbent core 2 in the built-in cavity and sintering the modified liquid-absorbent core 2 at a high temperature in a high-temperature environment with a protective atmosphere or a reducing atmosphere. Sintering for 10-120min, the high temperature environment temperature is 600 ⁇ 900°C;
  • Step S4 encapsulating the vapor chamber: injecting the heat transfer working medium into the built-in cavity, then evacuating and sealing the casing by welding.
  • a liquid absorbent core with a metal capillary structure is modified and sintered at a high temperature to obtain a liquid absorbent core with stronger hydrophilicity, and at the same time, the Its metal capillary structure enhances the capillary effect and further improves the heat transfer rate of the vapor chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种提高均温板(100)传热效率的方法,均温板(100)包括具有内置空腔(10)的壳体、收容于内置空腔(10)的传热工质以及具有金属毛细结构的吸液芯(2),该方法包括以下步骤:将改性剂放入溶剂中以配制质量分数至少为1%的改性溶液,其中溶剂为水、乙醇、丙醇和丙酮中的至少一种,改性剂为偶联剂或具有亲水性的氧化物;将吸液芯(2)放入改性溶液浸泡,然后取出晾干;将改性后的吸液芯(2)放置在内置空腔(10)内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结;将传热工质注入所述内置空腔(10)内,然后抽真空并对壳体进行焊接封端。上述提高均温板(100)传热效率的方法可增强毛细效应。

Description

提高均温板传热效率的方法 技术领域
本发明涉及电子元器件领域,尤其涉及一种运用于电子音箱产品的提高均温板传热效率的方法。
背景技术
电子元器件及集成电路技术的高频、高速发展,导致电子元件在运行过程中产生大量的热量,如计算机CPU运行过程中的热流密度已经达到60-100 W/cm 2,半导体激光器中甚至高达103 W/cm 2。电子设备工作的可靠性对温度极其敏感,器件温度在70-80℃水平上每增加1℃,可靠性就会下降5%。高热流对元件正常工作的可靠性造成了极大的威胁,因此散热成了电子产品小型化发展的关键问题。为了保证电子元件正常运行,通常在电子元件上加装散热器为其散热,同时在散热器和电子元件之间加装具有良好热传导性的均温板,该均温板的作用是将发热电子元件的热量先均匀分布,然后在通过散热器散发出去。
相关技术的均温板是依靠自身内部工作流体相变实现快速传热的导热组件,主要包括上下盖板或金属管、密封头、吸液芯和传热工质。其中,吸液芯的毛细结构直接影响到均温板的性能,毛细结构要求毛细力强且水流阻力小。
然而,相关技术的均温板的吸液芯的表面亲水性不够,导致传热性能较差。
因此,实有必要提供一种新的提高均温板传热效率的方法解决上述技术问题。
技术问题
本发明的目的在于提供一种提高均温板传热效率的方法。
技术解决方案
为了达到上述目的,本发明提供了一种提高均温板传热效率的方法,所述均温板包括具有内置空腔的壳体、收容于所述内置空腔的传热工质以及具有金属毛细结构的吸液芯,该方法包括以下步骤:
步骤S1,配制改性溶液:将改性剂放入溶剂中以配制质量分数至少为1%的改性溶液,其中所述溶剂为水、乙醇、丙醇和丙酮中的至少一种,所述改性剂为偶联剂或具有亲水性的氧化物;
步骤S2,改性所述吸液芯:将所述吸液芯放至所述改性溶液中浸泡至少部分所述吸液芯,然后取出晾干;
步骤S3,将改性后的所述吸液芯进行高温烧结:将改性后的所述吸液芯放置所述内置空腔内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结,所述高温环境温度大于所述偶联剂的分解温度且小于所述金属毛细结构的熔点温度;
步骤S4,封装所述均温板:将所述传热工质注入所述内置空腔内,然后抽真空并对所述壳体进行焊接封端。
优选的,所述步骤S2中,所述吸液芯在所述改性溶液中浸泡的时间至少为5分钟。
优选的,所述步骤S3中,所述吸液芯的高温烧结时间至少为10分钟。
优选的,所述步骤S3中,所述高温环境温度为600-900℃。
优选的,进行步骤S1时,所述偶联剂为具有硅氧烷结构的硅烷偶联剂。
优选的,所述具有硅氧烷结构的硅烷偶联剂为γ-氨丙基三乙氧基硅烷、苯基三甲氧基硅烷、甲基丙烯酰基丙基三甲氧基硅烷、正硅酸四乙酯、乙烯基三甲氧基硅烷、乙烯基三叔丁基过氧硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、二甲基二甲氧基硅烷、3-(2-氨基乙基氨基)丙基三甲氧基硅烷、3-(2-氨基乙胺基)丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三氯硅烷、对氯甲基苯基三甲氧基硅烷、氨乙基氨丙基三甲氧基硅烷、苯胺甲基三乙氧基硅烷和十三氟辛基三乙氧基硅烷中的至少一种。
优选的,进行步骤S1时,所述偶联剂为具有锆酸盐结构的偶联剂。
优选的,所述具有锆酸盐结构的偶联剂为四正丙基锆酸酯、新戊基(二烯丙基)氧三(二辛基)焦磷酸锆、新戊基(二烯丙基)氧三(N-乙二胺)乙基锆酸盐中的至少一种。
优选的,进行步骤S1时,所述偶联剂为具有钛酸盐结构的偶联剂。
优选的,所述具有钛酸盐结构的偶联剂为单烷氧基钛酸酯类钛酸酯、异丙基三(异辛酰基)钛酸酯、异丙基三(异辛酰基)钛酸酯、异丙基三(十二烷基苯磺酰基)钛酸酯、新戊(二烯丙基)氧三(十二烷基)苯磺酰基钛酸酯、单烷氧基焦磷酸酯类钛酸异丙酯、二(二辛基焦磷酸酰氧基)钛酸乙二酯、新戊基(二烯丙基)氧三(二辛基)磷酸钛酸酯、螯合型钛酸酯偶联剂中的至少一种。
优选的,进行步骤S1时,所述具有亲水性的氧化物为硅溶胶、SiO 2、Al 2O 3、MgO、TiO 2和ZrO中的至少一种。
优选的,进行步骤S2时,将所述吸液芯放至所述改性溶液,浸泡10-30min。
优选的,进行步骤S3时,所述保护气氛包括N 2、Ar中的至少任意一种, 所述还原气氛为H 2
有益效果
与相关技术相比,本发明的提高均温板传热效率的方法中,通过对具有金属毛细结构的吸液芯进行改性、高温烧结后得到亲水性更强的吸液芯,同时改善其金属毛细结构,增强毛细效应,进一步提高均温板的的传热速率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明提高均温板传热效率的方法的流程图;
图2为本发明的均温板的结构示意图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请同时参阅图1-2,本发明提供了一种提高均温板100传热效率的方法。
本发明中,所述均温板100包括包括具有内置空腔10的壳体、收容于所述内置空腔10的传热工质以及具有金属毛细结构的吸液芯2。具体的,所述壳体金属材料制成,其包括下盖12、盖设于所述下盖12的上盖11,上盖11和下盖12焊接围成所述内置空腔10。
更多的,该均温板100可以是由两层金属板夹持毛细吸液芯组成的平板VC均温板,也可以是由金属管内置毛细吸液芯形成的热管,所属金属板材质可选自铜、铜合金、不锈钢、镍、镍合金、铝、铝合金等。
吸液芯可以是用于铜质/不锈钢材质热管的铜网、不锈钢网或者其他金属网,或者是可用于平板VC的铜网、泡沫铜、不锈钢网或者其他金属网,也可以是通过蚀刻法制备出的毛细结构。
具体的,该方法包括以下步骤:
步骤S1,配制改性溶液:将改性剂放入溶剂中以配制质量分数至少为1%的改性溶液,其中所述溶剂为水、乙醇、丙醇和丙酮中的至少一种,所述改性剂为偶联剂或具有亲水性的氧化物。
优选的,所述偶联剂为具有硅氧烷结构的硅烷偶联剂。具体的,所述具有硅氧烷结构的硅烷偶联剂为γ-氨丙基三乙氧基硅烷、苯基三甲氧基硅烷、甲基丙烯酰基丙基三甲氧基硅烷、正硅酸四乙酯、乙烯基三甲氧基硅烷、乙烯基三叔丁基过氧硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、二甲基二甲氧基硅烷、3-(2-氨基乙基胺基)丙基三甲氧基硅烷、3-(2-氨基乙氨基)丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三氯硅烷、对氯甲基苯基三甲氧基硅烷、氨乙基氨丙基三甲氧基硅烷、苯胺甲基三乙氧基硅烷和十三氟辛基三乙氧基硅烷中的至少一种。
优选的,所述偶联剂为具有锆酸盐结构的偶联剂。具体的,所述具有锆酸盐结构的偶联剂为四正丙基锆酸酯、新戊基(二烯丙基)氧三(二辛基)焦磷酸锆、新戊基(二烯丙基)氧三(N-乙二胺)乙基锆酸盐中的至少一种。
优选的,所述偶联剂为具有钛酸盐结构的偶联剂。具体的,所述具有钛酸盐结构的偶联剂为单烷氧基钛酸酯类钛酸酯、异丙基三(异辛酰基)钛酸酯、异丙基三(异辛酰基)钛酸酯、异丙基三(十二烷基苯磺酰基)钛酸酯、新戊(二烯丙基)氧三(十二烷基)苯磺酰基钛酸酯、单烷氧基焦磷酸酯类钛酸异丙酯、二(二辛基焦磷酸酰氧基)钛酸乙二酯、新戊基(二烯丙基)氧三(二辛基)磷酸钛酸酯、螯合型钛酸酯偶联剂中的至少一种。
当然所述偶联剂还可以为铝酸酯偶联剂,铝钛复合偶联剂、铝锆酸酯偶联剂等复合型偶联剂。
优选的,所述具有亲水性的氧化物为硅溶胶、SiO 2、Al 2O 3、MgO、TiO 2和ZrO中的至少一种。
步骤S2,改性所述吸液芯2:将所述吸液芯2放至所述改性溶液中浸泡至少部分所述吸液芯2,然后取出晾干。
优选的,进行步骤S2时,所述吸液芯2在所述改性溶液中浸泡的时间至少为5分钟。例如,将所述吸液芯2放至所述改性溶液,浸泡10-30min。
步骤S3,将改性后的所述吸液芯2进行高温烧结:将改性后的所述吸液芯2放置所述内置空腔10内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结,所述吸液芯2的高温烧结时间至少为10分钟。所述高温环境温度大于所述偶联剂的分解温度且小于所述金属毛细结构的熔点温度,优选的,所述高温环境温度为600-900℃;所述保护气氛包括N 2、Ar中的至少任意一种;还原气氛可以是H 2
当改性剂为偶联剂时,在高温烧结的作用下,偶联剂发生分解,生成亲水性强的SiO 2,该SiO 2紧密附着在吸液芯2上,起到增强其亲水性的作用,同时微纳结构的SiO 2在一定程度上改善了吸液芯2的毛细结构,增强其毛细效应,可以提高均温板100的传热效率。
步骤S4,封装所述均温板100:将所述传热工质注入所述内置空腔10内,其中,优选的,充液率为30%~80%;然后抽真空并对所述壳体进行焊接封端,即将下盖12和上盖11焊接封端。
本发明所用的方法不仅可以提高吸液芯2的亲水性,降低吸液芯2的接触角,增强对水的浸润性,同时能改善吸液芯2的金属毛细结构,增大毛细效应。本发明所用的方法简单,操作简易,能较大程度地增强均温板100的传热效果,接下来结合一下实施例和对比例对其进一步说明。
对比例1
步骤S1,将吸液芯进行高温烧结:将吸液芯放置所述内置空腔内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结10-120min,所述高温环境温度为600~900℃;
步骤S2,封装所述均温板:将所述传热工质注入所述内置空腔内,然后抽真空并对所述壳体进行焊接封端,即对比例1中的吸液芯未经过改性。
最后,对通过上述步骤中未改性的吸液芯2做接触角测试,得接触角为78°,均温板100两端的平均温差为4℃。
实施例1
步骤S1,配制改性溶液:将80份的乙醇和10份的去离子水混合均匀后,滴加10份的正硅酸四乙酯以配制质量分数为10%的改性溶液。
步骤S2,改性所述吸液芯2:将所述吸液芯2放至所述改性溶液中浸泡至少部分所述吸液芯2,浸泡10~30min,然后取出晾干。
步骤S3,将改性后的所述吸液芯2进行高温烧结:将改性后的所述吸液芯2放置所述内置空腔内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结10-120min,所述高温环境温度为600~900℃;
步骤S4,封装所述均温板:将所述传热工质注入所述内置空腔内,然后抽真空并对所述壳体进行焊接封端。
最后,对经过上述步骤的均温板进行测试,发现经过浓度为10%质量分数的正硅酸四乙酯溶液的改性后,其表面附载着100~1000 nm粒径大小的SiO 2颗粒,吸液芯2的水接触为26°,均温板100两端的平均温差为2.5℃。
实施例2
步骤S1,配制改性溶液:将10份的乙醇和10份的去离子水混合均匀后,加入80份的正硅酸四乙酯以配制质量分数为80%的改性溶液。
步骤S2,改性所述吸液芯2:将所述吸液芯2放至所述改性溶液中浸泡至少部分所述吸液芯2,浸泡10~30min,然后取出晾干。
步骤S3,将改性后的所述吸液芯2进行高温烧结:将改性后的所述吸液芯2放置所述内置空腔内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结10-120min,所述高温环境温度为600~900℃;
步骤S4,封装所述均温板:将所述传热工质注入所述内置空腔内,然后抽真空并对所述壳体进行焊接封端。
最后,对经过上述步骤的均温板进行测试,发现经过浓度为80%质量分数的正硅酸四乙酯溶液的改性后,吸液芯2的水接触为20°,均温板100两端的平均温差为2.0℃。
实施例3
步骤S1,配制改性溶液:将80份的乙醇和10份的去离子水混合均匀后,滴加10份的γ-氨丙基三乙氧基硅烷,使其充分混合后以配制质量分数为10%的改性溶液。
步骤S2,改性所述吸液芯2:将所述吸液芯2放至所述改性溶液中浸泡至少部分所述吸液芯2,浸泡10~30min,然后取出晾干。
步骤S3,将改性后的所述吸液芯2进行高温烧结:将改性后的所述吸液芯2放置所述内置空腔内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结10-120min,所述高温环境温度为600~900℃;
步骤S4,封装所述均温板:将所述传热工质注入所述内置空腔内,然后抽真空并对所述壳体进行焊接封端。
最后,对经过上述步骤的均温板进行测试,发现经过浓度为10%质量分数的γ-氨丙基三乙氧基硅烷的改性后,吸液芯2的水接触为35°,均温板100两端的平均温差为3.0℃。
实施例四
步骤S1,配制改性溶液:将40份的乙醇和10份的去离子水混合均匀后,滴加50份的硅溶胶溶液,使其充分混合后以配制质量分数为50%的改性溶液。
步骤S2,改性所述吸液芯2:将所述吸液芯2放至所述改性溶液中浸泡至少部分所述吸液芯2,浸泡10~30min,然后取出晾干。
步骤S3,将改性后的所述吸液芯2进行高温烧结:将改性后的所述吸液芯2放置所述内置空腔内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结10-120min,所述高温环境温度为600~900℃;
步骤S4,封装所述均温板:将所述传热工质注入所述内置空腔内,然后抽真空并对所述壳体进行焊接封端。
最后,对经过上述步骤的均温板进行测试,发现经过50%质量分数的硅溶胶溶液的改性后,吸液芯2的水接触为40°,均温板100两端的平均温差为3.8℃。
与相关技术相比,本发明的提高均温板传热效率的方法中,通过对具有金属毛细结构的吸液芯进行改性、高温烧结后得到亲水性更强的吸液芯,同时改善其金属毛细结构,增强毛细效应,进一步提高均温板的的传热速率。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (13)

  1. 一种提高均温板传热效率的方法,所述均温板包括具有内置空腔的壳体、收容于所述内置空腔的传热工质以及具有金属毛细结构的吸液芯,其特征在于,该方法包括以下步骤:
    步骤S1,配制改性溶液:将改性剂放入溶剂中以配制质量分数至少为1%的改性溶液,其中所述溶剂为水、乙醇、丙醇和丙酮中的至少一种,所述改性剂为偶联剂或具有亲水性的氧化物;
    步骤S2,改性所述吸液芯:将所述吸液芯放至所述改性溶液中浸泡至少部分所述吸液芯,然后取出晾干;
    步骤S3,将改性后的所述吸液芯进行高温烧结:将改性后的所述吸液芯放置所述内置空腔内并在具有保护气氛或者还原气氛的高温环境中进行高温烧结,所述高温环境温度大于所述偶联剂的分解温度且小于所述金属毛细结构的熔点温度;
    步骤S4,封装所述均温板:将所述传热工质注入所述内置空腔内,然后抽真空并对所述壳体进行焊接封端。
  2. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,所述步骤S2中,所述吸液芯在所述改性溶液中浸泡的时间至少为5分钟。
  3. 根据权利要求1或2所述的提高均温板传热效率的方法,其特征在于,所述步骤S3中,所述吸液芯的高温烧结时间至少为10分钟。
  4. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,所述步骤S3中,所述高温环境温度为600-900℃。
  5. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,进行步骤S1时,所述偶联剂为具有硅氧烷结构的硅烷偶联剂。
  6. 根据权利要求5所述的提高均温板传热效率的方法,其特征在于,所述具有硅氧烷结构的硅烷偶联剂为γ-氨丙基三乙氧基硅烷、苯基三甲氧基硅烷、甲基丙烯酰基丙基三甲氧基硅烷、正硅酸四乙酯、乙烯基三甲氧基硅烷、乙烯基三叔丁基过氧硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、二甲基二甲氧基硅烷、3-(2-氨基乙基氨基)丙基三甲氧基硅烷、3-(2-氨基乙胺基)丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三氯硅烷、对氯甲基苯基三甲氧基硅烷、氨乙基氨丙基三甲氧基硅烷、苯胺甲基三乙氧基硅烷和十三氟辛基三乙氧基硅烷中的至少一种。
  7. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,进行步骤S1时,所述偶联剂为具有锆酸盐结构的偶联剂。
  8. 根据权利要求7所述的提高均温板传热效率的方法,其特征在于,所述具有锆酸盐结构的偶联剂为四正丙基锆酸酯、新戊基(二烯丙基)氧三(二辛基)焦磷酸锆、新戊基(二烯丙基)氧三(N-乙二胺)乙基锆酸盐中的至少一种。
  9. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,进行步骤S1时,所述偶联剂为具有钛酸盐结构的偶联剂。
  10. 根据权利要求9所述的提高均温板传热效率的方法,其特征在于,所述具有钛酸盐结构的偶联剂为单烷氧基钛酸酯类钛酸酯、异丙基三(异辛酰基)钛酸酯、异丙基三(异辛酰基)钛酸酯、异丙基三(十二烷基苯磺酰基)钛酸酯、新戊(二烯丙基)氧三(十二烷基)苯磺酰基钛酸酯、单烷氧基焦磷酸酯类钛酸异丙酯、二(二辛基焦磷酸酰氧基)钛酸乙二酯、新戊基(二烯丙基)氧三(二辛基)磷酸钛酸酯、螯合型钛酸酯偶联剂中的至少一种。
  11. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,进行步骤S1时,所述具有亲水性的氧化物为硅溶胶、SiO 2、Al 2O 3、MgO、TiO 2和ZrO中的至少一种。
  12. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,进行步骤S2时,将所述吸液芯放至所述改性溶液,浸泡10-30min。
  13. 根据权利要求1所述的提高均温板传热效率的方法,其特征在于,进行步骤S3时,所述保护气氛包括N 2、Ar中的至少任意一种, 所述还原气氛为H 2
PCT/CN2020/131401 2020-10-31 2020-11-25 提高均温板传热效率的方法 WO2022088335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011198607.7 2020-10-31
CN202011198607.7A CN112524983B (zh) 2020-10-31 2020-10-31 提高均温板传热效率的方法

Publications (1)

Publication Number Publication Date
WO2022088335A1 true WO2022088335A1 (zh) 2022-05-05

Family

ID=74979323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131401 WO2022088335A1 (zh) 2020-10-31 2020-11-25 提高均温板传热效率的方法

Country Status (2)

Country Link
CN (1) CN112524983B (zh)
WO (1) WO2022088335A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116182608A (zh) * 2021-11-26 2023-05-30 华为技术有限公司 具有微细结构层的均温板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971802A (ja) * 1995-09-05 1997-03-18 Aida Kagaku Kogyo Kk 金属物品の製造方法
US20130133864A1 (en) * 2011-11-25 2013-05-30 Industrial Technology Research Institute Heat distribution structure, manufacturing method for the same and heat-dissipation module incorporating the same
CN103134364A (zh) * 2012-10-21 2013-06-05 大连三维传热技术有限公司 非金属纤维毡吸液芯的热板
CN110763062A (zh) * 2019-11-29 2020-02-07 大连理工大学 导热与散热一体化平板热管
CN210862334U (zh) * 2019-07-19 2020-06-26 常州恒创热管理有限公司 一种铝基均热板
CN211451989U (zh) * 2019-10-15 2020-09-08 昆山联德电子科技有限公司 薄型毛细结构支撑均温板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283291B1 (ja) * 2012-07-03 2013-09-04 石原薬品株式会社 導電膜形成方法及び焼結進行剤
CN107080975A (zh) * 2017-06-15 2017-08-22 河北工业大学 具有超亲水超疏油性质的油水分离网膜的制备方法
CN109988471A (zh) * 2017-12-30 2019-07-09 广州华钻电子科技有限公司 一种环保亲水纳米涂料及其含亲水纳米涂层的热管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971802A (ja) * 1995-09-05 1997-03-18 Aida Kagaku Kogyo Kk 金属物品の製造方法
US20130133864A1 (en) * 2011-11-25 2013-05-30 Industrial Technology Research Institute Heat distribution structure, manufacturing method for the same and heat-dissipation module incorporating the same
CN103134364A (zh) * 2012-10-21 2013-06-05 大连三维传热技术有限公司 非金属纤维毡吸液芯的热板
CN210862334U (zh) * 2019-07-19 2020-06-26 常州恒创热管理有限公司 一种铝基均热板
CN211451989U (zh) * 2019-10-15 2020-09-08 昆山联德电子科技有限公司 薄型毛细结构支撑均温板
CN110763062A (zh) * 2019-11-29 2020-02-07 大连理工大学 导热与散热一体化平板热管

Also Published As

Publication number Publication date
CN112524983A (zh) 2021-03-19
CN112524983B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2022088335A1 (zh) 提高均温板传热效率的方法
CN110157316A (zh) 一种隔热吸波材及其制备方法
US20110146955A1 (en) Heat-dissipation unit with heat-dissipation microstructure and method of manufacturing same
CN111234781A (zh) 一种导热蓄热相变板及其制备方法
WO2012149768A1 (zh) 一种浸没式冷却系统和方法
CN110234214B (zh) 一种电驱动液态金属散热组件
CN110763062A (zh) 导热与散热一体化平板热管
CN203910434U (zh) 电力变压器用油冷却装置
CN218333774U (zh) 一种双dbc板制备的绝缘衬底结构
CN111187582A (zh) 一种绝缘导热胶黏材料及其制备方法
CN116198190A (zh) 一种面内均热导热薄膜及其制备方法
CN107313852A (zh) 一种散热效果好的发动机
CN102054641B (zh) 一种栅控行波管栅极的制作工艺及其模压磨具
CN210900214U (zh) 一种电磁屏蔽与吸波屏蔽结合的一体式复合材料
CN106533021A (zh) 一种轻量化工业机器人电机箱体
CN107777861A (zh) 一种模具内置水循环系统
CN220965432U (zh) 一种吸波散热膜
TWI257463B (en) Method of filling working fluid into hollow chamber
CN115410825B (zh) 薄膜电容热聚合方法及装置
CN112055510A (zh) 一种石墨烯/碳纳米管散热薄膜、其制备方法和应用
CN210725789U (zh) 一种基于相变散热的水冷板
CN216588821U (zh) 一种散热系统和装载机
CN218886542U (zh) 一种微电子控制器
CN217094848U (zh) 一种基于苏玛罐的新型加热清洗结构
CN218135539U (zh) 单腔体等离子体气相沉积真空加热钎焊炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959494

Country of ref document: EP

Kind code of ref document: A1