WO2023151217A1 - Procédé de polarisation de film polymère - Google Patents

Procédé de polarisation de film polymère Download PDF

Info

Publication number
WO2023151217A1
WO2023151217A1 PCT/CN2022/100860 CN2022100860W WO2023151217A1 WO 2023151217 A1 WO2023151217 A1 WO 2023151217A1 CN 2022100860 W CN2022100860 W CN 2022100860W WO 2023151217 A1 WO2023151217 A1 WO 2023151217A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
template
polarized
polarizing
micro
Prior art date
Application number
PCT/CN2022/100860
Other languages
English (en)
Chinese (zh)
Inventor
胡志军
何宝胜
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023151217A1 publication Critical patent/WO2023151217A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the invention belongs to the technical field of thin films, and relates to a method for polarizing a polymer film, in particular to a method for polarizing a polymer film without an electric field.
  • Piezoelectric materials are a class of crystalline materials with special dielectric properties. When they are deformed by an external force, the material will generate surface bound charges due to the displacement of the charge center. This process of converting mechanical energy into electrical energy is often referred to as the direct piezoelectric effect. Conversely, when an electric field is applied to a piezoelectric material, the material deforms due to the displacement of the center of charge. This process of converting electrical energy into mechanical energy is commonly known as the inverse piezoelectric effect. Piezoelectric sensors, transducers, drivers and other devices can be prepared by using the direct piezoelectric effect and inverse piezoelectric effect of piezoelectric materials, which are widely used in the fields of mechanics, acoustics, medicine, aerospace and navigation.
  • Polarization is an important link in the preparation process of piezoelectric materials and devices.
  • the main purpose is to orient the random dipoles in piezoelectric materials in a specific direction, so that they can exhibit strong piezoelectric properties.
  • the piezoelectric material or device is usually placed in an electric field.
  • the strength of the electric field exceeds a certain threshold, the dipoles that were originally oriented in disorder are oriented along the direction of the electric field.
  • the current electric field polarization methods are mainly divided into two types.
  • One is the non-contact type, that is, the conductive carriers are injected into the surface of the piezoelectric material by means of corona polarization.
  • the coupler in the piezoelectric material When the electric field formed by the accumulated carriers on the surface is higher than a certain threshold, the coupler in the piezoelectric material The poles are oriented in the direction of the electric field. When the electric field is removed, part of the surface charge disappears, and the aligned dipoles form the polarization of the surface.
  • the other is the contact type, that is, the electric field is directly applied to the electrodes on both sides of the piezoelectric material or device.
  • the dipole in the piezoelectric material When the applied electric field strength is higher than a certain threshold, the dipole in the piezoelectric material is oriented along the direction of the electric field. When the electric field is removed, the oriented dipoles in the piezoelectric material form the polarization of the surface.
  • the present invention provides a method for polarizing piezoelectric polymer films without electric field.
  • the method for polarizing the polymer film comprises the following steps,
  • the template is placed on the surface of the polymer film to be polarized, and the surface of the template attached to the surface of the polarized polymer film has a micro-nano structure array;
  • the material of the template is thermosetting resin such as phenolic resin, epoxy resin, furan resin, silicone resin, etc., inorganic oxide such as silicide, nitride, oxide, etc., ceramic material such as silicate, chlorate , borate, etc., metal materials such as aluminum, iron, copper, alloys, etc.
  • thermosetting resin such as phenolic resin, epoxy resin, furan resin, silicone resin, etc.
  • inorganic oxide such as silicide, nitride, oxide, etc.
  • ceramic material such as silicate, chlorate , borate, etc.
  • metal materials such as aluminum, iron, copper, alloys, etc.
  • the materials of the piezoelectric polymer film include but are not limited to fluorine-containing resins, such as homopolymers of vinylidene fluoride, copolymers of vinylidene fluoride and trifluoroethylene, copolymers of vinylidene fluoride and chlorotrifluoroethylene Copolymers of vinylidene fluoride and trifluoroethylene, copolymers of vinylidene fluoride and hexafluoropropylene, copolymers of vinylidene fluoride and hexafluoropropylene oxide, copolymers of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene materials, other piezoelectric polymers, such as polylactic acid, cellulose, etc. These polymers may be used alone or in mixture.
  • the height of the micro-nano structure is 1nm-1000 ⁇ m
  • the width is 1nm-1000 ⁇ m
  • there is no requirement for its period in the embodiment, for the convenience of preparation, a periodic structure is adopted, and the period is 1nm-1000 ⁇ m ).
  • a periodic structure is adopted, and the period is 1nm-1000 ⁇ m .
  • the shape of the micro-nano structure but three-dimensional structures such as pyramids, prisms, cones, and truncated cones and two-dimensional structures such as blazed gratings and trapezoidal gratings are preferred.
  • the temperature of the polymer film to be polarized is raised above the melting point or the glass transition temperature to form a viscous fluid state, and the specific temperature depends on the material.
  • step S2 the pressure is applied for 1-10 minutes.
  • step S3 the cooling is performed under the condition of maintaining the pressure in the step S2.
  • the pressure should preferably be capable of extruding the partially viscous polymer film to be polarized into the micro-nano structure on the surface of the template, and its size may be 10-20 MPa.
  • the polymer film to be polarized undergoes non-uniform deformation, specifically: deformation along the direction of pressure and deformation perpendicular to the direction of pressure will occur.
  • the polymer film is cured, there will be a strain gradient in the micro-nano structure on the surface of the polymer film, and the polarization process is shown in Figure 1.
  • the existence of the strain gradient will produce polarization intensity, and the magnitude of the polarization intensity is proportional to the magnitude of the strain gradient, as shown in Figure 2.
  • the technical solution of the present invention has the following advantages: the polymer film polarization method provided by the present invention does not need to apply an electric field during the polarization process, and does not directly withstand the high-voltage electric field on the polymer film and the circuit layer, Therefore, it can effectively prevent the polymer film or electronic device from being broken down, effectively improve the production pass rate of the polarized film, and realize large-scale production.
  • Fig. 1 is a schematic diagram of the polarization process of the polymer film of the present invention.
  • Fig. 2 is a schematic diagram of the relationship between polarization intensity (left) and strain gradient (right) in the polymer polarized film of the present invention.
  • FIG. 3 is a schematic diagram (A) of the morphology of the PVDF polarized film in Example 1 and a schematic diagram (B) of the measurement and calculation of the remanent polarization.
  • Example 4 is a schematic diagram (A) of the morphology of the P(VDF-HFP) polarized film in Example 2 and a schematic diagram (B) of the measurement and calculation of the remanent polarization.
  • Example 5 is a schematic diagram (A) of the morphology of the P(VDF-TrFE) polarized film in Example 3 and a schematic diagram (B) of the measurement and calculation of the remanent polarization.
  • the invention utilizes the flexoelectric effect produced in the non-uniform deformation process to polarize the piezoelectric polymer film. Specifically include: providing a template with a micro-nano structure, which includes an opposite first surface and a second surface, the first surface is a flat surface, and the second surface has a micro-nano structure array; providing a polymer film to be polarized, which includes The opposite third surface and the fourth surface; the template with the micro-nano structure is placed above the polymer film to be polarized, the second surface of the template contacts the third surface of the polymer film to be polarized, and the polymer film is heated to a viscous flow state, and under the action of pressure, the second surface of the template is closely contacted with the third surface of the polymer film, and the micro-nano structure array on the second surface of the template is copied to the third surface of the polymer film. After the polymer film is cooled to a glassy or crystalline state, the template and the polymer film are separated to
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • P(VDF-HFP) poly(vinylidene fluoride-co-hexafluoropropylene)
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • the height of the blazed grating structure is 200.0 ⁇ m, and the period is 100 ⁇ m.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • the upper surface width of the frustoconical structure is 1.3 ⁇ m
  • the lower surface width is 2.9 ⁇ m
  • the thickness is 2.5 ⁇ m
  • the period is 50 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

La présente invention appartient au domaine technique des films, et concerne un procédé de polarisation de film polymère. Le procédé comprend les étapes suivantes consistant à : placer un gabarit sur une surface d'un film polymère à polariser, la surface latérale du gabarit fixé à la surface dudit film polymère présentant un réseau de micro-nanostructures ; chauffer ledit film polymère jusqu'à ce qu'il atteigne un état visqueux, et, sous l'action de la pression, compresser une partie dudit film polymère à l'état visqueux en micro-nanostructures sur la surface du gabarit ; et réaliser un refroidissement pour durcir ledit film polymère, et décoller le gabarit, de telle sorte qu'un processus de polarisation est réalisé. Selon le procédé de polarisation de film polymère prévu par la présente invention, un champ électrique n'a pas besoin d'être appliqué lors du processus de polarisation, de telle sorte que le film polymère et une couche de circuit ne portent pas directement un champ électrique haute tension. Par conséquent, la décomposition du film polymère ou d'un dispositif électronique peut être efficacement empêchée, le taux de qualification de production de films polarisés est efficacement amélioré, et une production à grande échelle peut être obtenue.
PCT/CN2022/100860 2022-02-14 2022-06-23 Procédé de polarisation de film polymère WO2023151217A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210134585.0A CN114613902B (zh) 2022-02-14 2022-02-14 一种聚合物薄膜极化的方法
CN202210134585.0 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023151217A1 true WO2023151217A1 (fr) 2023-08-17

Family

ID=81858180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100860 WO2023151217A1 (fr) 2022-02-14 2022-06-23 Procédé de polarisation de film polymère

Country Status (2)

Country Link
CN (1) CN114613902B (fr)
WO (1) WO2023151217A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613902B (zh) * 2022-02-14 2023-03-24 苏州大学 一种聚合物薄膜极化的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985195A (en) * 1988-12-20 1991-01-15 Raytheon Company Method of forming a molecularly polarized polmeric sheet into a non-planar shape
CN107681463A (zh) * 2017-11-15 2018-02-09 苏州大学 连续光泵浦的聚合物激光器及其制备方法
CN108063183A (zh) * 2017-11-30 2018-05-22 西安交通大学 一种基于纳米压印制备封闭多孔压电驻极体俘能器的方法
CN112366207A (zh) * 2020-10-21 2021-02-12 杭州电子科技大学 一种高密度聚偏氟乙烯基纳米点阵的制备方法及应用
CN114613902A (zh) * 2022-02-14 2022-06-10 苏州大学 一种聚合物薄膜极化的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682083A (zh) * 2012-08-31 2014-03-26 纳米新能源(唐山)有限责任公司 一种压电驻极体薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985195A (en) * 1988-12-20 1991-01-15 Raytheon Company Method of forming a molecularly polarized polmeric sheet into a non-planar shape
CN107681463A (zh) * 2017-11-15 2018-02-09 苏州大学 连续光泵浦的聚合物激光器及其制备方法
CN108063183A (zh) * 2017-11-30 2018-05-22 西安交通大学 一种基于纳米压印制备封闭多孔压电驻极体俘能器的方法
CN112366207A (zh) * 2020-10-21 2021-02-12 杭州电子科技大学 一种高密度聚偏氟乙烯基纳米点阵的制备方法及应用
CN114613902A (zh) * 2022-02-14 2022-06-10 苏州大学 一种聚合物薄膜极化的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU, ZHIJUN ET AL.: "Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories", NATURE MATERIALS, vol. 8, 7 December 2008 (2008-12-07), ISSN: 1476-4660 *

Also Published As

Publication number Publication date
CN114613902A (zh) 2022-06-10
CN114613902B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US4302408A (en) Method of producing pyro-electric and piezo-electric elements
WO2023151217A1 (fr) Procédé de polarisation de film polymère
US8648151B2 (en) Piezoelectric polymer material, process for producing same, and piezoelectric element
CA1197492A (fr) Methode de fabrication par estampage de transducteurs en polymere piezoelectrique
US5909905A (en) Method of making thermally stable, piezoelectric and proelectric polymeric substrates
US4375042A (en) Temperature gradient method of nonuniformly poling a body of polymeric piezoelectric material and novel flexure elements produced thereby
US20150322220A1 (en) Ultrasonic transducer using ferroelectric polymer
WO2008067137A9 (fr) Électrode sous forme de film à nanotubes de carbone, dispositif électro-actif fabriqué à l'aide de cette dernière, et procédés de fabrication associés
RU2763361C2 (ru) Отделение опорных пластин
US6552883B1 (en) Devices comprising thin films having temperature-independent high electrical conductivity and methods of making same
WO2011078254A1 (fr) Élément polarisant absorbant et son procédé de fabrication
CA1209950A (fr) Polarisation de materiau piezoelectrique
KR101505471B1 (ko) 나노박막의 전사 및 접착방법
US20060079619A1 (en) Piezoelectric transducing sheet
Scheinbeim et al. The dependence of the piezoelectric response of poly (vinylidene fluoride) on phase‐I volume fraction
EP2756951A1 (fr) Procédé de production en continu de film fonctionnel de polytétrafluoroéthylène pour la conversion d'énergie électromécanique
WO2023115687A1 (fr) Film polymère piézoélectrique reposant sur un effet flexoélectrique et son procédé de préparation
KR102019737B1 (ko) 전도성 나노시트를 이용한 수평형 발광 디스플레이 및 그의 제조방법
JP5926063B2 (ja) 圧電素子の製造方法
WO2002017407A2 (fr) Dispositif composite piezo-electrique et procede de fabrication associe
CN108470823B (zh) 一种用于高分子薄膜的高压电极化系统
TW200843161A (en) Electricity element, isolation layer and manufacturing method thereof
Zhang et al. Property enhancement in flexible poly (vinylidene fluoride)‐based piezoelectric films with large‐area preparation
CN104638103A (zh) 一种可发电的透明薄膜及制备方法
JP3419014B2 (ja) 圧電素子の製造方法