WO2023145767A1 - エネルギ利用システム、および、炭素含有材料の製造方法 - Google Patents

エネルギ利用システム、および、炭素含有材料の製造方法 Download PDF

Info

Publication number
WO2023145767A1
WO2023145767A1 PCT/JP2023/002269 JP2023002269W WO2023145767A1 WO 2023145767 A1 WO2023145767 A1 WO 2023145767A1 JP 2023002269 W JP2023002269 W JP 2023002269W WO 2023145767 A1 WO2023145767 A1 WO 2023145767A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
energy
carbon
electrolytic reduction
medium
Prior art date
Application number
PCT/JP2023/002269
Other languages
English (en)
French (fr)
Inventor
琢也 後藤
正道 石川
崇 渡邉
政宣 川添
信明 武田
洋介 岸川
昭佳 山内
智弘 磯貝
Original Assignee
学校法人同志社
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社, ダイキン工業株式会社 filed Critical 学校法人同志社
Priority to CN202380014932.9A priority Critical patent/CN118369462A/zh
Priority to EP23746978.8A priority patent/EP4421214A1/en
Publication of WO2023145767A1 publication Critical patent/WO2023145767A1/ja
Priority to US18/613,721 priority patent/US20240229268A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/135Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/18Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids characterised by adaptation for specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/08Use of accumulators and the plant being specially adapted for a specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-89230
  • carbon dioxide is not only decomposed to obtain a simple carbon material, but further advanced, high value-added diamonds and the like made from carbon dioxide. It is proposed to produce a carbon material of
  • carbon-containing materials are produced from carbon dioxide in order to reduce carbon dioxide, which is a greenhouse gas. It is desirable to curb the use of energy that would lead to an increase in greenhouse gases.
  • the energy utilization system includes a circulation circuit having a pump, a heating section, an electrolytic reduction device, and a thermal energy recovery section.
  • a heat medium circulates in the circulation circuit.
  • the pump takes in and pumps out the heat transfer medium.
  • the heating unit heats the heat medium using renewable energy or energy obtained from waste heat.
  • the electrolytic reduction device heats the electrolytic solution using the heat of the heat medium.
  • the renewable energy for example, one or two selected from the group consisting of solar power generation, wind power generation, hydroelectric power generation, biomass power generation, geothermal power generation, tidal power generation, hydrogen combustion power generation, and ammonia combustion power generation. It may be the energy obtained by seeds or more. Compared to energy such as electric power supplied through major power networks operated by electric power companies, this renewable energy is unstable because the amount of energy that can be obtained is not constant depending on the time of day. you can
  • exhaust heat is not particularly limited, and examples include heat emitted from thermal power plants, nuclear power plants, chemical plants, refineries, waste disposal plants, geothermal heat, hot spring water, and the like.
  • renewable energy or energy obtained from exhaust heat is used to heat the heat medium, and the electrolytic reduction device uses the heat of the heat medium to heat the electrolyte.
  • the electrolytic reduction device uses the heat of the heat medium to heat the electrolyte.
  • the heat energy required for electrolytic reduction is not energy obtained through the process of discharging carbon dioxide, but regeneration. Since energy obtained from available energy or waste heat is used, it is possible to reduce carbon dioxide emissions while suppressing carbon dioxide emissions.
  • the energy utilization system according to the second aspect is the energy utilization system according to the first aspect, wherein the heat medium is water.
  • the heating section is a boiler.
  • the electrolyte can be heated using steam obtained by heating water with a boiler.
  • An energy utilization system is the energy utilization system according to the second aspect, wherein the thermal energy recovery unit has an expander.
  • the electrolytic reduction device uses the power generated by the expander to apply voltage to the electrolytic solution.
  • An energy utilization system is the energy utilization system according to any one of the first to third aspects, wherein the electrolytic reduction device has a reservoir.
  • the reservoir stores the heat storage medium.
  • the heat storage medium heats the electrolyte.
  • the heat storage medium is heated by thermal contact with the heat medium flowing through the circulation circuit.
  • An energy use system in the energy use system according to the first aspect, further includes a heat pump that is driven using electric power generated by renewable energy and that circulates the first refrigerant.
  • the circulation circuit has a storage section that stores the heat of the heat medium as stored energy.
  • the heating unit heats the heat medium with the heat of the first refrigerant heated by the heat pump.
  • the thermal energy recovery unit is a heat engine that uses stored energy to generate electricity.
  • the electrolytic reduction device applies voltage to the electrolytic solution using power generated by the heat engine.
  • the power generated by renewable energy is used to drive the heat pump, so the environmental load associated with driving the heat pump can be reduced.
  • the heat of the heat medium heated by the heat pump is stored in the storage unit as stored energy. Therefore, even if the supply of electric power from renewable energy is unstable, the instability can be alleviated by storing the heat of the heat medium heated by the heat pump as stored energy.
  • the electrolytic reduction device uses the stored energy as heat energy to heat the electrolytic solution, and uses the stored energy as electric power energy generated by the heat engine to apply a voltage to the electrolytic solution. A reduced material can be obtained.
  • the stored energy used for heating the electrolyte and applying the voltage is stored in the storage unit as energy obtained by the heat pump cycle, compared with the supplied renewable energy itself, thereby stabilizing the supply. is possible. Therefore, the temperature and the applied voltage in the electrolytic reduction can be well adjusted, and the electrolytic reduction can proceed efficiently. In addition, at least a portion of the stored energy after subtracting the energy used for heating the electrolytic solution can be used as electric power required for electrolytic reduction.
  • the heat energy and electric power energy required for the electrolytic reduction are not the energy obtained through the process of discharging carbon dioxide. , using energy obtained through a heat pump cycle using renewable energy. This makes it possible to reduce carbon dioxide while suppressing carbon dioxide emissions.
  • the energy utilization system according to the sixth aspect is the energy utilization system according to the fifth aspect, further comprising a carbon dioxide gas recovery unit.
  • the carbon dioxide gas recovery unit uses the cold heat of the heat medium cooled by the heat pump to grow carbon dioxide hydrate.
  • the carbon dioxide gas recovery unit recovers carbon dioxide as gas by decomposing carbon dioxide hydrate.
  • An energy utilization system is the energy utilization system according to the fifth or sixth aspect, wherein the heat pump has a compressor and a first expander coupled to the compressor via a drive shaft. are doing. Rotation of the compressor is assisted by power recovered by the first expander.
  • the rotational drive of the compressor is assisted by the power recovered by the first expander, so the operating efficiency of the heat pump can be improved.
  • An energy utilization system is the energy utilization system according to any one of the fifth to seventh aspects, wherein the electrolytic reduction device has at least one of a first electrolytic reduction device and a second electrolytic reduction device. .
  • the first electrolytic reduction device heats the electrolytic solution using stored energy, and applies a voltage to the electrolytic solution using power generated by the heat engine, thereby reducing the electrolytic solution and producing a carbon-containing material. obtain.
  • the second electrolytic reduction device uses the stored energy to electrolyze the heated water.
  • An energy utilization system is the energy utilization system according to any one of the fifth to eighth aspects, in which the refrigerant of the heat pump is heated by exhaust heat.
  • the environmental load can be reduced.
  • An energy utilization system is the energy utilization system according to any one of the fifth to ninth aspects, wherein the storage section includes a first storage section and a second storage section.
  • the heat medium in the first storage is sent to the second storage after being heated by the heat pump.
  • the temperatures of the heat medium in the first storage unit and the heat medium in the second storage unit are different. Therefore, it is possible to perform heating using different temperature regions.
  • the energy utilization system according to the eleventh aspect is the energy utilization system according to the tenth aspect, wherein the temperature of the heat medium sent to the second storage unit is 200°C or higher.
  • the energy utilization system according to the twelfth aspect is the energy utilization system according to the eleventh aspect, wherein the refrigerant of the heat pump is one or more selected from the group consisting of carbon dioxide, argon, and air.
  • the energy utilization system according to the thirteenth aspect is the energy utilization system according to the tenth aspect, wherein the temperature of the heat medium sent to the second storage unit is less than 200°C.
  • An energy use system is the energy use system according to the thirteenth aspect, wherein the refrigerant of the heat pump is R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R134a, R32, R410a, R245fa, It contains one or more selected from the group consisting of water and carbon dioxide.
  • the refrigerant of the heat engine is one or more selected from the group consisting of R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R134a, R32, R410a, R245fa, water, and carbon dioxide. including.
  • An energy use system is the energy use system according to any one of the fifth to fourteenth aspects, further comprising a control device.
  • the control device controls the heat pump, storage unit, heat engine, and electrolytic reduction device.
  • the control device performs control so that the stored energy stored in the storage unit and the electric power generated by the heat engine are used.
  • the control device may further manage and operate the control parameters and status of at least one of the heat pump, storage unit, heat engine, and electrolytic reduction device.
  • the conditions of electrolytic reduction can be easily controlled in detail by controlling the electrolytic reduction device with a control device that grasps the conditions of the heat pump, the storage section, and the heat engine.
  • An energy utilization system is the energy utilization system according to any one of the fifth to fifteenth aspects, wherein stored energy stored in the storage unit, electric power generated by the heat engine, and and/or a material obtained by applying a voltage to the electrolytic solution in order to supply it according to the demand of the customer.
  • this energy utilization system may include a reception unit that receives requests from consumers via a communication line.
  • a method for producing a carbon-containing material according to a seventeenth aspect includes a step of heating a heat medium circulating in a circulation circuit using renewable energy or energy obtained from waste heat, and using the heat of the heated heat medium and a step of heating the electrolytic solution to perform electrolytic reduction.
  • the renewable energy for example, one or two selected from the group consisting of solar power generation, wind power generation, hydroelectric power generation, biomass power generation, geothermal power generation, tidal power generation, hydrogen combustion power generation, and ammonia combustion power generation. It may be the energy obtained by seeds or more. Compared to energy such as electric power supplied through major power networks operated by electric power companies, this renewable energy is unstable because the amount of energy that can be obtained is not constant depending on the time of day. you can
  • exhaust heat is not particularly limited, and examples include heat emitted from thermal power plants, nuclear power plants, chemical plants, refineries, waste disposal plants, geothermal heat, hot spring water, and the like.
  • the heat energy required for electrolytic reduction is not energy obtained through the process of discharging carbon dioxide, but regeneration. Since energy obtained from available energy or waste heat is used, it is possible to reduce carbon dioxide emissions while suppressing carbon dioxide emissions.
  • a method for producing a carbon-containing material according to the eighteenth aspect is the method for producing a carbon-containing material according to the seventeenth aspect, wherein the heat medium is water. Water is heated in a boiler using renewable energy or energy obtained from waste heat.
  • the electrolytic solution can be heated using steam obtained by heating water with a boiler.
  • a method for producing a carbon-containing material according to a nineteenth aspect is the method for producing a carbon-containing material according to the eighteenth aspect, wherein a step of recovering thermal energy of a heat medium in an expander to generate power; applying a voltage to the electrolyte using a.
  • a method for producing a carbon-containing material according to a twentieth aspect is the method for producing a carbon-containing material according to any one of the seventeenth to nineteenth aspects, wherein the heat of the heated heat medium is stored in the storage unit. heats the heat storage medium The heat of the heated heat storage medium is used to heat the electrolyte.
  • this carbon-containing material manufacturing method it is possible to heat the electrolytic solution while storing energy obtained from renewable energy or waste heat in the heat storage medium.
  • a method for producing a carbon-containing material according to a twenty-first aspect is the method for producing a carbon-containing material according to the seventeenth aspect, wherein the heat medium is heated by a heat pump cycle driven using power generated by renewable energy. a step of storing the heat of the heat medium heated by the heat pump cycle as stored energy; a step of using the stored energy to generate electricity by the heat engine cycle; using the stored energy to heat the electrolyte; and a step of applying a voltage to the electrolytic solution using the power generated by the cycle to perform electrolytic reduction.
  • the heat pump is driven using electric power generated by renewable energy, so the environmental load associated with driving the heat pump can be reduced.
  • the heat of the heat medium heated by the heat pump is stored as stored energy. Therefore, even if the supply of electric power from renewable energy is unstable, the instability can be alleviated by storing the heat of the heat medium heated by the heat pump as stored energy. Then, the stored energy is used as heat energy to heat the electrolytic solution, and the stored energy is used as electric power energy generated by the heat engine to apply a voltage to the electrolytic solution, thereby electrolytically reducing the electrolytic solution.
  • a carbon-containing material can be obtained.
  • the stored energy used for heating the electrolyte and applying the voltage is stored as energy obtained by the heat pump cycle, compared with the supplied renewable energy itself, so the supply can be stabilized. be. Therefore, the temperature and the applied voltage in the electrolytic reduction can be well adjusted, and the electrolytic reduction can proceed efficiently.
  • at least a portion of the stored energy after subtracting the energy used for heating the electrolytic solution can be used as electric power required for electrolytic reduction.
  • the heat energy and electric power energy required for the electrolytic reduction are not the energy obtained through the process of discharging carbon dioxide. , using energy obtained through a heat pump cycle using renewable energy. This makes it possible to reduce carbon dioxide while suppressing carbon dioxide emissions.
  • the method for producing a carbon-containing material according to the 22nd aspect includes the step of electrolyzing water in the method for producing a carbon-containing material according to the 21st aspect.
  • the water is heated using at least part of the stored energy.
  • the method for producing a carbon-containing material according to the 23rd aspect further includes a step of heating the refrigerant of the heat pump cycle by exhaust heat in the method for producing a carbon-containing material according to the 21st or 22nd aspect.
  • the environmental load can be reduced.
  • a method for producing a carbon-containing material according to a twenty-fourth aspect is the method for producing a carbon-containing material according to any one of the twenty-first to twenty-third aspects, wherein the heat medium is a mixed fluid containing sand or rocks and air; One or more selected from the group consisting of molten salts.
  • a method for producing a carbon-containing material according to a twenty-fifth aspect is the method for producing a carbon-containing material according to any one of the twenty-first to twenty-third aspects, wherein the heat medium is a mixed fluid containing sand or rocks and air, water, One or more selected from the group consisting of thermal oil, ionic liquid, and molten salt.
  • FIG. 1 is a schematic configuration diagram of an energy utilization system according to a first embodiment; FIG. It is a schematic block diagram of the energy utilization system which concerns on 2nd Embodiment. It is a schematic block diagram of the energy utilization system which concerns on 3rd Embodiment.
  • FIG. 10 is a schematic configuration diagram of an energy utilization system according to another embodiment D; 1 is a schematic configuration diagram of a network used in a microgrid system; FIG.
  • An energy utilization system 1 is a system that utilizes renewable energy to obtain thermal energy, electric power, and useful substances, and utilizes them. , a heat engine 20 , a first heat utilization cycle 30 , a second heat utilization cycle 40 , an exhaust gas supply line 50 , and an electrolytic reduction device 70 .
  • the heat pump 10 includes a first refrigerant circuit 11 filled with a first refrigerant.
  • a first refrigerant For example, carbon dioxide, argon, air, or the like can be used as the first coolant.
  • the first refrigerant circuit 11 has a first compressor 12, a first high-temperature heat exchanger 13, a first expander 15, a first low-temperature heat exchanger 16, and an intermediate heat exchanger 14. there is The first compressor 12 compresses the sucked first refrigerant and sends it to the first high-temperature heat exchanger 13 .
  • the first compressor 12 for example, when the first refrigerant is carbon dioxide, it is pressurized to a pressure exceeding the critical pressure.
  • the first compressor 12 is powered by renewable energy supplied via the renewable energy supply unit 80 .
  • the drive control of the heat pump 10 may use only the renewable energy supplied via the renewable energy supply unit 80 as the power source, or the renewable energy and the electric power supplied from the electric power company. may be used as the drive source. Note that when both renewable energy and power supplied from an electric power company are used, it is preferable that more power from the renewable energy is used than power supplied from the power company.
  • Renewable energy is energy obtained by, for example, solar power generation, wind power generation, hydraulic power generation, biomass power generation, geothermal power generation, tidal power generation, hydrogen combustion power generation, ammonia combustion power generation, etc.
  • power generation is relatively steady. can be performed, and from the viewpoint of suppressing the amount of carbon dioxide emitted, solar power generation, wind power generation, and geothermal power generation are preferable.
  • the first compressor 12 and the first expander 15 are connected via a drive shaft 17 . Power recovered by the first expander 15 is transmitted to the first compressor 12 via a drive shaft 17 to assist the driving force of the first compressor 12 .
  • the first high-temperature heat exchanger 13 provides mutual By performing heat exchange without mixing, the first heat medium is heated and the first coolant is cooled.
  • the first refrigerant that has passed through the first high-temperature heat exchanger 13 is sent to the intermediate heat exchange section 14a and is heat-exchanged with the first refrigerant flowing through the intermediate heat exchanger 14 without being mixed with each other.
  • the first refrigerant that has passed through the intermediate heat exchange section 14 a is decompressed in the first expander 15 and sent to the first low temperature heat exchanger 16 .
  • the pressure of the first refrigerant circulating in the first refrigerant circuit 11 by being compressed by the first compressor 12 and decompressed by the first expander 15 is, for example, 2 MPa when the first refrigerant is carbon dioxide. 30 MPa or less.
  • the pressure of the first refrigerant compressed by the first compressor 12 may be, for example, 25 MPa.
  • the pressure of the first refrigerant decompressed by the first expander 15 may be, for example, 3 MPa.
  • the first low-temperature heat exchanger 16 allows mutual By performing heat exchange without mixing, the second heat medium is cooled and the first refrigerant is heated.
  • the first refrigerant that has passed through the first low temperature heat exchanger 16 is sent to the intermediate heat exchanger 14 .
  • the intermediate heat exchanger 14 as described above, the first refrigerant flowing through the intermediate heat exchanger 14 is heated by the first refrigerant flowing through the intermediate heat exchange section 14a.
  • the first refrigerant that has passed through the intermediate heat exchanger 14 is sucked into the first compressor 12 .
  • the heat engine 20 includes a second refrigerant circuit 21 filled with a second refrigerant.
  • a second refrigerant for example, carbon dioxide, water, argon, air, or the like can be used.
  • the second refrigerant circuit 21 has a second compressor 22, a second high-temperature heat exchange section 23, a second expander 24, an injection passage 25, and a second low-temperature heat exchanger 26. .
  • the second compressor 22 compresses the sucked second refrigerant and sends it to the second high-temperature heat exchange section 23 .
  • the second compressor 22 for example, when the second refrigerant is carbon dioxide, it is pressurized to a pressure exceeding the critical pressure.
  • the second refrigerant is heated and the first heat medium is cooled.
  • the second refrigerant that has passed through the second high-temperature heat exchange section 23 is sent to the second expander 24 .
  • the second refrigerant sent to the second expander 24 is decompressed to an intermediate pressure, a part of which is branched and sucked into the second compressor 22, and the remaining part is decompressed to a low pressure, and the second low-temperature heat It is sent to the exchanger 26 .
  • the second expander 24 generates power using the energy recovered when the pressure of the second refrigerant is reduced.
  • the electric power generated by the second expander 24 can be used as a power source for the first compressor 12 of the heat pump 10, a power source for voltage applied by the electrolytic reduction device 70, and the like.
  • the second expander 24 may be connected to the second compressor 22 via a drive shaft in order to transmit power to the second compressor 22 .
  • the second low-temperature heat exchanger 26 exchanges heat between the second refrigerant flowing through the second low-temperature heat exchanger 26 and the fluid supplied from the cold storage tank and flowing through the cooling flow path 91 without mixing with each other. By doing so, the fluid is heated and the second coolant is cooled.
  • the fluid is not particularly limited, and may be, for example, the second heat medium stored in the second high temperature tank 48 of the second heat utilization cycle 40 .
  • the second refrigerant that has passed through the second low-temperature heat exchanger 26 is sent to the second compressor 22 .
  • the second refrigerant depressurized by the second expander 24 is injected into the second compressor 22 toward the intermediate pressure portion.
  • the first heat utilization cycle 30 includes a first heat utilization circuit 31 filled with a first heat medium.
  • a first heat medium for example, a mixed fluid containing sand or rocks and air, molten salt, or the like can be used.
  • the first heat utilization circuit 31 includes a first heat medium pump 32 , an electrolytic reduction temperature control section 33 , a first low temperature utilization heat exchanger 34 , a first low temperature tank 35 , and a first high temperature utilization heat exchange section 36 . , and a first high-temperature tank 37 .
  • the first heat transfer medium pump 32 produces a flow that circulates the first heat transfer medium through the first heat utilization cycle 30 .
  • the first heat medium that has passed through the first heat medium pump 32 is sent to the electrolytic reduction temperature control section 33 .
  • the first heat medium sent to the electrolytic reduction temperature control unit 33 adjusts the temperature of the electrolytic solution by heating the electrolytic solution to be electrolytically reduced.
  • the first heat medium that has passed through the electrolytic reduction temperature control section 33 is sent to the first low temperature heat exchanger 34 .
  • the first low temperature heat exchanger 34 In the first low temperature heat exchanger 34, the first heat medium flowing through the first low temperature heat exchanger 34 and the second refrigerant flowing through the second high temperature heat exchange section 23 of the heat engine 20 are mixed with each other.
  • the first heat medium is cooled and the second refrigerant is heated by exchanging heat without heat.
  • the first heat medium that has passed through the first low temperature heat exchanger 34 is sent to the first low temperature tank 35 .
  • the temperature of the first heat medium stored in the first low-temperature tank 35 is 200°C or higher, preferably 250°C or higher and 350°C or lower, for example, 300°C.
  • the first heat medium that has passed through the first low temperature tank 35 is sent to the first high temperature utilization heat exchange section 36 .
  • the first heat medium flowing through the first high-temperature heat exchange section 36 exchanges heat with the first refrigerant flowing through the first high-temperature heat exchanger 13 of the heat pump 10 and is heated.
  • the first heat medium that has passed through the first high-temperature heat exchange section 36 is sent to the first high-temperature tank 37 .
  • the temperature of the first heat medium stored in the first high-temperature tank 37 is 200°C or higher, preferably 500°C or higher and 700°C or lower, for example, 600°C.
  • the first heat medium that has passed through the first high temperature tank 37 is sent to the first heat medium pump 32 .
  • Both the first low-temperature tank 35 and the first high-temperature tank 37 are preferably covered with a heat insulating material.
  • the second heat utilization cycle 40 includes a second heat utilization circuit 41 filled with a second heat medium. Antifreeze such as ethylene glycol, water, or the like can be used as the second heat medium, for example.
  • the second heat utilization circuit 41 includes a second heat medium pump 42, a second low temperature utilization heat exchange section 43, a second low temperature tank 44, a cold heat utilization section 45, a second high temperature utilization heat exchanger 46, and a heat It has a utilization portion 47 and a second high-temperature tank 48 .
  • a second heat transfer medium pump 42 produces a flow that circulates the second heat transfer medium through the second heat utilization cycle 40 .
  • the second heat medium that has passed through the second heat medium pump 42 is sent to the second low-temperature heat exchange section 43 .
  • the second heat medium sent to the second low-temperature heat exchange unit 43 is cooled by exchanging heat with the first refrigerant flowing through the first low-temperature heat exchanger 16 without being mixed with each other.
  • the second heat medium that has passed through the second low-temperature heat exchange section 43 is sent to the second low-temperature tank 44 .
  • the temperature of the second heat medium stored in the second low-temperature tank 44 is, for example, 0°C or higher and 5°C or lower, preferably 0°C.
  • the second heat medium that has passed through the second low-temperature tank 44 is sent to the cold heat utilization section 45 .
  • the cold heat utilization unit 45 cools the growth tank 55a of the recovery tank 55 in order to recover carbon dioxide contained in the exhaust gas.
  • the growth tank 55a of the recovery tank 55 functions as an ice growth tank for fixing carbon dioxide in the form of hydrate by being cooled.
  • the second heat medium that has cooled the growth tank 55 a of the recovery tank 55 in the cold heat utilization section 45 is sent to the second high temperature utilization heat exchanger 46 .
  • the second high-temperature heat exchanger 46 exchanges heat between the second heat medium flowing through the second high-temperature heat exchanger 46 and the exhaust gas flowing through the exhaust gas cooling section 52 of the exhaust gas supply line 50 without mixing with each other.
  • the second heat medium is heated and the exhaust gas is cooled.
  • the second heat medium that has passed through the second high temperature utilization heat exchanger 46 is sent to the heat utilization section 47 .
  • the heat utilization unit 47 heats the vaporization tank 57a of the vaporization tank 57 in order to vaporize the grown carbon dioxide hydrate 93 .
  • the second heat medium that has passed through the heat utilization section 47 is sent to the second high temperature tank 48 .
  • the temperature of the second heat medium stored in the second high-temperature tank 48 is, for example, 30°C or higher and 70°C or lower, and may be 50°C.
  • the second heat medium in the second high temperature tank 48 is sent to the second heat medium pump 42 again.
  • the exhaust gas supply line 50 is a flow for recovering carbon dioxide and recovering exhaust heat from high-temperature exhaust gas containing a large amount of carbon dioxide, such as combustion gas used in a factory or the like. It has an exhaust gas channel 51 which is a channel.
  • the exhaust gas used here may be, for example, a gas of 0.05 MPa or more and 0.3 MPa or less and 40°C or more and 80°C or less, or a gas of 0.1 MPa and 60°C.
  • the exhaust gas flow path 51 has an exhaust gas cooling section 52, an exhaust gas compressor 53, a generator 54, a recovery tank 55, a hydrate supply path 56, a vaporization tank 57, and a gas supply path 58.
  • the exhaust gas flowing through the exhaust gas cooling unit 52 is cooled by exchanging heat with the second heat medium flowing through the second high-temperature heat exchanger 46 of the second heat utilization cycle 40 without being mixed with each other, and the exhaust gas is compressed. sent to machine 53.
  • the exhaust gas compressor 53 compresses the exhaust gas and supplies it to the growth tank 55a of the recovery tank 55 as an ice growth tank.
  • the pressure of the exhaust gas compressed by the exhaust gas compressor 53 and supplied to the growth tank 55a of the recovery tank 55 may be, for example, 1.0 MPa or more and 2.0 MPa or less, and may be 1.5 MPa.
  • the exhaust gas overflowing from the growth tank 55 a of the recovery tank 55 without being hydrated is sent to the generator 54 .
  • the generator 54 recovers energy and generates power to obtain electric power.
  • the electric power generated by the generator 54 can be used as the power source for the first compressor 12 of the heat pump 10, the power source for the voltage applied by the electrolytic reduction device 70, and the like.
  • the hydrate supply channel 56 is a channel for sending the carbon dioxide hydrate 93 grown in the growth tank 55 a of the recovery tank 55 to the vaporization tank 57 a of the vaporization tank 57 .
  • the hydrate supply path 56 has an on-off valve 56a, and sends the carbon dioxide hydrate 93 from the recovery tank 55 to the vaporization tank 57 when the on-off valve 56a is open.
  • the carbon dioxide hydrate 93 warmed in the vaporization tank 57a of the vaporization tank 57 is vaporized into carbon dioxide gas.
  • the pressure of the exhaust gas in the vaporization tank 57a of the vaporization tank 57 may be, for example, 0.1 MPa or more and 0.3 MPa or less, and may be 0.2 MPa.
  • This carbon dioxide gas is sent to the electrolytic cell 71 of the electrolytic reduction device 70 via the gas supply path 58 .
  • the gas supply path 58 has an on-off valve 58a, and passes carbon dioxide gas when the on-off valve 58a is open.
  • the electrolytic reduction device 70 is a device that obtains a carbon-containing material and oxygen by electrolytically reducing an electrolytic solution.
  • the electrolytic reduction device 70 has an electrolytic bath 71 filled with an electrolytic solution.
  • the electrolytic solution can be used according to the type of useful substance to be obtained by electrolytic reduction.
  • Such an electrolytic solution preferably contains, for example, one or more selected from the group consisting of carbonate ions, carbon dioxide, water, and nitrogen.
  • the electrolyte is, for example, an alkali metal halide, an alkaline earth metal halide, an alkali metal halide nitrate, an alkaline earth metal halide nitrate, an alkali metal halide carbonate, an alkaline earth Carbonates of metal halides, hydroxides of alkaline earth metal halides, tetrafluoroborate of alkali metal halides, tetrafluoroborate of alkaline earth metal halides, tetrafluoroborate of alkali metal halides Phosphate hexafluoride, phosphate hexafluoride of alkaline earth metal halides, arsenate hexafluoride of alkali metal halides, arsenate hexafluoride of alkaline earth metal halides, arsenate hexafluoride of alkaline earth metal halides, arsenate hexafluoride of alkali
  • the electrolyte may contain LiNO3 , NaNO3 , KNO3 , Li2CO3 , LiOH, LiBF4 , LiPF6 , LiAsF6 , and the like.
  • Carbon dioxide gas supplied through the gas supply path 58 is supplied to the electrolytic solution.
  • the electrolytic solution may contain carbon dioxide gas dissolved therein, may contain carbonate ions, or may contain carbonate ions while carbon dioxide gas dissolves therein. good. Since the electrolytic solution in the electrolytic bath 71 is heated by the electrolytic reduction temperature control section 33 of the first heat utilization cycle 30, the efficiency of electrolytic reduction can be enhanced.
  • the electrolytic solution in the electrolytic cell 71 has a cathode and an anode in contact with each other, and electrolytic reduction is performed by applying a voltage between them.
  • the electric power used for voltage application for electrolytic reduction here is preferably electric power obtained by the second expander 24 or the generator 54 .
  • a carbon-containing material which is a reduced useful material, is deposited at the cathode, and an oxidized oxygen gas is generated at the anode.
  • Oxygen gas is recovered through an oxygen recovery path 72 provided with an on-off valve 72a.
  • the carbon-containing material is not particularly limited, and by changing various conditions such as the electrolyte and electrode materials, for example, carbon monoxide, metal carbide, organic compounds, diamond, graphite, glassy carbon, amorphous carbon, carbon One or more selected from the group consisting of nanotubes, carbon nanohorns, and graphene can be obtained.
  • organic compounds here include methane, methanol, ethane, ethylene, acetylene, ethanol, formic acid, formaldehyde, oxalic acid, acetic acid, propane, propylene, propanol, butane, butene, butanol, acetone, benzene, and toluene. , and one or more selected from the group consisting of xylene.
  • the heat pump 10 is driven by renewable energy. Compared to the power provided by general electric power companies, this renewable energy does not provide constant power depending on the time of day or the like, and there is a risk that the amount of power supplied may become unstable. However, the heat pump 10 converts the renewable energy into the heat stored in the first heat utilization cycle 30 and the cold energy stored in the second heat utilization cycle 40, so that the renewable energy can be fully and effectively utilized. ing.
  • the heat stored in the first heat utilization cycle 30 by the heat pump 10 is used for heating the second refrigerant, and power is recovered in the second expander 24 to generate power. It is possible. Electric power obtained by the second expander 24 can be used for voltage application in the electrolytic reduction device 70 .
  • the heat stored in the first heat utilization cycle 30 by the heat pump 10 is used to heat the electrolytic solution of the electrolytic reduction device 70, thereby making it possible to improve the efficiency of the electrolytic reduction. ing.
  • the electrolytic reduction device 70 it is possible to obtain useful materials using carbon dioxide derived from the exhaust gas.
  • an energy utilization system 1a may be used in which two electrolytic reduction devices are used and electrolytic solutions of different types are electrolytically reduced.
  • the energy utilization system 1a is a system that utilizes renewable energy and exhaust heat energy to obtain thermal energy, electric power, and useful substances, and utilizes them. As shown in FIG. 20a, a heat utilization cycle 30a, an exhaust gas supply line 50x, a first electrolytic reduction device 70x, and a second electrolytic reduction device 70y.
  • the heat pump 10a has a first refrigerant circuit 11a filled with a first refrigerant.
  • the first refrigerant include R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R134a, R32, R410a, R245fa, water, and carbon dioxide.
  • the first refrigerant circuit 11a has a first compressor 12, a first high-temperature heat exchanger 13, an expansion valve 15x, a first low-temperature heat exchanger 16, and an intermediate heat exchanger . Note that the drive shaft 17 in the first embodiment is not provided, and power recovery is not performed in the expansion valve 15x.
  • the exhaust gas supply line 50x uses exhaust gas containing a large amount of carbon dioxide at a high temperature such as 80° C., such as combustion gas used in a factory or the like.
  • the heat engine 20a has a second refrigerant circuit 21a filled with a second refrigerant.
  • the second refrigerant include R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R134a, R32, R410a, R245fa, water, and carbon dioxide.
  • the second refrigerant circuit 21a has a second pump 22x, a second high-temperature heat exchanger 23, a second expander 24, a second low-temperature heat exchanger 26, and a second intermediate heat exchanger 28. ing.
  • the second pump 22x forms the flow of the second refrigerant in the second refrigerant circuit 21a.
  • the second low-temperature heat exchanger 26 causes heat exchange between the second refrigerant flowing through the second low-temperature heat exchanger 26 and the air supplied from the outdoors and flowing through the air passage portion 92 .
  • the second refrigerant circuit 21a is not provided with the second compressor 22 and the injection passage 25 in the first embodiment.
  • the heat utilization cycle 30a includes a heat utilization circuit 31a filled with a heat medium.
  • a heat medium for example, a mixed fluid containing sand or rocks and air, water, thermal oil, ionic liquid, molten salt, or the like can be used.
  • the heat utilization circuit 31a includes a heat medium pump 32a, a first electrolytic reduction temperature control section 33x, a second electrolytic reduction temperature control section 33y, a low temperature utilization heat exchanger 34a, a pressure line 38, and a low temperature tank 35a. , a high-temperature utilization heat exchange section 36a, and a high-temperature tank 37a.
  • the thermal medium pump 32a creates a flow that circulates the thermal medium through the thermal cycle 30a.
  • the heat medium that has passed through the heat medium pump 32a is sent to the first electrolytic reduction temperature control section 33x.
  • the heat medium sent to the first electrolytic reduction temperature control unit 33x adjusts the temperature of the electrolytic solution by heating the electrolytic solution to be electrolytically reduced in the first electrolytic reduction device 70x.
  • the heat medium that has passed through the first electrolytic reduction temperature control section 33x is sent to the second electrolytic reduction temperature control section 33y.
  • the heat medium sent to the second electrolytic reduction temperature control unit 33y adjusts the temperature of the electrolytic solution by heating the electrolytic solution to be electrolytically reduced in the second electrolytic reduction device 70y.
  • the heat medium that has passed through the second electrolytic reduction temperature control section 33y is sent to the low temperature heat exchanger 34a.
  • a pressurization line 38 is connected between the second electrolytic reduction temperature control section 33y and the low-temperature heat exchanger 34a to pressurize and inject the heat medium into the heat-utilization circuit 31a.
  • the pressure line 38 is provided with an on-off valve 38a that can be controlled to open and close.
  • the low-temperature heat exchanger 34a exchanges heat between the heat medium flowing through the low-temperature heat exchanger 34a and the second refrigerant flowing through the second high-temperature heat exchange section 23 of the heat engine 20 without being mixed with each other. As a result, the heat medium is heated and the second coolant is cooled.
  • the heat medium that has passed through the low temperature heat exchanger 34a is sent to the low temperature tank 35a.
  • the temperature of the heat medium stored in the low-temperature tank 35a is 80°C or higher and lower than 100°C, for example, 90°C.
  • the heat medium that has passed through the low temperature tank 35a is sent to the high temperature utilization heat exchange section 36a.
  • the heat medium flowing through the high-temperature heat exchange section 36a exchanges heat with the first refrigerant flowing through the first high-temperature heat exchanger 13 of the heat pump 10 without being mixed with each other, and is heated.
  • the heat medium that has passed through the high-temperature heat exchange section 36a is sent to the high-temperature tank 37a.
  • the temperature of the heat medium stored in the high-temperature tank 37a is 100°C or higher and 200°C or lower, for example, 120°C.
  • the heat medium that has passed through the high temperature tank 37a is sent to the heat medium pump 32a.
  • Both the low-temperature tank 35a and the high-temperature tank 37a are preferably covered with a heat insulating material.
  • the first electrolytic reduction device 70x is a device that obtains a carbon-containing material and oxygen by electrolytically reducing an electrolytic solution.
  • the first electrolytic reduction device 70x has an electrolytic bath 71x filled with an electrolytic solution.
  • the electrolytic solution can be selected according to the type of useful substance to be obtained by electrolytic reduction. ionic liquids, and quaternary phosphonium-based ionic liquids.
  • Carbon dioxide gas is supplied to the electrolytic bath 71x through the first supply channel 73. As shown in FIG.
  • the electrolytic solution may contain carbon dioxide gas dissolved therein, may contain carbonate ions, or may contain carbonate ions while carbon dioxide gas dissolves therein. good.
  • the first supply path 73 is provided with an opening/closing valve 73a that can be controlled to open/close.
  • the gas supplied to the first supply path 73 is preferably carbon dioxide contained in exhaust gas from a factory or the like, and may be exhaust gas containing carbon dioxide gas. Since the electrolytic solution in the electrolytic bath 71x is heated by the first electrolytic reduction temperature control section 33x of the heat utilization cycle 30a, it is possible to improve the efficiency of electrolytic reduction. Furthermore, the electrolytic solution in the electrolytic cell 71x has a cathode and an anode in contact with each other, and electrolytic reduction is performed by applying a voltage between them. It should be noted that the electric power used for voltage application for electrolytic reduction here is preferably the electric power obtained by the second expander 24 .
  • a carbon-containing material which is a reduced useful material, is deposited at the cathode, and an oxidized oxygen gas is generated at the anode.
  • Oxygen gas is recovered through an oxygen recovery path 72 provided with an on-off valve 72a.
  • the carbon-containing material is not particularly limited, and by changing various conditions such as the electrolyte and electrode materials, for example, carbon monoxide, metal carbide, organic compounds, diamond, graphite, glassy carbon, amorphous carbon, carbon One or more selected from the group consisting of nanotubes, carbon nanohorns, and graphene can be obtained.
  • organic compounds here include methane, methanol, ethane, ethylene, acetylene, ethanol, formic acid, formaldehyde, oxalic acid, acetic acid, propane, propylene, propanol, butane, butene, butanol, acetone, benzene, and toluene. , and one or more selected from the group consisting of xylene.
  • the second electrolytic reduction device 70y is a device that obtains hydrogen and oxygen by electrolytically reducing water.
  • the second electrolytic reduction device 70y has an electrolytic cell 71y filled with water. Water is supplied to the electrolytic bath 71 y through the second supply channel 74 .
  • the second supply path 74 is provided with an opening/closing valve 74a that can be controlled to open/close. Since the electrolytic solution in the electrolytic bath 71y is heated by the second electrolytic reduction temperature control section 33y of the heat utilization cycle 30a, it is possible to improve the efficiency of electrolytic reduction.
  • the electrolytic solution in the electrolytic cell 71y has a cathode and an anode in contact with each other, and electrolytic reduction is performed by applying a voltage between them.
  • the electric power used for voltage application for electrolytic reduction here is preferably the electric power obtained by the second expander 24 .
  • Hydrogen gas is recovered through a hydrogen recovery path 76 provided with an on-off valve 76a.
  • Oxygen gas is recovered through an oxygen recovery passage 75 provided with an on-off valve 75a.
  • the heat pump 10a converts renewable energy into heat stored in the heat utilization cycle 30a, as in the energy utilization system 1 of the first embodiment. This makes it possible to fully and effectively utilize renewable energy.
  • the heat stored in the heat utilization cycle 30a by the heat pump 10a is used to heat the second refrigerant, so that power can be recovered in the second expander 24 to generate power. It's becoming The electric power obtained by the second expander 24 can be used for voltage application in the first electrolytic reduction device 70x and the second electrolytic reduction device 70y.
  • the heat stored in the heat utilization cycle 30a by the heat pump 10a is used to heat the electrolytic solutions of the first electrolytic reduction device 70x and the second electrolytic reduction device 70y, thereby efficiently performing electrolytic reduction. It is possible to make it.
  • the first electrolytic reduction device 70x it is possible to obtain useful materials using carbon dioxide derived from the exhaust gas. Hydrogen and oxygen can be obtained in the second electrolytic reduction device 70y.
  • the energy utilization system 201 is a system that utilizes renewable energy or exhaust heat to obtain and utilize useful substances, and as shown in FIG. ing.
  • the circulation circuit 230 includes a pump 232, a waste heat boiler 236, an electrolytic reduction device 70, a generator 220, a condenser 235, and a circulation flow path 231 connecting them.
  • the circulation circuit 230 is filled with water. In the circulation circuit 230, water circulates while undergoing a phase change between a liquid state and a vapor state.
  • the pump 232 sucks in water that has been liquefied by condensing in the condenser 235 and sends it out toward the water flow path 236 a of the waste heat boiler 236 .
  • the temperature of the water sucked by the pump 232 may be, for example, 30°C or higher and 70°C or lower, preferably 50°C.
  • the pressure of water sucked by the pump 232 may be, for example, 0.01 MPa or more and 0.1 MPa or less, and preferably 0.02 MPa or more and 0.03 MPa or less.
  • the atmospheric pressure is 0.1 MPa.
  • the flow rate of water by the pump 232 may be, for example, 0.3 kg/s or more and 0.8 kg/s or less, preferably 0.45 kg/s or more and 0.65 kg/s or less.
  • the drive source for the pump 232 is not particularly limited, and for example, electrical energy obtained in the generator 220 may be used as the drive source, or renewable energy may be used.
  • the exhaust heat boiler 236 exchanges heat between the water sent from the pump 232 and flowing through the circulation circuit 230 and the exhaust gas without mixing with each other, and converts the water into steam. change to
  • the exhaust heat boiler 236 has a water channel 236a through which water flows and an exhaust gas channel 280a through which exhaust gas flows so that heat can be exchanged with each other.
  • water and exhaust gas flow in opposite directions so that higher-temperature steam can be extracted.
  • the temperature of the exhaust gas flowing into the exhaust gas passage 280a may be, for example, 700°C or higher and 900°C or lower, preferably 800°C.
  • the exhaust gas passage 280a is a passage through which the exhaust gas flows inside the exhaust heat boiler 236 in the exhaust gas pipe 280 through which the exhaust gas flows.
  • the flue gas pipe 280 is a pipe that guides high-temperature flue gas discharged from, for example, a thermal power plant, a nuclear power plant, a chemical plant, a refinery, an incineration plant, etc., to the waste heat boiler 236 .
  • the exhaust gas flow rate may be, for example, 2.5 kg/s or more and 3.5 kg/s or less.
  • the temperature of the exhaust gas that has passed through the exhaust gas passage 280a is, for example, 100° C. or higher and 250° C. or lower.
  • the water flowing into the water channel 236a is heated by the heat of the exhaust gas flowing through the exhaust gas channel 280a and becomes steam.
  • the temperature of the steam flowing out of the water channel 236a may be, for example, 500° C. or higher and 800° C. or lower, and preferably 630° C. or higher and 670° C. or lower.
  • the pressure of the steam flowing out of the water channel 236a may be, for example, 0.6 MPa or more and 1.5 MPa or less, and preferably 0.7 MPa or more and 1.2 MPa or less.
  • the exhaust heat boiler 236 includes a supercooled heat exchange section in which water in a supercooled state flows, a gas-liquid coexistence heat exchange section in which water in a gas-liquid two-phase state flows, and a superheat heat exchange section in which water in a superheated state flows. , are connected together.
  • the lengths of these subcooling heat exchange section, gas-liquid coexistence heat exchange section, and superheating heat exchange section are generally designed based on the target temperature at which water evaporates.
  • the steam that has passed through the water channel 236a of the waste heat boiler 236 is sent to the heat storage channel 233 that passes through the heat storage tank 233x of the electrolytic reduction device 70.
  • the electrolytic reduction apparatus 70 is an apparatus for obtaining a carbon-containing material and oxygen by electrolytically reducing an electrolytic solution, as in the first embodiment.
  • the electrolytic reduction device 70 has an electrolytic bath 71 filled with an electrolytic solution.
  • the electrolytic solution can be used according to the type of useful substance to be obtained by electrolytic reduction.
  • Such an electrolytic solution preferably contains, for example, one or more selected from the group consisting of carbonate ions, carbon dioxide, water, and nitrogen.
  • the electrolyte is, for example, an alkali metal halide, an alkaline earth metal halide, an alkali metal halide nitrate, an alkaline earth metal halide nitrate, an alkali metal halide carbonate, an alkaline earth Carbonates of metal halides, hydroxides of alkaline earth metal halides, tetrafluoroborate of alkali metal halides, tetrafluoroborate of alkaline earth metal halides, tetrafluoroborate of alkali metal halides Phosphate hexafluoride, phosphate hexafluoride of alkaline earth metal halides, arsenate hexafluoride of alkali metal halides, arsenate hexafluoride of alkaline earth metal halides, arsenate hexafluoride of alkaline earth metal halides, arsenate hexafluoride of alkali
  • the electrolyte may contain LiNO3 , NaNO3 , KNO3 , Li2CO3 , LiOH, LiBF4 , LiPF6 , LiAsF6 , and the like.
  • Carbon dioxide gas supplied through the gas supply path 58 is supplied to the electrolytic solution.
  • the electrolytic solution may contain carbon dioxide gas dissolved therein, may contain carbonate ions, or may contain carbonate ions while carbon dioxide gas dissolves therein. good.
  • the method of supplying carbon dioxide gas to the electrolytic cell 71 is not particularly limited. For example, a gas containing a large amount of carbon dioxide such as combustion gas used in a factory may be used. A configuration similar to that of the exhaust gas supply line 50 may be used.
  • the electrolytic reduction device 70 has a heat storage tank 233x that surrounds the electrolytic cell 71.
  • the inside of the heat storage tank 233x is filled with a heat storage medium.
  • the electrolyte in the electrolytic bath 71 is heated by the heat of the heat storage medium filled in the heat storage tank 233x. This makes it possible to improve the efficiency of the electrolytic reduction.
  • the heat storage tank 233x is preferably surrounded by a heat insulating material (not shown). Inside the heat storage tank 233x, a heat storage channel 233 is provided through which steam flows so as not to mix with the heat storage medium.
  • the heat storage medium in the heat storage tank 233 x is heated by the heat of the steam flowing through the heat storage channel 233 .
  • the heat storage tank 233x is filled with a sufficient amount of heat storage medium, and retains the heat obtained from the steam flowing through the heat storage channel 233 for a long time. As a result, the temperature of the electrolytic solution in the electrolytic bath 71 is maintained at the same level for a long period of time.
  • the electrolytic solution in the electrolytic bath 71 has a cathode and an anode in contact with each other, and electrolytic reduction is performed by applying a voltage between them. Electric power obtained by the generator 220 is used as the electric power used for voltage application for electrolytic reduction. As a result, a carbon-containing material, which is a reduced useful material, is deposited at the cathode, and an oxidized oxygen gas is generated at the anode. Oxygen gas is recovered through an oxygen recovery path 72 provided with an on-off valve 72a.
  • the carbon-containing material is not particularly limited, and by changing various conditions such as the electrolyte and electrode materials, for example, carbon monoxide, metal carbide, organic compounds, diamond, graphite, glassy carbon, amorphous carbon, carbon One or more selected from the group consisting of nanotubes, carbon nanohorns, and graphene can be obtained.
  • the electrolyte and electrode materials for example, carbon monoxide, metal carbide, organic compounds, diamond, graphite, glassy carbon, amorphous carbon, carbon
  • One or more selected from the group consisting of nanotubes, carbon nanohorns, and graphene can be obtained.
  • the temperature of the steam that has passed through the heat storage channel 233 of the electrolytic reduction device 70 may be, for example, 400°C or higher and 750°C or lower, and preferably 600°C or higher and 660°C or lower.
  • the pressure of the steam that has passed through the heat storage channel 233 of the electrolytic reduction device 70 may be, for example, 0.5 MPa or more and 0.1.2 MPa or less, and preferably 0.6 MPa or more and 0.9 MPa or less.
  • the steam that has passed through the heat storage channel 233 of the electrolytic reduction device 70 is sent to the generator 220 .
  • the power generator 220 has an expander 234 that is rotationally driven when the steam that has passed through the heat storage flow path 233 of the electrolytic reduction device 70 flows in and passes through.
  • the generator 220 generates electricity using the energy recovered by the expander 234 when the steam is decompressed in the expander 234 . Specifically, when the steam is decompressed in the expander 234, rotation is generated to generate power.
  • the electrical energy obtained by the generator 220 is used as the power source for the applied voltage in the electrolytic reduction device 70.
  • the temperature of the steam that has passed through the expander 234 may be, for example, 30°C or higher and 70°C or lower, preferably 50°C.
  • the pressure of the steam that has passed through the expander 234 may be, for example, 0.01 MPa or more and 0.1 MPa or less, and preferably 0.02 MPa or more and 0.03 MPa or less.
  • the steam that has passed through the expander 234 is sent to the condenser 235.
  • the condenser 235 has a cooling medium flow path 295a through which a cooling medium that exchanges heat with steam or water without being mixed with the steam or water flows.
  • the cooling medium pipe 295 is a pipe that guides the cooling medium from the cold heat source to the condenser 235 .
  • the cooling medium flow path 295 a forms part of the cooling medium pipe 295 .
  • the cold heat source is not particularly limited, and may be, for example, water or a refrigerant.
  • the heat of the cooling medium flowing out of the cooling medium flow path 295a may be used, for example, to obtain hot water in a hot spring or a heated swimming pool.
  • the water that has passed through the condenser 235 is taken into the pump 232 .
  • the water circulating in the circulation circuit 230 is heated using the heat of the exhaust gas supplied to the waste heat boiler 236. be.
  • the high-temperature steam heated in the waste heat boiler 236 heats the heat storage medium in the heat storage tank 233 x of the electrolytic reduction device 70 . Therefore, the electrolytic solution in the electrolytic bath 71 of the electrolytic reduction device 70 is heated, and the electrolytic reduction can be efficiently performed.
  • thermal energy for electrolytically reducing the electrolytic solution can be secured by using thermal energy such as exhaust gas that is no longer needed due to thermal power generation, etc., so that thermal energy of exhaust gas can be effectively used. There is no need to newly obtain thermal energy required for electrolytic reduction.
  • the generator 220 recovers the thermal energy of the steam to obtain electrical energy. Therefore, of the thermal energy obtained by the steam from the exhaust gas, the thermal energy not used for heating the heat storage medium for heating the electrolytic solution can be recovered to obtain electrical energy. Voltage application to the electrolytic solution in the electrolytic reduction device 70 is performed using electrical energy obtained by the generator 220 .
  • the electrolyte may contain water, nitrogen, etc. alone or additionally.
  • the electrolyte contains water in addition to carbon dioxide, it is possible to obtain various organic compounds through electrolytic reduction. Moreover, when nitrogen is further contained in the electrolyte, it is also possible to obtain amines and the like.
  • carbon nitride from an electrolyte containing only nitrogen and no water.
  • Such carbon nitrides include hexagonal carbon nitride ( ⁇ -C 3 N 4 ); graphitic carbon nitride (g-C 3 N 4 ); (C 59 N) 2 , C 58 N 2 , C 57 N 3 , C 48 N 12 ; cyanofullerenes represented by C 60 (CN) 2n (where n is 1 to 9); cyanogens such as NCCN and CNCN.
  • the electrolytic solution and the electrodes may be changed so that carbon monoxide is obtained as a carbon-containing compound through electrolytic reduction in the first electrolytic reduction device 70x.
  • carbon monoxide is obtained from the first electrolytic reduction device 70x
  • hydrogen and oxygen are obtained from the second electrolytic reduction device 70y. Accordingly, by using these carbon monoxide, hydrogen, and oxygen, it becomes possible to easily synthesize various kinds of organic compounds.
  • the use of cold energy obtained in the first low-temperature heat exchanger 16 of the heat pump 10 is not particularly limited. or cooling of brine such as water used for cooling an object to be cooled.
  • an exhaust gas supply line 50 includes a cooling channel 91, a branch channel 191 through which air flows, a first switching valve 191a,
  • the energy utilization system 1b may include a second switching valve 191b.
  • This branch flow path 191 takes in air from the upstream end 191x, passes through the cooling flow path 91 passing through the second low-temperature heat exchanger 26 of the second refrigerant circuit 21, and then joins the exhaust gas flow path 51. is the road.
  • the first switching valve 191a connects the upstream exhaust gas passage 51a, which is the upstream portion of the exhaust gas passage 51, and the downstream exhaust gas passage 51b, which is the downstream portion of the exhaust gas passage 51. It is a switching valve that switches between a state in which the side exhaust gas flow path 51b and the branch flow path 191 are connected, and is configured by, for example, a three-way valve.
  • the second switching valve 191b connects the downstream portion of the exhaust gas compressor 53 and the recovery tank 55, and connects the downstream portion of the exhaust gas compressor 53 and the downstream end 191y open to the atmosphere. , and is a switching valve for switching between, for example, a three-way valve.
  • the first operation and the second operation may be switched.
  • the first switching valve 191a is switched to a state in which the upstream exhaust gas flow path 51a and the downstream exhaust gas flow path 51b are connected.
  • the switching valve 191b is switched to a state in which the downstream portion of the exhaust gas compressor 53 and the recovery tank 55 are connected, and the vaporization tank 57a of the vaporization tank 57 for vaporizing the carbon dioxide hydrate 93 is not heated.
  • the first heat medium pump 32 is driven to store heat in the first heat use cycle 30, and the second heat medium pump 42 is driven to move the second heat utilization cycle 40 to supply cold heat to the cold heat utilization unit 45, and the exhaust gas compressor 53 is driven to flow carbon dioxide into the exhaust gas flow path 51 of the exhaust gas supply line 50. , the carbon dioxide is cooled and separated and recovered in the growth tank 55 a of the recovery tank 55 .
  • the on-off valve 56a of the hydrate supply path 56 is closed, and the exhaust gas containing carbon dioxide that has not been able to become the carbon dioxide hydrate 93 is sent to the generator 54 to generate energy. be recovered.
  • the opening/closing valve 56a of the hydrate supply path 56 is opened to move the carbon dioxide hydrate 93 to the vaporization tank 57, Start the second run.
  • the first switching valve 191a is switched to a state in which the downstream exhaust gas flow path 51b and the branch flow path 191 are connected, and the second switching valve 191b is opened to the downstream side of the exhaust gas compressor 53 and the atmosphere.
  • the exhaust gas compressor 53 is driven, the second heat utilization cycle 40 is operated, the on-off valve 58a of the gas supply path 58 is controlled to open, and the first heat
  • the medium pump 32 is activated, and the heat engine 20 and the electrolytic reduction device 70 are activated.
  • the air taken into the branched flow path 191 from the upstream end 191x of the branched flow path 191 mixes the second refrigerant flowing through the second low-temperature heat exchanger 26 of the heat engine 20 in motion with the cooling flow path 91.
  • Heat is exchanged in and heated.
  • the air heated in the cooling channel 91 passes through the exhaust gas channel 51 and exchanges heat with the second heat medium in the second high-temperature heat exchanger 46 to heat the second heat medium.
  • the second heat medium heated using the exhaust heat of the heat engine 20 is sent to the heat utilization section 47 in the second heat utilization cycle 40, thereby warming the vaporization tank 57a of the vaporization tank 57. be done.
  • the air flowing through the exhaust gas flow path 51 after heating the second heat medium in the second high-temperature heat exchanger 46 is guided to the downstream end 191y via the exhaust gas compressor 53 and released into the atmosphere. .
  • the vaporization tank 57a of the vaporization tank 57 By heating the vaporization tank 57a of the vaporization tank 57, the vaporization of carbon dioxide from the carbon dioxide hydrate 93 is made more efficient, and the vaporized carbon dioxide is supplied to the electrolytic reduction device 70 through the gas supply path 58. can supply.
  • the heat stored in the first heat utilization cycle 30 is supplied to the electrolytic reduction temperature control unit 33, thereby heating the electrolytic solution of the electrolytic reduction device 70 and causing the heat engine 20 to generate electricity.
  • Electrolytic reduction in the electrolytic reduction device 70 is performed by using the supplied electric power to apply voltage to the electrolytic solution.
  • the heat pump 10 can be moved freely, but it is desirable to move the heat pump 10 when sufficient energy is supplied from the renewable energy supply unit 80 .
  • the energy utilization system 201 of the third embodiment may use the heat engine 20 described in the first embodiment instead of the power generator 220.
  • the steam that has passed through the heat storage channel 233 of the electrolytic reduction device 70 exchanges heat with the second refrigerant flowing through the second refrigerant circuit 21 of the heat engine 20, so that the heat energy of the steam is transferred to the second refrigerant. to be collected.
  • the fluid circulating in the circulation circuit 230 is not limited to water, and may be another heat medium such as a refrigerant. and preferably a medium that increases in volume.
  • the second electrolytic reduction device 70y of the second embodiment may be used, or instead of the electrolytic reduction device 70, the first electrolytic reduction device 70y of the second embodiment may be used.
  • An electrolytic reduction device 70x and a second electrolytic reduction device 70y may be used.
  • the energy utilization system is configured so that the flow passes through the flow path provided so as not to mix with the heat storage medium filled in the second electrolytic reduction temperature control section 33y of the electrolytic reduction device 70y.
  • the method of heating the water circulating in the circulation circuit 230 is not limited to this.
  • the water may be heated using the heat of underground magma via a heat pipe or the like.
  • the water circulating in the circulation circuit 230 may be heated by collecting sunlight using a lens, a reflecting mirror, or the like.
  • Embodiment I The forms of utilization of the energy utilization system 1 of the first embodiment, the energy utilization system 1a of the second embodiment, and the energy utilization system 201 of the third embodiment are not particularly limited. can do.
  • a microgrid system is an energy system that integrates and operates distributed energy resources (DER: Distributed Energy Resources) such as distributed energy and energy storage equipment, and energy networks on a certain scale.
  • DER Distributed Energy Resources
  • the microgrid system may be a system that is completely separated from the main power network operated by the electric power company and always operates independently of the main power network operated by the electric power company. It may be a system that is connected and disconnects the connection in an emergency such as a disaster to operate the energy independently.
  • FIG. 5 shows an example of a network used in a microgrid system including the energy utilization system 1 of the first embodiment.
  • the microgrid system includes, for example, a renewable energy supply unit 80 such as a solar power plant, a wind power plant, and a hydroelectric power plant, a renewable energy management device 180 that manages renewable energy, a heat pump 10, and a heat engine. 20, a first heat utilization cycle 30, a second heat utilization cycle 40, an exhaust gas supply line 50, an electrolytic reduction device 70, and a discharge supply unit (not shown) such as a thermal power plant, a nuclear power plant, a plant, a hot spring, etc. , an emission management device 150 that manages the exhaust heat supply unit, a consumer facility (not shown) that consumes the power energy generated by the heat engine 20, and a consumer terminal 60 that manages the consumer facility.
  • a renewable energy supply unit 80 such as a solar power plant, a wind power plant, and a hydroelectric power plant
  • a renewable energy management device 180 that manages renewable energy
  • a heat pump 10 and a heat engine.
  • a first heat utilization cycle 30 such as a solar power plant, a wind
  • An energy network facility (not shown) that connects the facilities of the above, an energy management controller 100 that appropriately controls the supply and consumption of energy, a renewable energy management device 180, a consumer terminal 60, the energy management controller 100, etc. are communicably connected.
  • the communication network 111 etc. may be provided.
  • the renewable energy management device 180 has a processor 181 such as a CPU, a memory 182 such as ROM and RAM, and an electric energy amount grasping unit 183 for grasping the amount of electric power generated in the renewable energy supply unit 80. and is located in the renewable energy supply section 80 .
  • Renewable energy management device 180 is communicably connected to energy management controller 100 via communication network 111 .
  • the emissions management device 150 has a processor 151 such as a CPU, a memory 152 such as a ROM and a RAM, a thermal energy amount grasping unit 153, and an exhaust carbon dioxide amount grasping unit 154. It is placed in the emission supply part of a nuclear power plant, etc. Emission management device 150 is communicatively connected to energy management controller 100 via communication network 111 .
  • the thermal energy amount grasping unit 153 grasps the amount of thermal energy discharged from an exhaust supply unit such as a thermal power plant or a nuclear power plant.
  • the emitted carbon dioxide amount grasping unit 154 grasps the amount of carbon dioxide emitted from an emission supply unit such as a thermal power plant.
  • the consumer equipment consumes the electrical energy remaining after being utilized in the electrolytic reduction device 70 out of the electrical energy generated by the heat engine 20, or consumes the thermal energy obtained by the heat pump 10 in the electrolytic reduction device 70. It is a facility that consumes the remaining thermal energy after it is used in a facility, or that consumes both of them.
  • heat stored in the first heat cycle 30 and The stored cold heat is supplied.
  • heat or cold energy may be supplied to the customer by transporting a heat storage material capable of storing heat or cold energy to the location of the customer facility.
  • electrical energy generated by the heat engine 20 is supplied to factories, office buildings, residences, power supply devices for electric vehicles, and plant factories in response to these demands.
  • the electrical energy may be supplied by transporting it to the location of the consumer facility using an electric wire, a storage battery, or the like. These heat storage materials, electric wires, and storage batteries are used as energy network equipment.
  • the carbon-containing material obtained by the electrolytic reduction device 70 is supplied by transportation or the like in response to requests from consumers.
  • the consumer terminal 60 has a processor 61 such as a CPU, a memory 62, an input unit 63, etc., and is arranged in the consumer facility.
  • the consumer terminal 60 is communicably connected to the energy management controller 100 via the communication network 111 .
  • the input unit 63 is configured by a touch panel, a keyboard, or the like, and receives a request for thermal energy supply, a request for electric energy supply, and a carbon obtained by electrolytic reduction from the customer who is the owner of the customer terminal 60. Receive requests for contained materials and/or requests.
  • the energy management controller 100 has a processor 101 such as a CPU (Central Processing Unit) and a memory 102 such as ROM and RAM.
  • the energy management controller 100 is communicably connected to the heat pump 10, the heat engine 20, the first heat utilization cycle 30, the second heat utilization cycle 40, the exhaust gas supply line 50, the electrolytic reduction device 70, and the like.
  • the energy management controller 100 controls the heat pump 10, the heat engine 20, the first heat utilization cycle 30, the second heat utilization cycle 40, the exhaust gas supply line 50, and the electrolytic reduction device 70 based on various information received via the communication network 111. and other operation control.
  • the energy management controller 100 Based on the electric energy amount grasped by the renewable energy supply unit 80 of the renewable energy management device 180, the energy management controller 100 performs the first compression in the heat pump 10 to convert the electric energy into stored thermal energy.
  • the heat pump 10 is driven and controlled by controlling the rotation speed of the machine 12 .
  • the amount of renewable energy obtained by the renewable energy management device 180 tends to be unstable compared to general electric energy provided by electric power companies.
  • the heat energy can be converted into thermal energy and stored in the first heat utilization cycle 30 , and can be converted into cold energy and stored in the second heat utilization cycle 40 .
  • the thermal energy stored in the first heat medium in the first heat utilization cycle 30 can be used to electrolytically reduce the electrolytic solution in the electrolytic reduction device 70 .
  • the heat energy stored in the first heat medium in the first heat utilization cycle 30 is used to heat the electrolytic solution in the electrolytic reduction device 70, and the voltage applied to the electrolytic solution in the electrolytic reduction device 70 is Electric energy obtained by converting thermal energy stored in the first heat medium in the first heat utilization cycle 30 by the heat engine 20 is used for the application.
  • the energy required for heating the electrolytic solution and applying voltage in the electrolytic reduction device 70 can be covered by the energy stored in the first heat utilization cycle 30 instead of unstable renewable energy. It becomes possible to stably perform electrolytic reduction.
  • each data such as the desired temperature of the electrolytic solution to be electrolytically reduced in the electrolytic reduction device 70, the desired applied voltage, etc. is stored in advance in the memory 102 provided in the energy management controller 100, and stored in the data. Based on this, the flow rate of the first heat medium in the first heat medium pump 32 is controlled so that the temperature condition of the electrolytic solution and the applied voltage condition are satisfied.
  • the energy management controller 100 heats the first refrigerant in the intermediate heat exchanger 14 of the heat pump 10 or heats the first heat utilization cycle. By heating the first heat medium in the first low temperature tank 35 and the first high temperature tank 37 of 30, the operating efficiency can be improved.
  • the energy management controller 100 also controls the amount of carbon dioxide emitted from the emission supply unit of the thermal power plant, plant, etc. grasped by the emission carbon dioxide amount grasping unit 154 of the emission management device 150, and the carbon dioxide hydrate 93. Based on the degree of growth, etc., the rotation speed of the exhaust gas compressor 53 of the exhaust gas supply line 50 is controlled. Thereby, the amount of carbon dioxide used for electrolytic reduction can be controlled.
  • the energy management controller 100 controls the degree of cooling of the growth tank 55a by the cold heat stored in the second heat utilization cycle 40 by adjusting the flow rate of the second heat medium pump 42 . As a result, the growth tank 55 a is cooled to a temperature at which carbon dioxide can be sufficiently cooled in the cold energy utilization section 45 .
  • the microgrid system including the energy use system 1 of the first embodiment
  • the microgrid system may include, for example, the energy use system 1a of the second embodiment.
  • the flow rate of the heat medium in the heat medium pump 32a is controlled so that the temperature conditions and applied voltage conditions of the electrolytic solution of the first electrolytic reduction device 70a and the electrolytic solution of the second electrolytic reduction device 70b are satisfied. be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

二酸化炭素の排出を抑制しながら二酸化炭素を削減して炭素含有材料を得ることが可能なエネルギ利用システム、および、炭素含有材料の製造方法を提供する。水を取り込んで送り出すポンプ(232)と、排熱により得られるエネルギを利用して水を加熱する排熱ボイラ(236)と、水の熱を用いて電解液を加熱する電解還元装置(70)と、発電機(20)と、を有し、水が循環する循環回路(230)を備える、エネルギ利用システム(201)。

Description

エネルギ利用システム、および、炭素含有材料の製造方法
 エネルギ利用システム、および、炭素含有材料の製造方法に関する。
 近年、地球環境を配慮し、例えば、温室効果ガスである二酸化炭素等を削減する観点から、この二酸化炭素を還元することにより、炭素化合物等としての再利用を図るカーボンリサイクルに係る技術の開発が進んでいる。
 例えば、特許文献1(特開2016-89230号公報)によれば、二酸化炭素を分解して単なる炭素材料を得るに留まることなく、さらに進んで、二酸化炭素を原料としたダイヤモンド等の高付加価値の炭素材料を製造することを提案している。
 ここで、地球環境を配慮して、温室効果ガスである二酸化炭素を削減させるために、二酸化炭素から炭素含有材料を製造するのであるから、その炭素含有材料を製造する際には、二酸化炭素等の温室効果ガスの増大を招くようなエネルギの使用が抑制されることが望まれる。
 第1観点に係るエネルギ利用システムは、ポンプと、加熱部と、電解還元装置と、熱エネルギ回収部と、を有する循環回路を備える。循環回路には、熱媒体が循環する。ポンプは、熱媒体を取り込んで送り出す。加熱部は、再生可能エネルギまたは排熱により得られるエネルギを利用して熱媒体を加熱する。電解還元装置は、熱媒体の熱を用いて電解液を加熱する。
 ここで、再生可能エネルギとしては、例えば、太陽光発電、風力発電、水力発電、バイオマス発電、地熱発電、潮汐発電、水素燃焼発電、および、アンモニア燃焼発電からなる群より選択される1種または2種以上により得られるエネルギであってよい。この再生可能エネルギは、電力会社が運用する主要な電力ネットワークを経て供給される電力等のようなエネルギと比較して、時間帯等に応じて得られるエネルギ量が一定でない不安定なものであってよい。
 ここで、排熱は、特に限定されず、例えば、火力発電所、原子力発電所、化学工場、精錬所、清掃工場、地熱、温泉水等において排出される熱を挙げることができる。
 このエネルギ利用システムによれば、再生可能エネルギまたは排熱により得られるエネルギを利用して、熱媒体を加熱し、電解還元装置は、熱媒体の熱を用いて電解液を加熱する。これにより、二酸化炭素等の温室効果ガスの増大を招くようなエネルギの使用を抑制しつつ、電解液から還元された材料を得ることができる。
 例えば、二酸化炭素が供給された電解液を電解還元することにより二酸化炭素を削減させる場合には、電解還元に要する熱エネルギとして、二酸化炭素を排出してしまう工程を経て得られるエネルギではなく、再生可能エネルギまたは排熱により得られるエネルギを用いているために、二酸化炭素の削減を、二酸化炭素の排出を抑制しながら行うことが可能になる。
 第2観点に係るエネルギ利用システムは、第1観点に係るエネルギ利用システムにおいて、熱媒体は、水である。加熱部は、ボイラである。
 このエネルギ利用システムでは、ボイラによって水を加熱して得られる蒸気を用いて、電解液を加熱することができる。
 第3観点に係るエネルギ利用システムは、第2観点に係るエネルギ利用システムにおいて、熱エネルギ回収部は、膨張機を有している。電解還元装置は、膨張機により発電された電力を利用して電解液に電圧を印加する。
 このエネルギ利用システムでは、蒸気の熱エネルギを膨張機において回収して、得られる電力を電解還元に利用することが可能になる。
 第4観点に係るエネルギ利用システムは、第1観点から第3観点のいずれかに係るエネルギ利用システムにおいて、電解還元装置は、貯留部を有している。貯留部は蓄熱媒体を貯留する。蓄熱媒体は、電解液を加熱する。蓄熱媒体は、循環回路を流れる熱媒体と熱的に接触することで加熱される。
 このエネルギ利用システムでは、再生可能エネルギまたは排熱により得られるエネルギを蓄熱媒体に蓄熱させながら、電解液を加熱することが可能になる。
 なお、再生可能エネルギまたは排熱により得られるエネルギが不安定になることで循環回路を流れる熱媒体の温度が変動することがあっても、その温度変動を平準化させて、高品質な熱エネルギを利用することが可能となる。
 第5観点に係るエネルギ利用システムは、第1観点に係るエネルギ利用システムにおいて、再生可能エネルギにより発電された電力を利用して駆動され、第1冷媒が循環するヒートポンプをさらに備える。循環回路は、熱媒体の熱を貯蔵エネルギとして貯蔵する貯蔵部を有する。加熱部は、ヒートポンプにより加熱された第1冷媒の熱によって、熱媒体を加熱する。熱エネルギ回収部は、貯蔵エネルギを利用して発電するヒートエンジンである。電解還元装置は、ヒートエンジンにより発電された電力を利用して電解液に電圧を印加する。
 このエネルギ利用システムによれば、再生可能エネルギにより発電された電力を利用してヒートポンプを駆動させるため、ヒートポンプを駆動させることに伴う環境負荷を低減させることができる。そして、ヒートポンプにより加熱された熱媒体の熱が貯蔵エネルギとして貯蔵部に貯蔵される。このため、再生可能エネルギによる電力の供給が不安定なことがあっても、ヒートポンプにより加熱された熱媒体の熱を貯蔵エネルギとして貯蔵することで、不安定さを緩和させることができる。そして、電解還元装置が、貯蔵エネルギを熱エネルギとして利用して電解液を加熱し、貯蔵エネルギをヒートエンジンにより発電された電力エネルギとして利用して電解液に電圧を印加することで、電解液から還元された材料を得ることができる。ここで、電解液の加熱と電圧印加に用いられる貯蔵エネルギは、供給される再生可能エネルギそのものと比べて、ヒートポンプサイクルにより得られるエネルギとして貯蔵部に貯蔵されることで、供給を安定化させることが可能である。このため、電解還元における温度と印加電圧の調整を良好に行うことが可能であり、電解還元を効率的に進めることが可能になる。また、貯蔵エネルギのうち、電解液の加熱に用いられるエネルギを差し引いた残りの少なくとも一部のエネルギを、電解還元において必要な電力として利用することが可能になる。そして、二酸化炭素が供給された電解液を電解還元することにより二酸化炭素を削減させる場合に、電解還元に要する熱エネルギおよび電力エネルギとして、二酸化炭素を排出してしまう工程を経て得られるエネルギではなく、再生可能エネルギを用いたヒートポンプサイクルを経て得られるエネルギを用いている。これにより、二酸化炭素の削減を、二酸化炭素の排出を抑制しながら行うことが可能になる。
 第6観点に係るエネルギ利用システムは、第5観点に係るエネルギ利用システムにおいて、二酸化炭素ガス回収部をさらに備える。二酸化炭素ガス回収部は、ヒートポンプにより冷却された熱媒体の冷熱を利用して二酸化炭素ハイドレートを成長させる。二酸化炭素ガス回収部は、二酸化炭素ハイドレートを分解することにより二酸化炭素を気体として回収する。
 このエネルギ利用システムによれば、ヒートポンプによる熱媒体の加熱と同時に生じる冷熱を利用して、二酸化炭素を効率的に回収することが可能になる。
 第7観点に係るエネルギ利用システムは、第5観点または第6観点に係るエネルギ利用システムにおいて、ヒートポンプは、圧縮機と、圧縮機と駆動軸を介して連結された第1膨張機と、を有している。圧縮機の回転は、第1膨張機で回収された動力により補助される。
 このエネルギ利用システムによれば、第1膨張機で回収された動力により圧縮機の回転駆動が補助されるため、ヒートポンプの運転効率を高めることができる。
 第8観点に係るエネルギ利用システムは、第5観点から第7観点のいずれかに係るエネルギ利用システムにおいて、電解還元装置は、第1電解還元装置と第2電解還元装置との少なくともいずれかを有する。第1電解還元装置は、貯蔵エネルギを利用して電解液を加熱し、ヒートエンジンにより発電された電力を利用して電解液に電圧を印加することで、電解液を還元して炭素含有材料を得る。第2電解還元装置は、貯蔵エネルギを利用して加熱された水を電気分解する。
 このエネルギ利用システムによれば、貯蔵エネルギを利用して、炭素含有材料と、水素または酸素と、の少なくともいずれかを得ることが可能になる。
 第9観点に係るエネルギ利用システムは、第5観点から第8観点のいずれかに係るエネルギ利用システムにおいて、ヒートポンプの冷媒が、排熱により加熱される。
 このエネルギ利用システムによれば、環境負荷を低減させることができる。
 第10観点に係るエネルギ利用システムは、第5観点から第9観点のいずれかに係るエネルギ利用システムにおいて、貯蔵部は、第1貯蔵部と、第2貯蔵部を含む。第1貯蔵部の熱媒体は、ヒートポンプにより加熱された後に、第2貯蔵部に送られる。
 このエネルギ利用システムによれば、第1貯蔵部における熱媒体と、第2貯蔵部における熱媒体と、の温度が異なる。このため、異なる温度領域を用いた加熱を行うことが可能となる。
 第11観点に係るエネルギ利用システムは、第10観点に係るエネルギ利用システムにおいて、第2貯蔵部に送られる熱媒体の温度は、200℃以上になる。
 第12観点に係るエネルギ利用システムは、第11観点に係るエネルギ利用システムにおいて、ヒートポンプの冷媒が、二酸化炭素、アルゴン、および、空気からなる群より選択される1種または2種以上である。
 このエネルギ利用システムによれば、熱媒体を200℃以上の温度領域まで加熱する際のヒートポンプの駆動を効率的に行うことができる。
 第13観点に係るエネルギ利用システムは、第10観点に係るエネルギ利用システムにおいて、第2貯蔵部に送られる熱媒体の温度は、200℃未満である。
 第14観点に係るエネルギ利用システムは、第13観点に係るエネルギ利用システムにおいて、ヒートポンプの冷媒が、R1233zd(E)、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R32、R410a、R245fa、水、および、二酸化炭素からなる群より選択される1種または2種以上を含む。ヒートエンジンの冷媒が、R1233zd(E)、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R32、R410a、R245fa、水、および、二酸化炭素からなる群より選択される1種または2種以上を含む。
 このエネルギ利用システムによれば、熱媒体を200℃未満の温度領域まで加熱する際のヒートポンプの駆動を効率的に行うことができる。
 第15観点に係るエネルギ利用システムは、第5観点から第14観点のいずれかに係るエネルギ利用システムにおいて、制御機器をさらに備える。制御機器は、ヒートポンプ、貯蔵部、ヒートエンジン、および、電解還元装置の制御を行う。制御機器は、貯蔵部に貯蔵された貯蔵エネルギおよびヒートエンジンにより発電された電力が利用されるように制御を行う。
 なお、制御機器は、さらに、ヒートポンプ、貯蔵部、ヒートエンジン、および、電解還元装置の少なくともいずれかの制御パラメータや状況について、管理および運用を行うものであってよい。
 このエネルギ利用システムによれば、熱や電力の量を把握しながら、熱や電力を使うことができるので、エネルギ利用システム全体の効率を高めることができる。特に、ヒートポンプと貯蔵部とヒートエンジンの状況を把握した制御機器が電解還元装置の制御を行うことで、電解還元の条件を詳細に制御しやすい。
 第16観点に係るエネルギ利用システムは、第5観点から第15観点のいずれかに係るエネルギ利用システムにおいて、貯蔵部に貯蔵された貯蔵エネルギと、ヒートエンジンで発電された電力と、電解還元装置における電解液への電圧の印加により得られる材料と、の少なくともいずれかを、需要家の求めに応じて供給するために用いられる。
 なお、このエネルギ利用システムは、需要家からの求めを通信回線を介して受け付ける受付部を備えていてもよい。
 このエネルギ利用システムによれば、熱、電力、材料のいずれかを望む需要家に対して、これらを供給することができる。
 第17観点に係る炭素含有材料の製造方法は、循環回路を循環する熱媒体を、再生可能エネルギまたは排熱により得られるエネルギを利用して加熱する工程と、加熱された熱媒体の熱を用いて電解液を加熱して電解還元を行う工程と、を含む。
 ここで、再生可能エネルギとしては、例えば、太陽光発電、風力発電、水力発電、バイオマス発電、地熱発電、潮汐発電、水素燃焼発電、および、アンモニア燃焼発電からなる群より選択される1種または2種以上により得られるエネルギであってよい。この再生可能エネルギは、電力会社が運用する主要な電力ネットワークを経て供給される電力等のようなエネルギと比較して、時間帯等に応じて得られるエネルギ量が一定でない不安定なものであってよい。
 ここで、排熱は、特に限定されず、例えば、火力発電所、原子力発電所、化学工場、精錬所、清掃工場、地熱、温泉水等において排出される熱を挙げることができる。
 この炭素含有材料の製造方法によれば、再生可能エネルギまたは排熱により得られるエネルギを利用して、熱媒体を加熱し、熱媒体の熱を用いて電解液を加熱することで電解還元を行う。これにより、二酸化炭素等の温室効果ガスの増大を招くようなエネルギの使用を抑制しつつ、電解液から還元された材料を得ることができる。
 例えば、二酸化炭素が供給された電解液を電解還元することにより二酸化炭素を削減させる場合には、電解還元に要する熱エネルギとして、二酸化炭素を排出してしまう工程を経て得られるエネルギではなく、再生可能エネルギまたは排熱により得られるエネルギを用いているために、二酸化炭素の削減を、二酸化炭素の排出を抑制しながら行うことが可能になる。
 第18観点に係る炭素含有材料の製造方法は、第17観点に係る炭素含有材料の製造方法において、熱媒体は、水である。水は、再生可能エネルギまたは排熱により得られるエネルギを利用してボイラにおいて加熱される。
 この炭素含有材料の製造方法によれば、ボイラによって水を加熱して得られる蒸気を用いて、電解液を加熱することができる。
 第19観点に係る炭素含有材料の製造方法は、第18観点に係る炭素含有材料の製造方法において、熱媒体の熱エネルギを膨張機において回収して発電する工程と、膨張機により発電された電力を利用して電解液に電圧を印加する工程と、をさらに含む。
 この炭素含有材料の製造方法によれば、蒸気の熱エネルギを膨張機において回収して、得られる電力を電解還元に利用することが可能になる。
 第20観点に係る炭素含有材料の製造方法は、第17観点から第19観点のいずれかに係る炭素含有材料の製造方法において、加熱された熱媒体の熱を用いて、貯留部に貯留している蓄熱媒体を加熱する。加熱された蓄熱媒体の熱を用いて、電解液を加熱する。
 この炭素含有材料の製造方法によれば、再生可能エネルギまたは排熱により得られるエネルギを蓄熱媒体に蓄熱させながら、電解液を加熱することが可能になる。
 第21観点に係る炭素含有材料の製造方法は、第17観点に係る炭素含有材料の製造方法において、再生可能エネルギにより発電された電力を利用して駆動されるヒートポンプサイクルにより熱媒体を加熱する工程と、ヒートポンプサイクルにより加熱された熱媒体の熱を貯蔵エネルギとして貯蔵する工程と、貯蔵エネルギを利用してヒートエンジンサイクルにより発電する工程と、貯蔵エネルギを利用して電解液を加熱し、ヒートエンジンサイクルにより発電された電力を利用して電解液に電圧を印加して電解還元を行う工程と、を含む。
 この炭素含有材料の製造方法によれば、再生可能エネルギにより発電された電力を利用してヒートポンプを駆動させるため、ヒートポンプを駆動させることに伴う環境負荷を低減させることができる。そして、ヒートポンプにより加熱された熱媒体の熱が貯蔵エネルギとして貯蔵される。このため、再生可能エネルギによる電力の供給が不安定なことがあっても、ヒートポンプにより加熱された熱媒体の熱を貯蔵エネルギとして貯蔵することで、不安定さを緩和させることができる。そして、貯蔵エネルギを熱エネルギとして利用して電解液を加熱し、貯蔵エネルギをヒートエンジンにより発電された電力エネルギとして利用して電解液に電圧を印加することで、電解液を電解還元して、炭素含有材料を得ることができる。ここで、電解液の加熱と電圧印加に用いられる貯蔵エネルギは、供給される再生可能エネルギそのものと比べて、ヒートポンプサイクルにより得られるエネルギとして貯蔵されているため、供給を安定化させることが可能である。このため、電解還元における温度と印加電圧の調整を良好に行うことが可能であり、電解還元を効率的に進めることが可能になる。また、貯蔵エネルギのうち、電解液の加熱に用いられるエネルギを差し引いた残りの少なくとも一部のエネルギを、電解還元において必要な電力として利用することが可能になる。そして、二酸化炭素が供給された電解液を電解還元することにより二酸化炭素を削減させる場合に、電解還元に要する熱エネルギおよび電力エネルギとして、二酸化炭素を排出してしまう工程を経て得られるエネルギではなく、再生可能エネルギを用いたヒートポンプサイクルを経て得られるエネルギを用いている。これにより、二酸化炭素の削減を、二酸化炭素の排出を抑制しながら行うことが可能になる。
 第22観点に係る炭素含有材料の製造方法は、第21観点に係る炭素含有材料の製造方法において、水を電気分解する工程を含む。当該水は、貯蔵エネルギの少なくとも一部を利用して加熱される。
 この炭素含有材料の製造方法によれば、貯蔵エネルギを利用して、水素または酸素を得ることが可能になる。
 第23観点に係る炭素含有材料の製造方法は、第21観点または第22観点に係る炭素含有材料の製造方法において、ヒートポンプサイクルの冷媒が排熱により加熱される工程をさらに含む。
 この炭素含有材料の製造方法によれば、環境負荷を低減させることができる。
 第24観点に係る炭素含有材料の製造方法は、第21観点から第23観点のいずれかに係る炭素含有材料の製造方法において、熱媒体が、砂または岩石と空気とを含む混合流体、および、溶融塩からなる群より選択される1種または2種以上である。
 この炭素含有材料の製造方法によれば、熱媒体の温度を高めて、高温の熱エネルギを貯蔵することが可能になる。
 第25観点に係る炭素含有材料の製造方法は、第21観点から第23観点のいずれかに係る炭素含有材料の製造方法において、熱媒体が、砂または岩石と空気とを含む混合流体、水、サーマルオイル、イオン液体、および、溶融塩からなる群より選択される1種または2種以上である。
 この炭素含有材料の製造方法によれば、ヒートポンプサイクルにより加熱された熱媒体の熱の損失を抑制することができる。
第1実施形態に係るエネルギ利用システムの概略構成図である。 第2実施形態に係るエネルギ利用システムの概略構成図である。 第3実施形態に係るエネルギ利用システムの概略構成図である。 他の実施形態Dに係るエネルギ利用システムの概略構成図である。 マイクログリッドシステムで用いられるネットワークの概略構成図である。
 以下、本実施形態に係るエネルギ利用システムおよび材料の製造方法について、例を挙げつつ説明する。
 (1)第1実施形態
 エネルギ利用システム1は、再生可能エネルギを利用して、熱エネルギと電力と有用物質を得てこれらを活用するシステムであって、図1に示すように、ヒートポンプ10と、ヒートエンジン20と、第1熱利用サイクル30と、第2熱利用サイクル40と、排ガス供給ライン50と、電解還元装置70と、を備えている。
 (1-1)ヒートポンプ
 ヒートポンプ10は、第1冷媒が充填された第1冷媒回路11を備えている。第1冷媒としては、例えば、二酸化炭素、アルゴン、空気等を用いることができる。第1冷媒回路11は、第1圧縮機12と、第1高温熱交換器13と、第1膨張機15と、第1低温熱交換器16と、中間熱交換器14と、を有している。第1圧縮機12は、吸入した第1冷媒を圧縮し、第1高温熱交換器13に送る。第1圧縮機12では、例えば、第1冷媒が二酸化炭素である場合には、臨界圧力を超える圧力となるまで加圧される。第1圧縮機12は、再生可能エネルギ供給部80を介して供給される再生可能エネルギが動力源として用いられる。なお、ヒートポンプ10の駆動制御には、再生可能エネルギ供給部80を介して供給される再生可能エネルギのみが動力源として用いられてもよいし、当該再生可能エネルギと電力会社から供給される電力との両方が駆動源として用いられてもよい。なお、再生可能エネルギと電力会社から供給される電力との両方が用いられる場合には、再生可能エネルギの電力の方が、電力会社から供給される電力よりも多く用いられることが好ましい。
 再生可能エネルギは、例えば、太陽光発電、風力発電、水力発電、バイオマス発電、地熱発電、潮汐発電、水素燃焼発電、アンモニア燃焼発電等により得られるエネルギであり、なかでも、比較的定常的に発電を行うことが可能であり、排出される二酸化炭素の量も抑制される観点から、太陽光発電、風力発電、地熱発電が好ましい。また、第1圧縮機12と第1膨張機15とは、駆動軸17を介して連結されている。第1圧縮機12には、第1膨張機15で回収された動力が駆動軸17を介して伝達され、第1圧縮機12の駆動力が補助される。第1高温熱交換器13は、第1高温熱交換器13を流れる第1冷媒と、第1熱利用サイクル30の第1高温利用熱交換部36を流れる第1熱媒体と、の間で互いに混ざり合うことなく熱交換を行わせることで、第1熱媒体を加熱し、第1冷媒を冷却させる。第1高温熱交換器13を通過した第1冷媒は、中間熱交換部14aに送られ、中間熱交換器14を流れる第1冷媒と、互いに混ざり合うことなく熱交換される。中間熱交換部14aを通過した第1冷媒は、第1膨張機15において減圧され、第1低温熱交換器16に送られる。なお、第1圧縮機12で圧縮され第1膨張機15で減圧されることで第1冷媒回路11を循環する第1冷媒の圧力は、例えば、第1冷媒が二酸化炭素である場合には2MPa以上30MPa以下である。第1圧縮機12で圧縮された第1冷媒の圧力は、例えば、25MPaであってもよい。また、第1膨張機15で減圧された第1冷媒の圧力は、例えば、3MPaでもよい。第1低温熱交換器16は、第1低温熱交換器16を流れる第1冷媒と、第2熱利用サイクル40の第2低温利用熱交換部43を流れる第2熱媒体と、の間で互いに混ざり合うことなく熱交換を行わせることで、第2熱媒体を冷却し、第1冷媒を加熱させる。第1低温熱交換器16を通過した第1冷媒は、中間熱交換器14に送られる。中間熱交換器14では、上述の通り、中間熱交換器14を流れる第1冷媒が、中間熱交換部14aを流れる第1冷媒により加熱される。中間熱交換器14を通過した第1冷媒は、第1圧縮機12に吸入される。
 (1-2)ヒートエンジン
 ヒートエンジン20は、第2冷媒が充填された第2冷媒回路21を備えている。第2冷媒としては、例えば、二酸化炭素、水、アルゴン、空気等を用いることができる。第2冷媒回路21は、第2圧縮機22と、第2高温熱交換部23と、第2膨張機24と、インジェクション流路25と、第2低温熱交換器26と、を有している。第2圧縮機22は、吸入した第2冷媒を圧縮し、第2高温熱交換部23に送る。第2圧縮機22では、例えば、第2冷媒が二酸化炭素である場合には、臨界圧力を超える圧力となるまで加圧される。第2高温熱交換部23は、第2高温熱交換部23を流れる第2冷媒と、第1熱利用サイクル30の第1低温利用熱交換器34を流れる第1熱媒体と、の間で互いに混ざり合うことなく熱交換を行わせることで、第2冷媒を加熱し、第1熱媒体を冷却させる。第2高温熱交換部23を通過した第2冷媒は、第2膨張機24に送られる。第2膨張機24に送られた第2冷媒は、中間圧力まで減圧され、一部が、分岐して第2圧縮機22に吸入され、残りの一部が低圧まで減圧され、第2低温熱交換器26に送られる。なお、第2膨張機24は、第2冷媒を減圧する際に回収されるエネルギを用いて発電を行う。この第2膨張機24で発電された電力は、ヒートポンプ10の第1圧縮機12の動力源、電解還元装置70で印加する電圧のための電源等として用いることができる。なお、第2膨張機24は、第2圧縮機22に対して動力を伝達させるために、駆動軸を介して第2圧縮機22と連結されていてもよい。第2低温熱交換器26は、第2低温熱交換器26を流れる第2冷媒と、冷熱貯蔵タンクから供給されて冷却流路91を流れる流体と、の間で互いに混ざり合うことなく熱交換を行わせることで、当該流体を加熱し、第2冷媒を冷却させる。なお、当該流体は、特に限定されず、例えば、第2熱利用サイクル40の第2高温タンク48に貯留されている第2熱媒体であってもよい。第2低温熱交換器26を通過した第2冷媒は、第2圧縮機22に送られる。なお、第2圧縮機22には、中間圧力部分に向けて、第2膨張機24で減圧された第2冷媒がインジェクションされる。
 (1-3)第1熱利用サイクル
 第1熱利用サイクル30は、第1熱媒体が充填された第1熱利用回路31を備えている。第1熱媒体としては、例えば、砂または岩石と空気とを含む混合流体、溶融塩等を用いることができる。第1熱利用回路31は、第1熱媒体ポンプ32と、電解還元温調部33と、第1低温利用熱交換器34と、第1低温タンク35と、第1高温利用熱交換部36と、第1高温タンク37と、を有している。第1熱媒体ポンプ32は、第1熱媒体を第1熱利用サイクル30に循環させる流れを生じさせる。第1熱媒体ポンプ32を通過した第1熱媒体は、電解還元温調部33に送られる。電解還元温調部33に送られた第1熱媒体は、電解還元される電解液を加熱等して、電解液の温度を調整する。電解還元温調部33を通過した第1熱媒体は、第1低温利用熱交換器34に送られる。第1低温利用熱交換器34は、第1低温利用熱交換器34を流れる第1熱媒体と、ヒートエンジン20の第2高温熱交換部23を流れる第2冷媒と、の間で互いに混ざり合うことなく熱交換を行わせることで、第1熱媒体を冷却し、第2冷媒を加熱させる。第1低温利用熱交換器34を通過した第1熱媒体は、第1低温タンク35に送られる。第1低温タンク35に貯留される第1熱媒体の温度は、200℃以上であり、250℃以上350℃以下であることが好ましく、例えば、300℃である。第1低温タンク35を通過した第1熱媒体は、第1高温利用熱交換部36に送られる。第1高温利用熱交換部36を流れる第1熱媒体は、ヒートポンプ10の第1高温熱交換器13を流れる第1冷媒と熱交換し、加熱される。第1高温利用熱交換部36を通過した第1熱媒体は、第1高温タンク37に送られる。第1高温タンク37に貯留される第1熱媒体の温度は、200℃以上であり、500℃以上700℃以下であることが好ましく、例えば、600℃である。第1高温タンク37を通過した第1熱媒体は、第1熱媒体ポンプ32に送られる。なお、第1低温タンク35と第1高温タンク37とは、いずれも断熱材によって周囲から覆われていることが好ましい。
 (1-4)第2熱利用サイクル
 第2熱利用サイクル40は、第2熱媒体が充填された第2熱利用回路41を備えている。第2熱媒体としては、例えば、エチレングリコール等の不凍液または水等を用いることができる。第2熱利用回路41は、第2熱媒体ポンプ42と、第2低温利用熱交換部43と、第2低温タンク44と、冷熱利用部45と、第2高温利用熱交換器46と、温熱利用部47と、第2高温タンク48と、を有している。第2熱媒体ポンプ42は、第2熱媒体を第2熱利用サイクル40に循環させる流れを生じさせる。第2熱媒体ポンプ42を通過した第2熱媒体は、第2低温利用熱交換部43に送られる。第2低温利用熱交換部43に送られた第2熱媒体は、第1低温熱交換器16を流れる第1冷媒との間で互いに混ざり合うことなく熱交換することで、冷却される。第2低温利用熱交換部43を通過した第2熱媒体は、第2低温タンク44に送られる。第2低温タンク44に貯留される第2熱媒体の温度は、例えば、0℃以上5℃以下であり、0℃であることが好ましい。第2低温タンク44を通過した第2熱媒体は、冷熱利用部45に送られる。冷熱利用部45は、排ガスに含まれる二酸化炭素を回収するために回収タンク55の成長槽55aを冷却する。具体的には、回収タンク55の成長槽55aは、冷却されることにより、二酸化炭素をハイドレートの形で固定化させるための氷成長タンクとして機能する。冷熱利用部45において回収タンク55の成長槽55aを冷却した第2熱媒体は、第2高温利用熱交換器46に送られる。第2高温利用熱交換器46は、第2高温利用熱交換器46を流れる第2熱媒体と、排ガス供給ライン50の排ガス冷却部52を流れる排ガスと、の間で互いに混ざり合うことなく熱交換を行い、第2熱媒体は加熱され、排ガスは冷却される。第2高温利用熱交換器46を通過した第2熱媒体は、温熱利用部47に送られる。温熱利用部47は、成長した二酸化炭素ハイドレート93を気化させるために気化タンク57の気化槽57aを温める。温熱利用部47を通過した第2熱媒体は、第2高温タンク48に送られる。第2高温タンク48に貯留される第2熱媒体の温度は、例えば、30℃以上70℃以下であり、50℃であってよい。第2高温タンク48の第2熱媒体は、再度、第2熱媒体ポンプ42に送られる。
 (1-5)排ガス供給ライン
 排ガス供給ライン50は、工場等で用いられた燃焼ガス等の高温で二酸化炭素を多く含む排ガスを対象として、二酸化炭素の回収と排熱の回収を行うための流路である排ガス流路51を備えている。ここで用いられる排ガスは、例えば、0.05MPa以上0.3MPa以下で40℃以上80℃以下のガスであってもよく、0.1MPaで60℃のガスであってもよい。排ガス流路51は、排ガス冷却部52と、排ガス圧縮機53と、発電機54と、回収タンク55と、ハイドレート供給路56と、気化タンク57と、ガス供給路58と、を有している。排ガス冷却部52を流れる排ガスは、第2熱利用サイクル40の第2高温利用熱交換器46を流れる第2熱媒体との間で互いに混ざり合うことなく熱交換することで、冷却され、排ガス圧縮機53に送られる。排ガス圧縮機53は、排ガスを圧縮し、氷成長タンクとしての回収タンク55の成長槽55aに供給する。なお、排ガス圧縮機53で圧縮されて回収タンク55の成長槽55aに供給された排ガスの圧力は、例えば、1.0MPa以上2.0MPa以下であってよく、1.5MPaであってよい。回収タンク55の成長槽55aでハイドレートとなることなく溢れた排ガスは、発電機54に送られる。発電機54では、エネルギが回収され、発電されることで、電力が得られる。この発電機54で発電された電力は、ヒートポンプ10の第1圧縮機12の動力源、電解還元装置70で印加する電圧のための電源等として用いることができる。ハイドレート供給路56は、回収タンク55の成長槽55aにおいて成長した二酸化炭素ハイドレート93を、気化タンク57の気化槽57aに送るための流路である。ハイドレート供給路56は、開閉弁56aを有しており、開閉弁56aが開状態の場合に二酸化炭素ハイドレート93を回収タンク55から気化タンク57に送る。気化タンク57の気化槽57aで暖められた二酸化炭素ハイドレート93は、気化することで、二酸化炭素ガスとなる。なお、気化タンク57の気化槽57aにおける排ガスの圧力は、例えば、0.1MPa以上0.3MPa以下であってよく、0.2MPaであってよい。この二酸化炭素ガスは、ガス供給路58を介して、電解還元装置70の電解槽71に送られる。なお、ガス供給路58は、開閉弁58aを有しており、開閉弁58aが開状態の場合に二酸化炭素ガスを通過させる。
 (1-6)電解還元装置
 電解還元装置70は、電解液を電解還元することにより、炭素含有材料と、酸素と、を得る装置である。電解還元装置70は、電解液が充填された電解槽71を有している。電解液は、電解還元により得ようとする有用物質の種類に応じたものを用いることができる。このような電解液としては、例えば、炭酸イオン、二酸化炭素、水、および、窒素からなる群より選択される1種または2種以上を含むものであることが好ましい。電解液は、より具体的には、例えば、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属ハロゲン化物の硝酸塩、アルカリ土類金属ハロゲン化物の硝酸塩、アルカリ金属ハロゲン化物の炭酸塩、アルカリ土類金属ハロゲン化物の炭酸塩、アルカリ土類金属ハロゲン化物の水酸化物、アルカリ金属ハロゲン化物の四フッ化ホウ酸塩、アルカリ土類金属ハロゲン化物の四フッ化ホウ酸塩、アルカリ金属ハロゲン化物の六フッ化リン酸塩、アルカリ土類金属ハロゲン化物の六フッ化リン酸塩、アルカリ金属ハロゲン化物の六フッ化砒酸塩、アルカリ土類金属ハロゲン化物の六フッ化砒酸塩、アルカリ金属ハロゲン化物の酸化物、アルカリ土類金属ハロゲン化物の酸化物、パーフルオロイオン液体等を含むものとすることができる。より具体的には、電解液は、LiNO3、NaNO3、KNO3、Li2CO3、LiOH、LiBF4、LiPF6、LiAsF6等を含むものとすることができる。そして、この電解液には、ガス供給路58を介して供給される二酸化炭素ガスが供給される。なお、この電解液は、二酸化炭素ガスが溶け込んだものであってもよいし、炭酸イオンを有するものとなっていてもよいし、二酸化炭素ガスが溶け込みつつ炭酸イオンを有するものとなっていてもよい。この電解槽71の電解液は、第1熱利用サイクル30の電解還元温調部33により加熱されるため、電解還元の効率を高めることが可能になる。さらに、この電解槽71の電解液は、陰極と陽極が接しており、これらの間に電圧が印加されることにより、電解還元が行われる。なお、ここでの電解還元の電圧印加に用いられる電力は、第2膨張機24や発電機54により得られた電力であることが好ましい。これにより、陰極では還元された有用材料である炭素含有材料が析出し、陽極では酸化された酸素ガスが生じる。酸素ガスは、開閉弁72aの設けられた酸素回収路72を経て回収される。なお、炭素含有材料は、特に限定されず、電解液や電極材料等の諸条件を変更させることで、例えば、一酸化炭素、金属カーバイド、有機化合物、ダイヤモンド、グラファイト、グラッシーカーボン、アモルファスカーボン、カーボンナノチューブ、カーボンナノホーン、および、グラフェンからなる群より選択される1種または2種以上を得ることができる。なお、ここでの有機化合物としては、例えば、メタン、メタノール、エタン、エチレン、アセチレン、エタノール、ギ酸、ホルムアルデヒド、シュウ酸、酢酸、プロパン、プロピレン、プロパノール、ブタン、ブテン、ブタノール、アセトン、ベンゼン、トルエン、および、キシレンからなる群より選択される1種または2種以上が挙げられる。
 (1-7)第1実施形態の特徴
 上記エネルギ利用システム1によれば、ヒートポンプ10が、再生可能エネルギにより駆動される。この再生可能エネルギは、一般的な電力会社より提供される電力と比較して、時間帯等に応じて得られる電力が一定でなく、供給量が不安定になるおそれがある。しかし、ヒートポンプ10が、再生可能エネルギを、第1熱利用サイクル30において蓄える熱および第2熱利用サイクル40において蓄える冷熱に変換することで、再生可能エネルギを十分に有効利用することが可能になっている。
 また、エネルギ利用システム1によれば、ヒートポンプ10が第1熱利用サイクル30に蓄えた熱を、第2冷媒の加熱に用いることで、第2膨張機24において動力回収することで発電することが可能になっている。そして、第2膨張機24で得られた電力を、電解還元装置70における電圧印加において用いることが可能になっている。
 また、エネルギ利用システム1によれば、ヒートポンプ10が第1熱利用サイクル30に蓄えた熱を、電解還元装置70の電解液の加熱に用いることで、電解還元を効率化させることが可能になっている。
 しかも、電解還元装置70では、排ガスに由来する二酸化炭素を用いて有用材料を得ることが可能になっている。
 以上により、排ガスによる環境負荷を低減させつつ、再生可能エネルギを有効利用しつつ、排ガスに由来する有用物質を効率的に得ることが可能になっている。
 (2)第2実施形態
 上記第1実施形態のエネルギ利用システム1では、電解還元装置が1つだけ用いられている場合を例に挙げて説明した。
 これに対して、エネルギ利用システムとしては、例えば、図2に示すように、電解還元装置が2つ用いられ、互いに種類の異なる電解液が電解還元されるエネルギ利用システム1aであってもよい。
 以下では、第2実施形態のエネルギ利用システム1aについて、第1実施形態のエネルギ利用システム1とは異なるところを中心に説明する。
 エネルギ利用システム1aは、再生可能エネルギと排熱エネルギを利用して、熱エネルギと電力と有用物質を得てこれらを活用するシステムであって、図2に示すように、ヒートポンプ10aと、ヒートエンジン20aと、熱利用サイクル30aと、排ガス供給ライン50xと、第1電解還元装置70xと、第2電解還元装置70yと、を備えている。
 (2-1)ヒートポンプ
 ヒートポンプ10aは、第1冷媒が充填された第1冷媒回路11aを備えている。第1冷媒としては、例えば、R1233zd(E)、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R32、R410a、R245fa、水、二酸化炭素等を用いることができる。第1冷媒回路11aは、第1圧縮機12と、第1高温熱交換器13と、膨張弁15xと、第1低温熱交換器16と、中間熱交換器14と、を有している。なお、上記第1実施形態における駆動軸17は設けられておらず、膨張弁15xでは動力回収は行われない。第1低温熱交換器16では、第1低温熱交換器16を流れる第1冷媒と、排ガス供給ライン50xを流れる排ガスと、の間で熱交換を行わせ、第1冷媒を加熱し、排ガスを冷却させる。なお、排ガス供給ライン50xは、工場等で用いられた燃焼ガス等の80℃等の高温で二酸化炭素を多く含む排ガスが用いられる。
 (2-2)ヒートエンジン
 ヒートエンジン20aは、第2冷媒が充填された第2冷媒回路21aを備えている。第2冷媒としては、例えば、R1233zd(E)、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R32、R410a、R245fa、水、二酸化炭素等を用いることができる。第2冷媒回路21aは、第2ポンプ22xと、第2高温熱交換部23と、第2膨張機24と、第2低温熱交換器26と、第2中間熱交換器28と、を有している。第2ポンプ22xは、第2冷媒回路21aにおける第2冷媒の流れを形成する。第2中間熱交換器28では、第2中間熱交換器28を流れる第2冷媒と、第2ポンプ22xから第2高温熱交換部23に向かう第2中間熱交換部28aを流れる第2冷媒と、の間で互いに混ざり合わせることなく熱交換を行わせる。第2低温熱交換器26は、第2低温熱交換器26を流れる第2冷媒と、屋外から供給され空気通過部92を流れる空気と、の間で熱交換を行わせる。なお、第2冷媒回路21aは、上記第1実施形態における第2圧縮機22およびインジェクション流路25は設けられていない。
 (2-3)熱利用サイクル
 熱利用サイクル30aは、熱媒体が充填された熱利用回路31aを備えている。当該熱媒体としては、例えば、砂または岩石と空気とを含む混合流体、水、サーマルオイル、イオン液体、溶融塩等を用いることができる。熱利用回路31aは、熱媒体ポンプ32aと、第1電解還元温調部33xと、第2電解還元温調部33yと、低温利用熱交換器34aと、加圧ライン38と、低温タンク35aと、高温利用熱交換部36aと、高温タンク37aと、を有している。熱媒体ポンプ32aは、熱媒体を熱利用サイクル30aに循環させる流れを生じさせる。熱媒体ポンプ32aを通過した熱媒体は、第1電解還元温調部33xに送られる。第1電解還元温調部33xに送られた熱媒体は、第1電解還元装置70xにおいて電解還元される電解液を加熱等して、電解液の温度を調整する。第1電解還元温調部33xを通過した熱媒体は、第2電解還元温調部33yに送られる。第2電解還元温調部33yに送られた熱媒体は、第2電解還元装置70yにおいて電解還元される電解液を加熱等して、電解液の温度を調整する。第2電解還元温調部33yを通過した熱媒体は、低温利用熱交換器34aに送られる。なお、第2電解還元温調部33yと低温利用熱交換器34aとの間には、当該熱媒体を熱利用回路31a内に加圧注入させる加圧ライン38が接続されている。加圧ライン38には、開閉制御可能な開閉弁38aが設けられている。加圧ライン38によって熱利用回路31a内を循環する熱媒体が加圧されることにより、高温下においても熱媒体が気化することが抑制される。例えば、熱媒体として水を用いる場合においては、100℃を超えても気化することが抑制される。低温利用熱交換器34aは、低温利用熱交換器34aを流れる熱媒体と、ヒートエンジン20の第2高温熱交換部23を流れる第2冷媒と、の間で互いに混ざり合うことなく熱交換を行わせることで、熱媒体を加熱し、第2冷媒を冷却させる。低温利用熱交換器34aを通過した熱媒体は、低温タンク35aに送られる。低温タンク35aに貯留される熱媒体の温度は、80℃以上100℃未満であり、例えば、90℃である。低温タンク35aを通過した熱媒体は、高温利用熱交換部36aに送られる。高温利用熱交換部36aを流れる熱媒体は、ヒートポンプ10の第1高温熱交換器13を流れる第1冷媒との間で互いに混ざり合うことなく熱交換し、加熱される。高温利用熱交換部36aを通過した熱媒体は、高温タンク37aに送られる。高温タンク37aに貯留される熱媒体の温度は、100℃以上200℃以下であり、例えば、120℃である。高温タンク37aを通過した熱媒体は、熱媒体ポンプ32aに送られる。なお、低温タンク35aと高温タンク37aとは、いずれも断熱材によって周囲から覆われていることが好ましい。
 (2-4)第1電解還元装置
 第1電解還元装置70xは、電解液を電解還元することにより、炭素含有材料と、酸素と、を得る装置である。第1電解還元装置70xは、電解液が充填された電解槽71xを有している。電解液は、電解還元により得ようとする有用物質の種類に応じたものを用いることができ、例えば、イミダゾリウム系イオン液体、芳香族系イオン液体、ピロリジニウム系イオン液体、アンモニウム系イオン液体、ピペリジニウム系イオン液体、および、四級ホスホニウム系イオン液体からなる群より選択される1種または2種以上とすることができる。そして、この電解槽71xには、第1供給路73を介して二酸化炭素ガスが供給される。なお、この電解液は、二酸化炭素ガスが溶け込んだものであってもよいし、炭酸イオンを有するものとなっていてもよいし、二酸化炭素ガスが溶け込みつつ炭酸イオンを有するものとなっていてもよい。なお、第1供給路73には、開閉制御可能な開閉弁73aが設けられている。また、第1供給路73に供給されるガスは、工場等の排ガスに含まれる二酸化炭素であることが好ましく、二酸化炭素ガスを含む排ガスであってもよい。この電解槽71xの電解液は、熱利用サイクル30aの第1電解還元温調部33xにより加熱されるため、電解還元の効率を高めることが可能になる。さらに、この電解槽71xの電解液は、陰極と陽極が接しており、これらの間に電圧が印加されることにより、電解還元が行われる。なお、ここでの電解還元の電圧印加に用いられる電力は、第2膨張機24により得られた電力であることが好ましい。これにより、陰極では還元された有用材料である炭素含有材料が析出し、陽極では酸化された酸素ガスが生じる。酸素ガスは、開閉弁72aの設けられた酸素回収路72を経て回収される。なお、炭素含有材料は、特に限定されず、電解液や電極材料等の諸条件を変更させることで、例えば、一酸化炭素、金属カーバイド、有機化合物、ダイヤモンド、グラファイト、グラッシーカーボン、アモルファスカーボン、カーボンナノチューブ、カーボンナノホーン、および、グラフェンからなる群より選択される1種または2種以上を得ることができる。なお、ここでの有機化合物としては、例えば、メタン、メタノール、エタン、エチレン、アセチレン、エタノール、ギ酸、ホルムアルデヒド、シュウ酸、酢酸、プロパン、プロピレン、プロパノール、ブタン、ブテン、ブタノール、アセトン、ベンゼン、トルエン、および、キシレンからなる群より選択される1種または2種以上が挙げられる。
 (2-5)第2電解還元装置
 第2電解還元装置70yは、水を電解還元することにより、水素と酸素を得る装置である。第2電解還元装置70yは、水が充填された電解槽71yを有している。そして、この電解槽71yには、第2供給路74を介して水が供給される。なお、第2供給路74には、開閉制御可能な開閉弁74aが設けられている。この電解槽71yの電解液は、熱利用サイクル30aの第2電解還元温調部33yにより加熱されるため、電解還元の効率を高めることが可能になる。さらに、この電解槽71yの電解液は、陰極と陽極が接しており、これらの間に電圧が印加されることにより、電解還元が行われる。なお、ここでの電解還元の電圧印加に用いられる電力は、第2膨張機24により得られた電力であることが好ましい。これにより、陰極では還元された水素ガスが生じ、陽極では酸化された酸素ガスが生じる。水素ガスは、開閉弁76aの設けられた水素回収路76を経て回収される。酸素ガスは、開閉弁75aの設けられた酸素回収路75を経て回収される。
 (2-6)第2実施形態の特徴
 上記エネルギ利用システム1aにおいても、第1実施形態のエネルギ利用システム1と同様に、ヒートポンプ10aが再生可能エネルギを熱利用サイクル30aにおいて蓄えられる熱に変換することで、再生可能エネルギを十分に有効利用することが可能になっている。
 また、エネルギ利用システム1aによれば、ヒートポンプ10aが熱利用サイクル30aに蓄えた熱を、第2冷媒の加熱に用いることで、第2膨張機24において動力回収することで発電することが可能になっている。そして、第2膨張機24で得られた電力を、第1電解還元装置70xと第2電解還元装置70yにおける電圧印加において用いることが可能になっている。
 また、エネルギ利用システム1aによれば、ヒートポンプ10aが熱利用サイクル30aに蓄えた熱を、第1電解還元装置70xと第2電解還元装置70yの電解液の加熱に用いることで、電解還元を効率化させることが可能になっている。
 しかも、第1電解還元装置70xでは、排ガスに由来する二酸化炭素を用いて有用材料を得ることが可能になっている。また、第2電解還元装置70yでは、水素と酸素を得ることが可能になっている。
 以上により、排ガスによる環境負荷を低減させつつ、再生可能エネルギを有効利用しつつ、排ガスに由来する有用物質や他のガス等を効率的に得ることが可能になっている。
 (3)第3実施形態
 エネルギ利用システム201は、再生可能エネルギまたは排熱を利用して、有用物質を得てこれらを活用するシステムであって、図3に示すように、循環回路230を備えている。循環回路230は、ポンプ232と、排熱ボイラ236と、電解還元装置70と、発電機220と、凝縮器235と、これらを接続する循環流路231と、を備えている。循環回路230は、内部に水が充填されている。循環回路230では、水が、液体状態と蒸気状態とに相変化しながら循環する。
 (3-1)ポンプ
 ポンプ232は、凝縮器235において凝縮することで液化した水を吸い込んで、排熱ボイラ236の水流路236aに向けて送り出す。ここで、ポンプ232が吸い込む水の温度は、例えば、30℃以上70℃以下であってよく、50℃であることが好ましい。ポンプ232が吸い込む水の圧力は、例えば、0.01MPa以上0.1MPa以下であってよく、0.02MPa以上0.03MPa以下であることが好ましい。なお、大気圧は0.1MPaである。
 ポンプ232による水の流量は、例えば、0.3kg/s以上0.8kg/s以下であってよく、0.45kg/s以上0.65kg/s以下であることが好ましい。
 なお、ポンプ232の駆動源は、特に限定されず、例えば、発電機220において得られる電気エネルギを駆動源として用いてもよいし、再生可能エネルギを用いてもよい。
 (3-2)排熱ボイラ
 排熱ボイラ236は、ポンプ232から送り出されて循環回路230を流れてきた水と、排ガスと、の間で互いに混ざり合うことなく熱交換を行わせ、水を蒸気に変える。排熱ボイラ236は、水が流れる水流路236aと、排ガスが流れる排ガス流路280aと、を互いに熱交換が可能となるように有している。なお、本実施形態では、より高温の蒸気を取り出すことができるように、水と排ガスとは互いに対向する方向に流れている。
 ここで、排ガス流路280aに流入する排ガスの温度は、例えば、700℃以上900℃以下であってよく、800℃であることが好ましい。排ガス流路280aは、排ガスが流れる排ガス管280のうち、排熱ボイラ236の内部を流れる流路である。排ガス管280は、例えば、火力発電所、原子力発電所、化学工場、精錬所、清掃工場等において排出される高温の排ガスを排熱ボイラ236に導く管である。排ガス流量は、例えば、2.5kg/s以上3.5kg/s以下であってよい。なお、排ガス流路280aを通過した排ガスの温度は、例えば、100℃以上250℃以下である。
 水流路236aに流入する水は、排ガス流路280aを流れる排ガスの熱によって加熱され、蒸気となる。水流路236aを流れ出る蒸気の温度は、例えば、500℃以上800℃以下であってよく、630℃以上670℃以下であることが好ましい。また、水流路236aを流れ出る蒸気の圧力は、例えば、0.6MPa以上1.5MPa以下であってよく、0.7MPa以上1.2MPa以下であることが好ましい。なお、排熱ボイラ236は、過冷却状態の水が流れる過冷却熱交換部と、気液二相状態の水が流れる気液共存熱交換部と、過熱状態の水が流れる過熱熱交換部と、が連結されて構成されている。これらの過冷却熱交換部と気液共存熱交換部と過熱熱交換部の長さは、水が蒸発する温度の目標値に基づいて概ね設計される。そして、ポンプ232の流量と排ガス管280を流れる排ガスの流量を制御する図示しない流量調節手段とのいずれかまたは両方を制御することにより、水流路236aを流れる水の蒸気の温度が目標値となるように制御される。
 排熱ボイラ236の水流路236aを通過した蒸気は、電解還元装置70の熱貯蔵タンク233xの内部を通過する蓄熱流路233に送られる。
 (3-3)電解還元装置
 電解還元装置70は、上記第1実施形態と同様に、電解液を電解還元することにより、炭素含有材料と、酸素と、を得る装置である。電解還元装置70は、電解液が充填された電解槽71を有している。電解液は、電解還元により得ようとする有用物質の種類に応じたものを用いることができる。このような電解液としては、例えば、炭酸イオン、二酸化炭素、水、および、窒素からなる群より選択される1種または2種以上を含むものであることが好ましい。電解液は、より具体的には、例えば、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属ハロゲン化物の硝酸塩、アルカリ土類金属ハロゲン化物の硝酸塩、アルカリ金属ハロゲン化物の炭酸塩、アルカリ土類金属ハロゲン化物の炭酸塩、アルカリ土類金属ハロゲン化物の水酸化物、アルカリ金属ハロゲン化物の四フッ化ホウ酸塩、アルカリ土類金属ハロゲン化物の四フッ化ホウ酸塩、アルカリ金属ハロゲン化物の六フッ化リン酸塩、アルカリ土類金属ハロゲン化物の六フッ化リン酸塩、アルカリ金属ハロゲン化物の六フッ化砒酸塩、アルカリ土類金属ハロゲン化物の六フッ化砒酸塩、アルカリ金属ハロゲン化物の酸化物、アルカリ土類金属ハロゲン化物の酸化物、パーフルオロイオン液体等を含むものとすることができる。より具体的には、電解液は、LiNO3、NaNO3、KNO3、Li2CO3、LiOH、LiBF4、LiPF6、LiAsF6等を含むものとすることができる。そして、この電解液には、ガス供給路58を介して供給される二酸化炭素ガスが供給される。なお、この電解液は、二酸化炭素ガスが溶け込んだものであってもよいし、炭酸イオンを有するものとなっていてもよいし、二酸化炭素ガスが溶け込みつつ炭酸イオンを有するものとなっていてもよい。なお、二酸化炭素ガスの電解槽71への供給方法については、特に限定されず、例えば、工場等で用いられた燃焼ガス等の二酸化炭素を多く含むガスを用いてもよいし、上記実施形態における排ガス供給ライン50と同様の構成を用いてもよい。
 電解還元装置70は、電解槽71を周囲から覆う熱貯蔵タンク233xを有している。熱貯蔵タンク233xの内部には、蓄熱媒体が充填されている。この電解槽71の電解液は、熱貯蔵タンク233xに充填されている蓄熱媒体の熱によって加熱される。これにより、電解還元の効率を高めることが可能になる。熱貯蔵タンク233xは、図示しない断熱材によって周囲から覆われていることが好ましい。熱貯蔵タンク233xの内部には、蓄熱媒体と混ざり合わないように蒸気が流れる蓄熱流路233が設けられている。熱貯蔵タンク233xの蓄熱媒体は、蓄熱流路233を流れる蒸気の熱によって加熱される。熱貯蔵タンク233xには、十分な量の蓄熱媒体が充填されており、蓄熱流路233を流れる蒸気から得た熱を長時間保持する。これにより、電解槽71の電解液の温度が長時間同程度に維持される。
 電解槽71の電解液は、陰極と陽極が接しており、これらの間に電圧が印加されることにより、電解還元が行われる。電解還元の電圧印加に用いられる電力は、発電機220により得られた電力が用いられる。これにより、陰極では還元された有用材料である炭素含有材料が析出し、陽極では酸化された酸素ガスが生じる。酸素ガスは、開閉弁72aの設けられた酸素回収路72を経て回収される。なお、炭素含有材料は、特に限定されず、電解液や電極材料等の諸条件を変更させることで、例えば、一酸化炭素、金属カーバイド、有機化合物、ダイヤモンド、グラファイト、グラッシーカーボン、アモルファスカーボン、カーボンナノチューブ、カーボンナノホーン、および、グラフェンからなる群より選択される1種または2種以上を得ることができる。
 電解還元装置70の蓄熱流路233を通過した蒸気の温度は、例えば、400℃以上750℃以下であってよく、600℃以上660℃以下であることが好ましい。また、電解還元装置70の蓄熱流路233を通過した蒸気の圧力は、例えば、0.5MPa以上0.1.2MPa以下であってよく、0.6MPa以上0.9MPa以下であることが好ましい。
 電解還元装置70の蓄熱流路233を通過した蒸気は、発電機220に送られる。
 (3-4)発電機
 発電機220は、電解還元装置70の蓄熱流路233を通過した蒸気が流入して通過する際に回転駆動する膨張機234を有している。発電機220は、膨張機234において蒸気が減圧される際に膨張機234が回収するエネルギを用いて発電を行う。具体的には、膨張機234において蒸気を減圧させる際に回転駆動が生じることで、発電が行われる。
 発電機220で得られた電気エネルギは、電解還元装置70における印加電圧の電源として使用される。
 膨張機234を通過した蒸気の温度は、例えば、30℃以上70℃以下であってよく、50℃であることが好ましい。また、膨張機234を通過した蒸気の圧力は、例えば、0.01MPa以上0.1MPa以下であってよく、0.02MPa以上0.03MPa以下であることが好ましい。
 膨張機234を通過した蒸気は、凝縮器235に送られる。
 (3-5)凝縮器
 凝縮器235では、外部の冷熱源から供給される冷却媒体によって蒸気が冷却され、蒸気が凝縮する。
 凝縮器235は、蒸気や水と混ざり合うことなく蒸気や水と熱交換を行う冷却媒体が流れる冷却媒体流路295aを有している。冷却媒体管295は、冷熱源から冷却媒体を凝縮器235に導く管である。冷却媒体流路295aは、冷却媒体管295の一部を構成している。冷熱源としては特に限定されないが、例えば、水であってもよいし、冷媒であってもよい。冷却媒体流路295aを流れ出る冷却媒体の熱は、例えば、温泉や温水プールでの温水を得るために用いてもよい。
 凝縮器235を通過した水は、ポンプ232に取り込まれる。
 (3-6)第3実施形態の特徴
 第3実施形態のエネルギ利用システム201によれば、循環回路230を循環する水が、排熱ボイラ236に供給される排ガスの有する熱を用いて加熱される。そして、排熱ボイラ236において加熱された高温蒸気によって、電解還元装置70の熱貯蔵タンク233xにおける蓄熱媒体が加熱される。このため、電解還元装置70の電解槽71における電解液が加熱され、電解還元を効率的に行うことが可能になる。これにより、電解液を電解還元するための熱エネルギを、火力発電等によって不要になった排ガス等の熱エネルギを用いて確保することができるため、排ガスの熱エネルギを有効利用することができ、電解還元に必要な熱エネルギを新たに得る必要がない。
 また、発電機220では、蒸気が有する熱エネルギを回収して、電気エネルギを得ている。このため、排ガスから蒸気が得た熱エネルギのうち、電解液を加熱するための蓄熱媒体の加熱に用いられなかった熱エネルギを回収し、電気エネルギを得ることが可能になる。そして、電解還元装置70における電解液への電圧印加は、発電機220で得られた電気エネルギを用いて行われる。
 これにより、電解還元を行うために必要な熱エネルギと電気エネルギを新たに得る必要がないため、新たに二酸化炭素を排出してしまうことを抑制しつつ、炭素等の有用材料と酸素を得ることが可能になる。
 (4)他の実施形態
 (4-1)他の実施形態A
 上記実施形態では、二酸化炭素または炭酸イオンを含んだ電解液を電解還元する場合について例に挙げて説明した。
 これに対して、電解液には、水や窒素等を単独でまたは追加で含まれていてもよい。
 二酸化炭素に加えて水が電解液に含まれている場合には、電解還元により各種有機化合物を得ることが可能になる。また、窒素が電解液にさらに含まれている場合には、アミン等を得ることも可能になる。
 また、水が含まれておらず窒素のみが含まれた電解液では、窒化炭素を得ることも可能になる。このような窒化炭素としては、六方晶窒化炭素(β-C);グラファイト状窒化炭素(g-C);(C59N)、C58、C57、C4812等のアザフラーレン;C60(CN)2n(ここでnは1~9)で示されるシアノフラーレン;NCCN、CNCN等のシアノゲン等が挙げられる。
 (4-2)他の実施形態B
 上記第2実施形態では、炭素を含む化合物と水素と酸素が得られる場合を例に挙げて説明した。
 ここで、第1電解還元装置70xにおける電解還元によって、炭素を含む化合物として一酸化炭素が得られるように電解液と電極を変更してもよい。この場合には、第1電解還元装置70xから一酸化炭素が得られ、第2電解還元装置70yから水素と酸素が得られる。これにより、これら一酸化炭素と水素と酸素を用いることにより、様々な種類の有機化合物の合成を容易に行うことが可能になる。
 (4-3)他の実施形態C
 上記第1実施形態では、ヒートポンプ10の第1低温熱交換器16において得られる冷熱を用いて、二酸化炭素ハイドレートを得る場合を例に挙げて説明した。
 これに対して、ヒートポンプ10の第1低温熱交換器16において得られる冷熱の用い方は、特に限定されず、冷却保存されるべき物を冷やすための冷蔵庫、対象空間の温度を低下させる冷房運転が可能な空調装置、または、冷却対象の冷却に用いられる水等のブラインの冷却等において用いられてもよい。
 (4-4)他の実施形態D
 上記第1実施形態では、再生可能エネルギをヒートポンプ10において熱エネルギに変換させて蓄えるために、第1圧縮機12から吐出された第1冷媒を、第1高温熱交換器13において放熱させることで第1高温タンク37に送られる第1熱媒体を加熱し、第1膨張機15において減圧させ、第1低温熱交換器16において吸熱させることにより第2低温タンク44に送られる第2熱媒体を冷却させ、また、工場等から排出される排ガスに含まれる二酸化炭素を分離回収する、という各処理が適宜行われるエネルギ利用システム1を例に挙げて説明した。
 これに対して、エネルギ利用システムとしては、例えば、図4に示すように、排ガス供給ライン50が、冷却流路91を含んでおり大気が流れる分岐流路191と、第1切換弁191aと、第2切換弁191bと、を有しているエネルギ利用システム1bであってもよい。
 この分岐流路191は、上流端191xから大気を取り込んで、第2冷媒回路21の第2低温熱交換器26を通過する冷却流路91を通過させた後に、排ガス流路51に合流する流路である。なお、第1切換弁191aは、排ガス流路51の上流部分である上流側排ガス流路51aと、排ガス流路51の下流部分である下流側排ガス流路51bと、を接続する状態と、下流側排ガス流路51bと分岐流路191とを接続する状態と、を切り換える切換弁であり、例えば、三方弁により構成される。第2切換弁191bは、排ガス圧縮機53の下流側部分と回収タンク55とを接続する状態と、排ガス圧縮機53の下流側部分と大気中に開放されている下流端191yとを接続する状態と、を切り換える切換弁であり、例えば、三方弁により構成される。
 このエネルギ利用システム1bでは、例えば、第1運転と第2運転が切り換えて行われてもよい。
 第1運転では、ヒートエンジン20と電解還元装置70を可動させることなく、第1切換弁191aについて上流側排ガス流路51aと下流側排ガス流路51bとを接続する状態に切り換えておき、第2切換弁191bについて排ガス圧縮機53の下流側部分と回収タンク55とを接続する状態に切り換えておき、二酸化炭素ハイドレート93を気化させるための気化タンク57の気化槽57aの加熱も行うことなく、再生可能エネルギ供給部80から供給されるエネルギを用いてヒートポンプ10を可動させつつ、第1熱媒体ポンプ32を駆動させて第1熱利用サイクル30に熱を蓄えつつ、しかも、第2熱媒体ポンプ42を駆動させて第2熱利用サイクル40を可動させて冷熱利用部45に冷熱を供給し、排ガス圧縮機53を駆動させることにより排ガス供給ライン50の排ガス流路51に二酸化炭素を流すことで、回収タンク55の成長槽55aにおいて二酸化炭素を冷却して分離回収する。なお、第1運転では、ハイドレート供給路56の開閉弁56aは閉じられており、二酸化炭素ハイドレート93になることができなかった二酸化炭素を含む排ガスは、発電機54に送られてエネルギが回収される。そして、二酸化炭素ハイドレート93が十分に成長した場合には、第1運転を終了し、ハイドレート供給路56の開閉弁56aを開けることで、二酸化炭素ハイドレート93を気化タンク57に移動させ、第2運転を開始させる。
 第2運転では、第1切換弁191aについて下流側排ガス流路51bと分岐流路191とを接続する状態に切り換え、第2切換弁191bについて排ガス圧縮機53の下流側部分と大気中に開放されている下流端191yとを接続する状態に切り換えて、排ガス圧縮機53を駆動させ、第2熱利用サイクル40を可動させ、ガス供給路58の開閉弁58aを開状態に制御し、第1熱媒体ポンプ32を可動させ、ヒートエンジン20と電解還元装置70を可動させる。これにより、分岐流路191の上流端191xから分岐流路191内に取り込まれた空気は、可動しているヒートエンジン20の第2低温熱交換器26を流れる第2冷媒と、冷却流路91において熱交換を行い、加熱される。この冷却流路91で加熱された空気は、排ガス流路51を通過して、第2高温利用熱交換器46において第2熱媒体と熱交換を行うことで、第2熱媒体を加熱する。このようにして、第2熱利用サイクル40における温熱利用部47には、ヒートエンジン20の排熱を用いて加熱された第2熱媒体が送られることで、気化タンク57の気化槽57aが暖められる。なお、第2高温利用熱交換器46において第2熱媒体を加熱した後の排ガス流路51を流れる空気は、排ガス圧縮機53を介して、下流端191yに導かれ、大気中に放出される。そして、気化タンク57の気化槽57aが暖められることにより、二酸化炭素ハイドレート93からの二酸化炭素の気化を効率化させ、気化した二酸化炭素を、ガス供給路58を介して、電解還元装置70に供給することができる。ここで、第2運転では、第1熱利用サイクル30に蓄えられている熱が電解還元温調部33に供給されることで、電解還元装置70の電解液が加熱され、ヒートエンジン20で発電された電力が電解液の電圧印加に用いられることで、電解還元装置70における電解還元が行われる。なお、この際のヒートポンプ10の可動は任意であるが、再生可能エネルギ供給部80からエネルギが十分に供給されている状況では可動させることが望ましい。
 (4-5)他の実施形態E
 上記第3実施形態では、電解還元装置70の蓄熱流路233を通過した蒸気が発電機220に送られるエネルギ利用システム201を例に挙げて説明した。
 これに対して、例えば、第3実施形態のエネルギ利用システム201は、発電機220の代わりに、第1実施形態で述べたヒートエンジン20が用いられていてもよい。この場合には、電解還元装置70の蓄熱流路233を通過した蒸気が、ヒートエンジン20の第2冷媒回路21を流れる第2冷媒と熱交換を行うことで、蒸気の熱エネルギが第2冷媒に回収されることになる。
 (4-6)他の実施形態F
 上記第3実施形態では、循環回路230を水が循環する場合を例に挙げて説明した。
 これに対して、例えば、循環回路230を循環する流体は、水に限られず、冷媒等の他の熱媒体であってもよく、排熱ボイラ236等の加熱部によって加熱されることで相変化し、体積が増大する媒体であることが好ましい。
 (4-7)他の実施形態G
 上記第3実施形態では、循環回路230を循環する蒸気の熱によって、電解還元装置70の電解液を、熱貯蔵タンク233xにおける蓄熱媒体を介して加熱させる場合を例に挙げて説明した。
 これに対して、例えば、電解還元装置70の代わりに上記第2実施形態の第2電解還元装置70yを用いるようにしてもよいし、電解還元装置70の代わりに上記第2実施形態の第1電解還元装置70xおよび第2電解還元装置70yを用いるようにしてもよい。これらの場合には、循環回路230を循環する蒸気が、第1電解還元装置70xの第1電解還元温調部33xに充填された蓄熱媒体と混ざらないように設けられた流路と、第2電解還元装置70yの第2電解還元温調部33yに充填された蓄熱媒体と混ざらないように設けられた流路と、を通過するようにエネルギ利用システムが構成されることになる。
 (4-8)他の実施形態H
 上記第3実施形態では、循環回路230を循環する水が、排熱ボイラ236を流れる排ガスの熱エネルギによって加熱される場合を例に挙げて説明した。
 これに対して、例えば、循環回路230を循環する水の加熱方法は、これに限られるものではなく、例えば、ヒートパイプ等を介して地下のマグマの熱を利用して加熱してもよい。また、太陽光をレンズおよび反射鏡等を用いて集めることにより、循環回路230を循環する水を加熱してもよい。
 (4-9)他の実施形態I
 上記第1実施形態のエネルギ利用システム1、第2実施形態のエネルギ利用システム1a、第3実施形態のエネルギ利用システム201の利用形態は、特に限定されるものではなく、例えば、マイクログリッドシステムにおいて利用することができる。
 マイクログリッドシステムは、分散型エネルギや蓄エネルギ設備等の分散型エネルギリソース(DER:Distributed Energy Resources)と、エネルギネットワークと、を一定の規模で統合し運用するエネルギシステムである。例えば、マイクログリッドシステムは、電力会社が運用する主要な電力ネットワークから完全に切り離されて常に自立したエネルギ運用を行うシステムであってもよいし、平常時は電力会社が運用する主要な電力ネットワークと接続され、災害時等の非常時はその接続を切り離して自立したエネルギ運用を行うシステムであってもよい。
 図5に、第1実施形態のエネルギ利用システム1を含むマイクログリッドシステムで用いられるネットワークの一例を示す。
 マイクログリッドシステムは、例えば、太陽光発電所、風力発電所、水力発電所等の再生可能エネルギ供給部80と、再生可能エネルギの管理を行う再生可能エネルギ管理装置180と、ヒートポンプ10と、ヒートエンジン20と、第1熱利用サイクル30と、第2熱利用サイクル40と、排ガス供給ライン50と、電解還元装置70と、火力発電所、原子力発電所、プラント、温泉等の図示しない排出物供給部と、排熱供給部の管理を行う排出物管理装置150と、ヒートエンジン20により発電された電力エネルギを消費する図示しない需要家設備と、需要家設備の管理を行う需要家端末60と、これらの設備をつなぐ図示しないエネルギネットワーク設備と、エネルギの供給と消費を適切に制御するエネルギマネジメントコントローラ100と、再生可能エネルギ管理装置180と需要家端末60とエネルギマネジメントコントローラ100等を通信可能に接続する通信ネットワーク111等を備えるものであってもよい。
 再生可能エネルギ管理装置180は、CPU等のプロセッサ181と、ROM、RAM等のメモリ182と、再生可能エネルギ供給部80において発電された電力量を把握する電気エネルギ量把握部183等を有しており、再生可能エネルギ供給部80に配置されている。再生可能エネルギ管理装置180は、通信ネットワーク111を介して、エネルギマネジメントコントローラ100と通信可能に接続されている。
 排出物管理装置150は、CPU等のプロセッサ151と、ROM、RAM等のメモリ152と、熱エネルギ量把握部153と、排出二酸化炭素量把握部154と、を有しており、火力発電所や原子力発電所等の排出物供給部に配置されている。排出物管理装置150は、通信ネットワーク111を介して、エネルギマネジメントコントローラ100と通信可能に接続されている。熱エネルギ量把握部153は、火力発電所や原子力発電所等の排出物供給部から排出された熱エネルギ量を把握する。排出二酸化炭素量把握部154は、火力発電所等の排出物供給部から排出された二酸化炭素量を把握する。
 需要家設備は、ヒートエンジン20によって発電された電気エネルギのうち、電解還元装置70において利用された後の残りの電気エネルギを消費するか、ヒートポンプ10によって得られる熱エネルギのうち、電解還元装置70において利用された後の残りの熱エネルギを消費するか、これらの両方を消費する設備であり、例えば、工場、オフィスビル、住宅、電気自動車への給電装置、植物工場等が挙げられる。このうち、例えば、工場、オフィスビル、住宅、植物工場に対しては、これらからの求めに応じて、第1熱利用サイクル30で蓄えられている熱の供給や、第2熱利用サイクル40で蓄えられている冷熱が供給される。なお、熱または冷熱は、熱または冷熱を蓄えることができる蓄熱材を需要家設備の所在地まで運ぶことで需要家に供給されてもよい。また、工場、オフィスビル、住宅、電気自動車への給電装置、植物工場に対しては、これらの求めに応じて、ヒートエンジン20で発電された電気エネルギが供給される。なお、電気エネルギは、電線または蓄電池等を用いて需要家設備の所在地まで運ぶことで供給されてもよい。これらの蓄熱材、電線、蓄電池は、エネルギネットワーク設備として用いられる。なお、需要家からの求めに応じて、電解還元装置70で得られた炭素含有材料が輸送される等により供給される。
 需要家端末60は、CPU等のプロセッサ61と、メモリ62と、入力部63等を有しており、需要家設備に配置されている。需要家端末60は、通信ネットワーク111を介して、エネルギマネジメントコントローラ100と通信可能に接続されている。入力部63は、タッチパネルまたはキーボード等により構成されており、需要家端末60の所持者である需要家からの、熱エネルギ供給の要求と、電気エネルギ供給の要求と、電解還元で得られた炭素含有材料の要求と、の少なくともいずれかの要求を受け付ける。
 エネルギマネジメントコントローラ100は、CPU(Central Processing Unit)等のプロセッサ101と、ROM、RAM等のメモリ102を有している。エネルギマネジメントコントローラ100は、ヒートポンプ10、ヒートエンジン20、第1熱利用サイクル30、第2熱利用サイクル40、排ガス供給ライン50、電解還元装置70等と通信可能に接続されている。エネルギマネジメントコントローラ100は、通信ネットワーク111を介して受け付けた各種情報に基づいて、ヒートポンプ10、ヒートエンジン20、第1熱利用サイクル30、第2熱利用サイクル40、排ガス供給ライン50、電解還元装置70等の運転制御を行う。
 エネルギマネジメントコントローラ100は、再生可能エネルギ管理装置180の再生可能エネルギ供給部80が把握した電気エネルギ量に基づいて、当該電気エネルギを貯留される熱エネルギに変換するために、ヒートポンプ10における第1圧縮機12の回転数を制御することでヒートポンプ10を駆動制御する。再生可能エネルギ管理装置180で得られる再生可能エネルギの量は、電力会社が提供する一般的な電気エネルギと比べて不安定になりがちではあるが、再生可能エネルギとして供給されるエネルギを、ヒートポンプ10を介して、熱エネルギに変換して第1熱利用サイクル30に蓄え、冷熱のエネルギに変換して第2熱利用サイクル40に蓄えることが可能になる。そして、第1熱利用サイクル30において第1熱媒体に蓄えられた熱エネルギは、電解還元装置70において電解液を電解還元させる際に利用することができる。具体的には、電解還元装置70での電解液の加熱には、第1熱利用サイクル30において第1熱媒体に蓄えられている熱エネルギを用い、電解還元装置70での電解液への電圧印加には、第1熱利用サイクル30において第1熱媒体に蓄えられている熱エネルギがヒートエンジン20によって変換された電気エネルギが用いられる。これにより、電解還元装置70での電解液の加熱と電圧印加に要するエネルギを、不安定な再生可能エネルギではなく、第1熱利用サイクル30において蓄えられているエネルギで賄うことが可能になり、電解還元を安定的に行うことが可能になる。また、具体的には、電解還元装置70で電解還元される電解液の望ましい温度や、望ましい印加電圧等の各データを、エネルギマネジメントコントローラ100が備えるメモリ102に予め保存しておき、当該データに基づいて電解液の温度条件と印加電圧条件が満たされるように、第1熱媒体ポンプ32における第1熱媒体の流量が制御される。
 なお、エネルギマネジメントコントローラ100は、熱エネルギ量把握部153が把握した熱エネルギ量が十分にある場合には、ヒートポンプ10の中間熱交換器14の第1冷媒を加熱したり、第1熱利用サイクル30の第1低温タンク35と第1高温タンク37における第1熱媒体を加熱することで、運転効率を高めることができる。
 また、エネルギマネジメントコントローラ100は、排出物管理装置150の排出二酸化炭素量把握部154が把握した火力発電所やプラント等の排出物供給部から排出された二酸化炭素量と、二酸化炭素ハイドレート93の成長程度等に基づいて、排ガス供給ライン50の排ガス圧縮機53の回転数等を制御する。これにより、電解還元に用いられる二酸化炭素の量をコントロールすることができる。なお、ここで、エネルギマネジメントコントローラ100は、第2熱媒体ポンプ42の流量を調節することにより、第2熱利用サイクル40に蓄えられている冷熱による成長槽55aの冷却程度を制御する。これにより、冷熱利用部45において二酸化炭素の冷却が十分に可能となる温度になるまで成長槽55aが冷却される。
 なお、上記では、第1実施形態のエネルギ利用システム1を含むマイクログリッドシステムについて説明したが、マイクログリッドシステムとしては、例えば、第2実施形態のエネルギ利用システム1aを含むものであってもよい。この場合には、第1電解還元装置70aの電解液と第2電解還元装置70bの電解液のそれぞれの温度条件と印加電圧条件が満たされるように、熱媒体ポンプ32aにおける熱媒体の流量が制御される。
 (付記)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
   1、1a、1b エネルギ利用システム
 10、10a ヒートポンプ(加熱部)
 12 第1圧縮機
 13 第1高温熱交換器(加熱部)
 17 駆動軸
 15 第1膨張機
 20、20a ヒートエンジン(熱エネルギ回収部)
 23 第2高温熱交換部(熱エネルギ回収部)
 24 第2膨張機(熱エネルギ回収部)
 30 第1熱利用サイクル(貯蔵部、循環回路)
 30a 熱利用サイクル(貯蔵部、循環回路)
 32  第1熱媒体ポンプ(ポンプ)
 32a 熱媒体ポンプ(ポンプ)
 34 第1低温利用熱交換器(熱エネルギ回収部)
 34a 低温利用熱交換器(熱エネルギ回収部)
 35 第1低温タンク(第1貯蔵部)
 35a 低温タンク(第1貯蔵部)
 36 第1高温利用熱交換部(加熱部)
 36a 高温利用熱交換部(加熱部)
 37 第1高温タンク(第2貯蔵部)
 37a 高温タンク(第2貯蔵部)
 40 第2熱利用サイクル
 50 排ガス供給ライン
 55 回収タンク(二酸化炭素ガス回収部)
 57 気化タンク(二酸化炭素ガス回収部)
 70 電解還元装置(第1電解還元装置)
 70x 第1電解還元装置(電解還元装置)
 70y 第2電解還元装置(電解還元装置)
 80 再生可能エネルギ供給部(加熱部)
100 エネルギマネジメントコントローラ(制御機器)
201 エネルギ利用システム
220 発電機(熱エネルギ回収部)
230 循環回路
231 循環流路
232 ポンプ
233 蓄熱流路
233x 熱貯蔵タンク
234 膨張機(熱エネルギ回収部)
235 凝縮器
236 排熱ボイラ(加熱部、ボイラ)
236a 水流路(加熱部)
280 排ガス管(加熱部)
280a 排ガス流路
295 冷却媒体管
295a 冷却媒体流路
特開2016-89230号公報

Claims (25)

  1.  熱媒体を取り込んで送り出すポンプ(32、32a、232)と、
     再生可能エネルギまたは排熱により得られるエネルギを利用して前記熱媒体を加熱する加熱部(80、10、13、36、36a、280、236a、236)と、
     前記熱媒体の熱を用いて電解液を加熱する電解還元装置(70、70x、70y)と、
     熱エネルギ回収部(20、23、34、20a、24、34a、234)と、
    を有し、前記熱媒体が循環する循環回路(30、30a、220、230)を備える、
    エネルギ利用システム(1、1a、1b、201)。
  2.  前記熱媒体は、水であり、
     前記加熱部は、ボイラ(236)である、
    請求項1に記載のエネルギ利用システム(201)。
  3.  前記熱エネルギ回収部(234)は、膨張機を有しており、
     前記電解還元装置は、前記膨張機により発電された電力を利用して前記電解液に電圧を印加する、
    請求項2に記載のエネルギ利用システム(201)。
  4.  前記電解還元装置は、前記電解液を加熱する蓄熱媒体を貯留する貯留部を有しており、
     前記蓄熱媒体は、前記循環回路を流れる前記熱媒体と熱的に接触することで加熱される、
    請求項1から3のいずれか1項に記載のエネルギ利用システム(201)。
  5.  前記再生可能エネルギにより発電された電力を利用して駆動され、第1冷媒が循環するヒートポンプ(10、10a)をさらに備え、
     前記循環回路は、前記熱媒体の熱を貯蔵エネルギとして貯蔵する貯蔵部(30、30a)を有し、
     前記加熱部は、前記ヒートポンプにより加熱された前記第1冷媒の熱によって、前記熱媒体を加熱し、
     前記熱エネルギ回収部は、前記貯蔵エネルギを利用して発電するヒートエンジン(20、20a)であり、
     前記電解還元装置(70、70x、70y)は、前記ヒートエンジンにより発電された電力を利用して前記電解液に電圧を印加する、
    請求項1に記載のエネルギ利用システム(1、1a、1b)。
  6.  前記ヒートポンプにより冷却された前記熱媒体の冷熱を利用して二酸化炭素ハイドレートを成長させ、前記二酸化炭素ハイドレートを分解することにより二酸化炭素を気体として回収する二酸化炭素ガス回収部(55、57)をさらに備えた、
    請求項5に記載のエネルギ利用システム。
  7.  前記ヒートポンプは、圧縮機(12)と、前記圧縮機と駆動軸(17)を介して連結された第1膨張機(15)と、を有しており、
     前記圧縮機の回転が、前記第1膨張機で回収された動力により補助される、
    請求項5または6に記載のエネルギ利用システム。
  8.  前記電解還元装置は、前記貯蔵エネルギを利用して前記電解液を加熱し、前記ヒートエンジンにより発電された電力を利用して前記電解液に電圧を印加することで、前記電解液を還元して炭素含有材料を得る第1電解還元装置(70x)と、前記貯蔵エネルギを利用して加熱された水を電気分解する第2電解還元装置(70y)と、の少なくともいずれかを有する、
    請求項5から7のいずれか1項に記載のエネルギ利用システム。
  9.  前記ヒートポンプの冷媒が、前記排熱により加熱される、
    請求項5から8のいずれか1項に記載のエネルギ利用システム。
  10.  前記貯蔵部は、第1貯蔵部(35、35a)と、第2貯蔵部(37、37a)を含み、
     前記第1貯蔵部の前記熱媒体が、前記ヒートポンプにより加熱された後に、前記第2貯蔵部に送られる、
    請求項5から9のいずれか1項に記載のエネルギ利用システム。
  11.  前記第2貯蔵部に送られる前記熱媒体の温度は、200℃以上になる、
    請求項10に記載のエネルギ利用システム。
  12.  前記ヒートポンプの冷媒が、二酸化炭素、アルゴン、および、空気からなる群より選択される1種または2種以上である、
    請求項11に記載のエネルギ利用システム。
  13.  前記第2貯蔵部に送られる前記熱媒体の温度は、200℃未満である、
    請求項10に記載のエネルギ利用システム。
  14.  前記ヒートポンプの冷媒が、R1233zd(E)、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R32、R410a、R245fa、水、および、二酸化炭素からなる群より選択される1種または2種以上を含み、
     前記ヒートエンジンの冷媒が、R1233zd(E)、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R32、R410a、R245fa、水、および、二酸化炭素からなる群より選択される1種または2種以上を含む、
    請求項13に記載のエネルギ利用システム。
  15.  前記ヒートポンプ、前記貯蔵部、前記ヒートエンジン、および、前記電解還元装置の制御を行う制御機器(100)をさらに備え、
     前記制御機器は、前記貯蔵部に貯蔵された前記貯蔵エネルギおよび前記ヒートエンジンにより発電された電力が利用されるように制御を行う、
    請求項5から14のいずれか1項に記載のエネルギ利用システム。
  16.  前記貯蔵部に貯蔵された前記貯蔵エネルギと、前記ヒートエンジンで発電された電力と、前記電解還元装置における前記電解液への電圧の印加により得られる材料と、の少なくともいずれかを、需要家の求めに応じて供給するために用いられる、
    請求項5から15のいずれか1項に記載のエネルギ利用システム。
  17.  循環回路(30、30a、230)を循環する熱媒体を、再生可能エネルギまたは排熱により得られるエネルギを利用して加熱する工程と、
     加熱された前記熱媒体の熱を用いて電解液を加熱して電解還元を行う工程と、
    を含む、炭素含有材料の製造方法。
  18.  前記熱媒体は、水であり、
     前記水は、前記再生可能エネルギまたは前記排熱により得られるエネルギを利用してボイラ(236)において加熱される、
    請求項17に記載の炭素含有材料の製造方法。
  19.  前記熱媒体の熱エネルギを膨張機において回収して発電する工程と、
     前記膨張機により発電された電力を利用して前記電解液に電圧を印加する工程と、
    をさらに含む、
    請求項18に記載の炭素含有材料の製造方法。
  20.  加熱された前記熱媒体の熱を用いて、貯留部に貯留している蓄熱媒体を加熱し、
     前記加熱された前記蓄熱媒体の熱を用いて、前記電解液を加熱する、
    請求項17から19のいずれか1項に記載の炭素含有材料の製造方法。
  21.  前記熱媒体は、前記再生可能エネルギにより発電された電力を利用して駆動され、第1冷媒が循環するヒートポンプサイクルにより加熱され、
     前記ヒートポンプサイクルにより加熱された前記熱媒体の熱を貯蔵エネルギとして貯蔵する工程と、
     前記貯蔵エネルギを利用してヒートエンジンサイクルにより発電する工程と、
    をさらに含み、
     前記貯蔵エネルギを利用して前記電解液を加熱し、前記ヒートエンジンサイクルにより発電された電力を利用して前記電解液に電圧を印加して電解還元を行う、
    請求項17に記載の炭素含有材料の製造方法。
  22.  前記貯蔵エネルギを利用して加熱された水を電気分解する工程を含む、
    請求項21に記載の炭素含有材料の製造方法。
  23.  前記ヒートポンプサイクルの冷媒が前記排熱により加熱される工程をさらに含む、
    請求項21または22に記載の炭素含有材料の製造方法。
  24.  前記熱媒体が、砂または岩石と空気とを含む混合流体、および、溶融塩からなる群より選択される1種または2種以上である、
    請求項21から23のいずれか1項に記載の炭素含有材料の製造方法。
  25.  前記熱媒体が、砂または岩石と空気とを含む混合流体、水、サーマルオイル、イオン液体、および、溶融塩からなる群より選択される1種または2種以上である、
    請求項21から23のいずれか1項に記載の炭素含有材料の製造方法。
PCT/JP2023/002269 2022-01-28 2023-01-25 エネルギ利用システム、および、炭素含有材料の製造方法 WO2023145767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380014932.9A CN118369462A (zh) 2022-01-28 2023-01-25 能量利用系统以及含碳材料的制造方法
EP23746978.8A EP4421214A1 (en) 2022-01-28 2023-01-25 Energy usage system, and method for manufacturing carbon-containing material
US18/613,721 US20240229268A1 (en) 2022-01-28 2024-03-22 Energy utilization system and method for producing carbon-containing material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-011716 2022-01-28
JP2022011716 2022-01-28
JP2022-128063 2022-08-10
JP2022128063 2022-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/613,721 Continuation US20240229268A1 (en) 2022-01-28 2024-03-22 Energy utilization system and method for producing carbon-containing material

Publications (1)

Publication Number Publication Date
WO2023145767A1 true WO2023145767A1 (ja) 2023-08-03

Family

ID=87472068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002269 WO2023145767A1 (ja) 2022-01-28 2023-01-25 エネルギ利用システム、および、炭素含有材料の製造方法

Country Status (5)

Country Link
US (1) US20240229268A1 (ja)
EP (1) EP4421214A1 (ja)
JP (2) JP7329781B2 (ja)
TW (1) TW202340664A (ja)
WO (1) WO2023145767A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7557227B1 (ja) 2023-12-25 2024-09-27 ESREE Energy株式会社 エネルギー貯蔵プラント

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074207A (ja) * 2012-10-05 2014-04-24 Hitachi Ltd 再生可能エネルギ貯蔵システム
JP2016089230A (ja) 2014-11-06 2016-05-23 学校法人同志社 炭酸ガスを原料とするダイヤモンドの製造法
JP2017008382A (ja) * 2015-06-24 2017-01-12 株式会社辰巳菱機 水素生成システム
JP2018016840A (ja) * 2016-07-27 2018-02-01 住友電気工業株式会社 水素精製システム
JP2018513911A (ja) * 2015-02-26 2018-05-31 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity カーボンナノファイバー製造のための方法及びシステム
JP2022138905A (ja) * 2021-03-11 2022-09-26 本田技研工業株式会社 発電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074207A (ja) * 2012-10-05 2014-04-24 Hitachi Ltd 再生可能エネルギ貯蔵システム
JP2016089230A (ja) 2014-11-06 2016-05-23 学校法人同志社 炭酸ガスを原料とするダイヤモンドの製造法
JP2018513911A (ja) * 2015-02-26 2018-05-31 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity カーボンナノファイバー製造のための方法及びシステム
JP2017008382A (ja) * 2015-06-24 2017-01-12 株式会社辰巳菱機 水素生成システム
JP2018016840A (ja) * 2016-07-27 2018-02-01 住友電気工業株式会社 水素精製システム
JP2022138905A (ja) * 2021-03-11 2022-09-26 本田技研工業株式会社 発電装置

Also Published As

Publication number Publication date
JP2023110929A (ja) 2023-08-09
TW202340664A (zh) 2023-10-16
EP4421214A1 (en) 2024-08-28
JP2023110890A (ja) 2023-08-09
JP7329781B2 (ja) 2023-08-21
US20240229268A1 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
JP5183119B2 (ja) 発電システム
EP2755269B1 (en) Cogeneration system
JP7329781B2 (ja) エネルギ利用システム、および、炭素含有材料の製造方法
CN110171553B (zh) 一种氢燃料电池动力船余热综合利用系统
CN102758748A (zh) 高压液态空气储能/释能系统
WO2017065683A1 (en) Methods to store and recover electrical energy
CN110159379A (zh) 多级热泵式双罐熔盐储能发电系统
KR101568067B1 (ko) 연료전지 하이브리드 시스템
KR20070088992A (ko) 연료전지 복합발전시스템
CN101532744B (zh) 热泵循环系统及方法
JP2010107074A (ja) エネルギー供給システム、自立型住宅及び自立型地域
JP2009022123A (ja) ヒートポンプの集熱を利用した発電方法
JP2002056880A (ja) 水電解装置−固体高分子形燃料電池系発電システム
US20150303524A1 (en) Electrochemical storage of thermal energy
CN117293349A (zh) 基于pemfc和有机朗肯循环的氢-热综合发电系统及方法
Mojtahed et al. Hybrid Hydrogen production: Application of CO2 heat pump for the high-temperature water electrolysis process
CN113394431B (zh) 一种提高绿氢能源系统利用效率的热管理系统及方法
KR102300020B1 (ko) 냉열 활용 시스템
CN118369462A (zh) 能量利用系统以及含碳材料的制造方法
JPH11354132A (ja) 燃料電池発電設備
JP2002056879A (ja) 水電解装置−リン酸形燃料電池系発電システム
CN116247827B (zh) 工业园区综合能源系统及其运行方法
KR102513012B1 (ko) 에너지 자립형 수전해 시스템
CN216205382U (zh) 一种基于有机朗肯循环的石墨化系统
CN219204102U (zh) 一种供能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023746978

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023746978

Country of ref document: EP

Effective date: 20240524

NENP Non-entry into the national phase

Ref country code: DE