WO2023145483A1 - Piezoelectric oscillator and piezoelectric oscillation device - Google Patents

Piezoelectric oscillator and piezoelectric oscillation device Download PDF

Info

Publication number
WO2023145483A1
WO2023145483A1 PCT/JP2023/000753 JP2023000753W WO2023145483A1 WO 2023145483 A1 WO2023145483 A1 WO 2023145483A1 JP 2023000753 W JP2023000753 W JP 2023000753W WO 2023145483 A1 WO2023145483 A1 WO 2023145483A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
sealing
piezoelectric
plate
crystal
Prior art date
Application number
PCT/JP2023/000753
Other languages
French (fr)
Japanese (ja)
Inventor
弘晃 山下
裕基 岡前
幸輝 原田
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Publication of WO2023145483A1 publication Critical patent/WO2023145483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to piezoelectric vibrators and piezoelectric vibrating devices.
  • Patent Document 1 discloses a piezoelectric oscillator in which a piezoelectric oscillator is arranged side by side in a recess of a package together with an IC containing an oscillation circuit and the like, and the package is hermetically sealed with a lid. It is
  • the piezoelectric vibrator accommodates the piezoelectric vibrating piece in a concave portion of a container, and the container is covered with a lid to hermetically seal the piezoelectric vibrating piece.
  • This piezoelectric vibrator is turned upside down, and is bonded to the concave portion of the package with the lid side of the container as the lower surface with an adhesive. and the IC are electrically connected by bonding wires.
  • Patent Document 1 the external connection terminals formed on the bottom surface of the container of the piezoelectric vibrator and the IC are electrically connected by bonding wires. Although there is a risk of damage to the container of the piezoelectric vibrator due to the pressing force applied to the container, Patent Document 1 does not particularly consider the connection of the piezoelectric vibrator with a bonding wire.
  • the present invention has been made in view of the above points, and an object of the present invention is to prevent the piezoelectric vibrator from being damaged when the piezoelectric vibrator is wire-bonded.
  • the present invention is configured as follows.
  • a piezoelectric vibrator according to the present invention has a piezoelectric vibrating plate having first and second excitation electrodes respectively formed on both main surfaces thereof, and a second vibrator bonded to each of the main surfaces of the piezoelectric vibrating plate.
  • a piezoelectric vibrator having second sealing plates, wherein the outer peripheral portions of the first and second sealing plates are respectively bonded to the outer peripheral portions of the two main surfaces of the piezoelectric vibration plate, and the The vibrating portion of the piezoelectric diaphragm including the first and second excitation electrodes is hermetically sealed, and the first and second excitation electrodes of the piezoelectric diaphragm are provided on the outer surface of the first sealing plate.
  • a bonding pad for wire bonding electrically connected to one of the excitation electrodes is formed, and a part of the outer peripheral portion of at least one of the first and second sealing plates and the piezoelectric A non-bonded region is provided in a part of the outer periphery of the diaphragm so as to face each other and is not bonded, and the bonding pads on the outer surface of the first sealing plate are formed so as to overlap the non-bonded region in a plan view.
  • the piezoelectric vibrator in which the first and second sealing plates are bonded to both main surfaces of the piezoelectric vibrating plate to hermetically seal the vibrating portion of the piezoelectric vibrating plate includes the first sealing plate.
  • a bonding pad for wire bonding is formed on the outer surface of the stop plate, and the bonding pad is in contact with the non-bonded area on the outer peripheral portion of at least one of the first and second sealing plates and the piezoelectric vibration in plan view. It is formed so as to overlap with the non-bonded region of the outer peripheral portion of the plate.
  • the non-bonded region on the outer periphery of at least one of the first and second sealing plates and the non-bonded region on the outer periphery of the piezoelectric diaphragm are regions that face each other and are not bonded.
  • a gap is formed between the non-bonded area of one sealing plate and the non-bonded area of the piezoelectric diaphragm.
  • wire bonding electrodes electrically connected to the first and second excitation electrodes of the piezoelectric vibration plate are provided as the bonding pads on the outer surface of the first sealing plate.
  • First and second bonding pads for are formed.
  • the first and second bonding pads for wire bonding electrically connected to the first and second excitation electrodes of the piezoelectric diaphragm are formed on the outer surface of the first sealing plate.
  • the first and second bonding pads are arranged so as to overlap, in a plan view, a non-bonded region on the outer periphery of at least one of the first and second sealing plates and a non-bonded region on the outer periphery of the piezoelectric diaphragm. Therefore, when a pressing force for connecting bonding wires is applied to the first and second bonding pads of the first sealing plate, the outer peripheral portion of the at least one sealing plate is not bonded.
  • the gap between the area and the non-bonded area on the outer periphery of the piezoelectric diaphragm allows the excessive pressing force to escape and relax the pressing force.
  • a first non-bonding area as the non-bonding area is formed on a part of the outer peripheral part of the first sealing plate and a part of the outer peripheral part of the piezoelectric vibration plate.
  • a second non-bonding region is provided as the non-bonding region in a part of the outer periphery of the second sealing plate and a part of the outer periphery of the piezoelectric diaphragm, respectively. The area and the second non-bonded area overlap in plan view.
  • the first non-bonding region which is a non-bonding region facing each other and not bonded
  • the second sealing plate are provided on the outer peripheral portion of the first sealing plate and the outer peripheral portion of the piezoelectric diaphragm, respectively.
  • the first gap formed between the first non-bonded region on the outer periphery of the first sealing plate and the first non-bonded region on the outer periphery of the piezoelectric diaphragm and the outer periphery of the second sealing plate In a plan view, the second non-bonded region of the portion overlaps with the second gap formed between the second non-bonded region of the outer peripheral portion of the piezoelectric diaphragm.
  • the part of the non-bonded region of the outer peripheral portion is the outer peripheral edge portion of at least one of the first and second sealing plates and the piezoelectric diaphragm. be.
  • the non-bonded regions provided on the outer peripheral portion of the sealing plate and the outer peripheral portion of the piezoelectric diaphragm are respectively provided on the outer peripheral edge portions of the sealing plate and the piezoelectric diaphragm. While wire bonding is performed at a position that overlaps the non-bonded area in plan view, the sealing plate and the piezoelectric diaphragm are firmly bonded on the inner peripheral side of the outer peripheral edge to airtightly seal the vibrating portion of the piezoelectric diaphragm. can do.
  • the piezoelectric diaphragm includes the vibrating portion formed in the central portion of the piezoelectric vibrating plate and the outer circumference of the piezoelectric vibrating plate so as to surround the vibrating portion. and an outer frame portion thicker than the vibrating portion. A portion of the outer peripheral portion of at least one of the first and second sealing plates and a portion of the outer frame portion of the outer peripheral portion of the piezoelectric vibration plate are bonded to the respective surfaces, and the non-bonded Each region is provided.
  • the non-bonding region overlapping the bonding pad on the outer surface of the first sealing plate in a plan view includes the outer peripheral portion of at least one of the first and second sealing plates and the outer surface of the piezoelectric diaphragm. Since the piezoelectric vibration plate is provided on each of the frame portions, the pressing force applied to connect the bonding wires to the bonding pads of the first sealing plate is applied not to the thin vibrating portion but to the thick vibrating portion that supports the vibrating portion. can be stably received by the outer frame of the
  • the outer frame portion of the piezoelectric diaphragm surrounds the vibrating portion with a space therebetween and is connected to the vibrating portion via a connecting portion.
  • the circumference of the vibrating portion in the central portion of the piezoelectric diaphragm is spaced apart from the outer frame portion except for the connecting portion, thereby reducing the stress transmitted to the vibrating portion via the outer frame portion. can do.
  • the bonding pads on the outer surface of the first sealing plate of the piezoelectric vibrator are located in the non-bonding area of the outer frame portion of the piezoelectric diaphragm in plan view. formed to overlap.
  • the bonding wires are connected to the bonding pads of the first sealing plate.
  • the thick outer frame portion of the piezoelectric diaphragm can stably receive the pressing force applied to the piezoelectric diaphragm.
  • the vibrating portion of the piezoelectric diaphragm is substantially rectangular in plan view
  • the outer frame portion of the piezoelectric diaphragm is substantially rectangular in plan view
  • the outer frame In the portion one side of the substantially rectangular shape on the inner peripheral side of the substantially rectangular annular shape is connected to the vibrating portion via the connecting portion, and the non-bonded region of the piezoelectric vibration plate is the one side of the substantially rectangular shape. is provided on the outer frame portion on the opposite side facing the .
  • the outer frame portion which is substantially rectangular in plan view, has one side of the substantially rectangular shape on the inner peripheral side that is connected to the vibrating portion in the central portion via the connecting portion, while the non-bonded region is the substantially rectangular shape. It is provided on the outer frame portion on the side opposite to the one side of the rectangle. Since the bonding pads formed on the outer surface of the first sealing plate overlap in plan view, the non-bonding region of the outer frame portion receives a pressing force for connecting the bonding wires.
  • the non-bonded area of the outer frame is provided not on the one side of the substantially rectangular shape connected to the vibrating portion via the connecting portion, but on the opposite side of the outer frame that is opposite to the one side.
  • the distance to the connecting portion is longer compared to when it is provided on the outer frame portion on the one side. As a result, it is possible to reduce the transmission of the pressing force for connecting the bonding wire applied to the non-bonded region of the outer frame to the vibrating portion via the connecting portion.
  • a piezoelectric vibration device includes the piezoelectric vibrator according to any one of (1) to (8) above, and a base on which the piezoelectric vibrator is mounted.
  • the piezoelectric vibrator has a bonding pad for wire bonding formed on the outer surface of the first sealing plate, and the bonding pad corresponds to the first sealing plate and the second sealing plate in plan view. Since it is formed so as to overlap the non-bonded region on the outer periphery of at least one of the sealing plates and the non-bonded region on the outer periphery of the piezoelectric vibration plate, the non-bonded region of the at least one sealing plate and the piezoelectric diaphragm are formed so as to overlap each other. A gap is formed between the diaphragm and the non-bonded area.
  • the gap between the at least one sealing plate and the piezoelectric vibration plate causes an excessive pressing force. can be released to relieve the pressing force, and damage to the piezoelectric vibrator can be prevented.
  • an electronic component is mounted on the base next to the piezoelectric vibrator.
  • the electronic component and the piezoelectric vibrator are arranged horizontally instead of being stacked, so that the height of the piezoelectric vibration device can be reduced.
  • the piezoelectric vibrator is electrically connected to the electronic component by wire-bonding the first and second bonding pads of the first sealing plate.
  • the second sealing plate of the piezoelectric vibrator is bonded to the base by a bonding material and mechanically held to the base, while the first and second bonding pads of the first sealing plate are connected to the wire. Bonding provides an electrical connection to electronic components.
  • the piezoelectric vibrator in which the first and second sealing plates are bonded to both main surfaces of the piezoelectric vibrating plate and hermetically seals the vibrating portion of the piezoelectric vibrating plate, is formed on the outer surface of the first sealing plate.
  • a bonding pad for wire bonding is formed, and this bonding pad is provided on the outer peripheral portion of at least one of the first and second sealing plates and the outer peripheral portion of the piezoelectric diaphragm in plan view. , overlying non-bonded regions that face each other and are not bonded.
  • the non-bonding region of the outer peripheral portion of the at least one sealing plate and the outer peripheral portion of the piezoelectric diaphragm are separated from each other.
  • the gap between the non-bonded area allows the excessive pressing force to escape and relieve the pressing force, thereby deforming the piezoelectric diaphragm and the first and second sealing plates during wire bonding. or prevent it from being damaged.
  • FIG. 1 is a schematic cross-sectional view of a crystal oscillator according to one embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the crystal oscillator of FIG. 1 with the cover omitted.
  • FIG. 3 is a schematic cross-sectional view enlarging the crystal oscillator of FIG.
  • FIG. 4A is a schematic plan view showing one main surface side of the crystal diaphragm.
  • FIG. 4B is a schematic plan view showing the other principal surface side seen through from the one principal surface side of the crystal plate.
  • FIG. 5A is a schematic plan view showing one main surface side of the first sealing plate.
  • FIG. 5B is a schematic plan view showing the other main surface side seen through from one main surface side of the first sealing plate.
  • FIG. 5A is a schematic plan view showing one main surface side of the first sealing plate.
  • FIG. 5B is a schematic plan view showing the other main surface side seen through from one main surface side of the first sealing plate.
  • FIG. 6A is a schematic plan view showing one main surface side of the second sealing plate.
  • FIG. 6B is a schematic plan view showing the other main surface side seen through from one main surface side of the second sealing member.
  • FIG. 7 is a partial cross-sectional view of a corner portion of the crystal oscillator 3.
  • FIG. 8 is a schematic plan view of the base showing the application area of the adhesive for bonding the crystal oscillator.
  • FIG. 9 is a schematic side view of a crystal oscillator bonded to a base.
  • FIG. 10A is a diagram showing the frequency deviation of the crystal oscillator of the comparative example after heat treatment.
  • FIG. 10B is a diagram showing the frequency deviation of the crystal oscillator of this embodiment after heat treatment.
  • FIG. 11A is a schematic plan view showing one main surface side of a quartz plate according to another embodiment of the present invention.
  • FIG. 11B is a schematic plan view showing the other main surface side seen through from one main surface side of a quartz diaphragm according to another embodiment of the present invention.
  • FIG. 12A is a schematic plan view showing one main surface side of the first sealing plate that is bonded to the crystal plate of FIGS. 11A and 11B.
  • FIG. 12B is a schematic plan view showing the other principal surface seen through from one of the principal surfaces of the first sealing plate bonded to the crystal plate of FIGS. 11A and 11B.
  • FIG. 13A is a schematic plan view showing one main surface side of a second sealing plate that is bonded to the crystal plate of FIGS. 11A and 11B.
  • FIG. 13B is a schematic plan view showing the other principal surface seen through from one of the principal surfaces of the second sealing plate bonded to the crystal plate of FIGS. 11A and 11B.
  • FIG. 14A is a schematic plan view showing one main surface side of a quartz plate according to still another embodiment of the present invention.
  • FIG. 14B is a schematic plan view showing the other main surface side seen through from one main surface side of the quartz diaphragm according to still another embodiment of the present invention.
  • FIG. 15A is a schematic plan view showing one main surface side of the first sealing plate that is bonded to the crystal plate of FIGS. 14A and 14B.
  • FIG. 15B is a schematic plan view showing the other main surface side seen through from one main surface side of the first sealing plate bonded to the crystal plate of FIGS.
  • FIG. 16A is a schematic plan view showing one main surface side of a second sealing plate that is bonded to the crystal plate of FIGS. 14A and 14B.
  • FIG. 16B is a schematic plan view showing the other principal surface seen through from one of the principal surfaces of the second sealing plate bonded to the crystal plate of FIGS. 14A and 14B.
  • FIG. 17 is a schematic side view showing a state in which a crystal resonator according to another embodiment of the invention is bonded to a base.
  • 18 is a schematic plan view showing the other main surface side of the second sealing plate of the crystal oscillator of FIG. 17.
  • FIG. FIG. 19 is a schematic cross-sectional view of a thermostatic oven-type crystal oscillator according to another embodiment of the present invention.
  • a crystal oscillator is applied as a piezoelectric vibration device having a piezoelectric vibrator.
  • FIG. 1 is a schematic cross-sectional view of a crystal oscillator according to one embodiment of the present invention
  • FIG. 2 is a schematic plan view omitting a lid 5 as a lid body of the crystal oscillator of FIG.
  • the crystal oscillator 1 of this embodiment includes a base 2 having a recess, a crystal oscillator 3 as a piezoelectric oscillator according to the present invention mounted on the inner bottom surface of the recess of the base 2, and lateral and a lid 5 as a lid that is joined to the base 2 and forms an accommodation space 7 that accommodates the crystal oscillator 3 and the IC 4 together with the base 2 .
  • the base 2 includes a flat bottom plate portion 21 and a side wall portion 22 annularly formed on the outer periphery thereof.
  • the base 2 is made of a ceramic material such as alumina, and is formed by, for example, stacking two ceramic green sheets and integrally firing them into a concave shape with an open top.
  • a plurality of wiring patterns 8 for connecting the IC 4 are formed on the inner bottom surface of the base 2, as shown in FIG.
  • the IC 4 is rectangular in plan view and forms an oscillation circuit together with the crystal oscillator 3 .
  • a plurality of electrode pads connected to the wiring pattern 8 of the base 2 by bonding wires 9 are formed on the periphery of the upper surface of the IC 4 .
  • the lid 5 of the crystal oscillator 1 is joined to the periphery of the upper opening of the base 2 through a seal ring 6 by seam welding or the like, thereby airtightly sealing the storage space 7 in which the crystal oscillator 3 and the IC 4 are stored. Sealed.
  • This hermetic sealing is performed in a vacuum atmosphere or in an inert gas atmosphere such as nitrogen gas, and the housing space 7 is in the vacuum or inert gas atmosphere.
  • FIG. 3 is a schematic cross-sectional view enlarging the crystal oscillator 3 of FIG.
  • the crystal resonator 3 includes a crystal vibration plate 10 which is a piezoelectric vibration plate, a first sealing plate 11 covering one main surface side of the crystal vibration plate 10, and a second main surface side of the crystal vibration plate 10. and a second sealing plate 12 .
  • the first and second sealing plates 11 and 12 are bonded to both main surfaces of the crystal plate 10, respectively, to form a so-called sandwich structure package.
  • the package of this crystal oscillator 3 is a substantially rectangular parallelepiped, and is rectangular in plan view.
  • the package size of the crystal resonator 3 of this embodiment is, for example, 1.0 mm ⁇ 0.8 mm in plan view, and is intended for miniaturization and low profile.
  • the package size is not limited to the above, and different sizes are also applicable.
  • FIG. 4A is a schematic plan view showing one main surface side of the crystal plate 10
  • FIG. 4B is a schematic plan view showing the other main surface side of the crystal plate 10 seen through from one main surface side.
  • the crystal diaphragm 10 of this embodiment is an AT-cut crystal plate, and both principal surfaces thereof are XZ' planes.
  • the crystal diaphragm 10 is rectangular in plan view, and includes a substantially rectangular vibrating portion 15 in the center thereof, and a substantially rectangular annular outer frame portion 17 surrounding the vibrating portion 15 with an interval 16 formed of a through portion. and a connecting portion 18 that connects the vibrating portion 15 and the outer frame portion 17 .
  • substantially rectangular refers to a rectangular shape except for the area where the connecting portion 18 is formed. That is, the vibrating portion 15 is rectangular except for the connecting portion 18 on the outer peripheral side, and the annular outer frame portion 17 is rectangular ring-shaped except for the connecting portion 18 on the inner peripheral side.
  • the vibrating portion 15, the outer frame portion 17 and the connecting portion 18 are integrally formed.
  • the vibrating portion 15 and the connecting portion 18 are formed thinner than the outer frame portion 17 . That is, the outer frame portion 17 in the outer peripheral portion of the crystal plate 10 is thicker than the vibrating portion 15 in the central portion.
  • one side (the right side in FIGS. 4A and 4B ) of a substantially rectangular inner peripheral side of the outer frame portion 17 which is substantially rectangular and annular in plan view is connected to the vibrating portion 15 via the connecting portion 18 . ing.
  • the vibrating portion 15 is connected by the connecting portion 18 at one point in this way, the stress acting on the vibrating portion 15 can be reduced compared to a configuration in which the connecting portion 18 is connected at two or more points.
  • a pair of first and second excitation electrodes 19 and 20 are formed on both main surfaces of the vibrating portion 15 of the crystal diaphragm 10, respectively.
  • First and second extraction electrodes 21 and 22 are extracted from the first and second excitation electrodes 19 and 20, respectively.
  • a first lead-out electrode 21 on one main surface side of the crystal diaphragm 10 shown in FIG. 4A is led out to a partially circular connecting joint pattern 23 formed on the outer frame portion 17 via the connecting portion 18 .
  • a vibration-side first sealing bonding pattern 25 for bonding the crystal diaphragm 10 to the first sealing plate 11 is formed as an annular outer frame surrounding the vibration part 15 . It is formed in an annular shape over the entire circumference of the portion 17 .
  • the bonding pattern 25 for vibration-side first sealing extending along one short side (right side in FIG. 4A) of the crystal plate 10, which is rectangular in plan view, extends along the short side on the other side (left side in FIG. 4A).
  • the width of the connecting pattern 25 for vibration-side first sealing is partially narrower than that of the extending bonding pattern 25 for vibration-side sealing. are formed.
  • the vicinity of each corner of both ends of the one short side of the vibration-side first sealing bonding pattern 25 is formed such that the outer peripheral side is recessed in an arc shape toward the inner peripheral side.
  • the corners expose the surface of the crystal plate and form non-bonding regions 10 a , 10 a that are not bonded to the first sealing plate 11 .
  • the outer frame portion 17 having a substantially rectangular annular shape in a plan view is connected to the vibrating portion 15 via the connecting portion 18 at one side of the substantially rectangular shape on the inner peripheral side (the right side in FIGS. 4A and 4B) as described above. ing.
  • the non-bonded regions 10a, 10a are provided on the substantially rectangular outer frame portion 17 on one side of the substantially rectangular annular outer frame portion 17. As shown in FIG.
  • the vicinity of one corner on the inner peripheral side of the vibration side first sealing bonding pattern 25 extending along the short side of the other side of the crystal plate 10 is recessed toward the outer peripheral side in a partially circular shape. , a circular joint pattern 29 for connection is formed in this recessed portion.
  • connection bonding pattern 24 is formed in a substantially oval shape extending along the short side of the crystal diaphragm 10 so as to overlap the connection bonding pattern 27 on one main surface of the crystal diaphragm 10 in plan view.
  • a vibration-side second sealing bonding pattern 26 for bonding the crystal diaphragm 10 to the second sealing plate 12 is formed on an outer surface of a substantially rectangular ring surrounding the vibration part 15 . It is formed in an annular shape over the entire circumference of the frame portion 17 .
  • the second vibration-side sealing bonding pattern 26 is formed along the short side on one side (the right side in FIG. 4B) of the crystal diaphragm 10, similarly to the first vibration-side sealing bonding pattern 25 on one main surface. A part of the width of the portion extending along the length is formed narrow.
  • the bonding bonding pattern 23 for connection on one main surface of the crystal plate 10 is connected in plan view.
  • Circular connection bonding patterns 28 are formed so as to overlap with each other.
  • the vicinity of each corner of both ends of one short side of the second vibration-side sealing bonding pattern 26 is formed such that the outer peripheral side is recessed in an arc shape toward the inner peripheral side.
  • the corners are non-bonded areas 10b, 10b where the surface of the crystal plate is exposed and not bonded to the second sealing plate 12.
  • the non-joint areas 10b, 10b are provided on one side of the outer frame portion 17 which is connected to the vibrating portion 15 via the connecting portion 18 in the outer frame portion 17 having a substantially rectangular annular shape in plan view.
  • connection bonding pattern 30 is formed so as to overlap the connection bonding pattern 29 on the main surface in plan view.
  • the first through electrodes 31 penetrating between the two principal surfaces are composed of an oval connection bonding pattern 27 on one of the principal surfaces and a substantially oval connection bonding pattern 24 on the other principal surface. is formed at the end on the connecting portion 18 side of the region where the two overlap in plan view.
  • the first through electrode 31 is formed by coating the inner wall surface of the through hole with a metal film.
  • the first through electrode 31 electrically connects the connection bonding pattern 27 on one main surface of the crystal diaphragm 10 and the connection bonding pattern 24 on the other main surface of the crystal diaphragm 10 . Since the connecting joint pattern 24 on the other main surface is electrically connected to the second excitation electrode 20 as shown in FIG. It is electrically connected to the second excitation electrode 20 via the electrode 31 .
  • First and second excitation electrodes 19 and 20, first and second extraction electrodes 21 and 22, vibration side first and second sealing bonding patterns 25 and 26, and connecting bonding pattern 23 of the crystal plate 10 , 24, 27, 28, 29, and 30 are formed by stacking, for example, Au on an underlying layer made of, for example, Ti or Cr.
  • FIG. 5A is a schematic plan view showing one main surface side of the first sealing plate 11, and FIG. 5B is a schematic plane showing the other main surface side seen through from one main surface side of the first sealing plate 11.
  • FIG. It is a diagram.
  • the first sealing plate 11 is a rectangular parallelepiped substrate made of an AT-cut crystal plate similar to the crystal plate 10 .
  • a bonding pattern 25 for bonding vibration-side first sealing on one main surface of the crystal plate 10 is provided for sealing. is formed in an annular shape over the entire circumference of the first sealing plate 11 which is rectangular in plan view.
  • a portion extending along the short side on one side (the right side in FIG. 5B) of the sealing-side first bonding pattern 33 for sealing has a portion formed to have a narrow width, and the width is narrower than the narrow portion.
  • An oval connecting joint pattern 34 extending along the short side is formed on the inside.
  • This connection bonding pattern 34 is bonded to the oblong connection bonding pattern 27 on one main surface of the crystal plate 10 shown in FIG. 4A.
  • the vicinity of each corner of both ends of one short side of the sealing-side first bonding pattern 33 for sealing is formed such that the outer peripheral side is recessed toward the inner peripheral side in an arc shape.
  • Each of the corners exposes the surface of the crystal plate, faces the non-bonded regions 10a, 10a on one main surface of the crystal plate 10, and has a non-bonded region 11a that is not bonded to the crystal plate 10. , 11a.
  • connection bonding pattern 35 is formed.
  • the connection joint pattern 35 is connected to a partially circular connection joint pattern 37 via a connection wiring pattern 36 extending along the long side of the first sealing plate 11 .
  • This connection bonding pattern 37 is bonded to the circular connection bonding pattern 29 of the crystal plate 10 shown in FIG. 4A.
  • first sealing plate 11 shown in FIG. 5A serves as the upper surface of the crystal resonator 3.
  • Rectangular first and second external electrode terminals 40 and 41 are formed at a pair of opposing corners on one main surface, and the first external electrode terminal 40 has a rectangular part It extends to one short side (the right side in FIG. 5A) along the long side of the first sealing plate 11 . That is, the extending portion of the first external electrode terminal 40 and the second external electrode terminal 41 are positioned at both ends of the same short side.
  • the corner portions at both ends of the one short side of the first and second external electrode terminals 40 and 41 are connected to the first and second bonding pads 40a and 41a for wire bonding, which are positions to which bonding wires are connected. It's becoming The first and second bonding pads 40a and 41a form sealing-side first sealing joint patterns 33 at corners of both ends of one short side of the other main surface of the first sealing plate 11. It overlaps with the non-joining area
  • the first sealing plate 11 is formed with second and third through electrodes 38 and 39 penetrating between both main surfaces.
  • Each of the through electrodes 38 and 39 is configured by coating the inner wall surface of the through hole with a metal film.
  • the second through electrode 38 is formed in a region where the second external electrode terminal 41 on one main surface and the oval connection bonding pattern 34 on the other main surface overlap in plan view.
  • the second through electrode 38 electrically connects the second external electrode terminal 41 on one main surface of the first sealing plate 11 and the connection bonding pattern 34 on the other main surface of the first sealing plate 11 . Connecting.
  • connection bonding pattern 34 is bonded and electrically connected to the oval connection bonding pattern 27 on one main surface of the crystal plate 10 shown in FIG. 4A.
  • 27 is electrically connected to the second excitation electrode 20 via the first through electrode 31 of the crystal plate 10 and the connection bonding pattern 24 as described above.
  • the second external electrode terminal 41 of the first sealing plate 11 includes the second through electrode 38, the connection bonding pattern 34, the connection bonding pattern 27 of the crystal plate 10, the first through electrode 31, and the connection bonding pattern. It is electrically connected to the second excitation electrode 20 of the crystal diaphragm 10 via 24 .
  • the third through electrode 39 is formed in a region where the first external electrode terminal 40 on one main surface and the connection bonding pattern 37 on the other main surface overlap in plan view.
  • the third through electrode 39 electrically connects the first external electrode terminal 40 on one main surface of the first sealing plate 11 and the connection bonding pattern 37 on the other main surface of the first sealing plate 11 . Connecting.
  • connection bonding pattern 37 is electrically connected to the connection bonding pattern 35 via the connection wiring pattern 36, as shown in FIG. 5B.
  • the connection bonding pattern 35 is bonded and electrically connected to the connection bonding pattern 23 on one main surface of the crystal diaphragm 10 shown in FIG. 4A as described above. 23 is electrically connected to the first excitation electrode 19 of the crystal diaphragm 10 .
  • the first external electrode terminal 40 of the first sealing plate 11 includes the third through electrode 39 , the connection bonding pattern 37 , the connection wiring pattern 36 , the connection bonding pattern 35 , and the connection bonding of the crystal plate 10 . It is electrically connected to the first excitation electrode 19 of the crystal plate 10 via the pattern 23 .
  • the sealing-side first sealing bonding pattern 33, connecting bonding patterns 34, 35, 37, and connecting wiring pattern 36 of the first sealing plate 11 are formed, for example, on a base layer made of Ti or Cr, for example, Au is laminated and formed.
  • FIG. 6A is a schematic plan view showing one main surface side of the second sealing plate 12, and FIG. 6B is a schematic plane showing the other main surface side seen through from one main surface side of the second sealing plate 12.
  • FIG. It is a diagram.
  • the second sealing plate 12 is a rectangular parallelepiped substrate made of an AT-cut crystal plate similar to the crystal plate 10 and the first sealing plate 11 .
  • a portion extending along the short side on one side (the right side in FIG. 6A) of the sealing-side second sealing bonding pattern 45 has a portion formed with a narrow width, and the width is smaller than the narrow portion.
  • An oval connecting joint pattern 46 extending along the short side is formed on the inside.
  • This connection bonding pattern 46 is bonded to the oval connection bonding pattern 24 on the other main surface of the crystal plate 10 shown in FIG. 4B.
  • the vicinity of each corner of both ends of the short side on the one side of the sealing-side second sealing bonding pattern 45 is formed such that the outer peripheral side is recessed in an arc shape toward the inner peripheral side.
  • Each of the corners exposes the surface of the crystal plate, faces the non-bonded regions 10b, 10b on the other main surface of the crystal plate 10, and has a non-bonded region 12b that is not bonded to the crystal plate 10. , 12b.
  • the small circular connection bonding pattern 28 and the large circular connection bonding pattern 30 on the other main surface of the crystal diaphragm 10 shown in FIG. A small circular joint pattern 47 for connection and a large circular joint pattern 48 for connection to be jointed respectively are formed.
  • the sealing-side second sealing bonding pattern 45 and connecting bonding patterns 46, 47, and 48 of the second sealing plate 12 are formed by laminating, for example, Au on a base layer made of, for example, Ti or Cr. It is configured.
  • the crystal oscillation plate 10 and the first sealing plate 11 form the bonding pattern 25 for the vibration side first sealing and the sealing.
  • Diffusion bonding is performed in a state where the bonding pattern 33 for the first sealing on the stopping side is superimposed, and the crystal plate 10 and the second sealing plate 12 are bonded to the bonding pattern 26 for the second sealing on the vibration side and the second sealing on the sealing side.
  • Diffusion bonding is performed in a state in which the bonding patterns 45 for sealing are overlapped to form a package having a sandwich structure.
  • the accommodation space of the vibrating portion 15 is airtightly sealed without using a special bonding material such as an adhesive.
  • the bonding pattern 25 for the first sealing on the vibration side and the bonding pattern 33 for the first sealing on the sealing side themselves become the bonding material 43a generated after the diffusion bonding, and the second vibration side sealing.
  • the sealing bonding pattern 26 and the sealing-side second sealing bonding pattern 45 themselves become the bonding material 43b generated after the diffusion bonding.
  • connection bonding patterns for connection are also overlapped and diffusion bonded. Specifically, the connection bonding patterns 23, 27, and 29 of the crystal plate 10 and the connection bonding patterns 35, 34, and 37 of the first sealing plate 11 are diffusion-bonded. Then, the connection bonding patterns 23, 27, 29 and the connection bonding patterns 35, 34, 37 themselves become the bonding material 44a generated after the diffusion bonding.
  • connection bonding patterns 24, 28, 30 of the crystal diaphragm 10 and the connection bonding patterns 46, 47, 48 of the second sealing plate 12 are diffusion bonded. Then, the connection bonding patterns 24, 28, 30 and the connection bonding patterns 46, 47, 48 themselves become the bonding material 44b generated after the diffusion bonding.
  • the package-structured crystal resonator 3 containing the vibrating portion 15 is obtained.
  • it is thinner (lower in height) than crystal resonators with a package structure in which a crystal resonator element is housed in a box-shaped ceramic container having a concave portion serving as a housing space, and a lid is joined to hermetically seal it. conversion) can be achieved.
  • the crystal resonator 3 is formed by bonding the second sealing plate 12, which is the lower surface side of the first and second sealing plates 11 and 12, to the inner bottom surface of the base 2 with an adhesive. , is mounted on the base 2 .
  • the first and second bonding pads 40a and 41a of the first and second external electrode terminals 40 and 41 of the first sealing plate 11, which is the upper surface side of the crystal oscillator 3, are arranged as shown in FIGS. It is connected to two electrode pads of IC 4 by bonding wires 13 .
  • FIG. 7 is a partial cross-sectional view of a corner portion of the crystal oscillator 3, and is a cross-sectional view of the vicinity of the second bonding pads 41a shown in FIG. 5A as seen from the direction of arrows AA.
  • FIG. 7 shows the vicinity of the second bonding pads 41a of the crystal oscillator 3
  • the configuration of the vicinity of the first bonding pads 40a is the same.
  • the first and second bonding pads 40a and 41a of the first and second external electrode terminals 40 and 41 of the first sealing plate 11 of the crystal oscillator 3 are connected by the bonding wires 13 as described above. Although it is connected to two electrode pads of the IC 4, the connection position of the first sealing plate 11 by the bonding wire 13 is one of the crystal diaphragm 10 and the first and second sealing plates 11 and 12 in plan view. 11a; 12b at the corners of both ends of the short sides of the side.
  • the non-bonded regions 10a, 10b; 11a This is the portion where the surface of the crystal plate is exposed.
  • each non-bonding region 11a on the other main surface of the first sealing plate 11 and each non-bonding region 10a on one main surface of the crystal plate 10 are opposed to each other and are not bonded. is.
  • each non-bonding region 10b on the other main surface of the crystal diaphragm 10 and each non-bonding region 12b on one main surface of the second sealing plate 12 face each other and are not bonded to each other. It is a non-bonded area.
  • the first non-bonding regions 11a and 10a of the first sealing plate 11 and the crystal plate 10 and the second non-bonding regions 10b and 12b of the crystal plate 10 and the second sealing plate 12 overlap in plan view.
  • the first and second bonding pads 40a and 41a on one main surface of the first sealing plate 10 overlap these first and second non-bonding regions 11a and 10a; 10b and 12b in plan view.
  • each non-bonding region 11a of the first sealing plate 11 and each non-bonding region 10a of the crystal diaphragm 10, which are the first non-bonding regions, are regions that face each other and are not bonded, is formed with a first gap G1 as shown in FIG.
  • a second gap G2 is formed between each non-bonding region 10b of the crystal diaphragm 10 and each non-bonding region 12b of the second sealing plate 12, which are second non-bonding regions.
  • the size range of these gaps G1 and G2 is preferably a size range in which the stress can be relieved without deteriorating the bondability of wire bonding.
  • a dimension of 1000 nm or less is preferable, and about 200 nm to 700 nm is more preferable.
  • the first and second bonding pads 40a and 41a are connected to the first non-bonding regions 11a and 10a with the first gap G1 between the first sealing plate 11 and the crystal vibration plate 10, and the crystal vibration plate. They are located in regions that overlap the second non-bonding regions 10b and 12b, which have the second gap G2 between the plate 10 and the second sealing plate 12, in a plan view.
  • the first and second bonding pads are positioned in areas where the first and second sealing plates 11 and 12 and the crystal plate 10 are completely bonded by the bonding pattern for sealing and there is no gap.
  • the second gaps G1 and G2 can be used to escape and alleviate the problem. As a result, it is possible to prevent the crystal plate 10 and the first and second sealing plates 11 and 12 from being deformed or damaged such as cracks during wire bonding.
  • the first non-bonding region 11a of the first sealing plate 11 and the first non-bonding region 10a of the crystal plate 10 were not formed with a bonding pattern (metal film), Even if a bonding pattern is formed in the first non-bonding region of either the plate 11 or the quartz plate 10, the first non-bonding region of the first sealing plate 11 and the first non-bonding region of the crystal oscillator 10 are not connected. Since a gap can be secured between them, the bonding pattern may be formed in the first non-bonding region of either the first sealing plate 11 or the crystal plate 10 .
  • a bonding pattern may be formed in the second non-bonding region of either the crystal plate 10 or the second sealing plate 12 .
  • the size of the first sealing plate 11 is small, that is, even if the size of the crystal oscillator 3 is reduced, stable wire bonding is possible.
  • Electrode pads other than the two electrode pads of the IC 4 which are wire-bonded to the first and second bonding pads 40a and 41a of the crystal oscillator 3 are connected to the wiring pattern 8 of the base 2 by bonding wires 9 as described above. connected respectively.
  • the IC 4 connects a plurality of external connection terminals such as a power supply terminal, an output terminal, a control terminal, and a GND terminal (not shown) on the outer bottom surface of the base 2 via the internal wiring of the base 2, that is, the mounting of the crystal oscillator 1. are electrically connected to a plurality of external connection terminals for
  • Au is preferable from the viewpoint of reliability, but Cu or the like may also be used.
  • the crystal oscillator 3 and the IC 4 are electrically connected by wire bonding, compared to a configuration in which the crystal oscillator 3 and the IC 4 are electrically connected via a wiring pattern or the like formed on the base 2, A stray capacitance can be reduced, and deterioration of characteristics due to the stray capacitance can be suppressed.
  • the vibrating portion 15 of the crystal plate 10 of the crystal oscillator 3 is hermetically sealed by the first and second sealing plates 11 and 12, and the crystal oscillator 3 is mounted on the base 2.
  • the lid 5 airtightly seals, the vibrating portion 15 of the crystal plate 10 is double airtightly sealed. This makes it possible to suppress frequency fluctuations due to secular change over a long period of time.
  • the crystal oscillator 3 is bonded to the inner bottom surface of the base 2 with an adhesive as described above. Thermal stress generated by heat treatment such as reflow treatment is applied to the crystal oscillator 3 and adversely affects the stability of the frequency.
  • the following measures are taken to suppress the frequency from fluctuating due to thermal stress caused by heat treatment such as reflow treatment.
  • the adhesive that joins the second sealing plate 12 of the crystal oscillator 3 and the inner bottom surface of the base 2 is indicated by an imaginary line that is substantially rectangular in plan view. is applied to the circular central region S of the second sealing plate 12 .
  • the central region S of the second sealing plate 12 of this embodiment vibrates in a rectangular shape in plan view from the center O of the crystal plate 10 (or vibrating portion 15), which is rectangular in plan view and is joined to the second sealing plate 12. It is a circular area in plan view that substantially covers the portion 15 .
  • the circular central region S is a region that overlaps with the vibrating portion 15 in the central portion of the crystal plate 10 in plan view.
  • This central region S is preferably a region covering the first and second excitation electrodes 19 and 20 of the vibrating portion 15 of the crystal plate 10 in a plan view, and more preferably, the vibrating portion 15 of the crystal plate 10. is the area covering the
  • a paste-like adhesive in this embodiment, a conductive adhesive, for example, a polyimide-based, epoxy-based, or silicone-based conductive adhesive, is applied to the circular central region S of the inner bottom surface of the base 2, A crystal oscillator 3 is placed thereon, and the conductive adhesive is cured. Thereby, the crystal oscillator 3 is mechanically held on the base 2 .
  • the adhesive is not limited to a conductive adhesive, and may be a non-conductive adhesive.
  • a shield layer can be formed, and noise and the like can be shielded.
  • the crystal oscillator 3 is bonded to the base 2 with the adhesive at the circular central region S of the second sealing plate 12, so that the crystal oscillator 3 is not deformed as shown in the schematic side view of FIG.
  • the outer peripheral region around the central region S where the second sealing plate 12 is bonded to the inner bottom surface of the base 2 with the adhesive 50 there is a gap between the lower surface of the second sealing plate 12 and the inner bottom surface of the base 2 .
  • a gap G3 is formed.
  • the outer peripheral region where the gap G3 of the second sealing plate 12 is formed overlaps the outer frame portion 17 of the outer peripheral portion of the crystal plate 10 in plan view.
  • the outer frame portion 17 of the outer peripheral portion of the crystal plate 10 is formed so that the outer peripheral portions of the first and second sealing plates 11 and 12 are connected to the vibration side first and second sealing bonding patterns 25 and 26 as described above. and sealing-side first and second sealing bonding patterns 33, 45, etc., respectively.
  • the crystal plate 3 joins the circular central region S of the second sealing plate 12 to the base 2 with the adhesive 50, so that the central region S is restrained and supported by the adhesive 50. Therefore, thermal stress caused by heat treatment such as reflow treatment is applied to the central region S of the second sealing plate 12 bound by the adhesive 50 .
  • the central region S of the second sealing plate 12 is a region that overlaps with the vibrating portion 15 in the central portion of the crystal plate 10 in a plan view. Between the central region S of the second sealing plate 12 and the vibrating portion 15 of the crystal plate 10, as shown in FIG. Since there is a space corresponding to the thickness difference with the portion 17 , the thermal stress applied to the central region S of the second sealing plate 12 is not directly transmitted to the vibrating portion 15 of the crystal plate 10 .
  • the thermal stress applied to the central region S of the second sealing plate 12 is first transmitted to the outer peripheral portion of the second sealing plate 12, and furthermore, the crystal vibrating crystal bonded to the outer peripheral portion of the second sealing plate 12.
  • the vibration is transmitted to the outer frame portion 17 of the plate 10 and transmitted to the vibrating portion 15 supported by the outer frame portion 17 via the connecting portion 18 .
  • the crystal oscillator 3 is bonded to the base 2 at the outer peripheral portion of the second sealing plate 12, so the thermal stress caused by heat treatment such as reflow treatment is constrained by the adhesive. It joins the outer peripheral portion of the second sealing plate 12 . Since the outer frame portion 17 of the crystal plate 10 is bonded to the outer peripheral portion of the second sealing plate 12 , the thermal stress applied to the outer peripheral portion of the second sealing plate 12 is The vibration is transmitted to the frame portion 17 and applied to the vibrating portion 15 which is connected to the outer frame portion 17 via the connecting portion 18 .
  • the thermal stress applied to the outer peripheral portion of the second sealing plate 12 is greater than the thermal stress applied to the central region S of the second sealing plate 12, thereby increasing the vibrating portion in the central portion of the crystal plate 10. 15, and adversely affects the vibrating portion 15.
  • the outer peripheral portion of the second sealing plate 12 and the entire surface of the second sealing plate 12 are bonded. is bonded to the base 2 with an adhesive 50, the effect of thermal stress generated by heat treatment such as reflow treatment on the vibrating portion 15 of the crystal diaphragm 10 can be reduced, and the frequency can be reduced. Fluctuations can be suppressed.
  • the inventor conducted a test to verify the effect of bonding the crystal oscillator 3 to the base 2 with the adhesive 50 on the frequency fluctuation of the crystal oscillator 3 .
  • the crystal oscillator 1 of this embodiment in which the circular central region S of the second sealing plate 12 was bonded to the base 2 with the adhesive 50 as described above, and the circular central region of the second sealing plate 12
  • the four corners of the second sealing plate 12, which is rectangular in plan view, are bonded to the base 2 with an adhesive 50 instead of S, and otherwise the crystal oscillator of the comparative example has the same configuration as that of the present embodiment. and was produced.
  • a hard polyimide-based conductive adhesive was used as the adhesive 50 .
  • a hard polyimide-based adhesive can bond more firmly than a soft silicone-based adhesive, so it is suitable for wire bonding, and wire bonding can be performed stably.
  • the IC 4 can also be treated under the same curing conditions by bonding it to the base 2 using the same hard polyimide-based conductive adhesive as the crystal oscillator 3 .
  • FIGS. 10A and 10B The measurement results are shown in FIGS. 10A and 10B.
  • the horizontal axis is the elapsed time up to 6 hours after the heat treatment
  • the vertical axis is the frequency deviation (ppm) based on the frequency before the heat treatment
  • the frequency deviation before the treatment (dF /F) is set to 0.
  • the average value of the above 80 samples is shown.
  • FIG. 10A shows the frequency deviation of the crystal oscillator of the comparative example
  • FIG. 10B shows the frequency deviation of the crystal oscillator of this embodiment.
  • the crystal oscillator of the comparative example in FIG. 10A has a large frequency deviation over time, whereas the crystal oscillator of this embodiment in FIG. 10B has a small frequency deviation over time and frequency fluctuation is suppressed. I understand.
  • a hard polyimide-based adhesive has stronger adhesion than a soft silicone-based adhesive, and can stably hold the crystal oscillator 3 on the base 2.
  • the restraining force that restrains the second sealing plate 12 of the crystal resonator 3 is correspondingly stronger, the fluctuation of the frequency due to the thermal stress resulting from the heat treatment such as reflow treatment is increased.
  • the central region of the second sealing plate 12 to which the adhesive for joining the second sealing plate 12 to the base 2 is applied is circular in plan view. It may be oval, rectangular or other shape.
  • the central region of the second sealing plate 12 may be a rectangular region that covers the vibrating portion 15 of the crystal diaphragm 10 bonded to the second sealing plate 12 but does not cover the outer frame portion 17.
  • the central region of the second sealing plate 12 may be a rectangular region covering the vibrating portion 15 of the crystal plate 10 .
  • the adhesive 50 is applied to the entire central region S of the second sealing plate 12 and bonded to the inner bottom surface of the base 2. 50 may be applied and bonded to the inner bottom surface of the base 2 .
  • the second sealing plate 12 of the crystal oscillator 3 is bonded to the inner bottom surface of the base 2 with the adhesive 50.
  • other bonding materials such as solder may be used instead of the adhesive. good.
  • the first and second bonding pads 40a and 41a are formed at separated positions on both ends of the short sides of the second sealing plate 11 which is rectangular in plan view. In another embodiment of the invention, the first and second bonding pads may be formed in close proximity.
  • FIGS. 4A and 4B are diagrams showing a crystal diaphragm of a crystal oscillator used in a crystal oscillator according to another embodiment of the present invention, and are diagrams corresponding to FIGS. 4A and 4B. , are given the same reference numerals, and the description thereof is omitted.
  • the part of the bonding pattern 25 1 for first sealing on the vibration side that extends along the short side on the other side (the left side in FIG. 11A) of the crystal plate 10 1 extends from one corner (upper side in FIG. 11A) to the short side.
  • the outer peripheral side enters the inner peripheral side up to approximately the middle position, and the outer side is an area in which the surface of the crystal plate where the bonding pattern is not formed is exposed.
  • the area where the surface of the crystal plate is exposed serves as a non-bonded area 10 1 a that is not bonded to the first sealing plate 11 1 shown in FIG. 12B which will be described later.
  • the portion of the bonding pattern 26 1 for vibration side second sealing that extends along the short side of the other side (the left side in FIG. 11B) of the crystal plate 10 1 is the first vibration side sealing bonding pattern on one main surface side. From one corner (upper in FIG. 11B) to approximately the middle position of the short side, the outer peripheral side enters the inner peripheral side so that the outer peripheral side overlaps the joining pattern 25 1 in plan view, and the joining pattern is formed on the outer side.
  • the surface of the crystal plate, which is not covered with the crystal plate, is an exposed region. The area where the surface of the crystal plate is exposed serves as a non-bonded area 10 1 b that is not bonded to the second sealing plate 12 1 shown in FIG. 13A which will be described later.
  • the bonding patterns 25 1 and 26 1 for vibration-side first and second sealing are formed on the outer peripheral edges of the respective corners at both ends of the short side on the one side of the crystal diaphragm 10 1 .
  • the portion extending along the short side of the other side of the crystal diaphragm 101 extends from the one corner to the approximate middle position of the short side so that the outer circumference side enters the inner circumference side.
  • non-bonded areas 10 1 a and 10 1 b where the surface of the crystal plate on which the bonding pattern is not formed is exposed.
  • the non-bonded regions 10a, 10a; 4A and 4B) is provided on the outer frame portion 17 on one side of the substantially rectangular shape on the inner peripheral side (the side on the right side in FIGS. 4A and 4B).
  • the outer frame portion 17 on one side includes lead electrodes 21 and 22 from the excitation electrodes 19 and 20 of the vibrating portion 15, connection bonding patterns 23, 24, 27 and 28, and vibrating-side sealing electrodes. It is necessary to form wiring and bonding patterns such as the bonding patterns 25 and 26 .
  • the non-bonded regions 10 1 a and 10 1 b are formed in the outer frame portion 17 having a substantially rectangular annular shape in plan view via the connecting portion 18 . It is provided on the outer frame portion 17 on the opposite side (the left side in FIGS. 11A and 11B) opposite to the one side of the substantially rectangular inner periphery connected to the vibrating portion 15 .
  • each drawer formed on the outer frame portion 17 on one side is provided with the non-bonded areas 10a, 10a;
  • the non-bonding area can be formed without being restricted by the wiring and bonding patterns such as the electrodes 21 and 22, the connection bonding patterns 23, 24, 27 and 28, and the vibration side sealing bonding patterns 25 1 and 26 1 . It is easy to secure a sufficient space for providing 10 1 a and 10 1 b.
  • FIGS. 12A and 12B are views showing the first sealing plate bonded to the crystal plate 101 of FIGS. 11A and 11B, and are views corresponding to FIGS. 5A and 5B. are given the same reference numerals, and the description thereof is omitted.
  • the annular sealing-side first sealing bonding pattern 33-1 on the other main surface of the first sealing plate 11-1 shown in FIG. 12B) is formed up to the vicinity of the outer periphery of each corner at both ends of the short side, and unlike each corner of the first sealing plate 11 in FIG. .
  • the portion of the sealing-side first sealing bonding pattern 33-1 extending along the short side on the other side (left side in FIG. 12B) of the first sealing plate 11-1 is one corner (upper side in FIG. 12B).
  • the outer peripheral side enters the inner peripheral side, and the outer side is an area in which the surface of the crystal plate is exposed where the bonding pattern is not formed.
  • the region where the surface of the crystal plate is exposed faces the non-bonded region 10 1 a on one main surface of the crystal plate 10 1 shown in FIG. It has become.
  • This non-bonding region 11 1 a is formed with bonding patterns 25 1 and 26 1 for vibration-side first and second sealing on both main surfaces of the crystal diaphragm 10 1 of FIGS. 11A and 11B in plan view. It overlaps with the non-bonded regions 10 1 a and 10 1 b.
  • Other configurations on the other main surface side of the first sealing plate 111 are the same as those of the first sealing plate 11 in FIG. 5B.
  • a second external electrode terminal 41-1 is formed around the second through electrode 38 on one main surface of the first sealing plate 11-1 shown in FIG. 12A.
  • the second external electrode terminal 41-1 is formed in a rectangular shape at one corner of the short side on one side (the right side in FIG. 12A) of the first sealing plate 11-1 , which is rectangular in plan view. It extends along one long side to the other short side, and further extends slightly along the other short side to the other long side.
  • a second bonding pad 41 1 a is formed on the outer peripheral side of the extending end extending to the other long side along the other short side of the second external electrode terminal 41 1 .
  • the second external electrode terminal 41-1 includes the second through electrode 38, the connection bonding pattern 34, and the crystal plate 10-1 of FIGS. 11A and 11B. It is electrically connected to the second excitation electrode 20 of the crystal diaphragm 101 via the connection bonding pattern 27 , the first through electrode 31 and the connection bonding pattern 24 .
  • a first external electrode terminal 40-1 is formed around the third through electrode 39 on one main surface of the first sealing plate 11-1 .
  • the first external electrode terminal 40-1 extends along the short side from one corner (lower side in FIG. 12A) on the other side (left side in FIG. 12A) of the first sealing plate 11-1 which is rectangular in plan view. While extending toward the second external electrode terminal 411 from the corner, it extends to the short side on one side (the right side in FIG. 12A) along the long side from the corner.
  • the outer peripheral side of the extension end of the first external electrode terminal 40-1 extending toward the second external electrode terminal 41-1 serves as a first bonding pad 40-1a .
  • the first external electrode terminal 401 includes the third through-electrode 39, the connection bonding pattern 37, the connection wiring pattern 36, the connection bonding pattern 35, 11A and 11B, and is electrically connected to the first excitation electrode 19 of the crystal plate 10-1 through the connection bonding pattern 23 of the crystal plate 10-1 .
  • the first and second bonding pads 40 1 a and 41 1 a of the first sealing plate 11 1 are not formed with the sealing-side first sealing bonding pattern 33 1 on the other main surface in plan view. It overlaps with the non-bonding region 11 1 a and also overlaps with the non-bonding regions 10 1 a and 10 1 b where the vibration side first and second sealing bonding patterns 25 1 and 26 1 of the crystal plate 10 1 are not formed. .
  • FIGS. 13A and 13B are views showing the second sealing plate that is bonded to the crystal plate 101 of FIGS. 11A and 11B, and are views corresponding to FIGS. 6A and 6B. are given the same reference numerals, and the description thereof is omitted.
  • the part of the joint pattern 45-1 for vibration-side second sealing that extends along the short side on the other side (the left side in FIG. 13A) of the second sealing plate 12-1 extends from one corner (upper side in FIG. 13A).
  • the outer peripheral side enters the inner peripheral side up to approximately the middle position of the short side, and the outer side is an area where the surface of the crystal plate where the bonding pattern is not formed is exposed.
  • the region where the surface of the crystal plate is exposed faces the non-bonded region 10 1 b on the other main surface of the crystal plate 10 1 in FIG . It has become.
  • This non-bonding region 12 1 b is formed with bonding patterns 25 1 and 26 1 for vibration-side first and second sealing on both main surfaces of the crystal plate 10 1 shown in FIGS. 11A and 11B in plan view.
  • the non-bonding region 11-1 overlaps with the non-bonding regions 10-1a and 10-1b that do not have a sealing-side first sealing bonding pattern 33-1 on the other main surface of the first sealing plate 11-1 .
  • Other configurations on one main surface of the second sealing plate 121 are the same as those of the second sealing plate 12 shown in FIGS. 6A and 6B.
  • the first and second bonding pads 40 1 a and 41 1 a of the first sealing plate 11 1 seal the other main surface of the first sealing plate 11 1 in plan view.
  • a non-bonding region 11 1 a in which the side first sealing bonding pattern 33 1 is not formed, and vibration side first and second sealing bonding patterns 25 1 and 26 1 of the crystal diaphragm 10 1 are not formed. It overlaps with the non-bonding regions 10 1 a and 10 1 b and the non-bonding region 12 1 b where the vibration-side second sealing bonding pattern 45 1 of the second sealing plate 12 1 is not formed.
  • first and second bonding pads 40 1 a and 41 1 a are located in the first non-bonding regions 11 1 a and 11 1 a with the first gap between the first sealing plate 11 1 and the crystal plate 10 1 .
  • 10 1 a and the second non-bonding regions 10 1 b and 12 1 b having a second gap between the crystal diaphragm 10 1 and the second sealing plate 12 1 in plan view. ing.
  • the Excessive pressing force can be relieved and relieved by the first and second gaps of the first and second non-bonding regions 11 1 a, 10 1 a; 10 1 b, 12 1 b. Also, the first and second sealing plates 11 1 and 12 1 can be prevented from being deformed or damaged such as cracks.
  • the first and second bonding pads 40 1 a and 41 1 a are the first and second bonding pads 40 a of the first sealing plate 11 shown in FIGS. 5A and 5B of the above embodiment.
  • 41a which are rectangular in plan view, but not at the corners of both ends of the short sides of the first sealing plate 11, but at close positions on the inner side, wire bonding can be performed stably. can.
  • the first and second excitation electrodes 19 and 20 of the crystal diaphragm plates 10 and 101 and the first and second external electrode terminals of the first sealing plates 11 and 111 40, 41; 40 1 , 41 1 are electrically connected through the through electrodes 31, 38, 39, but in another embodiment of the present invention, electrical connections are made through side electrodes instead of the through electrodes. can be connected directly.
  • FIGS. 4A and 4B are diagrams showing a crystal diaphragm of a crystal oscillator according to another embodiment of the present invention using side electrodes instead of through electrodes, and are diagrams corresponding to FIGS. 4A and 4B. , corresponding parts are denoted by the same reference numerals, and the description thereof is omitted.
  • a bonding pattern 252 for vibration-side first sealing connection is formed in a ring shape on a substantially rectangular ring-shaped outer frame portion 17 surrounding the vibration portion 15. As shown in FIG. ing.
  • the bonding pattern 252 for connection of the first sealing on the vibration side is different from the bonding pattern 25 for first sealing on the vibration side of the crystal diaphragm 10 of FIG. They are electrically connected via electrodes 212 .
  • one end side (upper side in FIG. 14A) of the short side (right side in FIG. 14A) on one side (right side in FIG. 14A) of the crystal plate 10 2 which is rectangular in plan view is an outer peripheral edge.
  • a first wide portion 25 2 a extends up to the edge of the crystal plate 10 2 on the other side (left side in FIG. 14A) of the other short side (lower side in FIG. 14A) near the corner. It is a wide second wide portion 25 2 b extending to the outer peripheral edge.
  • a connecting joint pattern 58 is formed on the outer peripheral edge of the corner of the other side (left side in FIG. 14A) of the crystal diaphragm 10 2 , which is opposite to the second wide portion 25 2 b. ing.
  • This connection joint pattern 58 is continuous with its outer peripheral edge and is connected to a fourth wide portion 26 2 b of a later-described vibration side second seal connection joint pattern 26 2 on the other main surface shown in FIG. 14B.
  • a continuous first side electrode 68 is formed.
  • connection joint pattern 55 is formed on the outer peripheral edge of the diagonal corner of the connection joint pattern 58 .
  • the bonding pattern 25 2 for vibration side first sealing connection extending along the short side of the other side (left side in FIG. 14A) of the crystal diaphragm 10 2 is narrower than the second wide portion 25 2 b,
  • the outside is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed.
  • the area where the surface of the crystal plate is exposed serves as a non-bonded area 10 2 a to which the first sealing plate 11 2 shown in FIG. 15B, which will be described later, is not bonded.
  • a vibration-side second sealing connection bonding pattern 262 is formed in a ring shape on the substantially rectangular ring-shaped outer frame portion 17 surrounding the vibration portion 15 . ing.
  • the bonding pattern 262 for connection of the second sealing on the vibration side differs from the bonding pattern 26 for second sealing on the vibration side of the crystal plate 10 in FIG. They are electrically connected via electrodes 222 .
  • the other end of the short side (lower side in FIG. 14B) of one side (right side in FIG. 14B) of the crystal plate 102 rectangular in plan view is outside.
  • a wide third wide portion 26 2 a extends to the peripheral edge, and one end side (upper side in FIG. 14B) of the short side on the other side (left side in FIG. 14B) of the crystal plate 10 2 extends to the peripheral edge. It is a wide fourth wide portion 26 2 b.
  • the first side electrode 68 is continuous with the outer peripheral edge of the fourth wide portion 26 2 b. Therefore, the fourth wide portion 26 2 b of the bonding pattern 26 2 for second sealing connection on the vibration side is connected to one main surface of the crystal plate 10 2 shown in FIG. It is electrically connected to the connection pattern 58 for use. Since the bonding pattern 262 for vibration-side second sealing connection is electrically connected to the second excitation electrode 20 of the vibration part 15 as described above, it is used for connection to one main surface of the crystal plate 102 . The bonding pattern 58 is electrically connected to the second excitation electrode 20 of the vibrating section 15 via the first side electrode 68 and the bonding pattern 262 for vibration-side second sealing connection.
  • connection bonding pattern 56 extending to the periphery is formed.
  • the bonding pattern 26 2 for vibration side second sealing connection extending along the short side of the other side (left side in FIG. 14B) of the crystal plate 10 2 is narrower than the fourth wide portion 26 2 b,
  • the outside is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed.
  • the area where the surface of the crystal plate is exposed serves as a non-bonded area 10 2 b to which the second sealing plate 12 2 in FIG. 16A, which will be described later, is not bonded.
  • the non-bonding region 10 2 a on one main surface of the crystal plate 10 2 and the non-bonding region 10 2 b on the other main surface of the crystal plate 10 2 are, in plan view, the other side of the crystal plate 10 2 ( FIG. 14A , Left side of FIG. 14B) overlaps at the middle portion except for both end portions of the short side.
  • 15A and 15B are views showing the first sealing plate bonded to the crystal plate 102 of FIGS. 14A and 14B, and are views corresponding to FIGS. 5A and 5B.
  • the sealing-side first sealing-connection bonding pattern 33 2 is substantially the same as the vibration-side first sealing-connection bonding pattern 25 2 on one main surface of the crystal plate 10 2 in FIG. It has a similar bonding pattern, and is bonded and electrically connected to the vibration-side first sealing connection bonding pattern 25-2 on one main surface of the crystal plate 102. As shown in FIG. The bonding pattern 25 2 for vibration-side first sealing connection on one main surface of the crystal plate 10 2 is electrically connected to the first excitation electrode 19 of the vibrating section 15 as described above. The bonding pattern 33 2 for sealing side first sealing connection on the other main surface of the 1 sealing plate 11 2 is electrically connected to the first excitation electrode 19 of the vibrating section 15 .
  • the second wide portion 33 2 b of the sealing-side first sealing connection bonding pattern 33 2 is formed with a second side electrode 70 that is continuous with the outer peripheral edge of the second wide portion 33 2 b. It is electrically connected to the first excitation electrode 19 of the vibrating section 15 via the bonding pattern 332 for sealing-side first sealing connection.
  • This second side electrode 70 is a fourth side electrode 66 that is continuous with the outer peripheral edge of the second wide portion 25 2 b of the vibration side first sealing connection bonding pattern 25 2 of the crystal diaphragm 10 2 shown in FIG. 14A. is also electrically connected to
  • connection bonding pattern 59 is bonded to the connection bonding pattern 58 on one main surface of the crystal plate 102 in FIG. 14A.
  • the connection bonding pattern 58 is connected to the second excitation electrode of the vibrating section 15 via the first side electrode 68 and the vibration side second sealing connection bonding pattern 262 of the crystal diaphragm 102 of FIG. 14B as described above. 20 is electrically connected.
  • connection bonding pattern 59 on the other main surface of the first sealing plate 112 is also electrically connected to the second excitation electrode 20 of the vibrating portion 15 of the crystal plate 102 .
  • a third side electrode 72 is formed continuously on the outer peripheral edge of the connection bonding pattern 59 . Therefore, this third side electrode 72 is also electrically connected to the second excitation electrode 20 of the vibrating portion 15 of the crystal diaphragm 102 .
  • connection joint pattern 57 is formed on the outer peripheral edge of the diagonal corner of the connection joint pattern 59 .
  • the sealing-side first sealing connection bonding pattern 33-2 extending along the short side of the other side (the left side in FIG . 15B) of the first sealing plate 11-2 is wider than the second wide portion 33-2b . is narrow, and the outside is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed.
  • the region where the surface of the crystal plate is exposed faces the non-bonded region 10 2 a on one main surface of the crystal plate 10 2 shown in FIG. 2 a.
  • bonding patterns 25 2 and 26 2 for vibration-side first and second sealing connections on both main surfaces of the crystal plate 10 2 shown in FIGS. 14A and 14B are formed in plan view. It substantially overlaps the non-bonded regions 10 2 a and 10 2 b.
  • First and second external electrode terminals 40.sub.2 and 41.sub.2 are formed extending along the short sides to near their intermediate positions.
  • the second side electrode 70 is continuous with the outer peripheral edge of the first external electrode terminal 402 , and the second side electrode 70 is connected to the first electrode of the vibrating portion 15 of the crystal plate 102 as described above. Since it is electrically connected to the excitation electrode 19, the first external electrode terminal 40-2 is also electrically connected to the first excitation electrode 19 of the vibrating portion 15 of the crystal diaphragm 10-2 .
  • the third side electrode 72 is continuous with the outer peripheral edge of the second external electrode terminal 412 , and the third side electrode 72 is connected to the second electrode of the vibrating portion 15 of the crystal plate 102 as described above. Since it is electrically connected to the excitation electrode 20, the second external electrode terminal 41-2 is also electrically connected to the second excitation electrode 20 of the vibrating portion 15 of the crystal diaphragm 10-2 .
  • the first and second external electrode terminals 40 2 and 41 2 are located substantially in the middle of the short sides of the other side (left side in FIG. 15A) of the first sealing plate 11 2 which is rectangular in plan view. 1, second bonding pads 40 2 a and 41 2 a are formed.
  • the first and second bonding pads 40 2 a and 41 2 a of the first sealing plate 11 2 are formed with the bonding pattern 33 2 for sealing side first sealing connection on the other main surface in plan view.
  • the non-bonded region 11 2a overlaps with the non-bonded region 11 2 a and the vibration-side first and second sealing connection bonding patterns 25 2 and 26 2 of the crystal diaphragm 10 2 shown in FIGS. 14A and 14B are not formed. It overlaps the regions 10 2 a and 10 2 b.
  • 16A and 16B are diagrams showing the second sealing plate bonded to the crystal plate 102 of FIGS. 14A and 14B, corresponding to FIGS. 6A and 6B.
  • the bonding pattern 262 for vibration-side second sealing connection on the other main surface of the crystal plate 102 is substantially the same as the bonding pattern 262 for the vibration-side second sealing connection on the other main surface of the crystal plate 102. Bonded to bonding pattern 262 .
  • one end side (lower side in FIG. 16A) of the short side of the second sealing plate 12 2 that is rectangular in plan view (right side in FIG. 16A) is A wide first wide portion 45 2 a extends to the outer peripheral edge, and the other end side (upper side in FIG. 16A) of the short side of the other side (left side in FIG. 16A) of the second sealing plate 12 2 extends outward. It is a wide second wide portion 45 2 b extending to the peripheral edge.
  • the sealing-side first sealing bonding pattern 45 2 on the short side of the other side (left side in FIG. 16A) of the second sealing plate 12 2 is narrower than the second wide portion 45 2 b, and is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed.
  • the area where the surface of the crystal plate is exposed is a non-bonding area 12 2 b to which the bonding pattern 26 2 for second sealing connection on the vibrating side of the crystal plate 10 2 is not bonded.
  • This non-bonded region 12 2 b partially overlaps the non-bonded regions 10 2 a and 10 2 b of the crystal diaphragm 10 2 and overlaps the non-bonded region 11 2 a of the first sealing plate 11 2 in plan view. partially overlaps with
  • connection bonding pattern 60 is formed.
  • the excessive pressure is applied to the non-bonded regions 11 2 a and 10 2 of the first sealing plate 11 2 , the crystal plate 10 2 and the second sealing plate 12 2 . a; It can be relieved by the first and second gaps of 10 2 b and 12 2 b, and the crystal diaphragm 10 2 and the first and second sealing plates 11 2 and 12 2 may be deformed, Damage can be prevented.
  • the non-bonded regions 10 2 a and 10 2 b of the crystal diaphragm 10 2 are located on the inner peripheral side of the outer frame portion 17 which is substantially rectangular and annular in plan view and is connected to the vibrating portion 15 via the connecting portion 18 . It is provided on the outer frame portion 17 on the opposite side (the left side in FIGS. 14A and 14B) opposite to one side of the rectangle (the right side in FIGS. 14A and 14B).
  • the non-bonded areas 10 2 a and 10 2 b of the crystal diaphragm 10 2 are located on the opposite side of the outer frame portion 17 to the one side connected to the vibrating portion 15 via the connecting portion 18 . It is provided on the outer frame portion 17 on the side. 4A and 4B, the non-bonded regions 10a, 10a; In contrast to the outer frame portion 17 on the right side of FIG. 4B, in this embodiment, Since the non-bonded regions 10 2 a and 10 2 b are provided on the outer frame portion 17 on the side opposite to one side, the distance from the connecting portion 18 is long.
  • the non-bonding regions 10 2 a and 10 2 b overlap the first and second bonding pads 40 2 a and 41 2 a of the first sealing plate 11 2 in plan view. Therefore, a pressing force is applied to the non-bonding regions 10 2 a and 10 2 b in order to connect the bonding wires. It is possible to reduce the transmission of the pressing force applied to the non-bonded regions 10 2 a and 10 2 b to the vibrating portion 15 via the connecting portion 18 .
  • the first and second bonding pads 40 2 a and 41 2 a are located on the short side of the other side (left side in FIG. 15A) of the first sealing plate 11 2 . It is formed at a substantially intermediate position.
  • One end of the short side is a joint portion between the connection joint pattern 59 shown in FIG. 15B and the connection joint pattern 58 of the crystal plate 102 shown in FIG. 14A.
  • both ends of the short side are firmly joined.
  • both ends of the short side are connected to the first and second bonding pads 40 a and 41 a shown in FIG. 5A.
  • Wire bonding can be performed more stably than when wire bonding is performed at the corners.
  • test terminals 75 and 76 for testing are formed on one main surface of the first sealing plate 112 , as shown in FIG. 15A.
  • One test terminal 75 is connected to the first excitation electrode 19 of the vibration part 15 via the side electrode 69, the sealing-side first sealing connection bonding pattern 33 2 , and the vibration-side first sealing connection bonding pattern 25 2 . electrically connected.
  • the side electrode 69 is also electrically connected to the side electrode 65 continuous to the outer peripheral edge of the first wide portion 25 2 a of the bonding pattern 25 2 for first sealing connection on the vibration side.
  • the other test terminal 76 is connected to the second excitation electrode of the vibrating part 15 through the side electrode 71, the connection bonding pattern 57, the connection bonding pattern 55, the side electrode 67, and the vibration side second sealing connection bonding pattern 262 . 20 is electrically connected.
  • FIG. 17 is a schematic side view showing a state in which a crystal oscillator according to another embodiment of the present invention is bonded to a base, and is a view corresponding to FIG. 9 above
  • FIG. FIG. 6C is a schematic plan view showing the other main surface side of the second sealing plate, and is a view corresponding to FIG. 6B.
  • the other main surface of the second sealing plate 123 that is, the main surface of the side to be bonded to the inner bottom surface of the base 2 with the adhesive 50, is coated with the adhesive 50 on the outer side of the circular central region S.
  • a circular annular groove 55 is formed so as to surround the entire circumference of the central region S. As shown in FIG.
  • the circular annular groove 55 is formed outside the central region S where the second sealing plate 12-3 of the crystal unit 3-3 is joined to the base 2 in this manner, the heat caused by heat treatment such as reflow treatment is prevented.
  • the stress is applied to the central region S of the second sealing plate 123 restrained by the adhesive 50, it is relieved and absorbed by the annular groove 55 and transmitted to the outer peripheral portion of the second sealing plate 123. can reduce thermal stress.
  • the thermal stress transmitted from the outer peripheral portion of the second sealing plate 123 to the vibrating portion 15 via the outer frame portion 17 of the crystal diaphragm 10 can be reduced, effectively suppressing frequency fluctuations. can do.
  • the groove formed outside the area to which the adhesive is applied is not limited to an annular groove, and may be a plurality of divided grooves or recesses, and the planar shape thereof may be linear, circular, or other. It may be in shape.
  • the crystal oscillator 3 and the IC 4 are placed horizontally and mounted on the base 2, but the crystal oscillator and electronic components such as ICs may be arranged in layers.
  • FIG. 19 is a schematic configuration diagram of a constant temperature oven type crystal oscillator according to another embodiment of the present invention.
  • an oscillation IC 83, a crystal oscillator 84, and a heater IC 85 are laminated in order from above on an insulating substrate 82 accommodated in a concave portion of a base 81.
  • a lid 86 is joined to the edge of the upper opening for hermetic sealing.
  • the oscillation IC 83 is mounted on the crystal oscillator 84 via a plurality of metal bumps.
  • the crystal oscillator 84 has a sandwich structure composed of three layers of a crystal oscillation plate and first and second sealing plates, as in the above embodiment.
  • the heater IC 85 has a configuration in which a heating element, a control circuit for controlling the temperature of the heating element, and a temperature sensor for detecting the temperature of the heating element are integrated.
  • the crystal oscillator 84 and the heater IC 85 are wire-bonded to connection electrodes on the upper surface of the step on the inner peripheral side of the base 81 by bonding wires 87 and 88, respectively.
  • connection position of the crystal oscillator 84 by the bonding wire 87 overlaps the non-bonded area where the crystal oscillator plate and the first and second sealing plates are not bonded in plan view, as in each of the above-described embodiments.
  • the first gap is formed between the non-bonded region of the first sealing plate and the non-bonded region of the crystal plate, and the non-bonded region of the second sealing plate and the crystal plate are separated from each other.
  • the second gap is formed between the non-bonded region and the non-bonded region
  • the non-bonded region of the first sealing plate and the non-bonded region of the crystal plate are omitted and the two are bonded.
  • the first gap between the first sealing plate and the crystal diaphragm may be eliminated, or the non-bonding region of the second sealing plate and the crystal diaphragm are omitted and the two are bonded,
  • the second gap between the second sealing plate and the crystal diaphragm may be eliminated.
  • the vibrating portion 15 of the crystal diaphragm 10 is connected to the outer frame portion 17 on the outer periphery by the connecting portion 18 at one location, but the connecting portions are formed at a plurality of locations so that the outer frame portion is connected at a plurality of locations.
  • the space 16 formed by the penetrating portion between the vibrating portion 15 and the outer frame portion 17 may be omitted, and the entire circumference of the thin vibrating portion 15 may be connected to the outer frame portion 17 .
  • the vibrating portion 15 in the central portion of the crystal plate 10 is formed thinner than the outer frame portion 17, but the vibrating portion and the outer frame portion of the crystal plate may have the same thickness.
  • a bonding material that joins the crystal plate and the first and second sealing plates is thickened to form a space between the vibrating portion of the crystal plate and the first and second sealing plates.
  • crystal was used for the first and second sealing plates 11 and 12, but the material is not limited to this, and other insulating materials such as glass may be used.
  • the AT-cut crystal is used for the crystal plate 10 in the above-described embodiment, it is not limited to this, and a crystal other than the AT-cut crystal may be used.
  • a piezoelectric diaphragm made of a piezoelectric material such as lithium tantalate or lithium niobate may be used.
  • the through electrodes 31, 38, and 39 are formed by coating the inner wall surfaces of the through holes with a metal film, but the through holes may be filled with a conductive material.
  • the base 2 has a recess for mounting the crystal oscillator 3 and the like
  • the lid 5 has a flat plate shape.
  • a lid having a concave portion may be placed so as to cover the crystal oscillator or the like on the base.
  • the base may be flat, the lid may be omitted, and the crystal oscillator or the like on the wire-bonded base may be molded with resin.
  • the base is not limited to ceramic, and may be a glass epoxy substrate, a silicon substrate, a glass substrate, a crystal substrate, or the like.
  • the IC 4 as an electronic component is mounted on the base 2 together with the crystal oscillator 3 and hermetically sealed by joining the lid 5.
  • the electronic component is omitted.
  • only the crystal oscillator may be mounted on the base and hermetically sealed by joining the lid.
  • the IC 4 and the crystal oscillator 3 as electronic components are arranged side by side on the base 2, but the electronic components may be stacked on the crystal oscillator, for example.
  • a base with an H-shaped cross section may be used as the base, and the crystal oscillator may be mounted on one of the upper and lower concave portions, and the electronic component may be mounted on the other.
  • the crystal oscillator is not limited to the above embodiment, and may be a temperature compensated crystal oscillator (TCXO) or the like.

Abstract

In the present invention, a bonding pad for wire bonding is formed on the outer surface of a first sealing plate of a piezoelectric oscillator having the first sealing plate and a second sealing plate, which are joined to the two main surfaces of a piezoelectric oscillation plate. Non-joining regions that are not joined to each other are provided to part of the outer peripheral portion of one sealing plate among the first and second sealing plates and to part of the outer peripheral portion of the piezoelectric oscillation plate. The bonding pad overlaps the non-joining region in plan view.

Description

圧電振動子及び圧電振動デバイスPiezoelectric vibrator and piezoelectric vibration device
 本発明は、圧電振動子及び圧電振動デバイスに関する。 The present invention relates to piezoelectric vibrators and piezoelectric vibrating devices.
 圧電振動デバイス、例えば圧電発振器として、特許文献1には、圧電振動子を、発振回路等を内蔵したICと共にパッケージの凹部内に並べて配置し、蓋体によってパッケージを気密封止した圧電発振器が開示されている。 As a piezoelectric vibration device, for example, a piezoelectric oscillator, Patent Document 1 discloses a piezoelectric oscillator in which a piezoelectric oscillator is arranged side by side in a recess of a package together with an IC containing an oscillation circuit and the like, and the package is hermetically sealed with a lid. It is
 この特許文献1では、前記圧電振動子は、圧電振動片を容器の凹部内に収容して、蓋体で容器を覆って圧電振動片を気密封止する。この圧電振動子の上下を反転させて、容器の蓋体側を下面として前記パッケージの凹部内に接着剤で接合し、外部接続端子が形成されている容器の底面側を上面とし、前記外部接続端子と前記ICとをボンディングワイヤによって電気的に接続している。 In Patent Document 1, the piezoelectric vibrator accommodates the piezoelectric vibrating piece in a concave portion of a container, and the container is covered with a lid to hermetically seal the piezoelectric vibrating piece. This piezoelectric vibrator is turned upside down, and is bonded to the concave portion of the package with the lid side of the container as the lower surface with an adhesive. and the IC are electrically connected by bonding wires.
特許第6083214号公報Japanese Patent No. 6083214
 上記特許文献1では、圧電振動子の前記容器の底面に形成されている外部接続端子とICとをボンディングワイヤで電気的に接続しているので、ボンディングワイヤの接続の際に、圧電振動子の容器に押圧力がかかり、圧電振動子の容器を損傷する虞があるが、特許文献1では、圧電振動子のボンディングワイヤによる接続については、特段考慮されていない。 In Patent Document 1, the external connection terminals formed on the bottom surface of the container of the piezoelectric vibrator and the IC are electrically connected by bonding wires. Although there is a risk of damage to the container of the piezoelectric vibrator due to the pressing force applied to the container, Patent Document 1 does not particularly consider the connection of the piezoelectric vibrator with a bonding wire.
 本発明は、上記のような点に鑑みて為されたものであって、圧電振動子をワイヤボンディングする際に、圧電振動子に損傷が生じるのを防止することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to prevent the piezoelectric vibrator from being damaged when the piezoelectric vibrator is wire-bonded.
 本発明では、上記目的を達成するために、次のように構成している。 In order to achieve the above objectives, the present invention is configured as follows.
 (1)本発明に係る圧電振動子は、両主面に第1,第2励振電極がそれぞれ形成された圧電振動板を有すると共に、前記圧電振動板の前記両主面にそれぞれ接合される第1,第2封止板を有する圧電振動子であって、前記第1,第2封止板は、その外周部が前記圧電振動板の前記両主面の外周部にそれぞれ接合されて、前記第1,第2励振電極を含む前記圧電振動板の振動部を気密に封止するものであり、前記第1封止板の外面には、前記圧電振動板の前記第1,第2励振電極のいずれかの励振電極に電気的に接続されたワイヤボンディング用のボンディングパッドが形成されており、前記第1,第2封止板の少なくとも一方の封止板の外周部の一部と前記圧電振動板の外周部の一部には、互いに対向して接合されない非接合領域が設けられ、前記第1封止板の外面の前記ボンディングパッドは、平面視で前記非接合領域に重なるように形成されている。 (1) A piezoelectric vibrator according to the present invention has a piezoelectric vibrating plate having first and second excitation electrodes respectively formed on both main surfaces thereof, and a second vibrator bonded to each of the main surfaces of the piezoelectric vibrating plate. 1. A piezoelectric vibrator having second sealing plates, wherein the outer peripheral portions of the first and second sealing plates are respectively bonded to the outer peripheral portions of the two main surfaces of the piezoelectric vibration plate, and the The vibrating portion of the piezoelectric diaphragm including the first and second excitation electrodes is hermetically sealed, and the first and second excitation electrodes of the piezoelectric diaphragm are provided on the outer surface of the first sealing plate. A bonding pad for wire bonding electrically connected to one of the excitation electrodes is formed, and a part of the outer peripheral portion of at least one of the first and second sealing plates and the piezoelectric A non-bonded region is provided in a part of the outer periphery of the diaphragm so as to face each other and is not bonded, and the bonding pads on the outer surface of the first sealing plate are formed so as to overlap the non-bonded region in a plan view. It is
 本発明に係る圧電振動子によると、圧電振動板の両主面に第1,第2封止板を接合して、圧電振動板の振動部を気密封止する圧電振動子は、第1封止板の外面に、ワイヤボンディング用のボンディングパッドが形成され、このボンディングパッドは、平面視で、第1,第2封止板の少なくとも一方の封止板の外周部の非接合領域と圧電振動板の外周部の非接合領域とに重なるように形成されている。 According to the piezoelectric vibrator of the present invention, the piezoelectric vibrator in which the first and second sealing plates are bonded to both main surfaces of the piezoelectric vibrating plate to hermetically seal the vibrating portion of the piezoelectric vibrating plate includes the first sealing plate. A bonding pad for wire bonding is formed on the outer surface of the stop plate, and the bonding pad is in contact with the non-bonded area on the outer peripheral portion of at least one of the first and second sealing plates and the piezoelectric vibration in plan view. It is formed so as to overlap with the non-bonded region of the outer peripheral portion of the plate.
 第1,第2封止板の少なくとも一方の封止板の外周部の非接合領域と、圧電振動板の外周部の非接合領域とは、互いに対向して接合されない領域であるので、前記少なくとも一方の封止板の非接合領域と圧電振動板の非接合領域との間には、隙間が形成されている。これによって、第1封止板のボンディングパッドに、ボンディングワイヤを接続するための押圧力がかかったときに、前記少なくとも一方の封止板と圧電振動板との間の隙間によって、過剰な押圧力を逃がして押圧力を緩和することができるので、ワイヤボンディングの際に、圧電振動板及び第1,第2封止板が変形したり、破損するのを防止することができる。 The non-bonded region on the outer periphery of at least one of the first and second sealing plates and the non-bonded region on the outer periphery of the piezoelectric diaphragm are regions that face each other and are not bonded. A gap is formed between the non-bonded area of one sealing plate and the non-bonded area of the piezoelectric diaphragm. As a result, when a pressing force for connecting a bonding wire is applied to the bonding pads of the first sealing plate, the gap between the at least one sealing plate and the piezoelectric vibration plate causes an excessive pressing force. can be released and the pressing force can be relieved, it is possible to prevent the piezoelectric vibration plate and the first and second sealing plates from being deformed or damaged during wire bonding.
 (2)本発明の好ましい実施態様では、前記第1封止板の外面には、前記ボンディングパッドとして、前記圧電振動板の前記第1,第2励振電極にそれぞれ電気的に接続されたワイヤボンディング用の第1,第2ボンディングパッドが形成されている。 (2) In a preferred embodiment of the present invention, wire bonding electrodes electrically connected to the first and second excitation electrodes of the piezoelectric vibration plate are provided as the bonding pads on the outer surface of the first sealing plate. First and second bonding pads for are formed.
 この実施態様によると、第1封止板の外面に、圧電振動板の第1,第2励振電極にそれぞれ電気的に接続されたワイヤボンディング用の第1,第2ボンディングパッドが形成され、第1,第2ボンディングパッドは、平面視で、第1,第2封止板の少なくとも一方の封止板の外周部の非接合領域と圧電振動板の外周部の非接合領域とに重なるように形成されているので、第1封止板の第1,第2ボンディングパッドに、ボンディングワイヤをそれぞれ接続するための押圧力がかかったときに、前記少なくとも一方の封止板の外周部の非接合領域と圧電振動板の外周部の非接合領域との間の隙間によって、過剰な押圧力を逃して押圧力を緩和することができる。 According to this embodiment, the first and second bonding pads for wire bonding electrically connected to the first and second excitation electrodes of the piezoelectric diaphragm are formed on the outer surface of the first sealing plate. The first and second bonding pads are arranged so as to overlap, in a plan view, a non-bonded region on the outer periphery of at least one of the first and second sealing plates and a non-bonded region on the outer periphery of the piezoelectric diaphragm. Therefore, when a pressing force for connecting bonding wires is applied to the first and second bonding pads of the first sealing plate, the outer peripheral portion of the at least one sealing plate is not bonded. The gap between the area and the non-bonded area on the outer periphery of the piezoelectric diaphragm allows the excessive pressing force to escape and relax the pressing force.
 (3)本発明の一実施態様では、前記第1封止板の外周部の一部と前記圧電振動板の外周部の一部には、前記非接合領域としての第1非接合領域がそれぞれ設けられ、前記第2封止板の外周部の一部と前記圧電振動板の外周部の一部には、前記非接合領域としての第2非接合領域がそれぞれ設けられ、前記第1非接合領域と前記第2非接合領域とが、平面視で重なっている。 (3) In one embodiment of the present invention, a first non-bonding area as the non-bonding area is formed on a part of the outer peripheral part of the first sealing plate and a part of the outer peripheral part of the piezoelectric vibration plate. A second non-bonding region is provided as the non-bonding region in a part of the outer periphery of the second sealing plate and a part of the outer periphery of the piezoelectric diaphragm, respectively. The area and the second non-bonded area overlap in plan view.
 この実施態様によると、第1封止板の外周部及び圧電振動板の外周部にそれぞれ設けられる、互いに対向して接合されない非接合領域である第1非接合領域と、第2封止板の外周部及び圧電振動板の外周部にそれぞれ設けられる、互いに対向して接合されない非接合領域である第2非接合領域とが、平面視で重なっている。このため、第1封止板の外周部の第1非接合領域と圧電振動板の外周部の第1非接合領域との間に形成される第1の隙間と、第2封止板の外周部の第2非接合領域と圧電振動板の外周部の第2非接合領域との間に形成される第2の隙間とが平面視で重なることになる。これによって、第1封止板のボンディングパッドに、ボンディングワイヤを接続するための押圧力がかかったときに、ボンディングパッドと平面視で重なる第1,第2の隙間によって、過剰な押圧力を一層効果的に逃がすことができるので、ワイヤボンディングの際に、圧電振動板及び第1,第2封止板が変形したり、破損するのを防止することができる。 According to this embodiment, the first non-bonding region, which is a non-bonding region facing each other and not bonded, and the second sealing plate are provided on the outer peripheral portion of the first sealing plate and the outer peripheral portion of the piezoelectric diaphragm, respectively. The outer peripheral portion and the second non-bonded region, which are non-bonded regions facing each other and provided on the outer peripheral portion of the piezoelectric diaphragm, overlap each other in a plan view. For this reason, the first gap formed between the first non-bonded region on the outer periphery of the first sealing plate and the first non-bonded region on the outer periphery of the piezoelectric diaphragm and the outer periphery of the second sealing plate In a plan view, the second non-bonded region of the portion overlaps with the second gap formed between the second non-bonded region of the outer peripheral portion of the piezoelectric diaphragm. As a result, when a pressing force for connecting a bonding wire is applied to the bonding pads of the first sealing plate, the first and second gaps overlapping the bonding pads in plan view further reduce the excessive pressing force. Since it can escape effectively, it is possible to prevent the piezoelectric diaphragm and the first and second sealing plates from being deformed or damaged during wire bonding.
 (4)本発明の他の実施態様では、前記外周部の一部の非接合領域が、前記第1,第2封止板の少なくとも一方の封止板及び前記圧電振動板の外周縁部である。 (4) In another embodiment of the present invention, the part of the non-bonded region of the outer peripheral portion is the outer peripheral edge portion of at least one of the first and second sealing plates and the piezoelectric diaphragm. be.
 この実施態様によると、封止板の外周部及び圧電振動板の外周部にそれぞれ設けられる非接合領域は、封止板及び圧電振動板の外周縁部にそれぞれ設けられるので、この外周縁部の非接合領域に平面視で重なる位置でワイヤボンディングする一方、外周縁部の内周側で、封止板と圧電振動板とを強固に接合して、圧電振動板の振動部を気密に封止することができる。 According to this embodiment, the non-bonded regions provided on the outer peripheral portion of the sealing plate and the outer peripheral portion of the piezoelectric diaphragm are respectively provided on the outer peripheral edge portions of the sealing plate and the piezoelectric diaphragm. While wire bonding is performed at a position that overlaps the non-bonded area in plan view, the sealing plate and the piezoelectric diaphragm are firmly bonded on the inner peripheral side of the outer peripheral edge to airtightly seal the vibrating portion of the piezoelectric diaphragm. can do.
 (5)本発明の更に他の実施態様では、前記圧電振動板は、該圧電振動板の中央部に形成された前記振動部と、該振動部の周囲を囲むように前記圧電振動板の外周部に形成されると共に、前記振動部より厚肉の外枠部とを有し、前記第1,第2封止板は、その外周部が、前記圧電振動板の前記外枠部の両主面にそれぞれ接合され、前記第1,第2封止板の少なくとも一方の封止板の外周部の一部と前記圧電振動板の外周部の前記外枠部の一部には、前記非接合領域がそれぞれ設けられる。 (5) In still another embodiment of the present invention, the piezoelectric diaphragm includes the vibrating portion formed in the central portion of the piezoelectric vibrating plate and the outer circumference of the piezoelectric vibrating plate so as to surround the vibrating portion. and an outer frame portion thicker than the vibrating portion. A portion of the outer peripheral portion of at least one of the first and second sealing plates and a portion of the outer frame portion of the outer peripheral portion of the piezoelectric vibration plate are bonded to the respective surfaces, and the non-bonded Each region is provided.
 この実施態様によると、第1封止板の外面のボンディングパッドに平面視で重なる非接合領域は、第1,第2封止板の少なくとも一方の封止板の外周部及び圧電振動板の外枠部にそれぞれ設けられるので、第1封止板のボンディングパッドに、ボンディングワイヤを接続するためにかかる押圧力を、圧電振動板では、薄肉の振動部ではなく、この振動部を支持する厚肉の外枠部で安定して受止めることができる。 According to this embodiment, the non-bonding region overlapping the bonding pad on the outer surface of the first sealing plate in a plan view includes the outer peripheral portion of at least one of the first and second sealing plates and the outer surface of the piezoelectric diaphragm. Since the piezoelectric vibration plate is provided on each of the frame portions, the pressing force applied to connect the bonding wires to the bonding pads of the first sealing plate is applied not to the thin vibrating portion but to the thick vibrating portion that supports the vibrating portion. can be stably received by the outer frame of the
 (6)本発明の一実施態様では、前記圧電振動板の前記外枠部は、前記振動部の周囲を、間隔を空けて囲むと共に、前記振動部に連結部を介して連結されている。 (6) In one embodiment of the present invention, the outer frame portion of the piezoelectric diaphragm surrounds the vibrating portion with a space therebetween and is connected to the vibrating portion via a connecting portion.
 この実施態様によると、圧電振動板の中央部の振動部の周囲は、連結部を除いて外枠部と間隔が空いているので、外枠部を介して振動部に伝達される応力を低減することができる。 According to this embodiment, the circumference of the vibrating portion in the central portion of the piezoelectric diaphragm is spaced apart from the outer frame portion except for the connecting portion, thereby reducing the stress transmitted to the vibrating portion via the outer frame portion. can do.
 (7)本発明の他の実施態様では、前記圧電振動子の前記第1封止板の外面の前記ボンディングパッドは、平面視で、前記圧電振動板の前記外枠部の前記非接合領域に重なるように形成されている。 (7) In another embodiment of the present invention, the bonding pads on the outer surface of the first sealing plate of the piezoelectric vibrator are located in the non-bonding area of the outer frame portion of the piezoelectric diaphragm in plan view. formed to overlap.
 この実施態様によると、第1封止板の外面のボンディングパッドは、平面視で圧電振動板の外枠部の非接合領域に重なるので、第1封止板のボンディングパッドに、ボンディングワイヤを接続するためにかかる押圧力を、圧電振動板の厚肉の外枠部で安定して受止めることができる。 According to this embodiment, since the bonding pads on the outer surface of the first sealing plate overlap the non-bonding regions of the outer frame portion of the piezoelectric diaphragm in a plan view, the bonding wires are connected to the bonding pads of the first sealing plate. The thick outer frame portion of the piezoelectric diaphragm can stably receive the pressing force applied to the piezoelectric diaphragm.
  (8) 本発明の好ましい実施態様では、前記圧電振動板の前記振動部は、平面視略矩形であり、前記圧電振動板の前記外枠部は、平面視略矩形環状であり、前記外枠部は、前記略矩形環状の内周側の略矩形の一辺が、前記振動部に前記連結部を介して連結されており、前記圧電振動板の前記非接合領域は、前記略矩形の前記一辺に対向する対向辺側の前記外枠部に設けられる。 (8) In a preferred embodiment of the present invention, the vibrating portion of the piezoelectric diaphragm is substantially rectangular in plan view, the outer frame portion of the piezoelectric diaphragm is substantially rectangular in plan view, and the outer frame In the portion, one side of the substantially rectangular shape on the inner peripheral side of the substantially rectangular annular shape is connected to the vibrating portion via the connecting portion, and the non-bonded region of the piezoelectric vibration plate is the one side of the substantially rectangular shape. is provided on the outer frame portion on the opposite side facing the .
 この実施態様によると、平面視略矩形環状の外枠部は、内周側の略矩形の一辺が、中央部の振動部に連結部を介して連結される一方、非接合領域は、前記略矩形の前記一辺に対向する対向辺側の外枠部に設けられる。この外枠部の非接合領域は、第1封止板の外面に形成されているボンディングパッドが平面視で重なるので、ボンディングワイヤを接続するための押圧力が加わることになる。この外枠部の非接合領域は、振動部に連結部を介して連結されている前記略矩形の前記一辺側ではなく、この一辺側とは反対側である対向辺側の外枠部に設けられているので、前記一辺側の外枠部に設けられるのに比べて、連結部までの距離が長くなる。これによって、外枠部の非接合領域に加わるボンディングワイヤを接続するための押圧力が、連結部を介して振動部に伝達されるのを低減することができる。 According to this embodiment, the outer frame portion, which is substantially rectangular in plan view, has one side of the substantially rectangular shape on the inner peripheral side that is connected to the vibrating portion in the central portion via the connecting portion, while the non-bonded region is the substantially rectangular shape. It is provided on the outer frame portion on the side opposite to the one side of the rectangle. Since the bonding pads formed on the outer surface of the first sealing plate overlap in plan view, the non-bonding region of the outer frame portion receives a pressing force for connecting the bonding wires. The non-bonded area of the outer frame is provided not on the one side of the substantially rectangular shape connected to the vibrating portion via the connecting portion, but on the opposite side of the outer frame that is opposite to the one side. Therefore, the distance to the connecting portion is longer compared to when it is provided on the outer frame portion on the one side. As a result, it is possible to reduce the transmission of the pressing force for connecting the bonding wire applied to the non-bonded region of the outer frame to the vibrating portion via the connecting portion.
 (9)本発明に係る圧電振動デバイスは、上記(1)ないし(8)のいずれかの圧電振動子と、前記圧電振動子が搭載されるベースとを備える。 (9) A piezoelectric vibration device according to the present invention includes the piezoelectric vibrator according to any one of (1) to (8) above, and a base on which the piezoelectric vibrator is mounted.
 本発明に係る圧電振動デバイスによると、圧電振動子は、第1封止板の外面に、ワイヤボンディング用のボンディングパッドが形成され、このボンディングパッドは、平面視で、第1,第2封止板の少なくとも一方の封止板の外周部の非接合領域と圧電振動板の外周部の非接合領域とに重なるように形成されているので、前記少なくとも一方の封止板の非接合領域と圧電振動板の非接合領域との間には、隙間が形成されている。これによって、第1封止板のボンディングパッドに、ボンディングワイヤを接続するための押圧力がかかったときに、前記少なくとも一方の封止板と圧電振動板との間の隙間によって、過剰な押圧力を逃がして押圧力を緩和することができ、圧電振動子に損傷が生じるのを防止することができる。 According to the piezoelectric vibration device of the present invention, the piezoelectric vibrator has a bonding pad for wire bonding formed on the outer surface of the first sealing plate, and the bonding pad corresponds to the first sealing plate and the second sealing plate in plan view. Since it is formed so as to overlap the non-bonded region on the outer periphery of at least one of the sealing plates and the non-bonded region on the outer periphery of the piezoelectric vibration plate, the non-bonded region of the at least one sealing plate and the piezoelectric diaphragm are formed so as to overlap each other. A gap is formed between the diaphragm and the non-bonded area. As a result, when a pressing force for connecting a bonding wire is applied to the bonding pads of the first sealing plate, the gap between the at least one sealing plate and the piezoelectric vibration plate causes an excessive pressing force. can be released to relieve the pressing force, and damage to the piezoelectric vibrator can be prevented.
 (10)本発明の他の実施態様では、前記ベースには、前記圧電振動子の横に電子部品が搭載される。 (10) In another embodiment of the present invention, an electronic component is mounted on the base next to the piezoelectric vibrator.
 この実施態様によると、電子部品と圧電振動子とは、積層配置されるのではなく、横置き配置されるので、当該圧電振動デバイスの低背化を図ることができる。 According to this embodiment, the electronic component and the piezoelectric vibrator are arranged horizontally instead of being stacked, so that the height of the piezoelectric vibration device can be reduced.
 (11)本発明の一実施態様では、前記圧電振動子は、前記第1封止板の前記第1,第2ボンディングパッドが、ワイヤボンディングされて、前記電子部品に電気的に接続される。 (11) In one embodiment of the present invention, the piezoelectric vibrator is electrically connected to the electronic component by wire-bonding the first and second bonding pads of the first sealing plate.
 この実施態様によると、圧電振動子の第2封止板を、接合材でベースに接合してベースに機械的に保持する一方、第1封止板の第1,第2ボンディングパッドを、ワイヤボンディングによって、電子部品に電気的に接続することができる。 According to this embodiment, the second sealing plate of the piezoelectric vibrator is bonded to the base by a bonding material and mechanically held to the base, while the first and second bonding pads of the first sealing plate are connected to the wire. Bonding provides an electrical connection to electronic components.
 本発明によれば、圧電振動板の両主面に第1,第2封止板を接合して、圧電振動板の振動部を気密封止する圧電振動子は、第1封止板の外面に、ワイヤボンディング用のボンディングパッドが形成され、このボンディングパッドは、平面視で、第1,第2封止板の少なくとも一方の封止板の外周部及び圧電振動板の外周部に設けられた、互いに対向して接合されない非接合領域に重なっている。これによって、第1封止板のボンディングパッドに、ボンディングワイヤを接続するための押圧力がかかったときに、前記少なくとも一方の封止板の外周部の非接合領域と圧電振動板の外周部の非接合領域との間の隙間によって、過剰な押圧力を逃がして押圧力を緩和することが可能となり、これによって、ワイヤボンディングの際に、圧電振動板及び第1,第2封止板が変形したり、破損するのを防止することができる。 According to the present invention, the piezoelectric vibrator, in which the first and second sealing plates are bonded to both main surfaces of the piezoelectric vibrating plate and hermetically seals the vibrating portion of the piezoelectric vibrating plate, is formed on the outer surface of the first sealing plate. , a bonding pad for wire bonding is formed, and this bonding pad is provided on the outer peripheral portion of at least one of the first and second sealing plates and the outer peripheral portion of the piezoelectric diaphragm in plan view. , overlying non-bonded regions that face each other and are not bonded. As a result, when a pressing force for connecting a bonding wire is applied to the bonding pads of the first sealing plate, the non-bonding region of the outer peripheral portion of the at least one sealing plate and the outer peripheral portion of the piezoelectric diaphragm are separated from each other. The gap between the non-bonded area allows the excessive pressing force to escape and relieve the pressing force, thereby deforming the piezoelectric diaphragm and the first and second sealing plates during wire bonding. or prevent it from being damaged.
図1は本発明の一実施形態に係る水晶発振器の概略断面図である。FIG. 1 is a schematic cross-sectional view of a crystal oscillator according to one embodiment of the present invention. 図2は図1の水晶発振器の蓋体を省略した概略平面図である。FIG. 2 is a schematic plan view of the crystal oscillator of FIG. 1 with the cover omitted. 図3は図1の水晶振動子を拡大した概略断面図である。FIG. 3 is a schematic cross-sectional view enlarging the crystal oscillator of FIG. 図4Aは水晶振動板の一方の主面側を示す概略平面図である。FIG. 4A is a schematic plan view showing one main surface side of the crystal diaphragm. 図4Bは水晶振動板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 4B is a schematic plan view showing the other principal surface side seen through from the one principal surface side of the crystal plate. 図5Aは第1封止板の一方の主面側を示す概略平面図である。FIG. 5A is a schematic plan view showing one main surface side of the first sealing plate. 図5Bは第1封止板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 5B is a schematic plan view showing the other main surface side seen through from one main surface side of the first sealing plate. 図6Aは第2封止板の一方の主面側を示す概略平面図である。FIG. 6A is a schematic plan view showing one main surface side of the second sealing plate. 図6Bは第2封止部材の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 6B is a schematic plan view showing the other main surface side seen through from one main surface side of the second sealing member. 図7は水晶振動子3の角部の部分断面図である。FIG. 7 is a partial cross-sectional view of a corner portion of the crystal oscillator 3. As shown in FIG. 図8は水晶振動子を接合するための接着剤の塗布領域を示すベースの概略平面図である。FIG. 8 is a schematic plan view of the base showing the application area of the adhesive for bonding the crystal oscillator. 図9はベースに接合された水晶振動子の概略側面図である。FIG. 9 is a schematic side view of a crystal oscillator bonded to a base. 図10Aは熱処理後の比較例の水晶発振器の周波数偏差を示す図である。FIG. 10A is a diagram showing the frequency deviation of the crystal oscillator of the comparative example after heat treatment. 図10Bは熱処理後の本実施形態の水晶発振器の周波数偏差を示す図である。FIG. 10B is a diagram showing the frequency deviation of the crystal oscillator of this embodiment after heat treatment. 図11Aは本発明の他の実施形態に係る水晶振動板の一方の主面側を示す概略平面図である。FIG. 11A is a schematic plan view showing one main surface side of a quartz plate according to another embodiment of the present invention. 図11Bは本発明の他の実施形態に係る水晶振動板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 11B is a schematic plan view showing the other main surface side seen through from one main surface side of a quartz diaphragm according to another embodiment of the present invention. 図12Aは図11A,図11Bの水晶振動板に接合される第1封止板の一方の主面側を示す概略平面図である。FIG. 12A is a schematic plan view showing one main surface side of the first sealing plate that is bonded to the crystal plate of FIGS. 11A and 11B. 図12Bは図11A,図11Bの水晶振動板に接合される第1封止板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 12B is a schematic plan view showing the other principal surface seen through from one of the principal surfaces of the first sealing plate bonded to the crystal plate of FIGS. 11A and 11B. 図13Aは図11A,図11Bの水晶振動板に接合される第2封止板の一方の主面側を示す概略平面図である。FIG. 13A is a schematic plan view showing one main surface side of a second sealing plate that is bonded to the crystal plate of FIGS. 11A and 11B. 図13Bは図11A,図11Bの水晶振動板に接合される第2封止板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 13B is a schematic plan view showing the other principal surface seen through from one of the principal surfaces of the second sealing plate bonded to the crystal plate of FIGS. 11A and 11B. 図14Aは本発明の更に他の実施形態に係る水晶振動板の一方の主面側を示す概略平面図である。FIG. 14A is a schematic plan view showing one main surface side of a quartz plate according to still another embodiment of the present invention. 図14Bは本発明の更に他の実施形態に係る水晶振動板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 14B is a schematic plan view showing the other main surface side seen through from one main surface side of the quartz diaphragm according to still another embodiment of the present invention. 図15Aは図14A,図14Bの水晶振動板に接合される第1封止板の一方の主面側を示す概略平面図である。FIG. 15A is a schematic plan view showing one main surface side of the first sealing plate that is bonded to the crystal plate of FIGS. 14A and 14B. 図15Bは図14A,図14Bの水晶振動板に接合される第1封止板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 15B is a schematic plan view showing the other main surface side seen through from one main surface side of the first sealing plate bonded to the crystal plate of FIGS. 14A and 14B. 図16Aは図14A,図14Bの水晶振動板に接合される第2封止板の一方の主面側を示す概略平面図である。FIG. 16A is a schematic plan view showing one main surface side of a second sealing plate that is bonded to the crystal plate of FIGS. 14A and 14B. 図16Bは図14A,図14Bの水晶振動板に接合される第2封止板の一方の主面側から透視した他方の主面側を示す概略平面図である。FIG. 16B is a schematic plan view showing the other principal surface seen through from one of the principal surfaces of the second sealing plate bonded to the crystal plate of FIGS. 14A and 14B. 図17は本発明の他の実施形態の水晶振動子をベースに接合した状態を示す概略側面図である。FIG. 17 is a schematic side view showing a state in which a crystal resonator according to another embodiment of the invention is bonded to a base. 図18は図17の水晶振動子の第2封止板の他方の主面側を示す概略平面図である。18 is a schematic plan view showing the other main surface side of the second sealing plate of the crystal oscillator of FIG. 17. FIG. 図19は本発明の他の実施形態に係る恒温槽型の水晶発振器の概略断面図である。FIG. 19 is a schematic cross-sectional view of a thermostatic oven-type crystal oscillator according to another embodiment of the present invention.
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。この実施形態では、圧電振動子を備える圧電振動デバイスとして水晶発振器に適用して説明する。 Hereinafter, one embodiment of the present invention will be described in detail based on the drawings. In this embodiment, a crystal oscillator is applied as a piezoelectric vibration device having a piezoelectric vibrator.
 図1は、本発明の一実施形態に係る水晶発振器の概略断面図であり、図2は、図1の水晶発振器の蓋体としてのリッド5を省略した概略平面図である。 FIG. 1 is a schematic cross-sectional view of a crystal oscillator according to one embodiment of the present invention, and FIG. 2 is a schematic plan view omitting a lid 5 as a lid body of the crystal oscillator of FIG.
 この実施形態の水晶発振器1は、凹部を有するベース2と、このベース2の凹部の内底面に搭載される本発明に係る圧電振動子としての水晶振動子3と、この水晶振動子3の横に搭載される電子部品としてのIC4と、ベース2に接合されて、ベース2と共に、水晶振動子3及びIC4を収容する収容空間7を構成する蓋体としてのリッド5とを備えている。 The crystal oscillator 1 of this embodiment includes a base 2 having a recess, a crystal oscillator 3 as a piezoelectric oscillator according to the present invention mounted on the inner bottom surface of the recess of the base 2, and lateral and a lid 5 as a lid that is joined to the base 2 and forms an accommodation space 7 that accommodates the crystal oscillator 3 and the IC 4 together with the base 2 .
 ベース2は、平板状の底板部2と、その外周上に環状に形成された側壁部2とを備えている。このベース2は、アルミナ等のセラミック材料からなり、例えば、2枚のセラミックグリーンシートを積層して上部が開口した凹状に一体焼成して構成される。 The base 2 includes a flat bottom plate portion 21 and a side wall portion 22 annularly formed on the outer periphery thereof. The base 2 is made of a ceramic material such as alumina, and is formed by, for example, stacking two ceramic green sheets and integrally firing them into a concave shape with an open top.
 ベース2の内底面には、図2に示すように、IC4の接続用の複数の配線パターン8が形成されている。 A plurality of wiring patterns 8 for connecting the IC 4 are formed on the inner bottom surface of the base 2, as shown in FIG.
 IC4は、平面視矩形であって、水晶振動子3と共に発振回路を構成する。このIC4の上面の周縁部には、ベース2の上記配線パターン8にボンディングワイヤ9によってそれぞれ接続される複数の電極パッドが形成されている。 The IC 4 is rectangular in plan view and forms an oscillation circuit together with the crystal oscillator 3 . A plurality of electrode pads connected to the wiring pattern 8 of the base 2 by bonding wires 9 are formed on the periphery of the upper surface of the IC 4 .
 水晶発振器1のリッド5は、シールリング6を介してベース2の上部開口の周縁部にシーム溶接などで接合され、これによって、水晶振動子3及びIC4が収容される収容空間7が、気密に封止される。この気密封止は、真空雰囲気中または窒素ガス等の不活性ガス雰囲気中で行われ、収容空間7は、真空または不活性ガス雰囲気とされる。 The lid 5 of the crystal oscillator 1 is joined to the periphery of the upper opening of the base 2 through a seal ring 6 by seam welding or the like, thereby airtightly sealing the storage space 7 in which the crystal oscillator 3 and the IC 4 are stored. Sealed. This hermetic sealing is performed in a vacuum atmosphere or in an inert gas atmosphere such as nitrogen gas, and the housing space 7 is in the vacuum or inert gas atmosphere.
 図3は、図1の水晶振動子3を拡大した概略断面図である。この水晶振動子3は、圧電振動板である水晶振動板10と、水晶振動板10の一方の主面側を覆う第1封止板11と、水晶振動板10の他方の主面側を覆う第2封止板12とを備えている。 FIG. 3 is a schematic cross-sectional view enlarging the crystal oscillator 3 of FIG. The crystal resonator 3 includes a crystal vibration plate 10 which is a piezoelectric vibration plate, a first sealing plate 11 covering one main surface side of the crystal vibration plate 10, and a second main surface side of the crystal vibration plate 10. and a second sealing plate 12 .
 この水晶振動子3では、水晶振動板10の両主面側に、第1,第2封止板11,12がそれぞれ接合されて、いわゆるサンドイッチ構造のパッケージが構成される。この水晶振動子3のパッケージは、略直方体であって、平面視矩形である。この実施形態の水晶振動子3のパッケージサイズは、平面視で、例えば、1.0mm×0.8mmであり、小型化及び低背化を図っている。 In this crystal resonator 3, the first and second sealing plates 11 and 12 are bonded to both main surfaces of the crystal plate 10, respectively, to form a so-called sandwich structure package. The package of this crystal oscillator 3 is a substantially rectangular parallelepiped, and is rectangular in plan view. The package size of the crystal resonator 3 of this embodiment is, for example, 1.0 mm×0.8 mm in plan view, and is intended for miniaturization and low profile.
 なお、パッケージサイズは、上記に限定されるものではなく、異なるサイズであっても適用可能である。 The package size is not limited to the above, and different sizes are also applicable.
 次に、この水晶振動子3を構成する水晶振動板10及び第1,第2封止板11,12の各構成について説明する。 Next, each configuration of the crystal plate 10 and the first and second sealing plates 11 and 12 that constitute the crystal oscillator 3 will be described.
 図4Aは水晶振動板10の一方の主面側を示す概略平面図であり、図4Bは水晶振動板10の一方の主面側から透視した他方の主面側を示す概略平面図である。 4A is a schematic plan view showing one main surface side of the crystal plate 10, and FIG. 4B is a schematic plan view showing the other main surface side of the crystal plate 10 seen through from one main surface side.
 この実施形態の水晶振動板10は、ATカット水晶板であり、その両主面が、XZ´平面である。 The crystal diaphragm 10 of this embodiment is an AT-cut crystal plate, and both principal surfaces thereof are XZ' planes.
 水晶振動板10は、平面視矩形であり、その中央部の略矩形の振動部15と、この振動部15の周囲を、貫通部からなる間隔16を空けて取り囲む略矩形環状の外枠部17と、振動部15と外枠部17とを連結する連結部18とを備えている。なお、「略矩形」とは、連結部18の形成領域を除けば矩形であることをいう。すなわち、振動部15は、外周側の連結部18の部分を除けば矩形であり、環状の外枠部17は、内周側の連結部18の部分を除けば矩形環状である。 The crystal diaphragm 10 is rectangular in plan view, and includes a substantially rectangular vibrating portion 15 in the center thereof, and a substantially rectangular annular outer frame portion 17 surrounding the vibrating portion 15 with an interval 16 formed of a through portion. and a connecting portion 18 that connects the vibrating portion 15 and the outer frame portion 17 . It should be noted that the term “substantially rectangular” refers to a rectangular shape except for the area where the connecting portion 18 is formed. That is, the vibrating portion 15 is rectangular except for the connecting portion 18 on the outer peripheral side, and the annular outer frame portion 17 is rectangular ring-shaped except for the connecting portion 18 on the inner peripheral side.
 振動部15、外枠部17及び連結部18は、一体的に形成されている。振動部15及び連結部18は、外枠部17に比べて薄く形成されている。すなわち、水晶振動板10の外周部の外枠部17は、中央部の振動部15に比べて厚肉である。 The vibrating portion 15, the outer frame portion 17 and the connecting portion 18 are integrally formed. The vibrating portion 15 and the connecting portion 18 are formed thinner than the outer frame portion 17 . That is, the outer frame portion 17 in the outer peripheral portion of the crystal plate 10 is thicker than the vibrating portion 15 in the central portion.
 この実施形態では、平面視で略矩形環状の外枠部17の内周側の略矩形の一辺(図4A,図4Bの右側の辺)が、振動部15に連結部18を介して連結されている。 In this embodiment, one side (the right side in FIGS. 4A and 4B ) of a substantially rectangular inner peripheral side of the outer frame portion 17 which is substantially rectangular and annular in plan view is connected to the vibrating portion 15 via the connecting portion 18 . ing.
 このように振動部15を、一箇所の連結部18によって連結しているので、2箇所以上で連結する構成に比べて、振動部15に作用する応力を低減することができる。 Since the vibrating portion 15 is connected by the connecting portion 18 at one point in this way, the stress acting on the vibrating portion 15 can be reduced compared to a configuration in which the connecting portion 18 is connected at two or more points.
 水晶振動板10の振動部15の両主面には、一対の第1,第2励振電極19,20がそれぞれ形成されている。第1,第2励振電極19,20からは、第1,第2引出し電極21,22がそれぞれ引出されている。 A pair of first and second excitation electrodes 19 and 20 are formed on both main surfaces of the vibrating portion 15 of the crystal diaphragm 10, respectively. First and second extraction electrodes 21 and 22 are extracted from the first and second excitation electrodes 19 and 20, respectively.
 図4Aに示される水晶振動板10の一方の主面側の第1引出し電極21は、連結部18を経て外枠部17に形成された部分円形状の接続用接合パターン23まで引出されている。この水晶振動板10の一方の主面には、水晶振動板10を第1封止板11に接合するための振動側第1封止用接合パターン25が、振動部15を取り囲む環状の外枠部17の全周に亘って環状に形成されている。 A first lead-out electrode 21 on one main surface side of the crystal diaphragm 10 shown in FIG. 4A is led out to a partially circular connecting joint pattern 23 formed on the outer frame portion 17 via the connecting portion 18 . . On one main surface of the crystal diaphragm 10 , a vibration-side first sealing bonding pattern 25 for bonding the crystal diaphragm 10 to the first sealing plate 11 is formed as an annular outer frame surrounding the vibration part 15 . It is formed in an annular shape over the entire circumference of the portion 17 .
 平面視矩形の水晶振動板10の一方側(図4Aの右側)の短辺に沿って延びる振動側第1封止用接合パターン25は、他方側(図4Aの左側)の短辺に沿って延びる振動側第1封止用接合パターン25に比べて、部分的に幅が細く形成されており、この幅の細い部分よりも内側の外枠部17には、短辺に沿って延びる長円形の接続用接合パターン27が形成されている。 The bonding pattern 25 for vibration-side first sealing extending along one short side (right side in FIG. 4A) of the crystal plate 10, which is rectangular in plan view, extends along the short side on the other side (left side in FIG. 4A). The width of the connecting pattern 25 for vibration-side first sealing is partially narrower than that of the extending bonding pattern 25 for vibration-side sealing. are formed.
 振動側第1封止用接合パターン25の前記一方側の短辺の両端の各角部近傍は、外周側が円弧状に内周側へ窪むように形成されている。前記各角部は、水晶板の表面が露出しており、第1封止板11に接合されない非接合領域10a,10aとなっている。平面視で略矩形環状の外枠部17は、上記のように内周側の略矩形の一辺(図4A,図4Bの右側の辺)が、振動部15に連結部18を介して連結されている。非接合領域10a,10aは、略矩形環状の外枠部17において、略矩形の前記一辺側の外枠部17に設けられている。 The vicinity of each corner of both ends of the one short side of the vibration-side first sealing bonding pattern 25 is formed such that the outer peripheral side is recessed in an arc shape toward the inner peripheral side. The corners expose the surface of the crystal plate and form non-bonding regions 10 a , 10 a that are not bonded to the first sealing plate 11 . The outer frame portion 17 having a substantially rectangular annular shape in a plan view is connected to the vibrating portion 15 via the connecting portion 18 at one side of the substantially rectangular shape on the inner peripheral side (the right side in FIGS. 4A and 4B) as described above. ing. The non-bonded regions 10a, 10a are provided on the substantially rectangular outer frame portion 17 on one side of the substantially rectangular annular outer frame portion 17. As shown in FIG.
 また、水晶振動板10の前記他方側の短辺に沿って延びる振動側第1封止用接合パターン25の内周側の一方の角部近傍は、部分円形状に外周側へ窪んで形成され、この窪んだ部分に、円形の接続用接合パターン29が形成されている。 Further, the vicinity of one corner on the inner peripheral side of the vibration side first sealing bonding pattern 25 extending along the short side of the other side of the crystal plate 10 is recessed toward the outer peripheral side in a partially circular shape. , a circular joint pattern 29 for connection is formed in this recessed portion.
 図4Bに示される水晶振動板10の他方の主面側の第2引出し電極22は、連結部18を経て外枠部17に形成された接続用接合パターン24の一端まで引出されている。この接続用接合パターン24は、水晶振動板10の一方の主面の上記接続用接合パターン27と平面視で重なるように、水晶振動板10の短辺に沿って延びる略長円形に形成されている。 The second extraction electrode 22 on the other main surface side of the crystal diaphragm 10 shown in FIG. The connection bonding pattern 24 is formed in a substantially oval shape extending along the short side of the crystal diaphragm 10 so as to overlap the connection bonding pattern 27 on one main surface of the crystal diaphragm 10 in plan view. there is
 水晶振動板10の他方の主面には、水晶振動板10を第2封止板12に接合するための振動側第2封止用接合パターン26が、振動部15を取り囲む略矩形環状の外枠部17の全周に亘って環状に形成されている。 On the other main surface of the crystal diaphragm 10 , a vibration-side second sealing bonding pattern 26 for bonding the crystal diaphragm 10 to the second sealing plate 12 is formed on an outer surface of a substantially rectangular ring surrounding the vibration part 15 . It is formed in an annular shape over the entire circumference of the frame portion 17 .
 この振動側第2封止用接合パターン26は、一方の主面の振動側第1封止用接合パターン25と同様に、水晶振動板10の一方側(図4Bの右側)の短辺に沿って延びる部分の幅が、一部狭く形成されている。振動側第2封止用接合パターン26よりも内側であって、連結部18の近傍の外枠部17には、水晶振動板10の一方の主面の上記接続用接合パターン23に、平面視で重なるように、円形の接続用接合パターン28が形成されている。 The second vibration-side sealing bonding pattern 26 is formed along the short side on one side (the right side in FIG. 4B) of the crystal diaphragm 10, similarly to the first vibration-side sealing bonding pattern 25 on one main surface. A part of the width of the portion extending along the length is formed narrow. In the outer frame portion 17 in the vicinity of the connecting portion 18 inside the second sealing bonding pattern 26 on the vibration side, the bonding bonding pattern 23 for connection on one main surface of the crystal plate 10 is connected in plan view. Circular connection bonding patterns 28 are formed so as to overlap with each other.
 振動側第2封止用接合パターン26の一方側の短辺の両端の各角部近傍は、外周側が円弧状に内周側へ窪むように形成されている。前記各角部は、水晶板の表面が露出しており、第2封止板12に接合されない非接合領域10b,10bである。この非接合領域10b,10bは、平面視略矩形環状の外枠部17において、連結部18を介して振動部15に連結されている上記一辺側の外枠部17に設けられている。 The vicinity of each corner of both ends of one short side of the second vibration-side sealing bonding pattern 26 is formed such that the outer peripheral side is recessed in an arc shape toward the inner peripheral side. The corners are non-bonded areas 10b, 10b where the surface of the crystal plate is exposed and not bonded to the second sealing plate 12. As shown in FIG. The non-joint areas 10b, 10b are provided on one side of the outer frame portion 17 which is connected to the vibrating portion 15 via the connecting portion 18 in the outer frame portion 17 having a substantially rectangular annular shape in plan view.
 また、水晶振動板10の他方側の短辺に沿って延びる振動側第2封止用接合パターン26の内周側の角部近傍の外周側へ窪んだ部分に、水晶振動板10の一方の主面の上記接続用接合パターン29に平面視で重なるように円形の接続用接合パターン30が形成されている。 In addition, in the portion recessed toward the outer peripheral side near the corner on the inner peripheral side of the vibration-side second sealing bonding pattern 26 extending along the short side on the other side of the crystal plate 10 , one of the crystal plates 10 A circular connection bonding pattern 30 is formed so as to overlap the connection bonding pattern 29 on the main surface in plan view.
 水晶振動板10には、両主面間を貫通する第1貫通電極31が、一方の主面の長円形の接続用接合パターン27と、他方の主面の略長円形の接続用接合パターン24とが平面視で重なる領域の連結部18側の端部に形成されている。この第1貫通電極31は、貫通孔の内壁面に金属膜が被着されて構成されている。この第1貫通電極31は、水晶振動板10の一方の主面の接続用接合パターン27と、水晶振動板10の他方の主面の接続用接合パターン24とを、電気的に接続する。この他方の主面の接続用接合パターン24は、図4Bに示すように、第2励振電極20に電気的に接続されているので、一方の主面の接続用接合パターン27は、第1貫通電極31を介して第2励振電極20に電気的に接続されている。 In the crystal plate 10, the first through electrodes 31 penetrating between the two principal surfaces are composed of an oval connection bonding pattern 27 on one of the principal surfaces and a substantially oval connection bonding pattern 24 on the other principal surface. is formed at the end on the connecting portion 18 side of the region where the two overlap in plan view. The first through electrode 31 is formed by coating the inner wall surface of the through hole with a metal film. The first through electrode 31 electrically connects the connection bonding pattern 27 on one main surface of the crystal diaphragm 10 and the connection bonding pattern 24 on the other main surface of the crystal diaphragm 10 . Since the connecting joint pattern 24 on the other main surface is electrically connected to the second excitation electrode 20 as shown in FIG. It is electrically connected to the second excitation electrode 20 via the electrode 31 .
 水晶振動板10の第1,第2励振電極19,20、第1,第2引出し電極21,22、振動側第1,第2封止用接合パターン25,26、及び、接続用接合パターン23,24,27,28,29,30は、例えば、TiまたはCrからなる下地層上に、例えば、Auが積層形成されて構成されている。 First and second excitation electrodes 19 and 20, first and second extraction electrodes 21 and 22, vibration side first and second sealing bonding patterns 25 and 26, and connecting bonding pattern 23 of the crystal plate 10 , 24, 27, 28, 29, and 30 are formed by stacking, for example, Au on an underlying layer made of, for example, Ti or Cr.
 図5Aは第1封止板11の一方の主面側を示す概略平面図であり、図5Bは第1封止板11の一方の主面側から透視した他方の主面側を示す概略平面図である。 5A is a schematic plan view showing one main surface side of the first sealing plate 11, and FIG. 5B is a schematic plane showing the other main surface side seen through from one main surface side of the first sealing plate 11. FIG. It is a diagram.
 第1封止板11は、水晶振動板10と同様のATカット水晶板からなる直方体の基板である。 The first sealing plate 11 is a rectangular parallelepiped substrate made of an AT-cut crystal plate similar to the crystal plate 10 .
 この第1封止板11の他方の主面には、図5Bに示すように、水晶振動板10の一方の主面の振動側第1封止用接合パターン25に接合して封止するための封止側第1封止用接合パターン33が、平面視矩形の第1封止板11の全周に亘って環状に形成されている。 On the other main surface of the first sealing plate 11, as shown in FIG. 5B, a bonding pattern 25 for bonding vibration-side first sealing on one main surface of the crystal plate 10 is provided for sealing. is formed in an annular shape over the entire circumference of the first sealing plate 11 which is rectangular in plan view.
 この封止側第1封止用接合パターン33の一方側(図5Bの右側)の短辺に沿って延びる部分には、幅が細く形成された部分を有し、この幅の細い部分よりも内側には、短辺に沿って延びる長円形の接続用接合パターン34が形成されている。この接続用接合パターン34は、図4Aに示される水晶振動板10の一方の主面の長円形の接続用接合パターン27に接合される。封止側第1封止用接合パターン33の一方側の短辺の両端の各角部近傍は、外周側が円弧状に内周側へ窪むように形成されている。前記各角部は、水晶板の表面が露出しており、水晶振動板10の一方の主面の前記非接合領域10a,10aに互いに対向すると共に、水晶振動板10に接合されない非接合領域11a,11aである。 A portion extending along the short side on one side (the right side in FIG. 5B) of the sealing-side first bonding pattern 33 for sealing has a portion formed to have a narrow width, and the width is narrower than the narrow portion. An oval connecting joint pattern 34 extending along the short side is formed on the inside. This connection bonding pattern 34 is bonded to the oblong connection bonding pattern 27 on one main surface of the crystal plate 10 shown in FIG. 4A. The vicinity of each corner of both ends of one short side of the sealing-side first bonding pattern 33 for sealing is formed such that the outer peripheral side is recessed toward the inner peripheral side in an arc shape. Each of the corners exposes the surface of the crystal plate, faces the non-bonded regions 10a, 10a on one main surface of the crystal plate 10, and has a non-bonded region 11a that is not bonded to the crystal plate 10. , 11a.
 また、第1封止板11の他方の主面には、図4Aに示される水晶振動板10の一方の主面の、第1励振電極19から引出された接続用接合パターン23に接合される接続用接合パターン35が形成されている。この接続用接合パターン35は、第1封止板11の長辺に沿って延びる接続用配線パターン36を介して部分円形の接続用接合パターン37に接続されている。この接続用接合パターン37は、図4Aに示される水晶振動板10の円形の接続用接合パターン29に接合される。 Also, the other principal surface of the first sealing plate 11 is bonded to the connection bonding pattern 23 drawn out from the first excitation electrode 19 on one principal surface of the crystal plate 10 shown in FIG. 4A. A connection bonding pattern 35 is formed. The connection joint pattern 35 is connected to a partially circular connection joint pattern 37 via a connection wiring pattern 36 extending along the long side of the first sealing plate 11 . This connection bonding pattern 37 is bonded to the circular connection bonding pattern 29 of the crystal plate 10 shown in FIG. 4A.
 図5Aに示す第1封止板11の一方の主面は、水晶振動子3の上面となるものである。この一方の主面には、対向する一組の角部に、矩形の第1,第2外部電極端子40,41が形成されると共に、第1外部電極端子40は、矩形の一部が、第1封止板11の長辺に沿って一方側(図5Aの右側)の短辺まで延出している。すなわち、第1外部電極端子40の延出部と第2外部電極端子41とは、同じ一方側の短辺の両端に位置している。 One main surface of the first sealing plate 11 shown in FIG. 5A serves as the upper surface of the crystal resonator 3. Rectangular first and second external electrode terminals 40 and 41 are formed at a pair of opposing corners on one main surface, and the first external electrode terminal 40 has a rectangular part It extends to one short side (the right side in FIG. 5A) along the long side of the first sealing plate 11 . That is, the extending portion of the first external electrode terminal 40 and the second external electrode terminal 41 are positioned at both ends of the same short side.
 この第1,第2外部電極端子40,41の前記一方側の短辺の両端の角部が、ボンディングワイヤが接続される位置であるワイヤボンディング用の第1,第2ボンディングパッド40a,41aとなっている。この第1,第2ボンディングパッド40a,41aは、第1封止板11の他方の主面の一方側の短辺の両端の各角部の封止側第1封止用接合パターン33が形成されていない非接合領域11a,11aに平面視で重なる。 The corner portions at both ends of the one short side of the first and second external electrode terminals 40 and 41 are connected to the first and second bonding pads 40a and 41a for wire bonding, which are positions to which bonding wires are connected. It's becoming The first and second bonding pads 40a and 41a form sealing-side first sealing joint patterns 33 at corners of both ends of one short side of the other main surface of the first sealing plate 11. It overlaps with the non-joining area| region 11a and 11a which are not made by planar view.
 第1封止板11には、両主面間を貫通する第2,第3貫通電極38,39が形成されている。各貫通電極38,39は、貫通孔の内壁面に金属膜が被着されて構成されている。 The first sealing plate 11 is formed with second and third through electrodes 38 and 39 penetrating between both main surfaces. Each of the through electrodes 38 and 39 is configured by coating the inner wall surface of the through hole with a metal film.
 第2貫通電極38は、一方の主面の第2外部電極端子41と、他方の主面の長円形の接続用接合パターン34とが平面視で重なる領域に形成されている。この第2貫通電極38は、第1封止板11の一方の主面の第2外部電極端子41と、第1封止板11の他方の主面の接続用接合パターン34とを電気的に接続する。 The second through electrode 38 is formed in a region where the second external electrode terminal 41 on one main surface and the oval connection bonding pattern 34 on the other main surface overlap in plan view. The second through electrode 38 electrically connects the second external electrode terminal 41 on one main surface of the first sealing plate 11 and the connection bonding pattern 34 on the other main surface of the first sealing plate 11 . Connecting.
 この接続用接合パターン34は、図4Aに示される水晶振動板10の一方の主面の長円形の接続用接合パターン27に接合されて電気的に接続されるものであり、この接続用接合パターン27は、上記のように、水晶振動板10の第1貫通電極31及び接続用接合パターン24を介して第2励振電極20に電気的に接続されている。 The connection bonding pattern 34 is bonded and electrically connected to the oval connection bonding pattern 27 on one main surface of the crystal plate 10 shown in FIG. 4A. 27 is electrically connected to the second excitation electrode 20 via the first through electrode 31 of the crystal plate 10 and the connection bonding pattern 24 as described above.
 したがって、第1封止板11の第2外部電極端子41は、第2貫通電極38、接続用接合パターン34、水晶振動板10の接続用接合パターン27、第1貫通電極31及び接続用接合パターン24を介して水晶振動板10の第2励振電極20に電気的に接続される。 Therefore, the second external electrode terminal 41 of the first sealing plate 11 includes the second through electrode 38, the connection bonding pattern 34, the connection bonding pattern 27 of the crystal plate 10, the first through electrode 31, and the connection bonding pattern. It is electrically connected to the second excitation electrode 20 of the crystal diaphragm 10 via 24 .
 第3貫通電極39は、一方の主面の第1外部電極端子40と、他方の主面の接続用接合パターン37とが平面視で重なる領域に形成されている。この第3貫通電極39は、第1封止板11の一方の主面の第1外部電極端子40と、第1封止板11の他方の主面の接続用接合パターン37とを電気的に接続する。 The third through electrode 39 is formed in a region where the first external electrode terminal 40 on one main surface and the connection bonding pattern 37 on the other main surface overlap in plan view. The third through electrode 39 electrically connects the first external electrode terminal 40 on one main surface of the first sealing plate 11 and the connection bonding pattern 37 on the other main surface of the first sealing plate 11 . Connecting.
 この接続用接合パターン37は、図5Bに示すように、接続用配線パターン36を介して接続用接合パターン35に電気的に接続されている。接続用接合パターン35は、上記のように図4Aに示される水晶振動板10の一方の主面の接続用接合パターン23に接合されて電気的に接続されるものであり、この接続用接合パターン23は、水晶振動板10の第1励振電極19に電気的に接続されている。 The connection bonding pattern 37 is electrically connected to the connection bonding pattern 35 via the connection wiring pattern 36, as shown in FIG. 5B. The connection bonding pattern 35 is bonded and electrically connected to the connection bonding pattern 23 on one main surface of the crystal diaphragm 10 shown in FIG. 4A as described above. 23 is electrically connected to the first excitation electrode 19 of the crystal diaphragm 10 .
 したがって、第1封止板11の第1外部電極端子40は、第3貫通電極39、接続用接合パターン37、接続用配線パターン36、接続用接合パターン35、及び水晶振動板10の接続用接合パターン23を介して水晶振動板10の第1励振電極19に電気的に接続される。 Therefore, the first external electrode terminal 40 of the first sealing plate 11 includes the third through electrode 39 , the connection bonding pattern 37 , the connection wiring pattern 36 , the connection bonding pattern 35 , and the connection bonding of the crystal plate 10 . It is electrically connected to the first excitation electrode 19 of the crystal plate 10 via the pattern 23 .
 第1封止板11の封止側第1封止用接合パターン33、接続用接合パターン34,35,37及び接続用配線パターン36は、例えば、TiまたはCrからなる下地層上に、例えば、Auが積層形成されて構成されている。 The sealing-side first sealing bonding pattern 33, connecting bonding patterns 34, 35, 37, and connecting wiring pattern 36 of the first sealing plate 11 are formed, for example, on a base layer made of Ti or Cr, for example, Au is laminated and formed.
 図6Aは第2封止板12の一方の主面側を示す概略平面図であり、図6Bは第2封止板12の一方の主面側から透視した他方の主面側を示す概略平面図である。 6A is a schematic plan view showing one main surface side of the second sealing plate 12, and FIG. 6B is a schematic plane showing the other main surface side seen through from one main surface side of the second sealing plate 12. FIG. It is a diagram.
 第2封止板12は、水晶振動板10や第1封止板11と同様のATカット水晶板からなる直方体の基板である。 The second sealing plate 12 is a rectangular parallelepiped substrate made of an AT-cut crystal plate similar to the crystal plate 10 and the first sealing plate 11 .
 この第2封止板12の一方の主面には、図6Aに示すように、水晶振動板10の他方の主面の振動側第2封止用接合パターン26に接合して封止するための封止側第2封止用接合パターン45が、平面視矩形の第2封止板12の全周に亘って環状に形成されている。 On one main surface of the second sealing plate 12, as shown in FIG. 6A, for sealing by bonding to the vibration-side second sealing bonding pattern 26 on the other main surface of the crystal diaphragm 10, is formed in an annular shape over the entire circumference of the second sealing plate 12 which is rectangular in plan view.
 この封止側第2封止用接合パターン45の一方側(図6Aの右側)の短辺に沿って延びる部分には、幅が細く形成された部分を有し、この幅の細い部分よりも内側には、短辺に沿って延びる長円形の接続用接合パターン46が形成されている。この接続用接合パターン46は、図4Bに示される水晶振動板10の他方の主面の長円形の接続用接合パターン24に接合される。封止側第2封止用接合パターン45の前記一方側の短辺の両端の各角部近傍は、外周側が円弧状に内周側へ窪むように形成されている。前記各角部は、水晶板の表面が露出しており、水晶振動板10の他方の主面の前記非接合領域10b,10bに互いに対向すると共に、水晶振動板10に接合されない非接合領域12b,12bである。 A portion extending along the short side on one side (the right side in FIG. 6A) of the sealing-side second sealing bonding pattern 45 has a portion formed with a narrow width, and the width is smaller than the narrow portion. An oval connecting joint pattern 46 extending along the short side is formed on the inside. This connection bonding pattern 46 is bonded to the oval connection bonding pattern 24 on the other main surface of the crystal plate 10 shown in FIG. 4B. The vicinity of each corner of both ends of the short side on the one side of the sealing-side second sealing bonding pattern 45 is formed such that the outer peripheral side is recessed in an arc shape toward the inner peripheral side. Each of the corners exposes the surface of the crystal plate, faces the non-bonded regions 10b, 10b on the other main surface of the crystal plate 10, and has a non-bonded region 12b that is not bonded to the crystal plate 10. , 12b.
 また、第2封止板12の一方の主面には、図4Bに示される水晶振動板10の他方の主面の小円形の接続用接合パターン28及び大円形の接続用接合パターン30に、それぞれ接合される小円形の接続用接合パターン47及び大円形の接続用接合パターン48がそれぞれ形成されている。 In addition, on one main surface of the second sealing plate 12, the small circular connection bonding pattern 28 and the large circular connection bonding pattern 30 on the other main surface of the crystal diaphragm 10 shown in FIG. A small circular joint pattern 47 for connection and a large circular joint pattern 48 for connection to be jointed respectively are formed.
 第2封止板12の封止側第2封止用接合パターン45、接続用接合パターン46,47,48は、例えば、TiまたはCrからなる下地層上に、例えば、Auが積層形成されて構成されている。 The sealing-side second sealing bonding pattern 45 and connecting bonding patterns 46, 47, and 48 of the second sealing plate 12 are formed by laminating, for example, Au on a base layer made of, for example, Ti or Cr. It is configured.
 水晶振動板10、第1,第2封止板11,12からなる水晶振動子3では、水晶振動板10と第1封止板11とが、振動側第1封止用接合パターン25及び封止側第1封止用接合パターン33を重ね合わせた状態で拡散接合され、水晶振動板10と第2封止板12とが振動側第2封止用接合パターン26及び封止側第2封止用接合パターン45を重ね合わせた状態で拡散接合されて、サンドイッチ構造のパッケージが構成される。これにより、別途接着剤等の接合専用材を用いずに、振動部15の収容空間が気密封止される。 In the crystal oscillator 3 composed of the crystal oscillation plate 10 and the first and second sealing plates 11 and 12, the crystal oscillation plate 10 and the first sealing plate 11 form the bonding pattern 25 for the vibration side first sealing and the sealing. Diffusion bonding is performed in a state where the bonding pattern 33 for the first sealing on the stopping side is superimposed, and the crystal plate 10 and the second sealing plate 12 are bonded to the bonding pattern 26 for the second sealing on the vibration side and the second sealing on the sealing side. Diffusion bonding is performed in a state in which the bonding patterns 45 for sealing are overlapped to form a package having a sandwich structure. As a result, the accommodation space of the vibrating portion 15 is airtightly sealed without using a special bonding material such as an adhesive.
 そして、図3に示すように、振動側第1封止用接合パターン25及び封止側第1封止用接合パターン33自身が拡散接合後に生成される接合材43aとなり、振動側第2封止用接合パターン26及び封止側第2封止用接合パターン45自身が拡散接合後に生成される接合材43bとなる。 Then, as shown in FIG. 3, the bonding pattern 25 for the first sealing on the vibration side and the bonding pattern 33 for the first sealing on the sealing side themselves become the bonding material 43a generated after the diffusion bonding, and the second vibration side sealing. The sealing bonding pattern 26 and the sealing-side second sealing bonding pattern 45 themselves become the bonding material 43b generated after the diffusion bonding.
 この際、上記の各接続用接合パターン同士も重ね合された状態で拡散接合される。具体的には、水晶振動板10の接続用接合パターン23,27,29及び第1封止板11の接続用接合パターン35,34,37が拡散接合される。そして、接続用接合パターン23,27,29及び接続用接合パターン35,34,37自身が拡散接合後に生成される接合材44aとなる。 At this time, the bonding patterns for connection are also overlapped and diffusion bonded. Specifically, the connection bonding patterns 23, 27, and 29 of the crystal plate 10 and the connection bonding patterns 35, 34, and 37 of the first sealing plate 11 are diffusion-bonded. Then, the connection bonding patterns 23, 27, 29 and the connection bonding patterns 35, 34, 37 themselves become the bonding material 44a generated after the diffusion bonding.
 同様に、水晶振動板10の接続用接合パターン24,28,30及び第2封止板12の接続用接合パターン46,47,48が拡散接合される。そして、接続用接合パターン24,28,30及び接続用接合パターン46,47,48自身が拡散接合後に生成される接合材44bとなる。 Similarly, the connection bonding patterns 24, 28, 30 of the crystal diaphragm 10 and the connection bonding patterns 46, 47, 48 of the second sealing plate 12 are diffusion bonded. Then, the connection bonding patterns 24, 28, 30 and the connection bonding patterns 46, 47, 48 themselves become the bonding material 44b generated after the diffusion bonding.
 このように水晶振動板10及び第1,2封止板11,12の3枚の水晶板を積層して、振動部15を収容したパッケージ構造の水晶振動子3が得られる。これによって、収容空間となる凹部を有する箱状のセラミック容器内に、水晶振動片を収容して蓋を接合して気密に封止するパッケージ構造の水晶振動子に比べて、薄型化(低背化)を図ることができる。 By laminating the three crystal plates of the crystal plate 10 and the first and second sealing plates 11 and 12 in this manner, the package-structured crystal resonator 3 containing the vibrating portion 15 is obtained. As a result, it is thinner (lower in height) than crystal resonators with a package structure in which a crystal resonator element is housed in a box-shaped ceramic container having a concave portion serving as a housing space, and a lid is joined to hermetically seal it. conversion) can be achieved.
 この実施形態では、水晶振動子3は、第1,第2封止板11,12の内の下面側となる第2封止板12が、ベース2の内底面に、接着剤によって接合されて、ベース2に搭載される。この水晶振動子3の上面側となる第1封止板11の第1,第2外部電極端子40,41の第1,第2ボンディングパッド40a,41aが、図1,図2に示すようにボンディングワイヤ13によってIC4の二つの電極パッドに接続される。 In this embodiment, the crystal resonator 3 is formed by bonding the second sealing plate 12, which is the lower surface side of the first and second sealing plates 11 and 12, to the inner bottom surface of the base 2 with an adhesive. , is mounted on the base 2 . The first and second bonding pads 40a and 41a of the first and second external electrode terminals 40 and 41 of the first sealing plate 11, which is the upper surface side of the crystal oscillator 3, are arranged as shown in FIGS. It is connected to two electrode pads of IC 4 by bonding wires 13 .
 図7は、水晶振動子3の角部の部分断面図であり、図5Aに示される第2ボンディングパッド41a付近を矢視A-A方向から見た断面図である。 FIG. 7 is a partial cross-sectional view of a corner portion of the crystal oscillator 3, and is a cross-sectional view of the vicinity of the second bonding pads 41a shown in FIG. 5A as seen from the direction of arrows AA.
 なお、この図7では、水晶振動子3の第2ボンディングパッド41a付近を示しているが、第1ボンディングパッド40a付近の構成も同様である。 Although FIG. 7 shows the vicinity of the second bonding pads 41a of the crystal oscillator 3, the configuration of the vicinity of the first bonding pads 40a is the same.
 この実施形態では、上記のように、水晶振動子3の第1封止板11の第1,第2外部電極端子40,41の第1,第2ボンディングパッド40a,41aが、ボンディングワイヤ13によってIC4の二つの電極パッドに接続されるが、このボンディングワイヤ13による第1封止板11の接続位置は、平面視で、水晶振動板10及び第1,第2封止板11,12の一方側の短辺の両端の各角部の非接合領域10a,10b;11a;12bに重なる位置である。 In this embodiment, the first and second bonding pads 40a and 41a of the first and second external electrode terminals 40 and 41 of the first sealing plate 11 of the crystal oscillator 3 are connected by the bonding wires 13 as described above. Although it is connected to two electrode pads of the IC 4, the connection position of the first sealing plate 11 by the bonding wire 13 is one of the crystal diaphragm 10 and the first and second sealing plates 11 and 12 in plan view. 11a; 12b at the corners of both ends of the short sides of the side.
 この各角部の非接合領域10a,10b;11a;12bは、図7に示すように、接合パターンが形成されておらず、水晶振動板10及び第1,第2封止板11,12の水晶板の表面が露出している部分である。 As shown in FIG. 7, the non-bonded regions 10a, 10b; 11a; This is the portion where the surface of the crystal plate is exposed.
 第1封止板11の他方の主面の各非接合領域11aと、水晶振動板10の一方の主面の各非接合領域10aとは、互いに対向して接合されていない第1非接合領域である。同様に、水晶振動板10の他方の主面の各非接合領域10bと、第2封止板12の一方の主面の各非接合領域12bとは、互いに対向して接合されていない第2非接合領域である。 Each non-bonding region 11a on the other main surface of the first sealing plate 11 and each non-bonding region 10a on one main surface of the crystal plate 10 are opposed to each other and are not bonded. is. Similarly, each non-bonding region 10b on the other main surface of the crystal diaphragm 10 and each non-bonding region 12b on one main surface of the second sealing plate 12 face each other and are not bonded to each other. It is a non-bonded area.
 第1封止板11及び水晶振動板10の第1非接合領域11a,10aと、水晶振動板10及び第2封止板12の第2非接合領域10b,12bとは、平面視で重なっており、第1封止板10の一方の主面の第1,第2ボンディングパッド40a,41aは、これら第1,第2非接合領域11a,10a;10b,12bに平面視で重なっている。 The first non-bonding regions 11a and 10a of the first sealing plate 11 and the crystal plate 10 and the second non-bonding regions 10b and 12b of the crystal plate 10 and the second sealing plate 12 overlap in plan view. The first and second bonding pads 40a and 41a on one main surface of the first sealing plate 10 overlap these first and second non-bonding regions 11a and 10a; 10b and 12b in plan view.
 第1非接合領域である第1封止板11の各非接合領域11a及び水晶振動板10の各非接合領域10aは、互いに対向して接合されない領域であるので、両者11a,10aの間には、図7に示すように第1の隙間G1が形成されている。同様に、第2非接合領域である水晶振動板10の各非接合領域10bと第2封止板12の各非接合領域12bとの間には、第2の隙間G2が形成されている。これらの隙間G1,G2の寸法範囲としては、ワイヤボンディングの接合性を低下させることなく、かつその応力を緩和できる寸法範囲がよい。具体的には1000nm以下の寸法が好ましく、200nm~700nmぐらいがより望ましい。また、特に本実施形態のような金の拡散接合を用いた構成では、ろう材による封止構成に比べて、上述の隙間寸法を微小な範囲で制御しやすく、不必要に隙間寸法が大きく形成されることもない。 Since each non-bonding region 11a of the first sealing plate 11 and each non-bonding region 10a of the crystal diaphragm 10, which are the first non-bonding regions, are regions that face each other and are not bonded, is formed with a first gap G1 as shown in FIG. Similarly, a second gap G2 is formed between each non-bonding region 10b of the crystal diaphragm 10 and each non-bonding region 12b of the second sealing plate 12, which are second non-bonding regions. The size range of these gaps G1 and G2 is preferably a size range in which the stress can be relieved without deteriorating the bondability of wire bonding. Specifically, a dimension of 1000 nm or less is preferable, and about 200 nm to 700 nm is more preferable. In addition, particularly in the configuration using diffusion bonding of gold as in the present embodiment, it is easier to control the above-described gap dimension in a minute range than in the sealing configuration using brazing material, and the gap dimension is formed unnecessarily large. Nor will it be done.
 このように第1,第2ボンディングパッド40a,41aは、第1封止板11と水晶振動板10との間に第1の隙間G1がある第1非接合領域11a,10a、及び、水晶振動板10と第2封止板12との間に第2の隙間G2がある第2非接合領域10b,12bに、平面視でそれぞれ重なる領域に位置している。これによって、第1,第2ボンディングパッドが、第1,第2封止板11,12と水晶振動板10とが封止用接合パターンによって完全に接合されて隙間が全くない領域に位置しているのに比べて、第1,第2ボンディングパッド40a,41aに過剰な押圧力がかかったときに、その過剰な押圧力を第1,第2非接合領域11a,10a;10b,12bの第1,第2の隙間G1,G2で逃がして緩和することができる。これによって、ワイヤボンディングの際に、水晶振動板10及び第1,第2封止板11,12が変形したり、クラック等の破損が生じるのを防止することができる。 In this manner, the first and second bonding pads 40a and 41a are connected to the first non-bonding regions 11a and 10a with the first gap G1 between the first sealing plate 11 and the crystal vibration plate 10, and the crystal vibration plate. They are located in regions that overlap the second non-bonding regions 10b and 12b, which have the second gap G2 between the plate 10 and the second sealing plate 12, in a plan view. As a result, the first and second bonding pads are positioned in areas where the first and second sealing plates 11 and 12 and the crystal plate 10 are completely bonded by the bonding pattern for sealing and there is no gap. When excessive pressing force is applied to the first and second bonding pads 40a and 41a, the excessive pressing force is applied to the first and second non-bonding regions 11a and 10a; 10b and 12b. 1, the second gaps G1 and G2 can be used to escape and alleviate the problem. As a result, it is possible to prevent the crystal plate 10 and the first and second sealing plates 11 and 12 from being deformed or damaged such as cracks during wire bonding.
 なお、第1封止板11の第1非接合領域11aと、水晶振動板10の第1非接合領域10aとは、いずれも接合パターン(金属膜)が形成されなかったが、第1封止板11または水晶振動板10のいずれか一方の第1非接合領域に接合パターンを形成しても、第1封止板11の第1非接合領域と水晶振動子10の第1非接合領域との間には、隙間を確保することができるので、第1封止板11または水晶振動板10のいずれか一方の第1非接合領域に接合パターンを形成してもよい。 Although the first non-bonding region 11a of the first sealing plate 11 and the first non-bonding region 10a of the crystal plate 10 were not formed with a bonding pattern (metal film), Even if a bonding pattern is formed in the first non-bonding region of either the plate 11 or the quartz plate 10, the first non-bonding region of the first sealing plate 11 and the first non-bonding region of the crystal oscillator 10 are not connected. Since a gap can be secured between them, the bonding pattern may be formed in the first non-bonding region of either the first sealing plate 11 or the crystal plate 10 .
 同様に、水晶振動板10または第2封止板12のいずれか一方の第2の非接合領域に、接合パターンを形成してもよい。 Similarly, a bonding pattern may be formed in the second non-bonding region of either the crystal plate 10 or the second sealing plate 12 .
 更に、この実施形態では、第1,第2ボンディングパッド40a,41aは、平面視矩形の第1封止板11の一辺の両端の互いに離れた位置にあるので、第1封止板11のサイズが小型、すなわち、水晶振動子3のサイズが小型になっても安定してワイヤボンディングを行うことが可能である。 Furthermore, in this embodiment, since the first and second bonding pads 40a and 41a are separated from each other on both ends of one side of the first sealing plate 11, which is rectangular in plan view, the size of the first sealing plate 11 is is small, that is, even if the size of the crystal oscillator 3 is reduced, stable wire bonding is possible.
 水晶振動子3の第1,第2ボンディングパッド40a,41aにワイヤボンディングされるIC4の二つの電極パッド以外の他の電極パッドは、上記のように、ベース2の配線パターン8にボンディングワイヤ9によってそれぞれ接続される。 Electrode pads other than the two electrode pads of the IC 4 which are wire-bonded to the first and second bonding pads 40a and 41a of the crystal oscillator 3 are connected to the wiring pattern 8 of the base 2 by bonding wires 9 as described above. connected respectively.
 これによって、IC4は、ベース2の内部配線等を介してベース2の外底面の図示しない電源端子、出力端子、制御端子、GND端子等の複数の外部接続端子、すなわち、当該水晶発振器1の実装用の複数の外部接続端子に電気的に接続される。 As a result, the IC 4 connects a plurality of external connection terminals such as a power supply terminal, an output terminal, a control terminal, and a GND terminal (not shown) on the outer bottom surface of the base 2 via the internal wiring of the base 2, that is, the mounting of the crystal oscillator 1. are electrically connected to a plurality of external connection terminals for
 ボンディングワイヤ9,13の素材としては、信頼性の観点からAuが好ましいが、Cuなどであってもよい。 As the material of the bonding wires 9 and 13, Au is preferable from the viewpoint of reliability, but Cu or the like may also be used.
 ワイヤボンディングによって、水晶振動子3とIC4とを電気的に接続しているので、ベース2に形成した配線パターン等を介して水晶振動子3とIC4とを電気的に接続する構成に比べて、浮遊容量を低減することができ、浮遊容量による特性の悪化を抑制することができる。 Since the crystal oscillator 3 and the IC 4 are electrically connected by wire bonding, compared to a configuration in which the crystal oscillator 3 and the IC 4 are electrically connected via a wiring pattern or the like formed on the base 2, A stray capacitance can be reduced, and deterioration of characteristics due to the stray capacitance can be suppressed.
 このように水晶振動子3の水晶振動板10の振動部15は、第1,第2封止板11,12によって気密に封止され、更に、水晶振動子3は、ベース2に搭載されて、リッド5によって気密に封止されるので、水晶振動板10の振動部15は、二重に気密封止されることになる。これによって、経年変化による周波数の変動を長期間に亘って抑制することができる。 In this manner, the vibrating portion 15 of the crystal plate 10 of the crystal oscillator 3 is hermetically sealed by the first and second sealing plates 11 and 12, and the crystal oscillator 3 is mounted on the base 2. , the lid 5 airtightly seals, the vibrating portion 15 of the crystal plate 10 is double airtightly sealed. This makes it possible to suppress frequency fluctuations due to secular change over a long period of time.
 この実施形態では、上記のように水晶振動子3を、接着剤によってベース2の内底面に接合するが、水晶振動子3、接着剤及びベース2の熱膨張率の差等に起因して、リフロー処理等の熱処理によって生じた熱応力が、水晶振動子3に加わり、周波数の安定性に悪影響を与える。 In this embodiment, the crystal oscillator 3 is bonded to the inner bottom surface of the base 2 with an adhesive as described above. Thermal stress generated by heat treatment such as reflow treatment is applied to the crystal oscillator 3 and adversely affects the stability of the frequency.
 このため、この実施形態では、リフロー処理等の熱処理に起因する熱応力によって、周波数が変動するのを抑制するために、次のようにしている。 For this reason, in this embodiment, the following measures are taken to suppress the frequency from fluctuating due to thermal stress caused by heat treatment such as reflow treatment.
 すなわち、水晶振動子3の第2封止板12とベース2の内底面とを接合する接着剤を、図8のベース2の概略平面図に示すように、平面視略矩形の仮想線で示される第2封止板12の円形の中央領域Sに塗布する。 That is, as shown in the schematic plan view of the base 2 in FIG. 8, the adhesive that joins the second sealing plate 12 of the crystal oscillator 3 and the inner bottom surface of the base 2 is indicated by an imaginary line that is substantially rectangular in plan view. is applied to the circular central region S of the second sealing plate 12 .
 この実施形態の第2封止板12の中央領域Sは、この第2封止板12に接合された平面視矩形の水晶振動板10(あるいは振動部15)の中心Oから平面視矩形の振動部15を略覆う平面視円形の領域となっている。すなわち、円形の中央領域Sは、平面視で水晶振動板10の中央部の振動部15に重なる領域である。 The central region S of the second sealing plate 12 of this embodiment vibrates in a rectangular shape in plan view from the center O of the crystal plate 10 (or vibrating portion 15), which is rectangular in plan view and is joined to the second sealing plate 12. It is a circular area in plan view that substantially covers the portion 15 . In other words, the circular central region S is a region that overlaps with the vibrating portion 15 in the central portion of the crystal plate 10 in plan view.
 この中央領域Sは、平面視で、水晶振動板10の振動部15の第1,第2励振電極19,20を覆う領域であるのが好ましく、より好ましくは、水晶振動板10の振動部15を覆う領域である。 This central region S is preferably a region covering the first and second excitation electrodes 19 and 20 of the vibrating portion 15 of the crystal plate 10 in a plan view, and more preferably, the vibrating portion 15 of the crystal plate 10. is the area covering the
 ベース2の内底面の円形の中央領域Sに、ペースト状の接着剤、この実施形態では、導電性接着剤、例えば、ポリイミド系、エポキシ系、あるいは、シリコーン系の導電性接着剤を塗布し、その上に水晶振動子3を載せて導電性接着剤を硬化させる。これによって、水晶振動子3は、ベース2に機械的に保持される。接着剤は、導電性接着剤に限らず、非導電性接着剤であってもよいが、導電性接着剤を使用することで、平面視で振動部15に重なる領域に、導電性接着剤によるシールド層を形成することができ、ノイズ等を遮蔽することができる。 A paste-like adhesive, in this embodiment, a conductive adhesive, for example, a polyimide-based, epoxy-based, or silicone-based conductive adhesive, is applied to the circular central region S of the inner bottom surface of the base 2, A crystal oscillator 3 is placed thereon, and the conductive adhesive is cured. Thereby, the crystal oscillator 3 is mechanically held on the base 2 . The adhesive is not limited to a conductive adhesive, and may be a non-conductive adhesive. A shield layer can be formed, and noise and the like can be shielded.
 このように水晶振動板3は、第2封止板12の円形の中央領域Sを、接着剤によってベース2に接合するので、図9の概略側面図に示されるように、水晶振動子3の第2封止板12が、ベース2の内底面に接着剤50に接合されている中央領域Sの周囲の外周領域では、第2封止板12の下面とベース2の内底面との間に隙間G3が形成される。 In this way, the crystal oscillator 3 is bonded to the base 2 with the adhesive at the circular central region S of the second sealing plate 12, so that the crystal oscillator 3 is not deformed as shown in the schematic side view of FIG. In the outer peripheral region around the central region S where the second sealing plate 12 is bonded to the inner bottom surface of the base 2 with the adhesive 50 , there is a gap between the lower surface of the second sealing plate 12 and the inner bottom surface of the base 2 . A gap G3 is formed.
 第2封止板12の隙間G3が形成される外周領域は、水晶振動板10の外周部の外枠部17に、平面視で重なっている。水晶振動板10の外周部の外枠部17は、第1,第2封止板11,12の外周部が、上記のように、振動側第1,第2封止用接合パターン25,26及び封止側第1,第2封止用接合パターン33,45等によってそれぞれ接合される領域である。 The outer peripheral region where the gap G3 of the second sealing plate 12 is formed overlaps the outer frame portion 17 of the outer peripheral portion of the crystal plate 10 in plan view. The outer frame portion 17 of the outer peripheral portion of the crystal plate 10 is formed so that the outer peripheral portions of the first and second sealing plates 11 and 12 are connected to the vibration side first and second sealing bonding patterns 25 and 26 as described above. and sealing-side first and second sealing bonding patterns 33, 45, etc., respectively.
 このように水晶振動板3は、第2封止板12の円形の中央領域Sを、接着剤50によってベース2に接合するので、この中央領域Sは、接着剤50によって拘束支持されている。このため、リフロー処理等の熱処理に起因する熱応力が、接着剤50によって拘束されている第2封止板12の中央領域Sに加わることになる。 In this way, the crystal plate 3 joins the circular central region S of the second sealing plate 12 to the base 2 with the adhesive 50, so that the central region S is restrained and supported by the adhesive 50. Therefore, thermal stress caused by heat treatment such as reflow treatment is applied to the central region S of the second sealing plate 12 bound by the adhesive 50 .
 第2封止板12の中央領域Sは、上記のように、水晶振動板10の中央部の振動部15に平面視で重なる領域である。第2封止板12の中央領域Sと水晶振動板10の振動部15との間には、上記図3に示すように、水晶振動板10の中央部の振動部15とその周囲の外枠部17との肉厚差に応じた空間が存在するので、第2封止板12の中央領域Sに加わった熱応力は、水晶振動板10の振動部15に直接伝達することはない。 As described above, the central region S of the second sealing plate 12 is a region that overlaps with the vibrating portion 15 in the central portion of the crystal plate 10 in a plan view. Between the central region S of the second sealing plate 12 and the vibrating portion 15 of the crystal plate 10, as shown in FIG. Since there is a space corresponding to the thickness difference with the portion 17 , the thermal stress applied to the central region S of the second sealing plate 12 is not directly transmitted to the vibrating portion 15 of the crystal plate 10 .
 第2封止板12の中央領域Sに加わった熱応力は、先ず、第2封止板12の外周部へ伝達され、更に、第2封止板12の外周部に接合されている水晶振動板10の外枠部17に伝達され、この外枠部17に連結部18を介して支持されている振動部15に伝達されることになる。 The thermal stress applied to the central region S of the second sealing plate 12 is first transmitted to the outer peripheral portion of the second sealing plate 12, and furthermore, the crystal vibrating crystal bonded to the outer peripheral portion of the second sealing plate 12. The vibration is transmitted to the outer frame portion 17 of the plate 10 and transmitted to the vibrating portion 15 supported by the outer frame portion 17 via the connecting portion 18 .
 これに対して、例えば、水晶振動子3の第2封止板12の全面を接着剤によってベース2の内底面に接合した場合、あるいは、第2封止板12の外周部の複数箇所を、接着剤でベース2の内底面に接合した場合を考える。 On the other hand, for example, when the entire surface of the second sealing plate 12 of the crystal oscillator 3 is bonded to the inner bottom surface of the base 2 with an adhesive, or when a plurality of locations on the outer peripheral portion of the second sealing plate 12 are Consider the case of bonding to the inner bottom surface of the base 2 with an adhesive.
 いずれの場合も水晶振動子3は、第2封止板12の外周部でベース2に接合されることになるので、リフロー処理等の熱処理に起因する熱応力は、接着剤によって拘束されている第2封止板12の外周部に加わることになる。第2封止板12の外周部には、水晶振動板10の外枠部17が接合されているので、第2封止板12の外周部に加わった熱応力は、水晶振動板10の外枠部17に伝達され、この外枠部17に連結部18を介して連結されている振動部15に加わることになる。 In either case, the crystal oscillator 3 is bonded to the base 2 at the outer peripheral portion of the second sealing plate 12, so the thermal stress caused by heat treatment such as reflow treatment is constrained by the adhesive. It joins the outer peripheral portion of the second sealing plate 12 . Since the outer frame portion 17 of the crystal plate 10 is bonded to the outer peripheral portion of the second sealing plate 12 , the thermal stress applied to the outer peripheral portion of the second sealing plate 12 is The vibration is transmitted to the frame portion 17 and applied to the vibrating portion 15 which is connected to the outer frame portion 17 via the connecting portion 18 .
 このように第2封止板12の外周部に加わった熱応力の方が、第2封止板12の中央領域Sに加わった熱応力に比べて、水晶振動板10の中央部の振動部15へ伝達し易く、振動部15に悪影響を及ぼす。 In this way, the thermal stress applied to the outer peripheral portion of the second sealing plate 12 is greater than the thermal stress applied to the central region S of the second sealing plate 12, thereby increasing the vibrating portion in the central portion of the crystal plate 10. 15, and adversely affects the vibrating portion 15.
 この実施形態によると、第2封止板12の中央領域Sのみを、接着剤50によってベース2に接合しているので、第2封止板12の外周部や第2封止板12の全面を、接着剤50によってベース2に接合する構成に比べて、リフロー処理等の熱処理を行って生じた熱応力が、水晶振動板10の振動部15へ与える影響を低減することができ、周波数の変動を抑制することができる。 According to this embodiment, since only the central region S of the second sealing plate 12 is bonded to the base 2 with the adhesive 50, the outer peripheral portion of the second sealing plate 12 and the entire surface of the second sealing plate 12 are bonded. is bonded to the base 2 with an adhesive 50, the effect of thermal stress generated by heat treatment such as reflow treatment on the vibrating portion 15 of the crystal diaphragm 10 can be reduced, and the frequency can be reduced. Fluctuations can be suppressed.
 本件発明者は、水晶振動子3の接着剤50によるベース2への接合が、水晶振動子3の周波数の変動に与える影響を検証すべく試験を行った。 The inventor conducted a test to verify the effect of bonding the crystal oscillator 3 to the base 2 with the adhesive 50 on the frequency fluctuation of the crystal oscillator 3 .
 試験では、上記のように第2封止板12の円形の中央領域Sを、接着剤50によってベース2に接合した本実施形態の水晶発振器1と、第2封止板12の円形の中央領域Sではなく、平面視矩形の第2封止板12の4つ角部を、接着剤50によってベース2にそれぞれ接合し、それ以外は、本実施形態の構成と同じである比較例の水晶発振器とを製作した。接着剤50として、硬質のポリイミド系の導電性接着剤を使用した。硬質のポリイミド系の接着剤は、軟質のシリコーン系の接着剤に比べて、強固に接着できるので、ワイヤボンディングに適しており、ワイヤボンディングを安定して行うことができる。IC4も水晶振動子3と同じ硬質のポリイミド系の導電性接着剤を使用して、ベース2に接合することによって、同一の硬化条件で処理することができる。 In the test, the crystal oscillator 1 of this embodiment in which the circular central region S of the second sealing plate 12 was bonded to the base 2 with the adhesive 50 as described above, and the circular central region of the second sealing plate 12 The four corners of the second sealing plate 12, which is rectangular in plan view, are bonded to the base 2 with an adhesive 50 instead of S, and otherwise the crystal oscillator of the comparative example has the same configuration as that of the present embodiment. and was produced. A hard polyimide-based conductive adhesive was used as the adhesive 50 . A hard polyimide-based adhesive can bond more firmly than a soft silicone-based adhesive, so it is suitable for wire bonding, and wire bonding can be performed stably. The IC 4 can also be treated under the same curing conditions by bonding it to the base 2 using the same hard polyimide-based conductive adhesive as the crystal oscillator 3 .
 本実施形態の水晶発振器1のサンプル80個と、比較例の水晶発振器のサンプル80個とについて、リフロー処理に対応するピーク温度が260℃程度に達する熱処理を行い、熱処理後の周波数偏差を測定した。 80 samples of the crystal oscillator 1 of the present embodiment and 80 samples of the crystal oscillator of the comparative example were subjected to heat treatment at a peak temperature of about 260° C. corresponding to the reflow treatment, and the frequency deviation after the heat treatment was measured. .
 その測定結果を、図10A,図10Bに示す。この図10A,図10Bでは、横軸は、熱処理後6時間までの経過時間であり、縦軸は、熱処理前の周波数を基準とした周波数偏差(ppm)であり、処理前の周波数偏差(dF/F)を0としている。上記サンプル80個の平均値を示している。 The measurement results are shown in FIGS. 10A and 10B. In FIGS. 10A and 10B, the horizontal axis is the elapsed time up to 6 hours after the heat treatment, the vertical axis is the frequency deviation (ppm) based on the frequency before the heat treatment, and the frequency deviation before the treatment (dF /F) is set to 0. The average value of the above 80 samples is shown.
 図10Aは、比較例の水晶発振器の周波数偏差を、図10Bは、本実施形態の水晶発振器の周波数偏差をそれぞれ示している。 FIG. 10A shows the frequency deviation of the crystal oscillator of the comparative example, and FIG. 10B shows the frequency deviation of the crystal oscillator of this embodiment.
 図10Aの比較例の水晶発振器は、経時的な周波数偏差が大きいのに対して、図10Bの本実施形態の水晶発振器は、経時的な周波数偏差が小さく、周波数の変動が抑制されていることが分かる。 The crystal oscillator of the comparative example in FIG. 10A has a large frequency deviation over time, whereas the crystal oscillator of this embodiment in FIG. 10B has a small frequency deviation over time and frequency fluctuation is suppressed. I understand.
 なお、接着剤50としては、硬質のポリイミド系の接着剤の方が、軟質のシリコーン系の接着剤に比べて、接着力が強く、水晶振動子3をベース2に安定して保持できるのであるが、その分、水晶振動子3の第2封止板12を拘束する拘束力が強くなるので、リフロー処理等の熱処理に起因する熱応力よる周波数の変動が大きくなる。 As the adhesive 50, a hard polyimide-based adhesive has stronger adhesion than a soft silicone-based adhesive, and can stably hold the crystal oscillator 3 on the base 2. However, since the restraining force that restrains the second sealing plate 12 of the crystal resonator 3 is correspondingly stronger, the fluctuation of the frequency due to the thermal stress resulting from the heat treatment such as reflow treatment is increased.
 本実施形態によれば、接着剤50として、硬質のポリイミド系の接着剤を使用した場合の方が、軟質のシリコーン系の接着剤を使用した場合に比べて、熱応力よる周波数の変動を抑制する効果が大きい。 According to the present embodiment, when a hard polyimide-based adhesive is used as the adhesive 50, frequency fluctuations due to thermal stress are suppressed more than when a soft silicone-based adhesive is used. have a great effect.
 上記実施形態では、第2封止板12をベース2に接合するための接着剤を塗布する第2封止板12の中央領域を、平面視円形としたが、円形に限らず、長円形、楕円形、矩形やその他の形状であってもよい。例えば、第2封止板12の中央領域を、第2封止板12に接合されている水晶振動板10の振動部15を覆い、かつ、外枠部17を覆わない矩形の領域としてもよく、あるいは、第2封止板12の中央領域を、水晶振動板10の振動部15を覆う矩形の領域としてもよい。 In the above embodiment, the central region of the second sealing plate 12 to which the adhesive for joining the second sealing plate 12 to the base 2 is applied is circular in plan view. It may be oval, rectangular or other shape. For example, the central region of the second sealing plate 12 may be a rectangular region that covers the vibrating portion 15 of the crystal diaphragm 10 bonded to the second sealing plate 12 but does not cover the outer frame portion 17. Alternatively, the central region of the second sealing plate 12 may be a rectangular region covering the vibrating portion 15 of the crystal plate 10 .
 また、上記実施形態では、第2封止板12の中央領域Sの全領域に接着剤50を塗布してベース2の内底面に接合したが、円形の中央領域S内の複数箇所に接着剤50をそれぞれ塗布してベース2の内底面に接合してもよい。 Further, in the above-described embodiment, the adhesive 50 is applied to the entire central region S of the second sealing plate 12 and bonded to the inner bottom surface of the base 2. 50 may be applied and bonded to the inner bottom surface of the base 2 .
 上記実施形態では、水晶振動子3は、第2封止板12を接着剤50によってベース2の内底面に接合したが、接着剤に限らず、半田等の他の接合材によって接合してもよい。 In the above-described embodiment, the second sealing plate 12 of the crystal oscillator 3 is bonded to the inner bottom surface of the base 2 with the adhesive 50. However, other bonding materials such as solder may be used instead of the adhesive. good.
 上記実施形態では、図5Aに示すように、第1,第2ボンディングパッド40a,41aは、平面視矩形の第2封止板11の短辺の両端の離れた位置に形成されたが、本発明の他の実施形態として、第1,第2ボンディングパッドを近接した位置に形成してもよい。 In the above-described embodiment, as shown in FIG. 5A, the first and second bonding pads 40a and 41a are formed at separated positions on both ends of the short sides of the second sealing plate 11 which is rectangular in plan view. In another embodiment of the invention, the first and second bonding pads may be formed in close proximity.
 図11A,図11Bは、本発明の他の実施形態の水晶発振器に用いる水晶振動子の水晶振動板を示す図であり、上記図4A,図4Bに対応する図であり、対応する部分には、同一の参照符号を付してその説明を省略する。 11A and 11B are diagrams showing a crystal diaphragm of a crystal oscillator used in a crystal oscillator according to another embodiment of the present invention, and are diagrams corresponding to FIGS. 4A and 4B. , are given the same reference numerals, and the description thereof is omitted.
 水晶振動板10の図11Aに示される一方の主面の環状の振動側第1封止用接合パターン25は、平面視矩形の水晶振動板10の一方側(図11Aの右側)の短辺の両端の各角部の外周縁近傍まで形成されており、上記図4Aの水晶振動板10の各角部と異なり、内周側へ円弧状に窪んでいない。振動側第1封止用接合パターン25の水晶振動板10の他方側(図11Aの左側)の短辺に沿って延びる部分は、一方(図11Aの上方)の角部から該短辺の略中間位置まで、外周側が内周側に入り込んで、外側は、接合パターンが形成されていない水晶板の表面が露出した領域となっている。この水晶板の表面が露出した領域が、後述の図12Bに示される第1封止板11に接合されない非接合領域10aとなっている。 The annular vibration-side first sealing bonding pattern 25-1 on one main surface of the crystal diaphragm 10-1 shown in FIG . It is formed up to the vicinity of the outer peripheral edge of each corner at both ends of the short side, and unlike the corners of the crystal plate 10 shown in FIG. The part of the bonding pattern 25 1 for first sealing on the vibration side that extends along the short side on the other side (the left side in FIG. 11A) of the crystal plate 10 1 extends from one corner (upper side in FIG. 11A) to the short side. The outer peripheral side enters the inner peripheral side up to approximately the middle position, and the outer side is an area in which the surface of the crystal plate where the bonding pattern is not formed is exposed. The area where the surface of the crystal plate is exposed serves as a non-bonded area 10 1 a that is not bonded to the first sealing plate 11 1 shown in FIG. 12B which will be described later.
 図11Bに示される水晶振動板10の他方の主面側の環状の振動側第2封止用接合パターン26は、水晶振動板10の前記一方側(図11Bの右側)の短辺の両端の各角部の外周縁近傍まで形成されており、上記図4Bの水晶振動板10の各角部と異なり、内周側へ円弧状に窪んでいない。振動側第2封止用接合パターン26の水晶振動板10の前記他方側(図11Bの左側)の短辺に沿って延びる部分は、一方の主面側の振動側第1封止用接合パターン25と平面視で重なるように、一方(図11Bの上方)の角部から前記短辺の略中間位置まで、外周側が内周側に入り込んで、外側は、接合パターンが形成されていない水晶板の表面が露出した領域となっている。この水晶板の表面が露出した領域が、後述の図13Aに示される第2封止板12に接合されない非接合領域10bとなっている。 The annular vibration - side second sealing bonding pattern 26-1 on the other main surface side of the crystal diaphragm 10-1 shown in FIG. , and unlike the corners of the crystal diaphragm 10 shown in FIG. The portion of the bonding pattern 26 1 for vibration side second sealing that extends along the short side of the other side (the left side in FIG. 11B) of the crystal plate 10 1 is the first vibration side sealing bonding pattern on one main surface side. From one corner (upper in FIG. 11B) to approximately the middle position of the short side, the outer peripheral side enters the inner peripheral side so that the outer peripheral side overlaps the joining pattern 25 1 in plan view, and the joining pattern is formed on the outer side. The surface of the crystal plate, which is not covered with the crystal plate, is an exposed region. The area where the surface of the crystal plate is exposed serves as a non-bonded area 10 1 b that is not bonded to the second sealing plate 12 1 shown in FIG. 13A which will be described later.
 このように水晶振動板10では、振動側第1,第2封止用接合パターン25,26は、水晶振動板10の前記一方側の短辺の両端の各角部の外周縁近傍まで形成されていると共に、水晶振動板10の前記他方側の短辺に沿って延びる部分は、前記一方の角部から前記短辺の略中間位置まで、外周側が内周側に入り込んで、外側は、接合パターンが形成されていない水晶板の表面が露出した非接合領域10a,10bとなっている。 As described above, in the crystal diaphragm 10 1 , the bonding patterns 25 1 and 26 1 for vibration-side first and second sealing are formed on the outer peripheral edges of the respective corners at both ends of the short side on the one side of the crystal diaphragm 10 1 . The portion extending along the short side of the other side of the crystal diaphragm 101 extends from the one corner to the approximate middle position of the short side so that the outer circumference side enters the inner circumference side. , and outside are non-bonded areas 10 1 a and 10 1 b where the surface of the crystal plate on which the bonding pattern is not formed is exposed.
 図4A,図4Bの水晶振動板10では、非接合領域10a,10a;10b,10bは、上記のように、平面視略矩形環状の外枠部17において、連結部18を介して振動部15に連結されている内周側の略矩形の一辺(図4A,図4Bの右側の辺)側の外枠部17に設けられている。この一辺側の外枠部17には、振動部15の各励振電極19,20からの各引出し電極21,22、接続用接合パターン23,24,27,28、及び、各振動側封止用接合パターン25,26等の配線や接合用のパターンを形成する必要がある。 4A and 4B, the non-bonded regions 10a, 10a; 4A and 4B) is provided on the outer frame portion 17 on one side of the substantially rectangular shape on the inner peripheral side (the side on the right side in FIGS. 4A and 4B). The outer frame portion 17 on one side includes lead electrodes 21 and 22 from the excitation electrodes 19 and 20 of the vibrating portion 15, connection bonding patterns 23, 24, 27 and 28, and vibrating-side sealing electrodes. It is necessary to form wiring and bonding patterns such as the bonding patterns 25 and 26 .
 これに対して、本実施形態では、図11A,図11Bに示すように、非接合領域10a,10bは、平面視略矩形環状の外枠部17において、連結部18を介して振動部15に連結されている内周側の略矩形の一辺側ではなく、前記一辺に対向する対向辺(図11A,図11Bの左側の辺)側の外枠部17に設けられている。 On the other hand, in the present embodiment, as shown in FIGS. 11A and 11B, the non-bonded regions 10 1 a and 10 1 b are formed in the outer frame portion 17 having a substantially rectangular annular shape in plan view via the connecting portion 18 . It is provided on the outer frame portion 17 on the opposite side (the left side in FIGS. 11A and 11B) opposite to the one side of the substantially rectangular inner periphery connected to the vibrating portion 15 .
 したがって、前記一辺側の外枠部17に非接合領域10a,10a;10b,10bを設ける図4A,図4Bの水晶振動板10のように、一辺側の外枠部17に形成される各引出し電極21,22、接続用接合パターン23,24,27,28、及び、各振動側封止用接合パターン25,26等の配線や接合用のパターンの制約を受けることなく、非接合領域10a,10bを設けるスペースを充分に確保することが容易である。 Therefore, each drawer formed on the outer frame portion 17 on one side is provided with the non-bonded areas 10a, 10a; The non-bonding area can be formed without being restricted by the wiring and bonding patterns such as the electrodes 21 and 22, the connection bonding patterns 23, 24, 27 and 28, and the vibration side sealing bonding patterns 25 1 and 26 1 . It is easy to secure a sufficient space for providing 10 1 a and 10 1 b.
 本実施形態のその他の構成は、図4A,図4Bの水晶振動板10と同様である。 Other configurations of the present embodiment are the same as those of the crystal plate 10 in FIGS. 4A and 4B.
 図12A,図12Bは、図11A,図11Bの水晶振動板10に接合される第1封止板を示す図であり、上記図5A,図5Bに対応する図であり、対応する部分には、同一の参照符号を付してその説明を省略する。 12A and 12B are views showing the first sealing plate bonded to the crystal plate 101 of FIGS. 11A and 11B, and are views corresponding to FIGS. 5A and 5B. are given the same reference numerals, and the description thereof is omitted.
 第1封止板11の図12Bに示される他方の主面の環状の封止側第1封止用接合パターン33は、平面視矩形の第1封止板11の一方側(図12Bの右側)の短辺の両端の各角部の外周縁近傍まで形成されており、上記図5Bの第1封止板11の各角部と異なり、内周側へ円弧状に窪んでいない。この封止側第1封止用接合パターン33の第1封止板11の他方側(図12Bの左側)の短辺に沿って延びる部分は、一方(図12Bの上方)の角部から前記短辺の略中間位置まで、外周側が内周側に入り込んで、外側は、接合パターンが形成されていない水晶板の表面が露出した領域となっている。この水晶板の表面が露出した領域が、上記図11Aの水晶振動板10の一方の主面の非接合領域10aに対向し、水晶振動板10に接合されない非接合領域11aとなっている。この非接合領域11aは、平面視で、図11A,図11Bの水晶振動板10の両主面の振動側第1,第2封止用接合パターン25,26が形成されていない非接合領域10a,10bに重なる。この第1封止板11の他方の主面側におけるその他の構成は、図5Bの第1封止板11と同様である。 The annular sealing-side first sealing bonding pattern 33-1 on the other main surface of the first sealing plate 11-1 shown in FIG. 12B) is formed up to the vicinity of the outer periphery of each corner at both ends of the short side, and unlike each corner of the first sealing plate 11 in FIG. . The portion of the sealing-side first sealing bonding pattern 33-1 extending along the short side on the other side (left side in FIG. 12B) of the first sealing plate 11-1 is one corner (upper side in FIG. 12B). , the outer peripheral side enters the inner peripheral side, and the outer side is an area in which the surface of the crystal plate is exposed where the bonding pattern is not formed. The region where the surface of the crystal plate is exposed faces the non-bonded region 10 1 a on one main surface of the crystal plate 10 1 shown in FIG. It has become. This non-bonding region 11 1 a is formed with bonding patterns 25 1 and 26 1 for vibration-side first and second sealing on both main surfaces of the crystal diaphragm 10 1 of FIGS. 11A and 11B in plan view. It overlaps with the non-bonded regions 10 1 a and 10 1 b. Other configurations on the other main surface side of the first sealing plate 111 are the same as those of the first sealing plate 11 in FIG. 5B.
 第1封止板11の図12Aに示される一方の主面には、第2貫通電極38の周囲に、第2外部電極端子41が形成されている。この第2外部電極端子41は、平面視矩形の第1封止板11の一方側(図12Aの右側)の短辺の一方の角部に矩形に形成されると共に、その一部が一方の長辺に沿って他方側の短辺まで延出し、更に、他方側の短辺に沿って他方の長辺へ少し延出している。第2外部電極端子41の前記他方側の短辺に沿って他方の長辺へ延出する延出端の外周側が、第2ボンディングパッド41aとなっている。この第2外部電極端子41は、図5A,図5Bの第1封止板11と同様に、第2貫通電極38、接続用接合パターン34、図11A,図11Bの水晶振動板10の接続用接合パターン27、第1貫通電極31及び接続用接合パターン24を介して水晶振動板10の第2励振電極20に電気的に接続される。 A second external electrode terminal 41-1 is formed around the second through electrode 38 on one main surface of the first sealing plate 11-1 shown in FIG. 12A. The second external electrode terminal 41-1 is formed in a rectangular shape at one corner of the short side on one side (the right side in FIG. 12A) of the first sealing plate 11-1 , which is rectangular in plan view. It extends along one long side to the other short side, and further extends slightly along the other short side to the other long side. A second bonding pad 41 1 a is formed on the outer peripheral side of the extending end extending to the other long side along the other short side of the second external electrode terminal 41 1 . 5A and 5B, the second external electrode terminal 41-1 includes the second through electrode 38, the connection bonding pattern 34, and the crystal plate 10-1 of FIGS. 11A and 11B. It is electrically connected to the second excitation electrode 20 of the crystal diaphragm 101 via the connection bonding pattern 27 , the first through electrode 31 and the connection bonding pattern 24 .
 第1封止板11の一方の主面には、第3貫通電極39の周囲に、第1外部電極端子40が形成されている。この第1外部電極端子40は、平面視矩形の第1封止板11の他方側(図12Aの左側)の短辺の一方(図12Aの下方)の角部から該短辺に沿って第2外部電極端子41へ向けて延出する一方、前記角部から長辺に沿って一方側(図12Aの右側)の短辺まで延出している。第1外部電極端子40の、第2外部電極端子41へ向けて延出する延出端の外周側が、第1ボンディングパッド40aとなっている。この第1外部電極端子40は、図5A,図5Bの第1封止板11と同様に、第3貫通電極39、接続用接合パターン37、接続用配線パターン36、接続用接合パターン35、及び、図11A,図11Bの水晶振動板10の接続用接合パターン23を介して水晶振動板10の第1励振電極19に電気的に接続される。 A first external electrode terminal 40-1 is formed around the third through electrode 39 on one main surface of the first sealing plate 11-1 . The first external electrode terminal 40-1 extends along the short side from one corner (lower side in FIG. 12A) on the other side (left side in FIG. 12A) of the first sealing plate 11-1 which is rectangular in plan view. While extending toward the second external electrode terminal 411 from the corner, it extends to the short side on one side (the right side in FIG. 12A) along the long side from the corner. The outer peripheral side of the extension end of the first external electrode terminal 40-1 extending toward the second external electrode terminal 41-1 serves as a first bonding pad 40-1a . 5A and 5B, the first external electrode terminal 401 includes the third through-electrode 39, the connection bonding pattern 37, the connection wiring pattern 36, the connection bonding pattern 35, 11A and 11B, and is electrically connected to the first excitation electrode 19 of the crystal plate 10-1 through the connection bonding pattern 23 of the crystal plate 10-1 .
 第1封止板11の第1,第2ボンディングパッド40a,41aは、平面視で、他方の主面の封止側第1封止用接合パターン33が形成されていない非接合領域11aに重なると共に、水晶振動板10の振動側第1,第2封止用接合パターン25,26が形成されていない非接合領域10a,10bに重なる。 The first and second bonding pads 40 1 a and 41 1 a of the first sealing plate 11 1 are not formed with the sealing-side first sealing bonding pattern 33 1 on the other main surface in plan view. It overlaps with the non-bonding region 11 1 a and also overlaps with the non-bonding regions 10 1 a and 10 1 b where the vibration side first and second sealing bonding patterns 25 1 and 26 1 of the crystal plate 10 1 are not formed. .
 図13A,図13Bは、図11A,図11Bの水晶振動板10に接合される第2封止板を示す図であり、上記図6A,図6Bに対応する図であり、対応する部分には、同一の参照符号を付してその説明を省略する。 13A and 13B are views showing the second sealing plate that is bonded to the crystal plate 101 of FIGS. 11A and 11B, and are views corresponding to FIGS. 6A and 6B. are given the same reference numerals, and the description thereof is omitted.
 第2封止板12の図13Aに示される一方の主面の環状の振動側第2封止用接合パターン45は、平面視矩形の第2封止板12の一方側(図13Aの右側)の短辺の両端の各角部の外周縁近傍まで形成されており、上記図6Aの第2封止板12の各角部と異なり、内周側へ円弧状に窪んでいない。この振動側第2封止用接合パターン45の第2封止板12の他方側(図13Aの左側)の短辺に沿って延びる部分は、一方(図13Aの上方)の角部から前記短辺の略中間位置まで、外周側が内周側に入り込んで、外側は、接合パターンが形成されていない水晶板の表面が露出した領域となっている。この水晶板の表面が露出した領域が、上記図11Bの水晶振動板10の他方の主面の非接合領域10bに対向し、水晶振動板10に接合されない非接合領域12bとなっている。この非接合領域12bは、平面視で、図11A,図11Bの水晶振動板10の両主面の振動側第1,第2封止用接合パターン25,26が形成されていない非接合領域10a,10bに重なると共に、第1封止板11の他方の主面の封止側第1封止用接合パターン33が形成されていない非接合領域11aに重なる。この第2封止板12の一方の主面におけるその他の構成は、図6A,図6Bの第2封止板12と同様である。 The annular vibration-side second sealing bonding pattern 45-1 on one main surface of the second sealing plate 12-1 shown in FIG. 6A), and unlike the corners of the second sealing plate 12 shown in FIG. The part of the joint pattern 45-1 for vibration-side second sealing that extends along the short side on the other side (the left side in FIG. 13A) of the second sealing plate 12-1 extends from one corner (upper side in FIG. 13A). The outer peripheral side enters the inner peripheral side up to approximately the middle position of the short side, and the outer side is an area where the surface of the crystal plate where the bonding pattern is not formed is exposed. The region where the surface of the crystal plate is exposed faces the non-bonded region 10 1 b on the other main surface of the crystal plate 10 1 in FIG . It has become. This non-bonding region 12 1 b is formed with bonding patterns 25 1 and 26 1 for vibration-side first and second sealing on both main surfaces of the crystal plate 10 1 shown in FIGS. 11A and 11B in plan view. The non-bonding region 11-1 overlaps with the non-bonding regions 10-1a and 10-1b that do not have a sealing-side first sealing bonding pattern 33-1 on the other main surface of the first sealing plate 11-1 . Overlaps a. Other configurations on one main surface of the second sealing plate 121 are the same as those of the second sealing plate 12 shown in FIGS. 6A and 6B.
 この実施形態によれば、第1封止板11の第1,第2ボンディングパッド40a,41aは、平面視で、第1封止板11の他方の主面の封止側第1封止用接合パターン33が形成されていない非接合領域11a、水晶振動板10の振動側第1,第2封止用接合パターン25,26が形成されていない非接合領域10a,10b、及び、第2封止板12の振動側第2封止用接合パターン45が形成されていない非接合領域12bに重なる。 According to this embodiment, the first and second bonding pads 40 1 a and 41 1 a of the first sealing plate 11 1 seal the other main surface of the first sealing plate 11 1 in plan view. A non-bonding region 11 1 a in which the side first sealing bonding pattern 33 1 is not formed, and vibration side first and second sealing bonding patterns 25 1 and 26 1 of the crystal diaphragm 10 1 are not formed. It overlaps with the non-bonding regions 10 1 a and 10 1 b and the non-bonding region 12 1 b where the vibration-side second sealing bonding pattern 45 1 of the second sealing plate 12 1 is not formed.
 すなわち、第1,第2ボンディングパッド40a,41aは、第1封止板11と水晶振動板10との間に第1の隙間がある第1非接合領域11a,10a、及び、水晶振動板10と第2封止板12との間に第2の隙間がある第2非接合領域10b,12bに平面視で重なる領域に位置している。 That is, the first and second bonding pads 40 1 a and 41 1 a are located in the first non-bonding regions 11 1 a and 11 1 a with the first gap between the first sealing plate 11 1 and the crystal plate 10 1 . 10 1 a and the second non-bonding regions 10 1 b and 12 1 b having a second gap between the crystal diaphragm 10 1 and the second sealing plate 12 1 in plan view. ing.
 これによって、第1,第2ボンディングパッド40a,41aをワイヤボンディングする場合に、第1,第2ボンディングパッド40a,41aに過剰な押圧力がかかったときに、その過剰な押圧力を第1,第2非接合領域11a,10a;10b,12bの第1,第2の隙間で逃がして緩和することができ、水晶振動板10及び第1,第2封止板11,12が、変形したり、クラック等の破損が生じるのを防止することができる。 As a result, when excessive pressing force is applied to the first and second bonding pads 40 1 a and 41 1 a when the first and second bonding pads 40 1 a and 41 1 a are wire-bonded, the Excessive pressing force can be relieved and relieved by the first and second gaps of the first and second non-bonding regions 11 1 a, 10 1 a; 10 1 b, 12 1 b. Also, the first and second sealing plates 11 1 and 12 1 can be prevented from being deformed or damaged such as cracks.
 更に、この実施形態では、第1,第2ボンディングパッド40a,41aは、上記実施形態の図5A,図5Bに示される第1封止板11の第1,第2ボンディングパッド40a,41aのように平面視矩形の第1封止板11の短辺の両端の各角部に設けるのではなく、内方側の近接した位置に設けるので、ワイヤボンディングを安定して行うことができる。 Furthermore, in this embodiment, the first and second bonding pads 40 1 a and 41 1 a are the first and second bonding pads 40 a of the first sealing plate 11 shown in FIGS. 5A and 5B of the above embodiment. , 41a, which are rectangular in plan view, but not at the corners of both ends of the short sides of the first sealing plate 11, but at close positions on the inner side, wire bonding can be performed stably. can.
 上記の各実施形態の水晶振動子1では、水晶振動板10,10の第1,第2励振電極19,20と、第1封止板11,11の第1,第2外部電極端子40,41;40,41とは、貫通電極31,38,39を介して電気的に接続したが、本発明の他の実施形態として、貫通電極に代えて、側面電極を介して電気的に接続してもよい。 In the crystal resonator 1 of each of the above embodiments, the first and second excitation electrodes 19 and 20 of the crystal diaphragm plates 10 and 101 and the first and second external electrode terminals of the first sealing plates 11 and 111 40, 41; 40 1 , 41 1 are electrically connected through the through electrodes 31, 38, 39, but in another embodiment of the present invention, electrical connections are made through side electrodes instead of the through electrodes. can be connected directly.
 図14A,図14Bは、貫通電極に代えて側面電極を用いた本発明の他の実施形態の水晶振動子の水晶振動板を示す図であり、上記図4A,図4Bに対応する図であり、対応する部分には、同一の参照符号を付してその説明を省略する。 14A and 14B are diagrams showing a crystal diaphragm of a crystal oscillator according to another embodiment of the present invention using side electrodes instead of through electrodes, and are diagrams corresponding to FIGS. 4A and 4B. , corresponding parts are denoted by the same reference numerals, and the description thereof is omitted.
 水晶振動板10の図14Aに示される一方の主面には、振動部15を囲む略矩形環状の外枠部17に、振動側第1封止接続用接合パターン25が環状に形成されている。この振動側第1封止接続用接合パターン25は、上記図4Aの水晶振動板10の振動側第1封止用接合パターン25と異なり、振動部15の第1励振電極19に第1引出し電極21を介して電気的に接続されている。 14A of the quartz crystal plate 102 , a bonding pattern 252 for vibration-side first sealing connection is formed in a ring shape on a substantially rectangular ring-shaped outer frame portion 17 surrounding the vibration portion 15. As shown in FIG. ing. The bonding pattern 252 for connection of the first sealing on the vibration side is different from the bonding pattern 25 for first sealing on the vibration side of the crystal diaphragm 10 of FIG. They are electrically connected via electrodes 212 .
 この振動側第1封止接続用接合パターン25では、平面視矩形の水晶振動板10の一方側(図14Aの右側)の短辺の一端側(図14Aの上方側)は、外周縁まで延びる幅広の第1幅広部25aとなっており、水晶振動板10の他方側(図14Aの左側)の短辺の他端側(図14Aの下方側)の角部近傍は、外周縁まで延びる幅広の第2幅広部25bとなっている。 In this joint pattern 25 2 for first sealing connection on the vibration side, one end side (upper side in FIG. 14A) of the short side (right side in FIG. 14A) on one side (right side in FIG. 14A) of the crystal plate 10 2 which is rectangular in plan view is an outer peripheral edge. A first wide portion 25 2 a extends up to the edge of the crystal plate 10 2 on the other side (left side in FIG. 14A) of the other short side (lower side in FIG. 14A) near the corner. It is a wide second wide portion 25 2 b extending to the outer peripheral edge.
 この水晶振動板10の前記他方側(図14Aの左側)の短辺の前記第2幅広部25bとは反対側の角部の外周縁部には、接続用接合パターン58が形成されている。この接続用接合パターン58には、その外周縁に連続すると共に、図14Bに示される他方の主面の後述の振動側第2封止接続用接合パターン26の第4幅広部26bに連続する第1側面電極68が形成されている。 A connecting joint pattern 58 is formed on the outer peripheral edge of the corner of the other side (left side in FIG. 14A) of the crystal diaphragm 10 2 , which is opposite to the second wide portion 25 2 b. ing. This connection joint pattern 58 is continuous with its outer peripheral edge and is connected to a fourth wide portion 26 2 b of a later-described vibration side second seal connection joint pattern 26 2 on the other main surface shown in FIG. 14B. A continuous first side electrode 68 is formed.
 接続用接合パターン58の対角位置の角部の外周縁部には、接続用接合パターン55が形成されている。 A connection joint pattern 55 is formed on the outer peripheral edge of the diagonal corner of the connection joint pattern 58 .
 水晶振動板10の前記他方側(図14Aの左側)の短辺に沿って延びる振動側第1封止接続用接合パターン25は、第2幅広部25bに比べて幅が狭く、外側は、接合パターンが形成されていない、水晶板の表面が露出している領域である。この水晶板の表面が露出している領域が、後述の図15Bの第1封止板11が接合されない非接合領域10aとなっている。 The bonding pattern 25 2 for vibration side first sealing connection extending along the short side of the other side (left side in FIG. 14A) of the crystal diaphragm 10 2 is narrower than the second wide portion 25 2 b, The outside is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed. The area where the surface of the crystal plate is exposed serves as a non-bonded area 10 2 a to which the first sealing plate 11 2 shown in FIG. 15B, which will be described later, is not bonded.
 水晶振動板10の図14Bに示される他方の主面には、振動部15を囲む略矩形環状の外枠部17に、振動側第2封止接続用接合パターン26が環状に形成されている。この振動側第2封止接続用接合パターン26は、上記図4Bの水晶振動板10の振動側第2封止用接合パターン26と異なり、振動部15の第2励振電極20に第2引出し電極22を介して電気的に接続されている。 On the other main surface of the quartz plate 102 shown in FIG. 14B, a vibration-side second sealing connection bonding pattern 262 is formed in a ring shape on the substantially rectangular ring-shaped outer frame portion 17 surrounding the vibration portion 15 . ing. The bonding pattern 262 for connection of the second sealing on the vibration side differs from the bonding pattern 26 for second sealing on the vibration side of the crystal plate 10 in FIG. They are electrically connected via electrodes 222 .
 この振動側第2封止接続用接合パターン26では、平面視矩形の水晶振動板10の一方側(図14Bの右側)の短辺の他端側(図14Bの下方側)は、外周縁まで延びる幅広の第3幅広部26aとなっており、水晶振動板10の他方側(図14Bの左側)の短辺の一端側(図14Bの上方側)は、外周縁まで延びる幅広の第4幅広部26bとなっている。 In this bonding pattern 262 for vibration-side second sealing connection, the other end of the short side (lower side in FIG. 14B) of one side (right side in FIG. 14B) of the crystal plate 102 rectangular in plan view is outside. A wide third wide portion 26 2 a extends to the peripheral edge, and one end side (upper side in FIG. 14B) of the short side on the other side (left side in FIG. 14B) of the crystal plate 10 2 extends to the peripheral edge. It is a wide fourth wide portion 26 2 b.
 この第4幅広部26bには、その外周縁に上記の第1側面電極68が連続している。したがって、振動側第2封止接続用接合パターン26の第4幅広部26bは、第1側面電極68を介して、水晶振動板10の図14Aに示される一方の主面の接続用接合パターン58に電気的に接続されている。振動側第2封止接続用接合パターン26は、上記のように振動部15の第2励振電極20に電気的に接続されているので、水晶振動板10の一方の主面の接続用接合パターン58は、第1側面電極68及び振動側第2封止接続用接合パターン26を介して振動部15の第2励振電極20に電気的に接続されている。 The first side electrode 68 is continuous with the outer peripheral edge of the fourth wide portion 26 2 b. Therefore, the fourth wide portion 26 2 b of the bonding pattern 26 2 for second sealing connection on the vibration side is connected to one main surface of the crystal plate 10 2 shown in FIG. It is electrically connected to the connection pattern 58 for use. Since the bonding pattern 262 for vibration-side second sealing connection is electrically connected to the second excitation electrode 20 of the vibration part 15 as described above, it is used for connection to one main surface of the crystal plate 102 . The bonding pattern 58 is electrically connected to the second excitation electrode 20 of the vibrating section 15 via the first side electrode 68 and the bonding pattern 262 for vibration-side second sealing connection.
 この水晶振動板10の図14Bに示される他方の主面の前記一方側(図14Bの右側)の短辺の他端側(図14Bの上方側)には、前記短辺に沿って外周縁まで延びる接続用接合パターン56が形成されている。 On the other end side (upper side in FIG. 14B) of the short side of the one side (right side in FIG. 14B) of the other main surface of the crystal diaphragm 102 shown in FIG. A connection bonding pattern 56 extending to the periphery is formed.
 水晶振動板10の前記他方側(図14Bの左側)の短辺に沿って延びる振動側第2封止接続用接合パターン26は、第4幅広部26bに比べて幅が狭く、外側は、接合パターンが形成されていない、水晶板の表面が露出している領域である。この水晶板の表面が露出している領域が、後述の図16Aの第2封止板12が接合されない非接合領域10bとなっている。 The bonding pattern 26 2 for vibration side second sealing connection extending along the short side of the other side (left side in FIG. 14B) of the crystal plate 10 2 is narrower than the fourth wide portion 26 2 b, The outside is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed. The area where the surface of the crystal plate is exposed serves as a non-bonded area 10 2 b to which the second sealing plate 12 2 in FIG. 16A, which will be described later, is not bonded.
 水晶振動板10の一方の主面の非接合領域10aと、他方の主面の非接合領域10bとは、平面視で、水晶振動板10の前記他方側(図14A,図14Bの左側)の短辺の両端部分を除く中間部分で重なっている。 The non-bonding region 10 2 a on one main surface of the crystal plate 10 2 and the non-bonding region 10 2 b on the other main surface of the crystal plate 10 2 are, in plan view, the other side of the crystal plate 10 2 ( FIG. 14A , Left side of FIG. 14B) overlaps at the middle portion except for both end portions of the short side.
 図15A,図15Bは、図14A,図14Bの水晶振動板10に接合される第1封止板を示す図であり、上記図5A,図5Bに対応する図である。 15A and 15B are views showing the first sealing plate bonded to the crystal plate 102 of FIGS. 14A and 14B, and are views corresponding to FIGS. 5A and 5B.
 この第1封止板11の図15Bに示される他方の主面の環状の封止側第1封止接続用接合パターン33では、平面視矩形の第1封止板11の一方側(図15Bの右側)の短辺の一端側(図15Bの上方側)は、外周縁まで延びる幅広の第1幅広部33aとなっており、第1封止板11の他方側(図15Bの左側)の短辺の他端側(図15Bの下方側)は、外周縁まで延びる幅広の第2幅広部33bとなっている。 In the annular sealing -side first sealing connection bonding pattern 33-2 on the other main surface of the first sealing plate 11-2 shown in FIG. One end of the short side (right side in FIG. 15B) (upper side in FIG. 15B) is a wide first wide portion 33 2 a extending to the outer peripheral edge, and the other side (right side of FIG. 15B) of the first sealing plate 11 2 ( The other end of the short side (left side in FIG. 15B) (lower side in FIG. 15B) is a wide second wide portion 33 2 b extending to the outer peripheral edge.
 この封止側第1封止接続用接合パターン33は、図14Aの水晶振動板10の一方の主面の振動側第1封止接続用接合パターン25と振動部15を除いて略同様の接合パターンとなっており、水晶振動板10の一方の主面の振動側第1封止接続用接合パターン25に接合されて電気的に接続される。水晶振動板10の一方の主面の振動側第1封止接続用接合パターン25は、上記のように、振動部15の第1励振電極19に電気的に接続されているので、第1封止板11の他方の主面の封止側第1封止接続用接合パターン33は、振動部15の第1励振電極19に電気的に接続される。 The sealing-side first sealing-connection bonding pattern 33 2 is substantially the same as the vibration-side first sealing-connection bonding pattern 25 2 on one main surface of the crystal plate 10 2 in FIG. It has a similar bonding pattern, and is bonded and electrically connected to the vibration-side first sealing connection bonding pattern 25-2 on one main surface of the crystal plate 102. As shown in FIG. The bonding pattern 25 2 for vibration-side first sealing connection on one main surface of the crystal plate 10 2 is electrically connected to the first excitation electrode 19 of the vibrating section 15 as described above. The bonding pattern 33 2 for sealing side first sealing connection on the other main surface of the 1 sealing plate 11 2 is electrically connected to the first excitation electrode 19 of the vibrating section 15 .
 この封止側第1封止接続用接合パターン33の第2幅広部33bには、その外周縁に連続する第2側面電極70が形成されており、この第2側面電極70は、封止側第1封止接続用接合パターン33を介して振動部15の第1励振電極19に電気的に接続される。この第2側面電極70は、図14Aに示される水晶振動板10の振動側第1封止接続用接合パターン25の第2幅広部25bの外周縁に連続する第4側面電極66にも電気的に接続されている。 The second wide portion 33 2 b of the sealing-side first sealing connection bonding pattern 33 2 is formed with a second side electrode 70 that is continuous with the outer peripheral edge of the second wide portion 33 2 b. It is electrically connected to the first excitation electrode 19 of the vibrating section 15 via the bonding pattern 332 for sealing-side first sealing connection. This second side electrode 70 is a fourth side electrode 66 that is continuous with the outer peripheral edge of the second wide portion 25 2 b of the vibration side first sealing connection bonding pattern 25 2 of the crystal diaphragm 10 2 shown in FIG. 14A. is also electrically connected to
 この第1封止板11の他方の主面の前記他方側(図15Bの左側)の短辺の前記一端側(図15Bの上方側)の角部の外周縁部には、接続用接合パターン59が形成されている。この接続用接合パターン59は、図14Aの水晶振動板10の一方の主面の接続用接合パターン58に接合される。この接続用接合パターン58は、上記のように第1側面電極68及び図14Bの水晶振動板10の振動側第2封止接続用接合パターン26を介して振動部15の第2励振電極20に電気的に接続されている。したがって、第1封止板11の他方の主面の接続用接合パターン59も水晶振動板10の振動部15の第2励振電極20に電気的に接続される。この接続用接合パターン59には、その外周縁に連続する第3側面電極72が形成されている。したがって、この第3側面電極72も水晶振動板10の振動部15の第2励振電極20に電気的に接続される。 On the outer peripheral edge of the corner of the one end side (upper side in FIG. 15B ) of the short side of the other side (left side in FIG. 15B) of the other main surface of the first sealing plate 112, a joint for connection is provided. A pattern 59 is formed. This connection bonding pattern 59 is bonded to the connection bonding pattern 58 on one main surface of the crystal plate 102 in FIG. 14A. The connection bonding pattern 58 is connected to the second excitation electrode of the vibrating section 15 via the first side electrode 68 and the vibration side second sealing connection bonding pattern 262 of the crystal diaphragm 102 of FIG. 14B as described above. 20 is electrically connected. Therefore, the connection bonding pattern 59 on the other main surface of the first sealing plate 112 is also electrically connected to the second excitation electrode 20 of the vibrating portion 15 of the crystal plate 102 . A third side electrode 72 is formed continuously on the outer peripheral edge of the connection bonding pattern 59 . Therefore, this third side electrode 72 is also electrically connected to the second excitation electrode 20 of the vibrating portion 15 of the crystal diaphragm 102 .
 接続用接合パターン59の対角位置の角部の外周縁部には、接続用接合パターン57が形成されている。 A connection joint pattern 57 is formed on the outer peripheral edge of the diagonal corner of the connection joint pattern 59 .
 第1封止板11の前記他方側(図15Bの左側)の短辺に沿って延びる封止側第1封止接続用接合パターン33は、第2幅広部33bに比べて幅が狭く、外側は、接合パターンが形成されていない、水晶板の表面が露出している領域である。この水晶板の表面が露出している領域が、上記図14Aの水晶振動板10の一方の主面の非接合領域10aに対向し、水晶振動板10に接合されない非接合領域11aとなっている。この非接合領域11aは、平面視で、図14A,図14Bの水晶振動板10の両主面の振動側第1,第2封止接続用接合パターン25,26が形成されていない非接合領域10a,10bに略重なる。 The sealing-side first sealing connection bonding pattern 33-2 extending along the short side of the other side (the left side in FIG . 15B) of the first sealing plate 11-2 is wider than the second wide portion 33-2b . is narrow, and the outside is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed. The region where the surface of the crystal plate is exposed faces the non-bonded region 10 2 a on one main surface of the crystal plate 10 2 shown in FIG. 2 a. In this non-bonding region 11 2 a, bonding patterns 25 2 and 26 2 for vibration-side first and second sealing connections on both main surfaces of the crystal plate 10 2 shown in FIGS. 14A and 14B are formed in plan view. It substantially overlaps the non-bonded regions 10 2 a and 10 2 b.
 第1封止板11の図15Aに示される一方の主面には、平面視矩形の第1封止板11の他方側(図15Aの左側)の短辺の両端の各角部から前記短辺に沿ってその中間位置近くまでそれぞれ延出する第1,第2外部電極端子40,41が形成されている。 On one main surface of the first sealing plate 11-2 shown in FIG. 15A, from each corner of the short side of the other side (left side in FIG. 15A) of the first sealing plate 11-2 which is rectangular in plan view, First and second external electrode terminals 40.sub.2 and 41.sub.2 are formed extending along the short sides to near their intermediate positions.
 第1外部電極端子40の外周縁には、上記の第2側面電極70が連続しており、この第2側面電極70は、上記のように水晶振動板10の振動部15の第1励振電極19に電気的に接続されるので、第1外部電極端子40も水晶振動板10の振動部15の第1励振電極19に電気的に接続される。 The second side electrode 70 is continuous with the outer peripheral edge of the first external electrode terminal 402 , and the second side electrode 70 is connected to the first electrode of the vibrating portion 15 of the crystal plate 102 as described above. Since it is electrically connected to the excitation electrode 19, the first external electrode terminal 40-2 is also electrically connected to the first excitation electrode 19 of the vibrating portion 15 of the crystal diaphragm 10-2 .
 第2外部電極端子41の外周縁には、上記の第3側面電極72が連続しており、この第3側面電極72は、上記のように水晶振動板10の振動部15の第2励振電極20に電気的に接続されるので、第2外部電極端子41も水晶振動板10の振動部15の第2励振電極20に電気的に接続される。 The third side electrode 72 is continuous with the outer peripheral edge of the second external electrode terminal 412 , and the third side electrode 72 is connected to the second electrode of the vibrating portion 15 of the crystal plate 102 as described above. Since it is electrically connected to the excitation electrode 20, the second external electrode terminal 41-2 is also electrically connected to the second excitation electrode 20 of the vibrating portion 15 of the crystal diaphragm 10-2 .
 図15Aに示すように、平面視矩形の第1封止板11の他方側(図15Aの左側)の短辺の略中間位置の第1,第2外部電極端子40,41に第1,第2ボンディングパッド40a,41aが形成される。 As shown in FIG. 15A, the first and second external electrode terminals 40 2 and 41 2 are located substantially in the middle of the short sides of the other side (left side in FIG. 15A) of the first sealing plate 11 2 which is rectangular in plan view. 1, second bonding pads 40 2 a and 41 2 a are formed.
 第1封止板11の第1,第2ボンディングパッド40a,41aは、平面視で、他方の主面の封止側第1封止接続用接合パターン33が形成されていない非接合領域11aに重なると共に、図14A,図14Bに示される水晶振動板10の振動側第1,第2封止接続用接合パターン25,26が形成されていない非接合領域10a,10bに重なる。 The first and second bonding pads 40 2 a and 41 2 a of the first sealing plate 11 2 are formed with the bonding pattern 33 2 for sealing side first sealing connection on the other main surface in plan view. The non-bonded region 11 2a overlaps with the non-bonded region 11 2 a and the vibration-side first and second sealing connection bonding patterns 25 2 and 26 2 of the crystal diaphragm 10 2 shown in FIGS. 14A and 14B are not formed. It overlaps the regions 10 2 a and 10 2 b.
 図16A,図16Bは、図14A,図14Bの水晶振動板10に接合される第2封止板を示す図であり、上記図6A,図6Bに対応する図である。 16A and 16B are diagrams showing the second sealing plate bonded to the crystal plate 102 of FIGS. 14A and 14B, corresponding to FIGS. 6A and 6B.
 この第2封止板12の図16Aに示される一方の主面の環状の封止側第2封止用接合パターン45は、水晶振動板10の図14Bに示される他方の主面の環状の振動側第2封止接続用接合パターン26と振動部15を除いて略同じ接合パターンとなっており、水晶振動板10の他方の主面の振動側第2封止接続用接合パターン26に接合される。この封止側第2封止用接合パターン45では、平面視矩形の第2封止板12の一方側(図16Aの右側)の短辺の一端側(図16Aの下方側)は、外周縁まで延びる幅広の第1幅広部45aとなっており、第2封止板12の他方側(図16Aの左側)の短辺の他端側(図16A上方側)は、外周縁まで延びる幅広の第2幅広部45bとなっている。 The annular sealing-side second sealing bonding pattern 45 2 on one main surface of the second sealing plate 12 2 shown in FIG. The bonding pattern 262 for vibration-side second sealing connection on the other main surface of the crystal plate 102 is substantially the same as the bonding pattern 262 for the vibration-side second sealing connection on the other main surface of the crystal plate 102. Bonded to bonding pattern 262 . In this sealing-side second sealing bonding pattern 45 2 , one end side (lower side in FIG. 16A) of the short side of the second sealing plate 12 2 that is rectangular in plan view (right side in FIG. 16A) is A wide first wide portion 45 2 a extends to the outer peripheral edge, and the other end side (upper side in FIG. 16A) of the short side of the other side (left side in FIG. 16A) of the second sealing plate 12 2 extends outward. It is a wide second wide portion 45 2 b extending to the peripheral edge.
 第2封止板12の前記他方側(図16Aの左側)の短辺の封止側第1封止用接合パターン45は、第2幅広部45bに比べて幅が狭く、外側は、接合パターンが形成されていない、水晶板の表面が露出している領域である。この水晶板の表面が露出している領域が、水晶振動板10の振動側第2封止接続用接合パターン26が接合されない非接合領域12bとなっている。 The sealing-side first sealing bonding pattern 45 2 on the short side of the other side (left side in FIG. 16A) of the second sealing plate 12 2 is narrower than the second wide portion 45 2 b, and is an area where the surface of the crystal plate is exposed, where the bonding pattern is not formed. The area where the surface of the crystal plate is exposed is a non-bonding area 12 2 b to which the bonding pattern 26 2 for second sealing connection on the vibrating side of the crystal plate 10 2 is not bonded.
 この非接合領域12bは、平面視で、水晶振動板10の非接合領域10a,10bに部分的に重なると共に、第1封止板11の非接合領域11aに部分的に重なる。 This non-bonded region 12 2 b partially overlaps the non-bonded regions 10 2 a and 10 2 b of the crystal diaphragm 10 2 and overlaps the non-bonded region 11 2 a of the first sealing plate 11 2 in plan view. partially overlaps with
 この第2封止板12の一方の主面の前記一方側(図16Aの右側)の短辺の他端側(図16Aの上方側)には、前記短辺に沿って外周縁まで延びる接続用接合パターン60が形成されている。 On the other end side (upper side in FIG. 16A) of the short side of the one side (right side in FIG. 16A) of one main surface of the second sealing plate 122 , there is provided an outer peripheral edge along the short side. A connection bonding pattern 60 is formed.
 この実施形態によれば、上記の各実施形態と同様に、第1,第2ボンディングパッド40a,41aをワイヤボンディングする場合に、第1,第2ボンディングパッド40a,41aに過剰な押圧力がかかったときに、その過剰な押圧力を、第1封止板11、水晶振動板10及び第2封止板12の非接合領域11a,10a;10b,12bの第1,第2の隙間で逃がして緩和することができ、水晶振動板10及び第1,第2封止板11,12が変形したり、破損するのを防止することができる。 According to this embodiment, as in the above embodiments, when wire bonding the first and second bonding pads 40 2 a and 41 2 a, the first and second bonding pads 40 2 a and 41 2 a, the excessive pressure is applied to the non-bonded regions 11 2 a and 10 2 of the first sealing plate 11 2 , the crystal plate 10 2 and the second sealing plate 12 2 . a; It can be relieved by the first and second gaps of 10 2 b and 12 2 b, and the crystal diaphragm 10 2 and the first and second sealing plates 11 2 and 12 2 may be deformed, Damage can be prevented.
 水晶振動板10の非接合領域10a,10bは、平面視で略矩形環状の外枠部17において、連結部18を介して振動部15に連結されている内周側の略矩形の一辺(図14A,図14Bの右側の辺)に対向する対向辺(図14A,図14Bの左側の辺)側の外枠部17に設けられている。 The non-bonded regions 10 2 a and 10 2 b of the crystal diaphragm 10 2 are located on the inner peripheral side of the outer frame portion 17 which is substantially rectangular and annular in plan view and is connected to the vibrating portion 15 via the connecting portion 18 . It is provided on the outer frame portion 17 on the opposite side (the left side in FIGS. 14A and 14B) opposite to one side of the rectangle (the right side in FIGS. 14A and 14B).
 このように水晶振動板10の非接合領域10a,10bは、外枠部17において、連結部18を介して振動部15に連結されている一辺とは反対側である対向辺側の外枠部17に設けられている。上記図4A,図4Bの水晶振動板10では、非接合領域10a,10a;10b,10bは、外枠部17において、連結部18を介して振動部15に連結されている一辺(図4A,図4Bの右側の辺)側の外枠部17に設けられていたのに対して、この実施形態では、
非接合領域10a,10bは、一辺に対向する対向辺側の外枠部17に設けられているので、連結部18からの距離が長い。
In this way, the non-bonded areas 10 2 a and 10 2 b of the crystal diaphragm 10 2 are located on the opposite side of the outer frame portion 17 to the one side connected to the vibrating portion 15 via the connecting portion 18 . It is provided on the outer frame portion 17 on the side. 4A and 4B, the non-bonded regions 10a, 10a; In contrast to the outer frame portion 17 on the right side of FIG. 4B, in this embodiment,
Since the non-bonded regions 10 2 a and 10 2 b are provided on the outer frame portion 17 on the side opposite to one side, the distance from the connecting portion 18 is long.
 この非接合領域10a,10bは、上記のように、第1封止板11の第1,第2ボンディングパッド40a,41aに平面視で重なっている。したがって、非接合領域10a,10bには、ボンディングワイヤを接続するために押圧力が加わることになるが、この実施形態では、連結部18からの距離が長いので、外枠部17の非接合領域10a,10bに加わる押圧力が、連結部18を介して振動部15に伝達されるのを低減することができる。 As described above, the non-bonding regions 10 2 a and 10 2 b overlap the first and second bonding pads 40 2 a and 41 2 a of the first sealing plate 11 2 in plan view. Therefore, a pressing force is applied to the non-bonding regions 10 2 a and 10 2 b in order to connect the bonding wires. It is possible to reduce the transmission of the pressing force applied to the non-bonded regions 10 2 a and 10 2 b to the vibrating portion 15 via the connecting portion 18 .
 また、この実施形態では、図15Aに示すように、第1,第2ボンディングパッド40a,41aは、第1封止板11の他方側(図15Aの左側)の短辺の略中間位置に形成されている。前記短辺の一方の端部は、図15Bに示される接続用接合パターン59と、図14Aに示される水晶振動板10の接続用接合パターン58との接合部であり、前記短辺の他方の端部は、図15Bに示される第2幅広部33bと、図14Aに示される水晶振動板10の第2幅広部25bとの接合部となっている。このように短辺の両端部は、強固に接合されている。この両端部の略中間位置の第1,第2ボンディングパッド40a,41aでワイヤボンディングを行うので、上記図5Aの第1,第2ボンディングパッド40a,41aのように短辺の両端の角部でワイヤボンディングを行うのに比べて、ワイヤボンディングを安定して行うことができる。 Also, in this embodiment, as shown in FIG. 15A, the first and second bonding pads 40 2 a and 41 2 a are located on the short side of the other side (left side in FIG. 15A) of the first sealing plate 11 2 . It is formed at a substantially intermediate position. One end of the short side is a joint portion between the connection joint pattern 59 shown in FIG. 15B and the connection joint pattern 58 of the crystal plate 102 shown in FIG. 14A. is a junction between the second wide portion 33 2 b shown in FIG. 15B and the second wide portion 25 2 b of the crystal diaphragm 10 2 shown in FIG. 14A. Thus, both ends of the short side are firmly joined. Since the wire bonding is performed at the first and second bonding pads 40 2 a and 41 2 a at substantially intermediate positions between the both ends, both ends of the short side are connected to the first and second bonding pads 40 a and 41 a shown in FIG. 5A. Wire bonding can be performed more stably than when wire bonding is performed at the corners.
 なお、この実施形態では、第1封止板11の一方の主面には、図15Aに示すように、テスト用のテスト端子75,76が形成されている。一方のテスト端子75は、側面電極69、封止側第1封止接続用接合パターン33、振動側第1封止接続用接合パターン25を介して振動部15の第1励振電極19に電気的に接続される。前記側面電極69は、振動側第1封止接続用接合パターン25の第1幅広部25aの外周縁に連続する側面電極65にも電気的に接続されている。他方のテスト端子76は、側面電極71、接続用接合パターン57、接続用接合パターン55、側面電極67、振動側第2封止接続用接合パターン26を介して振動部15の第2励振電極20に電気的に接続される。 In this embodiment, test terminals 75 and 76 for testing are formed on one main surface of the first sealing plate 112 , as shown in FIG. 15A. One test terminal 75 is connected to the first excitation electrode 19 of the vibration part 15 via the side electrode 69, the sealing-side first sealing connection bonding pattern 33 2 , and the vibration-side first sealing connection bonding pattern 25 2 . electrically connected. The side electrode 69 is also electrically connected to the side electrode 65 continuous to the outer peripheral edge of the first wide portion 25 2 a of the bonding pattern 25 2 for first sealing connection on the vibration side. The other test terminal 76 is connected to the second excitation electrode of the vibrating part 15 through the side electrode 71, the connection bonding pattern 57, the connection bonding pattern 55, the side electrode 67, and the vibration side second sealing connection bonding pattern 262 . 20 is electrically connected.
 図17は、本発明の他の実施形態の水晶振動子をベースに接合した状態を示す概略側面図であり、上記図9に対応する図であり、図18は、図17の水晶振動子の第2封止板の他方の主面側を示す概略平面図であり、上記図6Bに対応する図である。 FIG. 17 is a schematic side view showing a state in which a crystal oscillator according to another embodiment of the present invention is bonded to a base, and is a view corresponding to FIG. 9 above, and FIG. FIG. 6C is a schematic plan view showing the other main surface side of the second sealing plate, and is a view corresponding to FIG. 6B.
 第2封止板12の他方の主面、すなわち、接着剤50によってベース2の内底面に接合される側の主面には、接着剤50が塗布される円形の中央領域Sの外側に、中央領域Sの全周を取り囲むように、円形の環状溝55が形成されている。 The other main surface of the second sealing plate 123 , that is, the main surface of the side to be bonded to the inner bottom surface of the base 2 with the adhesive 50, is coated with the adhesive 50 on the outer side of the circular central region S. , a circular annular groove 55 is formed so as to surround the entire circumference of the central region S. As shown in FIG.
 このように水晶振動子3の第2封止板12がベース2に接合される中央領域Sの外側に円形の環状溝55を形成しているので、リフロー処理等の熱処理に起因する熱応力が、接着剤50によって拘束されている第2封止板12の中央領域Sに加わったときに、環状溝55によって緩和、吸収され、第2封止板12の外周部に伝達される熱応力を低減することができる。これによって、第2封止板12の外周部から水晶振動板10の外枠部17を介して振動部15へ伝達される熱応力を低減することができ、周波数の変動を効果的に抑制することができる。 Since the circular annular groove 55 is formed outside the central region S where the second sealing plate 12-3 of the crystal unit 3-3 is joined to the base 2 in this manner, the heat caused by heat treatment such as reflow treatment is prevented. When the stress is applied to the central region S of the second sealing plate 123 restrained by the adhesive 50, it is relieved and absorbed by the annular groove 55 and transmitted to the outer peripheral portion of the second sealing plate 123. can reduce thermal stress. As a result, the thermal stress transmitted from the outer peripheral portion of the second sealing plate 123 to the vibrating portion 15 via the outer frame portion 17 of the crystal diaphragm 10 can be reduced, effectively suppressing frequency fluctuations. can do.
 なお、接着剤が塗布される領域の外側に形成される溝は、環状の溝に限らず、複数の分断された溝や凹部などであってもよく、その平面形状も直線状や円形その他の形状であってもよい。 The groove formed outside the area to which the adhesive is applied is not limited to an annular groove, and may be a plurality of divided grooves or recesses, and the planar shape thereof may be linear, circular, or other. It may be in shape.
 上記実施形態では、水晶振動子3とIC4とは横置きされてベース2に搭載されたが、水晶振動子とIC等の電子部品とを積層して配置する構成としてもよい。 In the above embodiment, the crystal oscillator 3 and the IC 4 are placed horizontally and mounted on the base 2, but the crystal oscillator and electronic components such as ICs may be arranged in layers.
 図19は、本発明の他の実施形態に係る恒温槽型の水晶発振器の概略構成図である。 FIG. 19 is a schematic configuration diagram of a constant temperature oven type crystal oscillator according to another embodiment of the present invention.
 この実施形態の水晶発振器80は、ベース81の凹部内に収容された絶縁性の基板82上に、発振用IC83、水晶振動子84、及び、ヒータIC85が、上側から順に積層され、ベース81の上部の開口縁にリッド86が接合されて気密に封止されている。発振用IC83は、複数の金属バンプを介して水晶振動子84に搭載されている。 In the crystal oscillator 80 of this embodiment, an oscillation IC 83, a crystal oscillator 84, and a heater IC 85 are laminated in order from above on an insulating substrate 82 accommodated in a concave portion of a base 81. A lid 86 is joined to the edge of the upper opening for hermetic sealing. The oscillation IC 83 is mounted on the crystal oscillator 84 via a plurality of metal bumps.
 水晶振動子84は、上記実施形態と同様に、水晶振動板と第1,第2封止板との三層からなるサンドイッチ構造となっている。 The crystal oscillator 84 has a sandwich structure composed of three layers of a crystal oscillation plate and first and second sealing plates, as in the above embodiment.
 ヒータIC85は、発熱体と、発熱体の温度制御用の制御回路と、発熱体の温度を検出する温度センサとが一体となった構成となっている。 The heater IC 85 has a configuration in which a heating element, a control circuit for controlling the temperature of the heating element, and a temperature sensor for detecting the temperature of the heating element are integrated.
 水晶振動子84及びヒータIC85は、ベース81の内周側の段部の上面の接続電極に、ボンディングワイヤ87,88によってそれぞれワイヤボンディングされる。 The crystal oscillator 84 and the heater IC 85 are wire-bonded to connection electrodes on the upper surface of the step on the inner peripheral side of the base 81 by bonding wires 87 and 88, respectively.
 水晶振動子84のボンディングワイヤ87による接続位置は、上記各実施形態と同様に、水晶振動板と第1,第2封止板とが接合されていない非接合領域に平面視で重なっている。 The connection position of the crystal oscillator 84 by the bonding wire 87 overlaps the non-bonded area where the crystal oscillator plate and the first and second sealing plates are not bonded in plan view, as in each of the above-described embodiments.
 上記の各実施形態では、第1封止板の非接合領域と水晶振動板の非接合領域との間に第1の隙間を形成し、第2封止板の非接合領域と水晶振動板の非接合領域との間に第2の隙間を形成したが、本発明の他の実施形態として、第1封止板の非接合領域と水晶振動板の非接合領域を省略して両者を接合し、第1封止板と水晶振動板との第1の隙間を無くしてもよく、または、第2封止板の非接合領域と水晶振動板の非接合領域を省略して両者を接合し、第2封止板と水晶振動板との第2の隙間を無くしてもよい。 In each of the above embodiments, the first gap is formed between the non-bonded region of the first sealing plate and the non-bonded region of the crystal plate, and the non-bonded region of the second sealing plate and the crystal plate are separated from each other. Although the second gap is formed between the non-bonded region and the non-bonded region, as another embodiment of the present invention, the non-bonded region of the first sealing plate and the non-bonded region of the crystal plate are omitted and the two are bonded. , the first gap between the first sealing plate and the crystal diaphragm may be eliminated, or the non-bonding region of the second sealing plate and the crystal diaphragm are omitted and the two are bonded, The second gap between the second sealing plate and the crystal diaphragm may be eliminated.
 上記実施形態では、水晶振動板10の振動部15は、一箇所の連結部18によって外周部の外枠部17に連結したが、複数箇所に連結部を形成して、複数箇所で外枠部17に連結してもよく、振動部15と外枠部17との間の貫通部による間隔16を省略し、薄肉の振動部15の全周を外枠部17に連結してもよい。 In the above-described embodiment, the vibrating portion 15 of the crystal diaphragm 10 is connected to the outer frame portion 17 on the outer periphery by the connecting portion 18 at one location, but the connecting portions are formed at a plurality of locations so that the outer frame portion is connected at a plurality of locations. Alternatively, the space 16 formed by the penetrating portion between the vibrating portion 15 and the outer frame portion 17 may be omitted, and the entire circumference of the thin vibrating portion 15 may be connected to the outer frame portion 17 .
 また、上記実施形態では、水晶振動板10の中央部の振動部15を、外枠部17よりも薄く形成したが、水晶振動板の振動部と外枠部とを同じ肉厚としてもよく、この場合、例えば、水晶振動板と第1,第2封止板とを接合する接合材を厚くして、水晶振動板の振動部と第1,第2封止板との間に空間を形成してもよい。 Further, in the above embodiment, the vibrating portion 15 in the central portion of the crystal plate 10 is formed thinner than the outer frame portion 17, but the vibrating portion and the outer frame portion of the crystal plate may have the same thickness. In this case, for example, a bonding material that joins the crystal plate and the first and second sealing plates is thickened to form a space between the vibrating portion of the crystal plate and the first and second sealing plates. You may
 上記実施形態では、第1,第2封止板11,12には、水晶を用いたが、これに限定されるものではなく、ガラス等の他の絶縁性材料を用いてもよい。 In the above embodiment, crystal was used for the first and second sealing plates 11 and 12, but the material is not limited to this, and other insulating materials such as glass may be used.
 上記実施形態では、水晶振動板10にATカット水晶を用いたが、これに限定されるものではなく、ATカット水晶以外の水晶を用いてもよい。また、水晶振動板に限らず、タンタル酸リチウム、ニオブ酸リチウム等の圧電材料からなる圧電振動板を用いてもよい。 Although the AT-cut crystal is used for the crystal plate 10 in the above-described embodiment, it is not limited to this, and a crystal other than the AT-cut crystal may be used. In addition to the crystal diaphragm, a piezoelectric diaphragm made of a piezoelectric material such as lithium tantalate or lithium niobate may be used.
 上記実施形態では、各貫通電極31,38,39は、貫通孔の内壁面に金属膜が被着されて構成されているが、これに限らず、貫通孔を導電材料によって埋めてもよい。 In the above embodiment, the through electrodes 31, 38, and 39 are formed by coating the inner wall surfaces of the through holes with a metal film, but the through holes may be filled with a conductive material.
 上記実施形態では、ベース2は、水晶振動子3等を搭載する凹部を有し、リッド5は、平板状であったが、本発明の他の実施形態として、平板状のベースに、水晶振動子等を搭載し、凹部を有するリッドを、ベース上の水晶振動子等を覆うように被せるようにしてもよい。 In the above-described embodiment, the base 2 has a recess for mounting the crystal oscillator 3 and the like, and the lid 5 has a flat plate shape. A lid having a concave portion may be placed so as to cover the crystal oscillator or the like on the base.
 また、ベースを平板状とし、リッドを省略して、ワイヤボンディングしたベース上の水晶振動子等を樹脂でモールドしてもよい。ベースは、セラミック製に限らず、ガラスエポキシ基板やシリコン基板あるいはガラス基板や水晶基板などであってもよい。 Alternatively, the base may be flat, the lid may be omitted, and the crystal oscillator or the like on the wire-bonded base may be molded with resin. The base is not limited to ceramic, and may be a glass epoxy substrate, a silicon substrate, a glass substrate, a crystal substrate, or the like.
 上記実施形態では、電子部品としてのIC4を、水晶振動子3と共に、ベース2に搭載してリッド5を接合して気密封止したが、本発明の他の実施形態として、電子部品を省略して、水晶振動子のみをベースに搭載してリッドを接合して気密封止してもよい。 In the above embodiment, the IC 4 as an electronic component is mounted on the base 2 together with the crystal oscillator 3 and hermetically sealed by joining the lid 5. However, as another embodiment of the present invention, the electronic component is omitted. Alternatively, only the crystal oscillator may be mounted on the base and hermetically sealed by joining the lid.
 上記実施形態では、電子部品としてのIC4と水晶振動子3とを、ベース2に並べて配置したが、例えば、水晶振動子上に、電子部品を積層してもよい。 In the above embodiment, the IC 4 and the crystal oscillator 3 as electronic components are arranged side by side on the base 2, but the electronic components may be stacked on the crystal oscillator, for example.
 また、ベースとして、断面H型のベースを使用し、上下の凹部の一方に水晶振動子を搭載し、他方に電子部品を搭載してもよい。 Alternatively, a base with an H-shaped cross section may be used as the base, and the crystal oscillator may be mounted on one of the upper and lower concave portions, and the electronic component may be mounted on the other.
 水晶発振器は、上記実施形態に限らず、温度補償水晶発振器(TCXO)等であってもよい。 The crystal oscillator is not limited to the above embodiment, and may be a temperature compensated crystal oscillator (TCXO) or the like.
 1,80           水晶発振器
 2,81           ベース
 3,3,84         水晶振動子
 4              IC
 5,86           リッド(蓋体)
 10,10,10      水晶振動板
 11,11,11      第1封止板
 12,12,12      第2封止板
 15             振動部
 17             外枠部
 19             第1励振電極
 20             第2励振電極
 40,40,40      第1外部電極端子
 41,41,41      第2外部電極端子
 40a,40a,40a   第1ボンディングパッド
 41,41a,41a    第2ボンディングパッド
 10a,10a,10a   非接合領域(第1非接合領域)
 10b,10b,10b,  非接合領域(第2非接合領域)
 11a,11a,11a   非接合領域(第1非接合領域)
 12b,12b,12b   非接合領域(第2非接合領域)
1, 80 crystal oscillator 2, 81 base 3, 3 3 , 84 crystal oscillator 4 IC
5, 86 lid (lid body)
Reference Signs List 10 , 10 1 , 10 2 crystal diaphragm 11 , 11 1 , 11 2 first sealing plate 12, 12 1 , 12 1 second sealing plate 15 vibrating portion 17 outer frame portion 19 first excitation electrode 20 second excitation Electrodes 40, 40 1 , 40 2 First external electrode terminals 41, 41 1 , 41 2 Second external electrode terminals 40 a, 40 1 a, 40 2 a First bonding pads 41, 41 1 a, 41 2 a Second bonding Pads 10a, 10 1 a, 10 2 a non-bonding regions (first non-bonding regions)
10b, 10 1 b, 10 2 b, non-bonding regions (second non-bonding regions)
11a, 11 1 a, 11 2 a non-bonding regions (first non-bonding regions)
12b, 12 1 b, 12 2 b non-bonding regions (second non-bonding regions)

Claims (11)

  1.  両主面に第1,第2励振電極がそれぞれ形成された圧電振動板を有すると共に、前記圧電振動板の前記両主面にそれぞれ接合される第1,第2封止板を有する圧電振動子であって、
     前記第1,第2封止板は、その外周部が前記圧電振動板の前記両主面の外周部にそれぞれ接合されて、前記第1,第2励振電極を含む前記圧電振動板の振動部を気密に封止するものであり、
     前記第1封止板の外面には、前記圧電振動板の前記第1,第2励振電極のいずれかの励振電極に電気的に接続されたワイヤボンディング用のボンディングパッドが形成されており、
     前記第1,第2封止板の少なくとも一方の封止板の外周部の一部と前記圧電振動板の外周部の一部には、互いに対向して接合されない非接合領域が設けられ、
     前記第1封止板の外面の前記ボンディングパッドは、平面視で前記非接合領域に重なるように形成されている、
     圧電振動子。
    A piezoelectric vibrator having a piezoelectric diaphragm having first and second excitation electrodes respectively formed on both main surfaces thereof, and having first and second sealing plates respectively bonded to the two main surfaces of the piezoelectric diaphragm. and
    The outer peripheral portions of the first and second sealing plates are respectively bonded to the outer peripheral portions of the two main surfaces of the piezoelectric diaphragm, and the vibrating portion of the piezoelectric diaphragm includes the first and second excitation electrodes. is hermetically sealed,
    A bonding pad for wire bonding electrically connected to one of the first and second excitation electrodes of the piezoelectric vibration plate is formed on the outer surface of the first sealing plate,
    A non-bonded region facing each other and not bonded is provided in a part of the outer peripheral portion of at least one of the first and second sealing plates and a part of the outer peripheral portion of the piezoelectric diaphragm,
    The bonding pad on the outer surface of the first sealing plate is formed so as to overlap the non-bonding area in plan view.
    piezoelectric vibrator.
  2.  前記第1封止板の外面には、前記ボンディングパッドとして、前記圧電振動板の前記第1,第2励振電極にそれぞれ電気的に接続されたワイヤボンディング用の第1,第2ボンディングパッドが形成されている、
     請求項1に記載の圧電振動子。
    First and second bonding pads for wire bonding electrically connected to the first and second excitation electrodes of the piezoelectric vibration plate are formed as the bonding pads on the outer surface of the first sealing plate. has been
    The piezoelectric vibrator according to claim 1.
  3.  前記第1封止板の外周部の一部と前記圧電振動板の外周部の一部には、前記非接合領域としての第1非接合領域がそれぞれ設けられ、前記第2封止板の外周部の一部と前記圧電振動板の外周部の一部には、前記非接合領域としての第2非接合領域がそれぞれ設けられ、前記第1非接合領域と前記第2非接合領域とが、平面視で重なっている、
     請求項1に記載の圧電振動子。
    A first non-bonding region as the non-bonding region is provided on a part of the outer peripheral part of the first sealing plate and a part of the outer peripheral part of the piezoelectric diaphragm, respectively. A second non-bonding region as the non-bonding region is provided in a part of the portion and a part of the outer peripheral portion of the piezoelectric diaphragm, respectively, and the first non-bonding region and the second non-bonding region are overlapping in plan view,
    The piezoelectric vibrator according to claim 1.
  4.  前記外周部の一部の非接合領域が、前記第1,第2封止板の少なくとも一方の封止板及び前記圧電振動板の外周縁部である、
     請求項1に記載の圧電振動子。
    The partial non-bonded region of the outer peripheral portion is the outer peripheral edge portion of at least one of the first and second sealing plates and the piezoelectric vibration plate.
    The piezoelectric vibrator according to claim 1.
  5.  前記圧電振動板は、該圧電振動板の中央部に形成された前記振動部と、該振動部の周囲を囲むように前記圧電振動板の外周部に形成されると共に、前記振動部より厚肉の外枠部とを有し、
     前記第1,第2封止板は、その外周部が、前記圧電振動板の前記外枠部の両主面にそれぞれ接合され、
     前記第1,第2封止板の少なくとも一方の封止板の外周部の一部と前記圧電振動板の外周部の前記外枠部の一部には、前記非接合領域がそれぞれ設けられる、
     請求項1に記載の圧電振動子。
    The piezoelectric diaphragm includes the vibrating portion formed in the central portion of the piezoelectric vibrating plate, and the outer peripheral portion of the piezoelectric vibrating plate formed so as to surround the vibrating portion, and is thicker than the vibrating portion. and an outer frame of
    The outer peripheral portions of the first and second sealing plates are respectively joined to both main surfaces of the outer frame portion of the piezoelectric diaphragm,
    The non-bonding region is provided in a part of the outer peripheral portion of at least one of the first and second sealing plates and a part of the outer frame portion of the outer peripheral portion of the piezoelectric diaphragm, respectively.
    The piezoelectric vibrator according to claim 1.
  6.  前記圧電振動板の前記外枠部は、前記振動部の周囲を、間隔を空けて囲むと共に、前記振動部に連結部を介して連結されている、
     請求項5に記載の圧電振動子。
    The outer frame portion of the piezoelectric diaphragm surrounds the vibrating portion with a space therebetween and is connected to the vibrating portion via a connecting portion,
    The piezoelectric vibrator according to claim 5.
  7.  前記圧電振動子の前記第1封止板の外面の前記ボンディングパッドは、平面視で、前記圧電振動板の前記外枠部の前記非接合領域に重なるように形成されている、
     請求項6に記載の圧電振動子。
    The bonding pad on the outer surface of the first sealing plate of the piezoelectric vibrator is formed so as to overlap the non-bonded region of the outer frame portion of the piezoelectric vibrating plate in a plan view,
    The piezoelectric vibrator according to claim 6.
  8.  前記圧電振動板の前記振動部は、平面視略矩形であり、
     前記圧電振動板の前記外枠部は、平面視略矩形環状であり、
     前記外枠部は、前記略矩形環状の内周側の略矩形の一辺が、前記振動部に前記連結部を介して連結されており、
     前記圧電振動板の前記非接合領域は、前記略矩形の前記一辺に対向する対向辺側の前記外枠部に設けられる、
     請求項7に記載の圧電振動子。
    The vibrating portion of the piezoelectric diaphragm is approximately rectangular in plan view,
    the outer frame portion of the piezoelectric diaphragm has a substantially rectangular annular shape in a plan view,
    In the outer frame portion, one side of a substantially rectangular inner peripheral side of the substantially rectangular annular shape is connected to the vibrating portion via the connecting portion,
    The non-bonded region of the piezoelectric diaphragm is provided in the outer frame portion on the opposite side opposite to the one side of the substantially rectangular shape.
    The piezoelectric vibrator according to claim 7.
  9.  前記請求項1ないし8のいずれか一項に記載の圧電振動子と、
     前記圧電振動子が搭載されるベースとを備える、
     圧電振動デバイス。
    a piezoelectric vibrator according to any one of claims 1 to 8;
    a base on which the piezoelectric vibrator is mounted;
    Piezoelectric vibration device.
  10.  前記ベースには、前記圧電振動子の横に電子部品が搭載される、
     請求項9に記載の圧電振動デバイス。
    An electronic component is mounted on the base next to the piezoelectric vibrator,
    The piezoelectric vibration device according to claim 9.
  11.  前記圧電振動子は、前記第1封止板の前記第1,第2ボンディングパッドが、ワイヤボンディングされて、前記電子部品に電気的に接続される、
     請求項10に記載の圧電振動デバイス。
    The piezoelectric vibrator is electrically connected to the electronic component by wire-bonding the first and second bonding pads of the first sealing plate.
    The piezoelectric vibration device according to claim 10.
PCT/JP2023/000753 2022-01-26 2023-01-13 Piezoelectric oscillator and piezoelectric oscillation device WO2023145483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022010033 2022-01-26
JP2022-010033 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145483A1 true WO2023145483A1 (en) 2023-08-03

Family

ID=87471297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000753 WO2023145483A1 (en) 2022-01-26 2023-01-13 Piezoelectric oscillator and piezoelectric oscillation device

Country Status (2)

Country Link
TW (1) TWI819955B (en)
WO (1) WO2023145483A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124706A (en) * 2010-12-08 2012-06-28 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric oscillator, and piezoelectric oscillator
JP2012249179A (en) * 2011-05-30 2012-12-13 Seiko Epson Corp Method for manufacturing piezoelectric device, wafer laminate structure, piezoelectric device and piezoelectric module
JP2020108109A (en) * 2018-12-28 2020-07-09 セイコーエプソン株式会社 Vibration device, vibration module, electronic apparatus, and movable body
JP2021158586A (en) * 2020-03-27 2021-10-07 株式会社大真空 Piezoelectric oscillator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367181B1 (en) * 1988-10-31 1994-04-20 Hitachi, Ltd. Surface acoustic wave filter device
CN111312667B (en) * 2019-09-20 2023-04-18 天津大学 Semiconductor device with conductive via offset structure, power supply structure, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124706A (en) * 2010-12-08 2012-06-28 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric oscillator, and piezoelectric oscillator
JP2012249179A (en) * 2011-05-30 2012-12-13 Seiko Epson Corp Method for manufacturing piezoelectric device, wafer laminate structure, piezoelectric device and piezoelectric module
JP2020108109A (en) * 2018-12-28 2020-07-09 セイコーエプソン株式会社 Vibration device, vibration module, electronic apparatus, and movable body
JP2021158586A (en) * 2020-03-27 2021-10-07 株式会社大真空 Piezoelectric oscillator

Also Published As

Publication number Publication date
TWI819955B (en) 2023-10-21
TW202335426A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2011149043A1 (en) Member for sealing piezoelectric vibration device, and piezoelectric vibration device
JP2010050778A (en) Piezoelectric device
TWI804937B (en) Thermostatic Bath Type Piezoelectric Oscillator
JPWO2020122179A1 (en) Piezoelectric vibration device
JP6780718B2 (en) Piezoelectric vibration device
JP3406852B2 (en) Crystal oscillator
WO2023145483A1 (en) Piezoelectric oscillator and piezoelectric oscillation device
TWI792541B (en) Thermostatic Bath Type Piezoelectric Oscillator
JP2021158586A (en) Piezoelectric oscillator
WO2023136156A1 (en) Piezoelectric vibration device
JP2001320256A (en) Air-tight sealing method for piezoelectric vibrating device
JP7238265B2 (en) piezoelectric vibration device
JP2008011125A (en) Surface acoustic wave device
JP2021158585A (en) Piezoelectric oscillator
JP2020104229A (en) MEMS device
KR20060115531A (en) Surface acoustic wave device package and method for manufacturing the same
WO2021199790A1 (en) Constant temperature bath-type piezoelectric oscillator
WO2022181547A1 (en) Thermostatic bath-type piezoelectric oscillator
WO2022149541A1 (en) Piezoelectric oscillation device
JP7435132B2 (en) piezoelectric oscillator
JP2022052951A (en) Piezoelectric oscillator
JP2013172258A (en) Crystal oscillator
WO2022181546A1 (en) Thermostatic bath-type piezoelectric oscillator
WO2022186124A1 (en) Thermostatic bath-type piezoelectric oscillator
JP6601525B2 (en) Piezoelectric vibration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576779

Country of ref document: JP