WO2023143309A1 - 一种散热系统、供电系统和充电桩 - Google Patents

一种散热系统、供电系统和充电桩 Download PDF

Info

Publication number
WO2023143309A1
WO2023143309A1 PCT/CN2023/072907 CN2023072907W WO2023143309A1 WO 2023143309 A1 WO2023143309 A1 WO 2023143309A1 CN 2023072907 W CN2023072907 W CN 2023072907W WO 2023143309 A1 WO2023143309 A1 WO 2023143309A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
cavity
air
condenser
power
Prior art date
Application number
PCT/CN2023/072907
Other languages
English (en)
French (fr)
Inventor
廉志晟
韦隆和
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023143309A1 publication Critical patent/WO2023143309A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant

Definitions

  • the present application relates to the technical field of heat dissipation, and in particular to a heat dissipation system, a power supply system and a charging pile.
  • Existing heat dissipation systems mainly include air-cooled heat dissipation systems and liquid-cooled heat dissipation systems. Since the air-cooled heat dissipation system needs to open ventilation holes, the internal heat dissipation devices and power devices cannot be effectively protected, and the reliability is poor and the maintenance cost is high. The circulating water pump, liquid pipe joints and other components in the liquid-cooled heat dissipation system also lead to poor reliability, and because the coolant needs to be replaced regularly, the maintenance cost is also high. In addition, the existing air-cooled heat dissipation system and liquid-cooled heat dissipation system still have the problem of low heat dissipation efficiency and poor applicability. Therefore, a heat dissipation system with high reliability and low maintenance cost needs to be proposed urgently.
  • the present application provides a heat dissipation system, a power supply system and a charging pile.
  • the heat dissipation system has high heat dissipation efficiency, high reliability, low maintenance cost and strong applicability.
  • the embodiment of the present application provides a heat dissipation system.
  • the heat dissipation system includes a heat dissipation cavity, a first liquid cooling component, an air cooling component, a first power cavity and a first power device.
  • the first liquid cooling assembly and the first power cavity are arranged inside the heat dissipation cavity, the first power device is arranged inside the first power cavity, and the first power cavity and the The first liquid cooling component is in contact.
  • the heat dissipation cavity is provided with an air inlet and an air outlet of the air cooling assembly, and the airflow in the air cooling channel connected between the air inlet and the air outlet passes through the first liquid cooling assembly and/or Or the first power cavity.
  • the first liquid cooling component and the air cooling component are used to dissipate heat from the first power device.
  • the first liquid cooling component and the air cooling component are integrated in the heat dissipation cavity, and the first liquid cooling component is in direct contact with the first power cavity containing the first power device, so that the corresponding air cooling of the air cooling component The airflow in the channel passes through the first liquid cooling component and/or the first power chamber.
  • the first power cavity is also used to protect the first power device, which can effectively prevent the first power device from malfunctioning due to factors such as the environment, and can reduce later maintenance costs while improving the reliability of the heat dissipation system. Therefore, the heat dissipation system has strong applicability, and the heat dissipation system can effectively solve the problems of low heat dissipation efficiency, poor reliability, and high maintenance cost existing in the existing heat dissipation system.
  • the first liquid cooling component includes a first condenser, a first evaporator Hair and the first heat conducting structure.
  • the first condenser is arranged on the top of the heat dissipation cavity, and the first evaporator is in contact with the first power cavity and is arranged below the first condenser.
  • the first heat conduction structure communicates with the first evaporator and the first condenser to form a circulation loop, and the cooling medium circulating in the circulation loop is used to bring the heat of the first evaporator to the first condenser.
  • the first heat conduction structure constitutes a circulation loop between the first condenser and the first evaporator, which can be used for circulating flow of cooling working fluid, so as to realize the liquid cooling and heat dissipation function of the first liquid cooling component.
  • the first liquid cooling component does not need to rely on structural parts such as circulating water pumps and liquid pipe joints, which can avoid the problems of high system failure rate and high maintenance cost of the heat dissipation system caused by these structural parts, and can effectively improve the reliability of the heat dissipation system. .
  • cooling teeth are provided on a surface of the first power cavity that is not in contact with the first evaporator.
  • heat dissipation teeth are provided on the surface of the first power chamber that is not in contact with the first evaporator.
  • heat dissipation to the first power chamber can be achieved through the heat dissipation teeth, thereby further improving the heat dissipation efficiency of the heat dissipation system.
  • the airflow flowing in the air-cooling channel can also be filtered through the cooling teeth to reduce the dust in the airflow, so that the dust content entering the first condenser is small, which can prolong the maintenance time of the first condenser and reduce Maintenance cost of the cooling system.
  • the air cooling assembly further includes a first fan.
  • the air inlet and the first fan are arranged at the bottom of the heat dissipation cavity and below the first liquid cooling assembly, and the air outlet is arranged at the top of the heat dissipation cavity.
  • the first fan is used to bring the airflow entering the air inlet to the air outlet through the air-cooling passage, and the airflow in the air-cooling passage passes through the first condenser and the first power chamber body, so as to take the heat of the first condenser and the first power chamber to the outside of the heat dissipation chamber.
  • the first fan is used to bring the airflow entering the air inlet to the air outlet through the air-cooling channel, and the airflow in the air-cooling channel passes through the first condenser and the first
  • the evaporator is used to bring the heat of the first condenser and the first evaporator to the outside of the heat dissipation cavity.
  • the air inlet of the air cooling assembly and the first fan are arranged at the bottom, and the air outlet is arranged at the top, so that the air cooling passage can pass through the first evaporator or the first evaporator while passing through the first condenser.
  • the first power cavity can realize more efficient air-cooled heat dissipation for the first power device, and can effectively improve the heat dissipation efficiency of the heat dissipation system.
  • this height difference can be used to remove dust from the airflow flowing in the air-cooling channel, so that the dust entering the first condenser is greatly reduced, and the airflow can be further extended.
  • the maintenance time of the first condenser 201 reduces the maintenance cost of the cooling system.
  • the heat dissipation system further includes a second liquid cooling assembly having the same structure as the first liquid cooling assembly, a second power cavity, and a second power device.
  • the second condenser of the second liquid cooling assembly is disposed on the top of the heat dissipation cavity and at one side of the first liquid cooling assembly.
  • the second power cavity is in contact with the second evaporator of the second liquid cooling assembly, and the second power device is disposed inside the second power cavity.
  • the airflow in the air-cooling channel also passes through the second condenser and the second power cavity, so as to bring the heat of the second condenser and the second power cavity to the heat dissipation cavity of the exterior.
  • the airflow in the air-cooled channel also passes through the second condenser and the second evaporator, so as to bring the heat of the second condenser and the second evaporator to the heat dissipation cavity of the exterior.
  • a second liquid cooling assembly with the same structure as the first liquid cooling assembly is provided inside the heat dissipation cavity, and the second evaporator of the second liquid cooling assembly is also connected to the second
  • the power cavities are in contact with each other, so that the heat dissipation system can simultaneously dissipate heat for the first power device and the second power device through the first liquid cooling component, the air cooling component and the second liquid cooling component, so that the load capacity of the heat dissipation system is higher. Large, can improve the cooling capacity and applicability of the cooling system.
  • the air cooling assembly further includes a first fan, and the air inlet
  • the air outlet is arranged on the bottom of the heat dissipation cavity and on the first side of the first liquid cooling assembly, and the air outlet is arranged on the top of the heat dissipation cavity and is located on the first side of the first liquid cooling assembly and the first side of the first liquid cooling assembly.
  • the first fan is arranged on the first side of the first liquid cooling assembly.
  • the first fan is used to bring the airflow entering the air inlet to the air outlet through the air-cooling passage, and the airflow in the air-cooling passage passes through the first condenser and the first power chamber body, so as to take the heat of the first condenser and the first power chamber to the outside of the heat dissipation chamber.
  • the first fan is used to bring the airflow entering the air inlet to the air outlet through the air-cooling channel, and the airflow in the air-cooling channel passes through the first condenser and the first
  • the evaporator is used to bring the heat of the first condenser and the first evaporator to the outside of the heat dissipation cavity.
  • the air inlet is arranged at the bottom and on the first side of the first liquid cooling assembly
  • the air outlet is arranged at the top and is located on the second side of the first liquid cooling assembly opposite to the first side.
  • the first fan is arranged on the side of the first evaporator or the first power cavity facing the air inlet, so that the air cooling channel can pass through the first liquid cooling assembly and/or the first power cavity at the same time, so that the High-efficiency heat dissipation for the first power device is realized.
  • this height difference can be used to remove dust from the airflow flowing in the air-cooling passage, so that the dust entering the first condenser is greatly reduced, and the airflow can be further extended.
  • the maintenance time of the first condenser reduces the maintenance cost of the cooling system.
  • disposing the first fan on the side of the first evaporator or the first power chamber facing the air inlet can also reduce the height of the heat dissipation chamber and improve the applicability of the heat dissipation system.
  • the heat dissipation system further includes a second liquid cooling assembly, a second power cavity, and a second power device.
  • the second condenser of the second liquid cooling assembly is arranged on the side of the first condenser facing the air outlet, and the second power chamber is connected to the second evaporator of the second liquid cooling assembly. contacts, the second power device is disposed inside the second power cavity.
  • the airflow in the air-cooling channel also passes through the second condenser, so as to take the heat of the second condenser to the outside of the heat dissipation cavity.
  • a second liquid cooling assembly with the same structure as the first liquid cooling assembly is provided inside the heat dissipation cavity, and the second evaporator of the second liquid cooling assembly is also connected to the second
  • the power cavities are in contact with each other, so that the heat dissipation system can simultaneously dissipate heat for the first power device and the second power device through the first liquid cooling component, the air cooling component and the second liquid cooling component, so that the load capacity of the heat dissipation system is higher. Large, can improve the cooling capacity and applicability of the cooling system.
  • the air cooling assembly further includes a first fan, and the air inlet includes a first air inlet.
  • the first air inlet, the air outlet and the first fan are arranged on the top of the heat dissipation cavity, the first air inlet is arranged on the first side of the first condenser, and the first The fan is arranged on a second side of the first condenser opposite to the first side, and the air outlet is arranged on a side of the first fan facing away from the first condenser.
  • the first fan is used to bring the airflow entering the first air inlet to the air outlet through the air-cooling channel, and the airflow in the air-cooling channel passes through the first condenser to turn the airflow into the air outlet.
  • the heat of the first condenser is brought to the outside of the heat dissipation cavity.
  • the first air inlet, the air outlet, and the first fan can all be arranged at the top of the heat dissipation cavity, so that the air-cooling channel can pass through the first condenser, so that the air cooling for the first power device can be realized. Cool and heat dissipation. Moreover, disposing the first fan on one side of the first condenser can reduce the height of the heat dissipation cavity and improve the applicability of the heat dissipation system.
  • the heat dissipation system further includes a second liquid cooling assembly having the same structure as the first liquid cooling assembly, a second power cavity, and a second power device.
  • the second condenser of the second liquid cooling assembly is arranged on the side of the first fan facing the air outlet, and the second power cavity is in contact with the second evaporator of the second liquid cooling assembly , the second power device is disposed inside the second power cavity.
  • the airflow in the air-cooling channel also passes through the second condenser, so as to bring the heat of the second condenser to the outside of the heat dissipation cavity.
  • a second liquid cooling component with the same structure as the first liquid cooling component is also provided inside the heat dissipation cavity, so that the heat dissipation system can pass through the first liquid cooling component, the air cooling component and the second liquid cooling component at the same time.
  • Cold components for first power The device and the second power device perform heat dissipation, so that the load capacity of the heat dissipation system is greater, and the heat dissipation capacity of the heat dissipation system can be improved.
  • the first fan is arranged between the first condenser and the second condenser, which can reduce the height of the heat dissipation system and improve the applicability of the heat dissipation system.
  • the heat dissipation system further includes a second liquid cooling assembly having the same structure as the first liquid cooling assembly, a second power cavity, and a second power device.
  • the second condenser of the second liquid cooling assembly is arranged on the side of the first condenser facing away from the air outlet, and the second power chamber and the second evaporator of the second liquid cooling assembly In contact with each other, the second power device is arranged in the second power cavity.
  • the airflow in the air-cooling channel also passes through the second condenser, so as to bring the heat of the second condenser to the outside of the heat dissipation cavity.
  • a second liquid cooling component with the same structure as the first liquid cooling component is also provided inside the heat dissipation cavity, so that the heat dissipation system can pass through the first liquid cooling component, the air cooling component and the second liquid cooling component at the same time.
  • the cold component dissipates heat for the first power device and the second power device, so that the load capacity of the heat dissipation system is greater, and the heat dissipation capacity of the heat dissipation system can be improved.
  • the first fan is also arranged on the side of the first condenser facing away from the second condenser, which can facilitate the later maintenance of the first wind while reducing the height of the cooling system.
  • a first windshield is provided between the first cavity and the second cavity of the heat dissipation cavity, and the first windshield is used to block There is ventilation between the first cavity and the second cavity.
  • the first cavity is a cavity contained in the heat dissipation cavity located on the side of the first condenser facing the air outlet
  • the second cavity is contained in the heat dissipation cavity and located on the side of the air outlet. The first power cavity or the cavity of the first evaporator facing away from the second liquid cooling assembly.
  • the first windshield can prevent the first fan from blowing the air in the second cavity to the air outlet, thereby ensuring that most of the airflow in the air-cooled channel flows through the first condenser and the second condenser In this way, the heat dissipation efficiency of the air-cooled component to the first condenser and the second condenser can be ensured.
  • the air cooling assembly further includes a first fan, and the air outlet includes a first air outlet.
  • the air inlet is arranged at the bottom of the heat dissipation cavity
  • the first air outlet is arranged at the top of the heat dissipation cavity
  • the first fan is arranged on the first condenser facing the first air outlet side.
  • a first windshield is provided between the first cavity and the second cavity of the heat dissipation cavity, and the first windshield is used to block the gap between the first cavity and the second cavity. Room ventilation.
  • the first cavity is a cavity contained in the heat dissipation cavity located on the side of the first condenser facing the first air outlet, and the second cavity is contained in the heat dissipation cavity and located on the side of the first air outlet.
  • the first fan is used to bring the airflow entering the air inlet to the first air outlet through the air-cooling passage, and the airflow in the air-cooling passage passes through the first condenser and the first evaporator , so as to bring the heat of the first condenser and the first evaporator to the outside of the heat dissipation cavity.
  • the first fan is used to bring the airflow entering the air inlet to the first air outlet through the air-cooling channel, and the airflow in the air-cooling channel passes through the first condenser and the The first power cavity is used to bring the heat of the first condenser and the first cavity to the outside of the heat dissipation cavity.
  • the air inlet is arranged at the bottom
  • the first air outlet is arranged at the top
  • the first fan is arranged on the side of the first condenser facing the first air outlet, so that the air cooling channel can pass through
  • the first liquid cooling component and/or the first power cavity can realize efficient heat dissipation for the first power device.
  • the height difference can be used to remove dust from the airflow flowing in the air-cooling channel, so that the dust entering the first condenser is greatly reduced, which can The maintenance time of the first condenser is further extended, and the maintenance cost of the cooling system is reduced.
  • disposing the first fan on the side of the first condenser can also reduce the height of the heat dissipation cavity and improve the applicability of the heat dissipation system.
  • the heat dissipation system further includes The second liquid cooling assembly, the second power chamber, and the second power device have the same structure.
  • the air cooling assembly also includes a second fan, and the air outlet also includes a second air outlet.
  • the second condenser of the second liquid cooling assembly is arranged on the side of the first condenser facing away from the first fan, and the second power chamber and the second evaporator of the second liquid cooling assembly devices are in contact with each other, and the second power device is arranged inside the second power cavity.
  • the second fan is located on a side of the second condenser facing away from the first condenser, and the second air outlet is arranged on the top of the heat dissipation cavity.
  • a second windshield is provided between the third cavity and the fourth cavity of the heat dissipation cavity, and the second windshield is used to block the gap between the third cavity and the fourth cavity.
  • Room ventilation is a cavity contained in the heat dissipation cavity located on the side of the second condenser facing the second air outlet, and the fourth cavity is contained in the heat dissipation cavity and located The cavity on the side of the second power cavity and the second evaporator facing away from the first liquid cooling assembly.
  • the second fan is used to bring the airflow entering the air inlet to the second air outlet through the air-cooling passage, and the airflow in the air-cooling passage also passes through the second condenser and the first airflow.
  • the second evaporator is used to bring the heat of the second condenser and the second evaporator to the outside of the heat dissipation cavity.
  • the second fan is used to bring the airflow entering the air inlet to the second air outlet through the air-cooling channel, and the airflow in the air-cooling channel passes through the second condenser and the
  • the second power cavity is used to take the heat of the second condenser and the second cavity to the outside of the heat dissipation cavity.
  • a second liquid cooling assembly with the same structure as the first liquid cooling assembly is provided inside the heat dissipation cavity, and a second fan and a second air outlet are added, so that the heat dissipation system can pass through the first liquid cooling assembly at the same time.
  • the first liquid cooling component, the air cooling component and the second liquid cooling component perform more effective heat dissipation for the first power device and the second power device, so that the cooling system has a larger load capacity and stronger heat dissipation capability.
  • the first fan and the second fan are arranged outside the condenser, which can facilitate the later maintenance of the fans while reducing the height of the cooling system.
  • the air cooling assembly further includes a first fan, and the air inlet includes a first air inlet.
  • the first fan is arranged above the first liquid cooling assembly, the first air inlet is arranged on a side of the first condenser, and the air outlet is arranged on a side of the first fan.
  • the fan is used to bring the airflow entering the first air inlet to the air outlet through the air-cooling passage, and the airflow in the air-cooling passage passes through the first condenser to turn the first airflow to the air outlet.
  • the heat of the condenser is carried to the outside of the heat dissipation cavity.
  • the first fan is arranged above the first condenser, the first air inlet is arranged on the side of the first condenser, and the air outlet is arranged on the side of the first fan, so that the air cooling channel can The airflow can fully contact the first condenser, which can realize efficient air cooling and heat dissipation for the first condenser. Moreover, such a structure can also facilitate the later maintenance of the first fan.
  • the heat dissipation system further includes a second liquid cooling component, a second power cavity, and a second power device.
  • the second condenser of the second liquid cooling assembly is arranged on one side of the first condenser, the second power cavity is in contact with the second evaporator of the second liquid cooling assembly, and the first Two power devices are arranged inside the second power cavity.
  • the airflow in the air-cooling channel also passes through the second condenser, so as to take the heat of the second condenser to the outside of the heat dissipation cavity.
  • a second liquid cooling component with the same structure as the first liquid cooling component is also provided inside the heat dissipation cavity, so that the heat dissipation system can pass through the first liquid cooling component, the air cooling component and the second liquid cooling component at the same time.
  • the cold component dissipates heat for the first power device and the second power device, so that the load capacity of the heat dissipation system is greater, and the heat dissipation capacity of the heat dissipation system can be improved.
  • the air cooling assembly further includes a second air inlet, and the second air inlet is disposed at the bottom of the heat dissipation cavity.
  • the first fan is also used to bring the airflow entering the second air inlet to the air outlet through the air-cooling passage, and the airflow in the air-cooling passage also passes through the first power chamber and the second power cavity, so as to take the heat of the first power cavity and the second power cavity to the outside of the heat dissipation cavity.
  • the air-cooled channel will not only pass through the first condenser and the second condenser, but also pass through the first power cavity and the second power cavity , any two items of the first evaporator and the second evaporator.
  • the air-cooled assembly can not only perform air-cooling and heat dissipation on the first condenser and the second condenser, but also simultaneously cool the first power cavity, the second power cavity, the first evaporator and Any two items of the second evaporator can dissipate heat, which can effectively improve the heat dissipation efficiency of the heat dissipation system.
  • the heat dissipation system further includes a third liquid cooling assembly having the same structure as the first liquid cooling assembly, a third power cavity, and a third power device.
  • the third condenser of the third liquid cooling assembly is arranged below the first liquid cooling assembly, the third power cavity is in contact with the third evaporator of the third liquid cooling assembly, and the first Three power devices are arranged in the third power cavity.
  • the airflow in the air-cooled channel also passes through the third condenser and the third evaporator, so as to bring the heat of the third condenser and the third evaporator to the outside of the heat dissipation cavity .
  • the airflow in the air-cooled channel also passes through the third condenser and the third power cavity, so as to bring the heat of the third condenser and the third power cavity to the heat dissipation outside of the cavity.
  • a third liquid cooling assembly having the same structure as the first liquid cooling assembly is further arranged inside the heat dissipation cavity, and the two are placed inside the heat dissipation cavity in a stacked structure.
  • a structural design can make effective use of the internal space of the heat dissipation cavity.
  • it also enables the heat dissipation system to combine the first liquid cooling component, the air cooling component, the second liquid cooling component and the third liquid cooling component to dissipate heat for the first power device, the second power device and the third power device, which can further Improve the load capacity of the cooling system.
  • the air cooling assembly further includes a third air inlet, and the third air inlet is disposed on a side of the third condenser.
  • the addition of the third air inlet can further increase the air intake volume of the air-cooling passage, improve the heat dissipation capability of the air-cooling component, and further improve the heat dissipation efficiency of the heat dissipation system.
  • the air cooling assembly further includes a first fan.
  • the air inlet is arranged on a side of the first condenser, and the air outlet and the first fan are arranged at the bottom of the heat dissipation cavity and below the first liquid cooling assembly.
  • the first fan is used to bring the airflow entering the air inlet to the air outlet through the air-cooling passage, and the airflow in the air-cooling passage passes through the first condenser and the first evaporator to The heat of the first condenser and the first evaporator is brought to the outside of the heat dissipation cavity.
  • the first fan is used to bring the airflow entering the air inlet to the air outlet through the air-cooling channel, and the airflow in the air-cooling channel passes through the first condenser and the first
  • the power chamber is used to take the heat of the first condenser and the first chamber to the outside of the heat dissipation chamber.
  • the first fan and the air outlet are arranged under the first liquid cooling assembly, and the air inlet is arranged on the side of the first condenser, so that the air cooling channel can pass through the first condenser while passing through The first power chamber or the first evaporator, so that the air-cooled component can not only dissipate heat to the first condenser, but also dissipate heat to the first power chamber or the first evaporator at the same time, which can improve the heat dissipation efficiency of the heat dissipation system .
  • the heat dissipation system further includes a second liquid cooling assembly, a second power cavity, and a second power device.
  • the second condenser of the second liquid cooling assembly is arranged on the side of the first condenser, the second power cavity is in contact with the second evaporator, and the second power device is arranged on the side of the first condenser.
  • the second fan is used to bring the airflow entering the air inlet to the second air outlet through the air-cooling passage, and the airflow in the air-cooling passage also passes through the second condenser and the first airflow.
  • the second evaporator is used to bring the heat of the second condenser and the second evaporator to the outside of the heat dissipation cavity.
  • the second fan is used to bring the airflow entering the air inlet to the second air outlet through the air-cooling channel, and the airflow in the air-cooling channel passes through the second condenser and the
  • the second power cavity is used to take the heat of the second condenser and the second cavity to the outside of the heat dissipation cavity.
  • a second liquid cooling component with the same structure as the first liquid cooling component is also provided inside the heat dissipation cavity, so that the heat dissipation system can pass through the first liquid cooling component, the air cooling component and the second liquid cooling component at the same time.
  • the cold component dissipates heat for the first power device and the second power device, so that the load capacity of the heat dissipation system is greater, and the heat dissipation capacity of the heat dissipation system can be improved.
  • the embodiment of the present application provides a power supply system.
  • the power supply system includes a power supply, the heat dissipation system provided in the first aspect and any possible implementation manner of the first aspect, and a load.
  • the power devices in the heat dissipation system are respectively connected to the power supply and the load, the heat dissipation system is used to dissipate heat for the power devices, and the power devices are used to convert the initial electric energy provided by the power supply is the target electric energy, and supplies power to the load through the target electric energy.
  • adopting the heat dissipation system described in the first aspect in the power supply system can ensure the safety and reliability of the power supply system.
  • the embodiment of the present application further provides a charging pile.
  • the charging pile includes a first electrical interface, a second electrical interface, and the heat dissipation system provided in the first aspect and any possible implementation manner of the first aspect.
  • the power devices in the heat dissipation system are respectively connected to the first power supply port and the second power supply port, the heat dissipation system is used to dissipate heat for the power devices, and the power devices are used to The initial electrical energy input by the first electrical interface is converted into target electrical energy, and the target electrical energy is output through the second electrical interface.
  • the power device is a DC/DC conversion module or an AC/DC conversion module.
  • the first electrical interface is connected to a power supply, and the second electrical interface is connected to a load.
  • the power source is an AC power grid or a photovoltaic array
  • the load is an electric vehicle or a robot.
  • the heat dissipation system, power supply system and charging pile provided by the embodiment of the present application can effectively solve the problems of low heat dissipation efficiency, poor reliability, and high maintenance cost existing in the existing heat dissipation system.
  • the heat dissipation system provided by the present application has high heat dissipation efficiency. High reliability, low maintenance cost and better applicability.
  • Fig. 1 is a schematic structural diagram of a heat dissipation system provided by an embodiment of the present application
  • Fig. 2 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 3 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 4 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 5 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 6 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 7 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of the position of an air inlet and an air outlet provided by an embodiment of the present application.
  • Fig. 9 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 10 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 11 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 12 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 13 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 14 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 15 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 16 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 17 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 18 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 19 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 20 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 21 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 22 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 23 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 24 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • Fig. 25 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 26 is a schematic structural diagram of a power supply system provided by an embodiment of the present application.
  • Fig. 27 is a schematic structural diagram of a charging pile provided in an embodiment of the present application.
  • the technical problem to be solved in this application is: how to provide a heat dissipation system with high heat dissipation efficiency, high reliability and low maintenance cost, so as to improve the applicability of the heat dissipation system.
  • the present application provides a heat dissipation system.
  • the liquid cooling component, the air cooling component and the power cavity are arranged inside the heat dissipation cavity of the heat dissipation system, and the power device is arranged inside the power cavity.
  • the power cavity is in contact with the liquid cooling component, the air inlet and the air outlet of the air cooling component are arranged on the cooling cavity, and the airflow in the air cooling channel connected between the air inlet and the air outlet will pass through the first liquid cooling components and/or the first power cavity, and dissipate heat.
  • the heat dissipation system combines air-cooled components and liquid-cooled components with high heat dissipation efficiency.
  • the power cavity is used to protect the power device that generates heat, which can effectively prevent the failure of the power device due to factors such as the environment, and can reduce the later maintenance cost while improving the reliability of the heat dissipation system. Therefore, the adoption of the heat dissipation system can effectively solve the problems of low heat dissipation efficiency, poor reliability, and high maintenance cost existing in the existing heat dissipation system, and can effectively improve the applicability of the heat dissipation system.
  • FIG. 1 is a schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the heat dissipation system 100 may include a heat dissipation cavity 10 , a first liquid cooling component 20 , an air cooling component 30 , a first power cavity 40 and a first power device 50 .
  • the first liquid cooling assembly 20 and the first power cavity 40 are arranged inside the cooling cavity 10, and the first liquid cooling assembly 20 and the first power cavity 40 are in contact, and the first power device 50 can be arranged Inside the first power cavity 40 .
  • an air inlet 32 and an air outlet 33 of the air cooling assembly 30 are also provided on the heat dissipation cavity 10 .
  • the air-cooling passage 31 corresponding to the air-cooling assembly 30 and connected between the air inlet 32 and the air outlet 33 is also arranged inside the heat dissipation cavity 10, and the airflow in the air-cooling passage 31 will pass through the first liquid. Cold assembly 20 and/or first power cavity 40 .
  • the heat dissipation cavity 10 and the first power cavity 40 mentioned above refer to the A structure containing a cavity of fixed shape.
  • the cooling cavity 10 is a structure including a cavity formed by a closed casing 101 .
  • the first power cavity 40 is a structural body including a cavity formed by a closed casing 401 .
  • the shape of the housing 101 of the heat dissipation cavity 10 (also can be understood as the shape of the heat dissipation cavity 10) can be a cuboid, cylinder, etc.
  • the shape of the housing 401 of the first power cavity 40 (also can be It is understood that the shape of the first power cavity 40) may also be a cuboid, a cylinder, etc., and the shapes of these cavities may be set according to specific needs, which is not limited in this application.
  • the heat dissipation cavity 10 and the first power cavity 40 will be described as cuboid cavities.
  • the air-cooling channel 31 mentioned above refers to the main path that the airflow that flows in from the air inlet 32 and flows out from the air outlet 33 passes through, and its specific position is mainly determined by the fan included in the air-cooling assembly 30. The location and the positions of the air inlet 32 and the air outlet 33 on the cooling cavity 10 are determined.
  • the aforementioned airflow in the air cooling passage 31 will pass through the first liquid cooling assembly 20 and/or the first power cavity 40, it can also be understood that the air cooling passage 31 passes through the first liquid cooling assembly 20 and/or The first power cavity 40 .
  • the air-cooling channel 31 described later passes through a certain device or structure, that is, the airflow in the air-cooling channel 31 is equivalent to passing through the device or structure, and the following two description methods will not be carried out distinguish.
  • the air inlet 32 and the air outlet 33 of the air-cooling assembly 30 mentioned above are arranged on the heat dissipation chamber 10 , which can also be understood as the air inlet 32 and the air outlet 33 are arranged on the housing 101 of the heat dissipation chamber 10 . It should be understood here that the positions of the air inlet 32 and the air outlet 33 and the position of the air-cooling passage 31 shown in FIG. It can be arranged in other positions, as long as the airflow in the air cooling channel 31 can be ensured to pass through the first liquid cooling assembly 20 and/or the first power cavity 40 .
  • both the first liquid cooling assembly 20 and the air cooling assembly 30 are used to dissipate heat from the first power device 50 .
  • the first power device 50 generates heat during operation, and the heat diffuses to the outside of the first cavity 40 through the casing 401 . Since the first power chamber 40 is in direct contact with the first liquid cooling assembly 20, part of the heat generated by the first power device 50 will flow to the first liquid cooling assembly through the surface of the housing 401 in contact with the first liquid cooling assembly 20. 20, the first liquid cooling component 20 can dissipate the heat through liquid cooling.
  • the air cooling passage 31 passes through the first liquid cooling assembly 20 and the first power chamber 40 at the same time (it can be understood that the air cooling passage 31 passes through the first liquid cooling assembly 20 and the first power chamber 40), Since part of the body of the first liquid cooling assembly 20 and part of the body of the first power chamber 40 are in contact with the air cooling passage 31, the airflow flowing in the air cooling passage 31 can transfer the first liquid cooling assembly 20 and the first power The heat of the cavity 40 is carried to the outside of the heat dissipation cavity 10 and dissipated, so as to realize air cooling and heat dissipation of the first power device 50 .
  • the airflow flowing in the air-cooling channel 31 can bring the heat of the first liquid-cooling assembly 20 to the outside of the cooling cavity 10 to dissipate, thereby completing Air cooling and heat dissipation of the first power device 50 .
  • the first liquid cooling component 20 and the air cooling component 30 are integrated in the heat dissipation cavity 10, the first liquid cooling component 20 is in direct contact with the first power cavity 40 containing the first power device 50, and the The air cooling passage 31 corresponding to the air cooling assembly 30 is designed to pass through the first liquid cooling assembly 20 and/or the first power cavity 40 .
  • the first power device 50 can be dissipated simultaneously through the first liquid cooling assembly 20 and the air cooling assembly 30 , which can make the heat dissipation efficiency of the heat dissipation system 100 higher.
  • the first power cavity 40 is also used to protect the first power device 50, which can effectively prevent the first power device 50 from malfunctioning due to factors such as the environment, and can reduce later maintenance while improving the reliability of the cooling system 100. cost. Therefore, the heat dissipation system 100 has strong applicability, and the heat dissipation system 100 can effectively solve the problems of low heat dissipation efficiency, poor reliability, and high maintenance cost existing in the existing heat dissipation system.
  • the structure and functions of the heat dissipation system 100 will be described in detail below in conjunction with various optional structures of the liquid cooling components, air cooling components, power chambers, and power devices included in the heat dissipation system 100 .
  • FIG. 2 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application. It should be understood that Figure 2 (a) is an exploded view of the heat dissipation chamber 10, (b) in FIG. 2 is a top view of the heat dissipation chamber 10, and (c) in FIG. 2 is a front view of the heat dissipation chamber 10. As shown in FIG.
  • the shape of the housing 101 of the cooling cavity 10 is a cuboid, which is provided with four sides, including a first side 1011, a second side 1012, a third side 1013 and a side as shown in FIG. 2 .
  • Fourth side 1014 .
  • the first side 1011 and the third side 1013 are opposite sides
  • the second side 1012 and the fourth side 1014 are opposite sides.
  • the housing 101 further includes a top surface 1015 and a bottom surface 1016 . Further, as shown in (c) in FIG.
  • the part of the cavity including the top surface 1015 of the heat dissipation cavity 10 is defined as the top 102 of the heat dissipation cavity 10
  • the bottom surface 1016 and the bottom surface of the heat dissipation cavity 10 are defined as Part of the cavity on the side is defined as the bottom 103 of the heat dissipation cavity 10 .
  • the first liquid cooling assembly 20 may include a first condenser 201 , a first evaporator 202 and a first heat conduction structure 203 .
  • the first condenser 201 and the first evaporator 202 are connected through the first heat conducting structure 203 .
  • the first condenser 201 is disposed at the top 102 of the heat dissipation cavity 102 .
  • the first condenser 201 can actually be set at any position in the part of the cavity contained in the top 102, as long as it is set inside the part of the cavity, and the specific position can be set according to actual needs , not specifically limited here.
  • the first power cavity 40 is in contact with the first evaporator 202 . It should be noted here that the first power chamber 40 is in contact with the first evaporator 202, which means that part of the surface of the first power chamber 40 is in contact with part of the surface of the first evaporator 202, so that the The heat generated by the first power device 50 can be transferred to the first evaporator 202 through the first power cavity 40 .
  • both the first power cavity 40 and the first evaporator 202 may be designed as long hair structures, and the sides of the two are in contact.
  • both the above-mentioned first power chamber 40 and the above-mentioned first evaporator 202 are disposed below the first condenser 201 .
  • the first power chamber 40 and the first evaporator 202 can be arranged directly below the first condenser 201, or can be arranged obliquely below the first condenser 201, as long as the In the long side direction of the heat dissipation cavity 10 , it is enough that the first power cavity 40 and the first evaporator 202 are closer to the bottom 103 of the heat dissipation cavity 10 than the first condenser 201 .
  • both the first condenser 201 and the first evaporator 202 are filled with a cooling medium, and the first condenser 201 and the first evaporator 202 form a circulation loop through the first heat conduction structure 302 (for convenience of distinction, The first circulation loop 204 will be hereinafter used instead of description), and the cooling working fluid can circulate between the first condenser 201 and the first evaporator 202 through this first circulation loop 204 to bring the heat of the first evaporator 202 to the The first condenser 201 is dissipated.
  • the first evaporator 202 will absorb a certain amount of heat from the first power cavity 40, and the cold working fluid in the first evaporator 202 will be vaporized under the action of the heat, and the vaporized cooling working fluid will pass through the first A heat conduction structure 203 reaches the first condenser 201 to bring the heat of the first evaporator 202 to the first condenser 201 .
  • the cooling working medium in the vapor state dissipates heat and condenses at the first condenser 201 , becomes a liquid cooling working medium again, and flows back to the first evaporator 202 through the first heat conducting structure 203 .
  • the first circulation loop 204 formed by the first heat conduction structure 203 can make the cooling working fluid circulate between the first condenser 201 and the first evaporator 202 , so as to realize the liquid cooling of the first power cavity 40 Cool and heat dissipation.
  • the first power chamber 40 is disposed on the side of the first evaporator 202 facing the third side 1013 .
  • the air cooling channel 31 passes through the first power cavity 40 and the first condenser 201 .
  • FIG. 4 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the first power chamber 40 may also be disposed on a side of the first evaporator 202 facing the first side 1011 .
  • the air-cooling channel 31 passes through the first condenser 201 and the first evaporator 202 , and does not pass through the first power chamber 40 .
  • the first power cavity 40 and the first Whether the evaporator 202 is arranged in the positional relationship shown in FIG. 3 or in the positional relationship shown in FIG. 4 there is no difference in the functions it can realize, and it does not affect the structures and functions of other components in the cooling system 100 . Therefore, in order to avoid repetition, the structure and function of the heat dissipation system 100 will be further described below mainly by taking the positional relationship between the first power chamber 40 and the first evaporator 202 shown in FIG. 3 as an example.
  • the first heat transfer structure 203 is used to form the first circulation loop 204 between the first condenser 201 and the first evaporator 202, which can be used to circulate the cooling working medium, so as to realize the first liquid cooling assembly 20 liquid cooling function.
  • the first liquid cooling assembly 20 does not need to rely on structural parts such as circulating water pumps and liquid pipe joints, and can avoid the problems of high system failure rate and high maintenance cost of the heat dissipation system 100 caused by these structural parts, and can effectively improve the heat dissipation system 100. reliability.
  • FIG. 5 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • cooling teeth 402 are provided on the surface of the first power cavity 40 not in contact with the first evaporator 202 .
  • cooling teeth 402 are formed on part or all of the surface of the housing 401 that is not in contact with the first evaporator 202 .
  • the air cooling channel 31 also passes through the cooling teeth 402 .
  • the heat dissipation teeth 402 can be used to dissipate heat from the first power cavity 40 . It should be understood here that as shown in FIG.
  • first power cavity 40 facing away from the first evaporator 202 has cooling teeth.
  • first power cavity 40 and Radiating teeth may also be formed on other surfaces not in contact with the first evaporator 202 , for example, the top and bottom surfaces of the first power chamber 40 may also have cooling teeth.
  • the specific situation may be determined according to actual application requirements, and this application does not make specific limitations thereto.
  • heat dissipation teeth 402 are provided on the surface of the first power chamber 40 that is not in contact with the first evaporator 202.
  • the heat dissipation of the first power chamber 40 can be realized through the heat dissipation teeth 402, thereby further improving the heat dissipation system. 100 cooling efficiency.
  • the airflow flowing in the air-cooling channel 31 can also be filtered by the cooling teeth 402 to reduce the dust in the airflow, so that the dust content entering the first condenser 201 is small, and the life of the first condenser 201 can be extended. The maintenance time is shortened, and the maintenance cost of the cooling system 100 is reduced.
  • FIG. 6 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the above-mentioned first power device 50 may specifically include a first sub-power device 501 and a second sub-power device 502 .
  • the first sub-power device 501 can be arranged on the side where the first power cavity 40 is in contact with the first evaporator 202 , and it can also be understood that the first sub-power device 501 is connected to the first The evaporator 202 is attached.
  • the second sub-power device 502 can be arranged on the side of the first power cavity 40 where the heat dissipation teeth 402 are long, and it can also be understood that the second sub-power device 502 is attached to the side wall of the housing 401 where the heat dissipation teeth 402 are long. combine.
  • the above-mentioned first sub-power device 501 may be a power device with relatively high requirements for heat dissipation
  • the above-mentioned second sub-power device 502 may be a power device that does not have high requirements for heat dissipation or cannot be matched with the first evaporator 202 due to space constraints. Bonded power devices.
  • Such an implementation manner can preferentially ensure that power devices with high heat dissipation requirements can be effectively dissipated, thereby increasing the reliability of the heat dissipation system 100 .
  • first sub-power device 501 can be specifically one or more
  • second sub-power device 502 can also be specifically one or more.
  • the first sub-power device 501 and the second sub-power device 502 The number of can be determined by actual design requirements, and this application does not specifically limit it.
  • the foregoing mainly focuses on the structure and function of the first liquid cooling assembly 20 , the first power cavity 40 and the first power device 50 , and the following will further describe the heat dissipation system 100 in combination with the foregoing content. Other structures are described in detail.
  • FIG. 7 is another schematic structural diagram of a heat dissipation system provided in an embodiment of the present application.
  • the air cooling assembly 30 may further include a first fan 34 .
  • the air outlet 33 can be arranged at the top 102 of the heat dissipation cavity 10 (it should be understood that FIG. 7 shows an example that there are two air outlets 32 located on the first side 1011 and the third side 1013 respectively).
  • the air inlet 32 and the first fan 34 can be arranged at the bottom of the cooling cavity 10 103 (it should be understood that FIG. 7 shows an example in which there are two air inlets 33 located on the first side 1011 and the third side 1013 respectively).
  • the air inlet 32 and the first fan 34 may be located below the first liquid cooling assembly 20 (or in other words, the air inlet 32 and the first fan 34 may be located in the first power chamber 40 and below the first evaporator 202).
  • the air cooling channel 31 will pass through the first power cavity 40 and the first condenser 201 at the same time.
  • the first fan 34 can blow air from the bottom 103 to the top 102, so that the airflow entering the air inlet 32 is brought to the air outlet 33 through the air cooling passage 31, and finally returns to the outside of the cooling cavity 10 through the air outlet 33.
  • the heat of the first power chamber 40 and the first condenser 201 can be brought to the outside of the heat dissipation chamber 10 by the airflow flowing in the air-cooling passage 31 to dissipate, thereby realizing the air-cooling and heat dissipation of the first power device 50 .
  • the air cooling channel 31 will pass through the first evaporator 202 and the first condenser 201 at the same time.
  • the first fan 34 is still used to bring the airflow entering the air inlet 32 to the air outlet 33 through the air cooling channel 31 , and return to the outside of the heat dissipation cavity 10 through the air outlet 33 .
  • the heat of the first evaporator 202 and the first condenser 201 can be brought to the outside of the heat dissipation cavity 100 by the airflow flowing in the air cooling channel 31 to dissipate, thereby realizing air cooling and heat dissipation of the first power device 50 .
  • the air inlet 32 and the first fan 34 of the air cooling assembly 30 are arranged at the bottom 103, and the air outlet 33 is arranged at the top 102, so that the air cooling channel 31 can pass through the first condenser 201 while , also passes through the first evaporator 202 or the first power cavity 40, so that more efficient air cooling and heat dissipation for the first power device 50 can be realized, and the heat dissipation efficiency of the heat dissipation system can be effectively improved.
  • the height difference can be used to remove dust from the airflow flowing in the air-cooling channel 31, so that the dust entering the first condenser 201 is greatly reduced , the maintenance time of the first condenser 201 can be further extended, and the maintenance cost of the cooling system 100 can be reduced.
  • FIG. 7 is a schematic diagram of positions of an air inlet and an air outlet provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of positions of an air inlet and an air outlet provided in an embodiment of the present application.
  • (a) in FIG. 8 is a top view of the heat dissipation cavity 10
  • (b) in FIG. 8 is a front view of the heat dissipation cavity 10 .
  • Such a design can also ensure that the air cooling channel 31 can pass through the first liquid cooling assembly 20 and/or the first power cavity 40 .
  • there can be one air inlet 32 and one air outlet 33 the air inlet is arranged at the bottom 103 and is positioned on the first side 1011 , and the air outlet 33 can be arranged at the top 102 And located on the third side 1013 .
  • FIG. 9 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the cooling system 100 may further include a second liquid cooling assembly 60 , a second power chamber 70 and a second power device 80 .
  • the structure of the second liquid cooling assembly 60 may be the same as that of the first liquid cooling assembly 20 .
  • the second liquid cooling assembly 60 may specifically include a second condenser 601, a second evaporator The emitter 602 and the second heat conducting structure 603. Wherein, the second condenser 601 and the second evaporator 602 are connected through the second heat conducting structure 603 .
  • the second condenser 601 is arranged at the top 102 of the heat dissipation cavity 102 and is located at the side of the first condenser 201 .
  • the second power device 80 is disposed inside the second power cavity 70 , and the second power cavity 70 is in contact with the second evaporator 602 .
  • both the above-mentioned second power cavity 70 and the above-mentioned second evaporator 602 are disposed below the second condenser 601 .
  • the internal structure of the second liquid cooling assembly 60, and the relative positional relationship among the second liquid cooling assembly 60, the second power chamber 70, and the second power device 80 are the same as those of the first liquid cooling assembly 20 described above.
  • the internal structure, and the relative positional relationship among the first liquid cooling assembly 20 , the first power cavity 40 , and the first power device 50 are the same, and can be referred to in the previous section together, and will not be repeated here.
  • the second power cavity 70 is disposed on the side of the second evaporator 602 facing the first side 1011 .
  • the air cooling channel 31 also passes through the second power cavity 70 and the second condenser 601 .
  • the second power cavity 70 may also be disposed on a side of the second evaporator 602 facing the third side 1013 .
  • the air cooling passage 31 passes through the second condenser 601 and the second evaporator 602 , but does not pass through the second power chamber 70 .
  • both the second condenser 601 and the second evaporator 602 are filled with cooling working fluid, and a second heat conduction structure 603 is also formed between the second condenser 601 and the second evaporator 602.
  • the cooling medium can circulate between the second condenser 601 and the second evaporator 602 through the second circulation loop to bring the heat of the second evaporator 602 to the second condenser 601 for dissipation, thereby Liquid cooling and heat dissipation for the second power device 80 is realized.
  • the specific working process of the second liquid cooling assembly 60 reference may be made to the previous description of the working process of the first liquid cooling assembly 20 , so details will not be repeated here.
  • the first fan 34 when the first fan 34 is working normally, it can blow the airflow from the air inlet 32 from the bottom 103 to the air outlet 33 , so that there is airflow in the air cooling passage 31 .
  • the air-cooling channel 31 also passes through the second power chamber 70 and the second condenser 601
  • the airflow flowing in the air-cooling channel 31 can also be used to carry the heat of the second condenser 601 and the second power chamber 70
  • the heat is dissipated to the outside of the heat dissipation cavity 10 , so as to realize air cooling and heat dissipation for the second power device 80 .
  • the airflow flowing in the air-cooled channel 31 can also be used to bring the heat of the second condenser 601 and the second evaporator 602 to the The outside of the heat dissipation cavity 10 is dissipated, so as to realize air cooling and heat dissipation for the second power device 80 .
  • a second liquid cooling assembly 60 with the same structure as the first liquid cooling
  • the second power cavity 70 of the power device 80 is in contact, so that the heat dissipation system 100 can pass through the first liquid cooling assembly 20, the air cooling assembly 30 and the second liquid cooling assembly 60 at the same time as the first power device 50 and the second power device 50.
  • the power device 80 dissipates heat, so that the load capacity of the heat dissipation system 100 is greater, which can improve the heat dissipation capability and applicability of the heat dissipation system 100 .
  • FIG. 10 is another schematic structural diagram of a heat dissipation system provided in an embodiment of the present application.
  • the air cooling assembly 30 may further include a first fan 34 .
  • the air inlet 32 may be disposed at the bottom 103 of the heat dissipation cavity 10 and located on the first side of the first liquid cooling assembly 20 (that is, the side of the first liquid cooling assembly 20 facing the first side 1011 ).
  • the above-mentioned air outlet 33 is arranged at the top 102 of the heat dissipation cavity 10, and is located on the second side of the first liquid cooling assembly 20 opposite to the above-mentioned first side (that is, the first liquid cooling assembly 20 faces the third side 1013 side). It should be understood that in FIG. 10 , the air inlet 32 and the air outlet 33 are both provided as an example and are respectively arranged on the first side 1011 and the third side 1013 .
  • first evaporator 202 in the first liquid cooling assembly 20 faces away from the first power cavity 40 and is arranged toward the first side 1011 (it should be understood that FIG. 10 is an example of this scenario)
  • the above-mentioned first fan 34 may be arranged on the side of the first evaporator 202 facing the air inlet 32 (it can also be understood as the side of the first evaporator 202 facing the first side 1011 ).
  • the air-cooling channel 31 passes through the first condenser 201 and the first evaporator 202 .
  • the above-mentioned first fan 34 can be set on the side of the first power cavity 40 facing the air inlet 32 (also can be understood as the first power The side of the cavity 40 facing the first side 1011).
  • the air-cooling passage 31 passes through the first condenser 201 and the first power cavity 40 .
  • the first fan 34 can blow air from the bottom 103 to the top 102, thereby passing the air-cooling channel 31 to the air inlet 32
  • the incoming airflow is brought to the air outlet 33 , and blows to the outside of the cooling chamber 10 through the air outlet 33 .
  • the airflow flowing in the air-cooling channel 31 can take the heat of the first power chamber 40 and the first condenser 201 to the outside of the heat dissipation chamber 100 to dissipate, thereby realizing air-cooling and heat dissipation of the first power device 50 .
  • the first fan 34 can blow air from the bottom 103 to the top 102, thereby bringing the airflow that the air inlet 32 enters into through the air-cooling channel 31 To the air outlet 33 , and blow to the outside of the heat dissipation cavity 10 through the air outlet 33 .
  • the airflow flowing in the air-cooling channel 31 can take the heat of the first evaporator 202 and the first condenser 201 to the outside of the heat dissipation cavity 100 to dissipate, thereby realizing the air-cooling and heat dissipation of the first power device 50 .
  • FIG. 10 is only an exemplary representation of the number and specific positions of the air outlets 33 and the air inlets 32 .
  • there may be one or more air inlets 32 which may also be provided on one or more of the first side 1011 , the second side 1012 , the third side 1013 and the fourth side 1014 .
  • there can be one or more air outlets 33 which can also be arranged on one or more of the first side 1011 , the second side 1012 , the third side 1013 and the fourth side 1014 .
  • the air outlet 33 is provided at the top 102 and located at the first liquid cooling assembly 20 It only needs to ensure that the air cooling channel 31 can pass through the first liquid cooling assembly 20 and/or the first power cavity 40 on the second side of the second side, and the present application does not specifically limit this.
  • the air inlet 32 is arranged at the bottom 103 and is located on the first side of the first liquid cooling assembly 20
  • the air outlet 33 is arranged at the top 102 and is located at the first liquid cooling assembly 20 and the first side of the first liquid cooling assembly 20
  • the first fan 34 is arranged on the side of the first evaporator 202 or the first power cavity 40 facing the air inlet 32, so that the air cooling channel 31 can pass through the first liquid cooling assembly at the same time 20 and/or the first power cavity 40, so that efficient heat dissipation for the first power device 50 can be realized.
  • the height difference can be used to remove dust from the airflow flowing in the air-cooling channel 31, so that the dust entering the first condenser 201 is greatly reduced , the maintenance time of the first condenser 201 can be further extended, and the maintenance cost of the cooling system 100 can be reduced.
  • disposing the first fan 34 on the side of the first evaporator 202 or the first power chamber 40 facing the air inlet 32 can also reduce the height of the heat dissipation chamber 10 and improve the applicability of the heat dissipation system 100 .
  • a windshield 341 is also provided between the first fan 34 and the first side 1011 (for the convenience of distinction, the third windshield 341 will be used instead in the description below), the third windshield One end of 341 is in contact with the first side 1011 , and the other end is in contact with one side of the first fan 34 .
  • the third wind deflector 341 is mainly used to prevent the airflow blown out by the first fan 34 from flowing back to the air inlet of the first fan 34, so as to ensure that the airflow in the air cooling channel 31 can quickly flow from the air inlet 32 to the air outlet 33 .
  • FIG. 11 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the cooling system 100 may further include a second liquid cooling assembly 60 , a second power cavity 70 and a second power device 80 .
  • the structure of the second liquid cooling assembly 60 may be the same as that of the first liquid cooling assembly 20 .
  • the second liquid cooling assembly 60 may specifically include a second condenser 601 , a second evaporator 602 and a second heat conduction structure 603 .
  • the second condenser 601 and the second evaporator 602 are connected through the second heat conducting structure 603 .
  • the second condenser 601 is arranged at the top 102 of the heat dissipation cavity 102, and is located on the side of the first condenser 201 facing the air outlet 33 (or in other words, on the side of the first condenser 201 facing the third side 1013 ).
  • the above-mentioned second power device 80 is disposed inside the second power chamber 70 , and the second power chamber 70 is in contact with the second evaporator 602 .
  • both the above-mentioned second power cavity 70 and the above-mentioned second evaporator 602 are disposed below the second condenser 601 .
  • the internal structure of the second liquid cooling assembly 60, and the relative positional relationship among the second liquid cooling assembly 60, the second power chamber 70, and the second power device 80 are the same as those of the first liquid cooling assembly 20 described above.
  • the internal structure, and the relative positional relationship among the first liquid cooling assembly 20 , the first power cavity 40 , and the first power device 50 are the same, and can be referred to in the previous section together, and will not be repeated here.
  • the second liquid cooling assembly 60 can be used to liquid cool and dissipate heat from the second power device 80 , and its specific working process can refer to the previous description of the working process of the first liquid cooling assembly 20 , which will not be repeated here.
  • the first fan 34 when the first fan 34 is working normally, it can blow the airflow from the air inlet 32 from the bottom 103 to the air outlet 33 , so that there is airflow in the air cooling passage 31 .
  • the airflow flowing in the air-cooling channel 31 can also be used to dissipate the heat of the second condenser 601 to the outside of the heat dissipation cavity 10 , thereby realizing air-cooling heat dissipation for the second power device 80 .
  • a second liquid cooling assembly 60 with the same structure as the first liquid cooling
  • the second power cavity 70 of the power device 80 is in contact, so that the heat dissipation system 100 can pass through the first liquid cooling assembly 20, the air cooling assembly 30 and the second liquid cooling assembly 60 at the same time as the first power device 50 and the second power device 50.
  • the power device 80 dissipates heat, so that the load capacity of the heat dissipation system 100 is greater, which can improve the heat dissipation capability and applicability of the heat dissipation system 100 .
  • FIG. 12 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the air cooling assembly 30 may include a first fan 34 .
  • the air inlet 32 of the air cooling assembly 30 may include a first air inlet 321 .
  • the first air inlet 321 , the air outlet 33 and the first fan 34 can all be arranged at the top 102 of the cooling cavity 10 .
  • the first air inlet 321 is arranged on the first side of the first condenser 201 (it can also be understood as the side of the first condenser 201 facing the first side 1011), and the first fan 34 is arranged on the first side of the first condenser 201.
  • the air outlet 33 is arranged on the side of the first fan 34 facing away from the first condenser 201 (also can be understood as It can be understood that the first fan 34 faces the side of the third side 1013). It should be understood that in FIG. 12 , there is one first air inlet 321 and one air outlet 33 , and the first air inlet 321 is disposed on the first side 1011 , and the air outlet 33 is disposed on the third side 1013 as an example.
  • the first fan 34 can blow air toward the position of the air outlet 33, so that the airflow entering the first air inlet 321 is brought to the air outlet 33 through the air-cooling passage 31, and blows to the cooling cavity 10 through the air outlet 33 of the exterior.
  • the airflow flowing in the air-cooling channel 31 can take the heat of the first condenser 201 to the outside of the heat dissipation cavity 100 to dissipate, thereby realizing the air-cooling and heat dissipation of the first power device 50 .
  • the first air inlet 321, the air outlet 33, and the first fan 34 can all be arranged at the top 102 of the heat dissipation cavity 10, so that the air cooling channel 31 can pass through the first condenser 201, thereby realizing For air cooling and heat dissipation of the first power device 50 .
  • disposing the first fan 34 on the side of the first condenser 201 can reduce the height of the heat dissipation cavity 10 and improve the applicability of the heat dissipation system.
  • FIG. 13 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the cooling system 100 may further include a second liquid cooling assembly 60 , a second power chamber 70 and a second power device 80 .
  • the structure of the second liquid cooling assembly 60 may be the same as that of the first liquid cooling assembly 20 .
  • the second liquid cooling assembly 60 may specifically include a second condenser 601 , a second evaporator 602 and a second heat conduction structure 603 .
  • the second condenser 601 and the second evaporator 602 are connected through the second heat conducting structure 603 .
  • the second condenser 601 is arranged at the top 102 of the heat dissipation cavity 102, and is located on the side of the first condenser 201 facing the air outlet 33 (or in other words, on the side of the first condenser 201 facing the third side 1013 ).
  • the second power device 80 is arranged inside the second power cavity 70, and the second power cavity 70 and the second power cavity
  • the two evaporators 602 are in contact with each other.
  • both the above-mentioned second power cavity 70 and the above-mentioned second evaporator 602 are disposed below the second condenser 601 .
  • the internal structure of the first liquid cooling assembly 20 and the relative positional relationship between the first liquid cooling assembly 20 and the first power chamber 40 and the first power device 50 are the same as the internal structure of the first liquid cooling assembly 20 described above.
  • the relative positions of the first liquid cooling assembly 20 , the first power cavity 40 , and the first power device 50 are the same, which can be referred to in the previous section, and will not be repeated here.
  • the second liquid cooling assembly 60 can be used to liquid cool and dissipate heat from the second power device 80 , and its specific working process can refer to the previous description of the working process of the first liquid cooling assembly 20 , which will not be repeated here.
  • the airflow blown by it directly passes through the second condenser 601, so that the heat of the second condenser 601 can be dissipated to the outside of the heat dissipation cavity 10 through the airflow, so as to realize Air cooling and heat dissipation of the second power device 80 .
  • a second liquid cooling assembly 60 with the same structure as the first liquid cooling assembly 20 is also provided inside the heat dissipation cavity 10, so that the heat dissipation system 100 can be cooled by the first liquid cooling assembly 20, air cooling
  • the assembly 30 and the second liquid cooling assembly 60 dissipate heat for the first power device 50 and the second power device 80 , so that the load capacity of the heat dissipation system 100 is greater, and the heat dissipation capacity of the heat dissipation system 100 can be improved.
  • the first fan 34 is also arranged between the first condenser 201 and the second condenser 601 , which can reduce the height of the heat dissipation system 100 and improve the applicability of the heat dissipation system 100 .
  • FIG. 14 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the air inlet 32 may further include a second air inlet 322 .
  • the second air inlet 322 can be disposed at the bottom 103 . It should be understood that in FIG. 14 , there are two second air inlets 322 and they are respectively provided on the first side 1011 and the second side 1012 as an example.
  • the airflow outside the heat dissipation chamber 10 can enter the interior of the heat dissipation chamber 10 through the second air inlet 322, and under the action of the first fan 34, flow through the air cooling channel 31 to the air outlet 33, and finally pass through the air outlet 33 back to the outside of the cooling chamber 10.
  • the channel 31 also passes through the first power cavity 40 and the second power cavity 70 .
  • the airflow entering from the second air inlet 322 will blow through the above-mentioned first power cavity 40 and the second power cavity 70 under the action of the first fan 34, so that the first power cavity 40 and the second power cavity 70
  • the tape is dissipated to the outside of the heat dissipation cavity, so that the air cooling assembly 30 can more effectively realize the air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the air cooling channel 31 will also Pass through the first power cavity 40 and the second evaporator 602 .
  • the airflow entering from the second air inlet 322 will blow through the first power cavity 40 and the second evaporator 602 under the action of the first fan 34, so as to bring the first power cavity 40 and the second evaporator 602 to The outside of the heat dissipation cavity is dissipated, so that the air cooling assembly 30 can more effectively realize the air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the air cooling channel 31 will also Pass through the first evaporator 202 and the second evaporator 602 .
  • the airflow entering from the second air inlet 322 will blow through the first evaporator 202 and the second evaporator 602 under the action of the first fan 34, so as to bring the first evaporator 202 and the second evaporator 602 to the cooling chamber
  • the outside of the body is dissipated, so that the air cooling assembly 30 can more effectively realize the air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the air cooling passage 31 will also Pass through the first evaporator 202 and the second power cavity 70 .
  • the airflow entering from the second air inlet 322 will blow through the above-mentioned first evaporator 202 and the second power chamber 70 under the action of the first fan 34, so as to bring the first evaporator 202 and the second power chamber 70 to The outside of the heat dissipation cavity is dissipated, so that the air cooling assembly 30 can more effectively realize the air cooling of the first power device 50 and the second power device 80 Heat dissipation.
  • FIG. 14 is only an exemplary representation of the number and specific positions of the second air inlets 322 .
  • the air-cooled channel 31 can also pass through the first condenser 201, the second condenser 601, the first power cavity 40 and the Any two items in the second power cavity 70 are sufficient, and this application does not specifically limit it.
  • the air-cooled channel 31 will not only pass through the first condenser 201 and the second condenser 601, but also pass through the first evaporator 202 and the second evaporator 602 , any two items of the first power cavity 40 and the second power cavity 70 .
  • the air-cooling assembly 30 can not only perform air-cooling and heat dissipation on the first condenser 201 and the second condenser 601, but also simultaneously cool the first evaporator 202, the second evaporator 602, the first power cavity 40 and the second condenser. Any two of any two of the two power cavities 70 are air-cooled to dissipate heat, which can effectively improve the heat dissipation efficiency of the heat dissipation system 100 .
  • FIG. 15 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the cooling system 100 may further include a second liquid cooling assembly 60 , a second power chamber 70 and a second power device 80 .
  • the structure of the second liquid cooling assembly 60 may be the same as that of the first liquid cooling assembly 20 .
  • the second liquid cooling assembly 60 may specifically include a second condenser 601 , a second evaporator 602 and a second heat conduction structure 603 .
  • the second condenser 601 and the second evaporator 602 are connected through the second heat conducting structure 603 .
  • the second condenser 601 is arranged at the top 102 of the heat dissipation cavity 10, and is located on the side of the first condenser 201 facing away from the air outlet 33 (or in other words, on the side of the first condenser 201 facing the first side 1011 side), so that the air-cooled channel 31 will also pass through the second condenser 601.
  • the second power device 80 is disposed inside the second power cavity 70 , and the second power cavity 70 is in contact with the second evaporator 602 .
  • both the above-mentioned second power cavity 70 and the above-mentioned second evaporator 602 are disposed below the second condenser 601 .
  • the internal structure of the second liquid cooling assembly 60, and the relative positional relationship among the second liquid cooling assembly 60, the second power chamber 70, and the second power device 80 are the same as those of the first liquid cooling assembly 20 described above.
  • the internal structure, and the relative positional relationship among the first liquid cooling assembly 20 , the first power cavity 40 , and the first power device 50 are the same, and can be referred to in the previous section together, and will not be repeated here.
  • the second liquid cooling assembly 60 can be used to liquid cool and dissipate heat from the second power device 80 , and its specific working process can refer to the previous description of the working process of the first liquid cooling assembly 20 , which will not be repeated here.
  • the airflow entering from the first air inlet 321 will pass through the second condenser 601, so that the heat of the second condenser 601 will be carried to the outside of the heat dissipation cavity 10 by the airflow and dissipated. , so as to realize air cooling and heat dissipation of the second power device 80 .
  • a second liquid cooling assembly 60 with the same structure as the first liquid cooling assembly 20 is also provided inside the heat dissipation cavity 10, so that the heat dissipation system 100 can be cooled by the first liquid cooling assembly 20, air cooling
  • the assembly 30 and the second liquid cooling assembly 60 dissipate heat for the first power device 50 and the second power device 80 , so that the load capacity of the heat dissipation system 100 is greater, and the heat dissipation capacity of the heat dissipation system 100 can be improved.
  • the first fan 34 is also arranged on the side of the first condenser 201 facing away from the second condenser 601, which can facilitate the later maintenance of the first fan 34 while reducing the height of the heat dissipation system 100, and can improve the heat dissipation system. 100% suitability.
  • FIG. 16 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • a first windshield 90 is also provided between the first cavity 104 and the second cavity 105 of the heat dissipation cavity 10 .
  • the above-mentioned first cavity 104 is a part of the cavity on the side of the first condenser 201 facing the air outlet 33 included in the heat dissipation cavity 10 (it can also be said that the first cavity 104 is the first condenser 201 and the second cavity). part of the cavity between the three sides 1013).
  • the above-mentioned second cavity is Part of the cavity contained in the heat dissipation cavity 10 is located on the side of the first power cavity 40 facing away from the second liquid cooling assembly 60 (it can also be said that the second cavity 105 is the first power cavity 40 and the third side surface Partial cavity between 1013).
  • the above-mentioned second cavity is located in the first evaporator 202 facing away from the second liquid cooling component included in the heat dissipation cavity 10
  • a partial cavity on one side of 60 it can also be said that the second cavity 105 is a partial cavity between the first evaporator 202 and the third side 1013).
  • the first windshield 90 is mainly used to block the ventilation between the first cavity 104 and the second cavity 105 .
  • the first fan 34 can be prevented from blowing the air in the second cavity 105 to the air outlet 33, thereby ensuring that most of the airflow in the air cooling channel 31 flows through the first condenser 201 and the second condenser 201.
  • the second condenser 601 so that the heat dissipation efficiency of the air cooling assembly 30 to the first condenser 201 and the second condenser 601 can be ensured.
  • the air inlet 32 may further include a second air inlet 322 .
  • the second air inlet 322 is disposed at the bottom 103 . It should be understood that in FIG. 16 , there are two second air inlets 322 and they are respectively arranged on the first side 1011 and the third side 1013 for illustration.
  • the airflow outside the heat dissipation chamber 10 can enter the interior of the heat dissipation chamber 10 through the second air inlet 322, and under the action of the first fan 34, flow through the air cooling channel 31 to the air outlet 33, and finally pass through the air outlet 33 back to the outside of the cooling chamber 10.
  • the air-cooling channel 31 passes through the first power chamber 40 and the second power chamber 70, the airflow entering through the second air inlet 322 will blow through the above-mentioned first power chamber under the action of the first fan 34
  • the cavity 40 and the second power cavity 70 are used to dissipate the first power cavity 40 and the second power cavity 70 to the outside of the heat dissipation cavity, thereby realizing the control of the first power device 50 and the second power device 80 air-cooled heat dissipation.
  • the air-cooling channel 31 also passes through the first power cavity 40 and the second evaporator 602
  • the airflow entering from the second air inlet 322 will blow through the above-mentioned first power cavity 40 and the second evaporator under the action of the first fan 34
  • the second evaporator 602 is used to dissipate the first power cavity 40 and the second evaporator 602 to the outside of the heat dissipation cavity, so as to realize air cooling and heat dissipation for the first power device 50 and the second power device 80 .
  • the airflow entered by the second air inlet 322 will blow through the above-mentioned first evaporator 202 and the second evaporator under the action of the first fan 34.
  • the evaporator 602 is used to dissipate the first evaporator 202 and the second evaporator 602 to the outside of the heat dissipation cavity, so as to realize air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the power cavity 70 is used to dissipate the first evaporator 202 and the second power cavity 70 to the outside of the heat dissipation cavity, so as to realize the air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • Fig. 16 only exemplarily expresses the number and specific position of the second air inlets 322 .
  • the number of the second air inlet 322 can also be one or more, and the second air inlet 322 can also be arranged on the first side 1011, the second side 1012, the third side 1013 or the fourth side. One or more of 1014.
  • the air-cooling channel 31 can also pass through the first evaporator 202, the second evaporator 602, the first power chamber 40 and the second power chamber 70 Any two items will suffice, and this application does not specifically limit it.
  • the air-cooled channel 31 will not only pass through the first condenser 201 and the second condenser 601, but also pass through the first evaporator 202 and the second evaporator 602 , any two items of the first power cavity 40 and the second power cavity 70 .
  • the air-cooling assembly 30 can not only perform air-cooling and heat dissipation on the first condenser 201 and the second condenser 601, but also simultaneously cool the first evaporator 202, the second evaporator 602, the first power cavity 40 and the second condenser. Any two of any two of the two power cavities 70 can dissipate heat, which can effectively improve the cooling system 100 cooling efficiency.
  • FIG. 17 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the air cooling assembly 30 further includes a first fan 34
  • the air outlet 32 of the air cooling assembly 30 may include a first air outlet 331 .
  • the air inlet 32 is arranged at the bottom 103 of the heat dissipation chamber 10 (in FIG. 17 it is assumed that there is only one air inlet 32 and it is arranged on the first side 1011 ).
  • the first air outlet 331 is arranged at the top 102 of the heat dissipation cavity 10 (in FIG. 17 it is assumed that there is only one first air outlet 331 and it is arranged on the third side 1013 ).
  • the first fan 34 is disposed on a side of the first condenser 201 facing the first air outlet 331 .
  • a first windshield 90 is also provided between the first cavity 104 and the second cavity 105 of the heat dissipation cavity 10 .
  • the above-mentioned first cavity 104 is a part of the cavity on the side of the first condenser 201 facing the air outlet 33 included in the heat dissipation cavity 10 (it can also be said that the first cavity 104 is the first condenser 201 and the second cavity). part of the cavity between the three sides 1013).
  • the above-mentioned second cavity is included in the heat dissipation cavity 10 and located in the first power cavity 40 facing away from the second liquid cooling
  • a partial cavity on one side of the assembly 60 it can also be said that the second cavity 105 is a partial cavity between the first power cavity 40 and the third side 1013 ).
  • the above-mentioned second cavity is located in the first evaporator 202 facing away from the second liquid cooling component included in the heat dissipation cavity 10
  • a partial cavity on one side of 60 it can also be said that the second cavity 105 is a partial cavity between the first evaporator 202 and the third side 1013).
  • the first windshield 90 is mainly used to block the ventilation between the first cavity 104 and the second cavity 105, so as to prevent the first fan 34 from blowing the air in the second cavity 105 to the first air outlet 331 , so as to ensure that the airflow in the air cooling channel 31 can fully contact the first liquid cooling assembly 20 and/or the first power chamber 40 , thus ensuring the heat dissipation efficiency of the air cooling assembly 30 .
  • the first fan 34 can blow air toward the first air outlet 331, thereby bringing the airflow entering the air inlet 32 to the first air outlet 331 through the air-cooling passage 31, and blowing to the heat dissipation through the first air outlet 331. outside of the chamber 10.
  • the first power chamber 40 is facing away from the first evaporator 202 and facing the third side 1013 (that is, the structure shown in FIG.
  • the air-cooling channel 31 will pass through the first condenser 201 and the first evaporator 202 , the airflow in the air-cooling channel 31 can take the heat of the first condenser 201 and the first evaporator 202 to the outside of the heat dissipation cavity 10 and dissipate it, thereby realizing the air-cooling and heat dissipation of the first power device 50 .
  • the air-cooling passage 31 will pass through the first condenser 201 and the first power chamber 40, and the air-cooling passage 31
  • the air flow can take the heat of the first condenser 201 and the first power cavity 40 to the outside of the heat dissipation cavity 10 and dissipate it, so as to realize the air cooling and heat dissipation of the first power device 50 .
  • the air inlet 32 is arranged at the bottom 103
  • the first air outlet 33 is arranged at the top 102
  • the first fan 34 is arranged on the side of the first condenser 201 facing the first air outlet 331, so that The air-cooling channel 31 can pass through the first liquid cooling assembly 20 and/or the first power cavity 40 , so that efficient heat dissipation for the first power device 50 can be realized.
  • the height difference can be used to remove dust from the airflow flowing in the air-cooling passage 31, so that the dust entering the first condenser 201
  • the substantial reduction can further prolong the maintenance time of the first condenser 201 and reduce the maintenance cost of the cooling system 100 .
  • disposing the first fan 34 on the side of the first condenser 201 can also reduce the height of the heat dissipation cavity 10 and improve the applicability of the heat dissipation system 100 .
  • FIG. 17 is only an exemplary representation of the number and specific positions of the air inlets 32 and the first air outlets 331 .
  • there may be multiple air inlets 32 which may also be provided on one or more of the first side 1011 , the second side 1012 , the third side 1013 and the fourth side 1014 .
  • There may also be one or more first air outlets 331 which may also be disposed on one or more of the first side 1011 , the second side 1012 , the third side 1013 and the fourth side 1014 .
  • the air cooling channel 31 can pass through the first liquid cooling assembly 20 and/or Or the first power cavity 40 is sufficient, which is not specifically limited in the present application.
  • FIG. 18 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the cooling system 100 further includes a second liquid cooling assembly 60 , a second power chamber 70 and a second power device 80 .
  • the structure of the second liquid cooling assembly 60 may be the same as that of the first liquid cooling assembly 20 .
  • the air cooling assembly 30 further includes a second fan 35 , and the air outlet 33 further includes a second air outlet 332 .
  • the second condenser 601 of the second liquid cooling assembly 60 is arranged on the side of the first condenser 201 facing away from the first fan 34 (it can also be understood as the side of the first condenser 201 facing the first side 1011 ).
  • the above-mentioned second power cavity 70 is in contact with the second evaporator 602 of the second liquid cooling assembly 60 , and both are arranged below the second condenser 601 .
  • the second power device 80 is arranged inside the second power chamber 70, the second fan 35 is located on the side of the second condenser 601 facing away from the first condenser 201, and the second air outlet 332 is arranged in the heat dissipation chamber 10 at the top 102 of 10 (it should be understood that in FIG.
  • the number of second air outlets 332 is two and they are respectively arranged on the first side 1011 and the third side 1013 as an example).
  • the internal structure of the second liquid cooling assembly 60, and the relative positional relationship among the second liquid cooling assembly 60, the second power chamber 70, and the second power device 80 are the same as those of the first liquid cooling assembly 20 described above.
  • the internal structure, and the relative positional relationship among the first liquid cooling assembly 20 , the first power cavity 40 , and the first power device 50 are the same, and can be referred to in the previous section together, and will not be repeated here.
  • a second windshield 91 is disposed between the third cavity 106 and the fourth cavity 107 of the heat dissipation cavity 10 .
  • the above-mentioned third cavity 106 is a part of the cavity on the side of the second condenser 601 facing the second air outlet 332 contained in the heat dissipation cavity 10 (it can also be said that the third cavity 106 is the second condenser 601 and the part of the cavity between the first side 1011).
  • the above-mentioned fourth cavity 107 is a part of the heat dissipation cavity 10 located in the second power cavity 70 facing away from the first liquid.
  • a partial cavity on one side of the cold component 20 (it can also be said that the fourth cavity 107 is a partial cavity between the second power cavity 70 and the first side 1011 ).
  • the above-mentioned fourth cavity 107 is a part of the heat dissipation cavity 10 that is located in the second evaporator 602 and faces away from the first liquid cooling
  • a partial cavity on one side of the assembly 20 (it can also be said that the fourth cavity 107 is a partial cavity between the second evaporator 602 and the first side 1011 ).
  • the second windshield 91 is mainly used to block the ventilation between the third cavity 106 and the fourth cavity 107, so as to prevent the second fan 35 from blowing the air in the fourth cavity 107 to the second air outlet 332, Therefore, it is ensured that the airflow in the air cooling passage 31 can fully contact the second liquid cooling assembly 60 and/or the second power chamber 70 , so that the heat dissipation efficiency of the air cooling assembly 30 can be further ensured.
  • the second fan 35 can blow air toward the second air outlet 332, thereby bringing the airflow entering the air inlet 32 to the second air outlet 332 through the air-cooling passage 31, and blowing to the heat dissipation through the second air outlet 332. outside of the chamber 10.
  • the air-cooling channel 31 will also pass through the second power cavity 70 and the second condenser 601 , and the air-cooling channel 31
  • the airflow can also take the heat of the second power chamber 70 and the second condenser 601 to the outside of the heat dissipation chamber 10 and dissipate it, so as to realize the air cooling and heat dissipation of the second power device 80 .
  • the air-cooling channel 31 will also pass through the second condenser 601 and the second evaporator 602, and the air-cooling channel 31
  • the airflow can also take the heat of the second condenser 601 and the second evaporator 602 to the outside of the heat dissipation cavity 10 to dissipate, so as to realize the air cooling and heat dissipation of the second power device 80 .
  • the number and specific positions of the second air outlets 332 are only exemplarily expressed in FIG. 18 .
  • there may be multiple second air outlets 332 and they may also be disposed on any one or more of the first side 1011 , the second side 1012 and the fourth side 1014 .
  • a second liquid cooling assembly 60 with the same structure as the first liquid cooling assembly 20 is also provided inside the heat dissipation cavity 10, and a second fan 35 and a second air outlet 332 are added, so that heat dissipation
  • the system 100 can simultaneously dissipate heat more effectively for the first power device 50 and the second power device 80 through the first liquid cooling assembly 20 , the air cooling assembly 30 and the second liquid cooling assembly 60 , so that the load capacity of the cooling system 100 is higher. Larger, stronger cooling capacity.
  • the first fan 34 and the second fan 35 are arranged outside the condenser, which can facilitate the later maintenance of the fans while reducing the height of the cooling system 100 .
  • FIG. 19 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the air cooling assembly 30 may further include a first fan 34
  • the air inlet 32 may include a first air inlet 321 .
  • the first fan 34 is arranged at the top 102 and above the first condenser 201 .
  • the first air inlet 321 is also disposed at the top 102 and is located at the side of the first condenser 201 .
  • there are two first air inlets 321 and they are respectively arranged on the side of the first condenser 201 facing the first side 1011 and the third side 1013 as an example.
  • the above-mentioned air outlet 33 is disposed above the first air inlet 32 and on the side of the first fan 34 . It should be understood that in FIG. 19 , there are two air outlets 33 and they are respectively arranged on the side of the first fan 34 facing the first side 1011 and the third side 1013 as an example.
  • the first fan 34 can blow air toward the air outlet 33, thereby bringing the airflow entering the first air inlet 321 to the air outlet 33 through the air-cooling passage 31, and blowing to the air outlet 33 through the air outlet 33 to the heat dissipation chamber 10. external. Since the air-cooling channel 31 passes through the first condenser 201, the airflow flowing in the air-cooling channel 31 can bring the heat of the first condenser 201 to the outside of the heat dissipation cavity 100 to dissipate, thereby indirectly realizing the cooling of the first power device. 50 air cooling.
  • the number and specific positions of the air outlets 33 and the first air inlets 321 are only exemplarily expressed in FIG. 19 .
  • there can be one or more air outlets 33 and they can also be arranged on any one or more of the first side 1011, the second side 1012, the third side 1013 and the fourth side 1014 .
  • the present application does not require the first air outlet 33 and the first
  • the number and specific positions of the air inlets 321 are not limited.
  • the first fan 34 is arranged above the first condenser 201, the first air inlet 321 is arranged on the side of the first condenser 201, and the air outlet 33 is arranged on the side of the first fan 34, so that The airflow in the air-cooling passage 31 can fully contact the first condenser 201 , and efficient air-cooling and heat dissipation for the first condenser 201 can be realized. Moreover, such a structure can also facilitate the later maintenance of the first fan 34 .
  • FIG. 20 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the cooling system 100 may further include a second liquid cooling assembly 60 , a second power chamber 70 and a second power device 80 .
  • the structure of the second liquid cooling assembly 60 may be the same as that of the first liquid cooling assembly 20 .
  • the second liquid cooling assembly 60 may specifically include a second condenser 601 , a second evaporator 602 and a second heat conduction structure 603 .
  • the second condenser 601 and the second evaporator 602 are connected through the second heat conducting structure 603 .
  • the second condenser 601 is arranged at the top 102 of the heat dissipation cavity 102, and is located on one side of the first condenser 201 (it can also be said that the side of the first condenser 201 facing the first side 1011 or the third side 1013 20 is an example where the second condenser 601 is located on the side of the first condenser 201 facing the third side 1013).
  • the air-cooled channel 31 also passes through the second condenser 601 .
  • the second power device 80 is disposed inside the second power cavity 70 , and the second power cavity 70 is in contact with the second evaporator 602 .
  • both the above-mentioned second power cavity 70 and the above-mentioned second evaporator 602 are disposed below the second condenser 601 .
  • the internal structure of the second liquid cooling assembly 60, And, the relative positional relationship between the second liquid cooling assembly 60 , the second power cavity 70 , and the second power device 80 is related to the internal structure of the first liquid cooling assembly 20 described above, and the first liquid cooling assembly 20 ,
  • the relative positional relationship between the first power cavity 40 and the first power device 50 is the same, which can be referred to above, and will not be repeated here.
  • the second liquid cooling assembly 60 can be used to liquid cool and dissipate heat from the second power device 80 , and its specific working process can refer to the previous description of the working process of the first liquid cooling assembly 20 , which will not be repeated here.
  • the airflow entering from the first air inlet 323 will also pass through the second condenser 601, so that the heat of the second condenser 601 will be carried to the outside of the heat dissipation cavity 10 by the airflow. off, so as to realize the air cooling and heat dissipation of the second power device 80 .
  • a second liquid cooling assembly 60 with the same structure as the first liquid cooling assembly 20 is also provided inside the heat dissipation cavity 10, so that the heat dissipation system 100 can be cooled by the first liquid cooling assembly 20, air cooling
  • the assembly 30 and the second liquid cooling assembly 60 dissipate heat for the first power device 50 and the second power device 80 , so that the load capacity of the heat dissipation system 100 is greater, and the heat dissipation capacity of the heat dissipation system 100 can be improved.
  • FIG. 21 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the air inlet 32 may further include a second air inlet 322 .
  • the second air inlet 322 is disposed at the bottom 103 .
  • the airflow outside the heat dissipation chamber 10 can also enter the interior of the heat dissipation chamber 10 through the second air inlet 322, and under the action of the first fan 34, blow through the first evaporator 202, the first power chamber Any two items of the body 40 , the second evaporator 602 and the second power chamber 70 , and finally return to the outside of the heat dissipation chamber 10 through the air outlet 33 .
  • the channel 31 also passes through the first power cavity 40 and the second power cavity 70 .
  • the airflow entered by the second air inlet 322 will blow through the first power cavity 40 and the second power cavity 70 under the action of the first fan 34, so as to bring the first power cavity 40 and the second power cavity 70
  • the heat is dissipated to the outside of the heat dissipation cavity, thereby indirectly realizing the air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the air cooling channel 31 will also Pass through the first power cavity 40 and the second evaporator 602 .
  • the airflow entering from the second air inlet 322 will blow through the first power cavity 40 and the second evaporator 602 under the action of the first fan 34, so as to bring the first power cavity 40 and the second evaporator 602 to The outside of the heat dissipation cavity is dissipated, thereby indirectly realizing air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the air-cooling channel 31 also passes through The first evaporator 202 and the second evaporator 602 .
  • the airflow entering from the second air inlet 322 will blow through the first evaporator 202 and the second evaporator 602 under the action of the first fan 34, so as to bring the first evaporator 202 and the second evaporator 602 to the cooling chamber
  • the outside of the body is dissipated, so as to indirectly realize the air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the air cooling channel 31 will also pass through The first evaporator 202 and the second power cavity 70 .
  • the airflow entering from the second air inlet 322 will blow through the above-mentioned first evaporator 202 and the second power chamber 70 under the action of the first fan 34, so as to bring the first evaporator 202 and the second power chamber 70 to The outside of the heat dissipation cavity is dissipated, thereby indirectly realizing air cooling and heat dissipation of the first power device 50 and the second power device 80 .
  • the number and specific positions of the second air inlets 322 are only exemplarily expressed in FIG. 21 .
  • the second air inlet 324 is arranged at the bottom 103, the first air inlet 323 and the air outlet 33 are arranged at the top 102, and the air cooling passage 31 passes through the first
  • the condenser 201 and the second condenser 601 it is sufficient to pass through any two items of the first evaporator 202, the second evaporator 602, the first power cavity 40 and the second power cavity 70, here
  • the number and specific positions of the second air inlets 324 are not limited.
  • the air-cooled channel 31 will not only pass through the first condenser 201 and the second condenser 601, but also pass through the first evaporator 202 and the second evaporator 602 , any two items of the first power cavity 40 and the second power cavity 70 .
  • the air-cooling assembly 30 can not only perform air-cooling and heat dissipation on the first condenser 201 and the second condenser 601, but also simultaneously cool the first evaporator 202, the second evaporator 602, the first power cavity 40 and the second condenser. Any two of the two power cavities 70 can dissipate heat, which can effectively improve the heat dissipation efficiency of the heat dissipation system 100 .
  • FIG. 22 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the heat dissipation system 100 may further include a third liquid cooling assembly 120 , a third power cavity 130 and a third power device 140 .
  • the structure of the third liquid cooling assembly 120 may be the same as that of the first liquid cooling assembly 20 .
  • the third liquid cooling assembly 120 may specifically include a third condenser 1201 , a third evaporator 1202 and a third heat conducting structure 1203 .
  • the third condenser 1201 and the third evaporator 1202 are connected through the third heat conducting structure 1203 .
  • the third condenser 1201 is arranged below the first liquid cooling assembly 20 and above the second air inlet 322 (it can also be understood that the entire third liquid cooling assembly 120 and the third power chamber 130 are located in the first below the liquid cooling assembly), so that the air cooling channel 31 can also pass through the third condenser 1201 and the third evaporator 1202 or the third power cavity 130 .
  • the third power chamber 130 is in contact with the third evaporator 1202 of the third liquid cooling assembly 120 , and the third power device 140 is disposed inside the third power chamber 130 .
  • both the third power chamber 130 and the third evaporator 1202 are disposed below the third condenser 1201 .
  • the internal structure of the third liquid cooling assembly 120, and the relative positional relationship among the third liquid cooling assembly 120, the third power cavity 130, and the third power device 140 are the same as those of the first liquid cooling assembly 20 described above.
  • the internal structure, and the relative positional relationship among the first liquid cooling assembly 20 , the first power cavity 40 , and the first power device 50 are the same, and can be referred to in the previous section together, and will not be repeated here.
  • the third liquid cooling component 120 can be used to liquid cool and dissipate heat from the third power device 140 , and its specific working process can refer to the previous description of the working process of the first liquid cooling component 20 , which will not be repeated here.
  • the air-cooling channel 31 will also pass through the third condenser 1201 and the third evaporator 1202, so the air-cooling channel
  • the airflow in 31 can also be used to dissipate the heat of the third condenser 1201 and the third evaporator 1202 to the outside of the heat dissipation cavity 10 , so as to realize the air cooling and heat dissipation of the third power device 140 .
  • the air-cooling channel 31 will also pass through the third condenser 1201 and the third power cavity 130, so the air-cooling channel
  • the airflow in 31 can also be used to dissipate the heat of the third condenser 1201 and the third power chamber 130 to the outside of the heat dissipation chamber 10 , so as to realize the air cooling and heat dissipation of the third power device 140 .
  • a third liquid cooling assembly 120 having the same structure as the first liquid cooling assembly 20 is also provided inside the heat dissipation chamber 10 , and the two are placed inside the heat dissipation chamber 10 in a stacked structure.
  • a structural design can make the internal space of the heat dissipation chamber 10 be effectively utilized.
  • it also enables the heat dissipation system 100 to combine the first liquid cooling assembly 20, the air cooling assembly 30, the second liquid cooling assembly 60, and the third liquid cooling assembly 120 into the first power device 50, the second power device 80 and the third
  • the power device 140 dissipates heat, which can further increase the load capacity of the heat dissipation system 100 .
  • the air inlet 32 may further include a third air inlet 323 .
  • the third air inlet 323 is disposed below the first air inlet 321 and on the side of the third condenser 1201 . It should be understood that there are two third air inlets 323 in FIG. One side of the side surface 1013 is shown as an example.
  • the first fan 34 can also bring the airflow from the third air inlet 323 to the air outlet 33 through the air-cooling channel 31 , and finally blow it to the outside of the heat dissipation cavity 10 through the air outlet 33 .
  • the air intake volume of the air-cooling channel 31 can be further increased, the heat dissipation capability of the air-cooling assembly 30 can be improved, and the heat dissipation efficiency of the heat dissipation system 100 can be further improved.
  • the third air inlet 323 can also be one or more, and it can also be arranged on any one or more of the first side 1011, the second side 1012, the third side 1013 and the fourth side 1014. up. That is to say, under the framework shown in FIG. 22 , as long as the third air inlet 323 is provided on the side of the third condenser 1201 , the number and specific position of the third air inlet 323 are not limited here.
  • FIG. 23 is another schematic structural diagram of a heat dissipation system provided by an embodiment of the present application.
  • the air cooling assembly 30 may further include a first fan 34 .
  • the air inlet 32 can be arranged at the top 102, and is positioned at the side of the first condenser 201 (it should be understood that there are two air inlets 32 in FIG. example shown).
  • the above-mentioned air outlet 33 and the first fan 34 can be arranged at the bottom 103, and both are located below the first liquid cooling assembly 20 (it should be understood that in FIG. 23 there are two air outlets 33, and they are respectively arranged on the first side 1011 and the third side 1013 as an example).
  • the above-mentioned air cooling channel 31 will pass through the first condenser 201 and the first power cavity 40 .
  • the air-cooling passage 31 passes through the first condenser 201 and the first evaporator 202 .
  • the first fan 34 can blow air toward the air outlet 33 , so that the airflow entering the air inlet 32 is brought to the air outlet 33 through the air cooling passage 31 , and blows to the outside of the cooling cavity 10 through the air outlet 33 .
  • the air-cooling channel 31 passes through the first condenser 201 and the first power cavity 40, the air flow in the air-cooling channel 31 can bring the heat of the first condenser 201 and the first power cavity 40 to the cooling cavity 100 The outside is dissipated, so as to realize air cooling and heat dissipation of the first power device 50 .
  • the airflow in the air-cooling channel 31 can bring the heat of the first condenser 201 and the first evaporator 202 to the outside of the heat dissipation cavity 100 for dissipation. off, so as to realize the air cooling and heat dissipation of the first power device 50 .
  • the first fan 34 and the air outlet 33 are arranged under the first liquid cooling assembly 20, and the air inlet 32 is arranged on the side of the first condenser 201, so that the air cooling passage 31 can pass through the second A condenser 102 also passes through the first power chamber 40 or the first evaporator 202 at the same time, so that the air cooling assembly 30 can not only dissipate heat to the first condenser 201, but also simultaneously dissipate heat to the first power chamber 40 or the first
  • the evaporator 202 dissipates heat, which can improve the heat dissipation efficiency of the heat dissipation system 100 .
  • FIG. 24 is another structural schematic diagram of a heat dissipation system provided by an embodiment of the present application.
  • the cooling system 100 may further include a second liquid cooling assembly 60 , a second power chamber 70 and a second power device 80 .
  • the structure of the second liquid cooling assembly 60 may be the same as that of the first liquid cooling assembly 20 .
  • the second liquid cooling assembly 60 may specifically include a second condenser 601 , a second evaporator 602 and a second heat conduction structure 603 .
  • the second condenser 601 and the second evaporator 602 are connected through the second heat conducting structure 603 .
  • the second condenser 601 is arranged at the top 102 of the heat dissipation cavity 102, and is located on the side of the first condenser 201 (it can also be said that it is located on a side of the first condenser 201 facing the first side 1011 or the third side 1013 side, FIG. 24 shows that the second condenser 601 is located on the side of the first condenser 201 facing the third side 1013 as an example).
  • the second power device 80 is disposed inside the second power cavity 70 , and the second power cavity 70 is in contact with the second evaporator 602 .
  • both the above-mentioned second power cavity 70 and the above-mentioned second evaporator 602 are disposed below the second condenser 601 .
  • the internal structure of the second liquid cooling assembly 60, and the relative positional relationship among the second liquid cooling assembly 60, the second power chamber 70, and the second power device 80 are the same as those of the first liquid cooling assembly 20 described above.
  • the internal structure, and the relative positional relationship among the first liquid cooling assembly 20 , the first power cavity 40 , and the first power device 50 are the same, and can be referred to in the previous section together, and will not be repeated here.
  • the above-mentioned air-cooling channel 31 can also pass through the second condenser 601 and the second power cavity 70 .
  • the air-cooling channel 31 also passes through the second condenser 601 and the second evaporator 602 .
  • the second liquid cooling assembly 60 can be used to liquid cool and dissipate heat from the second power device 80 , and its specific working process can refer to the previous description of the working process of the first liquid cooling assembly 20 , which will not be repeated here.
  • the airflow in the air-cooling passage 31 can also be used to turn the second condenser 601 and the heat of the second power cavity 70 is carried to the outside of the heat dissipation cavity 100 to dissipate, so as to realize the air cooling and heat dissipation of the second power device 80 .
  • the airflow in the air-cooled channel 31 can also be used to bring the heat of the second condenser 601 and the second evaporator 602 to heat dissipation
  • the outside of the cavity 100 is dissipated, so as to realize air cooling and heat dissipation of the second power device 80 .
  • a second liquid cooling assembly 60 with the same structure as the first liquid cooling assembly 20 is also provided inside the heat dissipation cavity 10, so that the heat dissipation system 100 can be cooled by the first liquid cooling assembly 20, air cooling
  • the assembly 30 and the second liquid cooling assembly 40 dissipate heat for the first power device 50 and the second power device 80 , so that the load capacity of the heat dissipation system 100 is greater, and the heat dissipation capacity of the heat dissipation system 100 can be improved.
  • the numbers and specific positions of the air outlets 33 and air inlets 32 are only shown in Figure 23 and Figure 24 as examples. In actual implementation, there can be one or more air outlets 33, and they can also be arranged on any one or more of the first side 1011, the second side 1012, the third side 1013 and the fourth side 1014 . Likewise, there can be one or more air inlets 32 , and they can also be arranged on any one or more of the first side 1011 , the second side 1012 , the third side 1013 and the fourth side 1014 . That is to say, under the system frame shown in FIG. 23 or FIG.
  • the air inlet 32 is arranged at the top 102, and the air cooling channel 31 can pass through the first One or more of the liquid cooling assembly 20, the second liquid cooling assembly 60, the first power chamber 40, and the second power chamber 70 is sufficient.
  • the number of air outlets 33 and air inlets 32 and The specific location is not limited.
  • FIG. 25 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the heat dissipation system 100 and another heat dissipation system 300 are used stacked together, and the heat dissipation system 100 is located above the heat dissipation system 300 .
  • the air inlet of the heat dissipation system 100 (such as the air inlet 32 mentioned above) and the air outlet of the heat dissipation system 300 should be as far away as possible.
  • the air outlet of the heat dissipation system 300 should also be arranged at the bottom of the heat dissipation system 300, so that the air inlet of the heat dissipation system 100 can be prevented from flowing into It is the hot air blown from the air outlet of the heat dissipation system 300 , so as to prevent the heat dissipation efficiency of the heat dissipation system 100 from being affected by the heat dissipation system 300 .
  • the internal structure of the heat dissipation system 300 may be the same as that of the heat dissipation system 100, or may be different from the heat dissipation system 100, which is not limited here.
  • the internal structure of the heat dissipation system 100 is shown in FIG. 21
  • the internal structure of the heat dissipation system 300 can be shown in FIG. 23 , so that the heat dissipation efficiency of the heat dissipation system 100 can be prevented from being affected by the heat dissipation system 300 .
  • the shapes of the heat dissipation cavity, condenser, evaporator, and power cavity involved in the embodiments of the present application can all be elongated bodies, cubes, or cylinders, etc., and the shapes of these structures It can be determined according to actual application requirements, which is not limited in this application.
  • the cooling working medium involved in the embodiment of the present application can also be referred to as cold
  • the cooling liquid may specifically be water, nitriding liquid, etc., which is not specifically limited in the present application.
  • the heat conduction structure (such as the first heat conduction structure 203, the second heat conduction structure 603, etc.) involved in the embodiment of the present application can specifically be a siphon heat pipe, a gravity heat pipe, a loop heat pipe or other structural high heat conduction components, and the types of these heat conduction structures can be determined according to The selection is based on actual design requirements, and this application does not make specific limitations on this.
  • the fans involved in the embodiment of the present application can specifically be centrifugal fans, axial flow fans, perfusion fans, etc., and the types of these fans can be selected according to actual design requirements. The application is not specifically limited to this.
  • the specific description for a certain technical feature in an optional implementation manner may also be applied to explain the corresponding technical feature mentioned in other optional manners.
  • the housing 401 of the first power cavity 40 may have cooling teeth 402, and the first power device 50 may include multiple sub-power devices, and this feature is also applicable to the following Description for the second power cavity 70 , the third power cavity 130 , the second power device 80 , and the third power device 140 . That is to say, in the above embodiments, different specific structures of the components or modules in the heat dissipation system 100 can be combined with each other, and the solutions obtained by these mutual combinations should be considered within the protection scope of the present application.
  • FIG. 26 is a schematic structural diagram of a power supply system provided by an embodiment of the present application.
  • the power supply system 500 may include a power supply 510 , the aforementioned cooling system 100 and a load 520 .
  • the power devices 1000 in the cooling system 100 (such as the first power device 50 and the second power device 80 mentioned above) are connected to the power source 510 and the load 520 respectively.
  • the power device 1000 can be used to convert the initial electric energy provided by the power supply 510 into the target electric energy.
  • the current value and the voltage value of the target electric energy may be preset values. Then, the power device 1000 can supply power to the load 520 through the target electric energy.
  • the above-mentioned load 520 may specifically be electrical equipment such as electric vehicles, robots, and electric forklifts, and the above-mentioned cooling system 100 may specifically be power supply equipment such as charging piles and charging stations.
  • FIG. 27 is a schematic structural diagram of a charging pile provided in an embodiment of the present application.
  • the charging pile 700 includes a first electrical interface 710 , a second electrical interface 720 and the heat dissipation system 100 described above.
  • the power devices 1000 in the heat dissipation system 100 (such as the first power device 50 and the second power device 80 mentioned above) are connected to the first electrical interface 710 and the second electrical interface 720 respectively.
  • the heat dissipation system 100 is used to dissipate heat from the power device 1000 .
  • the power device 1000 is used to convert the initial electrical energy input by the first electrical interface 710 into target electrical energy, and output the target electrical energy through the second electrical interface 720 .
  • the current value and the voltage value of the target electric energy may be preset values.
  • the foregoing power device 1000 may specifically be a DC/DC conversion module or an AC/DC conversion module.
  • the above-mentioned first electrical interface 710 may be connected to a power supply 730 to obtain initial electric energy from the power supply 730 .
  • the above-mentioned second electrical interface 720 may be connected to a load 740 so as to supply power to the load through target electric energy.
  • the foregoing power source 730 may specifically be an AC power grid, a photovoltaic array, or the like.
  • the above-mentioned load 740 may specifically be electrical equipment such as electric vehicles, robots, and electric forklifts.
  • liquid cooling components and air cooling components are integrated in the heat dissipation cavity 10 of the cooling system 100, and the power devices that generate heat are placed inside the power cavity that is in direct contact with the liquid cooling components, and the air cooling
  • the air cooling channels corresponding to the components are designed to pass through the liquid cooling components and/or power chambers.
  • the power device can be dissipated simultaneously through the liquid cooling component and the air cooling component, which can make the cooling efficiency of the cooling system 100 higher.
  • the power cavity is also used for the power device Protection can effectively prevent power devices from malfunctioning due to factors such as the environment, and while improving the reliability of the heat dissipation system, it can also reduce later maintenance costs.
  • the heat dissipation system 100 provided by the present application has strong applicability, and the heat dissipation system 100 can effectively solve the problems of low heat dissipation efficiency, poor reliability and high maintenance cost existing in the existing heat dissipation system.
  • the disclosed system, device or method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及散热技术领域,尤其涉及一种散热系统、供电系统和充电桩。该散热系统包括散热腔体、第一液冷组件、风冷组件、第一功率腔体以及第一功率器件。第一液冷组件和第一功率腔体设置在散热腔体内部,第一功率器件设置在第一功率腔体内部,第一功率腔体与第一液冷组件相接触。散热腔体上设置有风冷组件的进风口和出风口,连通于进风口和出风口之间的风冷通道经过第一液冷组件和/或所述第一功率腔体。第一液冷组件和风冷组件用于对第一功率器件进行散热。采用本申请提供的散热系统,可以有效的解决现有散热系统存在的散热效率低、可靠性差、维持成本高等问题,可以提升散热系统的适用性。

Description

一种散热系统、供电系统和充电桩
本申请要求于2022年01月30日提交中国专利局、申请号为202210114753.x、申请名称为“一种散热系统、供电系统和充电桩”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术领域,尤其涉及一种散热系统、供电系统和充电桩。
背景技术
随着用电设备的性能的不断提升,设备内部元器件的功耗也持续提升,这也就到导致用电设备会产生较大的热量,因此现有的大功率用电设备都是需要设置散热系统为其散热以保证其工作性能。以常见的充电桩为例,随着充电功率的不断增大以及其充电接口的不断增多,其产生的热量也越来越大,必须配备有相应的散热系统方可正常工作。
现有的散热系统主要包括风冷式散热系统和液冷式散热系统。风冷式散热系统由于需要开通风孔,使得其内部的散热器件以及功率器件无法得到有效的防护,可靠性差且维护成本高。而液冷式散热系统中的循环水泵、液管接头等器件也导致其可靠性较差,并且由于冷却液需要定期更换,维护成本也高。此外,现有的风冷式散热系统和液冷式散热系统还存在散热效率不高的问题,其适用性较差。所以,一种高可靠性、低维护成本的散热系统亟待被提出。
发明内容
为了解决上述问题,本申请提供了一种散热系统、供电系统和充电桩,该散热系统的散热效率高,可靠性高,维护成本较低,适用性较强。
第一方面,本申请实施例提供了一种散热系统。所述散热系统包括散热腔体、第一液冷组件、风冷组件、第一功率腔体以及第一功率器件。所述第一液冷组件和所述第一功率腔体设置在所述散热腔体内部,所述第一功率器件设置在所述第一功率腔体内部,所述第一功率腔体与所述第一液冷组件相接触。所述散热腔体上设置有所述风冷组件的进风口和出风口,连通于所述进风口和所述出风口之间的风冷通道中的气流经过所述第一液冷组件和/或所述第一功率腔体。所述第一液冷组件和所述风冷组件用于对所述第一功率器件进行散热。
在上述实现中,在散热腔体内集成了第一液冷组件和风冷组件,将第一液冷组件与包含第一功率器件的第一功率腔体直接接触,使风冷组件对应的风冷通道中的气流经过第一液冷组件和/或第一功率腔体。这样就可以通过第一液冷组件和风冷组件同时对第一功率器件进行散热,可以使得散热系统的散热效率较高。并且,还采用第一功率腔体对第一功率器件进行防护,可以有效避免第一功率器件因环境等因素发生故障,在提升散热系统的可靠性的同时也可以降低后期的维护成本。所以,该散热系统的适用性强,采用该散热系统,可以有效的解决现有散热系统存在的散热效率不高、可靠性差、维持成本高的问题。
结合第一方面,在一种可行的实现方式中,所述第一液冷组件包括第一冷凝器、第一蒸 发器和第一导热结构。所述第一冷凝器设置在所述散热腔体的顶部,所述第一蒸发器和所述第一功率腔体相接触,并且设置在所述第一冷凝器的下方。所述第一导热结构连通所述第一蒸发器和第一所述冷凝器构成循环回路,所述循环回路中循环流通的冷却工质用于将所述第一蒸发器的热量带向所述第一冷凝器。
在上述实现中,通过第一导热结构在第一冷凝器和第一蒸发器之间构成可以用于冷却工质循环流动的循环回路,以此实现第一液冷组件的液冷散热功能。这样可以使得第一液冷组件无须依赖循环水泵、液管接头等结构件,可以避免这些结构件所导致的散热系统的系统失效率高、后期维护成本高等问题,可有效提升散热系统的可靠性。
结合第一方面,在一种可行的实现方式中,所述第一功率腔体与所述第一蒸发器不接触的表面上设置有散热齿。
在上述实现中,在第一功率腔体与第一蒸发器不接触的表面设置散热齿,一方面可以通过散热齿实现对第一功率腔体的散热,从而进一步提升散热系统的散热效率。另一方面也可以通过散热齿对风冷通道中流动的气流进行过滤以减少气流中的灰尘,从而使得进入第一冷凝器中的灰尘含量较小,可以延长第一冷凝器的维护时间,降低散热系统的维护成本。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第一风扇。所述进风口和所述第一风扇设置在所述散热腔体的底部并且位于所述第一液冷组件的下方,所述出风口设置在所述散热腔体的顶部。所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一功率腔体的热量带到所述散热腔体的外部。或者,所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部。
在上述实现中,将风冷组件的进风口和第一风扇的设置在底部,将出风口设置在顶部处,使得风冷通道可以在经过第一冷凝器的同时,还经过第一蒸发器或者第一功率腔体,从而可以实现针对第一功率器件的更高效的风冷散热,可有效提升散热系统的散热效率。并且,由于进风口和吹风口之间存在一定的高度差,这样就可以利用该高度差对风冷通道中流动的气流进行除尘,从而使得进入第一冷凝器中的灰尘大幅减少,可以进一步延长第一冷凝器201的维护时间,降低散热系统的维护成本。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括与所述第一液冷组件结构相同的第二液冷组件以及第二功率腔体和第二功率器件。所述第二液冷组件的第二冷凝器设置在所述散热腔体的顶部并且位于所述第一液冷组件的一侧。所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部。所述风冷通道中的气流还经过所述第二冷凝器和所述第二功率腔体,以将所述第二冷凝器和所述第二功率腔体的热量带到所述散热腔体的外部。或者,所述风冷通道中的气流还经过所述第二冷凝器和所述第二蒸发器,以将所述第二冷凝器和所述第二蒸发器的热量带到所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第二液冷组件,并且第二液冷组件的第二蒸发器还与内置有第二功率器件的第二功率腔体相接触,这样就可以使得散热系统能够同时通过第一液冷组件、风冷组件以及第二液冷组件为第一功率器件和第二功率器件进行散热,使得散热系统的负载能力更大,可提升散热系统的散热能力及适用性。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第一风扇,所述进风口 设置在所述散热腔体的底部并且位于所述第一液冷组件的第一侧,所述出风口设置在所述散热腔体的顶部并且位于所述第一液冷组件的与所述第一侧相对的第二侧,所述第一风扇设置在所述第一液冷组件的第一侧。所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一功率腔体的热量带到所述散热腔体的外部。或者,所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部。
在上述实现中,将进风口设置在底部处,并且位于第一液冷组件的第一侧,将出风口设置在顶部处,并且位于第一液冷组件的与上述第一侧相对的第二侧,将第一风扇设置在第一蒸发器或者第一功率腔体朝向进风口的一侧,这样可以使得风冷通道能够同时经过第一液冷组件和/或第一功率腔体,从而可以实现针对第一功率器件的高效散热。并且,由于进风口和出风口之间存在一定的高度差,这样就可以利用该高度差对风冷通道中流动的气流进行除尘,从而使得进入第一冷凝器中的灰尘大幅减少,可以进一步延长第一冷凝器的维护时间,降低散热系统的维护成本。此外,将第一风扇设置在第一蒸发器或者第一功率腔体朝向进风口的一侧,还可以减小散热腔体的高度,提升散热系统的适用性。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件。所述第二液冷组件的第二冷凝器设置在所述第一冷凝器朝向所述出风口的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部。所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带向所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第二液冷组件,并且第二液冷组件的第二蒸发器还与内置有第二功率器件的第二功率腔体相接触,这样就可以使得散热系统能够同时通过第一液冷组件、风冷组件以及第二液冷组件为第一功率器件和第二功率器件进行散热,使得散热系统的负载能力更大,可提升散热系统的散热能力及适用性。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第一风扇,所述进风口包括第一进风口。所述第一进风口、所述出风口和所述第一风扇设置在所述散热腔体的顶部,所述第一进风口设置在所述第一冷凝器的第一侧,所述第一风扇设置在所述第一冷凝器的与所述第一侧相对的第二侧,所述出风口设置在所述第一风扇背向所述第一冷凝器的一侧。所述第一风扇用于通过所述风冷通道将所述第一进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器,以将所述第一冷凝器的热量带到所述散热腔体的外部。
在上述实现中,将第一进风口、出风口和第一风扇均可设置在散热腔体的顶部处,可以使得风冷通道能够经过第一冷凝器,从而可以实现针对第一功率器件的风冷散热。并且,将第一风扇设置在第一冷凝器一侧,可以减小散热腔体的高度,提升散热系统的适用性。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括与所述第一液冷组件结构相同的第二液冷组件以及第二功率腔体和第二功率器件。所述第二液冷组件的第二冷凝器设置在所述第一风扇朝向所述出风口的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部。所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带到所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第二液冷组件,这样就可以使得散热系统能够同时通过第一液冷组件、风冷组件以及第二液冷组件为第一功率 器件和第二功率器件进行散热,使得散热系统的负载能力更大,可提升散热系统的散热能力。同时,还将第一风扇设置在第一冷凝器和第二冷凝器之间,可降低散热系统的高度,提升散热系统的适用性。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括与所述第一液冷组件结构相同的第二液冷组件以及第二功率腔体和第二功率器件。所述第二液冷组件的第二冷凝器设置在所述第一冷凝器背向所述出风口的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内。所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带到所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第二液冷组件,这样就可以使得散热系统能够同时通过第一液冷组件、风冷组件以及第二液冷组件为第一功率器件和第二功率器件进行散热,使得散热系统的负载能力更大,可提升散热系统的散热能力。同时,还将第一风扇设置在第一冷凝器背向二冷凝器的一侧,在降低散热系统的高度的同时也可便于第一风的后期维护。
结合第一方面,在一种可行的实现方式中,在所述散热腔体的第一空腔与第二空腔之间设置有第一挡风板,所述第一挡风板用于阻挡所述第一空腔和所述第二空腔之间通风。其中,所述第一空腔为所述散热腔体包含的位于所述第一冷凝器朝向所述出风口一侧的空腔,所述第二空腔为所述散热腔体包含的位于所述第一功率腔体或者所述第一蒸发器背向所述第二液冷组件一侧的空腔。
在上述实现中,通过第一挡风板可以避免第一风扇将第二空腔内的空气吹向出风口,从而保证风冷通道中的大部分气流都流经第一冷凝器和第二冷凝器,这样就可以保证风冷组件对第一冷凝器和第二冷凝器的散热效率。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第一风扇,所述出风口包括第一出风口。所述进风口设置在所述散热腔体的底部,所述第一出风口设置在所述散热腔体的顶部,所述第一风扇设置在所述第一冷凝器朝向所述第一出风口的一侧。在所述散热腔体的第一空腔与第二空腔之间设置有第一挡风板,所述第一挡风板用于阻挡所述第一空腔和所述第二空腔之间通风。所述第一空腔为所述散热腔体包含的位于所述第一冷凝器朝向所述第一出风口的一侧的空腔,所述第二空腔为所述散热腔体包含的位于所述第一功率腔体或者所述第一蒸发器背向所述第二液冷组件的一侧的空腔。所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第一出风口,所述风冷通道中的气流经过所述第一冷凝器和第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部。或者,所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第一出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一腔体的热量带到所述散热腔体的外部。
在上述实现中,将进风口设置在底部处,将第一出风口设置在顶部处,将第一风扇设置在第一冷凝器朝向第一出风口的一侧,这样可以使得风冷通道能够经过第一液冷组件和/或第一功率腔体,从而可以实现针对第一功率器件的高效散热。并且,由于进风口和第一出风口之间存在一定的高度差,这样就可以利用该高度差对风冷通道中流动的气流进行除尘,从而使得进入第一冷凝器中的灰尘大幅减少,可以进一步延长第一冷凝器的维护时间,降低散热系统的维护成本。此外,将第一风扇设置在第一冷凝器的侧面,还可以减小散热腔体的高度,提升散热系统的适用性。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括与所述第一液冷组件结 构相同的第二液冷组件以及第二功率腔体和第二功率器件。所述风冷组件还包括第二风扇,所述出风口还包括第二出风口。所述第二液冷组件的第二冷凝器设置在所述第一冷凝器背向所述第一风扇的一侧,所述第二功率腔体和所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部。所述第二风扇位于所述第二冷凝器背向所述第一冷凝器的一侧,所述第二出风口设置在所述散热腔体的顶部。在所述散热腔体的第三空腔与第四空腔之间设置有第二挡风板,所述第二挡风板用于阻挡所述第三空腔和所述第四空腔之间通风。所述第三空腔为所述散热腔体包含的位于所述第二冷凝器朝向所述第二出风口的一侧的空腔,所述第四空腔为所述散热腔体包含的位于所述第二功率腔体和第二蒸发器背向所述第一液冷组件的一侧的空腔。所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流还经过所述第二冷凝器和所述第二蒸发器,以将所述第二冷凝器和所述第二蒸发器的热量带到所述散热腔体的外部。或者,所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流经过所述第二冷凝器和所述第二功率腔体,以将所述第二冷凝器和所述第二腔体的热量带到所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第二液冷组件,并且增加了第二风扇和第二出风口,这样就可以使得散热系统能够同时通过第一液冷组件、风冷组件以及第二液冷组件为第一功率器件和第二功率器件进行更加有效的散热,从而使得散热系统的负载能力更大,散热能力更强。同时,将第一风扇和第二风扇均设置在冷凝器的外侧,在降低散热系统的高度同时也可便于风扇的后期维护。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第一风扇,所述进风口包括第一进风口。所述第一风扇设置在所述第一液冷组件的上方,所述第一进风口设置在所述第一冷凝器的侧面,所述出风口设置在所述第一风扇的侧面。所述风扇用于通过所述风冷通道将所述第一进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器,以将所述第一冷凝器的热量带向所述散热腔体的外部。
在上述实现中,将第一风扇设置在第一冷凝器的上方,将第一进风口设置在第一冷凝器的侧面,将出风口设置在第一风扇的侧面,这样可以使得风冷通道中的气流能够充分接触第一冷凝器,能够实现针对第一冷凝器的高效风冷散热。并且,这样的结构也能便于第一风扇的后期维护。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括第二液冷组件、第二功率腔体以及第二功率器件。所述第二液冷组件的第二冷凝器设置在所述第一冷凝器的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部。所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带向所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第二液冷组件,这样就可以使得散热系统能够同时通过第一液冷组件、风冷组件以及第二液冷组件为第一功率器件和第二功率器件进行散热,使得散热系统的负载能力更大,可提升散热系统的散热能力。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第二进风口,所述第二进气口设置在所述散热腔体的底部。其中,所述第一风扇还用于通过所述风冷通道将所述第二进风口进入的气流带向所述出风口,所述风冷通道中的气流还经过所述第一功率腔体和所述第二功率腔体,以将所述第一功率腔体和所述第二功率腔体的热量带向所述散热腔体的外部。
在上述实现中,在底部处增设第二进风口之后,风冷通道不仅会经过第一冷凝器和第二冷凝器,还同时会经过所述第一功率腔体、所述第二功率腔体、所述第一蒸发器和所述第二蒸发器中的任意两项。这样的话,风冷组件不仅能够对第一冷凝器和第二冷凝器进行风冷散热,还能同时对所述第一功率腔体、所述第二功率腔体、所述第一蒸发器和所述第二蒸发器中的任意两项进行散热,可以有效提升散热系统的散热效率。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括与所述第一液冷组件结构相同的第三液冷组件以及第三功率腔体和第三功率器件。所述第三液冷组件的第三冷凝器设置在所述第一液冷组件的下方,所述第三功率腔体和所述第三液冷组件的第三蒸发器相接触,所述第三功率器件设置在所述第三功率腔体内。所述风冷通道中的气流还经过所述第三冷凝器和所述第三蒸发器,以将所述第三冷凝器和所述第三蒸发器的热量带到所述散热腔体的外部。或者,所述风冷通道中的气流还经过所述第三冷凝器和所述第三功率腔体,以将所述第三冷凝器和所述第三功率腔体的热量带到所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第三液冷组件,并且二者以层叠结构放置在散热腔体的内部。一方面,这样的结构设计能够使得散热腔体的内部空间得到有效的利用。另一方面也使得散热系统能够结合第一液冷组件、风冷组件、第二液冷组件以及第三液冷组件为第一功率器件、第二功率器件和第三功率器件进行散热,可进一步提升散热系统的负载能力。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第三进风口,所述第三进风口设置在所述第三冷凝器的侧面。
在上述实现中,增设第三进风口,可以进一步增大风冷通道的进风量,提升风冷组件的散热能力,进而提升散热系统的散热效率。
结合第一方面,在一种可行的实现方式中,所述风冷组件还包括第一风扇。所述进风口设置所述第一冷凝器的侧面,所述出风口和所述第一风扇设置在所述散热腔体的底部并且位于所述第一液冷组件的下方。所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部。或者,所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一腔体的热量带到所述散热腔体的外部。
在上述实现中,将第一风扇和出风口设置在第一液冷组件的下方,将进风口设置在第一冷凝器的侧面,这样的话风冷通道就可以在经过第一冷凝器同时还经过第一功率腔体或者第一蒸发器,从而使得风冷组件不仅能够对第一冷凝器进行散热,还可同时对第一功率腔体或者第一蒸发器进行散热,可提升散热系统的散热效率。
结合第一方面,在一种可行的实现方式中,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件。所述第二液冷组件的第二冷凝器设置在所述第一冷凝器的侧面,所述第二功率腔体和所述第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部。所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流还经过所述第二冷凝器和所述第二蒸发器,以将所述第二冷凝器和所述第二蒸发器的热量带到所述散热腔体的外部。或者,所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流经过所述第二冷凝器和所述第二功率腔体,以将所述第二冷凝器和所述第二腔体的热量带到所述散热腔体的外部。
在上述实现中,在散热腔体内部还设置有与第一液冷组件结构相同的第二液冷组件,这样就可以使得散热系统能够同时通过第一液冷组件、风冷组件以及第二液冷组件为第一功率器件和第二功率器件进行散热,使得散热系统的负载能力更大,可提升散热系统的散热能力。
第二方面,本申请实施例提供了一种供电系统。所述供电系统包括电源、如上述第一方面以及第一方面中的任意一种可能的实现方式所提供散热系统以及负载。其中,所述散热系统中的功率器件分别与所述电源和所述负载相连接,所述散热系统用于为所述功率器件散热,所述功率器件用于将所述电源提供的初始电能转换为目标电能,并通过所述目标电能为所述负载供电。
在上述实现中,在供电系统中采用第一方面所述的散热系统,可保证供电系统的安全性和可靠性。
第三方面,本申请实施例还提供了一种充电桩。该充电桩包括第一电接口、第二电接口以及如上述第一方面以及第一方面中的任意一种可能的实现方式所提供散热系统。其中,所述散热系统中的功率器件分别与所述第一供电口和所述第二供电口相连接,所述散热系统用于为所述功率器件散热,所述功率器件用于将所述第一电接口输入的初始电能转换为目标电能,并通过所述第二电接口输出所述目标电能。
结合第三方面,在一种可行的实现方式中,所述功率器件为DC/DC变换模块或者AC/DC变换模块。
结合第三方面,在一种可行的实现方式中,所述第一电接口连接电源,所述第二电接口连接负载。
结合第三方面,在一种可行的实现方式中,所述电源为交流电网或者光伏阵列,所述负载为电动汽车或者机器人。
采用本申请实施例提供的一种散热系统、供电系统和充电桩,可解决可以有效的解决现有散热系统存在的散热效率低、可靠性差、维持成本高等问题。本申请提供的散热系统散热效率高。可靠性高,并且维护成本低,适用性更好。
附图说明
图1是本申请实施例提供的一种散热系统一结构示意图;
图2是本申请实施例提供的一种散热系统又一结构示意图;
图3是本申请实施例提供的一种散热系统又一结构示意图;
图4是本申请实施例提供的一种散热系统又一结构示意图;
图5是本申请实施例提供的一种散热系统又一结构示意图;
图6是本申请实施例提供的一种散热系统又一结构示意图;
图7是本申请实施例提供的一种散热系统又一结构示意图;
图8是本申请实施例提供的一种进风口和出风口的位置示意图;
图9是本申请实施例提供的一种散热系统又一结构示意图;
图10是本申请实施例提供的一种散热系统又一结构示意图;
图11是本申请实施例提供的一种散热系统又一结构示意图;
图12是本申请实施例提供的一种散热系统又一结构示意图;
图13是本申请实施例提供的一种散热系统又一结构示意图;
图14是本申请实施例提供的一种散热系统又一结构示意图;
图15是本申请实施例提供的一种散热系统又一结构示意图;
图16是本申请实施例提供的一种散热系统又一结构示意图;
图17是本申请实施例提供的一种散热系统又一结构示意图;
图18是本申请实施例提供的一种散热系统又一结构示意图;
图19是本申请实施例提供的一种散热系统又一结构示意图;
图20是本申请实施例提供的一种散热系统又一结构示意图;
图21是本申请实施例提供的一种散热系统又一结构示意图;
图22是本申请实施例提供的一种散热系统又一结构示意图;
图23是本申请实施例提供的一种散热系统又一结构示意图;
图24是本申请实施例提供的一种散热系统又一结构示意图;
图25是本申请实施例提供一种应用场景示意图;
图26是本申请实施例提供一种供电系统的结构示意图;
图27是本申请实施例提供的一种充电桩的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着用电设备的功率的不断提升,散热系统已经成为必备的组件。现有的散热系统主要包括风冷式散热系统和液冷式散热系统。然而这两种散热系统普遍存在散热效率不高、可靠性差、维持成本高等问题,适用性都较差。
因此,本申请要解决的技术问题是:如何提供一种高散热效率、高可靠性且低维护成本的散热系统,以提升散热系统的适用性。
为解决上述问题,本申请提供了一种散热系统。将液冷组件、风冷组件以及功率腔体设置在该散热系统的散热腔体内部,并且功率器件设置在功率腔体内部。该功率腔体与液冷组件相接触,风冷组件的进风口和出风口设置在散热腔体上,而连通于进风口和出风口之间的风冷通道中的气流会经过第一液冷组件和/或第一功率腔体,并对其进行散热。该散热系统结合了风冷组件和液冷组件,散热效率较高。并且采用功率腔体对产生热量的功率器件进行防护,可以有效避免功率器件因环境等因素发生故障,在提升散热系统的可靠性的同时也可以降低后期的维护成本。所以,采用该散热系统,可以有效的解决现有散热系统存在的散热效率低、可靠性差、维持成本高等问题,可以有效提升散热系统的适用性。
请参见图1,图1是本申请实施例提供的一种散热系统一结构示意图。如图1所示,该散热系统100可包括散热腔体10、第一液冷组件20、风冷组件30、第一功率腔体40以及第一功率器件50。其中,第一液冷组件20和第一功率腔体40设置在散热腔体10的内部,并且第一液冷组件20和第一功率腔体40相接触,而第一功率器件50则可以设置在所述第一功率腔体40的内部。此外,散热腔体10上还设置有风冷组件30的进风口32和出风口33。而风冷组件30所对应的连通于进风口32和出风口33之间的风冷通道31也设置在散热腔体10的内部,并且该风冷通道31中的气流会经过所述第一液冷组件20和/或第一功率腔体40。
需要说明的是,前文所述的散热腔体10以及第一功率腔体40指的是由封闭的壳体所形 成的包含有固定形状的空腔的结构体。如图1所示,散热腔体10即是由封闭的壳体101所形成的包含有空腔的结构体。第一功率腔体40即是由封闭的壳体401所构成的包含有空腔的结构体。在实际实现时,散热腔体10的壳体101的形状(也可以理解为散热腔体10的形状)可以为长方体、圆柱体等,第一功率腔体40的壳体401的形状(也可以理解为第一功率腔体40的形状)也可以为长方体、圆柱体等,这些腔体的形状可根据具体的需要来设定,本申请对此不作限定。这里,为了方便对散热系统100的结构的描述,后文将以散热腔体10以及第一功率腔体40为长方体腔体来进行说明。
这里还需要说明的是,前文所述的风冷通道31指的是由进风口32流入并由出风口33流出的气流所经过的主要路径,其具体位置主要由风冷组件30所包括的风扇所处的位置以及进风口32和出风口33在散热腔体10上的位置所决定。前文所述的风冷通道31中的气流会经过所述第一液冷组件20和/或第一功率腔体40,也可以理解为,风冷通道31经过第一液冷组件20和/或第一功率腔体40。也就是说,后文中所描述的风冷通道31经过某一器件或者结构,即等价于风冷通道31中的气流会经过该器件或者结构,后文针对这两种描述方式将不再进行区分。此外,前文所述的风冷组件30的进风口32和出风口33设置在散热腔体10上,也可以理解为进风口32和出风口33设置在散热腔体10的壳体101上。这里应理解,图1中所示的进风口32和出风口33的位置以及风冷通道31的位置仅是一种示意,在实际实现中,进风口32、出风口33以及风冷通道31也可以设置在其他位置,只要能够保证风冷通道31中的气流经过第一液冷组件20和/或第一功率腔体40即可。
在实际工作时,第一液冷组件20和风冷组件30都用于对第一功率器件50进行散热。具体的,第一功率器件50在工作时会产生热量,并且该热量会通过壳体401向第一腔体40的外部扩散。由于第一功率腔体40与第一液冷组件20直接相接触,所以第一功率器件50产生的部分热量会通过壳体401与第一液冷组件20相接触的表面向第一液冷组件20处扩散,第一液冷组件20即可通过液冷的方式来散掉这些热量。进一步的,在风冷通道31同时经过第一液冷组件20和第一功率腔体40的情况下(可以理解为风冷通道31经过第一液冷组件20和第一功率腔体40),由于第一液冷组件20的部分本体以及第一功率腔体40的部分本体与风冷通道31相接触,因此风冷通道31中流动的气流即可将第一液冷组件20和第一功率腔体40的热量带到散热腔体10的外部散掉,从而实现对第一功率器件50的风冷散热。而在风冷通道31仅经过第一液冷组件20的情况下,风冷通道31中流动的气流即可将第一液冷组件20的热量带到散热腔体10的外部散掉,从而完成对第一功率器件50的风冷散热。
在上述实现中,在散热腔体10内集成了第一液冷组件20和风冷组件30,将第一液冷组件20与包含第一功率器件50的第一功率腔体40直接接触,将风冷组件30对应的风冷通道31设计为经过第一液冷组件20和/或第一功率腔体40。这样就可以通过第一液冷组件20和风冷组件30同时对第一功率器件50进行散热,可以使得散热系统100的散热效率较高。并且,还采用第一功率腔体40对第一功率器件50进行防护,可以有效避免第一功率器件50因环境等因素发生故障,在提升散热系统100的可靠性的同时也可以降低后期的维护成本。所以,该散热系统100的适用性强,采用该散热系统100,可以有效的解决现有散热系统存在的散热效率不高、可靠性差、维持成本高的问题。
下面将结合散热系统100中所包含的液冷组件、风冷组件、功率腔体以及功率器件的多种可选结构,对散热系统100的结构和功能进行详细的阐述。
这里为了方便后文针对散热系统100的结构的描述,先对散热腔体10的结构进行具体的说明。请参见图2,图2是本申请实施例提供的一种散热系统又一结构示意图。应理解,图2 中的(a)为散热腔体10的剖析图,图2中的(b)为散热腔体10的俯视图,图2中的(c)为散热腔体10的正视图。如图2所示,假设散热腔体10的壳体101的形状为长方体,其设有四个侧面,包括如图2中所示的第一侧面1011、第二侧面1012、第三侧面1013以及第四侧面1014。其中,如图2中的(b)所示,第一侧面1011与第三侧面1013为相向的侧面,第二侧面1012和第四侧面1014为相向的侧面。此外,壳体101还包括顶面1015和底面1016。进一步,如图2中(c)所示,本申请中,将散热腔体10的包含顶面1015的部分腔体定义为散热腔体10的顶部102,将散热腔体10的包含底面1016和部分侧面的部分腔体定义为散热腔体10的底部103。
在一些可行的实现方式中,请参见图3,图3是本申请实施例提供的一种散热系统又一结构示意图。如图3所示,上述第一液冷组件20可包括第一冷凝器201、第一蒸发器202以及第一导热结构203。其中,第一冷凝器201和第一蒸发器202通过第一导热结构203相连通。第一冷凝器201设置在所述散热腔体102的顶部102处。这里需要理解到的是,第一冷凝器201实际上可以设置在顶部102所包含的部分腔体的任意位置,只要是设置在该部分腔体内部即可,具体位置可根据实际需求来进行设置,此处不作具体限定。上述第一功率腔体40与上述第一蒸发器202相接触。这里需要说明的是,第一功率腔体40与第一蒸发器202相接触,指的是第一功率腔体40的部分表面与第一蒸发器202的部分表面相贴合,这样才可以使得第一功率器件50产生的热量能够通过第一功率腔体40传导给第一蒸发器202。应理解,为了提升第一功率腔体40与第一蒸发器202直接的热传导效率,可以尽量保证第一功率腔体40与第一蒸发器202相接触的表面足够大。比如,可以将第一功率腔体40和第一蒸发器202均设计为长发体结构,并且使得二者的侧面相接触。此外,上述第一功率腔体40和上述第一蒸发器202均设置在第一冷凝器201的下方。这里应理解,在实际实现中,第一功率腔体40和第一蒸发器202可以设置在第一冷凝器201的正下方,也可以设置在第一冷凝器201的斜下方,只要保证在该散热腔体10的长边方向上,相比于该第一冷凝器201,第一功率腔体40和第一蒸发器202更靠近散热腔体10的底部103即可。
在实际工作时,第一冷凝器201和第一蒸发器202均灌装有冷却工质,第一冷凝器201和第一蒸发器202通过第一导热结构302形成一个循环回路(为了方便区别,下文将以第一循环回路204代替描述),冷却工质可以通过这个第一循环回路204在第一冷凝器201和第一蒸发器202之间循环流动以将第一蒸发器202的热量带到第一冷凝器201处散掉。具体的,第一蒸发器202会从第一功率腔体40处吸收一定的热量,而第一蒸发器202内的冷工质会在这些热量的作用下汽化,汽化的冷却工质会通过第一导热结构203到达第一冷凝器201处,从而将第一蒸发器202的热量带到第一冷凝器201处。同时,处于蒸汽状态的冷却工质在第一冷凝器201处散热冷凝,重新变成液态的冷却工质,并会通过第一导热结构203回流到第一蒸发器202处。简而言之,通过第一导热结构203形成第一循环回路204可以使得冷却工质在第一冷凝器201和第一蒸发器202之间循环流动,从而实现对第一功率腔体40的液冷散热。
这里需要说明的是,图3所示的结构中,第一功率腔体40设置在第一蒸发器202朝向第三侧面1013的一侧。在这种情况下,风冷通道31会经过第一功率腔体40和第一冷凝器201。而在另一种可选的实现方式中,请参见图4,图4是本申请实施例提供的一种散热系统又一结构示意图。如图4所示,第一功率腔体40也可以设置在第一蒸发器202朝向第一侧面1011的一侧。在这种情况下,风冷通道31会经过第一冷凝器201和第一蒸发器202,并不经过第一功率腔体40。这里需要理解的是,由于对于散热系统100来说,第一功率腔体40和第一 蒸发器202是设置为图3所示的位置关系,还是设置为图4所示的位置关系,其能够实现的功能没有区别,并且也不影响散热系统100中的其他器件的结构和功能。所以,为了避免重复,后文将主要以图3所示的第一功率腔体40和第一蒸发器202的位置关系为例,对散热系统100的结构和功能作进一步的陈述。
在上述实现中,通过第一导热结构203在第一冷凝器201和第一蒸发器202之间构成可以用于冷却工质循环流动的第一循环回路204,以此实现第一液冷组件20的液冷散热功能。这样可以使得第一液冷组件20无须依赖循环水泵、液管接头等结构件,可以避免这些结构件所导致的散热系统100的系统失效率高、后期维护成本高等问题,可有效提升散热系统100的可靠性。
进一步可选的,请参见图5,图5是本申请实施例提供的一种散热系统又一结构示意图。如图5所示,第一功率腔体40的与第一蒸发器202不接触的表面设置有散热齿402。或者说,壳体401与第一蒸发器202不接触的部分或者全部表面上长有散热齿402。并且,风冷通道31也经过该散热齿402。实际工作时,该散热齿402可以用于对第一功率腔体40进行散热。这里应理解,图4中所示的,仅是在第一功率腔体40背向第一蒸发器202的一侧的表面上长有散热齿,在实际实现中,第一功率腔体40与第一蒸发器202不接触的其他表面上也可长有散热齿,例如,第一功率腔体40的顶部表面和底部表面也可长有散热齿。具体情况可根据实际应用需求来决定,本申请对此不作具体限制。
在上述实现中,在第一功率腔体40与第一蒸发器202不接触的表面设置散热齿402,一方面可以通过散热齿402实现对第一功率腔体40的散热,从而进一步提升散热系统100的散热效率。另一方面也可以通过散热齿402对风冷通道31中流动的气流进行过滤以减少气流中的灰尘,从而使得进入第一冷凝器201中的灰尘含量较小,可以延长第一冷凝器201的维护时间,降低散热系统100的维护成本。
进一步可选的,请参见图6,图6是本申请实施例提供的一种散热系统又一结构示意图。如图6所示,上述第一功率器件50具体可包括第一子功率器件501以及第二子功率器件502。其中,第一子功率器件501可设置在第一功率腔体40与第一蒸发器202相接触的一侧,也可以理解为第一子功率器件501通过壳体401的一侧壁与第一蒸发器202相贴合。第二子功率器件502可设置在第一功率腔体40长有散热齿402的一侧,也可以理解为第二子功率器件502与壳体401的长有散热齿402的一侧壁相贴合。在实际使用时,上述第一子功率器件501可以为对散热要求比较高的功率器件,而上述第二子功率器件502可以为对散热要求不高或者因空间限制无法与第一蒸发器202相贴合的功率器件。这样的实现方式可以优先保证散热要求高的功率器件能够得到有效的散热,从而增加散热系统100的可靠性。
这里需要说明的是,上述第一子功率器件501具体可以为一个或者多个,上述第二子功率器件502具体也可以为一个或者多个,第一子功率器件501以及第二子功率器件502的个数可以由实际设计需求来决定,本申请对此不作具体限制。
前文主要针对第一液冷组件20、第一功率腔体40以及第一功率器件50的结构和功能进行了具体说明,下面将结合前文的所述的内容,进一步对散热系统100的所包含的其他结构进行详细的描述。
在一些可行的实现方式中,请参见图7,图7是本申请实施例提供的一种散热系统又一结构示意图。如图7所示,风冷组件30还可包括第一风扇34。其中,出风口33可以设置在散热腔体10的顶部102处(应理解,图7是以出风口32有两个并且分别位于第一侧面1011和第三侧面1013为例示出的)。而进风口32和第一风扇34可以设置在散热腔体10的底部 103处(应理解,图7是以进风口33有两个并且分别位于第一侧面1011和第三侧面1013为例示出的)。并且,在散热腔体10的长边方向上,进风口32和第一风扇34可以位于第一液冷组件20的下方(或者说,进风口32和第一风扇34可以位于第一功率腔体40和第一蒸发器202的下方)。
在实际工作时,在第一功率腔体40位于第一蒸发器202朝向第三侧面1013的一侧的情况下,风冷通道31会同时经过第一功率腔体40和第一冷凝器201。第一风扇34可以由底部103向顶部102吹风,从而通过风冷通道31将进风口32进入的气流带向出风口33处,并最最终经过出风口33返回到散热腔体10的外部。这样就可以通过风冷通道31中流动的气流将第一功率腔体40和第一冷凝器201的热量带到散热腔体10的外部散掉,从而实现对第一功率器件50的风冷散热。而在第一功率腔体40位于第一蒸发器202朝向第一侧面1011的情况下,上述风冷通道31会同时经过第一蒸发器202和第一冷凝器201。第一风扇34仍然用于通过风冷通道31将进风口32进入的气流带向出风口33处,并通过出风口33返回散热腔体10的外部。这样就可以通过风冷通道31中流动的气流将第一蒸发器202和第一冷凝器201的热量带到散热腔体100的外部散掉,从而实现对第一功率器件50的风冷散热。
在上述实现中,将风冷组件30的进风口32和第一风扇34的设置在底部103,将出风口33设置在顶部102处,使得风冷通道31可以在经过第一冷凝器201的同时,还经过第一蒸发器202或者第一功率腔体40,从而可以实现针对第一功率器件50的更高效的风冷散热,可有效提升散热系统的散热效率。并且,由于进风口32和出风口33之间存在一定的高度差,这样就可以利用该高度差对风冷通道31中流动的气流进行除尘,从而使得进入第一冷凝器201中的灰尘大幅减少,可以进一步延长第一冷凝器201的维护时间,降低散热系统100的维护成本。
需要说明的是,图7中仅是示例性的表述了出风口33和进风口32的个数以及具体位置。而在实际实现中,进风口32和出风口33的个数也可以为一个或者更多个,进风口32和出风口33也可以设置在除第一侧面1011以外的其他侧面上(如前文所述第二侧面1012、第三侧面1013以及第四侧面1014)。例如,请参见图8,图8是本申请实施例提供的一种进风口和出风口的位置示意图。这里,图8中的(a)为散热腔体10的俯视图,图8中的(b)为散热腔体10的正视图。如图8中的(a)所示,在一种可选的实现方式中,进风口32和出风口33均可以是一个,进风口32可以设置在底部103处并且位于第四侧面1014上,而出风口33则可以设置在顶部102处并位于第二侧面1012上。这样的设计也可以保证风冷通道31能够经过第一液冷组件20和/或第一功率腔体40。又或者,如图8中的(b)所示,进风口32和出风口33均可以是一个,进风口设置在底部103处并且位于第一侧面1011上,出风口33可设置在顶部102处并且位于第三侧面1013上。可以理解到的是,进风口32和出风口33的位置及个数还存在其他可能的情况,本申请对此便不再一一例举,这些基于本申请提供的方案所能联想到的进风口32和出风口33的位置及个数的设计方案均应在本申请的保护范围之内。总而言之,在图7所示的框架下,只要保证进风口32设置在底部103处,出风口33设置在顶部102处,并且风冷通道31能够经过第一液冷组件20和/或第一功率腔体40即可,本申请此不作限定。
在一种可选的实现方式中,在图7所描述的风冷组件30的基础上,请一并参见图9,图9是本申请实施例提供的一种散热系统又一结构示意图。如图9所示,该散热系统100还可包括第二液冷组件60以及第二功率腔体70和第二功率器件80。该第二液冷组件60的结构和第一液冷组件20的结构可以相同。第二液冷组件60具体可包括第二冷凝器601、第二蒸 发器602以及第二导热结构603。其中,第二冷凝器601和第二蒸发器602通过第二导热结构603相连通。第二冷凝器601设置在所述散热腔体102的顶部102处,并且位于第一冷凝器201的侧面。上述第二功率器件80设置在上述第二功率腔体70的内部,上述第二功率腔体70与第二蒸发器602相接触。此外,上述第二功率腔体70和上述第二蒸发器602均设置在第二冷凝器601的下方。这里,第二液冷组件60的内部结构,以及,第二液冷组件60、第二功率腔体70、第二功率器件80之间的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20、第一功率腔体40、第一功率器件50之间的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
应理解,图9所示的结构中,第二功率腔体70是设置在第二蒸发器602朝向第一侧面1011的一侧。在这种情况下,风冷通道31还会经过第二功率腔体70和第二冷凝器601。而在另一种可选的实现方式中,第二功率腔体70也可以设置在第二蒸发器602朝向第三侧面1013的一侧。在这种情况下,风冷通道31会经过第二冷凝器601和第二蒸发器602,并不经过第二功率腔体70。
在实际工作时,第二冷凝器601和第二蒸发器602中也均灌装有冷却工质,第二冷凝器601和第二蒸发器602之间通过第二导热结构603也形成一个第二循环回路,冷却工质可以通过这个第二循环回路在第二冷凝器601和第二蒸发器602之间循环流动以将第二蒸发器602的热量带到第二冷凝器601处散掉,从而实现针对第二功率器件80的液冷散热。这里,第二液冷组件60的具体工作过程可参见前文针对第一液冷组件20的工作过程的描述,此处便不再赘述。此外,当第一风扇34正常工作时,其可以将由进风口32进入的气流由底部103吹向出风口33处,从而使得风冷通道31中有气流流动。在风冷通道31还经过第二功率腔体70和第二冷凝器601的情况下,风冷通道31中流动的气流还可用于将第二冷凝器601以及第二功率腔体70的热量带向散热腔体10的外部散掉,从而实现针对第二功率器件80的风冷散热。而在风冷通道31还经过第二蒸发器602和第二冷凝器601的情况下,风冷通道31中流动的气流还可用于将第二冷凝器601以及第二蒸发器602的热量带向散热腔体10的外部散掉,从而实现针对第二功率器件80的风冷散热。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第二液冷组件60,并且第二液冷组件60的第二蒸发器602还与内置有第二功率器件80的第二功率腔体70相接触,这样就可以使得散热系统100能够同时通过第一液冷组件20、风冷组件30以及第二液冷组件60为第一功率器件50和第二功率器件80进行散热,使得散热系统100的负载能力更大,可提升散热系统100的散热能力及适用性。
在一些可行的实现方式中,请参见图10,图10是本申请实施例提供的一种散热系统又一结构示意图。如图10所示,风冷组件30还可包括第一风扇34。其中,进风口32可以设置在所述散热腔体10的底部103处,并且位于第一液冷组件20的第一侧(也即第一液冷组件20朝向第一侧面1011的一侧)。上述出风口33设置在所述散热腔体10的顶部102处,并且位于第一液冷组件20的与上述第一侧相对的第二侧(也即第一液冷组件20朝向第三侧面1013的一侧)。应理解,图10中是以进风口32和出风口33均为一个,并且分别设置在第一侧面1011和第三侧面1013上为例示出的。
需要说明的是,在第一液冷组件20中的第一蒸发器202背向第一功率腔体40并且朝向第一侧面1011设置的情况下(应理解,图10即以此场景为例),上述第一风扇34可以设置在第一蒸发器202朝向进风口32的一侧(也可以理解为第一蒸发器202朝向第一侧面1011的一侧)。此时,风冷通道31会经过第一冷凝器201和第一蒸发器202。而在第一蒸发器202 背向所述第一功率腔体40且朝向第三侧面1013设置的情况下,上述第一风扇34可以设置在第一功率腔体40朝向进风口32的一侧(也可以理解为第一功率腔体40朝向第一侧面1011的一侧)。此时,风冷通道31会经过第一冷凝器201和第一功率腔体40。
实际工作时,在风冷通道31同时经过第一功率腔体40以及第一冷凝器201的情况下,第一风扇34可以由底部103向顶部102吹风,从而通过风冷通道31将进风口32进入的气流带向出风口33处,并通过出风口33吹向散热腔体10的外部。这样风冷通道31中流动的气流既可以将第一功率腔体40和第一冷凝器201的热量带到散热腔体100的外部散掉,从而实现对第一功率器件50的风冷散热。而在风冷通道31同时经过第一蒸发器202和第一冷凝器201的情况下,第一风扇34可以由底部103向顶部102吹风,从而通过风冷通道31将进风口32进入的气流带向出风口33处,并通过出风口33吹向散热腔体10的外部。这样风冷通道31中流动的气流即可将第一蒸发器202和第一冷凝器201的热量带到散热腔体100的外部散掉,从而实现对第一功率器件50的风冷散热。
这里需要说明的是,图10仅是示例性的表述了出风口33和进风口32的个数以及具体位置。而在实际实现中,进风口32也可以是一个或者更多个,其也可以设置第一侧面1011、第二侧面1012、第三侧面1013以及第四侧面1014中的一个或者多个上。而出风口33也可以是一个或者更多个,其也可以设置在第一侧面1011、第二侧面1012、第三侧面1013以及第四侧面1014中的一个或者多个上。简而言之,在实际实现时,只要保证进风口32设置在底部103处并且位于第一液冷组件20的第一侧,保证出风口33设置在顶部102处并且位于第一液冷组件20的第二侧,保证风冷通道31能够经过第一液冷组件20和/或第一功率腔体40即可,本申请对此不作具体限制。
在上述实现中,将进风口32设置在底部103处,并且位于第一液冷组件20的第一侧,将出风口33设置在顶部102处,并且位于第一液冷组件20的与上述第一侧相对的第二侧,将第一风扇34设置在第一蒸发器202或者第一功率腔体40朝向进风口32的一侧,这样可以使得风冷通道31能够同时经过第一液冷组件20和/或第一功率腔体40,从而可以实现针对第一功率器件50的高效散热。并且,由于进风口32和出风口33之间存在一定的高度差,这样就可以利用该高度差对风冷通道31中流动的气流进行除尘,从而使得进入第一冷凝器201中的灰尘大幅减少,可以进一步延长第一冷凝器201的维护时间,降低散热系统100的维护成本。此外,将第一风扇34设置在第一蒸发器202或者第一功率腔体40朝向进风口32的一侧,还可以减小散热腔体10的高度,提升散热系统100的适用性。
可选的,请继续参见图10。如图10所示,在第一风扇34与第一侧面1011之间还设置有挡风板341(为了方便区别,后文将以第三挡风板341代替描述),该第三挡风板341的一端与第一侧面1011相接触,另一端与第一风扇34的一侧相接触。该第三挡风板341主要用于防止第一风扇34吹出的气流回流到第一风扇34的进风口,从而保证风冷通道31中的气流能够快速的由进风口32向出风口33处流动。
可选的,结合图10所示的风冷组件30的结构,请参见图11,图11是本申请实施例提供的一种散热系统又一结构示意图。如图11所示,该散热系统100还可包括第二液冷组件60以及第二功率腔体70和第二功率器件80。其中,该第二液冷组件60的结构和第一液冷组件20的结构可以相同。第二液冷组件60具体可包括第二冷凝器601、第二蒸发器602以及第二导热结构603。其中,第二冷凝器601和第二蒸发器602通过第二导热结构603相连通。第二冷凝器601设置在所述散热腔体102的顶部102处,并且位于第一冷凝器201朝向出风口33的一侧(或者说,位于第一冷凝器201朝向第三侧面1013的一侧)。上述第二功率器件 80设置在上述第二功率腔体70的内部,上述第二功率腔体70与第二蒸发器602相接触。此外,上述第二功率腔体70和上述第二蒸发器602均设置在第二冷凝器601的下方。这里,第二液冷组件60的内部结构,以及,第二液冷组件60、第二功率腔体70、第二功率器件80之间的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20、第一功率腔体40、第一功率器件50之间的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
在实际工作时,第二液冷组件60可用于对第二功率器件80进行液冷散热,其具体工作过程可参见前文针对第一液冷组件20的工作过程的描述,此处便不再赘述。此外,当第一风扇34正常工作时,其可以将由进风口32进入的气流由底部103吹向出风口33处,从而使得风冷通道31中有气流流动。而风冷通道31中流动的气流还可用于将第二冷凝器601的热量带向散热腔体10的外部散掉,从而实现针对第二功率器件80的风冷散热。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第二液冷组件60,并且第二液冷组件60的第二蒸发器602还与内置有第二功率器件80的第二功率腔体70相接触,这样就可以使得散热系统100能够同时通过第一液冷组件20、风冷组件30以及第二液冷组件60为第一功率器件50和第二功率器件80进行散热,使得散热系统100的负载能力更大,可提升散热系统100的散热能力及适用性。
在一些可行的实现方式中,请参见图12,图12是本申请实施例提供的一种散热系统又一结构示意图。如图12所示,风冷组件30可包括第一风扇34。风冷组件30的进风口32可包括第一进风口321。其中,第一进风口321、出风口33和第一风扇34均可设置在散热腔体10的顶部102处。并且,第一进风口321设置在第一冷凝器201的第一侧(也可以理解为第一冷凝器201朝向第一侧面1011的一侧),第一风扇34设置在第一冷凝器201的与第一侧相对的第二侧(也可以理解为第一冷凝器201朝向第三侧面1013的一侧),出风口33设置在第一风扇34背向第一冷凝器201的一侧(也可以理解为第一风扇34朝向第三侧面1013的一侧)。应理解,图12中是以第一进风口321和出风口33均为一个,并且第一进风口321设置在第一侧面1011上,出风口33设置在第三侧面1013上为例示出的。
实际工作时,第一风扇34可以向出风口33所在位置吹风,从而通过风冷通道31将第一进风口321进入的气流带向出风口33处,并经过出风口33吹向散热腔体10的外部。这样风冷通道31中流动的气流即可以将第一冷凝器201的热量带到散热腔体100的外部散掉,从而实现对第一功率器件50的风冷散热。
在上述实现中,将第一进风口321、出风口33和第一风扇34均可设置在散热腔体10的顶部102处,可以使得风冷通道31能够经过第一冷凝器201,从而可以实现针对第一功率器件50的风冷散热。并且,将第一风扇34设置在第一冷凝器201一侧,可以减小散热腔体10的高度,提升散热系统的适用性。
在一种可选的实现方式中,结合图12所示的风冷组件30的结构,请进一步参见图13,图13是本申请实施例提供的一种散热系统又一结构示意图。如图13所示,该散热系统100还可包括第二液冷组件60以及第二功率腔体70和第二功率器件80。其中,该第二液冷组件60的结构和第一液冷组件20的结构可以相同。第二液冷组件60具体可包括第二冷凝器601、第二蒸发器602以及第二导热结构603。其中,第二冷凝器601和第二蒸发器602通过第二导热结构603相连通。第二冷凝器601设置在所述散热腔体102的顶部102处,并且位于第一冷凝器201朝向出风口33的一侧(或者说,位于第一冷凝器201朝向第三侧面1013的一侧)。上述第二功率器件80设置在上述第二功率腔体70的内部,上述第二功率腔体70与第 二蒸发器602相接触。此外,上述第二功率腔体70和上述第二蒸发器602均设置在第二冷凝器601的下方。这里,第一液冷组件20的内部结构,以及,第一液冷组件20与第一功率腔体40、第一功率器件50的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20与第一功率腔体40、第一功率器件50的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
在实际工作时,第二液冷组件60可用于对第二功率器件80进行液冷散热,其具体工作过程可参见前文针对第一液冷组件20的工作过程的描述,此处便不再赘述。此外,当第一风扇34正常工作时,其吹出的气流还直接经过第二冷凝器601,从而可通过该气流将第二冷凝器601的热量带向散热腔体10的外部散掉,以实现对第二功率器件80的风冷散热。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第二液冷组件60,这样就可以使得散热系统100能够同时通过第一液冷组件20、风冷组件30以及第二液冷组件60为第一功率器件50和第二功率器件80进行散热,使得散热系统100的负载能力更大,可提升散热系统100的散热能力。同时,还将第一风扇34设置在第一冷凝器201和第二冷凝器601之间,可降低散热系统100的高度,提升散热系统100的适用性。
进一步的,在另一种可选的实现方式中,请参见图14,图14是本申请实施例提供的一种散热系统又一结构示意图。如图14所示,上述进风口32还可包括第二进风口322。该第二进风口322可设置在底部103处。应理解,图14中是以第二进风口322有两个并且分别设置在第一侧面1011和第二侧面1012为例示出的。散热腔体10外部的气流可通过第二进风口322进入到散热腔体10的内部,并且在第一风扇34的作用下,通过风冷通道31向出风口33处流动,并最终通过出风口33回到散热腔体10的外部。
实际工作时,当第一蒸发器202背向第一功率腔体40且朝向第一侧面1011,第二蒸发器602背向第二功率腔体70且朝向第三侧面1013设置时,上述风冷通道31还会经过第一功率腔体40和第二功率腔体70。由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一功率腔体40和第二功率腔体70,以将第一功率腔体40和第二功率腔体70带向散热腔体的外部散掉,从而使得风冷组件30能够更加有效的实现对第一功率器件50和第二功率器件80的风冷散热。
当第一蒸发器202背向第一功率腔体40且朝向第一侧面1011,第二功率腔体70背向第二蒸发器602且朝向第三侧面1013设置时,上述风冷通道31还会经过第一功率腔体40和第二蒸发器602。由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一功率腔体40和第二蒸发器602,以将第一功率腔体40和第二蒸发器602带向散热腔体的外部散掉,从而使得风冷组件30能够更加有效的实现对第一功率器件50和第二功率器件80的风冷散热。
当第一功率腔体40背向第一蒸发器202且朝向第一侧面1011,第二功率腔体70背向第二蒸发器602且朝向第三侧面1013设置时,上述风冷通道31还会经过第一蒸发器202和第二蒸发器602。由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一蒸发器202和第二蒸发器602,以将第一蒸发器202和第二蒸发器602带向散热腔体的外部散掉,从而使得风冷组件30能够更加有效的实现对第一功率器件50和第二功率器件80的风冷散热。
当第一功率腔体40背向第一蒸发器202且朝向第一侧面1011,第二蒸发器602背向第二功率腔体70且朝向第三侧面1013设置时,上述风冷通道31还会经过第一蒸发器202和第二功率腔体70。由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一蒸发器202和第二功率腔体70,以将第一蒸发器202和第二功率腔体70带向散热腔体的外部散掉,从而使得风冷组件30能够更加有效的实现对第一功率器件50和第二功率器件80的风冷 散热。
这里需要说明的是,图14仅是示例性的表述了第二进风口322的个数以及具体位置。而在实际实现中,第二进风口322也可以是一个或者更多个,其也可以设置第一侧面1011、第二侧面1012、第三侧面1013以及第四侧面1014中的一个或者多个上。简而言之,在实际实现时,只要保证第二进风口322设置在底部103处,保证风冷通道31还能够经过第一冷凝器201、第二冷凝器601、第一功率腔体40和第二功率腔体70中任意两项即可,本申请对此不作具体限制。
在上述实现中,在底部103处增设第二进风口322之后,风冷通道31不仅会经过第一冷凝器201和第二冷凝器601,还同时会经过第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项。这样的话,风冷组件30不仅能够对第一冷凝器201和第二冷凝器601进行风冷散热,还能同时对第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项中的任意两项进行风冷散热,可以有效提升散热系统100的散热效率。
在又一种可选的实现方式中,结合图12所示的风冷组件30的结构,请进一步参见图15,图15是本申请实施例提供的一种散热系统又一结构示意图。如图15所示,该散热系统100还可包括第二液冷组件60以及第二功率腔体70和第二功率器件80。其中,该第二液冷组件60的结构和第一液冷组件20的结构可以相同。第二液冷组件60具体可包括第二冷凝器601、第二蒸发器602以及第二导热结构603。其中,第二冷凝器601和第二蒸发器602通过第二导热结构603相连通。第二冷凝器601设置在所述散热腔体10的顶部102处,并且位于第一冷凝器201背向出风口33的一侧(或者说,位于第一冷凝器201朝向第一侧面1011的一侧),这样就使得风冷通道31还会经过第二冷凝器601。上述第二功率器件80设置在上述第二功率腔体70的内部,上述第二功率腔体70与第二蒸发器602相接触。此外,上述第二功率腔体70和上述第二蒸发器602均设置在第二冷凝器601的下方。这里,第二液冷组件60的内部结构,以及,第二液冷组件60、第二功率腔体70、第二功率器件80之间的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20、第一功率腔体40、第一功率器件50之间的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
在实际工作时,第二液冷组件60可用于对第二功率器件80进行液冷散热,其具体工作过程可参见前文针对第一液冷组件20的工作过程的描述,此处便不再赘述。此外,当第一风扇34正常工作时,由第一进风口321进入的气流会经过第二冷凝器601,从而通过该气流将第二冷凝器601的热量带向散热腔体10的外部散掉,以实现对第二功率器件80的风冷散热。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第二液冷组件60,这样就可以使得散热系统100能够同时通过第一液冷组件20、风冷组件30以及第二液冷组件60为第一功率器件50和第二功率器件80进行散热,使得散热系统100的负载能力更大,可提升散热系统100的散热能力。同时,还将第一风扇34设置在第一冷凝器201背向第二冷凝器601的一侧,在降低散热系统100的高度的同时也可便于第一风扇34的后期维护,可提升散热系统100的适用性。
可选的,请参见图16,图16是本申请实施例提供的一种散热系统又一结构示意图。如图16所示,在散热腔体10的第一空腔104与第二空腔105之间还设置有第一挡风板90。其中,上述第一空腔104为散热腔体10包含的位于第一冷凝器201朝向出风口33一侧的部分空腔(也可以说,该第一空腔104为第一冷凝器201与第三侧面1013之间的部分空腔)。在第一功率腔体40背向第一蒸发器202且朝向第三侧面1013设置的场景下,上述第二空腔为 散热腔体10包含的位于第一功率腔体40背向第二液冷组件60的一侧的部分空腔(也可以说,该第二空腔105为第一功率腔体40与第三侧面1013之间的部分空腔)。在第一蒸发器202背向第一功率腔体40且朝向第三侧面1013设置的场景下,上述第二空腔为散热腔体10包含的位于第一蒸发器202背向第二液冷组件60的一侧的部分空腔(也可以说,该第二空腔105为第一蒸发器202与第三侧面1013之间的部分空腔)。
在实际工作时,该第一挡风板90主要用于阻挡该第一空腔104与第二空腔105之间通风。通过第一挡风板90,可以避免第一风扇34将第二空腔105内的空气吹向出风口33,从而保证风冷通道31中的大部分气流都流经第一冷凝器201和第二冷凝器601,这样就可以保证风冷组件30对第一冷凝器201和第二冷凝器601的散热效率。
可选的,请继续参见图16,如图16所示,上述进风口32还可包括第二进风口322。该第二进风口322设置在底部103处。应理解,图16中是以第二进风口322有两个,并且分别设置在第一侧面1011和第三侧面1013上为例示出的。散热腔体10外部的气流可通过第二进风口322进入到散热腔体10的内部,并且在第一风扇34的作用下,通过风冷通道31向出风口33处流动,并最终通过出风口33回到散热腔体10的外部。
实际工作时,当风冷通道31还经过第一功率腔体40和第二功率腔体70时,由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一功率腔体40和第二功率腔体70,以将第一功率腔体40和第二功率腔体70带向散热腔体的外部散掉,从而实现对第一功率器件50和第二功率器件80的风冷散热。
当风冷通道31还经过第一功率腔体40和第二蒸发器602时,由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一功率腔体40和第二蒸发器602,以将第一功率腔体40和第二蒸发器602带向散热腔体的外部散掉,从而实现对第一功率器件50和第二功率器件80的风冷散热。
当风冷通道31还经过第一蒸发器202和第二蒸发器602时,由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一蒸发器202和第二蒸发器602,以将第一蒸发器202和第二蒸发器602带向散热腔体的外部散掉,从而实现对第一功率器件50和第二功率器件80的风冷散热。
当风冷通道31还经过第一蒸发器202和第二功率腔体70时,由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一蒸发器202和第二功率腔体70,以将第一蒸发器202和第二功率腔体70带向散热腔体的外部散掉,从而实现对第一功率器件50和第二功率器件80的风冷散热。
应理解,图16仅是示例性的表述了第二进风口322和个数和具体位置。而在实际实现中,第二进风口322的个数也可以是一个或者更多个,第二进风口322也可以设置在第一侧面1011、第二侧面1012、第三侧面1013或者第四侧面1014中的一个或者多个上。总之,只要保证第二进风口322设置在底部103,并且使得风冷通道31还能够经过第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项即可,本申请对此不作具体限制。
在上述实现中,在底部103处增设第二进风口322之后,风冷通道31不仅会经过第一冷凝器201和第二冷凝器601,还同时会经过第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项。这样就使得风冷组件30不仅能够对第一冷凝器201和第二冷凝器601进行风冷散热,还能同时对第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项中的任意两项进行散热,可以有效提升散热系统100 的散热效率。
在一些可行的实现方式中,请参见图17,图17是本申请实施例提供的一种散热系统又一结构示意图。如图17所示,风冷组件30还包括第一风扇34,风冷组件30的出风口32可包括第一出风口331。进风口32设置在散热腔体10的底部103处(图17中假设进风口32只有一个,并且设置在第一侧面1011上)。第一出风口331设置在散热腔体10的顶部102处(图17中假设第一出风口331只有一个,并且设置在第三侧面1013上)。第一风扇34设置在第一冷凝器201朝向该第一出风口331的一侧。在散热腔体10的第一空腔104与第二空腔105之间还设置有第一挡风板90。其中,上述第一空腔104为散热腔体10包含的位于第一冷凝器201朝向出风口33一侧的部分空腔(也可以说,该第一空腔104为第一冷凝器201与第三侧面1013之间的部分空腔)。在第一功率腔体40背向第一蒸发器202且朝向第三侧面1013设置的场景下,上述第二空腔为散热腔体10包含的位于第一功率腔体40背向第二液冷组件60的一侧的部分空腔(也可以说,该第二空腔105为第一功率腔体40与第三侧面1013之间的部分空腔)。在第一蒸发器202背向第一功率腔体40且朝向第三侧面1013设置的场景下,上述第二空腔为散热腔体10包含的位于第一蒸发器202背向第二液冷组件60的一侧的部分空腔(也可以说,该第二空腔105为第一蒸发器202与第三侧面1013之间的部分空腔)。该第一挡风板90主要用于阻挡该第一空腔104与第二空腔105之间通风,这样可以避免第一风扇34将第二空腔105内的空气吹向第一出风口331,从而保证风冷通道31中的气流能够充分接触第一液冷组件20和/或第一功率腔体40,这样就可以保证风冷组件30的散热效率。
实际工作时,第一风扇34可以向第一出风口331处吹风,从而通过风冷通道31将进风口32进入的气流带向第一出风口331处,并经过第一出风口331吹向散热腔体10的外部。在第一功率腔体40背向第一蒸发器202且朝向第三侧面1013设置的场景下(即图17所示结构),风冷通道31会经过第一冷凝器201和第一蒸发器202,风冷通道31中的气流即可将第一冷凝器201和第一蒸发器202的热量带向散热腔体10的外部散掉,从而实现对第一功率器件50的风冷散热。在第一蒸发器202背向第一功率腔体40且朝向第三侧面1013设置的场景下,风冷通道31会经过第一冷凝器201和第一功率腔体40,风冷通道31中的气流即可将第一冷凝器201和第一功率腔体40的热量带向散热腔体10的外部散掉,从而实现对第一功率器件50的风冷散热。
在上述实现中,将进风口32设置在底部103处,将第一出风口33设置在顶部102处,将第一风扇34设置在第一冷凝器201朝向第一出风口331的一侧,这样可以使得风冷通道31能够经过第一液冷组件20和/或第一功率腔体40,从而可以实现针对第一功率器件50的高效散热。并且,由于进风口32和第一出风口331之间存在一定的高度差,这样就可以利用该高度差对风冷通道31中流动的气流进行除尘,从而使得进入第一冷凝器201中的灰尘大幅减少,可以进一步延长第一冷凝器201的维护时间,降低散热系统100的维护成本。此外,将第一风扇34设置在第一冷凝器201的侧面,还可以减小散热腔体10的高度,提升散热系统100的适用性。
这里需要说明的是,图17仅是示例性的表述了进风口32和第一出风口331的个数以及具体位置。而在实际实现中,进风口32也可以是多个,其也可以设置第一侧面1011、第二侧面1012、第三侧面1013以及第四侧面1014中的一个或者多个上。第一出风口331也可以是一个或者更多个,其也可以设置第一侧面1011、第二侧面1012、第三侧面1013以及第四侧面1014中的一个或者多个上。简而言之,在实际实现时,只要保证第一出风口331设置在顶部102处,进风口32设置在顶部102处,保证风冷通道31能够经过第一液冷组件20和/ 或第一功率腔体40即可,本申请对此不作具体限制。
在一种可选的实现方式中,结合图17所示的风冷组件30的结构,请进一步参见图18,图18是本申请实施例提供的一种散热系统又一结构示意图。如图18所示,该散热系统100还包括第二液冷组件60以及第二功率腔体70和第二功率器件80。其中,该第二液冷组件60的结构和第一液冷组件20的结构可以相同。上述风冷组件30还包括第二风扇35,上述出风口33还包括第二出风口332。所述第二液冷组件60的第二冷凝器601设置在第一冷凝器201背向第一风扇34的一侧(也可以理解为第一冷凝器201朝向第一侧面1011的一侧)。上述第二功率腔体70和第二液冷组件60的第二蒸发器602相接触,并且二者设置在第二冷凝器601的下方。上述第二功率器件80设置在第二功率腔体70的内部,上述第二风扇35位于第二冷凝器601背向第一冷凝器201的一侧,上述第二出风口332设置在散热腔体10的顶部102处(应理解,图18中是以第二出风口332的个数为2个并且分别设置在第一侧面1011和第三侧面1013上为例示出的)。这里,第二液冷组件60的内部结构,以及,第二液冷组件60、第二功率腔体70、第二功率器件80之间的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20、第一功率腔体40、第一功率器件50之间的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
此外,在所述散热腔体10的第三空腔106与第四空腔107之间设置有第二挡风板91。其中,上述第三空腔106为散热腔体10包含的位于第二冷凝器601朝向第二出风口332一侧的部分空腔(也可以说,该第三空腔106为第二冷凝器601与第一侧面1011之间的部分空腔)。在第二功率腔体70背向第二蒸发器602且朝向第一侧面1011设置的场景下,上述第四空腔107为散热腔体10包含的位于第二功率腔体70背向第一液冷组件20的一侧的部分空腔(也可以说,该第四空腔107为第二功率腔体70与第一侧面1011之间的部分空腔)。在第二蒸发器602背向第二功率腔体70且朝向第一侧面1011设置的场景下,上述第四空腔107为散热腔体10包含的位于第二蒸发器602背向第一液冷组件20的一侧的部分空腔(也可以说,该第四空腔107为第二蒸发器602与第一侧面1011之间的部分空腔)。该第二挡风板91主要用于阻挡第三空腔106和第四空腔107之间通风,这样可以避免第二风扇35将第四空腔107内的空气吹向第二出风口332,从而保证风冷通道31中的气流能够充分接触第二液冷组件60和/或第二功率腔体70,这样就可以进一步保证风冷组件30的散热效率。
实际工作时,第二风扇35可以向第二出风口332处吹风,从而通过风冷通道31将进风口32进入的气流带向第二出风口332处,并经过第二出风口332吹向散热腔体10的外部。在第二功率腔体70背向第二蒸发器602且朝向第一侧面1011设置的场景下,风冷通道31还会经过第二功率腔体70和第二冷凝器601,风冷通道31中的气流还可将第二功率腔体70和第二冷凝器601的热量带向散热腔体10的外部散掉,从而实现对第二功率器件80的风冷散热。在第二蒸发器602背向第二功率腔体70且朝向第一侧面1011设置的场景下,风冷通道31还会经过第二冷凝器601和第二蒸发器602,风冷通道31中的气流还可将第二冷凝器601和第二蒸发器602的热量带向散热腔体10的外部散掉,从而实现对第二功率器件80的风冷散热。
这里需要说明是的,图18中仅是示例性的表述了第二出风口332的个数和具体位置。在实际实现中,第二出风口332也可以是多个,并且其也可以设置在第一侧面1011、第二侧面1012和第四侧面1014中的任意一个或者多个上。简而言之,在实际实现时,只要保证第二出风口332设置在顶部102处,并且使得风冷通道31能够同时经过第一液冷组件20、第一功率腔体40、第二液冷组件60以及第二功率腔体70中任意两项即可,本申请对此不作具体 限制。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第二液冷组件60,并且增加了第二风扇35和第二出风口332,这样就可以使得散热系统100能够同时通过第一液冷组件20、风冷组件30以及第二液冷组件60为第一功率器件50和第二功率器件80进行更加有效的散热,从而使得散热系统100的负载能力更大,散热能力更强。同时,将第一风扇34和第二风扇35均设置在冷凝器的外侧,在降低散热系统100的高度同时也可便于风扇的后期维护。
在一些可行的实现方式中,请参见图19,图19是本申请实施例提供的一种散热系统又一结构示意图。如图19所示,上述风冷组件30还可包括第一风扇34,进风口32可包括第一进风口321。该第一风扇34设置在顶部102处,并且位于第一冷凝器201的上方。该第一进风口321也设置在顶部102处,并且位于第一冷凝器201的侧面。应理解,图19中是以第一进风口321有两个且分别设置在第一冷凝器201朝向第一侧面1011和第三侧面1013的一面为例示出的。上述出风口33设置在第一进风口32的上方,并且位于第一风扇34的侧面。应理解,图19中是以出风口33有两个且分别设置在第一风扇34朝向第一侧面1011和第三侧面1013的一面为例示出的。
实际工作时,第一风扇34可以向出风口33处吹风,从而通过风冷通道31将第一进风口321进入的气流带向出风口33处,并经过出风口33吹向散热腔体10的外部。由于风冷通道31经过第一冷凝器201,所以风冷通道31中流动的气流即可以将第一冷凝器201的热量带到散热腔体100的外部散掉,从而间接实现对第一功率器件50的风冷散热。
这里需要说明的是,图19中仅是示例性的表述了出风口33和第一进风口321的个数以及具体位置。在实际实现中,出风口33也可以是一个或者更多个,并且其也可以设置在第一侧面1011、第二侧面1012、第三侧面1013和第四侧面1014中的任意一个或者多个上。同样的,第一进风口321也可以是一个或者更多个,并且其也可以设置在第一侧面1011、第二侧面1012、第三侧面1013和第四侧面1014中的任意一个或者多个上。也就是说,在实际实现时,只要保证第一进风口321和出风口33设置在顶部102处,并且风冷通道31能够经过第一冷凝器201即可,本申请对出风口33和第一进风口321的个数以及具体位置不作限定。
在上述实现中,将第一风扇34设置在第一冷凝器201的上方,将第一进风口321设置在第一冷凝器201的侧面,将出风口33设置在第一风扇34的侧面,这样可以使得风冷通道31中的气流能够充分接触第一冷凝器201,能够实现针对第一冷凝器201的高效风冷散热。并且,这样的结构也能便于第一风扇34的后期维护。
可选的,结合图19所示的风冷组件30的结构,请进一步参见图20,图20是本申请实施例提供的一种散热系统又一结构示意图。如图20所示,该散热系统100还可包括第二液冷组件60以及第二功率腔体70和第二功率器件80。其中,该第二液冷组件60的结构和第一液冷组件20的结构可以相同。第二液冷组件60具体可包括第二冷凝器601、第二蒸发器602以及第二导热结构603。其中,第二冷凝器601和第二蒸发器602通过第二导热结构603相连通。第二冷凝器601设置在所述散热腔体102的顶部102处,并且位于第一冷凝器201的一侧(也可以说,位于第一冷凝器201朝向第一侧面1011或者第三侧面1013的一侧,图20即是以第二冷凝器601位于第一冷凝器201朝向第三侧面1013的一侧为例示出的)。这样就使得风冷通道31还会经过第二冷凝器601。上述第二功率器件80设置在上述第二功率腔体70的内部,上述第二功率腔体70与第二蒸发器602相接触。此外,上述第二功率腔体70和上述第二蒸发器602均设置在第二冷凝器601的下方。这里,第二液冷组件60的内部结构, 以及,第二液冷组件60、第二功率腔体70、第二功率器件80之间的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20、第一功率腔体40、第一功率器件50之间的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
在实际工作时,第二液冷组件60可用于对第二功率器件80进行液冷散热,其具体工作过程可参见前文针对第一液冷组件20的工作过程的描述,此处便不再赘述。此外,在第一风扇34正常工作时,由第一进风口323进入的气流还会经过第二冷凝器601,从而通过该气流将第二冷凝器601的热量带向散热腔体10的外部散掉,以实现对第二功率器件80的风冷散热。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第二液冷组件60,这样就可以使得散热系统100能够同时通过第一液冷组件20、风冷组件30以及第二液冷组件60为第一功率器件50和第二功率器件80进行散热,使得散热系统100的负载能力更大,可提升散热系统100的散热能力。
进一步的,请参见图21,图21是本申请实施例提供的一种散热系统又一结构示意图。如图21所示,上述进风口32还可包括第二进风口322。其中,该第二进风口322设置在底部103处。应理解,图21中是以第二进风口324有两个,并且分别设置在第一侧面1011和第三侧面1013上为例示出的。这样就可以使得散热腔体10外部的气流还能够通过第二进风口322进入到散热腔体10的内部,并且在第一风扇34的作用下,吹过第一蒸发器202、第一功率腔体40、第二蒸发器602以及第二功率腔体70中的任意两项,并最终经过出风口33回到散热腔体10的外部。
实际工作时,当第一蒸发器202背向第一功率腔体40且朝向第一侧面1011,第二蒸发器602背向第二功率腔体70且朝向第三侧面1013设置时,上述风冷通道31还会经过第一功率腔体40和第二功率腔体70。由第二进风口322进入的气流在第一风扇34的作用下会吹过第一功率腔体40和第二功率腔体70,以将第一功率腔体40和第二功率腔体70带向散热腔体的外部散掉,从而间接实现对第一功率器件50和第二功率器件80的风冷散热。
当第一蒸发器202背向第一功率腔体40且朝向第一侧面1011,第二功率腔体70背向第二蒸发器602且朝向第三侧面1013设置时,上述风冷通道31还会经过第一功率腔体40和第二蒸发器602。由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一功率腔体40和第二蒸发器602,以将第一功率腔体40和第二蒸发器602带向散热腔体的外部散掉,从而间接实现对第一功率器件50和第二功率器件80的风冷散热。
当第一功率腔体40背向第一蒸发器202且朝向第一侧面1011,第二功率腔体70背向第二蒸发器602且朝向第三侧面1013设置时,风冷通道31还会经过第一蒸发器202和第二蒸发器602。由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一蒸发器202和第二蒸发器602,以将第一蒸发器202和第二蒸发器602带向散热腔体的外部散掉,从而间接实现对第一功率器件50和第二功率器件80的风冷散热。
当第一功率腔体40背向第一蒸发器202且朝向第一侧面1011,第二蒸发器602背向第二功率腔体70且朝向第三侧面1013设置时,风冷通道31还会经过第一蒸发器202和第二功率腔体70。由第二进风口322进入的气流在第一风扇34的作用下会吹过上述第一蒸发器202和第二功率腔体70,以将第一蒸发器202和第二功率腔体70带向散热腔体的外部散掉,从而间接实现对第一功率器件50和第二功率器件80的风冷散热。
同样的,图21中也仅是示例性的表述了第二进风口322的个数及具体位置。在实际实现中,第二进风口322也可以是一个或者更多个,并且其也可以设置在第一侧面1011、第二侧 面1012、第三侧面1013和第四侧面1014中的任意一个或者多个上。也就是说,在图21所示的框架下,只要保证第二进风口324设置在底部103处,第一进风口323和出风口33设置在顶部102处,并且风冷通道31在经过第一冷凝器201和第二冷凝器601的同时,还经过第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项即可,此处对第二进风口324的个数及具体位置不作限定。
在上述实现中,在底部103处增设第二进风口324之后,风冷通道31不仅会经过第一冷凝器201和第二冷凝器601,还同时会经过第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项。这样的话,风冷组件30不仅能够对第一冷凝器201和第二冷凝器601进行风冷散热,还能同时对第一蒸发器202、第二蒸发器602、第一功率腔体40以及第二功率腔体70中的任意两项进行散热,可以有效提升散热系统100的散热效率。
进一步的,请参见图22,图22是本申请实施例提供的一种散热系统又一结构示意图。如图22所示,该散热系统100还可包括第三液冷组件120以及第三功率腔体130和第三功率器件140。其中,该第三液冷组件120的结构和第一液冷组件20的结构可以相同。该第三液冷组件120具体可包括第三冷凝器1201、第三蒸发器1202以及第三导热结构1203。其中,第三冷凝器1201和第三蒸发器1202通过第三导热结构1203相连通。第三冷凝器1201设置在上述第一液冷组件20的下方,并且位于第二进风口322的上方(也可以理解为,整个第三液冷组件120和第三功率腔体130是位于第一液冷组件的下方),这样就可以使得风冷通道31还会经过第三冷凝器1201以及所述第三蒸发器1202或者所述第三功率腔体130。所述第三功率腔体130和所述第三液冷组件120的第三蒸发器1202相接触,所述第三功率器件140设置在所述第三功率腔体130的内部。此外,上述第三功率腔体130和上述第三蒸发器1202均设置在第三冷凝器1201的下方。这里,第三液冷组件120的内部结构,以及,第三液冷组件120、第三功率腔体130、第三功率器件140之间的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20、第一功率腔体40、第一功率器件50之间的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
实际工作时,第三液冷组件120可用于对第三功率器件140进行液冷散热,其具体工作过程可参见前文针对第一液冷组件20的工作过程的描述,此处便不再赘述。此外,在第三功率腔体130背向第三蒸发器1202且朝向第一侧面1011设置的情况下,风冷通道31还会经过第三冷凝器1201和第三蒸发器1202,所以风冷通道31中的气流还可用于将第三冷凝器1201和第三蒸发器1202的热量带向散热腔体10的外部散掉,从而实现对第三功率器件140的风冷散热。而在第三蒸发器1202背向第三功率腔体130且朝向第一侧面1011设置的情况下,风冷通道31还会经过第三冷凝器1201和第三功率腔体130,所以风冷通道31中的气流还可用于将第三冷凝器1201和第三功率腔体130的热量带向散热腔体10的外部散掉,从而实现对第三功率器件140的风冷散热。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第三液冷组件120,并且二者以层叠结构放置在散热腔体10的内部。一方面,这样的结构设计能够使得散热腔体10的内部空间得到有效的利用。另一方面也使得散热系统100能够结合第一液冷组件20、风冷组件30、第二液冷组件60以及第三液冷组件120为第一功率器件50、第二功率器件80和第三功率器件140进行散热,可进一步提升散热系统100的负载能力。
进一步的,请继续参见图22。如图22所示,上述进风口32还可包括第三进风口323。该第三进风口323设置在第一进风口321的下方,并且位于第三冷凝器1201的侧面。应理解,图22中是以第三进风口323有两个且分别设置在第三冷凝器1201朝向第一侧面1011和第三 侧面1013的一面为例示出的。
实际工作时,第一风扇34还可以通过风冷通道31将第三进风口323进入的气流带向出风口33处,并最终经过出风口33吹向散热腔体10的外部。这样就可以进一步增加风冷通道31的进风量,提升风冷组件30的散热能力,进而提升散热系统100的散热效率。
同样的,图22中也仅是示例性的表述了第三进风口323的个数及具体位置。在实际实现中,第三进风口323也可以是一个或者更多个,并且其也可以设置在第一侧面1011、第二侧面1012、第三侧面1013和第四侧面1014中的任意一个或者多个上。也就是说,在图22所示的框架下,只要保证第三进风口323设置第三冷凝器1201的侧面即可,此处对第三进风口323的个数及具体位置不作限定。
在一些可行的实现方式中,请参见图23,图23是本申请实施例提供的一种散热系统又一结构示意图。如图23所示,上述风冷组件30还可包括第一风扇34。进风口32可设置在顶部102处,并且位于第一冷凝器201的侧面(应理解,图23中是以进风口32有两个,并且分别设置在第一侧面1011和第三侧面1013上为例示出的)。上述出风口33和第一风扇34可以设置在底部103处,并且均位于第一液冷组件20的下方(应理解,图23中是以出风口33有两个,并且分别设置在第一侧面1011和第三侧面1013上为例示出的)。在这样的结构下,当第一蒸发器202背向第一功率腔体40且朝向第一侧面1011设置时(即图23所示的结构),上述风冷通道31会经过第一冷凝器201和第一功率腔体40。而在第一功率腔体40背向第一蒸发器202且朝向第一侧面1011设置时,风冷通道31即会经过第一冷凝器201和第一蒸发器202。
实际工作时,第一风扇34可以向出风口33处吹风,从而通过风冷通道31将进风口32进入的气流带向出风口33处,并经过出风口33吹向散热腔体10的外部。当风冷通道31经过第一冷凝器201和第一功率腔体40时,风冷通道31中气流即可以将第一冷凝器201和第一功率腔体40的热量带到散热腔体100的外部散掉,从而实现对第一功率器件50的风冷散热。当风冷通道31经过第一冷凝器201和第一蒸发器202时,风冷通道31中气流即可以将第一冷凝器201和第一蒸发器202的热量带到散热腔体100的外部散掉,从而实现对第一功率器件50的风冷散热。
在上述实现中,将第一风扇34和出风口33设置在第一液冷组件20的下方,将进风口32设置在第一冷凝器201的侧面,这样的话风冷通道31就可以在经过第一冷凝器102同时还经过第一功率腔体40或者第一蒸发器202,从而使得风冷组件30不仅能够对第一冷凝器201进行散热,还可同时对第一功率腔体40或者第一蒸发器202进行散热,可提升散热系统100的散热效率。
可选的,结合图23所示的风冷组件30的结构,请进一步参见图24,图24是本申请实施例提供的一种散热系统又一结构示意图。如图24所示,该散热系统100还可包括第二液冷组件60以及第二功率腔体70和第二功率器件80。其中,该第二液冷组件60的结构和第一液冷组件20的结构可以相同。第二液冷组件60具体可包括第二冷凝器601、第二蒸发器602以及第二导热结构603。其中,第二冷凝器601和第二蒸发器602通过第二导热结构603相连通。第二冷凝器601设置在所述散热腔体102的顶部102处,并且位于第一冷凝器201的侧面(也可以说,位于第一冷凝器201朝向第一侧面1011或者第三侧面1013的一侧,图24即是以第二冷凝器601位于第一冷凝器201朝向第三侧面1013的一侧为例示出的)。上述第二功率器件80设置在上述第二功率腔体70的内部,上述第二功率腔体70与第二蒸发器602相接触。此外,上述第二功率腔体70和上述第二蒸发器602均设置在第二冷凝器601的下方。 这里,第二液冷组件60的内部结构,以及,第二液冷组件60、第二功率腔体70、第二功率器件80之间的相对位置关系与前文描述的第一液冷组件20的内部结构,以及,第一液冷组件20、第一功率腔体40、第一功率器件50之间的相对位置关系是相同的,可一并参加前文,此处便不再赘述。
可以理解到的是,当第二蒸发器602背向第二功率腔体70且朝向第三侧面1013设置时(即图24所示的结构),上述风冷通道31还可经过第二冷凝器601和第二功率腔体70。而在第二功率腔体70背向第二蒸发器602且朝向第三侧面1013设置时,风冷通道31还会经过第二冷凝器601和第二蒸发器602。
实际工作时,第二液冷组件60可用于对第二功率器件80进行液冷散热,其具体工作过程可参见前文针对第一液冷组件20的工作过程的描述,此处便不再赘述。此外,在第一风扇34正常工作时,在风冷通道31还经过第二冷凝器601和第二功率腔体70的情况下,风冷通道31中的气流还可用于将第二冷凝器601和第二功率腔体70的热量带到散热腔体100的外部散掉,从而实现对第二功率器件80的风冷散热。而在风冷通道31还经过第二冷凝器601和第二蒸发器602的情况下,风冷通道31中的气流还可用于将第二冷凝器601和第二蒸发器602的热量带到散热腔体100的外部散掉,从而实现对第二功率器件80的风冷散热。
在上述实现中,在散热腔体10内部还设置有与第一液冷组件20结构相同的第二液冷组件60,这样就可以使得散热系统100能够同时通过第一液冷组件20、风冷组件30以及第二液冷组件40为第一功率器件50和第二功率器件80进行散热,使得散热系统100的负载能力更大,可提升散热系统100的散热能力。
这里需要说明的是,图23和图24中仅是示例性的表述了出风口33和进风口32的个数以及具体位置。在实际实现中,出风口33也可以是一个或者更多个,并且其也可以设置在第一侧面1011、第二侧面1012、第三侧面1013和第四侧面1014中的任意一个或者多个上。同样的,进风口32也可以是一个或者更多个,并且其也可以设置在第一侧面1011、第二侧面1012、第三侧面1013和第四侧面1014中的任意一个或者多个上。也就是说,在图23或者图24所示的系统框架下,只要保证第一风扇34和出风口33设置在底部103处,进风口32设置在顶部102处,并且风冷通道31能够经过第一液冷组件20、第二液冷组件60、第一功率腔体40和第二功率腔体70中的一项或者多项即可,此处对出风口33和进风口32的个数以及具体位置不作限定。
在一些可行的实现方式中,请参见图25,图25是本申请实施例提供一种应用场景示意图。如图25所示,上述散热系统100和另个散热系统300堆叠在一起使用,并且散热系统100位于散热系统300的上方。在这样的工作场景下,散热系统100的进风口(如前文所述的进风口32)与散热系统300的出风口应该尽量远离。如图25所示的,假设散热系统100的进风口设置在散热系统100的底部,则散热系统300的出风口也应该设置在散热系统300的底部,这样就可以避免散热系统100的进风口流入的是散热系统300的出风口所吹出的热风,从而避免散热系统100的散热效率被散热系统300所影响。这里,散热系统300的内部结构可以与散热系统100相同,也可以和散热系统100不同,此处不作限定。例如,当散热系统100的内部结构如图21所示是,散热系统300的内部结构即可如图23所示,这样就可以避免散热系统100的散热效率被散热系统300所影响。
需要补充说明的是,在实际实现时,本申请实施例所涉及的散热腔体、冷凝器、蒸发器以及功率腔体的形状都可以为长发体、正方体或者圆柱体等,这些结构的形状可以根据实际应用需求来决定,本申请对此不作限制。本申请实施例所涉及的冷却工质,其也可以称为冷 却液,其具体可以为水、氮化液等,本申请对此不作具体限制。本申请实施例所涉及的导热结构(如第一导热结构203、第二导热结构603等)具体可以为虹吸热管、重力热管、回路热管或者其他结构的高导热部件,这些导热结构的类型可根据实际设计需求进行选择,本申请对此不作具体限制。本申请实施例所涉及的风扇(如前文所述第一风扇34和第二风扇35)具体可以为离心风扇、轴流风扇、灌流风扇等,这些风扇的类型可根据实际设计需求进行选择,本申请对此不作具体限制。
这里还需要补充说明的是,在上述实施例中,某一可选实现方式中针对某一技术特征的具体描述也可应用于解释其他可选方式中提及的对应的技术特征。例如,前文基于图5和图6说明了第一功率腔体40的壳体401上可长有散热齿402,并且第一功率器件50可包括多个子功率器件,这种特征同样适用于后文针对第二功率腔体70、第三功率腔体130、第二功率器件80、第三功率器件140的描述。也就是说,在上述实施例中,散热系统100中各器件或者模块的不同的具体结构可以相互组合,而这些相互组合得到的方案均应视为本申请的保护范围之内。
本申请实施例还提供了一种利用上述散热系统100进行散热的供电系统。请参见图26,图26是本申请实施例提供一种供电系统的结构示意图。如图26所示,该供电系统500可包括电源510、前文所述的散热系统100和负载520。其中,散热系统100中的功率器件1000(如前文所述的第一功率器件50、第二功率器件80等)分别与电源510以及负载520相连接。实际工作时,功率器件1000可以用于将电源510提供的初始电能转换成目标电能。这里,目标电能的电流值和电压值的大小可以为预设值。然后,功率器件1000可以通过目标电能为所述负载520进行供电。
这里需要说明的是,在实际使用中,上述负载520具体可以为电动汽车、机器人、电力叉车等用电设备,上述散热系统100具体可以为充电桩、充电站等供电设备。
本申请实施例还提供了一种利用上述散热系统100进行散热的充电桩。请参见图27,图27是本申请实施例提供的一种充电桩的结构示意图。如图27所示,该充电桩700包括第一电接口710、第二电接口720以及前文所述的散热系统100。其中,散热系统100中的功率器件1000(如前文所述的第一功率器件50、第二功率器件80等)分别与第一电接口710以及第二电接口720相连接。实际工作时,散热系统100用于对功率器件1000进行散热。功率器件1000用于将第一电接口710输入的初始电能转换成目标电能,并通过第二电接口720输出该目标电能。这里,目标电能的电流值和电压值的大小可以为预设值。第一电接口710以及第二电接口720可以为一个或者多个,本申请对此不作具体限制。
在一种可选的实现方式中,上述功率器件1000具体可以为DC/DC变换模块或者AC/DC变换模块。
在一种可选的实现方式中,如图27所示,上述第一电接口710可以连接电源730,以从电源730处获取初始电能。上述第二电接口720可以连接负载740,以通过目标电能为负载供电。
在一种可选的实现方式中,上述电源730具体可以为交流电网、光伏阵列等。上述负载740具体可以为电动汽车、机器人、电力叉车等用电设备。
本申请实施例中,在散热系统100的散热腔体10内集成了液冷组件和风冷组件,将会产生热量的功率器件放置在与液冷组件直接接触的功率腔体内部,将风冷组件对应的风冷通道设计为可经过液冷组件和/或功率腔体的形式。这样就可通过液冷组件和风冷组件同时对功率器件进行散热,可以使得散热系统100的散热效率较高。并且,还采用功率腔体对功率器件 进行防护,可以有效避免功率器件因环境等因素发生故障,在提升散热系统的可靠性的同时也可以降低后期的维护成本。所以,本申请提供的散热系统100的适用性强,采用该散热系统100,可以有效的解决现有散热系统存在的散热效率不高、可靠性差、维持成本高的问题。
在本申请所提供的实施例中,应该理解到,所揭露的系统、装置或者方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (25)

  1. 一种散热系统,其特征在于,所述散热系统包括散热腔体、第一液冷组件、风冷组件、第一功率腔体以及第一功率器件,所述第一液冷组件和所述第一功率腔体设置在所述散热腔体内部,所述第一功率器件设置在所述第一功率腔体内部,所述第一功率腔体与所述第一液冷组件相接触,所述散热腔体上设置有所述风冷组件的进风口和出风口,连通于所述进风口和所述出风口之间的风冷通道中的气流经过所述第一液冷组件和/或所述第一功率腔体;
    所述第一液冷组件和所述风冷组件用于对所述第一功率器件进行散热。
  2. 根据权利要求1所述的散热系统,其特征在于,所述第一液冷组件包括第一冷凝器、第一蒸发器和第一导热结构,所述第一冷凝器设置在所述散热腔体的顶部,所述第一蒸发器和所述第一功率腔体相接触,并且设置在所述第一冷凝器的下方;
    所述第一导热结构连通所述第一蒸发器和第一所述冷凝器构成循环回路,所述循环回路中循环流通的冷却工质用于将所述第一蒸发器的热量带向所述第一冷凝器。
  3. 根据权利要求2所述的散热系统,其特征在于,所述第一功率腔体与所述第一蒸发器不接触的表面上设置有散热齿。
  4. 根据权利要求2或3所述的散热系统,其特征在于,所述风冷组件还包括第一风扇,所述进风口和所述第一风扇设置在所述散热腔体的底部并且位于所述第一液冷组件的下方,所述出风口设置在所述散热腔体的顶部;
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一功率腔体的热量带到所述散热腔体的外部;或者,
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部。
  5. 根据权利要求4所述的散热系统,其特征在于,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件,所述第二液冷组件的第二冷凝器设置在所述散热腔体的顶部并且位于所述第一液冷组件的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部;
    所述风冷通道中的气流还经过所述第二冷凝器和所述第二功率腔体,以将所述第二冷凝器和所述第二功率腔体的热量带到所述散热腔体的外部;或者,
    所述风冷通道中的气流还经过所述第二冷凝器和所述第二蒸发器,以将所述第二冷凝器和所述第二蒸发器的热量带到所述散热腔体的外部。
  6. 根据权利要求2或3所述的散热系统,其特征在于,所述风冷组件还包括第一风扇,所述进风口设置在所述散热腔体的底部并且位于所述第一液冷组件的第一侧,所述出风口设置在所述散热腔体的顶部并且位于所述第一液冷组件的与所述第一侧相对的第二侧,所述第一风扇设置在所述第一液冷组件的第一侧;
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一功率腔体的热量带到所述散热腔体的外部;或者,
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部。
  7. 根据权利要求6所述的散热系统,其特征在于,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件,所述第二液冷组件的第二冷凝器设置在所述第一冷凝器朝向所述出风口的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部;
    所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带向所述散热腔体的外部。
  8. 根据权利要求2或3所述的散热系统,其特征在于,所述风冷组件还包括第一风扇,所述进风口包括第一进风口,所述第一进风口、所述出风口和所述第一风扇设置在所述散热腔体的顶部,所述第一进风口设置在所述第一冷凝器的第一侧,所述第一风扇设置在所述第一冷凝器的与所述第一侧相对的第二侧,所述出风口设置在所述第一风扇背向所述第一冷凝器的一侧;
    所述第一风扇用于通过所述风冷通道将所述第一进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器,以将所述第一冷凝器的热量带到所述散热腔体的外部。
  9. 根据权利要求8所述的散热系统,其特征在于,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件,所述第二液冷组件的第二冷凝器设置在所述第一风扇朝向所述出风口的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部;
    所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带到所述散热腔体的外部。
  10. 根据权利要求8所述的散热系统,其特征在于,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件,所述第二液冷组件的第二冷凝器设置在所述第一冷凝器背向所述出风口的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内;
    所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带到所述散热腔体的外部。
  11. 根据权利要求10所述的散热系统,其特征在于,在所述散热腔体的第一空腔与第二空腔之间设置有第一挡风板,所述第一挡风板用于阻挡所述第一空腔和所述第二空腔之间通风;
    其中,所述第一空腔为所述散热腔体包含的位于所述第一冷凝器朝向所述出风口一侧的 空腔,所述第二空腔为所述散热腔体包含的位于所述第一功率腔体或者所述第一蒸发器背向所述第二液冷组件一侧的空腔。
  12. 根据权利要求2或3所述的散热系统,其特征在于,所述风冷组件还包括第一风扇,所述出风口包括第一出风口,所述进风口设置在所述散热腔体的底部,所述第一出风口设置在所述散热腔体的顶部,所述第一风扇设置在所述第一冷凝器朝向所述第一出风口的一侧,在所述散热腔体的第一空腔与第二空腔之间设置有第一挡风板,所述第一挡风板用于阻挡所述第一空腔和所述第二空腔之间通风,所述第一空腔为所述散热腔体包含的位于所述第一冷凝器朝向所述第一出风口的一侧的空腔,所述第二空腔为所述散热腔体包含的位于所述第一功率腔体或者所述第一蒸发器背向所述第二液冷组件的一侧的空腔;
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第一出风口,所述风冷通道中的气流经过所述第一冷凝器和第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部;或者,
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第一出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一腔体的热量带到所述散热腔体的外部。
  13. 根据权利要求12所述的散热系统,其特征在于,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件,所述风冷组件还包括第二风扇,所述出风口还包括第二出风口,所述第二液冷组件的第二冷凝器设置在所述第一冷凝器背向所述第一风扇的一侧,所述第二功率腔体和所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部,所述第二风扇位于所述第二冷凝器背向所述第一冷凝器的一侧,所述第二出风口设置在所述散热腔体的顶部,在所述散热腔体的第三空腔与第四空腔之间设置有第二挡风板,所述第二挡风板用于阻挡所述第三空腔和所述第四空腔之间通风,所述第三空腔为所述散热腔体包含的位于所述第二冷凝器朝向所述第二出风口的一侧的空腔,所述第四空腔为所述散热腔体包含的位于所述第二功率腔体和第二蒸发器背向所述第一液冷组件的一侧的空腔;
    所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流还经过所述第二冷凝器和所述第二蒸发器,以将所述第二冷凝器和所述第二蒸发器的热量带到所述散热腔体的外部;或者,
    所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流还经过所述第二冷凝器和所述第二功率腔体,以将所述第二冷凝器和所述第二腔体的热量带到所述散热腔体的外部。
  14. 根据权利要求2或3所述的散热系统,其特征在于,所述风冷组件还包括第一风扇,所述进风口包括第一进风口,所述第一风扇设置在所述第一液冷组件的上方,所述第一进风口设置在所述第一冷凝器的侧面,所述出风口设置在所述第一风扇的侧面;
    所述风扇用于通过所述风冷通道将所述第一进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器,以将所述第一冷凝器的热量带向所述散热腔体的外部。
  15. 根据权利要求14所述的散热系统,其特征在于,所述散热系统还包括第二液冷组件、 第二功率腔体以及第二功率器件,所述第二液冷组件的第二冷凝器设置在所述第一冷凝器的一侧,所述第二功率腔体与所述第二液冷组件的第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部;
    所述风冷通道中的气流还经过所述第二冷凝器,以将所述第二冷凝器的热量带向所述散热腔体的外部。
  16. 根据权利要求9-11或14-15中任一项所述的散热系统,其特征在于,所述风冷组件还包括第二进风口,所述第二进风口设置在所述散热腔体的底部;
    其中,所述第一风扇还用于通过所述风冷通道将所述第二进风口进入的气流带向所述出风口,所述风冷通道中的气流还经过所述第一功率腔体、所述第二功率腔体、所述第一蒸发器和所述第二蒸发器中的任意两项,以将所述第一功率腔体、所述第二功率腔体、所述第一蒸发器和所述第二蒸发器中的任意两项的热量带向所述散热腔体的外部。
  17. 根据权利要求14或15所述的散热系统,其特征在于,所述散热系统还包括第三液冷组件以及第三功率腔体和第三功率器件,所述第三液冷组件的第三冷凝器设置在所述第一液冷组件的下方,所述第三功率腔体和所述第三液冷组件的第三蒸发器相接触,所述第三功率器件设置在所述第三功率腔体内;
    所述风冷通道中的气流还经过所述第三冷凝器和所述第三蒸发器,以将所述第三冷凝器和所述第三蒸发器的热量带到所述散热腔体的外部;或者,
    所述风冷通道中的气流还经过所述第三冷凝器和所述第三功率腔体,以将所述第三冷凝器和所述第三功率腔体的热量带到所述散热腔体的外部。
  18. 根据权利要求17所述的散热系统,其特征在于,所述风冷组件还包括第三进风口,所述第三进风口设置在所述第三冷凝器的侧面。
  19. 根据权利要求2或3所述的散热系统,其特征在于,所述风冷组件还包括第一风扇,所述进风口设置所述第一冷凝器的侧面,所述出风口和所述第一风扇设置在所述散热腔体的底部并且位于所述第一液冷组件的下方,
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和第一蒸发器,以将所述第一冷凝器和所述第一蒸发器的热量带到所述散热腔体的外部;或者,
    所述第一风扇用于通过所述风冷通道将所述进风口进入的气流带向所述出风口,所述风冷通道中的气流经过所述第一冷凝器和所述第一功率腔体,以将所述第一冷凝器和所述第一腔体的热量带到所述散热腔体的外部。
  20. 根据权利要求19所述的散热系统,其特征在于,所述散热系统还包括第二液冷组件以及第二功率腔体和第二功率器件,所述第二液冷组件的第二冷凝器设置在所述第一冷凝器的侧面,所述第二功率腔体和所述第二蒸发器相接触,所述第二功率器件设置在所述第二功率腔体内部;
    所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流还经过所述第二冷凝器和所述第二蒸发器,以将所述第二冷凝器和所述 第二蒸发器的热量带到所述散热腔体的外部;或者,
    所述第二风扇用于通过所述风冷通道将所述进风口进入的气流带向所述第二出风口,所述风冷通道中的气流经过所述第二冷凝器和所述第二功率腔体,以将所述第二冷凝器和所述第二腔体的热量带到所述散热腔体的外部。
  21. 一种供电系统,其特征在于,所述供电系统包括电源、如权利要求1-20任一项所述的散热系统以及负载,其中,所述散热系统中的功率器件分别与所述电源和所述负载相连接,所述散热系统用于为所述功率器件散热,所述功率器件用于将所述电源提供的初始电能转换为目标电能,并通过所述目标电能为所述负载供电。
  22. 一种充电桩,其特征在于,所述充电桩包括第一电接口、第二电接口以及如权利要求1-20任一项所述的散热系统;
    其中,所述散热系统中的功率器件分别与所述第一供电口和所述第二供电口相连接,所述散热系统用于为所述功率器件散热,所述功率器件用于将所述第一电接口输入的初始电能转换为目标电能,并通过所述第二电接口输出所述目标电能。
  23. 根据权利要求22所述的充电桩,其特征在于,所述功率器件为DC/DC变换模块或者AC/DC变换模块。
  24. 根据权利要求22或者23所述的充电桩,其特征在于,所述第一电接口连接电源,所述第二电接口连接负载。
  25. 根据权利要求24所述的充电桩,其特征在于,所述电源为交流电网或者光伏阵列,所述负载为电动汽车或者机器人。
PCT/CN2023/072907 2022-01-30 2023-01-18 一种散热系统、供电系统和充电桩 WO2023143309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114753.X 2022-01-30
CN202210114753.XA CN114630558A (zh) 2022-01-30 2022-01-30 一种散热系统、供电系统和充电桩

Publications (1)

Publication Number Publication Date
WO2023143309A1 true WO2023143309A1 (zh) 2023-08-03

Family

ID=81897696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072907 WO2023143309A1 (zh) 2022-01-30 2023-01-18 一种散热系统、供电系统和充电桩

Country Status (2)

Country Link
CN (1) CN114630558A (zh)
WO (1) WO2023143309A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116834579A (zh) * 2023-08-10 2023-10-03 贵州中南锦天科技有限责任公司 一种高散热效率的分体式直流充电桩

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115923555A (zh) * 2022-11-15 2023-04-07 华为数字能源技术有限公司 终端设备以及供电系统
CN116061750A (zh) * 2023-03-23 2023-05-05 哲弗智能系统(上海)有限公司 重卡换电站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110399022A (zh) * 2019-06-28 2019-11-01 联想(北京)有限公司 电子设备
CN112572198A (zh) * 2019-09-29 2021-03-30 上海度普新能源科技有限公司 一种冷却系统和储能充电桩
CN112954969A (zh) * 2021-02-03 2021-06-11 上海玖热智能科技有限公司 一种紧凑型功率器件散热系统及工作方法
CN214689101U (zh) * 2021-04-30 2021-11-12 江阴市中鼎节能流体科技有限公司 一种新能源汽车充电桩的液冷装置
CN214775425U (zh) * 2021-01-13 2021-11-19 深圳市银宝山新科技股份有限公司 充电桩及充电设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1929850B1 (en) * 2005-08-04 2013-06-19 Liebert Corporation Electronic equipment cabinet with integrated, high capacity, cooling system, and backup ventilation system
CN204578343U (zh) * 2015-05-08 2015-08-19 株洲南车时代电气股份有限公司 大功率变流器柜
CN110871699B (zh) * 2019-11-28 2021-08-31 东莞市牛牛新能源技术有限公司 一种新能源充电桩用循环散热结构及其工作方法
CN213278904U (zh) * 2020-10-10 2021-05-25 天津市津开电力设备制造有限公司 一种改进型发电机控制柜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110399022A (zh) * 2019-06-28 2019-11-01 联想(北京)有限公司 电子设备
CN112572198A (zh) * 2019-09-29 2021-03-30 上海度普新能源科技有限公司 一种冷却系统和储能充电桩
CN214775425U (zh) * 2021-01-13 2021-11-19 深圳市银宝山新科技股份有限公司 充电桩及充电设备
CN112954969A (zh) * 2021-02-03 2021-06-11 上海玖热智能科技有限公司 一种紧凑型功率器件散热系统及工作方法
CN214689101U (zh) * 2021-04-30 2021-11-12 江阴市中鼎节能流体科技有限公司 一种新能源汽车充电桩的液冷装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116834579A (zh) * 2023-08-10 2023-10-03 贵州中南锦天科技有限责任公司 一种高散热效率的分体式直流充电桩
CN116834579B (zh) * 2023-08-10 2023-12-12 贵州中南锦天科技有限责任公司 一种高散热效率的分体式直流充电桩

Also Published As

Publication number Publication date
CN114630558A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023143309A1 (zh) 一种散热系统、供电系统和充电桩
US10462938B2 (en) Inverter power cabinet
US11726534B2 (en) In-vehicle computing apparatus in intelligent vehicle and intelligent vehicle
TWI405945B (zh) 氣冷式熱交換器及其適用之電子設備
CN110996635B (zh) 机箱散热结构
TW201410130A (zh) 大功率機櫃散熱系統及靜止無功補償系統
TWI437951B (zh) 散熱裝置
JP4720688B2 (ja) 電子制御装置の冷却装置
WO2024045981A1 (zh) 一种功率设备及光伏系统
CN219592959U (zh) 一种散热装置及车辆
CN216488262U (zh) 一种汽车用电池散热装置
WO2023039987A1 (zh) 光纤激光器的风冷散热装置及光纤激光器
EP3927127B1 (en) Electrical device using cooling device
CN210624740U (zh) 电器盒组件、室外机及空调器
CN213768940U (zh) 无人机
CN112607017A (zh) 无人机
CN220156945U (zh) 散热组件、电控盒及空调器
CN118174515A (zh) 功率变换设备和储能设备
CN219536639U (zh) 电力电子设备的散热结构、散热风道、电力电子设备
CN220554249U (zh) 一种磁悬浮压缩机电控模块散热装置
CN218570728U (zh) 散热装置和设备
JP3481887B2 (ja) パワーモジュール
CN219017393U (zh) 一种高效散热的电感器
CN214800318U (zh) 一种电力电子设备
CN216355583U (zh) 一种电容柜高效散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746190

Country of ref document: EP

Kind code of ref document: A1