WO2023142760A1 - 基于行星齿轮加速器的双动力压缩机 - Google Patents

基于行星齿轮加速器的双动力压缩机 Download PDF

Info

Publication number
WO2023142760A1
WO2023142760A1 PCT/CN2022/139460 CN2022139460W WO2023142760A1 WO 2023142760 A1 WO2023142760 A1 WO 2023142760A1 CN 2022139460 W CN2022139460 W CN 2022139460W WO 2023142760 A1 WO2023142760 A1 WO 2023142760A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
sun gear
planetary
pulley
drive shaft
Prior art date
Application number
PCT/CN2022/139460
Other languages
English (en)
French (fr)
Inventor
刘达
李昌建
Original Assignee
山东楷晋机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东楷晋机电科技有限公司 filed Critical 山东楷晋机电科技有限公司
Publication of WO2023142760A1 publication Critical patent/WO2023142760A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings

Definitions

  • the invention relates to the technical field of vehicle air-conditioning compressors, in particular to a dual-power compressor based on a planetary gear accelerator.
  • the vehicle air conditioner compressor of the existing fuel vehicle is mechanically driven by a pulley and can only work when the engine is running; in the parking situation, the vehicle is turned off based on the need to save fuel or reduce engine noise, which leads to engine shutdown.
  • the prior art discloses a deceleration clutch mechanism and a motor transmission device for a live dual-drive automotive air-conditioning compressor (application number 2020216552489), including a compressor housing, a pulley, an end cover, and a planetary gear reducer arranged in the compressor housing, A ratchet clutch, a motor and a scroll compression mechanism; the output end of the pulley is connected to the compressor main shaft; the output end of the motor is connected to the compressor main shaft through a planetary gear reducer and a ratchet clutch.
  • the object of the present invention is to provide a dual-power compressor based on a planetary gear accelerator, which solves the disadvantage that the dual-power compressor must use a large-displacement compression mechanism.
  • the present invention provides a dual-power compressor based on a planetary gear accelerator, which includes a compressor housing, a belt mechanism, an end cover and a compression mechanism that compresses fluid by means of rotational motion arranged in the compressor housing 1.
  • the sun gear rotation drive shaft connected to the compression mechanism and the motor mechanism that runs through the sun gear rotation drive shaft;
  • the compression mechanism is connected to the motor mechanism and the wheel belt mechanism through the sun gear rotation drive shaft; wherein, the wheel belt mechanism is connected to the planetary gear accelerator through the input shaft of the planet wheel cage; the wheel belt mechanism includes a pulley and is used to control the pulley rotation electromagnetic clutch;
  • control unit for controlling the tire mechanism, motor mechanism and compression mechanism.
  • the planetary gear accelerator includes a sun gear, a planetary gear, a ring gear, a planetary cage and a planetary cage input shaft; It is connected with the electromagnetic clutch, and the belt pulley drives the input shaft of the planetary wheel cage to rotate after being attracted by the electromagnetic clutch; the sun gear is integrally connected with the rotating drive shaft of the sun gear.
  • the electromagnetic clutch is a friction electromagnetic clutch, including a suction cup, an electromagnetic coil and an elastic element for controlling the suction cup to engage or separate from the pulley; wherein,
  • the pulley is rollingly connected with the compressor casing through the pulley bearing, and the electromagnetic coil is arranged between the pulley and the compressor casing.
  • a suction cup is arranged in the direction parallel to the wheel shaft of the pulley.
  • the input shaft of the planet wheel cage is connected with the suction cup through an elastic element.
  • the motor mechanism is connected to the sun gear rotation drive shaft through a transmission assembly for preventing the rotor of the motor mechanism from reversing, wherein the transmission assembly includes a one-way bearing, a bearing sleeve and a needle bearing, and the one-way bearing , the bearing sleeve and the needle bearing are sequentially sleeved on the sun gear rotation drive shaft.
  • the transmission assembly includes a one-way bearing, a bearing sleeve and a needle bearing, and the one-way bearing , the bearing sleeve and the needle bearing are sequentially sleeved on the sun gear rotation drive shaft.
  • the bearing sleeve includes a sleeve portion and a step portion with a diameter larger than the sleeve portion; the sleeve portion has an outer surface and an inner surface; the output end of the motor mechanism is connected to the outer surface of the sleeve portion; the sun gear rotates the drive shaft
  • the inner surface of the sleeve part is rollingly connected by the needle bearing; the junction of the step part and the sleeve part forms a ring-shaped first stepped surface for abutting against the one-way bearing; the inner ring of the one-way bearing rotates with the sun gear
  • the drive shaft is fixedly connected, and the outer ring of the one-way bearing is fixedly connected to the stepped portion.
  • the belt mechanism is sleeved on the input shaft of the planetary cage covered with the compressor casing, and the compressor casing is rollingly connected with the input shaft of the planetary cage;
  • the motor mechanism includes a stator and a built-in magnetic steel The rotor and the stator are in interference fit with the compressor shell, and the rotor is fixedly connected with the outer surface of the sleeve part of the bearing sleeve.
  • control unit includes a motor controller for controlling the energization of the stator of the motor mechanism so that the stator generates reluctance torque to the rotor of the motor mechanism to prevent the rotor from rotating.
  • control unit further includes an anti-overload module for disengaging the electromagnetic clutch from the pulley when the engine speed exceeds a set speed threshold.
  • control unit further includes a power switching module, and the power switching module is used to switch the motor mechanism as The power source of the compression mechanism.
  • a sprag clutch is also included;
  • the rotating drive shaft of the sun gear is connected to the sun gear of the planetary accelerator through a wedge clutch; when the rotor of the motor mechanism is driven, the needle bearing built in the rotor locks the rotating drive shaft of the sun gear to rotate together, and the wedge clutch is in an unlocked state;
  • the suction cup of the wheel-belt mechanism is connected with the input shaft of the planetary cage of the planetary accelerator.
  • the suction cup of the wheel-belt mechanism attracts and drives the input shaft of the planetary cage to rotate, the wedge clutch is in a locked state, and the needle roller bearing in the rotor of the motor mechanism is unlocked.
  • a wedge clutch, a first bearing and a second bearing are sequentially arranged inside the sun gear;
  • the outer rings of the first bearing and the second bearing are connected with the inner ring of the sun gear
  • the inner ring of the first bearing is connected with the rotating drive shaft of the sun gear;
  • the inner ring of the second bearing is connected with the input shaft of the planet cage;
  • the sun gear rotates the drive shaft to drive the inner ring of the first bearing to rotate, and the outer ring remains stationary; at the same time, the second bearing is also in a static state; when the suction cup of the wheel belt mechanism is attracted
  • the wedge clutch locks the sun gear to rotate the drive shaft, the first bearing rotates with the sun gear; the inner ring of the second bearing rotates with the speed of the input shaft of the planetary cage, and the outer ring of the second bearing follows The rotational speed of the sun gear.
  • a spacer for isolating the first bearing and the second bearing is provided between the first bearing and the second bearing.
  • a dual-power compressor based on a planetary gear accelerator created by the present invention realizes that the compressor has two driving modes by coaxially setting the belt mechanism, the compression mechanism, the sun gear rotating drive shaft and the motor mechanism; Its beneficial effects are as follows:
  • the rotor is stationary when the pulley is driving, which eliminates the phenomenon of reluctance torque loss of engine power caused by the rotation of the rotor, and then realizes the independent operation of the two driving modes, while avoiding It reduces the extra power loss and maximizes the power utilization of the pulley.
  • Fig. 1 is a schematic diagram of the control principle of the dual power compressor based on the planetary gear accelerator described in Embodiment 1 of the invention
  • Fig. 2 is a schematic structural view of a dual-power compressor based on a planetary gear accelerator according to Embodiment 1 of the present invention
  • Fig. 3 is a structural schematic diagram of the control unit of the dual power compressor based on the planetary gear accelerator described in Embodiment 1 of the invention;
  • Fig. 4 is a schematic structural view of a dual-power compressor based on a planetary gear accelerator containing a sprag clutch according to Embodiment 2 of the present invention
  • Fig. 5 is a schematic structural view of the planetary accelerator of the dual power compressor based on the planetary gear accelerator according to Embodiment 2 of the present invention
  • Fig. 6 is an exploded view of the structure of the planetary accelerator of the dual power compressor based on the planetary gear accelerator according to Embodiment 2 of the present invention.
  • connection and “fixed connection” and their variants refer to coaxial and synchronous connections in which two connected components cannot move relative to each other (for example, connections by coupling and connections formed by flat keys) or splines and shafts ring, or a back drive connection (such as a drive connection via gears, pulleys, or sprockets) with a fixed speed ratio.
  • FIG. 1 schematically describes the control principle of the planetary gear accelerator-based dual-power compressor described in this embodiment.
  • Fig. 1 is a schematic diagram of the control principle of the dual-power compressor based on the planetary gear accelerator described in this embodiment of the present invention; , the fuel engine 1 drives the engine pulley 4 to rotate, and the engine pulley 4 is connected with the pulley mechanism 2 through the belt 6 .
  • the control unit 7 controls the fuel engine 1, the motor mechanism 5, and the compression mechanism 3; wherein, the control unit 7 is composed of a hardware part and a software part.
  • the hardware part is a controller with MCU control chip, sensor, which has multiple channels for digital and analog output and input.
  • control unit 7 controls the operation of the entire system through sensing and control devices to collect various variable parameters.
  • the software program achieves the purpose of automatic adjustment and control through the communication protocol.
  • the control unit collects the operating parameters and control parameters of the compressor, the fuel engine 1 and the motor mechanism 5, and outputs control signals according to these parameters, and all components that need to be controlled are connected through signal lines or control lines.
  • the motor mechanism 5 is connected with the compression mechanism 3 through a one-way bearing 101, and the belt mechanism 2 includes a pulley 21 and an electromagnetic clutch 22; the belt mechanism 2 is connected with the compression mechanism 3 through a planetary gear accelerator 11, further, a planetary The gear accelerator 11 is connected with the electromagnetic clutch 22 of the belt and wheel mechanism 2 .
  • the planetary gear mechanism may be a single-row NGW or NW planetary gear mechanism, or a planetary gear mechanism with more than two rows in series.
  • the electromagnetic clutch is used to perform the clutch action in response to the control signal from the control unit.
  • the belt 6 of the fuel engine 1 is in transmission connection with the wheel belt mechanism 2 ; and the wheel belt mechanism 2 is connected with the compression mechanism 3 through a planetary gear accelerator 11 .
  • the power source of the motor mechanism 5 can be a storage battery or other generators installed separately.
  • Fig. 2 describes the schematic structure of the dual power compressor based on the planetary gear accelerator in this embodiment.
  • Fig. 2 is a schematic structural view of the dual power compressor based on the planetary gear accelerator according to the embodiment of the present invention; as shown in Fig. 2,
  • the dual-power compressor system includes a compressor housing 8, a wheel belt mechanism 2, an end cover 9, a compression mechanism 3 that compresses fluid by means of rotational motion, and a sun gear connected to the compression mechanism 3, which are arranged in the compressor housing 8.
  • the rotating drive shaft 31 and the motor mechanism 5 that runs through the sun gear rotating drive shaft 31;
  • the compression mechanism 3 is connected with the motor mechanism 5 and the wheel belt mechanism 2 through the sun wheel rotating drive shaft 31; wherein, the wheel belt mechanism 2 passes through the planetary
  • the type gear accelerator 11 is connected with the sun gear rotation drive shaft 31;
  • the pulley mechanism 2 includes a pulley 21 and an electromagnetic clutch 22 for controlling the pulley rotation of the pulley 21; it also includes a pulley mechanism 2 for controlling, a motor mechanism 5 and a compression mechanism 3 of the control unit 7 .
  • the rotating drive shaft of the sun gear is an eccentric shaft.
  • the planetary gear accelerator 11 includes the sun gear rotation drive shaft 31, the planetary gear 1102, the ring gear 1101, the planetary cage and the planetary gear cage input shaft 1103; the ring gear 1101 and the compressor housing 8 Interference fit, the planetary gear 1102 is connected with the electromagnetic clutch 22 through the input shaft 1103 of the planetary gear cage, and the pulley 21 drives the input shaft 1103 of the planetary gear cage to rotate after being attracted by the electromagnetic clutch 22 .
  • the electromagnetic clutch can be a friction electromagnetic clutch or a cog electromagnetic clutch; the input shaft of the planetary cage is an integral input shaft of the planetary cage.
  • the electromagnetic clutch 22 is a friction electromagnetic clutch, including a suction cup 221, an electromagnetic coil 222 for controlling the attraction between the suction cup 221 and the pulley 21 or separation, an elastic element 223 and a nut 224 for fixing;
  • the pulley 21 is rollingly connected with the compressor casing 8 through the pulley bearing 225
  • the electromagnetic coil 222 is arranged between the pulley 21 and the compressor casing 8
  • a suction cup 221 is arranged in the direction parallel to the wheel shaft of the pulley 21, and the planetary wheel cage input
  • the shaft 1103 is connected with the suction cup 221 through the elastic element 223 .
  • the speed of the fuel engine is 1600-2200r/min during normal driving.
  • the leakage of the scroll fluid must be considered, and the cooling capacity needs to be guaranteed.
  • the pulley compressor needs to be designed with a large displacement of 70cc or even 120cc; when the speed of the fuel engine is constant, the technical effect of increasing the speed of the scroll disk by 3 to 5 times can be achieved by adding a planetary gear accelerator. Cooling capacity, the displacement of the matching compressor can be reduced to 20-35cc.
  • the displacement of the compressor is reduced to 20cc
  • the fuel engine is at idle speed (for example, the fuel engine idle speed is 500rpm
  • the planetary gear accelerator is input at a low speed, and the speed is increased by 3 times through the planetary gear accelerator, so that the scroll wheel The speed reaches 1500rpm)
  • Leakage can also meet the problem of the required cooling capacity.
  • a one-way bearing 101 is provided on the motor mechanism 5 and the sun gear rotation drive shaft 31 .
  • the one-way bearing is the overrunning clutch, also known as the one-way clutch, which can be a wedge-shaped, ratchet-shaped or roller-shaped clutch, etc., wherein the one-way clutch has the best technical performance.
  • the bearing sleeve 102 bears possible axial force.
  • the motor mechanism 5 is connected to the sun gear rotation drive shaft 31 through a transmission assembly 10 for preventing the rotor of the motor mechanism from reversing, wherein the transmission assembly 10 includes a one-way bearing 101, a bearing sleeve 102 and a needle bearing 103 , the one-way bearing 101 , the bearing sleeve 102 and the needle bearing 103 are sequentially sleeved on the sun gear rotation drive shaft 31 .
  • the bearing sleeve 102 includes a sleeve portion 1021 and a step portion 1022 with a diameter larger than the sleeve portion 1021; the sleeve portion 1021 has an outer surface and an inner surface; the output end of the motor mechanism 5 is connected to the outer surface of the sleeve portion 1021; the sun gear rotates
  • the drive shaft 31 is rollingly connected with the inner surface of the sleeve part 1021 through the needle bearing 103; the junction of the step part 1022 and the sleeve part 1021 forms an annular first stepped surface 1023 for abutting against the one-way bearing; one-way
  • the inner ring of the bearing 101 is fixedly connected with the sun gear rotation drive shaft 31 , and the outer ring of the one-way bearing 101 is fixedly connected with the stepped portion 1022 .
  • the improved stepped portion 1022 of this embodiment extends outward to form a ring-shaped second stepped surface (not shown in the figure), and the second stepped surface is connected with the damper (not shown in the figure) for increasing the rotational resistance of the bearing sleeve. shown) are connected.
  • the wheel belt mechanism 2 is sleeved on the sun gear rotating drive shaft 31 coated with the compressor housing 8, and the compressor housing 8 is rollingly connected with the sun gear rotating drive shaft 31;
  • the motor mechanism 5 includes a stator 51 and a built-in magnet.
  • the rotor 52 of steel 53 and the stator 51 are in interference fit with the compressor housing 8 , and the rotor 52 is fixedly connected with the outer surface of the sleeve part 1021 of the bearing sleeve 102 .
  • the stator and the rotor are combined to form a motor drive mechanism.
  • the sun gear rotation drive shaft 31 is inserted into the rotor 52 and connected to the rotor 52 .
  • the rotor 52 rotates integrally with the sun gear rotation drive shaft 31 .
  • the rotor 52 of the motor mechanism 5 does not generate relative motion when it is driven by the pulley 21 through the one-way bearing 101, and then does not generate reluctance torque loss.
  • Power when the motor mechanism 5 is used as the power transmission scene, the electromagnetic clutch 22 of the wheel belt mechanism 2 is in a power-off idling state, and the rotor 52 of the motor mechanism operates normally, and the positive rotation locking effect of the one-way bearing 101 Drive the sun gear to rotate the drive shaft 31 to carry out the refrigeration work of driving the scroll, and the compressor runs normally.
  • any two phases or three phases in the three-phase line of the stator 51 of the motor mechanism 5 are controlled by the motor controller 71, so that the stator 51 generates a reinforced magnetic resistance to the rotor 52, and further eliminates the high-speed operation process of the belt mechanism 2.
  • the motor controller is an electronic circuit for controlling the permanent magnet motor.
  • the controller brakes the rotor of the motor mechanism to achieve The rotor has the technical effect of reluctance torque relative to the stator.
  • Fig. 3 describes the structure of the control unit of the dual power compressor based on the planetary gear accelerator in this embodiment.
  • Fig. 3 is a schematic structural diagram of the control unit of the dual power compressor based on the planetary gear accelerator according to the embodiment of the present invention; as shown in Fig. 3 ,
  • the control unit 7 includes a motor controller 71 for controlling the energization of the stator 51 of the motor mechanism 5 to make the stator 51 generate a reluctance torque to the rotor 52 of the motor mechanism 5 to prevent the rotor 52 from rotating.
  • the control unit 7 also includes an anti-overload module 72 for disengaging the electromagnetic clutch 22 from the pulley 21 when the speed of the fuel engine 1 exceeds a set speed threshold.
  • the truck is still taken as an example. In the scene where the truck is accelerating or climbing a slope, the speed of the fuel engine can reach 6000-7000r/min. After being accelerated by the planetary gear accelerator, the speed can reach 21000rpm, obviously beyond the bearing range of the compressor.
  • the anti-overload module 72 controls the electromagnetic clutch 22 to disconnect, that is, when the speed of the fuel engine is higher than the set value, the compressor stops working, temporarily Disable the air conditioner. Furthermore, the problem of high rotation speed after the planetary gear accelerates due to the torque input of the fuel engine is eliminated.
  • the control unit 7 also includes a power switching module 73.
  • the power switching module 73 is used to switch the motor mechanism 5 as the compression mechanism 3 when the separation time of the electromagnetic clutch 22 and the pulley 21 exceeds the set time threshold and the speed of the fuel engine 1 exceeds the set speed threshold. source of power. Still take the truck as an example, because the fuel engine speed is too high, the electromagnetic clutch 22 is disconnected, causing the compressor to stop working, and the air conditioner is temporarily disabled. In order to further ensure the comfort in the compartment, a time threshold for the compressor deactivation time, such as 3 minutes, is set.
  • a dual-power compressor based on a planetary gear accelerator created by the present invention realizes that the compressor has two driving modes by coaxially setting a belt mechanism, a compression mechanism, a sun gear rotating drive shaft and a motor mechanism; a pulley and a motor mechanism Share a set of vortex discs, and achieve the effect of increasing the rotational speed of the vortex discs through the planetary gear accelerator, so as to realize the use of a compressor with a smaller displacement without affecting the use effect, and realize that the working state of the compressor can be controlled between electric and fuel oil. Quickly switch between the two modes of engine pulley transmission.
  • the rotor rotates when the pulley is driven, eliminating the phenomenon of loss of fuel engine power due to reluctance torque, and then realizing the independent operation of the two driving modes, avoiding the use of pulleys.
  • the rotor of the motor rotates, thereby avoiding additional power loss, realizing the maximum utilization of the power of the pulley, reducing the cost, realizing the overall light weight of the device, and the technical effect of being easy to install.
  • the present invention creates a dual dynamic compressor based on a planetary gear accelerator that can be implemented in prior art dual dynamic compressor models without extensive modifications. Thus, the cost of developing new compressor models and retrofitting existing compressors is reduced.
  • the planetary accelerator is used to increase the speed of the scroll disk, the working state of the compressor can be quickly switched between the electric mode and the engine belt drive mode, and the cooling effect will not be affected when the compressor with a small displacement is used.
  • Technical effect in order to improve the driving efficiency and solve the following problems: when the wheel belt mechanism is driven, the rotor of the motor mechanism generates relative rotation, which produces counter electromotive force impact control and reluctance torque, and adds additional load to the fuel engine; when When the motor mechanism is driven, the relative movement of the planetary accelerator and the electromagnetic clutch produces additional resistance, which consumes the power of the motor.
  • This embodiment provides a wedge-shaped clutch-based dual-power compressor, which solves the problem of the extra power of the planetary accelerator when the dual-power compressor is driven by a motor and the extra power of the engine when it is driven by a pulley. Disadvantages of power.
  • Fig. 4 describes the schematic structure of the wedge clutch-based dual-power compressor in this embodiment.
  • Fig. 4 is a structural schematic diagram of the dual power compressor based on the sprag clutch described in this embodiment of the present invention; as shown in Fig. 4, the dual power compressor based on the sprag clutch of the present embodiment includes a belt mechanism 2.
  • a compression mechanism 1 i.e. a fuel engine
  • a sun gear rotation drive shaft 31 connected to the compression mechanism 1
  • a motor mechanism 5 that is arranged on the sun gear rotation drive shaft 31, a planetary accelerator and
  • the sprag clutch 12; the sun gear rotation drive shaft is an eccentric shaft.
  • the compression mechanism 1 is connected with the motor mechanism 5 and the planetary cage input shaft 1103 in the planetary accelerator mechanism and the sucker in the wheel belt mechanism 2 through the sun gear rotation drive shaft 31; the sun gear rotation drive shaft 31 is connected with the planetary accelerator through the sprag clutch 12
  • the sun gear 1104 is connected; wherein, the motor mechanism 5 is connected with the sun gear rotation drive shaft 31 through the transmission assembly 10, and the power of the rotor drives the sun gear rotation drive shaft 31 to rotate through the transmission assembly 10; wherein, the transmission assembly includes needle bearings 103 and Bearing sleeve 102, wherein the needle roller bearing is a one-way needle roller bearing; the needle roller bearing 103 is coaxially arranged with the sun wheel rotating drive shaft 31 and the rotor, and the eccentric bushing 3 is sleeved on the outer circle of the needle roller bearing 103 , the inner circle of the rotor of the motor mechanism is sleeved on the outer circle of the eccentric shaft sleeve, and the needle bearing 103 is
  • the motor mechanism can lock the rotation of the sun gear rotating drive shaft when the motor mechanism is running.
  • the rotor is relatively The rotating drive shaft is in a loose state and will not rotate with the rotor, which will cause back electromotive force to damage the controller and generate reluctance to lose fuel engine power; in the specific implementation process, the specific structure of the bearing sleeve 102 can be but not limited to It is a structure in the prior art including a sleeve portion and a stepped portion with a diameter larger than the sleeve portion.
  • the needle roller bearing 4 built in the rotor of the motor mechanism is in a locked state (wherein, in this embodiment, the needle roller bearing is a one-way needle roller bearing ), while the wedge clutch 12 is in an unlocked state; the suction cup in the wheel belt mechanism 2 is connected with the planetary cage input shaft 1103 of the planetary accelerator, and when the suction cup of the wheel belt mechanism 2 sucks and drives the planetary cage input shaft 1103 to rotate, the wedge clutch 12 is in the locked state, and the needle bearing 103 (one-way needle bearing) in the motor mechanism 5 is in the unlocked state.
  • the planetary accelerator also includes a planetary gear 1102, a ring gear 1101 and a planetary cage input shaft 1103; the ring gear 1101 is in interference fit with the compressor housing 8, and the planetary gear 1102 is in contact with the suction cup of the wheel belt mechanism 2 through the planetary cage input shaft 1103 connected, the pulley 21 is attracted by the suction cup 221 and drives the input shaft 1103 of the planetary cage to rotate. That is to say, the ring gear 1101 is fixed, the input shaft 1103 of the planetary cage is a driving part, and the sun gear 1104 is a driven part.
  • the pulley 21 of the belt mechanism 2 is sleeved on the compressor housing 8, and is connected with the input shaft 1103 of the planetary cage through the suction of the suction cup 221, and the compressor housing 8 is rollingly connected with the input shaft 1103 of the planetary cage;
  • the motor mechanism 5 includes a stator 51 and a rotor 52 with built-in magnetic steel, the stator 51 is in interference fit with the compressor housing 8, and the inner surface of the rotor 52 is fixedly connected with the outer surface of the bearing sleeve 102.
  • the pulley mechanism includes a pulley electromagnetic clutch, and the pulley electromagnetic clutch is a friction electromagnetic clutch, including a suction cup, an electromagnetic coil and an elastic element for controlling the pull-in or separation of the suction cup and the pulley; wherein, the pulley 21 is connected to the compressor through the pulley bearing.
  • the casing 8 is rollingly connected, the electromagnetic coil 222 is arranged between the pulley 21 and the compressor casing 8, and a suction cup 221 is arranged in the direction parallel to the axle of the pulley 21, and the planetary cage input shaft 1103 is connected with the suction cup 221 through an elastic element 223.
  • the sprag clutch 12 is built into the sun gear 1104 of the planetary accelerator, and is arranged between the sun gear rotation drive shaft 31 and the sun gear 1104 .
  • the built-in wedge clutch 12 in the middle of the sun gear 1104 in the planetary accelerator plays the role of backstop locking feature and support.
  • there is a permanent magnet motor inside the dual-drive compressor and the hollow shaft sleeve shaft in the middle of the motor rotor does not produce relative motion when the wheel is driven, so there will be no counter electromotive force impact damage to the controller and reluctance torque loss.
  • the wedge clutch 12 is a one-way clutch as described below.
  • the clutch is preferably composed of an intermediate support ring and a wedge block, and can also be replaced by a one-way bearing with inner and outer ring support; its functions are , selectively locks the outer side to the inner side in one direction when the clutch is engaged, and allows the inner side to rotate relative to the outer side in at least one other direction.
  • a one-way clutch locks rotation of the outside in the inboard direction when the clutch is locked, and allows free rotation of the inside in the outboard direction when the clutch is unlocked.
  • the wedge clutch is used to connect the sun gear and the eccentric shaft. It has the characteristics of high sensitivity, instantaneous locking (or unlocking), simple structure and low failure rate.
  • the wedge clutch can place more wedge blocks in the same size range, which is beneficial to provide large torque and increase the service life; moreover, the wedge clutch is built in the middle of the sun gear, because the wedge clutch does not need additional inner ring and outer ring.
  • the ring reduces the required installation size and greatly saves the installation space, so as to better meet the lightweight requirements of the dual-drive compressor.
  • FIG. 5 is a schematic structural diagram of the planetary accelerator described in this embodiment
  • FIG. 6 is a schematic diagram of an exploded structure of the planetary accelerator described in this embodiment.
  • a wedge clutch 12 a first bearing 121 and a second bearing are sequentially arranged inside the sun gear 1104 122; the outer rings of the first bearing 121 and the second bearing 122 are connected with the inner ring of the sun gear 1104; the inner ring of the first bearing 121 is connected with the sun gear rotation drive shaft 31; the inner ring of the second bearing 122 is connected with the sun gear
  • the planetary cage input shaft 1103 is connected; when the rotor of the motor mechanism 5 drives the sun gear rotation drive shaft 31 to rotate, the sun gear rotation drive shaft 31 drives the inner ring of the first bearing 121 to rotate; the second bearing 122 is in a static state; When the suction cup of the wheel-belt mechanism 2 is engaged to drive the input shaft 1103 of the planetary cage to rotate, the wedge clutch 12 locks the sun gear to rotate the drive shaft 31, and the first bearing 121 rotates with the sun gear 1104; the inner ring of the second bearing
  • a gap distance between the inner ring of the first bearing 121 and the inner ring of the second bearing 122 is provided between the first bearing 121 and the second bearing 122
  • the spacer 123 is used to avoid rotational interference between the inner rings of the first bearing and the second bearing.
  • the spacer 123 is a bearing gasket, which simulates the actual assembly conditions of the planetary accelerator in the dual-power compressor, and uses the bearing gasket detection device to assist in the assembly between the first bearing and the second bearing. bearing spacers.
  • the first bearing 121 and the second bearing 122 are also placed at the same time.
  • the bearing outer rings of the two bearings are in contact with the inner wall of the sun gear, and a spacer is used in the middle of the two bearings.
  • 123 makes its bearing inner ring have clearance. It should be noted that although the first bearing and the second bearing are two bearings with the same structure, they perform completely different functions.
  • the first bearing 121 is used to provide the supporting function of the eccentric shaft; when the pulley is used to provide power input to the transmission of the planetary cage, the inner and outer rings of the first bearing are relatively stationary; because the wedge clutch 12 locks the rotation of the sun gear
  • the drive shaft 31 that is, the locked position
  • the first bearing 121 rotate as a whole following the speed of the sun gear 1104 .
  • the permanent magnet motor rotor of the motor mechanism 5 is used to provide power to drive the sun gear to rotate the drive shaft, the sprag clutch 12 is in a loose state (that is, an unlocked state), and only the sun gear rotates the drive shaft 31 with the inner ring of the first bearing 121 Rotate, while the planetary acceleration part does not do relative rotation.
  • the second bearing 122 is used to provide the support function of the sun gear; when the second bearing 122 uses the pulley to provide power input to the planetary cage transmission, the inner and outer rings of the second bearing 122 are rotating, and the relative speeds are inconsistent. It should be noted that due to the effect of the acceleration of the planetary accelerator, the rotation speed ratio of the outer ring of the second bearing 122 to the inner ring is determined by the planetary acceleration ratio of the planetary accelerator. When the permanent magnet motor rotor of the motor mechanism 5 provides power to drive the sun gear rotating drive shaft 31 to rotate, the second bearing 122 is a static assembly and only serves as a connecting support.
  • the planetary accelerator can be an ordinary gear transmission with a fixed gear axis.
  • the planetary accelerator is a single-row planetary gear mechanism.
  • the gear ratio of the planetary accelerator is selected according to the actual application scenario. Among them, the planetary gear and the ring gear are driven by internal gears, and the transmission between the planetary gears and the sun gear is externally geared, and the sun gear is a hollow gear.
  • a wedge clutch, a first bearing and a second bearing are set in the sun gear.
  • a wedge clutch can also be used to directly connect the suction cup of the wheel-belt mechanism through the transmission shaft.
  • the suction cup of the wheel-belt mechanism sucks and drives the transmission shaft to rotate, the wedge clutch is in a locked state, and the needle roller bearing in the rotor of the motor mechanism is in an unlocked state, which has beneficial effects.
  • the dual power compressor based on the wedge clutch created by the present invention sets the belt mechanism, the compression mechanism, the sun gear rotation drive shaft and the motor mechanism coaxially, the suction cup of the belt mechanism and the planetary cage of the planetary accelerator Direct connection; the rotating drive shaft of the sun gear is connected to the sun gear of the planetary accelerator through a wedge clutch; two high-efficiency drive modes are realized for the compressor; a set of scroll disks is shared by the pulley and the motor mechanism, and the scroll disk is improved through the planetary accelerator In the scene of the purpose of speed, when the motor mechanism is driven, it avoids the relative motion of the planetary accelerator and the wheel belt electromagnetic clutch to increase the additional resistance, thereby achieving the technical effect of reducing the power of the motor.
  • the installation space can be saved to the greatest extent, and the light weight requirement of the dual-drive compressor can be satisfied to the greatest extent; it can be implemented in the dual-drive compressor model of the prior art without a large amount of modification.
  • the cost of developing new compressor models and retrofitting existing compressors is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

本发明创造一种基于行星齿轮加速器的双动力压缩机,属于车用空调技术领域,包括压缩机壳体、轮带机构、端盖和设置在压缩机壳体内的借助旋转运动来压缩流体的压缩机构、连接在压缩机构上的太阳轮旋转驱动轴以及贯穿设置在太阳轮旋转驱动轴上的电机机构;压缩机构通过太阳轮旋转驱动轴与电机机构和轮带机构相连接;其中,轮带机构通过行星式齿轮加速器与太阳轮旋转驱动轴连接;轮带机构包括皮带轮和用于控制皮带轮吸合和转动的电磁离合器。本发明创造基于行星齿轮加速器的双动力压缩机通过将皮带轮和电机共用一组涡旋盘,在实现两种驱动方式的基础上,减少了所需压缩机的排量和所需的安装空间,进一步实现了压缩机的节能及其轻量化的技术效果。

Description

基于行星齿轮加速器的双动力压缩机 技术领域
本发明创造涉及车用空调压缩机技术领域,具体说,涉及一种基于行星齿轮加速器的双动力压缩机。
背景技术
现有的燃油车的车用空调压缩机是通过皮带轮进行机械驱动,仅在发动机运行状态下才能工作;在驻车情况下,基于省油或者减少发动机噪音等需求将车辆熄火,从而导致了发动机停转情况下无法使用空调降温的问题。
现有技术中公开了带电双驱汽车空调压缩机减速离合机构与电机传动装置(申请号2020216552489),包括压缩机壳体、皮带轮、端盖和设置在压缩机壳体内的行星式齿轮减速器、棘轮离合器、电机以及涡旋式压缩机构;皮带轮的输出端与压缩机主轴相连接;电机的输出端通过行星式齿轮减速器、棘轮离合器、与压缩机主轴相连接。虽然通过电机和皮带轮共用同一个压缩机机构,达到了轻量化、节省安装空间的效果,但是存在弊端如下:一体式双动力压缩机为了配合发动机的低转速,必须选用大排量的压缩机,存在资源浪费。
因此,亟需一种设计合理,节能的双动力压缩机。
发明内容
本发明创造的目的在于,提供一种基于行星齿轮加速器的双动力压缩机,该基于行星齿轮加速器的双动力压缩机解决了双动力压缩机必须采用大排量压缩机构的弊端。
为了实现上述目的,本发明创造提供一种基于行星齿轮加速器的双动力压缩机,包括压缩机壳体、轮带机构、端盖和设置在压缩机壳 体内的借助旋转运动来压缩流体的压缩机构、连接在压缩机构上的太阳轮旋转驱动轴以及贯穿设置在太阳轮旋转驱动轴上的电机机构;
压缩机构通过太阳轮旋转驱动轴与电机机构和轮带机构相连接;其中,轮带机构通过行星轮保持架输入轴与行星式齿轮加速器连接;轮带机构包括皮带轮和用于控制皮带轮吸合转动的电磁离合器;
还包括用于控制轮带机构、电机机构和压缩机构的控制单元。
进一步,优选的,行星式齿轮加速器包括太阳轮、行星轮、齿圈、行星保持架和行星轮保持架输入轴;齿圈与压缩机壳体过盈配合,行星轮经行星轮保持架输入轴与电磁离合器相连接,皮带轮通过电磁离合器吸合后驱动行星轮保持架输入轴旋转;太阳轮与太阳轮旋转驱动轴一体相连接。
进一步,优选的,电磁离合器为摩擦式电磁离合器,包括吸盘、用于控制吸盘与所皮带轮吸合或者分离的电磁线圈和弹性元件;其中,
皮带轮通过轮带轴承与压缩机壳体滚动连接,电磁线圈设置在皮带轮和压缩机壳体之间,在皮带轮的轮轴平行方向设置有吸盘,行星轮保持架输入轴通过弹性元件与吸盘相连接。
进一步,优选的,电机机构通过用于防止电机机构的转子发生反转的传动组件与太阳轮旋转驱动轴连接,其中,传动组件包括单向轴承、轴承套和滚针轴承,所述单向轴承、所述轴承套和所述滚针轴承依次套接在所述太阳轮旋转驱动轴上。
进一步,优选的,轴承套包括套筒部和直径大于套筒部的台阶部;套筒部具有外表面和内表面;电机机构的输出端与套筒部的外表面相连接;太阳轮旋转驱动轴通过滚针轴承与套筒部的内表面滚动连接;台阶部和套筒部的交界处形成用于抵接单向轴承的环状的第一台阶面;单向轴承的内圈与太阳轮旋转驱动轴固定连接,单向轴承的外圈与台阶部固定连接。
进一步,优选的,轮带机构套接在包覆有压缩机壳体的行星轮保持架输入轴上,压缩机壳体与行星轮保持架输入轴滚动连接;电机机构包括定子和内置磁钢的转子,定子与压缩机壳体过盈配合,转子与轴承套的套筒部的外表面固定连接。
进一步,优选的,控制单元包括用于控制电机机构的定子通电,使定子对电机机构的转子产生磁阻扭矩,以阻止转子发生回转的电机控制器。
进一步,优选的,控制单元还包括用于当发动机转速超过设定转速阈值时,使电磁离合器与皮带轮分离的防过载模块。
进一步,优选的,控制单元还包括动力切换模块,所述动力切换模块用于当所述电磁离合器与所述皮带轮分离时间超过设定时间阈值且发动机转速超过设定转速阈值时,切换电机机构作为压缩机构的动力来源。
进一步,优选的,还包括楔形离合器;
太阳轮旋转驱动轴通过楔形离合器与行星加速器的太阳轮连接;当电机机构的转子驱动时,内置于所述转子内的滚针轴承锁紧太阳轮旋转驱动轴一起旋转,楔形离合器处于解锁状态;
轮带机构的吸盘与行星加速器的行星保持架输入轴连接,当轮带机构的吸盘吸合驱动行星保持架输入轴旋转时,楔形离合器处于锁止状态,而电机机构的转子内的滚针轴承处于解锁状态。
进一步,优选的,沿着自电机机构至轮带机构的方向,在太阳轮的内依次设置有楔形离合器、第一轴承和第二轴承;
第一轴承和第二轴承的外圈均与太阳轮的内圈相连接;
第一轴承的内圈与太阳轮旋转驱动轴相连接;第二轴承的内圈与行星保持架输入轴相连接;
当电机机构的转子驱动太阳轮旋转驱动轴旋转时,太阳轮旋转驱动轴带动第一轴承的内圈旋转,外圈保持静止;同时第二轴承也处于静止状态;当轮带机构的吸盘吸合驱动行星保持架输入轴旋转时,楔形离合器锁止太阳轮旋转驱动轴,第一轴承跟随太阳轮旋转;第二轴承的内圈跟随行星保持架输入轴的转速旋转,第二轴承的外圈跟随太阳轮的转速旋转。
进一步,优选的,在第一轴承和第二轴承之间设置有用于隔离第一轴承与第二轴承的隔离片。
如上所述,本发明创造的一种基于行星齿轮加速器的双动力压缩 机,通过同轴设置轮带机构、压缩机构、太阳轮旋转驱动轴以及电机机构,实现了压缩机具备两种驱动方式;其有益效果如下:
1)皮带轮和电机机构共用一组涡旋盘,通过行星式齿轮加速器达到提高涡旋盘转速的目的,从而实现压缩机的工作状态可以在电动和发动机带轮传动两种模式下快速切换且在采用较小排量的压缩机时而不影响制冷效果。
2)通过采用单向轴承或者采用电机控制器实现了在皮带轮传动的时候转子静止,杜绝了因转子转动而产生磁阻扭矩损耗发动机功率的现象,进而实现两种驱动方式的独立运作,同时避免了额外功率损耗,实现带轮动力利用的最大化。
附图说明
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明创造的更全面理解,本发明创造的其它目的及结果将更加明白及易于理解。在附图中:
图1是本发明创造的实施例1所述的基于行星齿轮加速器的双动力压缩机的控制原理示意图;
图2是本发明创造的实施例1所述的基于行星齿轮加速器的双动力压缩机的结构示意图;
图3是本发明创造的实施例1所述的基于行星齿轮加速器的双动力压缩机的控制单元的结构示意图;
图4是本发明创造的实施例2所述的含有楔形离合器的基于行星齿轮加速器的双动力压缩机的结构示意图;
图5是本发明创造的实施例2所述的基于行星齿轮加速器的双动力压缩机的行星加速器的结构示意图;
图6是本发明创造的实施例2所述的基于行星齿轮加速器的双动力压缩机的行星加速器的结构爆炸图。
其中,1、燃油发动机;2、轮带机构;21、皮带轮;22、电磁离合器;221、吸盘;222、电磁线圈;223、弹性元件;224、螺母;225、 轮带轴承;3、压缩机构;31、太阳轮旋转驱动轴;4、发动机皮带轮;5、电机机构;51、定子;52、转子;53、磁钢;6、皮带;7、控制单元;71、电机控制器;72、防过载模块;73、动力切换模块;8、压缩机壳体;9、端盖;10、传动组件;101、单向轴承;102、轴承套;1021、套筒部;1022、台阶部;1023、第一台阶面;103、滚针轴承;11、行星式齿轮加速器;1101、齿圈;1102、行星轮;1103、行星轮保持架输入轴;12、楔形离合器;121、第一轴承;122、第二轴承;123、隔离片。
具体实施方式
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。在其它例子中,为了便于描述一个或多个实施例,公知的结构和设备以方框图的形式示出。
需要说明的是,在本发明创造的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“前端”、“末端”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明创造和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对发明的限制。而“连接”和“固定连接”及其变型是指同轴和同步连接,其中两个连接的组件不能彼此相对移动(例如,通过联接的连接和由平键形成的连接)或花键和轴环,或具有固定转速比的背面传动连接(例如通过齿轮,皮带轮或链轮的传动连接)。
下面将参照附图对本发明创造的各个实施例进行详细描述。
实施例1
图1对本实施例所述的基于行星齿轮加速器的双动力压缩机的控制原理示意进行描述。其中,图1为是本发明创造的本实施例所述的基于行星齿轮加速器的双动力压缩机的控制原理示意图;如图1所 示,在一个车用空调的双动力压缩机的应用场景中,燃油发动机1带动发动机皮带轮4转动,而发动机皮带轮4通过皮带6与轮带机构2相连接。控制单元7控制燃油发动机1、电机机构5、压缩机构3;其中,控制单元7由硬件部分和软件部分组成。硬件部分是带有MCU控制芯片、传感器的控制器,该控制器具有多个用于数字量和模拟量输出和输入的通道。具体地说,控制单元7通过传感和控制装置控制整个系统的运行收集各个变量参数。该软件程序通过通讯协议,达到自动调节控制的目的。控制单元收集压缩机以及燃油发动机1以及电机机构5的运行参数和控制参数,并根据这些参数输出控制信号,而所有需要控制的组件都通过信号线或控制线连接。
电机机构5通过单向轴承101与压缩机构3相连接,而轮带机构2包括皮带轮21和电磁离合器22;轮带机构2通过行星式齿轮加速器11与压缩机构3相连接,进一步的,行星式齿轮加速器11与轮带机构2的电磁离合器22相连接。其中,作为行星式齿轮加速器的替代示例,行星齿轮机构可以是单排NGW或NW行星齿轮机构,也可以是串联的两列以上的行星齿轮机构。而电磁离合器用于响应来自控制单元的控制信号执行离合动作。
具体地说,通过燃油发动机1的皮带6与轮带机构2传动连接;而轮带机构2经过行星式齿轮加速器11与压缩机构3相连接。其中,电机机构5的电力来源可以是蓄电池也可以为其它另置的发电机。
图2对本实施例所述的基于行星齿轮加速器的双动力压缩机的结构示意进行描述。其中,图2为是本发明创造的本实施例所述的基于行星齿轮加速器的双动力压缩机的结构示意图;如图2所示,
双动力压缩机系统包括压缩机壳体8、轮带机构2、端盖9和设置在压缩机壳体8内的借助旋转运动来压缩流体的压缩机构3、连接在压缩机构3上的太阳轮旋转驱动轴31以及贯穿设置在太阳轮旋转驱动轴31上的电机机构5;压缩机构3通过太阳轮旋转驱动轴31与电机机构5和轮带机构2相连接;其中,轮带机构2通过行星式齿轮加速器11与太阳轮旋转驱动轴31连接;轮带机构2包括皮带轮21和用于控制皮带轮21吸合转动的电磁离合器22;还包括用于控制轮 带机构2、电机机构5和压缩机构3的控制单元7。太阳轮旋转驱动轴为偏心轴。
在一个具体的实施例中,行星式齿轮加速器11包括太阳轮旋转驱动轴31、行星轮1102、齿圈1101、行星保持架和行星轮保持架输入轴1103;齿圈1101与压缩机壳体8过盈配合,行星轮1102经行星轮保持架输入轴1103与电磁离合器22相连接,皮带轮21通过电磁离合器22吸合后驱动行星轮保持架输入轴1103旋转。
需要说明的是,电磁离合器可以为摩擦式电磁离合器也可以为嵌齿式电磁离合器;行星轮保持架输入轴为行星保持架一体输入轴。
为了进一步提升压缩机工作效率,电磁离合器22为摩擦式电磁离合器,包括吸盘221、用于控制吸盘221与皮带轮21吸合或者分离的电磁线圈222、弹性元件223和用于固定的螺母224;其中,皮带轮21通过轮带轴承225与压缩机壳体8滚动连接,电磁线圈222设置在皮带轮21和压缩机壳体8之间,在皮带轮21的轮轴平行方向设置有吸盘221,行星轮保持架输入轴1103通过弹性元件223与吸盘221相连接。
以卡车压缩机中的涡旋盘压缩机为例,正常行驶过程中燃油发动机转速为1600~2200r/min,要考虑涡旋盘流体泄漏问题,还需要保证制冷量需求,而同时因为燃油发动机输出转速低所以带轮压缩机需要设计大排量70cc甚至120cc;燃油发动机转速一定时,通过增加行星式齿轮加速器可以达到提高涡旋盘3~5倍转速的技术效果,若达到同等70~120cc的制冷量,其匹配的压缩机的排量可以降到20~35cc。比如,当压缩机排量降到20cc时,即使燃油发动机处在怠速的情况下(如燃油发动机怠速500rpm,低速输入行星式齿轮加速器,通过行星式齿轮加速器提高3倍转速,使涡旋盘的转速达到1500rpm),也不会产生因为燃油发动机转速低导致涡旋盘流体泄漏和制冷量不足的状况,根本性地解决了带轮涡旋压缩机需要通过增加排量来抵消低转速情况下流体泄漏还能满足所需的制冷量的问题。
在一个具体的实施例中,为了防止电机机构5的转子52反向旋转,电机机构5与太阳轮旋转驱动轴31上设置有单向轴承101。在 具体的实施过程中,单向轴承即超速离合器,也被称为单向离合器,其可以是楔形,棘轮形或辊形离合器等,其中,单向离合器具有最佳的技术性能。具体地说,轴承套102承受可能承受的轴向力。具体地说,电机机构5通过用于防止电机机构的转子发生反转的传动组件10与太阳轮旋转驱动轴31连接,其中,传动组件10包括单向轴承101、轴承套102和滚针轴承103,单向轴承101、所述轴承套102和所述滚针轴承103依次套接在所述太阳轮旋转驱动轴31上。轴承套102包括套筒部1021和直径大于套筒部1021的台阶部1022;套筒部1021具有外表面和内表面;电机机构5的输出端与套筒部1021的外表面相连接;太阳轮旋转驱动轴31通过滚针轴承103与套筒部1021的内表面滚动连接;台阶部1022和套筒部1021的交界处形成用于抵接单向轴承的环状的第一台阶面1023;单向轴承101的内圈与太阳轮旋转驱动轴31固定连接,单向轴承101的外圈与台阶部1022固定连接。作为本实施例的改进台阶部1022向外延伸形成环状的第二台阶面(图中并未示出),第二台阶面与用于增大轴承套的转动阻力的阻尼器(图中未示出)相连接。其中,轮带机构2套接在包覆有压缩机壳体8的太阳轮旋转驱动轴31上,压缩机壳体8与太阳轮旋转驱动轴31滚动连接;电机机构5包括定子51和内置磁钢53的转子52,定子51与压缩机壳体8过盈配合,转子52与轴承套102的套筒部1021的外表面固定连接。定子和转子组合从而构成电机驱动机构,太阳轮旋转驱动轴31插入该转子52中并与转子52连接,转子52与太阳轮旋转驱动轴31一体旋转。
通过采用单向轴承101,当在皮带轮21作为动力传动的场景下,电机机构5的转子52部分通过单向轴承101在皮带轮21传动的时候不产生相对运动,进而不产生磁阻扭矩损耗燃油发动机功率;当在电机机构5作为动力传动的场景下,轮带机构2的电磁离合器22处于断电的空转状态,电机机构的转子52正常运行,而通过单向轴承101的正向转动锁止作用带动太阳轮旋转驱动轴31以进行带动涡旋盘的制冷工作,压缩机正常运行。
在另一个具体的实施例中,为了防止电机机构5的转子52反向 旋转,也可以通过改进电机控制器71,通过控制电机机构5的定子51通电,使定子51对电机机构5的转子52产生磁阻扭矩,以阻止转子52发生回转。
具体地说,通过电机控制器71控制电机机构5的定子51三相线中的任意两相或者三相导通,使定子51对转子52产生加强磁阻,进一步消除轮带机构2高速运转过程中,导致单向轴承101的超越不分离现象。其中,电机控制器为控制永磁电机的电子电路。总之,在皮带轮和永磁电机共用一组涡旋盘的基于行星齿轮加速器的双动力压缩机中,当使用以皮带轮为动力源的场景下,控制器对电机机构的转子实施制动,以实现转子相对于定子有磁阻扭矩的技术效果。
图3对本实施例所述的基于行星齿轮加速器的双动力压缩机的控制单元的结构进行描述。其中,图3为是本发明创造的本实施例所述的基于行星齿轮加速器的双动力压缩机的控制单元的结构示意图;如图3所示,
控制单元7包括用于控制电机机构5的定子51通电,使定子51对电机机构5的转子52产生磁阻扭矩,以阻止转子52发生回转的电机控制器71。
控制单元7还包括用于当燃油发动机1转速超过设定转速阈值时,使电磁离合器22与皮带轮21分离的防过载模块72。在一个具体的实施例中,仍以卡车为例,在卡车进行加速或者爬坡的场景中,其燃油发动机的转速可达6000~7000r/min,经过行星式齿轮加速器进行加速后,转速可达21000rpm,明显超出压缩机的承受范围。为了保护压缩机,检测燃油发动机转速超过设定转速阈值2000rpm之后,防过载模块72控制电磁离合器22断开,也就是说,当燃油发动机的转速高于设定值时,压缩机停止工作,暂时停用空调。进而杜绝了因为燃油发动机的扭力输入造成行星齿轮加速后转速高的问题。
控制单元7还包括动力切换模块73,动力切换模块73用于当电磁离合器22与皮带轮21分离时间超过设定时间阈值且燃油发动机1转速超过设定转速阈值时,切换电机机构5作为压缩机构3的动力来源。仍然以卡车为例,因为燃油发动机转速过高,电磁离合器22断 开,导致压缩机停止工作,暂时停用空调。为了进一步保证车厢内的舒适度,设置压缩机停用时间的时间阈值,比如3分钟。如果电磁离合器22断开时间达到设定时间阈值3min,而此时检测到的燃油发动机的转速仍然高于2000rpm;则直接启动电动机构5进行压缩机制冷,直至燃油发动机转速下降值设定转速阈值以下。
本发明创造的一种基于行星齿轮加速器的双动力压缩机,通过同轴设置轮带机构、压缩机构、太阳轮旋转驱动轴以及电机机构,实现了压缩机具备两种驱动方式;皮带轮和电机机构共用一组涡旋盘,通过行星式齿轮加速器达到提高涡旋盘转速的效果,从而实现不影响使用效果的前提下采用较小排量的压缩机,实现压缩机的工作状态可以在电动和燃油发动机带轮传动两种模式下快速切换。通过采用单向轴承或者采用电机控制器实现了在皮带轮传动的时候转子转动,杜绝了因产生磁阻扭矩损耗燃油发动机功率的现象,进而实现两种驱动方式的独立运作,避免了采用皮带轮驱动时电机转子转动,进而避免了额外功率损耗,实现带轮动力利用的最大化,具有降低成本,实现装置整体轻量化,易于安装的技术效果。而且,本发明创造的一种基于行星齿轮加速器的双动力压缩机可以在现有技术的双动力压缩机模型中实施而无需大量的改装。因此,降低了开发新压缩机模型和改造现有压缩机的成本。
实施例2
虽然通过行星加速器达到提高涡旋盘转速的目的,从而实现压缩机的工作状态可以在电动和发动机轮带传动两种模式下快速切换且在采用较小排量的压缩机时而不影响制冷效果的技术效果;但是,为了一进步提升驱动效率,并解决以下问题:当轮带机构驱动时,电机机构的转子产生相对转动,产生反电动势冲击控制和磁阻扭矩,给燃油发动机增加额外负载;当电机机构驱动时,行星加速器与电磁离合器相对运动产生额外阻力,消耗电机功率。
本实施例提供了一种基于楔形离合器的双动力压缩机,该基于楔形离合器的双动力压缩机解决了双动力压缩机在使用电机驱动时行星加速器损耗电机额外功率和使用皮带轮驱动时损耗发动机额外功 率的弊端。
图4对本实施例所述的基于楔形离合器的双动力压缩机的结构示意进行描述。其中,图4为是本发明创造的本实施例所述的基于楔形离合器的双动力压缩机的结构示意图;如图4所示,本实施例的基于楔形离合器的双动力压缩机包括轮带机构2、借助旋转运动来压缩流体的压缩机构1(即燃油发动机)、连接在压缩机构1上的太阳轮旋转驱动轴31、贯穿设置在太阳轮旋转驱动轴31上的电机机构5、行星加速器和楔形离合器12;太阳轮旋转驱动轴为偏心轴。压缩机构1通过太阳轮旋转驱动轴31与电机机构5和行星加速器机构中的行星保持架输入轴1103与轮带机构2中的吸盘相连接;太阳轮旋转驱动轴31通过楔形离合器12与行星加速器的太阳轮1104连接;其中,电机机构5通过传动组件10与太阳轮旋转驱动轴31连接,转子的动力通过传动组件10驱动太阳轮旋转驱动轴31旋转;其中,传动组件包括滚针轴承103和轴承套102,其中,滚针轴承为单向滚针轴承;滚针轴承103与太阳轮旋转驱动轴31、转子均为同轴心设置,偏心轴套3套接在滚针轴承103的外圆,电机机构的转子内圆套接在偏心轴轴套的外圆,滚针轴承103套接在太阳轮旋转驱动轴上。需要说明的是,只是利用滚针轴承逆止锁定的特性,电机机构运转的时候能够锁紧太阳轮旋转驱动轴旋转,当使用皮带轮与行星加速器驱动太阳轮旋转驱动轴时,转子相对于太阳轮旋转驱动轴是松开状态,不会带着转子旋转,而产生反电动势冲击损坏控制器和产生磁阻损耗燃油发动机功率;在具体的实施过程中,轴承套102的具体结构可以但不限制于为现有技术中的包括套筒部和直径大于套筒部的台阶部的结构。
当电机机构5中的转子驱动太阳轮旋转驱动轴31旋转时,内置于电机机构的转子内的滚针轴承4处于锁紧状态(其中,在本实施例中滚针轴承为单向滚针轴承),同时楔形离合器12处于解锁状态;轮带机构2中的吸盘与行星加速器的行星保持架输入轴1103连接,当轮带机构2的吸盘吸合驱动行星保持架输入轴1103旋转时,楔形离合器12处于锁止状态,而电机机构5中的滚针轴承103(单向滚针 轴承)处于解锁状态。行星加速器还包括行星轮1102、齿圈1101和行星保持架输入轴1103;齿圈1101与压缩机壳体8过盈配合,行星轮1102经行星保持架输入轴1103与轮带机构2的吸盘相连接,皮带轮21通过吸盘221吸合后驱动行星保持架输入轴1103旋转。也就是说,齿圈1101固定,行星保持架输入轴1103为主动件,而太阳轮1104为从动件。轮带机构2的皮带轮21套接在压缩机壳体8上,并通过吸盘221的吸合与行星保持架输入轴1103连接,压缩机壳体8与行星保持架输入轴1103滚动连接;电机机构5包括定子51和内置磁钢的转子52,定子51与压缩机壳体8过盈配合,转子52的内圆表面与轴承套102的外表面固定连接。轮带机构包括轮带电磁离合器,轮带电磁离合器为摩擦式电磁离合器,包括吸盘、用于控制吸盘与皮带轮吸合或者分离的电磁线圈和弹性元件;其中,皮带轮21通过轮带轴承与压缩机壳体8滚动连接,电磁线圈222设置在皮带轮21和压缩机壳体8之间,在皮带轮21的轮轴平行方向设置有吸盘221,行星保持架输入轴1103通过弹性元件223与吸盘221相连接。
具体地说,在现有技术中,直接将行星加速器的太阳轮与太阳轮旋转驱动轴相连接时,当轮带机构驱动时,电机机构的转子产生相对转动,与定子切割磁力线产生反电动势冲击损坏控制器和产生磁阻扭矩给燃油发动机增加额外负载的问题;当电机机构驱动时,行星加速器与电磁离合器相对运动产生额外阻力,消耗电机功率的问题。本实施例中的基于楔形离合器的双动力压缩机就是将楔形离合器12内置于行星加速器的太阳轮1104中,设置太阳轮旋转驱动轴31与太阳轮1104之间。在经过行星加速器对涡旋盘起到增速传动的作用的场景中,在行星加速器中的太阳轮1104中间内置楔形离合器12起到逆止锁定特性以及支撑的作用。同时,双驱压缩机内部有永磁电机,电机转子中间通过空心轴套轴的形式在轮带驱动的时候不产生相对运动,因此就不会产生反电动势冲击损坏控制器和产生磁阻扭矩损耗发动机功率和产生;当压缩机的驱动方式为用电机机构5驱动时,轴承套102内置了滚针轴承103,并利用其逆止锁定特性,驱动太阳轮旋转驱动轴31带动压缩机构1的涡旋盘的制冷工作,此时太阳轮1104中 的楔形离合器12脱开,行星加速器跟电磁离合器不参与相对运转,因此电机机构驱动时,也不会带来额外的摩擦力负载而损耗电机额外功率。
需要说明的是,楔形离合器12为以下所述的单向离合器,该离合器由中间支撑环以及楔块等组成为优选方案,也可以是带内外圈支撑的单向轴承替代;其具备的功能为,在离合器被接合时沿一个方向选择性地将外侧锁定至内侧,并且允许内侧相对于外侧沿至少另一方向旋转。单向离合器在离合器被锁定时锁定外侧沿内侧方向的旋转,并且在离合器解锁时允许内侧沿外侧方向自由旋转。在具体的实施过程中,对于楔形离合器12的型号不做具体限定,只要能实现上述功能即可。
选择楔形离合器用于连接太阳轮和偏心轴,具有灵敏度高、可瞬间锁止(或解锁),结构简单,不易发生故障的特点。楔形离合器可以在相同尺寸范围内可以放置更多的楔形块,有利于提供大扭矩,增加了使用寿命;而且,将楔形离合器内置于太阳轮的中间,由于楔形离合器不需要额外的内圈和外圈,减少了所需的安装尺寸,大大节省了安装空间,从而更加满足双驱压缩机的轻量化需求。
图5和图6对本实施例所述的包含楔形离合器的双动力压缩机的结构示意进行描述。其中,图5是本实施例所述的行星加速器的结构示意图;图6是本实施例所述的行星加速器的爆炸结构示意图。如图5、6所示,在具体的实施过程中,沿着自电机机构5至轮带机构2的方向,在太阳轮1104的内依次设置有楔形离合器12、第一轴承121和第二轴承122;第一轴承121和第二轴承122的外圈均与太阳轮1104的内圈相连接;第一轴承121的内圈与太阳轮旋转驱动轴31相连接;第二轴承122的内圈与行星保持架输入轴1103相连接;当电机机构5的转子驱动太阳轮旋转驱动轴31旋转时,太阳轮旋转驱动轴31带动第一轴承121的内圈旋转;第二轴承122处于静止状态;当轮带机构2的吸盘吸合驱动行星保持架输入轴1103旋转时,楔形离合器12锁止太阳轮旋转驱动轴31,第一轴承121跟随太阳轮1104旋转;第二轴承122的内圈跟随行星保持架输入轴1103的转速旋转, 第二轴承122的外圈跟随太阳轮1104的转速旋转。
为了进一步增加第一轴承121和第二轴承122的独立性,在第一轴承121和第二轴承122之间设置有用于增加第一轴承121的内圈与第二轴承122的内圈的间隙距离的隔离片123,以避免第一轴承和第二轴承内圈旋转干涉。具体地说,隔离片123即为轴承垫片,模拟双动力压缩机中行星加速器的实际的装配工况,利用轴承垫片检测装置辅助,在第一轴承和第二轴承之间装配相适配的轴承垫片。
具体地说,在太阳轮1104里面除了放置楔形离合器,还同时放置第一轴承121和第二轴承122,两个轴承的轴承外圈都是与太阳轮内壁配合接触,两轴承的中间使用隔离片123使其轴承内圈有间隙。需要说明的是,虽然第一轴承和第二轴承是结构完全相同的两个轴承,但两者起到完全不同的功能作用。其中,第一轴承121用于提供偏心轴的支撑功能;在使用皮带轮提供动力输入至行星保持架传动的时候,第一轴承的内外圈是相对静止的;因为楔形离合器12锁止了太阳轮旋转驱动轴31(即锁紧位置),第一轴承121整体跟随太阳轮1104的转速整体旋转。在使用电机机构5的永磁电机转子提供动力驱动太阳轮旋转驱动轴旋转时,楔形离合器12处于松开状态(即解锁状态),仅太阳轮旋转驱动轴31带着第一轴承121的内圈旋转,同时行星加速部分不做相对运转。第二轴承122用于提供太阳轮的支撑功能;第二轴承122在使用皮带轮提供动力输入至行星保持架传动的时候,第二轴承122的内外圈都是旋转的,且相对转速不一致。需要说明的是,由于行星加速器的加速的作用,第二轴承122的外圈的转速与其内圈的转速比由该行星加速器的行星加速比所决定。在由电机机构5的永磁电机转子提供动力驱动太阳轮旋转驱动轴31旋转时,第二轴承122是静止装配,仅起到连接支撑作用。
在具体的实施过程中,行星加速器可以为齿轮轴线固定的普通齿轮变速器,在本实施例中,行星加速器为单排行星齿轮机构。行星加速器的变速比根据实际的应用场景进行选择。其中,行星轮与齿圈为内啮合齿轮传动,行星轮与太阳轮之间为外啮合齿轮传动,而太阳轮为空心轮,在太阳轮中设置楔形离合器以及第一轴承和第二轴承,在 实现了整体结构的传动稳定性的基础之上,最大化的节省安装空间,以满足双驱压缩机的轻量化需求。
实施例3
在不需要行星加速器的双驱压缩机场景中,也可以采用楔形离合器通过传动轴直接连接轮带机构的吸盘。当轮带机构的吸盘吸合驱动传动轴旋转时,楔形离合器处于锁止状态,而电机机构转子内的滚针轴承处于解锁状态有益效果。
综上,本发明创造的一种基于楔形离合器的双动力压缩机,通过同轴设置轮带机构、压缩机构、太阳轮旋转驱动轴以及电机机构,轮带机构的吸盘与行星加速器的行星保持架直连;太阳轮旋转驱动轴通过楔形离合器与行星加速器的太阳轮连接;实现了压缩机具备两种高效驱动方式;在皮带轮和电机机构共用一组涡旋盘,通过行星加速器达到提高涡旋盘转速的目的的场景中,当电机机构驱动时,避免了行星加速器和轮带电磁离合器产生相对运动增加了额外阻力,进而达到降低电机功率的技术效果。进而实现两种驱动方式的独立运作,同时避免了额外功率损耗,实现带轮动力与电机动力利用的最大化;楔形离合器以及双轴承内置于太阳轮中间的设置,在实现了压缩机的整体结构的传动稳定性的基础之上,最大化的节省安装空间,最大化满足双驱压缩机的轻量化需求;可以在现有技术的双动力压缩机模型中实施而无需大量的改装。因此,降低了开发新压缩机模型和改造现有压缩机的成本。
尽管前面公开的内容示出了本发明创造的示例性实施例,但应注意,在不背离权利要求限定的本发明创造的范围的前提下,可以进行多种改变和修改。根据这里描述的发明实施例的结构,权利要求的组成元件可以用任何功能等效的元件替代。因此,本发明创造的保护范围应当由所附的权利要求书的内容确定。

Claims (12)

  1. 一种基于行星齿轮加速器的双动力压缩机,其特征在于,
    包括压缩机壳体、轮带机构、端盖和设置在所述压缩机壳体内的借助旋转运动来压缩流体的压缩机构、连接在所述压缩机构上的太阳轮旋转驱动轴以及贯穿设置在所述太阳轮旋转驱动轴上的电机机构;
    所述压缩机构通过所述太阳轮旋转驱动轴与所述电机机构和所述轮带机构相连接;其中,所述轮带机构通过行星式齿轮加速器与所述太阳轮旋转驱动轴连接;所述轮带机构包括皮带轮和用于控制所述皮带轮吸合转动的电磁离合器;
    所述行星式齿轮加速器包括太阳轮、行星轮、齿圈、行星保持架和行星轮保持架输入轴;所述行星轮经所述行星轮保持架输入轴与所述电磁离合器相连接,所述皮带轮通过电磁离合器吸合后驱动所述行星轮保持架输入轴旋转;所述太阳轮与所述太阳轮旋转驱动轴一体相连接;
    还包括,用于控制所述轮带机构、所述电机机构和所述压缩机构的控制单元。
  2. 根据权利要求1所述的基于行星齿轮加速器的双动力压缩机,其特征在于,
    所述齿圈与所述压缩机壳体过盈配合。
  3. 根据权利要求1所述的基于行星齿轮加速器的双动力压缩机,其特征在于,所述电磁离合器为摩擦式电磁离合器,包括吸盘、用于控制所述吸盘与所述皮带轮吸合或者分离的电磁线圈和弹性元件;其中,
    所述皮带轮通过轮带轴承与所述压缩机壳体滚动连接,所述电磁线圈设置在所述皮带轮和所述压缩机壳体之间,在所述皮带轮的轮轴平行方向设置有所述吸盘,所述行星轮保持架输入轴通过所述弹性元件与吸盘相连接。
  4. 根据权利要求1所述的基于行星齿轮加速器的双动力压缩机,其特征在于,所述电机机构通过用于防止所述电机机构的转子发生反转的传动组件与所述太阳轮旋转驱动轴连接,其中,所述传动组件包括单向轴承、轴承套和滚针轴承,所述单向轴承、所述轴承套和所述滚针轴承依次套接在所述太阳轮旋转驱动轴上。
  5. 根据权利要求4所述的基于行星齿轮加速器的双动力压缩机,其特征在于,
    所述轴承套包括套筒部和直径大于所述套筒部的台阶部;所述套筒部具有外表面和内表面;所述电机机构的输出端与所述套筒部的外表面相连接;所述太阳轮旋转驱动轴通过所述滚针轴承与所述套筒部的内表面滚动连接;所述台阶部和所述套筒部的交界处形成用于抵接所述单向轴承的环状的第一台阶面;所述单向轴承的内圈与所述太阳轮旋转驱动轴固定连接,所述单向轴承的外圈与所述台阶部固定连接。
  6. 根据权利要求5所述的基于行星齿轮加速器的双动力压缩机,其特征在于,
    所述轮带机构套接在包覆有压缩机壳体的行星轮保持架输入轴上,压缩机壳体与行星轮保持架输入轴滚动连接;所述电机机构包括定子和内置磁钢的转子,所述定子与所述压缩机壳体过盈配合,所述转子与所述轴承套的套筒部的外表面固定连接。
  7. 根据权利要求1所述的基于行星齿轮加速器的双动力压缩机,其特征在于,所述控制单元包括用于控制所述电机机构的定子通电,使所述定子对所述电机机构的转子产生磁阻扭矩,以阻止所述转子发生回转的电机控制器。
  8. 根据权利要求1或7所述的基于行星齿轮加速器的双动力压缩机,其特征在于,所述控制单元还包括用于当发动机转速超过设定 转速阈值时,使所述电磁离合器与所述皮带轮分离的防过载模块。
  9. 根据权利要求8所述的基于行星齿轮加速器的双动力压缩机,其特征在于,所述控制单元还包括动力切换模块,所述动力切换模块用于当所述电磁离合器与所述皮带轮分离时间超过设定时间阈值且发动机转速超过设定转速阈值时,切换电机机构作为压缩机构的动力来源。
  10. 根据权利要求1所述的基于行星齿轮加速器的双动力压缩机,其特征在于,
    还包括楔形离合器;
    太阳轮旋转驱动轴通过楔形离合器与行星加速器的太阳轮连接;当电机机构的转子驱动时,内置于所述转子内的滚针轴承锁紧太阳轮旋转驱动轴一起旋转,楔形离合器处于解锁状态;
    轮带机构的吸盘与行星加速器的行星保持架输入轴连接,当轮带机构的吸盘吸合驱动行星保持架输入轴旋转时,楔形离合器处于锁止状态,而电机机构的转子内的滚针轴承处于解锁状态。
  11. 根据权利要求10所述的基于行星齿轮加速器的双动力压缩机,其特征在于,沿着自电机机构至轮带机构的方向,在太阳轮的内依次设置有楔形离合器、第一轴承和第二轴承;
    第一轴承和第二轴承的外圈均与太阳轮的内圈相连接;
    第一轴承的内圈与太阳轮旋转驱动轴相连接;第二轴承的内圈与行星保持架输入轴相连接;
    当电机机构的转子驱动太阳轮旋转驱动轴旋转时,太阳轮旋转驱动轴带动第一轴承的内圈旋转,外圈保持静止;同时第二轴承也处于静止状态;当轮带机构的吸盘吸合驱动行星保持架输入轴旋转时,楔形离合器锁止太阳轮旋转驱动轴,第一轴承跟随太阳轮旋转;第二轴承的内圈跟随行星保持架输入轴的转速旋转,第二轴承的外圈跟随太阳轮的转速旋转。
  12. 根据权利要求10所述的基于行星齿轮加速器的双动力压缩机,其特征在于,在第一轴承和第二轴承之间设置有用于隔离第一轴承与第二轴承的隔离片。
PCT/CN2022/139460 2022-01-26 2023-01-12 基于行星齿轮加速器的双动力压缩机 WO2023142760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220210859.5U CN215979878U (zh) 2022-01-26 2022-01-26 基于行星齿轮加速器的双动力压缩机
CN202220210859.5 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023142760A1 true WO2023142760A1 (zh) 2023-08-03

Family

ID=80571929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139460 WO2023142760A1 (zh) 2022-01-26 2023-01-12 基于行星齿轮加速器的双动力压缩机

Country Status (2)

Country Link
CN (1) CN215979878U (zh)
WO (1) WO2023142760A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215979878U (zh) * 2022-01-26 2022-03-08 山东楷晋机电科技有限公司 基于行星齿轮加速器的双动力压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193876A (ja) * 1997-07-24 1999-04-06 Denso Corp 複合型圧縮装置
JP2002120552A (ja) * 2000-10-17 2002-04-23 Toyota Industries Corp 発電発動システム
US20040045307A1 (en) * 2002-06-14 2004-03-11 Kitaru Iwata Hybrid compressor system
CN111734629A (zh) * 2020-08-11 2020-10-02 山东永申机电科技有限公司 带电双驱汽车空调压缩机减速离合机构与电机传动装置
CN113236564A (zh) * 2021-06-16 2021-08-10 山东楷晋机电科技有限公司 用于双动力压缩机的防止电机转子回转控制方法
CN215979878U (zh) * 2022-01-26 2022-03-08 山东楷晋机电科技有限公司 基于行星齿轮加速器的双动力压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193876A (ja) * 1997-07-24 1999-04-06 Denso Corp 複合型圧縮装置
JP2002120552A (ja) * 2000-10-17 2002-04-23 Toyota Industries Corp 発電発動システム
US20040045307A1 (en) * 2002-06-14 2004-03-11 Kitaru Iwata Hybrid compressor system
CN111734629A (zh) * 2020-08-11 2020-10-02 山东永申机电科技有限公司 带电双驱汽车空调压缩机减速离合机构与电机传动装置
CN113236564A (zh) * 2021-06-16 2021-08-10 山东楷晋机电科技有限公司 用于双动力压缩机的防止电机转子回转控制方法
CN215979878U (zh) * 2022-01-26 2022-03-08 山东楷晋机电科技有限公司 基于行星齿轮加速器的双动力压缩机

Also Published As

Publication number Publication date
CN215979878U (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US6845832B2 (en) Engine system, operating method therefor, and engine starting apparatus
EP1369279B1 (en) Power transmission control device for a vehicle
US7448972B2 (en) System for transmitting motion between the shaft of an internal combustion engine of a motor vehicle and a group of auxiliary devices
JP4472192B2 (ja) 自動車用駆動システム
CA2607040C (en) Electric damp controlled three-end shaft differential transmission
WO2023142760A1 (zh) 基于行星齿轮加速器的双动力压缩机
JP2006520713A (ja) 特にスクーター用の車両用ハイブリッド駆動組立体
JP3536627B2 (ja) 車両駆動装置
US20030108434A1 (en) Hybrid compressor with bearing clutch assembly
CN111251837A (zh) 双动力车用空调压缩机及其控制方法
CN112072840B (zh) 一种飞轮集成式电动汽车48v机电耦合驱动装置
US8757119B2 (en) Engine stopping and restarting system
US11181106B2 (en) Pump assembly with electric starter
CN113236564B (zh) 用于双动力压缩机的防止电机转子回转控制方法
JP2003120765A (ja) 可変速モータ・ジェネレータ
CN212744324U (zh) 带电双驱汽车空调压缩机减速离合机构与电机传动装置
JP3535203B2 (ja) 車両の補機駆動装置
JPH11230012A (ja) スタータモータを用いる補機駆動装置
CN115095643B (zh) 电磁离合取力器
CN211995088U (zh) 双动力车用空调压缩机
CN218207074U (zh) 基于楔形离合器的双动力压缩机
US20210207568A1 (en) Two-speed accessory drive with integrated motor-generator
JPS5938420B2 (ja) エンジン補機駆動装置
JP2003097402A (ja) 車両用伝動装置
JPS5938419B2 (ja) エンジン補機駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923546

Country of ref document: EP

Kind code of ref document: A1