WO2023142567A1 - 消融导管 - Google Patents

消融导管 Download PDF

Info

Publication number
WO2023142567A1
WO2023142567A1 PCT/CN2022/128641 CN2022128641W WO2023142567A1 WO 2023142567 A1 WO2023142567 A1 WO 2023142567A1 CN 2022128641 W CN2022128641 W CN 2022128641W WO 2023142567 A1 WO2023142567 A1 WO 2023142567A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
catheter
ablation
ring
tube body
Prior art date
Application number
PCT/CN2022/128641
Other languages
English (en)
French (fr)
Inventor
朱晓林
史天才
Original Assignee
四川锦江电子医疗器械科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川锦江电子医疗器械科技股份有限公司 filed Critical 四川锦江电子医疗器械科技股份有限公司
Publication of WO2023142567A1 publication Critical patent/WO2023142567A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe

Definitions

  • the invention relates to the field of electrophysiological ablation, and more specifically relates to an ablation catheter with an adjustable diameter annular distal end.
  • radiofrequency (RF) ablation and cryoablation are commonly used clinically to treat arrhythmias such as atrial fibrillation.
  • the success of ablation depends primarily on the quality and adequacy of the lesions created during the procedure.
  • the injury must be sufficient to destroy the arrhythmogenic tissue or to sufficiently disrupt or isolate abnormal electrical conduction within the myocardial tissue.
  • excessive ablation will have an impact on surrounding healthy tissue and nerve tissue.
  • the disadvantage of radiofrequency ablation is that the ablation operation takes a long time and requires a high level of catheter operation for the operator. Due to thermal injury, the ablation will be accompanied by pain, and postoperative pulmonary vein stenosis is prone to occur.
  • the application of radiofrequency energy to the target tissue has an effect on non-target tissues.
  • radiofrequency energy may cause damage to the esophagus or phrenic nerve.
  • radiofrequency ablation has the risk of tissue scarring, which further leads to embolism problems.
  • cryoablation if the cryoballoon is tightly attached to the pulmonary vein, the circular ablation isolation can be completed in one or several times, the patient will not feel pain, and the operation time will be shortened, but the rate of cryoablation to the phrenic nerve is relatively high.
  • pulsed electric field technology Using pulsed electric field technology, brief high voltages can be applied to tissues to generate localized high electric fields of hundreds of volts per centimeter, which disrupt cell membranes by creating pores in them (cell membranes become "permeable"). Since different tissue cells have different thresholds for voltage penetration, pulsed electric field technology can selectively treat cardiomyocytes (threshold is relatively low) without affecting other non-target cell tissues (such as nerves, esophagus, blood vessels, blood cells, etc.) etc.) have an impact. At the same time, due to the extremely short time of energy release, the pulse technology will not produce thermal effects, thereby avoiding problems such as tissue scarring and pulmonary vein stenosis.
  • the voltage of the high-voltage pulse is relatively high, and the energy between the electrodes should not be too concentrated, which is prone to safety accidents. It is necessary to strengthen the electrode insulation and the internal insulation of the catheter. If the existing ablation catheter uses high-voltage pulses for ablation, ionization between electrodes is likely to occur, and the ablation time of high-voltage pulses is short, requiring more precise positioning.
  • Atrial fibrillation is a common persistent arrhythmia that seriously endangers human health and affects the quality of life.
  • the reason why pulmonary veins are the most common local lesion in atrial fibrillation is because of the presence of pulmonary vein muscular sleeves.
  • the atrial myocardium around the pulmonary veins also contains the triggering focus of AF or the arrhythmic substrate that maintains AF, so the myocardial tissue around the pulmonary veins may also be ablated during ablation isolation.
  • the commonly used method is to ablate the vestibule of the pulmonary vein point by point to form a ring-shaped isolation zone.
  • This method takes a long time to operate, puts great pressure on the patient and the doctor, and often has leakage points that lead to recurrence. Therefore, it is urgent to design a method that can One-time rapid ablation of the catheter that isolates the vestibule of the pulmonary vein.
  • an ablation catheter with an annular distal end, which has an adjustable diameter to adapt to different tissue structures and good abutment, and can form a closed annular ablation zone during ablation discharge.
  • the present invention provides an ablation catheter having an annular distal end.
  • the diameter of the annular distal end can be adjusted to adapt to different tissue structures and achieve good apposition; on the other hand, electrode pairs are arranged on the annular distal end to adapt to the deformation and contraction caused by the adjustment of the annular distal end diameter.
  • the ring electrodes of the electrode pair function as a pair in the ablation mode and individually in the mapping mode.
  • an ablation catheter is provided.
  • the ablation catheter has an annular distal end, and the annular distal end includes an arc-shaped terminal tube body.
  • a plurality of electrode pairs are arranged at intervals along the arc extending direction of the end tube body, and the plurality of electrode pairs surround the end tube body respectively.
  • the number of electrode pairs is 2N+1, where N is a positive integer.
  • each electrode pair includes two ring electrodes surrounding the end tube body, the width of each ring electrode in the arc extending direction of the end tube body is L, and the same
  • the distance between two ring electrodes in an electrode pair is d
  • the distance between adjacent electrode pairs is D
  • the value of L is 0.50-1.5 mm
  • the value of d is 1-3 mm
  • the value of D is 3-6 mm.
  • the ring electrode may be a spiral electrode.
  • the spiral electrode may be formed by winding an electrode wire, or the ring electrode may be cut into a spiral electrode.
  • the catheter is a pulsed electric field ablation catheter, which is used to transmit and release pulsed ablation energy to a desired ablation site.
  • the catheter is used for ablation of the heart and its surrounding tissues.
  • the polarities of the two electrodes in each electrode pair are the same, which is equivalent to applying voltage to the same electrode, and the polarities of adjacent electrode pairs are opposite.
  • the two electrodes in each electrode pair are used independently to acquire electrophysiological signals.
  • the magnitude of the voltage applied to each electrode pair is 1000-4000V.
  • a positioning sensor is arranged below the pair of electrodes and is inside the end tube body.
  • the length of the positioning sensor in the arc extending direction of the end tube body is equal to the width of the electrode pair in the arc extending direction of the end tube body.
  • the length of the positioning sensor in the arc extension direction of the end tube body is equal to the sum of the widths and distances of the two ring electrodes in the electrode pair in the arc extension direction of the end tube body.
  • the position sensor includes a first position sensor and a second position sensor.
  • the first positioning sensor is arranged below the first electrode pair starting from the head end of the annular distal end.
  • the second positioning sensor is arranged below the electrode pair at the middle section of the annular distal end.
  • the annular diameter of the annular distal end can be contracted.
  • the annular distal end may exhibit a helical shape, and the annular diameter may be 20-35 mm.
  • the head end and the end of the annular distal end are separated, and the separation distance is 1/5-1/4 of the circumference of the ring.
  • the annular diameter may be 12-15 mm.
  • the ring-shaped distal end is a closed ring in the circular section, and the electrode pairs on the head end and the end of the ring-shaped distal end do not overlap.
  • one end of the terminal tube body is a free end, which is located at the head end of the annular distal end.
  • An atraumatic tip is provided on the free end.
  • the other end of the terminal body is a fixed end.
  • the catheter may further include: a terminal hard tube, one end of which is connected to the fixed end of the terminal tube; a distal tube, one end of which is connected to the other end of the terminal tube; a proximal tube, one end of which is connected to the other end of the distal tube; a handle assembly, one end of which is connected to the other end of the proximal tube; a connector, which is connected to the other end of the handle assembly.
  • the catheter may further include: a support member, which is arranged inside the end tube body and the end hard tube, and is made of memory alloy material; Together with one end of the support member, it is fixed on the anti-trauma head end. When the contraction string shrinks, the support member is deformed to adjust the diameter of the annular distal end.
  • a support member which is arranged inside the end tube body and the end hard tube, and is made of memory alloy material; Together with one end of the support member, it is fixed on the anti-trauma head end.
  • the support member is deformed to adjust the diameter of the annular distal end.
  • the catheter may further include a protective tube wrapped around the support member and the contraction cord.
  • the handle assembly has a knob.
  • the knob is configured to control the contraction and restoration of the contraction cord by rotation.
  • a positioning sensor is fixed on the outer periphery of the protective tube, the positioning sensor is a cylindrical structure, and the protective tube passes through the center of the cylindrical structure.
  • the positioning sensor and the protection tube are fixed with a sheath tube.
  • the ablation catheter according to the first aspect of the present invention may further include a push button disposed between the handle assembly and the proximal tube body.
  • the push-twist connection is arranged at one end of the traction assembly in the distal tubular body, and the other end of the traction assembly is connected to the end hard tube. Pushing the push-twist can control the tightness of the traction assembly to achieve the desired The distal tube body is bent.
  • the traction assembly is arranged on the side of the distal tubular body.
  • a positioning electrode may be arranged on the end hard tube, and a third positioning sensor may be arranged inside the end hard tube.
  • the connector includes: a first connector connected to the positioning sensor through a first cable and configured to transmit positioning information; a second connector connected through the first cable
  • the two cables are respectively connected to the ring electrodes on each electrode pair, and are configured to transmit ablation energy.
  • the ablation catheter is a pulse electric field ablation catheter used for ablation of the heart and its surrounding tissues.
  • the method includes: in the ablation mode of the catheter, transmitting electric field energy with the same polarity to two electrodes in each electrode pair, so that the two electrodes in the electrode pair are equivalent to applying voltage to the corresponding tissue by the same electrode, and Transmit electric field energy of opposite polarity to adjacent electrode pairs to achieve pulsed electric field ablation; and in catheter mapping mode, collect electrophysiological signals independently through two electrodes in each electrode pair to achieve Electrophysiological mapping function.
  • a computer-readable medium on which are stored instructions executable by a processor, and when the instructions are executed by the processor, the processor executes the method for performing the A method of controlling the function of an electrode pair on an ablation catheter.
  • the current fixed-diameter annular pulse ablation catheter cannot achieve good apposition to the cavity structure: the diameter is too large to enter the cavity structure; the diameter is too small to achieve good apposition to the cavity structure, thus Affect the efficiency and effect of ablation.
  • pulsed electric field ablation requires a large single electrode area (the length or width of the electrode should be as large as possible) due to the need to avoid safety risks caused by excessive concentration of the electric field. Larger sizes are not suitable for ring diameter adjustment, because the variable diameter needs to compress the shape of the ring segment. If the electrode size is too large, the length of the local rigid section of the ring catheter will increase, making it difficult for the ring catheter to deform and shrink.
  • the electrode spacing used in pulsed ablation is generally designed to be larger.
  • too large electrode spacing is likely to introduce other interference signals when collecting electrophysiological signals, and cannot accurately collect local electrical signals, which will easily affect the analysis and judgment of the surgeon and affect the efficiency of the operation.
  • electrophysiological signal mapping it is more desirable to have tiny electrodes and a smaller electrode spacing to achieve accurate mapping.
  • the present invention proposes to use electrode pairs.
  • a pair of electrodes when used as an ablation electrode, can be equivalent to function as one electrode; and when used as a mapping electrode, two electrodes in the electrode pair can be used independently.
  • the design of the electrode pair is more convenient for the diameter adjustment of the ring-shaped distal end.
  • the electrode pair is used for electrophysiological signal acquisition more accurately, so as to avoid the excessive distance between electrodes from affecting the judgment of electrical signal changes.
  • the positioning sensor helps to realize the positioning and shape display of the annular catheter. Since the ring segment with adjustable diameter needs to undergo a large compression deformation, the current conventional positioning sensor is relatively rigid, and it is difficult to deform with the deformation of the ring segment. However, if there is no positioning sensor, the annular pulse catheter has a very high safety risk. If the electrodes of different polarities are overlapped, there will be a sparking problem, which will burn the heart tissue.
  • a positioning sensor setting method that is freely deformable and does not affect performance is proposed, which is suitable for an adjustable diameter annular section of the catheter.
  • Fig. 1 is an overall schematic diagram of an ablation catheter according to the present invention.
  • Fig. 2 is a schematic diagram of the natural state of the ring-shaped distal end.
  • Fig. 3 is a schematic diagram of the electrode pair arrangement in the natural state of the annular distal end.
  • Fig. 4 is a schematic diagram of the arrangement of the pulling assembly of the distal tube body.
  • Fig. 5 is a schematic diagram of the retracted state of the annular distal end.
  • Fig. 6 is a schematic diagram of the arrangement of the electrode pair in the retracted state of the annular distal end.
  • Fig. 7 is a schematic diagram of a support member.
  • Fig. 8 is a schematic diagram of the interior of the annular distal end.
  • Fig. 9 is a schematic diagram of the arrangement of positioning sensors in the ring-shaped distal end.
  • Fig. 10 is a schematic side view of the stretched ring distal end.
  • Fig. 11 is a schematic cross-sectional view of the head end of the annular distal end.
  • Fig. 12 is a schematic cross-sectional view of the distal tube body.
  • Fig. 13 is a schematic diagram showing that the ring electrode is a spiral electrode.
  • Fig. 14 is a schematic diagram of the bending effect of the distal tube body.
  • Figure 15 is an internal schematic view of the retraction control assembly of the annular distal end.
  • Fig. 16 is a schematic diagram of an application according to an embodiment of the present invention.
  • Fig. 17 is a schematic diagram of another application according to an embodiment of the present invention.
  • Fig. 18 is a schematic diagram of electric field distribution when the ablation catheter releases electric field energy according to the present invention.
  • Fig. 1 is an overall schematic diagram of an ablation catheter according to the present invention.
  • the ablation catheter may include an annular distal end 1 , a hard end tube 4 , a distal tube body 5 , a proximal tube body 6 , and a handle assembly 15 in sequence from the distal end to the proximal end in the overall structure. , Connectors 18 and 19.
  • the annular distal end 1 is arranged at the most distal end of the catheter.
  • the terminal hard tube 4 is used to connect the annular distal end 1 and the distal tube body 5 .
  • the end hard tube 4 is preferably made of polyetheretherketone polymer material with relatively high hardness.
  • the distal tube body 5 is arranged between the proximal tube body 6 and the end hard tube 4 .
  • the distal tube body 5 can be bent under the control of the handle assembly 15, so as to make the ring-shaped distal end 1 reach a desired position.
  • the proximal tube body 6 is used to connect the distal tube body 5 and the handle assembly 15 .
  • the connectors of the ablation catheter shown in FIG. 1 include at least two connectors: a connector 18 for transmitting positioning information between the catheter and the device, and a connector 19 for transmitting ablation energy with the device.
  • the ablation catheter shown in FIG. 1 also includes a push button 16 between the proximal tube body 6 and the handle assembly 15 , and a knob 17 on the handle assembly 15 .
  • distal end and proximal end are relative to the catheter operator, for example, the distal end may be the end closer to the tissue to be ablated, and the proximal end may be the end closer to the catheter operator. one end.
  • head end and end generally refer to a free end and a fixed end (or “connecting end”).
  • the ablation catheter according to the present invention is not limited to include all these elements and components.
  • Fig. 2 is a schematic diagram of the natural state of the ring-shaped distal end.
  • the outer diameter of the annular distal end is 20-35 mm in a natural state, presenting a letter "C"-shaped appearance.
  • the head end of the ring-shaped distal end is an anti-trauma head end 8, and the end is a hard end. There is a certain distance between the head end and the end end, and this separation distance is 1/4-1/5 of the roughly circular structure.
  • the ring-shaped distal end is in a spiral shape in a natural state, and an arc-shaped end tube body 3 corresponding to the shape of the ring-shaped distal end is arranged on the ring-shaped distal end.
  • the end tube body 3 is preferably supported by a highly elastic polyurethane material.
  • a plurality of electrode pairs 2 are arranged on the end tube body 3 .
  • the number of electrode pairs is 2N+1, and N is a positive integer.
  • Each electrode pair consists of two electrodes.
  • the first electrode pair closest to the tip consists of ring electrode 11 and ring electrode 12 .
  • the ablation catheter according to the invention has an annular distal end 1 .
  • the annular distal end 1 includes an arc-shaped terminal tube body 3 .
  • the innovation of the present invention lies in that a plurality of electrode pairs are arranged at intervals along the arc extending direction of the end tube body.
  • the plurality of electrode pairs 2 are respectively surrounded on the end tube body 3 .
  • FIG. 2 also shows the end hard tube 4 and the positioning electrodes 41 provided thereon.
  • the positioning electrodes 41 will be described in more detail below.
  • one end of the end tube body 3 is a free end, which is located at the head end of the ring-shaped distal end 1 .
  • the free end has an atraumatic tip 8 on it.
  • the other end of the end pipe body 3 is a fixed end.
  • One end of the terminal hard tube 4 is connected to the fixed end of the terminal tube body 3 .
  • One end of the distal tube body 5 is connected to the other end of the terminal hard tube 4 .
  • One end of the proximal tube body 6 is connected to the other end of the distal tube body 5 .
  • One end of the handle assembly 15 is connected to the other end of the proximal tube body 6 .
  • a push button 16 may be provided between the handle assembly 15 and the proximal tubular body 6 .
  • a knob 17 may be provided on the handle assembly 15 .
  • Connectors 18 , 19 are connected to the other end of the handle assembly 15 .
  • Fig. 3 is a schematic diagram of the electrode pair arrangement in the natural state of the annular distal end.
  • the first electrode pair 111 consists of two fine ring electrodes.
  • the ring electrode is preferably a gold or platinum electrode, and the dimension (which may be called "length" or "width") in the arc extension direction of the terminal body is 0.50-1.5 mm.
  • the clearance distance between the ring electrodes is 1-3 mm.
  • the clearance between ring electrode pairs is 3-6 mm.
  • the original intention of the design of the electrode width and spacing used here is that since the diameter of the annular distal end can be shrunk, the electrode size needs to be adapted to it, especially in the arc extension direction of the end tube body The size of the electrode, the so-called “length” or “width”, needs to be appropriate. If the size is too large, it will affect the contraction effect of the ring distal end. Therefore, two ring electrodes are set to form a group of electrode pairs.
  • each electrode pair 2 includes two ring electrodes surrounding the end tube body 3, such as ring electrodes 11 and 12, the width of each ring electrode in the arc extending direction of the end tube body, the same
  • the spacing between the two ring electrodes in the electrode pair, and the spacing between adjacent electrode pairs need to be set to an appropriate size. In a preferred embodiment, there is a constraint between these dimensions and the diameter of each ring electrode (described in more detail below).
  • 2N+1 (odd number) ring electrode pairs may be provided on the ring distal end.
  • positive and negative voltages are applied alternately from the first electrode pair to the ninth electrode 111-119, for example, the first electrode pair 111 is loaded with a positive electrode, and the second electrode pair 112 is loaded with a negative electrode, sequentially loaded, That is, the polarities of adjacent electrode pairs are opposite.
  • the last electrode pair in FIG. 3 is the ninth electrode pair 119, which has a positive polarity. Since the number of electrode pairs is an odd number, the polarity of the last electrode pair is the same as that of the first electrode pair.
  • the polarities of the first electrode pair 111 and the ninth electrode pair 119 are both positive.
  • the purpose of such setting is to ensure that when the ring-shaped distal end is contracted, even if the electrodes are overlapped, no arc problem will occur, thereby ensuring the safety of use.
  • the two electrodes in the electrode pair In the ablation mode, the two electrodes in the electrode pair have the same polarity during discharge ablation, and can be equivalently regarded as one electrode.
  • the design of the separated electrode pair (consisting of two ring electrodes) can reduce the rigidity of the end tube body and facilitate the shrinkage of the ring distal end.
  • the ring electrode may be a helical electrode.
  • the spiral electrode is an electrode in which the electrode wire is wound or the ring electrode is cut into a spiral shape.
  • the rigidity of the end tube body can be reduced, which facilitates the contraction of the ring distal end diameter.
  • the electrode pairs 111-119 are all ring-shaped, preferably at equal intervals, and surround the end tube body 3 .
  • the end pipe body 3 is connected with the end hard pipe 4 .
  • the electrode material can be platinum-iridium alloy, gold.
  • the ablation catheter is a pulsed electric field ablation catheter, which is used to transmit and release pulsed ablation energy to the desired ablation site. That is to say, the ablation catheter is mainly used for ablation by applying a high-voltage pulsed electric field to human tissue. More specifically, the ablation catheter according to the present invention can be used for ablation of the heart and its surrounding tissues.
  • the electrodes are arranged as electrode pairs. A single electrode is set at a certain short distance and then an electrode is set, so that the two electrodes can form an electrode pair. When discharging, this pair of electrodes (electrode pair) is equivalently regarded as an electrode, and the surface area is sufficiently large. The discharge function of the electrode will not affect the diameter adjustment of the ring distal end because the size of the electrode is too large.
  • the distance between the two electrodes in the electrode pair is relatively close, and they can be used for mapping independently at the same time. Due to the high and concentrated energy output of the pulsed electric field, it is required that the distance between the positive and negative electrodes loaded should be as large as possible, but too large electrode spacing will make the range of electrophysiological signals collected too large, which will affect the judgment of local ablation effect. Therefore, after the ablation is completed, two electrodes with a closer distance in the electrode pair are used to collect electrophysiological signals, so that the electrophysiological signals can be judged more accurately, local electrical signals can be judged more finely, and excessive electrode spacing can be avoided. The introduction of a wide range of electrophysiological signals affects the judgment of the ablation effect.
  • the ablation catheter when used for pulsed electric field ablation, the ablation catheter is in the ablation mode, and the polarity of the two electrodes in each electrode pair is the same, so it can be equivalent to applying voltage to the same electrode, so that in During ablation, it acts as a discharge from an electrode with a sufficiently large surface area. At the same time, the polarities of adjacent electrode pairs are opposite.
  • the ablation catheter when used for electrophysiological mapping, the ablation catheter is in the mapping mode, and the two electrodes in each electrode pair function separately, that is, they are used to collect electrophysiological signals independently, forming two gaps. effect of the closer electrodes.
  • Fig. 4 is a schematic diagram of the arrangement of the pulling assembly of the distal tube body.
  • the ring-shaped distal end 1 is arranged on the end hard tube 4 .
  • the unbent section of the end tube body 3 in the proximal direction is connected with the end hard tube 4 .
  • a traction assembly 42 is placed inside the end hard tube 4 .
  • the traction assembly 42 is fixed on the end hard tube 4, and the distal tube body 5 can be bent under the control of the push button 16 between the handle assembly 15 and the proximal tube body 6 (refer to FIG. 14 ).
  • Positioning electrodes 41 are provided on the end hard tube 4 for coordinating the positioning of positioning sensors (such as positioning sensors 131 , 132 , 133 described below).
  • Fig. 5 is a schematic diagram of the retracted state of the annular distal end.
  • Fig. 6 is a schematic diagram of the arrangement of the electrode pair in the retracted state of the annular distal end.
  • Fig. 10 is a schematic side view of the stretched ring distal end.
  • Figure 15 is an internal schematic view of the retraction control assembly of the annular distal end.
  • the handle assembly 15 may have a knob 17 thereon.
  • the contraction and recovery of the contraction rope can be controlled, thereby realizing the change of the annular diameter of the annular distal end.
  • the distal end of the ring presents a helical ring with a ring diameter of 20-35 mm.
  • the distance between the head end and the end of the annular distal end 1 is 1/5-1/4 of the circumference of the ring.
  • the first and last electrode pairs 111 and electrode pairs 119 on the end tube body 3 do not overlap, further increasing safety.
  • the ring-shaped distal end 1 shrinks to the minimum, the ring-shaped distal end 1 is a closed ring on the ring section, the ring diameter is 12-15 mm, and the electrode pairs on the head end and the end end do not overlap.
  • Fig. 5 and Fig. 10 also show the end hard tube 4 or a part thereof.
  • the ablation catheter according to the present invention may further include a support member penetrating through the end tube body and the end hard tube, and a contraction rope arranged inside the ring of the support member.
  • a support member penetrating through the end tube body and the end hard tube
  • a contraction rope arranged inside the ring of the support member.
  • One end of the contraction rope and one end of the support member are jointly fixed on the anti-injury head end.
  • the contraction rope is contracted, the support member is deformed to adjust the ring diameter of the ring distal end.
  • Fig. 7 is a schematic diagram of a support member.
  • the supporting member 7 has a ring shape.
  • the shape of the annular distal end is mainly determined by the shape of the support member.
  • the material of the supporting member is a memory alloy material with high elasticity, such as nickel-titanium alloy (NiTi), etc., which can instantly restore the original shape after the external force is removed.
  • NiTi nickel-titanium alloy
  • the diameters of the head end 71 of the support member and the proximal end 72 of the support member are not the same.
  • the diameter of the head end 71 of the support member is smaller than the diameter of the proximal end 72 of the support member, and the diameter gradually increases from the head end to the proximal end.
  • the ring-shaped distal end 1 shrinks, but if the rigidity of the head end is too large, the deformation and contraction of the head end cannot be realized, so the diameter of the head end is smaller than that of the proximal end, and gradually changes The diameter of the head end is 1/3-4/5 of the diameter of the proximal end.
  • the shrinkage rope 9 is preferably made of flexible stainless steel wire rope with high tensile strength, with a diameter of 0.10-0.15 mm.
  • the soft shrinkage rope 9 will not cause the rigidity of the annular distal end 1 to increase, thereby affecting the deformation of the annular ring.
  • the shrinkage rope 9 can also be a polyethylene rope (PE rope), which is soft and has high tensile strength. The shrinkage rope 9 will be described in detail below.
  • Fig. 8 is a schematic diagram of the interior of the annular distal end.
  • Fig. 9 is a schematic diagram of the arrangement of positioning sensors in the ring-shaped distal end.
  • Fig. 11 is a schematic cross-sectional view of the head end of the annular distal end.
  • a contraction rope 9 is set on the inner side of the support member 7, so that the support member 7 is deformed by the contraction rope 9, thereby causing the diameter of the annular distal end 1 to change, that is, the annular diameter of the annular distal end 1 can be shrink.
  • the support member 7 and the contraction rope 9 are jointly fixed inside the anti-trauma head end 8 at the head end of the annular distal end 1 .
  • a protective tube 10 is used to wrap the outside of the support member 7 and the shrinkage cord 9 .
  • the protection tube 10 is used to protect the shrinking rope 9 from affecting the devices inside the end tube body 3 when shrinking, and at the same time make the shrinking of the shrinking rope 9 smoother.
  • the material of the protection tube 10 is preferably a polytetrafluoroethylene tube.
  • a positioning sensor can be arranged under the electrode pair, so that the positioning sensor is located inside the terminal tube body.
  • the first positioning sensor 131 is arranged at the head end of the annular distal end 1 , below the first electrode pair 111 .
  • the second positioning sensor 132 is arranged in the middle of the ring-shaped distal end 1 , for example, below the electrode pair at the middle section of the ring-shaped distal end 1 , for example, below the sixth electrode pair 116 .
  • the third positioning sensor 133 is arranged inside the end hard tube 4 . These positioning sensors cooperate with the positioning electrodes 41 (Fig. 2, Fig.
  • the electrodes on the end tube body 3 to display the shape of the ring-shaped distal end 1 and the positional relationship of the electrodes, so that it is convenient to observe whether there is an overlap between the electrodes, so as to better Ensure the safety of the electrodes.
  • the most vulnerable position can be monitored by means of magnetic positioning to limit energy output in extreme conditions.
  • the size of the positioning sensor on the arc extension direction of the end tube body (for example, may be called “length") is equal to the respective dimensions of the two ring electrodes (the “length” or “width” in the arc extension direction of the end tube body ”) and the distance between them, that is, the size of one electrode pair (the width of one electrode pair in the arc extension direction of the end tube body), and it is arranged directly below the electrode pair. This is designed to avoid increasing the stiffness of the ring segment.
  • the positioning sensor is a cylindrical structure with a hollow in the middle. Thereby, the support member 7 can pass through the center of the cylindrical structure and fix the positioning sensor on the support member 7 .
  • the positioning sensor is a cylindrical structure wound by copper wires, which has a certain degree of elasticity. After being protected and fixed by the high-elastic polyurethane material on the outside, it forms a positioning sensor that can deform freely without affecting its performance. It is suitable for use in annular adjustable rings. superior.
  • each positioning sensor is fixed on the supporting member 7 .
  • the first positioning sensor 131 and the protection tube 10 (including the support member 7 and the shrinkage rope 9 inside the protection tube 10 ) are fixed with the sheath tube 14 .
  • the second positioning sensor 132 and the protection tube 10 can also be fixed with the sheath tube 14 .
  • the material of the sheath tube 14 is preferably a highly elastic polyurethane tube, which has high elasticity and is easy to bond.
  • the support member 7 , the retraction cord 9 and the protective tube 10 are fixed together at the atraumatic head 8 .
  • the positioning sensor 131 is arranged at the head end of the ring-shaped distal end 1 , below the first pair of ring electrodes 11 and 12 .
  • the size of the positioning sensor 131 on the arc extending direction of the end tube body (for example, may be referred to as "length") is equal to the size of the two ring electrodes 11 and 12 (the “length” on the arc extending direction of the end tube body). or “width”) and its spacing, that is, the size of a pair of electrodes, and are arranged directly below the pair of electrodes 11 and 12.
  • a first positioning sensor 131 is fixed on the outer periphery of the protection tube 10 . Since the first positioning sensor 131 is a cylindrical structure with a hollow center, the protection tube 10 can pass through the center of the cylindrical structure of the first positioning sensor 131 . That is, the support member 7 passes through the center of the cylindrical structure of the first positioning sensor 131 .
  • the second positioning sensor 132 can also be fixed on the outer periphery of the protection tube 10 . Since the second positioning sensor 132 is a cylindrical structure with a hollow center, the protection tube 10 can pass through the center of the cylindrical structure of the second positioning sensor 132 . That is, the supporting member 7 passes through the center of the cylindrical structure of the second positioning sensor 132 .
  • Fig. 12 is a schematic cross-sectional view of the distal tube body.
  • Fig. 14 is a schematic diagram of the bending effect of the distal tube body.
  • the ablation catheter according to the present invention may further include a push button 16 disposed between the handle assembly 15 and the proximal tubular body 6 .
  • the push-button 15 is connected to one end of the traction assembly 42 disposed in the distal tube body 5 .
  • the other end of the traction assembly 42 is connected to the end hard tube 4 .
  • pushing the push button 16 can control the bending of the distal tube body 5 to help the ring-shaped distal end 1 reach the target position.
  • the distal tube body 5 is a multi-lumen tube structure, and the contraction rope 9 of the ring-shaped distal end 1 is placed in the middle cavity. Because it is placed in the middle cavity, when the contraction rope 9 shrinks and moves, it will not affect the bending of the distal tube body 5 and drive the distal tube body 5 to bend.
  • the traction assembly 42 is arranged on the side of the distal tubular body 5 so as to facilitate the bending of the distal tubular body 5 without affecting the contraction rope 9 in the middle.
  • the contraction cord 9 is in the middle, and no matter whether the distal tubular body 5 is in a state of bending or straightening, the contraction cord 9 will not cause relative movement. In this way, the problem that the contraction of the annular distal end 1 and the bending of the distal tube body 5 may interfere with each other is avoided.
  • Figure 14 shows the same elements and components as in Figure 1, that is, in addition to the push button 16 and the knob 17, it also includes an annular distal end 1, a terminal hard tube 4, a distal tube body 5, and a proximal tube body 6 , handle assembly 15, connectors 18 and 19. It should be understood by those skilled in the art that although the above elements and components are combined to form a preferred embodiment of the ablation catheter according to the present invention, the ablation catheter according to the present invention is not limited to include all these elements and components.
  • the connectors of the ablation catheters shown in Figs. Carry out the transmission of ablation energy.
  • the connector 18 is connected to the positioning sensor through a first cable, so as to transmit positioning information.
  • the connector 19 is respectively connected to the ring electrodes on each electrode pair through the second cable, so as to transmit ablation energy; in addition, when the ablation catheter is in the mapping mode, the connector 19 and the second cable can also be used to collect electrophysiological data. Mapping signal.
  • Fig. 16 is a schematic diagram of an application according to an embodiment of the present invention.
  • Fig. 17 is a schematic diagram of another application according to an embodiment of the present invention.
  • Step 1 As shown in Figure 16, the diameter of the annular distal end 1 is shrunk to a small diameter annular distal end 1, and then inserted into the lumen structure 20;
  • Step 2 Carry out electrophysiological signal mapping inside the cavity structure 20 and build a physical model of the cavity structure 20;
  • Step 3 As shown in Figure 17, the diameter of the ring-shaped distal end 1 is controlled to increase so that the electrode can be well attached to the cavity structure 20;
  • the fourth step discharge ablation, the voltage amplitude is 1000-4000V.
  • electrophysiological signals are collected through the two electrodes in the electrode pair.
  • the immediate ablation effect can be determined by comparing changes in the electrophysiological signals until the electrical activity of the cavity structure 20 is completely isolated.
  • Fig. 18 is a schematic diagram of electric field distribution when the ablation catheter releases electric field energy according to the present invention.
  • the effective threshold of myocardial ablation is 400V/CM.
  • the voltage intensity is greater than 400V/CM, reaching the threshold, so that effective myocardial ablation can be performed in this continuous area.
  • the number of electrode pairs is 2N+1 (N is a positive integer).
  • Each electrode pair is composed of two ring electrodes, as shown in Fig. 18, and the number of electrode pairs is 9 pairs.
  • Both the first electrode pair 111 and the ninth electrode pair 119 are composed of two fine ring electrodes.
  • the ring electrodes are preferably gold or platinum electrodes, the size ("length” or “width” in the arc extension direction of the end tube body) is 0.50-1.5 mm, and the clearance between the ring electrodes is 1-3 mm.
  • the clear space between the pairs is 3-6mm, and the amplitude of the applied pulsed electric field is 1000-4000V.
  • a continuous ablation zone should be formed when the electrodes are discharged to prevent ablation leaks.
  • the electric field distribution and mechanical design formed by the electrodes under the premise of ensuring that the surface area of the electrode pair is large enough and the distance between the electrode pair is appropriate, a continuous ablation zone is formed during discharge ablation and the ring-shaped adjustable function is guaranteed. The relationship is as follows:
  • L is the width (or "length") of the ring electrode in the arc extension direction of the end tube body
  • d is the distance between two ring electrodes in the same electrode pair
  • D is the distance between adjacent electrode pairs
  • S is the diameter of each ring electrode
  • the value of L is 0.50-1.5 mm
  • the value of d is 1-3 mm
  • D is 3-6 mm.
  • the ablation catheter of the present invention can be used in the ablation mode and the mapping mode, the electrodes and electrode pairs on the ablation catheter can be controlled accordingly so that they can play different roles in different modes to achieve different functions.
  • the present invention proposes a method for controlling the function of an electrode pair on an ablation catheter according to the present invention.
  • the ablation catheter is specifically a pulse electric field ablation catheter used for ablation of the heart and its surrounding tissues.
  • the electric field energy of the same polarity is transmitted to the two closely spaced electrodes in each electrode pair, so that the two electrodes in the electrode pair are equivalent in size or surface area
  • the same larger electrode applies a voltage to the corresponding tissue, and transmits electric field energy of opposite polarity to the adjacent electrode pair, so as to realize the function of pulsed electric field ablation.
  • the two electrodes in each electrode pair with a small distance are used separately, that is, the electrophysiological signals are collected independently through the two electrodes in each electrode pair, so as to Realize the function of electrophysiological mapping.
  • Non-transitory computer readable media include various types of tangible storage media.
  • non-transitory computer readable media examples include magnetic recording media (such as floppy disks, magnetic tapes, and hard drives), magneto-optical recording media (such as magneto-optical disks), CD-ROM (Compact Disk Read-Only Memory), CD-R, CD-R /W and semiconductor memories such as ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM, and RAM (random access memory).
  • these programs can be provided to computers by using various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The transitory computer readable medium can be used to provide the program to the computer through a wired communication path such as electric wires and optical fibers or a wireless communication path.
  • a computer-readable medium may be provided, on which are stored instructions executable by a processor. When executed by the processor, the instructions cause the processor to perform the aforementioned A method for controlling the function of an electrode pair on an ablation catheter.
  • a computer program or a computer program product can also be proposed, when the computer program is executed, the method for controlling the function of the electrode pair on the ablation catheter can be realized as described above.
  • the present invention also relates to a computing device or a computing system, including a processor and a memory, and a computer program is stored in the memory, and when the computer program is executed by the processor, the aforementioned user A method for controlling the function of an electrode pair on an ablation catheter.
  • the ablation catheter according to the present invention has at least the following beneficial effects:
  • the design of the pulse catheter with adjustable ring-shaped distal end is suitable for different cavity structures, and the adjustable method is beneficial for the electrode on the ring-shaped distal end to better adhere to the tissue structure.
  • the design of the electrode pair is more convenient for the adjustment of the diameter of the ring-shaped distal end.
  • the electrode pair is used for electrophysiological signal acquisition more accurately, so as to avoid the excessive distance between electrodes from affecting the judgment of electrical signal changes.
  • the electrode design of the invention has the advantages that the electrode pair is combined into one electrode for ablation during ablation, and the electrode pair is separated into two electrodes for mapping during mapping, which fully takes into account the effectiveness of pulsed electric field ablation and the accuracy of electrophysiological mapping.
  • the high-voltage pulse energy is accurately and effectively applied to the target tissue, which greatly shortens the operation time.
  • the high-voltage pulse energy can selectively ablate the target tissue and reduce complications.
  • the catheter has the functions of mapping, modeling and ablation, which can save operation time and cost.

Abstract

一种消融导管具有环形远端(1)。环形远端(1)包括呈弧形的末端管体(3)。在消融导管中,沿末端管体(3)的弧形延伸方向间隔设置有多个电极对(2)。多个电极对(2)分别环绕在末端管体(3)上。每个电极对(2)包括两个环电极(11、12),每个环电极(11、12)都环绕在末端管体(3)上。这样的电极对设计在保证消融有效性与安全性前提下,更加便于环形远端(1)直径调节,同时电极对(2)用于电生理信号采集更加精确,避免电极间距过大影响电信号变化判断。

Description

消融导管 技术领域
本发明涉及电生理消融领域,更具体涉及一种具有直径可调节的环形远端的消融导管。
背景技术
目前临床上常用于治疗心房颤动等心律失常的方式为射频(RF)消融和冷冻消融两种。消融的成功主要取决于在手术过程中产生的损伤的质量和充分性。损伤必须足够才能破坏致心律失常组织或充分干扰或隔离心肌组织内的异常电传导。但过分的消融将会对周围健康组织以及神经组织产生影响。射频消融缺点为消融手术时间较长,对术者导管操作水平要求较高,由于为热损伤,消融时会伴有疼痛感,术后容易产生肺静脉狭窄问题。射频能量施加到目标组织对非目标组织具有影响,将射频能量施加到心房壁组织可能造成食管或膈神经损伤,另外射频消融具有组织结痂的风险,进一步导致栓塞问题。而对于冷冻消融,若冷冻球囊与肺静脉贴合紧密,一次或数次即可完成环形消融隔离,患者不产生疼痛感,缩短手术时间,但冷冻消融对膈神经损伤率较高。
利用脉冲电场技术可以将短暂的高电压施加到组织可以产生每厘米数百伏特的局部高电场,局部高电场通过在细胞膜中产生孔隙来破坏细胞膜(细胞膜变为“渗透”现象)。由于不同的组织细胞对电压穿透的阈值不一样,采用脉冲电场技术可以选择性的处理心肌细胞(阈值相对较低),而不对其他非靶点细胞组织(如神经、食道、血管、血液细胞等)产生影响。同时由于释放能量时间极短,脉冲技术将不会产生热效应,进而避免组织结痂、肺静脉狭窄等问题。
但是高压脉冲的电压较高,电极之间的能量不能过于集中,易发生安全事故,需要加强电极绝缘和导管内部绝缘。现有的消融导管若采用高压脉冲进行消融,电极之间容易产生电离,且采用高压脉冲消融的时间短,需要更加精准的定位。
心房颤动(AF)是常见的持续性心律失常,严重危害人类的健康和影响生活质量。肺静脉之所以成为心房颤动最常见的局部病灶是因为肺静脉肌袖的存在。肺静脉的内膜和外膜之间有心肌细胞集落,由心房侧向肺侧呈袖状包绕肺静脉,称为心肌袖。由于形成心肌袖的细胞与心房肌的起源不同,电生理特性也不同,因此会形成异常激动的基质。肺静脉周围的心房肌与肺静脉同样,也包含有AF的触发灶或者维持AF的心律失常基质,因此在消融隔离时肺静脉周围的心肌组织有时也会被消融。
目前常用的方式为逐点式点消融肺静脉前庭以形成环形隔离带,该方式手术时间长,给患者及医生带了巨大压力,且经常存在漏点而导致复发,因此亟需设计出一种能一次性快速消融隔离肺静脉前庭的导管。
目前已知的环电极导管为固定形状及尺寸的形式,针对不同腔道尺寸的结构组织,无法实现良好的贴靠与操控。
因此,需要一种具有环形远端的消融导管,该环形远端具有直径可调节的性能,以适应不同组织结构以及良好的贴靠,消融放电时能形成封闭的环形消融带。
发明内容
本发明提供一种具有环形远端的消融导管。一方面,环形远端的直径可以调节,以便适应不同组织结构以及实现良好的贴靠;另一方面,在环形远端上布置了电极对,以便适应环形远端直径调节导致的变形收缩。而且,电极对中的环电极在消融模式下成对起作用,而在标测模式下单独起作用。
根据本发明的第一方面,提供一种消融导管。所述消融导管具有环形远端,所述环形远端包括呈弧形的末端管体。沿所述末端管体的弧形延伸方向间隔设置有多个电极对,所述多个电极对分别环绕在末端管体上。
优选地,电极对的数量为2N+1,其中N为正整数。
在根据本发明第一方面的消融导管中,每个电极对包括环绕在末端管体上的两个环电极,每个环电极在末端管体的弧形延伸方向上的宽度为L,同一个电极对中两个环电极的间距为d,相邻电极对之间的间距为D,每个环电极的直径为S,则:S>D=(2×L+d)×k,其中k为修正系数,且k取值在0.7到1.4之间。
优选地,L取值为0.50-1.5毫米,d取值为1-3毫米,D取值为3-6毫米。
优选地,所述环电极可以是螺旋电极。所述螺旋电极可以是电极导线绕制而成的,也可以将环电极切割成螺旋形态的电极。
优选地,所述导管是脉冲电场消融导管,用于传递与释放脉冲消融能量至预期消融部位。
优选地,所述导管用于心脏及其周边组织消融。
当用于脉冲电场消融时,每个电极对中的两个电极的极性相同,等效为同一个电极施加电压,并且相邻的电极对的极性相反。
当用于电生理标测时,每个电极对中的两个电极被分别独立用来采集电生理信号。
优选地,每个电极对所施加的电压的幅值为1000-4000V。
在根据本发明第一方面的消融导管中,在所述电极对下方设置定位传感器,处于所述末端管体内部。
优选地,定位传感器在末端管体的弧形延伸方向上的长度等于所述电极对在末端管体的弧形延伸方向上的宽度。具体地说,定位传感器在末端管体的弧形延伸方向上的长度等于所述电极对中两个环电极分别在末端管体的弧形延伸方向上的宽度及其间距之和。
优选地,所述定位传感器包括第一定位传感器和第二定位传感器。所述第一定位传感器设置在环形远端的头端开始的第一个电极对下方。所述第二定位传感器设置在环形远端中间段位置处的电极对的下方。
在根据本发明第一方面的消融导管中,所述环形远端的环形直径能够收缩。
在自然状态下,所述环形远端可以呈现螺旋状,环形直径可以是20-35毫米。所述环形远端的头端和末端之间分离,该分离的距离为圆环周长的1/5-1/4。
在所述环形远端收缩到最小时,所述环形直径可以是12-15毫米。所述环形远端在环形截面上呈封闭的圆环,且所述环形远端的头端和末端上的电极对不发生搭接。
在根据本发明第一方面的消融导管中,所述末端管体的一端为自由端,处于所述环形远端的头端。所述自由端上具有防损伤头端。所述末端管体的另一端为固定端。所述导 管可以进一步包括:末端硬管,其一端连接到所述末端管体的固定端;远端管体,其一端连接到所述末端硬管的另一端;近端管体,其一端连接到所述远端管体的另一端;手柄组件,其一端连接到所述近端管体的另一端;连接器,其连接到所述手柄组件的另一端。
优选地,所述导管可以进一步包括:支撑构件,贯穿设置在所述末端管体和所述末端硬管内部,为记忆合金材料制成;收缩绳,其设置在支撑构件的环形内侧,其一端与所述支撑构件的一端共同固定于所述防损伤头端。所述收缩绳收缩时带动所述支撑构件形变,以调节所述环形远端的直径。
优选地,所述导管可以进一步包括保护管,包裹在所述支撑构件和所述收缩绳外部。
优选地,所述手柄组件上具有旋钮。所述旋钮被设置为通过旋转以控制收缩绳的收缩与恢复。
优选地,在所述保护管外周上固定定位传感器,所述定位传感器为圆柱体结构,所述保护管穿过所述圆柱体结构的中心。
优选地,将所述定位传感器与所述保护管用护套管进行固定。
优选地,根据本发明第一方面的消融导管可以进一步包括推纽,设置在所述手柄组件和所述近端管体之间。所述推扭连接设置在所述远端管体内的牵引组件的一端,所述牵引组件的另一端连接所述末端硬管,推动所述推扭可以控制所述牵引组件的松紧,以实现所述远端管体打弯。
优选地,所述牵引组件设置在所述远端管体内的侧边。
在根据本发明第一方面的消融导管中,可以在所述末端硬管上设置定位电极,在所述末端硬管内部设置第三定位传感器。
在根据本发明第一方面的消融导管中,所述连接器包括:第一连接器,其通过第一线缆与定位传感器连接,被配置用于传输定位信息;第二连接器,其通过第二线缆分别与每个电极对上的环电极连接,被配置为传输消融能量。
根据本发明的第二方面,提供一种用于控制根据本发明第一方面的消融导管上的电极对的功能的方法。所述消融导管是用于心脏及其周边组织消融的脉冲电场消融导管。该方法包括:在导管的消融模式下,向每个电极对中的两个电极传输极性相同的电场能量,使电极对中的两个电极等效为同一个电极向相应组织施加电压,而向相邻的电极对传输极性相反的电场能量,以实现脉冲电场消融功能;以及在导管的标测模式下,通过每个电极对中的两个电极来分别独立采集电生理信号,以实现电生理标测功能。
根据本发明的第三方面,提供一种计算机可读介质,其上存储有可由处理器执行的指令,所述指令在被处理器执行时,使得处理器执行根据本发明第二方面的用于控制消融导管上的电极对的功能的方法。
前文已经提到,目前固定直径的环形脉冲消融导管无法对腔道结构实现良好的贴靠:直径过大,无法进入腔道结构;直径过小,无法对腔道结构实现良好的贴靠,从而影响消融的效率及效果。与此同时,脉冲电场消融由于需要避免电场过于集中引发安全风险,需要单个电极面积大(电极长度或宽度尺寸尽可能大),但环形导管结构需要直径可调节,电极面积大、电极长度或宽度尺寸更大则不适用于环形直径调节,因为可变直径需要对环形段形状进行压缩变化,电极尺寸过大会增加环形导管局部刚性段长度增加,使环形导管难以 变形收缩。
为保证脉冲电场消融的安全性,脉冲消融使用的电极间距一般会设计得较大些。但过大的电极间距在电生理信号采集时容易引入其他干扰信号,无法精确采集局部的电信号,容易影响术者分析判断,影响手术效率。电生理信号标测更希望微小电极且电极间距更加小以实现精确标测。
有鉴于此,本发明提议采用电极对。这样,在用作消融电极时,可以将一对电极等效为一个电极起作用;而在用作标测电极时,则将电极对中的两个电极分别独立使用。电极对设计在保证消融有效性与安全性前提下,更加便于环形远端直径调节,同时电极对用于电生理信号采集更加精确,避免电极间距过大影响电信号变化判断。
定位传感器有助于实现对环形导管的定位与形态显示。由于可调节直径的环形段需要进行大幅度压缩变形,目前常规定位传感器刚性较大,难以随环形段形变而变形。但若无定位传感器,环形脉冲导管具有极高的安全风险,不同极性的电极发生搭接就会出现打火问题,打火将会灼伤心脏组织。
因此,在本发明的优选实施例中,提出可自由变形且不影响性能的定位传感器的设置方式,适用于导管的可调节直径的环形段上。
附图说明
通过以下详细的描述并结合附图将更充分地理解本发明,其中相似的元件以相似的方式编号,其中:
图1是根据本发明的消融导管的整体示意图。
图2是环形远端的自然状态示意图。
图3是环形远端的自然状态下电极对设置的示意图。
图4是远端管体牵引组件布置的示意图。
图5是环形远端的收缩状态示意图。
图6是环形远端的收缩状态下电极对设置的示意图。
图7是支撑构件的示意图。
图8是环形远端内部示意图。
图9是环形远端中定位传感器布置示意图。
图10是环形远端拉伸侧面示意图。
图11是环形远端头端剖面示意图。
图12是远端管体截面示意图。
图13是环电极为螺旋电极的示意图。
图14是远端管体弯折效果示意图。
图15是环形远端的收缩控制组件的内部示意图。
图16是根据本发明的实施例的一个应用示意图。
图17是根据本发明的实施例的另一个应用示意图。
图18是根据本发明的消融导管释放电场能量时的电场分布示意图。
附图标记
1-环形远端
2-电极对
3-末端管体
4-末端硬管
41-定位电极
42-牵引组件
5-远端管体
6-近端管体
7-支撑构件
71-支撑构件头端
72-支撑构件近端
8-防损伤头端
9-收缩绳
10-保护管
11-环电极
12-环电极
131-第一定位传感器
132-第二定位传感器
133-第三定位传感器
14-护套管
15-手柄组件
16-推钮
17-旋钮
171-滑动块
172-旋转芯轴
173-滑动槽
18-第一连接器
19-第二连接器
20-腔道结构
111-第一电极对
112-第二电极对
113-第三电极对
114-第四电极对
115-第五电极对
116-第六电极对
117-第七电极对
118-第八电极对
119-第九电极对
21-心肌组织
22-放电形成的电场区域
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步详细的说明,但本发明不限于下面的实施例。
消融导管
图1是根据本发明的消融导管的整体示意图。
如图1所示,根据本发明的消融导管在整体结构上从远端到近端依次可以包括环形远端1、末端硬管4、远端管体5、近端管体6、手柄组件15、连接器18和19。环形远端1设置在导管的最远端。末端硬管4用于连接环形远端1与远端管体5。末端硬管4优选材质硬度较高的聚醚醚酮高分子材料。远端管体5设置在近端管体6与末端硬管4之间。远端管体5在手柄组件15的操控下可进行弯曲,用于使环形远端1到达预期部位。近端管体6用于连接远端管体5与手柄组件15。图1中所示的消融导管的连接器至少包括两种连接器:连接器18用于在导管与设备间传输定位信息,连接器19用于与设备之间进行消融能量的传输。
图1所示的消融导管还包括在近端管体6和手柄组件15之间的推钮16、手柄组件15上的旋钮17。
在本公开的表述中,“远端”和“近端”是相对于导管操作者而言的,例如,远端可以是更靠近待消融组织的一端,而近端可以是更靠近导管操作者的一端。此外,“头端”和“末端”一般是指自由端和固定端(或称“连接端”)。
本领域技术人员应该理解,尽管将上述元件和组件组合在一起形成根据本发明的消融导管的一个优选实施例,然而根据本发明的消融导管并不限于包括所有这些元件和组件。
图2是环形远端的自然状态示意图。如图2所示,环形远端在自然状态下外径为20-35毫米,呈现字母“C”形的外观。环形远端的头端是防损伤头端8,末端是硬端,头端和末端之间分离一定距离,这个分离距离为大致圆形结构的1/4-1/5。环形远端自然状态下呈螺旋状,环形远端上设置有与环形远端的形状相应而呈弧形的末端管体3。末端管体3优选由高弹性的聚氨酯材料支撑。末端管体3上设置有多个电极对2。在本发明的优选实施例中,电极对的数量为2N+1个,N为正整数。每个电极对都由两个电极组成。例如,在距离头端(防损伤头端8)最近的第一个电极对是由环电极11和环电极12组成的。
简言之,根据本发明的消融导管具有环形远端1。环形远端1包括呈弧形的末端管体3。本发明的创新点在于,沿末端管体的弧形延伸方向间隔设置有多个电极对。这多个电极对2分别都环绕在末端管体3上。
图2还示出了末端硬管4及其上设置的定位电极41,下文将有对定位电极41更详细的描述。
结合图1和图2可知,末端管体3的一端为自由端,处于环形远端1的头端。所述自由端上具有防损伤头端8。末端管体3的另一端为固定端。末端硬管4一端连接到末端管体3的固定端。远端管体5一端连接到末端硬管4的另一端。近端管体6一端连接到远端管体5的另一端。手柄组件15一端连接到近端管体6的另一端。可以在手柄组件15和近端管体6之间设置推钮16。另外,可以在手柄组件15上设置旋钮17。连接器18、19连接到手柄组件15的另一端。
图3是环形远端的自然状态下电极对设置的示意图。例如,如图3中所示,第一电极 对111由两个微细环电极组成。环电极优选为黄金或铂金电极,在末端管体的弧形延伸方向上的尺寸(可以称之为“长度”或者“宽度”)为0.50-1.5毫米。环电极之间的净空间距为1-3毫米。环电极对之间的净空间距为3-6毫米。这里需要注意的是,这里所采用的电极宽度、间距等的设计初衷在于,由于环形远端的直径可收缩,所以电极尺寸需要与之相适应,特别是在末端管体的弧形延伸方向上的电极尺寸即所谓的“长度”或“宽度”需要适当,尺寸过大将影响环形远端的收缩效果,因此设置为两个环电极组成为一组电极对。
简言之,每个电极对2都包括环绕在末端管体3上的两个环电极,例如环电极11和12,每个环电极在末端管体的弧形延伸方向上的宽度、同一个电极对中两个环电极的间距、相邻电极对之间的间距需要被设置为合适的尺寸。在优选实施例中,这些尺寸与每个环电极的直径之间存在一定的约束关系(下文将更详细描述)。
在本公开中使用了“在末端管体的弧形延伸方向上的尺寸”、“间距”等术语来表示与待消融的心肌组织相接触的环形远端的环形或弧形周长上的尺寸,而并非表示末端管体或环形远端的管体粗细方面的尺寸。本领域技术人员应该理解,这样的尺寸既可以被描述为“长度”,也可以被描述为“宽度”,默认情况下,无论“长度”或“宽度”,指的都是在环形周长上的尺寸,而并非表示管体粗细方面的尺寸。
如前所述,环形远端上可以设置有2N+1个(奇数个)环电极对。如图3中所示,放电消融时,第一电极对到第九电极111-119呈正负交替加载电压,例如第一电极对111加载正极,第二电极对112加载负极,依次顺序加载,也就是说,相邻的电极对的极性相反。图3中最后一个电极对是第九电极对119,其极性为正。由于电极对的数量为奇数个,所以最末电极对与第一电极对的极性是相同的。例如,第一电极对111和第九电极对119的极性都为正。这样设置的目的是为了确保环形远端收缩时,即使电极发生搭接,也不发生电弧问题,从而保证了使用的安全性。在消融模式下,电极对中的两个电极在放电消融时极性相同,可等效视为一个电极。分离式的电极对的设计(由两个环电极构成)可以减少末端管体的刚性,便于环形远端尺寸收缩。
如图13所示,环电极可以为螺旋电极。螺旋电极为电极导线绕制或者是环形电极进行切割成螺旋形态的电极。
回过来看图3,将环电极设置在末端管体3上时,可以减少末端管体刚性,便于环形远端直径收缩。电极对111-119均为环状,优选以等间距的形式,环绕在末端管体3上。末端管体3与末端硬管4相连接。电极材料可以为铂铱合金、黄金。
在本发明的优选实施例中,消融导管是脉冲电场消融导管,用于传递与释放脉冲消融能量至预期消融部位。也就是说,消融导管主要用于通过向人体组织施加高压脉冲电场来进行消融。更具体地,根据本发明的消融导管可以用于心脏及其周边组织的消融。
由于脉冲电场消融为电极之间加载高电压进行放电消融,电压为1000-4000V,因此要求电极表面积需足够大,否则在放电时会因局部场强过于集中而产生电弧现象。但是,如前所述,要兼顾环形远端直径可调节问题,因此电极设置为电极对布置。单个电极间隔一定较短的距离后再设置一个电极,从而这两个电极能够形成电极对,在放电时将这一对电极(电极对)等效地视为一个电极,发挥出表面积足够大的电极的放电作用,同时又不会因为电极尺寸太大而影响到环形远端的直径调节。
另一方面,电极对中的两个电极间距较近,可以同时分别单独用于标测作用。由于 脉冲电场能量输出较高且集中,因此要求加载的正负电极之间的距离应尽量大一些,但过大的电极间距将使采集的电生理信号范围过大,影响局部消融效果判断。因此,在消融完成后,使用电极对中的两个间距较近的电极进行电生理信号的采集,由此判断电生理信号更加精准,可以更加精细地判断局部电信号,避免过大的电极间距引入大范围的电生理信号而影响消融效果判断。
因此,简言之,当用于脉冲电场消融时,消融导管处于消融模式下,每个电极对中的两个电极的极性相同,由此可以被等效为同一个电极施加电压,从而在消融时起到一个表面积足够大的电极的放电作用。同时,相邻的电极对的极性是相反的。
另一方面,当用于电生理标测时,消融导管处于标测模式下,每个电极对中的两个电极分别发挥作用,即被分别独立用来采集电生理信号,起到两个间距较近的电极的作用。
图4是远端管体牵引组件布置的示意图。如图4所示,环形远端1设置在末端硬管4上。末端管体3在靠近近端方向上的不弯曲段与末端硬管4相连接。末端硬管4内部放置有牵引组件42。牵引组件42固定在末端硬管4上,在手柄组件15与近端管体6之间的推钮16的控制下可实现远端管体5弯曲(参考图14)。末端硬管4上设置有定位电极41,用于配合定位传感器(例如下文中所述的定位传感器131、132、133)的定位。
图5是环形远端的收缩状态示意图。图6是环形远端的收缩状态下电极对设置的示意图。图10是环形远端拉伸侧面示意图。图15是环形远端的收缩控制组件的内部示意图。
如前所述,手柄组件15上可以具有旋钮17。通过旋转旋钮17,可以控制收缩绳的收缩与恢复,从而实现环形远端的环形直径的变化。
参考图5、6、10、15,更具体如图15所示,当操控手柄组件15上的旋钮17时,滑动块171会带动收缩绳9移动。收缩绳9和滑动块171固定在一起。旋转芯轴172内部设置有内螺纹,与滑动块171上的外螺纹配合。当顺时针旋转旋钮17时,旋钮17将带动旋转芯轴172转动,旋转芯轴172将使滑动块171向后移动,拉动收缩绳9,进而实现环形远端1收缩。当逆时针旋转旋钮17时,收缩绳9恢复,环形远端1直径实现增大或恢复。
如前所述,在自然状态下,环形远端呈现螺旋状环形,环形直径为20-35毫米。环形远端1的头端和末端之间分离,该分离的距离为圆环周长的1/5-1/4。如图5、6、10所示,当环形远端1收缩到最小时,末端管体3上首尾两个电极对111与电极对119不发生搭接,进一步增加安全性。环形远端直径收缩到最小时环形远端1在环形截面上呈封闭的圆环,环形直径为12-15毫米,头端和末端上的电极对不发生搭接。图5和图10中除了示出末端管体3和电极对(例如111和119)之外,还示出了末端硬管4或其一部分。
根据本发明的消融导管可以进一步包括贯穿设置在末端管体和末端硬管内部的支撑构件以及设置在支撑构件的环形内侧的收缩绳。收缩绳的一端与支撑构件的一端共同固定于防损伤头端。收缩绳收缩时带动支撑构件形变,以调节环形远端的环形直径。
图7是支撑构件的示意图。如图7所示,支撑构件7呈环形状。环形远端的形状主要为支撑构件的形状决定。支撑构件的材料为具有高弹性的记忆合金材料,如镍钛合金(NiTi)等,能自去除外界力后瞬间恢复原始形态。在优选实施例中,支撑构件头端71与支撑构件近端72直径不一致。为实现环形远端的直径可调节功能,支撑构件头端71的直径小于支撑构件近端72的直径,且头端到近端,直径是渐变式增大。为实现环形远端1收缩,在收缩绳9的作用下,环形远端1收缩,但若头端刚性过大,便不能实现头端变形以及收缩,因此头 端直径小于近端,且依次渐变式增大,头端直径为近端直径的1/3-4/5。收缩绳9材质优选为柔性且具有较高抗拉强度的不锈钢丝绳,直径0.10-0.15毫米。柔软的收缩绳9将不会引起环形远端1的刚性增加,进而影响环形圈的变形。收缩绳9也可以为聚乙烯绳(PE绳),柔软且具有较高的抗拉强度。有关收缩绳9,在下文中还将详细描述。
图8是环形远端内部示意图。图9是环形远端中定位传感器布置示意图。图11是环形远端头端剖面示意图。
如图8所示,在支撑构件7的环形内侧设置收缩绳9,以利用收缩绳9带动支撑构件7形变,从而造成环形远端1的直径变化,即,使得环形远端1的环形直径可以收缩。支撑构件7与收缩绳9共同固定在环形远端1头端末端的防损伤头端8内部。如图11所示,使用保护管10包裹在支撑构件7和收缩绳9的外部。保护管10用于保护收缩绳9在收缩时不影响末端管体3内部的器件,同时使收缩绳9的收缩更加顺滑。保护管10的材质优选为聚四氟乙烯管材。
在本发明的优选实施例中,可以在电极对的下方设置定位传感器,使定位传感器处于末端管体的内部。
如图9所示,第一定位传感器131设置在环形远端1的头端,第一个电极对111下面。第二定位传感器132设置在环形远端1的中间位置,例如可以在环形远端1中间段位置处的电极对的下方,例如在第六电极对116的下方。第三定位传感器133设置在末端硬管4内部。这些定位传感器配合定位电极41(图2、图4),以及末端管体3上的电极,能显示环形远端1形态以及电极的位置关系,便于观察电极之间是否存在搭接,以便更好保证电极的安全性。依靠磁定位功能可以监控最易搭接位置,以在极端状况下限制能量输出。定位传感器在末端管体的弧形延伸方向上的尺寸(例如可被称为“长度”)等于两个环电极分别的尺寸(在末端管体的弧形延伸方向上的“长度”或“宽度”)及其间距之和,也就是一个电极对的尺寸(一个电极对在末端管体的弧形延伸方向上的宽度),且设置在电极对正下方。如此设计就是为了避免增加环形段刚性。定位传感器为圆柱体结构,中间为空心。由此,支撑构件7可以穿过该圆柱体结构的中心并将定位传感器固定在支撑构件7上。定位传感器为铜导线螺旋绕制的圆柱体结构,本身具有一定弹性,在外侧高弹性的聚氨酯材质保护固定后,形成可自由变形且不影响性能的定位传感器,适合用在环形可调节的环形圈上。
如图11所示,每个定位传感器都设置固定在支撑构件7上。为了稳定地固定在其上,将第一定位传感器131与保护管10(包括保护管10内的支撑构件7、收缩绳9)用护套管14进行固定。同理,也可以将第二定位传感器132与保护管10用护套管14进行固定。护套管14的材料优选为高弹性的聚氨酯管材,具有高弹性且便于粘接。支撑构件7、收缩绳9以及保护管10在防损伤头端8处固定在一起。在图11的示意中,定位传感器131设置在环形远端1的头端,第一对环电极11和12下面。定位传感器131在末端管体的弧形延伸方向上的尺寸(例如可被称为“长度”)等于两个环电极11和12的尺寸(在末端管体的弧形延伸方向上的“长度”或“宽度”)以及其间距,也就是一个电极对的尺寸,且设置在这对电极11和12的正下方。
如图11所示,在保护管10的外周上固定第一定位传感器131。由于第一定位传感器131为圆柱体结构,中间为空心,保护管10可以穿过第一定位传感器131的圆柱体结构的中心。也就是说,支撑构件7穿过第一定位传感器131的圆柱体结构的中心。
同理,也可以在保护管10的外周上固定第二定位传感器132。由于第二定位传感器132为圆柱体结构,中间为空心,保护管10可以穿过第二定位传感器132的圆柱体结构的中 心。也就是说,支撑构件7穿过第二定位传感器132的圆柱体结构的中心。
图12是远端管体截面示意图。图14是远端管体弯折效果示意图。
如前所述,根据本发明的消融导管可以进一步包括推纽16,其设置在手柄组件15和近端管体6之间。根据本发明的优选实施例,推扭15连接设置在远端管体5内的牵引组件42的一端。牵引组件42的另一端则连接末端硬管4。通过推动推扭16,可以控制牵引组件42的松紧,由此实现远端管体5打弯。
如图12、14所示,推动推钮16可控制远端管体5打弯,以帮助环形远端1达到目标位置。如图12所示,远端管体5为多腔管结构,环形远端1的收缩绳9放置中间腔。因为放置在中间腔,当收缩绳9收缩运动时不会影响远端管体5弯曲以及带动远端管体5折弯。牵引组件42设置在远端管体5的侧边,以便于远端管体5弯曲的同时不影响中间的收缩绳9。收缩绳9在中间,无论远端管体5在弯曲或伸直状态下均不会引起收缩绳9相对运动。这样就避免了环形远端1收缩与远端管体5弯曲可能会相互干涉的问题。
图14中示出了与图1中相同的元件和组件,即除了推钮16、旋钮17之外,还包括环形远端1、末端硬管4、远端管体5、近端管体6、手柄组件15、连接器18和19。本领域技术人员应该理解,尽管将上述元件和组件组合在一起形成根据本发明的消融导管的一个优选实施例,然而根据本发明的消融导管并不限于包括所有这些元件和组件。
此外,如前所述,图1、14中所示的消融导管的连接器至少包括两种连接器:连接器18用于在导管与设备间传输定位信息,连接器19用于与设备之间进行消融能量的传输。参考图11的描绘可知,连接器18通过第一线缆与定位传感器连接,从而传输定位信息。连接器19则通过第二线缆分别与每个电极对上的环电极连接,从而传输消融能量;另外在消融导管处于标测模式下,连接器19和第二线缆还可用来采集电生理标测信号。
应用实施例
下面来通过应用实施例更详细说明根据的本发明环形远端直径可变的消融导管的具体使用情况。
图16是根据本发明的实施例的一个应用示意图。图17是根据本发明的实施例的另一个应用示意图。
在图16和17的应用实施例中,可以包括如下的操作步骤:
第一步:如图16所示,将环形远端1直径收缩为小直径环形远端1,然后伸入腔道结构20;
第二步:对腔道结构20内部进行电生理信号标测以及构建腔道结构20物理模型;
第三步:如图17所示,控制环形远端1直径增大,使电极能与腔道结构20进行很好的贴靠;
第四步:放电消融,电压幅值为1000-4000V。消融后通过电极对里的两个电极采集电生理信号。通过比较电生理信号的变化可以确定即刻消融效果,直至腔道结构20电活动被完全隔离。
图18是根据本发明的消融导管释放电场能量时的电场分布示意图。
如图18所示,进行脉冲放电时,消融导管上的所有电极在心肌组织21中形成了连续的消融带,即图中所示的放电形成的电场区域22。一般地,心肌消融有效性阈值为400V/CM。在电场区域22中,电压强度均大于400V/CM,达到了该阈值,从而在这个连续区域上都能 够进行有效地心肌消融。电极对数量为2N+1个(N为正整数)。每个电极对由两个环电极组成,如图18中所示,电极对数量为9对。无论第一电极对111还是第九电极对119都是由两个微细环电极组成。环电极优选为黄金或铂金电极,尺寸(末端管体的弧形延伸方向上的“长度”或“宽度”)为0.50-1.5毫米,环电极之间的净空间距为1-3毫米,环电极对之间的净空间距为3-6毫米,施加的脉冲电场幅值为1000-4000V。为提升消融效率,电极放电时应形成连续的消融带,以防止消融漏点。根据电极形成电场分布与力学设计,在保证电极对表面积足够大,且电极对之间间距适当前提下,放电消融时形成连续的消融带且保证环形可调节功能,有如下关系:
(2×L+d)×k=D,且S>D,
其中,L为环电极在末端管体弧形延伸方向上的宽度(或称为“长度”),d为同一电极对中两个环电极的间距,D为相邻电极对之间的间距,S为每个环电极的直径,k为修正系数且取值在0.7-1.4之间(k=0.7-1.4)。如前所述,在优选实施例中,L取值为0.50-1.5毫米,d取值为1-3毫米,D取值为3-6毫米。
本领域技术人员应该理解,尽管上面的各种实施例中分别提到了消融导管的各种元件和组件,然而,除非上述说明书中明确排除或者实践中不允许或无法实现,这些元件和组件是可以任意组合在消融导管之中,从而发挥各自的作用以实现相应功能的。上述实施例或实施方式均无法限制本发明的范围。
电极功能控制方法
由于本发明的消融导管可以分别在消融模式下和标测模式下使用,所以可以相应地控制消融导管上的电极和电极对,使之在不同模式下可以分别发挥不同作用以实现不同功能。
具体地说,本发明提议一种用于控制如本发明所述的消融导管上的电极对的功能的方法。消融导管具体是用于心脏及其周边组织消融的脉冲电场消融导管。根据本发明提议的方法,在导管的消融模式下,向每个电极对中的两个间距较小的电极传输极性相同的电场能量,使电极对中的两个电极等效为尺寸或表面积较大的同一个电极向相应组织施加电压,而向相邻的电极对传输极性相反的电场能量,以实现脉冲电场消融功能。另一方面,在导管的标测模式下,将每个电极对中的两个间距较小的电极分别单独使用,即通过每个电极对中的两个电极来分别独立采集电生理信号,以实现电生理标测功能。
计算机程序或计算机程序产品以及计算机可读介质
此外,本领域普通技术人员应该认识到,本公开的方法可以实现为计算机程序。通过一个或多个程序执行上述方法,包括指令来使得计算机或处理器执行相应算法。这些程序可以使用各种类型的非瞬时计算机可读介质存储并提供给计算机或处理器。非瞬时计算机可读介质包括各种类型的有形存贮介质。非瞬时计算机可读介质的示例包括磁性记录介质(诸如软盘、磁带和硬盘驱动器)、磁光记录介质(诸如磁光盘)、CD-ROM(紧凑盘只读存储器)、CD-R、CD-R/W以及半导体存储器(诸如ROM、PROM(可编程ROM)、EPROM(可擦写PROM)、闪存ROM和RAM(随机存取存储器))。进一步,这些程序可以通过使用各种类型的瞬时计算机可读介质而提供给计算机。瞬时计算机可读介质的示例包括电信号、光信号和电磁波。瞬时计算机可读介质可以用于通过诸如电线和光纤的有线通信路径或无线通信路径提供程序给计算机。
例如,根据本公开的一个实施例,可以提供一种计算机可读介质,其上存储有可由处理器执行的指令,所述指令在被处理器执行时,使得处理器执行如前所述的用于控制消融导管上的电极对的功能的方法。
根据本发明公开的内容,还可以提议一种计算机程序或计算机程序产品,当所述计算机程序被执行时,可实现如前所述的用于控制消融导管上的电极对的功能的方法。
另外,本发明还涉及一种计算装置或计算系统,包括处理器和存储器,所述存储器中存储有计算机程序,当所述计算机程序由所述处理器执行时,可实现如前所述的用于控制消融导管上的电极对的功能的方法。
有益效果
综上所述,根据本发明的消融导管至少具有以下的有益效果:
1.可调节环形远端大小的脉冲导管设计适用不同的腔道结构,可调节方式有利于环形远端上的电极能更好的与组织结构进行贴靠。
2.电极对设计在保证消融有效性与安全性前提下,更加便于环形远端直径调节,同时电极对用于电生理信号采集更加精确,避免电极间距过大影响电信号变化判断。
3.该发明电极设计具有在消融时电极对合并为一个电极进行消融,标测时电极对分离为两个电极进行标测,充分兼顾脉冲电场消融的有效性与电生理标测的精确性。
4.提出可自由变形且不影响性能的定位传感器的设置方式,适用于导管的可调节直径的环形段上,使得消融导管在操作中可以提供形态与电极间距实时显示,以指导术者精确的消融操作,同时能监控电极间距以增加安全性。
5.高压脉冲能量精确有效地施加至目标组织,大大缩短手术时间,高压脉冲能量可以选择性地消融目标组织,减少并发症。
6.导管具备标测、建模、消融为一体的功能,可节约手术时间以及费用。
本发明的实施方式并不限于上述实施例所述,在不偏离本发明的精神和范围的情况下,本领域普通技术人员可以在形式和细节上对本发明做出各种改变和改进,而这些均被认为落入了本发明的保护范围。

Claims (31)

  1. 一种消融导管,具有环形远端(1),所述环形远端(1)包括呈弧形的末端管体(3),其特征在于,沿所述末端管体的弧形延伸方向间隔设置有多个电极对(2),所述多个电极对(2)分别环绕在末端管体(3)上。
  2. 根据权利要求1所述的导管,其特征在于,所述电极对(2)的数量为2N+1,其中N为正整数。
  3. 根据权利要求1所述的导管,其特征在于,每个电极对(2)包括环绕在末端管体(3)上的两个环电极(11、12),每个环电极在末端管体的弧形延伸方向上的宽度为L,同一个电极对中两个环电极的间距为d,相邻电极对之间的间距为D,每个环电极的直径为S,则:
    S>D=(2×L+d)×k,
    其中k为修正系数,且k取值在0.7到1.4之间。
  4. 根据权利要求3所述的导管,其特征在于,L取值为0.50-1.5毫米,d取值为1-3毫米,D取值为3-6毫米。
  5. 根据权利要求3所述的导管,其特征在于,所述环电极是螺旋电极。
  6. 根据权利要求5所述的导管,其特征在于,所述螺旋电极是电极导线绕制而成的。
  7. 根据权利要求5所述的导管,其特征在于,所述螺旋电极是将环电极切割成螺旋形态的电极。
  8. 根据权利要求1所述的导管,其特征在于,所述导管是脉冲电场消融导管,用于传递与释放脉冲消融能量至预期消融部位。
  9. 根据权利要求8所述的导管,其特征在于,所述导管用于心脏及其周边组织消融。
  10. 根据权利要求8所述的导管,其特征在于,当用于脉冲电场消融时,每个电极对中的两个电极的极性相同,等效为同一个电极施加电压,并且相邻的电极对的极性相反。
  11. 根据权利要求8所述的导管,其特征在于,当用于电生理标测时,每个电极对中的两个电极被分别独立用来采集电生理信号。
  12. 根据权利要求10所述的导管,其特征在于,每个电极对所施加的电压的幅值为1000-4000V。
  13. 根据权利要求1所述的导管,其特征在于,在所述电极对(2)下方设置定位传感器(131、132),处于所述末端管体(3)内部。
  14. 根据权利要求13所述的导管,其特征在于,所述定位传感器(131、132)在末端管体的弧形延伸方向上的长度等于所述电极对(2)在末端管体的弧形延伸方向上的宽度。
  15. 根据权利要求14所述的导管,其特征在于,所述定位传感器(131、132)在末端管体的弧形延伸方向上的长度等于所述电极对中两个环电极分别在末端管体的弧形延伸方向上的宽度及其间距之和。
  16. 根据权利要求13所述的导管,其特征在于,所述定位传感器包括第一定位传感器(131)和第二定位传感器(132),其中,所述第一定位传感器(131)设置在环形远端的头端开始的第一个电极对下方,所述第二定位传感器(132)设置在环形远端中间段位置处的电极对的下方。
  17. 根据权利要求1所述的导管,其特征在于,所述环形远端的环形直径能够收缩。
  18. 根据权利要求17所述的导管,其特征在于,在自然状态下,所述环形远端呈现螺旋状,环形直径为20-35毫米,所述环形远端的头端和末端之间分离,该分离的距离为圆环周 长的1/5-1/4。
  19. 根据权利要求18所述的导管,其特征在于,在所述环形远端收缩到最小时,所述环形直径为12-15毫米,所述环形远端在环形截面上呈封闭的圆环,所述环形远端的头端和末端上的电极对不发生搭接。
  20. 根据权利要求1所述的导管,其特征在于,所述末端管体(3)的一端为自由端,处于所述环形远端(1)的头端,所述自由端上具有防损伤头端(8),所述末端管体(3)的另一端为固定端,
    所述导管进一步包括:
    末端硬管(4),其一端连接到所述末端管体(3)的固定端;
    远端管体(5),其一端连接到所述末端硬管(4)的另一端;
    近端管体(6),其一端连接到所述远端管体(5)的另一端;
    手柄组件(15),其一端连接到所述近端管体(6)的另一端;
    连接器(18、19),其连接到所述手柄组件(15)的另一端。
  21. 根据权利要求20所述的导管,其特征在于,所述导管进一步包括:
    支撑构件(7),贯穿设置在所述末端管体(3)和所述末端硬管(4)内部,为记忆合金材料制成;
    收缩绳(9),其设置在支撑构件(7)的环形内侧,其一端与所述支撑构件(7)的一端共同固定于所述防损伤头端(8),
    其中,所述收缩绳(9)收缩时带动所述支撑构件(7)形变,以调节所述环形远端(1)的直径。
  22. 根据权利要求21所述的导管,其特征在于,所述导管进一步包括:
    保护管(10),包裹在所述支撑构件(7)和所述收缩绳(9)外部。
  23. 根据权利要求21所述的导管,其特征在于,所述手柄组件(15)上具有旋钮(17),所述旋钮(17)被设置为通过旋转以控制收缩绳(9)的收缩与恢复。
  24. 根据权利要求22所述的导管,其特征在于,在所述保护管(10)外周上固定定位传感器(131、132),所述定位传感器(131、132)为圆柱体结构,所述保护管穿过所述圆柱体结构的中心。
  25. 根据权利要求24所述的导管,其特征在于,将所述定位传感器(131、132)与所述保护管(10)用护套管(14)进行固定。
  26. 根据权利要求20所述的导管,其特征在于,所述导管进一步包括:
    推纽(16),设置在所述手柄组件(15)和所述近端管体(6)之间,其中,所述推扭(15)连接设置在所述远端管体(5)内的牵引组件(42)的一端,所述牵引组件(42)的另一端连接所述末端硬管(4),推动所述推扭(16)控制所述牵引组件(42)的松紧,以实现所述远端管体(5)打弯。
  27. 根据权利要求26所述的导管,其特征在于,所述牵引组件(42)设置在所述远端管体(5)内的侧边。
  28. 根据权利要求20所述的导管,其特征在于,在所述末端硬管(4)上设置定位电极(41),在所述末端硬管(4)内部设置第三定位传感器(133)。
  29. 根据权利要求20所述的导管,其特征在于,所述连接器(18、19)包括:
    第一连接器(18),其通过第一线缆与定位传感器(131、132、133)连接,被配置用于传输定位信息;
    第二连接器(19),其通过第二线缆分别与每个电极对上的环电极连接,被配置为传输消融能量。
  30. 一种用于控制如权利要求1所述的消融导管上的电极对的功能的方法,所述消融导管是用于心脏及其周边组织消融的脉冲电场消融导管,其特征在于,
    所述方法包括:
    在导管的消融模式下,向每个电极对中的两个电极传输极性相同的电场能量,使电极对中的两个电极等效为同一个电极向相应组织施加电压,而向相邻的电极对传输极性相反的电场能量,以实现脉冲电场消融功能;以及
    在导管的标测模式下,通过每个电极对中的两个电极来分别独立采集电生理信号,以实现电生理标测功能。
  31. 一种计算机可读介质,其上存储有可由处理器执行的指令,所述指令在被处理器执行时,使得处理器执行如权利要求30所述的用于控制消融导管上的电极对的功能的方法。
PCT/CN2022/128641 2022-01-27 2022-10-31 消融导管 WO2023142567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210102213.X 2022-01-27
CN202210102213.XA CN114366286A (zh) 2022-01-27 2022-01-27 消融导管

Publications (1)

Publication Number Publication Date
WO2023142567A1 true WO2023142567A1 (zh) 2023-08-03

Family

ID=81145718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128641 WO2023142567A1 (zh) 2022-01-27 2022-10-31 消融导管

Country Status (2)

Country Link
CN (1) CN114366286A (zh)
WO (1) WO2023142567A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366286A (zh) * 2022-01-27 2022-04-19 四川锦江电子科技有限公司 消融导管
CN115137466A (zh) * 2022-07-11 2022-10-04 洲瓴(上海)医疗器械有限公司 一种脉冲电场消融用电极导管
CN117442325A (zh) * 2023-10-25 2024-01-26 四川锦江生命科技有限公司 一种多极消融电极导管
CN117694997B (zh) * 2024-02-05 2024-04-26 成都飞云科技有限公司 一种消融导管、消融手柄及消融组件
CN117752404B (zh) * 2024-02-22 2024-05-07 四川锦江电子医疗器械科技股份有限公司 一种心脏电生理标测和消融导管

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047569A1 (en) * 2000-12-11 2002-06-20 C.R. Bard, Inc. Microelectrode catheter for mapping and ablation
US20100191232A1 (en) * 2009-01-27 2010-07-29 Boveda Marco Medical Llc Catheters and methods for performing electrophysiological interventions
CN110974404A (zh) * 2019-12-24 2020-04-10 四川锦江电子科技有限公司 具有精确形态显示的多极导管
CN111658134A (zh) * 2020-07-10 2020-09-15 四川锦江电子科技有限公司 一种心脏脉冲电场消融导管
CN111772783A (zh) * 2020-08-21 2020-10-16 白龙腾 一种具有可弯曲电极的消融系统
CN112135576A (zh) * 2018-05-21 2020-12-25 圣犹达医疗用品心脏病学部门有限公司 射频消融和直流电穿孔导管
WO2021009648A1 (en) * 2019-07-16 2021-01-21 Cathrx Ltd Pulse field ablation catheter
CN113349922A (zh) * 2021-07-06 2021-09-07 上海安钛克医疗科技有限公司 电生理导管及电生理系统
CN114366286A (zh) * 2022-01-27 2022-04-19 四川锦江电子科技有限公司 消融导管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111388085B (zh) * 2020-03-27 2021-04-09 四川锦江电子科技有限公司 一种心脏脉冲多极消融导管

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047569A1 (en) * 2000-12-11 2002-06-20 C.R. Bard, Inc. Microelectrode catheter for mapping and ablation
US20100191232A1 (en) * 2009-01-27 2010-07-29 Boveda Marco Medical Llc Catheters and methods for performing electrophysiological interventions
CN112135576A (zh) * 2018-05-21 2020-12-25 圣犹达医疗用品心脏病学部门有限公司 射频消融和直流电穿孔导管
WO2021009648A1 (en) * 2019-07-16 2021-01-21 Cathrx Ltd Pulse field ablation catheter
CN110974404A (zh) * 2019-12-24 2020-04-10 四川锦江电子科技有限公司 具有精确形态显示的多极导管
CN111658134A (zh) * 2020-07-10 2020-09-15 四川锦江电子科技有限公司 一种心脏脉冲电场消融导管
CN111772783A (zh) * 2020-08-21 2020-10-16 白龙腾 一种具有可弯曲电极的消融系统
CN113349922A (zh) * 2021-07-06 2021-09-07 上海安钛克医疗科技有限公司 电生理导管及电生理系统
CN114366286A (zh) * 2022-01-27 2022-04-19 四川锦江电子科技有限公司 消融导管

Also Published As

Publication number Publication date
CN114366286A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023142567A1 (zh) 消融导管
CN111388085B (zh) 一种心脏脉冲多极消融导管
US20190216538A1 (en) Ablation catheter and method for electrically isolating cardiac tissue
CN111658134B (zh) 一种心脏脉冲电场消融导管
US6980858B2 (en) Method and system for atrial defibrillation
JP2688115B2 (ja) プレカーブ型の先端を有する電気生理学的カテーテル
CN112451083B (zh) 一种多极消融导管及其组件
US8249685B2 (en) Method and apparatus for mapping and/or ablation of cardiac tissue
CN110662483B (zh) 用于将脉冲电场消融能量递送到心内膜组织的系统、装置和方法
CN113939242A (zh) 用于焦区消融的系统、设备和方法
WO2022171142A1 (zh) 消融导管、消融装置及消融系统
WO2023036343A1 (zh) 一种消融导管
US20220249159A1 (en) Systems and Devices for Ablation with Bendable Electrodes
CN113939241A (zh) 带有多个环段的标测和消融导管
CN115363744A (zh) 脉冲消融导管和脉冲消融系统
CN114081616A (zh) 一种多电极臂消融导管
US11937874B2 (en) Multi-modal catheter for improved electrical mapping and ablation
CN216090750U (zh) 高耐压消融导管
CN218356351U (zh) 消融电极导管
CN219021493U (zh) 消融电极头及包含其的消融电极导管
CN219184063U (zh) 一种脉冲电场消融导管
CN117481790B (zh) 一种双环高密度标测消融导管
CN219048803U (zh) 一种多球囊消融系统
CN219021501U (zh) 消融导管及消融系统
CN219579013U (zh) 脉冲消融导管和脉冲消融系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923365

Country of ref document: EP

Kind code of ref document: A1