WO2023142557A1 - 电机转子及其自起动同步磁阻电机、压缩机 - Google Patents

电机转子及其自起动同步磁阻电机、压缩机 Download PDF

Info

Publication number
WO2023142557A1
WO2023142557A1 PCT/CN2022/127961 CN2022127961W WO2023142557A1 WO 2023142557 A1 WO2023142557 A1 WO 2023142557A1 CN 2022127961 W CN2022127961 W CN 2022127961W WO 2023142557 A1 WO2023142557 A1 WO 2023142557A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
axis
width
filling
along
Prior art date
Application number
PCT/CN2022/127961
Other languages
English (en)
French (fr)
Inventor
陈彬
肖勇
胡余生
李霞
史进飞
李莹
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023142557A1 publication Critical patent/WO2023142557A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention belongs to the technical field of motor design, and in particular relates to a motor rotor and a self-starting synchronous reluctance motor and a compressor thereof.
  • the self-starting synchronous reluctance motor combines the advantages of the asynchronous motor on the basis of the synchronous reluctance motor, and realizes self-starting through the asynchronous torque generated by the rotor guide bar, and does not need to be driven by a frequency converter.
  • the motors can run at a constant speed, with low rotor loss and improved efficiency during synchronous operation; compared with asynchronous start permanent magnet synchronous motors, the motor does not use permanent magnet materials, and the cost is low, and there is no permanent magnet demagnetization question.
  • the motor due to the multi-layer magnetic barrier layer of the self-starting synchronous reluctance motor, the motor has the problem of difficulty in heat dissipation.
  • the present invention provides a motor rotor and its self-starting synchronous reluctance motor and compressor, which can overcome the problem in the related art that the motor rotor of the self-starting synchronous reluctance motor has multiple magnetic barrier layers, which leads to difficulty in heat dissipation of the motor.
  • the present invention provides a motor rotor, which is characterized in that it includes a rotor core, and the rotor core includes a first rotor punch, an end ring and a second rotor punch.
  • Filling grooves, rotor grooves and shaft holes are opened on the first rotor punching sheet, and the filling grooves include the second filling groove and the first filling groove;
  • two outer filling layers are arranged on the first rotor punching sheet near the outer circle of the rotor along the q-axis, each outer
  • the layer filling layer includes a first filling slot;
  • a multilayer magnetic barrier layer is arranged at intervals along the q axis between the two outer filling layers, and each of the multilayer magnetic barrier layers includes a rotor slot and a second filling slot at both ends of the rotor slot , in the same layer of magnetic barrier layer, there is a dividing rib between the second filling slot and the rotor slot;
  • the total cross-sectional area of the rotor slots on the first rotor punching within the bore of the second rotor punching is at least 30% of the total cross-sectional area of the rotor slots; and/or, the second rotor punching
  • the maximum width of the outer contour of the sheet is not greater than the diameter of the outer circle of the first rotor punch; and/or, the maximum width of the inner hole of the second rotor punch on the q-axis is not smaller than the maximum width on the d-axis.
  • the lengths of at least two connecting lines between the center of the rotor iron core and points at different positions on the edge of the inner hole of the second rotor punching sheet are not equal.
  • the ratio of the maximum width of the second rotor punching inner hole on the q-axis to the maximum width on the d-axis is 1 ⁇ 1.5.
  • the axial thickness of the second rotor lamination is not less than the thickness of the single piece of the first rotor lamination.
  • the total cross-sectional area of the communication grooves on the second rotor punching piece is not greater than the total cross-sectional area of the filling grooves provided on the first rotor punching piece.
  • the positions of the communication grooves on the second rotor punch and the filling grooves on the first rotor punch are correspondingly the same, and at the same position, the cross-sectional area of a single communication groove on the second rotor punch is not larger than that of the first rotor punch.
  • the cross-sectional area of a single filled slot on a rotor lamination is not larger than that of the first rotor punch.
  • the width along the d-axis direction between the inner hole of the second rotor punching plate and the communication groove should be greater than the width of the dividing rib between the communication groove and the rotor groove.
  • the radial width between the edge of the inner hole of the second rotor punch and the outer circle is not equal at different positions, and the radial width kd1 of the second rotor punch on the d-axis is the same as that of the second rotor punch
  • the radial width kq1 on the q-axis satisfies 1.1 ⁇ kd1/kq1 ⁇ 2.8.
  • the total cross-sectional area of the rotor slots on the first rotor plate within the bore of the second rotor plate accounts for at least 20% of the total flow area of the motor.
  • the cross-sectional area of the rotor slots in each magnetic barrier layer on the first rotor punching piece within the inner hole of the second rotor punching piece decreases gradually.
  • the maximum width of the outer contour of the end ring is not greater than the maximum width of the outer contour of the second rotor punch, and the maximum distance from the center of the rotor core to the end face of the end ring is not less than the center of the rotor core to the second rotor punch Maximum distance from end faces.
  • the radial width between the edge of the inner hole of the end ring and the outer circle is k9 on the d-axis and k10 on the q-axis, satisfying 1.1 ⁇ k9/k10 ⁇ 2.8.
  • the distance along the d-axis direction is L
  • the maximum distance along the q-axis direction of the magnetic conduction channel formed between the filling grooves in the two adjacent magnetic barrier layers is W, satisfying 0 ⁇ L ⁇ 2W.
  • the width of the rotor slots on the q-axis decreases continuously in at least three layers along the q-axis along the direction that the shaft hole points to the outer circle of the rotor.
  • the minimum width W1 of the magnetic conduction channel between two adjacent filled slots, d is the minimum width of the magnetic conduction channel formed between the rotor slots corresponding to the two filled slots, satisfying W1 ⁇ d .
  • the minimum distance h1 of the magnetic conduction channel between two adjacent magnetic barrier layers along the q-axis direction should satisfy h1 ⁇ 1.5h2, where h2 is the width of the two adjacent magnetic barrier layers along the q-axis direction The minimum width of the smaller magnetic barrier layer along the q-axis direction.
  • a magnetic conduction channel is formed between two adjacent magnetic barrier layers, and the width of each magnetic conduction channel on the q-axis decreases gradually along the q-axis along the direction that the shaft hole points to the outer circle of the rotor.
  • the width of each magnetic conduction channel on the q-axis decreases continuously in at least three layers, and/or, a magnetic barrier layer is formed between two adjacent layers
  • a magnetic barrier layer is formed between two adjacent layers
  • the ratio of the width of the rotor slot on the q-axis to the width of the rotor slot near the end of the filled slot is ⁇ 1, from the innermost magnetic barrier layer to the outermost magnetic barrier layer , ⁇ 1 increases gradually.
  • the ratio of the maximum width of the filling slot along the q-axis direction to the width of the rotor slot along the q-axis is ⁇ 2, ⁇ 2>1.4.
  • the width along the d-axis direction between the ends of the two second filled slots located at both ends of the rotor slot on the side close to the rotor slot is k3; in the inner magnetic barrier layer adjacent to the shaft hole side, the width along the d-axis direction between the ends of the two second filling slots located at both ends of the rotor slot on the side close to the rotor slot is k4 , then 0.5 ⁇ k3/k4 ⁇ 1 or 0.5 ⁇ k4/k3 ⁇ 1.
  • the distance along the d-axis direction between the ends of the two second filled slots located at both ends of the rotor slot near the The width is k5; in the innermost magnetic barrier layer close to the rotor shaft hole, the width along the d-axis direction between the ends of the two second filling slots at both ends of the rotor slot near the rotor slot side is k6, then 0.5 ⁇ k5/k6 ⁇ 1 or 0.5 ⁇ k6/k5 ⁇ 1.
  • the first filling groove is located in the q-axis direction of the outer circumference of the rotor, has a segmented structure, and is composed of a plurality of q-axis filling grooves, and ribs are arranged between two adjacent q-axis filling grooves.
  • the number of ribs in the first filling groove is y, and y satisfies 1 ⁇ y ⁇ 4.
  • the width of the rib between any two adjacent q-axis filling grooves along the d-axis direction is L3, L3>0.1M1, L3>0.1M2, L3>0.05 (M1+M2), M1 and M2 is the maximum width along the d-axis direction of any two adjacent q-axis filled slots.
  • the sum of the widths of the ribs between any two adjacent q-axis filling grooves along the d-axis direction is ⁇ L3, then ⁇ L3>0.1 ⁇ (M1+M2), ⁇ (M1+M2) is The sum of the widths of the respective q-axis filling grooves along the d-axis direction.
  • the difference in cross-sectional area of each q-axis filled slot is within ⁇ 30%.
  • the angle ⁇ 1 between the two ends of the first filling groove and the center of the rotor satisfies 20° ⁇ 1 ⁇ 60°.
  • the length extension direction of the filled groove is parallel to the d-axis by no more than 5%.
  • the width of the first filled slot along the d-axis direction is smaller than the width along the d-axis direction between the ends of the two second filled slots in the adjacent magnetic barrier layer near the rotor slot side.
  • the ratio of the distance k12 from the inner sidewall of the first filling groove to the center of the rotor in the direction of the q-axis to the rotor radius Rr satisfies 0.82 ⁇ k12/Rr ⁇ 0.96; and/or, the two layers closest to the shaft hole
  • the ratio of the distance on the q-axis of the side close to the shaft hole of the inner magnetic barrier layer to the width of the rotating shaft on the q-axis is greater than 1.2.
  • the ratio of the diameter of the arc segment of the innermost magnetic barrier layer near the shaft hole and the side of the shaft hole to the width of the rotating shaft on the q-axis is greater than 2.
  • the maximum thickness of the first filled groove along the q-axis direction is k
  • the maximum thickness of the second filled groove in the adjacent magnetic barrier layer along the q-axis direction is k1
  • the magnetic conduction channel connected to it The minimum thickness along the q-axis direction is k2, then 1 ⁇ k/k1 ⁇ 2, 0.8 ⁇ k/k2 ⁇ 1.6.
  • the maximum width along the q-axis direction of the end of the filling groove close to the rotor outer circle side is not greater than the maximum width along the q-axis direction of the region near the rotor q-axis of the filling groove.
  • the width deviation of the filling groove along the q-axis direction is no more than 5%.
  • the ratio ⁇ between the maximum value and the minimum value of the thickness of all filled grooves along the q-axis direction satisfies 1 ⁇ 2.
  • the width of each second filling groove along the d-axis direction increases gradually.
  • the maximum width of each second filling groove along the d-axis direction increases continuously in at least three layers.
  • each second filled slot is along the d-axis direction
  • the maximum width of the continuously decreases.
  • At least part of the first filling slot and the second filling slot are filled with conductive and non-magnetic materials, and the filling slots are self-short-circuited through the end rings at both ends of the second rotor punch to form a cage structure.
  • the rotor slots are composed of arc segments and/or straight segments. From the side of the rotor shaft hole to the outer circle side of the rotor, the radius of curvature of the arc segments of the rotor slots gradually increases, and the outer arc of the same layer of rotor slots The radius of curvature is greater than the radius of curvature of the inner arc, and the arc segment protrudes toward the shaft hole and points to the outer circle; or, the two ends of the rotor slot extend into a straight line along the d-axis direction, and some or all of the ends of the rotor slot are parallel to the d-axis, The width of the rotor slot gradually increases from the middle position of the rotor slot to both ends.
  • the length of the curve between the ends of the rotor slots of each layer near the two second filling slots gradually decreases, and the curve length reduction ratio of adjacent rotor slots is 5 % to 25%; and/or, the maximum width of the shaft hole in the q-axis direction is not greater than the maximum width of the shaft hole in the d-axis direction.
  • the present invention also provides a self-starting synchronous reluctance motor, which includes a stator and the above motor rotor.
  • the distance along the d-axis direction is L
  • the width of the air gap formed between the inner wall of the stator inner circle and the outer circle of the rotor is ⁇ , which satisfies 0 ⁇ L ⁇ 8 ⁇ .
  • the ribs of the outermost magnetic barrier layer near the outer circle of the rotor along the q-axis have a width along the d-axis direction of L1, and the ribs of the innermost magnetic barrier layer near the shaft hole are along the d-axis
  • the width in the direction is L2, L1 is not less than L2, and L1 ⁇ 0.5* ⁇ , ⁇ is the width of the air gap between the inner wall of the inner circle of the stator and the outer circle of the rotor.
  • the first filling groove is located in the q-axis direction of the outer circumference of the rotor, has a segmented structure, and is composed of a plurality of q-axis filling grooves, and ribs are arranged between two adjacent q-axis filling grooves.
  • the width difference between each rib is within ⁇ 20%, and the minimum value L3 of each rib width should satisfy L3 ⁇ , where ⁇ is the width of the air gap between the inner wall of the stator inner circle and the outer circle of the rotor.
  • the distance between the filling groove of the innermost magnetic barrier layer close to the shaft hole along the q-axis and the outer circle of the rotor is h3
  • the distance between the outer filling layer near the outer circle of the rotor and the outer circle of the rotor is h3
  • is the width of the air gap between the inner wall of the inner circle of the stator and the outer circle of the rotor.
  • the present invention also provides a compressor, including the self-starting synchronous reluctance motor mentioned above.
  • the present invention provides a motor rotor and its self-starting synchronous reluctance motor and compressor.
  • the structural design of the second rotor punch can ensure that at least part of the rotor slots can directly contact the air to form circulation holes and increase the heat dissipation of the rotor.
  • Fig. 1 is the three-dimensional structure schematic diagram of the motor rotor of the embodiment of the present invention
  • Fig. 2 is a schematic diagram of the axial structure of the first rotor punch of the motor rotor according to the embodiment of the present invention
  • FIG. 3 is a schematic diagram of the axial structure of the second rotor punch of the motor rotor according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the axial structure of an electronic rotor according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the axial structure of the first rotor punching piece of the motor rotor according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the axial structure of the second rotor punching piece of the motor rotor according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the axial structure of an electronic rotor according to another embodiment of the present invention.
  • Fig. 8 is a comparison chart of temperature rise, loss and efficiency between the motor adopting the technical solution of the present invention and the motor in the prior art.
  • Second rotor punching piece 21. Connecting groove; 3. End ring; 4. First rotor punching piece; 51. First filling groove; 511. Q-axis filling groove; 52. Second filling groove; 6. Rotor Groove; 7, shaft hole; 8, split rib; 9, rib.
  • the present invention provides a self-starting synchronous reluctance motor rotor, the motor rotor can increase the area of the rotor directly contacting the air through the special design of the rotor core , forming a circulation groove to increase the heat dissipation of the rotor.
  • Figure 1 is a schematic diagram of a motor rotor.
  • the motor rotor includes a rotor core, and the rotor core includes a first rotor punch 4, a second rotor punch 2, an end ring 3.
  • a filling slot, a rotor slot 6 , and a shaft hole 7 are provided on the first rotor punch 4 , and the filling slots include a first filling slot 51 and a second filling slot 52 .
  • each outer filling layer is arranged on the first rotor punching sheet 4 along the q-axis close to the outer circle of the rotor, and each outer filling layer includes a first filling groove 51; a multi-layer magnetic barrier layer is arranged at intervals along the q-axis between the two outer filling layers , each of the multilayer magnetic barrier layers includes a rotor slot 6 and a second filling slot 52 at both ends of the rotor slot 6; in the same magnetic barrier layer, there is a dividing rib 8 between the second filling slot 52 and the rotor slot 6 .
  • the maximum width of the outer contour of the second rotor punching piece 2 is not greater than the diameter of the outer circle of the first rotor punching piece 4, and the maximum width of the inner hole of the second rotor punching piece 2 on the q-axis is not smaller than the maximum width on the d-axis.
  • the lines connecting the center of the rotor iron core and points at different positions on the edge of the inner hole of the second rotor punching sheet 2 at least two lines have unequal lengths.
  • the second rotor punch 2 is arranged between the end ring 3 and the first rotor punch 4.
  • the filling groove corresponding to the first rotor punch 4 on the second rotor punch 2 is provided with a communication groove 21.
  • the first rotor punch 4 The total cross-sectional area of the rotor slots 6 located between the edge of the inner hole of the second rotor punch 2 and the outer circle is smaller than the total cross-sectional area of the rotor slots 6 on the first rotor punch 4 .
  • the second rotor punching piece 2 has an outer contour that is not larger than the outer circle of the first rotor punching piece 4 to form an air gap with a certain width with the stator; the q-axis direction of the inner contour corresponds to the first rotor punching piece 4.
  • the width of the q-axis must not be smaller than the width of the d-axis, so that the rotor slots 6 with a sufficient cross-sectional area directly contact the air to form flow holes and increase the heat dissipation of the rotor.
  • At least two connecting lines have unequal lengths, so that the center of the rotor and the inner hole of the second rotor punching piece 2 can be defined
  • the length of the line connecting the points in the q-axis direction is longer, so that more rotor slots 6 are not blocked by the second rotor punching plate 2 .
  • the total cross-sectional area of the rotor slots 6 on the first rotor punch 4 between the edge of the inner hole and the outer circle of the second rotor punch 2 is smaller than the total cross-sectional area of the rotor slots 6 on the first rotor punch 4, that is, the first rotor slot 6
  • the second rotor punch 2 cannot cover all the rotor slots 6, and the structural design of the second rotor punch 2 can ensure that at least part of the rotor slots 6 can directly contact the air to form circulation holes and increase the heat dissipation of the rotor.
  • the total cross-sectional area of the rotor slots 6 on the first rotor punching 4 inside the inner hole of the second rotor punching 2 accounts for at least 30% of the total cross-sectional area of the rotor slots 6, and in some embodiments In an example, the ratio is 45% to 65%.
  • the total cross-sectional area of the rotor slots 6 located in the inner hole of the second rotor punching plate 2 is limited to ensure that enough rotor slots 6 are in direct contact with the air to further improve the heat dissipation of the rotor.
  • the ratio of the maximum width of the inner hole of the second rotor punching plate 2 on the q-axis to the maximum width on the d-axis is 1-1.5, so as to further ensure that there are enough rotor slots 6 in direct contact with the air.
  • the thickness of the second rotor punching 2 along the stacking direction of the first rotor punching 4 is not less than the thickness of a single first rotor punching 4 , so as to ensure the mechanical strength of the rotor.
  • the second rotor punch 2 is provided with a communication groove 21 , and the total cross-sectional area of the communication groove 21 on the second rotor punch 2 is not greater than the total transverse area of the filling grooves provided on the first rotor punch 4 . cross-sectional area.
  • the communication slot 21 on the second rotor punch 2 is an inlet for filling material into the filling groove on the first rotor punch 4 .
  • the total cross-sectional area of the filling groove provided on the rotor punch 4 can reduce the stress area of the non-filling groove part of the first rotor punch 4 when filling the material, so as to ensure its mechanical strength during the filling process and reduce the Small amount of deformation.
  • the positions of the communication slots 21 provided on the second rotor sheet 2 and the filling slots provided on the first rotor sheet 4 are correspondingly the same, and at the same position, the single communication slot on the second rotor sheet 2 21
  • the cross-sectional area is not larger than the cross-sectional area of a single filling groove on the first rotor punch 4, so as to reduce the local deformation of the first rotor punch 4 when filling the material.
  • the width along the d-axis direction between the inner hole of the second rotor punching plate 2 and the communication slot 21 should be greater than the width of the dividing rib 8 between the communication slot 21 and the rotor slot 6, so as to ensure that the rotor During the process, the rotor slot 6 is not filled.
  • the radial width between the edge of the inner hole and the outer circle of the second rotor punching piece 2 (that is, the distance between the line connecting the center of the rotor and the outer circle of the rotor intersects the edge of the inner hole and the outer circle of the second rotor punching piece 2 The distance between two points) is not equal at different positions, and the radial width kd1 of the second rotor punching 2 on the d-axis and the radial width kq1 of the second rotor punching 2 on the q-axis satisfy 1.1 ⁇ kd1/ kq1 ⁇ 2.8, in some embodiments, 1.2 ⁇ kd1/kq1 ⁇ 1.8, so as to ensure that enough rotor slots 6 on the first rotor punch 4 are located within the inner hole of the second rotor punch 2 .
  • the total cross-sectional area of the rotor slots 6 on the first rotor punching 4 located in the inner hole of the second rotor punching 2 accounts for 10% of the total motor flow area (including the stator flow area and the rotor flow area). At least 20%. In one embodiment, the ratio is 25%-40%, so as to ensure that enough rotor slots 6 are in direct contact with the air to form flow holes and increase the heat dissipation of the rotor.
  • the rotor slots 6 in the magnetic barrier layers of the first rotor punch 4 are located between the inner holes of the second rotor punch 2
  • the cross-sectional area gradually decreases.
  • the end ring 3 has a certain thickness along the q-axis direction at the outermost magnetic barrier layer near the outer circle of the rotor along the q-axis, which can ensure that the end ring 3 has a certain volume to improve the starting ability of the motor.
  • the maximum width of the outer contour of the end ring 3 is not greater than the maximum width of the outer contour of the second rotor punch 2, and the maximum distance from the center of the rotor core to the end face of the end ring 3 is not less than the maximum distance from the center of the rotor core to the second The maximum distance between the end faces of rotor punching 2.
  • the maximum width of the outer contour of the end ring 3 is not greater than the maximum width of the outer contour of the second rotor punching 2, so as to ensure that the part of the first rotor punching 4 that is located on the outer circle of the rotor and not covered by the second rotor punching 2 is filled
  • the maximum distance from the center of the first rotor punch 4 to the end face of the end ring 3 is not less than the maximum distance from the center of the first rotor punch 4 to the end face of the second rotor punch 2, ensuring that the rotor has
  • the end ring 3 with a certain volume helps to improve the starting ability of the motor.
  • the radial width between the edge of the inner hole of the end ring 3 and the outer circle is k9 on the d-axis and k10 on the q-axis, then 1.1 ⁇ k9/k10 ⁇ 2.8, in some embodiments, 1.2 ⁇ k9/k10 ⁇ 1.8.
  • the inner filling groove near the shaft hole 7 has a larger width along the d-axis direction. In order to make the filling groove self-short circuit, the radial width of the end ring 3 in the d-axis direction is larger. In order to ensure the area of the rotor slot 6 in direct contact with the air, the radial width of the end ring 3 in the direction of the d-axis cannot be too large.
  • a dividing rib 8 is provided between the second filling slot 52 and the rotor slot 6 .
  • the distance is L
  • the maximum distance along the q-axis direction of the magnetic conduction channel formed between the filling grooves in the two adjacent magnetic barrier layers is W, then L should satisfy 0 ⁇ L ⁇ 2W. In some embodiments, 0 ⁇ L ⁇ W.
  • 0 ⁇ L ⁇ 0.8W Limiting the minimum distance between the filling slots of the rotor can reduce the saturation of the magnetic conduction channels between the filled slots on the one hand, and on the other hand can stagger the relative positions of the magnetic conduction channels and the stator teeth, which helps to reduce the harmonics of the motor. Reduce torque ripple, reduce harmonic loss, improve motor efficiency and operational stability.
  • the aforementioned center point is the geometric center point of the axial plane where the side of the dividing rib 8 close to the outer circle of the rotor is located.
  • the aforementioned plane is a parallelogram plane extending along the axial direction of the first rotor punching plate 4, the geometric center point of the parallelogram plane is also the intersection of its diagonals, after projection on the axial direction of the first rotor punching plate 4, Then it is the midpoint of the side of the dividing rib 8 close to the outer circle of the rotor.
  • the width of the air gap formed between the inner wall of the stator inner circle and the outer circle of the rotor is ⁇ , then L should satisfy 0 ⁇ L ⁇ 8 ⁇ . In some embodiments, 0 ⁇ L ⁇ 6 ⁇ .
  • the dividing ribs 8 can enhance the mechanical strength of the rotor, reduce the deformation of the rotor during the manufacturing process, and reduce the difficulty of the process. Defining the relative distance between the filling slots of the rotor and the dividing ribs 8 between the rotor slots 6 can increase the pressure-bearing area between two adjacent magnetic barrier layers, forming the effect of mutual support, and reducing the deformation of the rotor during the manufacturing process. Small, reducing the difficulty of the process.
  • the width of the dividing rib 8 of the outermost magnetic barrier layer close to the outer circle of the rotor along the q-axis along the d-axis direction is L1
  • the dividing rib 8 of the innermost magnetic barrier layer close to the shaft hole 7 is along the The width in the d-axis direction is L2, L1 is not less than L2, and L1 ⁇ 0.5* ⁇ , ⁇ is the width of the air gap between the stator and the rotor.
  • Limiting the minimum width of the dividing rib 8 can reduce the processing difficulty and improve the mechanical strength of the rotor; L1 ⁇ L2 can reduce the magnetic flux leakage of the inner magnetic barrier layer and improve the efficiency of the motor.
  • the plane where the sides of the dividing ribs 8 are parallel to or intersects the plane along the rotor axis where the q-axis is located that is, the shape of the dividing ribs 8 is not limited to being rectangular, trapezoidal or arc-shaped.
  • the shape of the split ribs 8 can be flexibly selected according to the direction of the leakage magnetic force lines, so as to reduce the magnetic flux leakage of the motor.
  • the width of the rotor slot 6 in the q-axis direction decreases continuously in at least three layers.
  • the ratio is 0.3 ⁇ 0.4, wherein d1 is the width of the first filling slot 51 along the q-axis direction, and d2 is the width of the rotor slot 6 along the q-axis direction.
  • the purpose is to select a reasonable proportion of the magnetic barrier, which not only ensures a sufficient magnetic barrier width, but also ensures a reasonable flux channel, increases the salient pole ratio of the motor, and prevents the magnetic circuit from oversaturation.
  • the minimum width W1 of the magnetic conduction channel between two adjacent filled slots should satisfy W1 ⁇ d, where d is the minimum width of the magnetic conduction channel formed between the rotor slots 6 corresponding to the two filled slots Width; in some embodiments, W1/d > 1.15.
  • the purpose is to ensure that there is enough width between the filled grooves to avoid magnetic field saturation and affect the flow of magnetic flux in the channels between the magnetic barrier layers.
  • the minimum distance h1 of the magnetic conduction channel between two adjacent magnetic barrier layers along the q-axis direction should satisfy h1 ⁇ 1.5h2, where h2 is the width of the two adjacent magnetic barrier layers along the q-axis direction The minimum width of the smaller magnetic barrier layer along the q-axis direction.
  • a magnetic conduction channel is formed between two adjacent magnetic barrier layers, and the q-axis points along the axis hole to the outer circle of the rotor, and the width of each magnetic conduction channel in the q-axis direction gradually decreases; In some embodiments, when the q-axis is directed along the axis hole to the outer circle of the rotor, the width of each magnetic conduction channel in the q-axis direction decreases continuously in at least 3 layers. The closer the magnetic conduction channel to the shaft hole 7 has a greater effect on the stator, the greater the impact on the performance of the motor.
  • a magnetically permeable channel is formed between two adjacent layers of magnetic barrier layers.
  • the width of the magnetically permeable channel gradually increases from the q-axis to both sides of the q-axis (magnetically permeable channel
  • the channel width is defined as: the shortest distance from each point on one side of the two sides of the magnetic conduction channel to the other side).
  • the width of the magnetic conduction channel defined here is the width of the section through which the magnetic field lines on the rotor pass. Such setting helps to reduce the saturation of the magnetic density of the rotor and reduce the loss of the motor.
  • the ratio of the width of the rotor slot 6 on the q-axis to the width of the rotor slot 6 near the end of the filled slot is ⁇ 1, from the innermost magnetic barrier layer to the outermost magnetic barrier layer.
  • the barrier layer, ⁇ 1 increases roughly gradually. It not only ensures the width of the magnetic conduction channel between the inner magnetic barrier layers, but also ensures a certain proportion of the magnetic barrier layer to improve the performance of the motor.
  • the ratio of the maximum width of the filling groove along the q-axis direction to the width of the rotor slot 6 on the q-axis is ⁇ 2, ⁇ 2>1.4. In some embodiments, 1.5 ⁇ 2 ⁇ 3.0. Limiting the ratio ensures that the filled slots have a certain width to increase the area of the arrangement; limiting the range of the ratio can also ensure the width of the magnetic conduction channels between the filled slots.
  • the distance between the ends of the two second filling slots 52 located at both ends of the rotor slot 6 near the side of the rotor slot 6 is along the d-axis
  • the width in the direction is k3; in the inner magnetic barrier layer adjacent to the shaft hole 7, the distance between the ends of the two second filling slots 52 at both ends of the rotor slot 6 near the side of the rotor slot 6 is along d
  • the width in the axial direction is k4, then 0.5 ⁇ k3/k4 ⁇ 1 or 0.5 ⁇ k4/k3 ⁇ 1. In the case of limited rotor space, this setting can increase the area of the filling slot and improve the starting ability of the motor.
  • the distance along d The width in the axial direction is k5; in the innermost magnetic barrier layer close to the rotor shaft hole 7, the d-axis The width of the direction is k6, then 0.5 ⁇ k5/k6 ⁇ 1 or 0.5 ⁇ k6/k5 ⁇ 1. In the case of limited rotor space, this setting can increase the area of the filling slot and improve the starting ability of the motor.
  • the first filling groove 51 is located in the q-axis direction of the outer circumference of the rotor, has a segmented structure, and is composed of a plurality of q-axis filling grooves 511, and ribs are arranged between adjacent two q-axis filling grooves 511 9.
  • the number of ribs 9 in the first filling groove 51 is y, and y satisfies 1 ⁇ y ⁇ 4.
  • the outermost filling layer composed of the first filling groove 51 close to the outer circle of the rotor along the q-axis is the most easily deformable part of the rotor. Dividing the outermost first filling groove 51 into a plurality of q-axis filling grooves 511 can Reduce the deformation of the rotor here.
  • the width of the rib 9 between any two adjacent q-axis filling grooves 511 along the d-axis direction is L3, then L3 should satisfy L3>0.1M1, L3>0.1M2, L3>0.05(M1+ M2), M1 and M2 are the maximum widths of any two adjacent q-axis filling grooves 511 along the d-axis direction. Limiting the maximum width of the q-axis filling slot 511 along the d-axis direction can reduce the saturation of the channel between the outer magnetic barrier layers of the rotor, help reduce motor harmonics, reduce torque ripple, reduce harmonic losses, and improve motor performance.
  • the width of the ribs 9 between the q-axis filling slots 511 can be limited, which can ensure the stress area of the outermost magnetic barrier layer of the rotor, further enhance the mechanical strength of the rotor, and reduce the The deformation reduces the difficulty of the process.
  • the sum of the widths of the ribs 9 between any two adjacent q-axis filling grooves 511 along the d-axis direction is ⁇ L3 (the values of each L3 are equal or not), then ⁇ L3>0.1 ⁇ ( M1+M2), ⁇ (M1+M2) is the sum of the widths of the respective q-axis filling grooves 511 along the d-axis direction.
  • ⁇ L3>0.1 ⁇ ( M1+M2), ⁇ (M1+M2) is the sum of the widths of the respective q-axis filling grooves 511 along the d-axis direction.
  • the width difference between the ribs 9 is within ⁇ 20%, and the minimum value L3 of the width of each rib 9 should satisfy L3 ⁇ , where ⁇ is the air gap between the inner wall of the stator inner circle and the outer circle of the rotor width to reduce local deformation of the rotor at the outermost magnetic barrier layer.
  • different parts of the same rib 9 have equal or unequal widths along the d-axis direction, that is, the shape of the rib 9 is not limited to being rectangular, trapezoidal or arc-shaped.
  • the same rib 9 can be provided with a larger width along the d-axis direction at a location with a high local deformation risk, and a smaller width along the d-axis direction at a location with a small local deformation risk.
  • the cross-sectional area difference of each q-axis filled groove 511 is within ⁇ 30%. In some embodiments, the cross-sectional area difference of each q-axis filled groove 511 is within ⁇ 15%. This arrangement ensures that the pressure-bearing areas of the outermost filling layer are not much different, and local deformation is avoided.
  • the angle ⁇ 1 between the two ends of the first filling groove 51 and the center line of the rotor should satisfy 20° ⁇ 1 ⁇ 60°. In some embodiments, ⁇ 1 should satisfy 30° ⁇ 1 ⁇ 50°. In some embodiments, ⁇ 1 should satisfy 30° ⁇ 1 ⁇ 35°. In this way, the filled slots form a magnetic barrier layer, which can be used as a magnetic barrier layer to increase the reluctance torque of the motor, and can also be used as a starting squirrel cage to improve the starting performance of the motor.
  • the filling grooves including the first filling groove 51 and the second filling groove 52 , extend in a direction approximately parallel to the d-axis, and the angle deviation is not more than 5%. , to form a smooth magnetic conduction channel with the adjacent magnetic barrier layer.
  • the width of the first filling slot 51 along the d-axis direction is smaller than the width along the d-axis direction between the ends of the two second filling slots 52 in the adjacent magnetic barrier layer near the rotor slot 6 side.
  • the purpose of such setting is to limit the width of the first filling groove 51 along the d-axis direction, so as to avoid deformation of the rotor toward the shaft hole 7 side or toward the outer circle side due to excessive width.
  • the ratio of the distance k12 from the inner sidewall of the first filling groove 51 to the rotor center in the q-axis direction and the rotor radius Rr satisfies 0.82 ⁇ k12/Rr ⁇ 0.96. If k12/Rr is too small, the outermost magnetic conduction channel will be too narrow, the loss of the motor will increase, and the efficiency will decrease; if k12/Rr is too large, the distance between the first filling groove 51 and the outer circle of the rotor will be too small, and the processing difficulty will increase .
  • the ratio of the distance between the sides of the two innermost magnetic barrier layers near the shaft hole 7 on the q-axis to the width of the rotating shaft on the q-axis is greater than 1.2.
  • the width of the magnetic channel between the rotor and the rotating shaft reduces the magnetic density saturation of the rotor, and on the other hand, it can enhance the mechanical strength of the rotor near the rotating shaft.
  • the ratio of the diameter of the arc section of the innermost magnetic barrier layer near the shaft hole 7 to the width of the rotating shaft on the q-axis is greater than 2, so as to reasonably utilize the rotor space for the layout of the magnetic barrier layer.
  • the maximum thickness of the first filled groove 51 along the q-axis direction is k
  • the maximum thickness of the second filled groove 52 in the magnetic barrier layer adjacent to it along the q-axis direction is k1
  • the conductors connected to it The minimum thickness of the magnetic channel along the q-axis direction is k2, then 1 ⁇ k/k1 ⁇ 2, 0.8 ⁇ k/k2 ⁇ 1.6. It not only ensures the thickness of the first filling groove 51 along the q-axis direction to reduce processing difficulty, but also ensures the width of the outermost magnetic conduction channel to improve the performance of the motor.
  • the distance between the filling groove of the innermost magnetic barrier layer near the shaft hole 7 and the outer circle of the rotor along the q-axis is h3, and the distance between the outermost filling layer near the outer circle of the rotor and the outer circle of the rotor is The interval between them is h4, then h4 ⁇ h3, and 0 ⁇ h3 ⁇ 2.5 ⁇ , ⁇ is the width of the air gap between the inner wall of the stator inner circle and the outer circle of the rotor. 0 ⁇ h3 ⁇ 2.5 ⁇ , that is, the filling groove is an open groove or a closed groove.
  • the maximum distance between it and the outer circle of the rotor can be limited to reduce the magnetic flux leakage; h4 ⁇ h3 can reduce the magnetic flux leakage of the inner magnetic barrier layer, and at the same time ensure that the outer magnetic barrier layer mechanical strength.
  • the maximum width along the q-axis direction of the end of the filling groove close to the rotor outer circle side is not greater than the maximum width along the q-axis direction of the region near the rotor q-axis of the filling groove.
  • the widths of the filling grooves along the q-axis direction are approximately equal, and the width deviation is not more than 5%, so as to ensure the magnetic barrier between the rotor magnetic barrier layers near the air gap. channel width, reducing rotor saturation. Setting the widths of the filling grooves along the q-axis direction to be approximately equal can increase the area of the filling grooves while ensuring the width of the magnetic channel near the air gap, which helps to improve start-up.
  • the motor rotor contains at least five filling slots with different cross-sectional areas; the total cross-sectional area of the filling slots (including the first filling slot 51 and the second filling slot 52) should account for the total flow area of the rotor ( 30% to 70% of the sum of the cross-sectional areas of the first filling slot 51, the second filling slot 52, and the rotor slot 6). In some embodiments, the proportion is 35%-50%. Ensure a certain proportion of the cross-sectional area of the filling groove, so that the motor has a certain load starting capability.
  • the ratio ⁇ between the maximum value and the minimum value of the thickness of all filled grooves along the q-axis direction satisfies 1 ⁇ 2. In some embodiments, 1.3 ⁇ 1.5. Limit the ratio, on the one hand, the width of the magnetic conduction channel will not be too small due to the thickness of the filling groove along the q-axis direction, which will affect the efficiency; If the cross-sectional area is too small, it will affect the starting.
  • each second filling groove 52 along the d-axis direction increases gradually. In some embodiments, when the q-axis points to the shaft hole along the outer circle of the rotor, the maximum width of each second filling groove 52 along the d-axis direction increases continuously by at least 3 layers. In some embodiments, when the q-axis points to the outer circle of the rotor along the shaft hole, from the second magnetic barrier layer near the d-axis to the magnetic barrier layer near the outer circle of the rotor, each second filling slot 52 is along the d The maximum width in the axial direction decreases continuously. This setting can ensure the amount of cast aluminum with a suitable cross-sectional area and improve the starting ability of the motor under the condition of rational use of the rotor space.
  • the filling slots include the first filling slot 51 and the second filling slot 52, at least part of the filling slots are filled with conductive and non-magnetic materials, and the filling slots are completed through the end rings 3 at both ends of the second rotor punch.
  • the self-short-circuited squirrel cage structure provides asynchronous torque during the motor starting stage to realize the self-starting of the motor; the multi-layer magnetic barrier layer provides the reluctance torque for the motor to realize the synchronous operation of the motor.
  • the rotor slot 6 is composed of an arc segment and/or a straight segment. From the rotor shaft hole 7 to the outer circle side of the rotor, the radius of curvature of the arc segment of the rotor slot 6 gradually becomes larger, and the same layer of rotor The radius of curvature of the outer arc of the slot 6 is larger than the radius of curvature of the inner arc, and the arc segment protrudes toward the shaft hole 7 and points to the outer circle; or the two ends of the rotor slot 6 extend into a straight line along the d-axis direction, and part or all of the rotor slot 6 Both ends are parallel to the d-axis, and the width of the rotor slot 6 gradually increases from the middle position (q-axis position) of the rotor slot 6 to both ends (d-axis direction).
  • This setting method can increase the utilization rate of the rotor space, and arrange the rotor slots 6 reasonably to increase the salient pole ratio of the rotor and improve the reluctance torque of the motor.
  • the curved lengths between the ends of the rotor slots 6 of each layer near the two second filling slots 52 gradually decrease, and the curved lengths of adjacent rotor slots 6
  • the decreasing ratio is 5% to 25%.
  • a shaft hole 7 is set in the middle of the rotor. The purpose of this setting is to ensure a certain proportion of the magnetic barrier layer and improve the performance of the motor under the condition of rational use of the rotor space.
  • the maximum width of the shaft hole 7 in the q-axis direction is not greater than the maximum width of the shaft hole 7 in the d-axis direction.
  • Rotor slots 6 are arranged in the direction of the q-axis. This arrangement can increase the utilization rate of the rotor space, so that the rotor slots 6 can be arranged reasonably, so as to increase the salient pole ratio of the rotor and improve the reluctance torque of the motor.
  • the cross-sectional shape of the shaft hole 7 is composed of an arc segment and/or a straight line segment, that is, the shape of the shaft hole 7 is not limited to a circle or an ellipse or a quasi-ellipse or a quadrangle, and can be based on the shape of the rotor slot 6
  • the shape of the shaft hole 7 can be flexibly selected for layout.
  • Balance weights are installed on the end rings 3 at both ends of the rotor, and the balance weights are placed on the side with the largest radial width between the edge of the inner hole of the end ring 3 and the outer circle.
  • the present invention provides a self-starting synchronous reluctance motor rotor, which realizes the self-starting of the motor through the asynchronous torque provided by the rotor guide bar (that is, the part is formed after the filling groove is filled), and solves the problem that the synchronous reluctance motor needs to be driven by a frequency converter , at the same time reduce the loss of the motor and improve the efficiency of the motor; the motor rotor can reduce the harmonics of the motor, reduce the torque ripple, reduce the harmonic loss, improve the efficiency and operation stability of the motor; it can increase the air circulation area of the rotor, , to speed up the heat dissipation of the rotor.
  • the length, width, thickness, diameter, etc. of the relevant structures of the rotor core in the present invention can preferably be measured in mm, and other suitable measurement units can also be selected under reasonable circumstances.
  • a self-starting synchronous reluctance motor especially a self-starting synchronous reluctance two-pole motor, including the above-mentioned motor rotor, and the load inertia connected to the output end of the motor shaft is smaller than that of the motor's own shaft system 60% of inertia.
  • a compressor including the above self-starting synchronous reluctance motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种电机转子及其自起动同步磁阻电机、压缩机。电机转子,包括转子铁芯,转子铁芯包括:第一转子冲片(4),端环(3),和第二转子冲片(2)。第一转子冲片(4)上开设有填充槽、转子槽(6)和轴孔(7),填充槽包括第二填充槽(52)和第一填充槽(51)。第二转子冲片(2),设置在端环(3)与第一转子冲片(4)之间,第二转子冲片(2)上对应第一转子冲片(4)的填充槽设置有连通槽(21),第一转子冲片(4)上位于第二转子冲片(2)内孔边缘与外圆之间的转子槽(6)的总横截面积小于第一转子冲片(4)上转子槽(6)的总横截面积。

Description

电机转子及其自起动同步磁阻电机、压缩机
相关申请的交叉引用
本申请要求于2022年1月26日提交中国专利局,申请号为202210092227.8,申请名称为“电机转子及其自起动同步磁阻电机、压缩机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明属于电机设计技术领域,具体涉及一种电机转子及其自起动同步磁阻电机、压缩机。
背景技术
自起动同步磁阻电机在同步磁阻电机的基础上,结合了异步电机的优点,通过转子导条产生的异步转矩实现自起动,不需要再使用变频器驱动。与异步电机相比,电机可实现恒速运行,转子损耗低,同步运行时的效率提升;与异步起动永磁同步电机相比,电机不使用永磁体材料,成本低,且不存在永磁体退磁问题。但是,因自起动同步磁阻电机的多层磁障层,导致电机存在散热困难的问题。
发明内容
因此,本发明提供一种电机转子及其自起动同步磁阻电机、压缩机,能够克服相关技术中的自起动同步磁阻电机的电机转子具有多层磁障层,导致电机散热困难的不足。
为了解决上述问题,本发明提供一种电机转子,其特征在于,包括转子铁芯,转子铁芯包括第一转子冲片,端环和第二转子冲片。第一转子冲片上开设有填充槽、转子槽和轴孔,填充槽包括第二填充槽和第一填充槽;第一转子冲片上沿q轴靠近转子外圆设置两外侧填充层,每一外层填充层包括第一填充槽;两外侧填充层之间沿q轴间隔设置有多层磁障层,每一所述多层磁障层包括转子槽及处于转子槽的两端的第二填充槽,同一层磁障层内,第二填充槽与转子槽之间具有分割筋;第二转子冲片,设置在端环与第一转子冲片之间,第二转子冲片上对应第一转子冲片的填充槽设置有连通槽,第一转子冲片上位于第二转子冲片内孔边缘与外圆之间的转子槽的总横截面积小于第一转子冲片上转子槽的总横截面积。
在一些实施方式中,第一转子冲片上的位于第二转子冲片内孔之内的转子槽的总横截面积占转子槽总横截面积的至少30%;和/或,第二转子冲片外部轮廓的最大宽度不大于第一转子冲片外圆的直径;和/或,第二转子冲片内孔在q轴上的最大宽度不小于在d轴上的最大宽度。
在一些实施方式中,转子铁芯中心与第二转子冲片内孔边缘上不同位置的点的连线中,至少有两条连线的长度不相等。
在一些实施方式中,第二转子冲片内孔在q轴上的最大宽度与d轴上的最大宽度的比值为1~1.5。
在一些实施方式中,第二转子冲片的轴向厚度不小于单片第一转子冲片的厚度。
在一些实施方式中,第二转子冲片上连通槽的总横截面积不大于第一转子冲片上设置的填充槽的总横截面积。
在一些实施方式中,第二转子冲片上设置的连通槽和第一转子冲片上设置的填充槽位置对应相同,在同一位置处,第二转子冲片上的单个连通槽横截面积不大于第一转子冲片上的单个填充槽横截面积。
在一些实施方式中,第二转子冲片内孔与连通槽之间沿d轴方向的宽度应大于该连通槽与转子槽之间的分割筋的宽度。
在一些实施方式中,第二转子冲片内孔边缘与外圆之间的径向宽度在不同位置不相等,且第二转子冲片在d轴上的径向宽度kd1与第二转子冲片在q轴上的径向宽度kq1满足1.1≤kd1/kq1≤2.8。
在一些实施方式中,第一转子冲片上的位于第二转子冲片内孔之内的转子槽的总横截面积占电机总流通面积的至少20%。
在一些实施方式中,从转子轴孔侧至转子外圆侧,第一转子冲片上各层磁障层中的转子槽的位于第二转子冲片内孔之内的横截面积逐渐减小。
在一些实施方式中,端环外部轮廓的最大宽度不大于第二转子冲片外部轮廓的最大宽度,由转子铁芯中心至端环端面的最大距离不小于转子铁芯中心至第二转子冲片端面的最大距离。
在一些实施方式中,端环内孔边缘与外圆之间的径向宽度在d轴上为k9,在q轴上为k10,满足1.1≤k9/k10≤2.8。
在一些实施方式中,分割筋的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋对应的两个该中心点沿d轴方向的距离为L,该相邻两层磁障层中的填充槽之间形成的导磁通道沿q轴方向的最大距离为W,满足0≤L<2W。
在一些实施方式中,在d轴与q轴组成的第一象限内,分割筋中心到d轴和q轴的距离满足kq=-ν*kd+λ,kq为分割筋中心到q轴的距离,kd为分割筋中心到d轴的距离,满足0.28≤ν≤0.46,和28≤λ≤33。
在一些实施方式中,在q轴沿轴孔指向转子外圆的方向,转子槽在q轴上的宽度至少三层连续减小。
在一些实施方式中,相邻两个填充槽之间的导磁通道的最小宽度W1,d为与该两个填充槽对应的转子槽之间形成的导磁通道的最小宽度,满足W1≥d。
在一些实施方式中,相邻两层磁障层之间的导磁通道沿q轴方向的最小距离h1应满足h1≥1.5h2,h2为该相邻两层磁障层中沿q轴方向宽度较小磁障层的沿q轴方向的最小宽度。
在一些实施方式中,相邻两层磁障层之间形成导磁通道,在q轴沿轴孔指向转子外圆的方向,各导磁通道在q轴上的宽度逐渐减小。
在一些实施方式中,在q轴沿轴孔指向转子外圆的方向,各导磁通道在q轴上的宽度至少三层连续减小,和/或,相邻两层磁障层之间形成导磁通道,对于由弧线段和直线段组成的导磁通道,从q轴上至q轴两侧,该导磁通道的宽度逐渐增大。
在一些实施方式中,各层磁障层中,转子槽在q轴上的宽度与转子槽靠近填充槽端部的宽度的比值为τ1,从最内层磁障层至最外层磁障层,τ1逐渐增大。
在一些实施方式中,各层磁障层中,填充槽沿q轴方向的最大宽度与转子槽在q轴上的宽度的比值为τ2,τ2>1.4。
在一些实施方式中,沿q轴靠近转子外圆的外层磁障层中,位于转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k3;与其相邻的靠近轴孔侧的内层磁障层中,位于转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k4,则0.5≤k3/k4≤1或0.5≤k4/k3≤1。
在一些实施方式中,沿q轴靠近转子外圆的最外层磁障层中,位于转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k5;靠近转子轴孔的最内层磁障层中,转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k6,则0.5≤k5/k6≤1或0.5≤k6/k5≤1。
在一些实施方式中,第一填充槽位于转子外周的q轴方向上,具有分段结构,由多个q轴填充槽组成,相邻两个q轴填充槽之间均设置有筋。
在一些实施方式中,第一填充槽具有筋的数量为y,则y满足1≤y≤4。
在一些实施方式中,任意相邻两个q轴填充槽之间的筋沿d轴方向的宽度为L3,L3>0.1M1,L3>0.1M2,L3>0.05(M1+M2),M1和M2为该任意相邻两个q轴填充槽的沿d轴方向的最大宽度。
在一些实施方式中,任意相邻两个q轴填充槽之间的筋沿d轴方向的宽度的和为∑L3,则∑L3>0.1∑(M1+M2),∑(M1+M2)为各q轴填充槽的沿d轴方向的宽度的和。
在一些实施方式中,各q轴填充槽的横截面积差值在±30%以内。
在一些实施方式中,第一填充槽两端与转子中心连线的夹角α1,满足20°≤α1≤60°。
在一些实施方式中,填充槽的长度延伸方向与d轴的平行角度偏差不超过5%。
在一些实施方式中,第一填充槽沿d轴方向的宽度小于与其相邻磁障层中的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度。
在一些实施方式中,第一填充槽的内侧壁在q轴方向上到转子中心的距离k12与转子半径Rr的比值满足0.82≤k12/Rr≤0.96;和/或,靠近轴孔的两层最内层磁障层的靠近轴孔的侧边在q轴上的距离与转轴在q轴上的宽度的比值大于1.2。
在一些实施方式中,靠近轴孔的最内层磁障层的靠近轴孔的侧边的弧线段的直径与转轴在q轴上的宽度的比值大于2。
在一些实施方式中,第一填充槽的沿q轴方向的最大厚度为k,与其相邻的磁障层中的第二填充槽沿q轴方向的最大厚度为k1,与其相连的导磁通道沿q轴方向的最小厚度为k2,则1<k/k1≤2,0.8<k/k2≤1.6。
在一些实施方式中,填充槽的靠近转子外圆侧的端部的沿q轴方向的最大宽度不大于填充槽的靠近转子q轴处的区域沿q轴方向的最大宽度。
在一些实施方式中,从转子外圆侧至转子q轴处,填充槽的沿q轴方向的宽度偏差不大于5%。
在一些实施方式中,第一转子冲片上具有的填充槽中至少有五种横截面积不同的填充槽;和/或,第一填充槽及第二填充槽的总横截面积占第一填充槽、第二填充槽及转子槽的总横截面积的30%~70%。
在一些实施方式中,所有填充槽的沿q轴方向厚度的最大值和最小值的比值τ满足1≤τ≤2。
在一些实施方式中,1.3≤τ≤1.5。
在一些实施方式中,在q轴沿转子外圆指向轴孔的方向,各第二填充槽沿d轴方向的宽度逐渐增大。
在一些实施方式中,在q轴沿转子外圆指向轴孔的方向,各第二填充槽沿d轴方向的最大宽度至少三层连续增大。
在一些实施方式中,沿q轴从轴孔指向转子外圆的方向上,从第二层磁障层至靠近转子外圆的最外层磁障层中,各第二填充槽沿d轴方向的最大宽度连续减小。
在一些实施方式中,第一填充槽和第二填充槽的至少部分填充槽的槽内填充导电不导磁的材料,填充槽通过第二转子冲片两端的端环进行自行短路连接,形成鼠笼结构。
在一些实施方式中,转子槽由弧线段和/或直线段组成,从转子轴孔侧到转子外圆侧,转子槽弧线段的曲率半径逐渐变大,且同层转子槽外圆弧曲率半径大于内圆弧曲率半径,弧线段朝轴孔指向外圆方向突出;或,转子槽的两端沿d轴方向延伸成直线段,部分或全部转子槽的两端平行于d轴,转子槽的宽度从转子槽中间位置向两端逐渐增加。
在一些实施方式中,从转子轴孔至转子外圆方向,各层转子槽的靠近两个第二填充槽的端部之间的曲线长度逐渐递减,相邻转子槽的曲线长度递减比例为5%~25%;和/或,轴孔在q轴方向上的最大宽度不大于轴孔在d轴方向上的最大宽度。
本发明还提供一种自起动同步磁阻电机,包括定子和上述的电机转子。
在一些实施方式中,分割筋的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋对应的两个该中心点沿d轴方向的距离为L,定子内圆内壁和转子外圆之间形成的气隙的宽度为σ,满足0≤L<8σ。
在一些实施方式中,沿q轴靠近转子外圆的最外层磁障层的分割筋的沿d轴方向的宽度为L1,靠近轴孔侧的最内层磁障层的分割筋沿d轴方向的宽度为L2,L1不小于L2,且L1≥0.5*σ,σ为定子内圆内壁与转子外圆之间的气隙的宽度。
在一些实施方式中,第一填充槽位于转子外周的q轴方向上,具有分段结构,由多个q轴填充槽组成,相邻两个q轴填充槽之间均设置有筋。各筋之间的宽度差值在±20%以内,各筋宽度的最小值L3应满足L3≥σ,σ为定子内圆内壁和转子外圆之间气隙的宽度。
在一些实施方式中,沿q轴靠近轴孔的最内层磁障层的填充槽与转子外圆之间的间隔为h3,靠近转子外圆侧的外侧填充层与转子外圆之间的间隔为h4,则h4≥h3,且0≤h3≤2.5σ,σ为定子内圆内壁和转子外圆之间气隙的宽度。
本发明还提供一种压缩机,包括上述的自起动同步磁阻电机。
本发明提供的一种电机转子及其自起动同步磁阻电机、压缩机,第二转子冲片的结构设计能够保证至少部分转子槽能够直接接触空气,形成流通孔,增加转子散热。
附图说明
图1为本发明实施例的电机转子的立体结构示意图
图2为本发明实施例的电机转子的第一转子冲片的轴向结构示意图;
图3为本发明实施例的电机转子的第二转子冲片的轴向结构示意图;
图4为本发明实施例的电子转子的轴向结构示意图;
图5为本发明另一实施例的电机转子的第一转子冲片的轴向结构示意图;
图6为本发明另一实施例的电机转子的第二转子冲片的轴向结构示意图;
图7为本发明另一实施例的电子转子的轴向结构示意图;
图8为采用本发明的技术方案的电机与现有技术中的电机的温升、损耗、效率的对比图。
附图标记表示为:
2、第二转子冲片;21、连通槽;3、端环;4、第一转子冲片;51、第一填充槽;511、q轴填充槽;52、第二填充槽;6、转子槽;7、轴孔;8、分割筋;9、筋。
具体实施方式
结合参见图1至图8所示,根据本发明的实施例,本发明提供一种自起动同步磁阻电机转子,该电机转子通过转子铁芯的特殊设计,能够增大转子直接接触空气的面积,形成流通槽,增加转子散热。
下面就结合附图转子为实施例子来阐述具体实施方式,图1为电机转子示意图,该电机转子包括转子铁芯,转子铁芯包括第一转子冲片4、第二转子冲片2、端环3。在本申请的一些实施例中,如图2所示,第一转子冲片4上设置有填充槽、转子槽6、轴孔7,填充槽包括第一填充槽51和第二填充槽52。第一转子冲片4上沿q轴靠近转子外圆设置两外侧填充层,每一外层填充层包括第一填充槽51;两外侧填充层之间沿q轴间隔设置有多层磁障层,每一所述多层磁障层包括转子槽6及处于转子槽6的两端的第二填充槽52;同一层磁障层内,第二填充槽52与转子槽6之间具有分割筋8。第二转子冲片2外部轮廓的最大宽度不大于第一转子冲片4外圆的直径,第二转子冲片2内孔在q轴上的最大宽度不小于在d轴上的最大宽度。转子铁芯中心与第二转子冲片2内孔边缘上不同位置的点的连线中,至少有两条连线的长度不相等。第二转子冲片2设置在端环3与第一转子冲片4之间,第二转子冲片2上对应第一转子冲片4的填充槽设置有连通槽21,第一转子冲片4上位于第二转子冲片2内孔边缘与外圆之间的转子槽6的总横截面积小于第一转子冲片4上转子槽6的总横截面积。第二转子冲片2作为转子的一部分,其外轮廓需不大于第一转子冲片4外圆,以和定子之间形成具有一定宽度的气隙;其内轮廓的q轴方向对应于第一转子冲片4的转子槽6设置的方向,其q轴宽度需不小于d轴宽度,以使足够多横截面积的转子槽6直接接触空气,形成流通孔,增加转子散热。转子铁芯中心与第二转子冲片2内孔边缘上不同位置的点的连线中,至少有两条连线的长度不相等,这样限定可以使得转子中心与第二转子冲片2内孔q轴方向上的点的连线的长度较长,从而使更多的转子槽6不受第二转 子冲片2遮挡。第一转子冲片4上位于第二转子冲片2内孔边缘与外圆之间的转子槽6的总横截面积小于第一转子冲片4上转子槽6的总横截面积,即第二转子冲片2不能覆盖所有的转子槽6,第二转子冲片2的结构设计能够保证至少部分转子槽6能够直接接触空气,形成流通孔,增加转子散热。如图8所示为本发明技术与现有技术电机温升、损耗及效率对比图,由图8可知,本发明技术下,电机温升低,进一步可降低铜耗和铝耗,提升电机效率。
在一些实施方式中,第一转子冲片4上的位于第二转子冲片2内孔之内的转子槽6的总横截面积占转子槽6总横截面积的至少30%,在一些实施例中,其比值为45%~65%。限定位于第二转子冲片2内孔之内的转子槽6的总横截面积,以保证足够多面积的转子槽6直接接触空气,进一步提升转子散热。
在一些实施方式中,第二转子冲片2内孔在q轴上的最大宽度与d轴上的最大宽度的比值为1~1.5,以进一步保证有足够多面积的转子槽6直接接触空气。
在一些实施方式中,第二转子冲片2的沿第一转子冲片4的叠压方向即轴向的厚度不小于单片第一转子冲片4的厚度,以保证转子的机械强度。
在一些实施方式中,第二转子冲片2上设有连通槽21,第二转子冲片2上连通槽21的总横截面积不大于第一转子冲片4上设置的填充槽的总横截面积。第二转子冲片2上的连通槽21是向第一转子冲片4上的填充槽填充材料时的入口。在第二转子冲片2上设置连通槽21,以使填充材料能够进入第一转子冲片4上的填充槽;保证第二转子冲片2上连通槽21的总横截面积不大于第一转子冲片4上设置的填充槽的总横截面积,可以减小在填充材料时,第一转子冲片4非填充槽部分的受力面积,保证其在填充材料过程中的机械强度,减小变形量。
在一些实施方式中,第二转子冲片2上设置的连通槽21和第一转子冲片4上设置的填充槽位置对应相同,在同一位置处,第二转子冲片2上的单个连通槽21横截面积不大于第一转子冲片4上的单个填充槽横截面积,以减小在填充材料时,第一转子冲片4的局部变形。
在一些实施方式中,第二转子冲片2内孔与连通槽21之间沿d轴方向的宽度应大于该连通槽21与转子槽6之间的分割筋8的宽度,以保证转子在制造过程中,转子槽6内不被填充。
在一些实施方式中,第二转子冲片2内孔边缘与外圆之间的径向宽度(即转子中心与转子外圆的连线与第二转子冲片2内孔边缘和外圆相交的两点之间的距离)在不同位置不相等,且第二转子冲片2在d轴上的径向宽度kd1与第二转子冲片2在q轴上的径向宽度kq1满足1.1≤kd1/kq1≤2.8,在一些实施例中,1.2≤kd1/kq1≤1.8,以保证第一转子冲片4上足 够多的转子槽6位于第二转子冲片2内孔之内。
在一些实施方式中,第一转子冲片4上的位于第二转子冲片2内孔之内的转子槽6的总横截面积占电机总流通面积(包括定子流通面积和转子流通面积)的至少20%。在一实施例中,该比值为25%~40%,以保证足够多面积的转子槽6直接接触空气,形成流通孔,增加转子散热。
在一些实施方式中,沿q轴从转子轴孔7指向转子外圆的方向上,第一转子冲片4上各层磁障层中的转子槽6的位于第二转子冲片2内孔之内的横截面积逐渐减小。端环3在沿q轴靠近转子外圆的最外层磁障层处具有一定的沿q轴方向的厚度,可以保证端环3具有一定的体积,以改善电机起动能力。
在一些实施方式中,端环3外部轮廓的最大宽度不大于第二转子冲片2外部轮廓的最大宽度,由转子铁芯中心至端环3端面的最大距离不小于转子铁芯中心至第二转子冲片2端面的最大距离。端环3外部轮廓的最大宽度不大于第二转子冲片2外部轮廓的最大宽度,以保证第一转子冲片4的位于转子外圆侧的非第二转子冲片2覆盖面的部分,在填充材料时的受力,减小局部变形;第一转子冲片4中心至端环3端面的最大距离不小于第一转子冲片4中心至第二转子冲片2端面的最大距离,保证转子具有一定体积的端环3,有助于改善电机起动能力。
在一些实施方式中,端环3内孔边缘与外圆之间的径向宽度在d轴上为k9,在q轴上为k10,则1.1≤k9/k10≤2.8,在一些实施例中,1.2≤k9/k10≤1.8。靠近轴孔7侧的内层填充槽沿d轴方向的宽度较大,为了使填充槽自行短路,端环3在d轴方向上的径向宽度较大。为了保证转子槽6直接接触空气的面积,端环3在d轴方向上的径向宽度不能过大。
在一些实施方式中,由第二填充槽52和转子槽6组成的每层磁障层中,第二填充槽52和转子槽6之间都设置有分割筋8。分割筋8的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋8对应的两个该中心点沿d轴方向的距离为L,该相邻两层磁障层中的填充槽之间形成的导磁通道沿q轴方向的最大距离为W,则L应满足0≤L<2W。在一些实施例中,0≤L<W。在一些实施例中,0≤L≤0.8W。限定转子填充槽之间的最小距离,一方面可以降低填充槽之间导磁通道的饱和度,另一方面可以错开导磁通道与定子齿的相对位置,这有助于降低电机的谐波,降低转矩脉动,减小谐波损耗,提升电机效率和运行的稳定性。
需要说明的是,前述的中心点为分割筋8的靠近转子外圆一侧的侧边所在的轴向的平面的几何中心点,作为一个具体的实现方式,如图2所示,前述的平面为一个沿着第一转子冲片4的轴向延伸的平行四边形平面,这个平行四边形平面的几何中心点也即其对角线的交点,在第一转子冲片4的轴向上投影后,则为分割筋8的靠近转子外圆一侧的侧边的 中点。
在一些实施方式中,定子内圆内壁和转子外圆之间形成的气隙的宽度为σ,则L应满足0<L<8σ。在一些实施例中,0≤L≤6σ。分割筋8可以增强转子的机械强度,减小转子在制造过程中的变形,降低工艺难度。限定转子各填充槽和转子槽6之间分割筋8的相对距离,可以增加相邻两个磁障层之间的承受压力的面积,形成相互支撑的效果,使得转子在制造过程中的变形减小,降低工艺难度。
在一些实施方式中,沿q轴靠近转子外圆的最外层磁障层的分割筋8的沿d轴方向的宽度为L1,靠近轴孔7的最内层磁障层的分割筋8沿d轴方向的宽度为L2,L1不小于L2,且L1≥0.5*σ,σ为定子与转子之间的气隙的宽度。限定分割筋8的最小宽度,可以降低加工难度,提升转子机械强度;L1≥L2,可以减小内层磁障层漏磁,提升电机效率。
在一些实施方式中,分割筋8的侧面所在的平面与q轴所在的沿转子轴向的平面平行或相交,即分割筋8的形状不限于是矩形或梯形或弧形。可以根据漏磁力线的走向灵活选择分割筋8的形状,以减小电机漏磁。
在一些实施方式中,在d轴与q轴组成的第一象限内,分割筋8中心到d轴和q轴的距离满足kq=-ν*kd+λ,kq为分割筋8中心到q轴的距离,kd为分割筋8中心到d轴的距离,系数ν(无量纲)满足0.28≤ν≤0.46,系数λ(量纲与kq及kd一致)满足28≤λ≤33,以限定分割筋8的位置和宽度,减小转子发生形变的风险。
在一些实施方式中,在q轴沿轴孔7指向转子外圆的方向,转子槽6在q轴方向上的宽度至少3层连续减小。所有转子槽6和第一填充槽51的沿q轴方向的宽度的和(d1+∑d2)与轴孔7边缘到转子外圆的宽度d3之比为0.2~0.5,即(d1+∑d2)/d3=0.2~0.5。在一些实施例中,该比例为0.3~0.4,其中d1为第一填充槽51在q轴方向上的宽度,d2为转子槽6在q轴上的宽度。目的是选择合理的磁障占比,既保证足够的磁障宽度,又保证合理的磁通通道,增加电机凸极比的同时,防止出现磁路过饱和。
在一些实施方式中,相邻两个填充槽之间的导磁通道的最小宽度W1应满足W1≥d,d为与该两个填充槽对应的转子槽6之间形成的导磁通道的最小宽度;在一些实施例中,W1/d>1.15。目的是要保证填充槽之间留有足够的宽度,避免出现磁场饱和,影响磁障层之间通道的磁通流通。
在一些实施方式中,相邻两层磁障层之间的导磁通道沿q轴方向的最小距离h1应满足h1≥1.5h2,h2为该相邻两层磁障层中沿q轴方向宽度较小磁障层的沿q轴方向的最小宽度。这样设置可以降低转子加工难度,保证转子磁密分布的均匀度和不饱和度。
在一些实施方式中,相邻两层磁障层之间形成导磁通道,在q轴沿轴孔指向转子外圆的方向,各导磁通道在q轴方向上的宽度大致逐渐减小;在一些实施例中,在q轴沿轴孔 指向转子外圆的方向,各导磁通道在q轴方向上的宽度至少3层连续减小。越靠近轴孔7的导磁通道与定子的作用越大,对电机性能影响越大。此设置在合理利用转子空间的基础上,保证靠近轴孔7侧导磁通道宽度,有助于提升电机性能。相邻两层磁障层之间形成导磁通道,对于由弧线段和直线段组成的导磁通道,从q轴上至q轴两侧,该导磁通道的宽度逐渐增大(导磁通道宽度的定义为:导磁通道两个侧边中的一个侧边上的各点到另一个侧边的最短距离)。此处定义的导磁通道的宽度是转子上磁力线穿过的截面宽度,这样设置有助于降低转子磁密饱和度,降低电机损耗。
在一些实施方式中,各层磁障层中,转子槽6在q轴上的宽度与转子槽6靠近填充槽端部的宽度的比值为τ1,从最内层磁障层至最外层磁障层,τ1大致逐渐增大。既保证了内层磁障层之间的导磁通道的宽度,又保证一定比例的磁障层占比,改善电机性能。各层磁障层中,填充槽沿q轴方向的最大宽度与转子槽6在q轴上的宽度的比值为τ2,τ2>1.4。在一些实施例中,1.5<τ2<3.0。限制该比值,保证填充槽具有一定的宽度以增大其布置的面积;限制该比值的范围,也可以保证填充槽之间的导磁通道的宽度。
在一些实施方式中,沿q轴靠近转子外圆的外层磁障层中,位于转子槽6两端的两个第二填充槽52的靠近转子槽6一侧的端部之间的沿d轴方向的宽度为k3;与其相邻的靠近轴孔7的内层磁障层中,位于转子槽6两端的两个第二填充槽52的靠近转子槽6一侧的端部之间的沿d轴方向的宽度为k4,则0.5≤k3/k4≤1或0.5≤k4/k3≤1。受限于转子空间的情况下,这样设置可以增大填充槽的面积,提升电机起动能力。
在一些实施方式中,沿q轴靠近转子外圆的最外层磁障层中,位于转子槽6两端的两个第二填充槽52的靠近转子槽6一侧的端部之间的沿d轴方向的宽度为k5;靠近转子轴孔7的最内层磁障层中,位于转子槽6两端的两个第二填充槽52的靠近转子槽6一侧的端部之间的沿d轴方向的宽度为k6,则0.5≤k5/k6≤1或0.5≤k6/k5≤1。受限于转子空间的情况下,这样设置可以增大填充槽的面积,提升电机起动能力。
在一些实施方式中,第一填充槽51位于转子外周的q轴方向上,具有分段结构,由多个q轴填充槽511组成,相邻两个q轴填充槽511之间均设置有筋9。第一填充槽51具有筋9的数量为y,则y满足1≤y≤4。沿q轴靠近转子外圆的由第一填充槽51组成的最外层填充层,是转子最容易变形的部分,将最外层第一填充槽51分割为多个q轴填充槽511,可以减小转子在此处的变形。
在一些实施方式中,任意相邻两个q轴填充槽511之间的筋9沿d轴方向的宽度为L3,则L3应满足L3>0.1M1,L3>0.1M2,L3>0.05(M1+M2),M1和M2为该任意相邻两个q轴填充槽511的沿d轴方向的最大宽度。限定q轴填充槽511沿d轴方向的最大宽度,可以降低转子外层磁障层之间通道的饱和度,有助于降低电机谐波,降低转矩脉动,减小谐 波损耗,提升电机效率和运行的稳定性;同时限定各q轴填充槽511之间筋9的宽度,能够保证转子最外层磁障层的受力面积,进一步增强转子的机械强度,减小转子在制造过程中的变形,降低工艺难度。
在一些实施方式中,任意相邻两个q轴填充槽511之间的筋9沿d轴方向的宽度的和为∑L3(各L3的值相等或不相等),则∑L3>0.1∑(M1+M2),∑(M1+M2)为各q轴填充槽511的沿d轴方向的宽度的和。这样设置,可在一些实施方式中保证转子的机械强度。
在一些实施方式中,各筋9之间的宽度差值在±20%以内,各筋9宽度的最小值L3应满足L3≥σ,σ为定子内圆内壁和转子外圆之间气隙的宽度,以减小最外层磁障层处转子的局部变形。
在一些实施方式中,同一个筋9的不同部位沿d轴方向的宽度相等或不相等,即筋9形状不限于是矩形或梯形或弧形。同一个筋9可以在局部变形风险大的部位设置较大的沿d轴方向的宽度,在局部变形风险小的部位设置较小的沿d轴方向的宽度。
在一些实施方式中,各q轴填充槽511的横截面积差值在±30%以内。在一些实施例中,各q轴填充槽511的横截面积差值在±15%以内。这样设置保证最外层填充层各处承受压力的面积相差不大,避免局部变形。
在一些实施方式中,第一填充槽51两端与转子中心连线的夹角α1应满足20°≤α1≤60°。在一些实施例中,α1应满足30°≤α1≤50°。在一些实施例中,α1应满足30°≤α1≤35°。如此设置,填充槽形成磁障层,既可当做磁障层,增大电机的磁阻转矩,又可当做起动鼠笼,用于改善电机起动性能。
在一些实施方式中,填充槽,包括第一填充槽51和第二填充槽52,其的延伸方向近似平行于d轴,角度偏差不超过5%。,以和相邻磁障层之间形成顺畅的导磁通道。
在一些实施方式中,第一填充槽51沿d轴方向的宽度小于与其相邻磁障层中的两个第二填充槽52的靠近转子槽6一侧的端部之间的沿d轴方向的宽度。这样设置的目的是限制第一填充槽51的沿d轴方向的宽度,以避免因宽度过大而导致转子向轴孔7侧或向外圆侧的变形。
在一些实施方式中,第一填充槽51的内侧壁在q轴方向上到转子中心的距离k12与转子半径Rr的比值满足0.82≤k12/Rr≤0.96。若k12/Rr过小,则最外层导磁通道过窄,电机损耗增大,效率下降;若k12/Rr过大,则第一填充槽51与转子外圆距离过小,加工难度增大。靠近轴孔7的两层最内层磁障层的靠近轴孔7的侧边在q轴上的距离与转轴在q轴上的宽度的比值大于1.2,一方面可以保证最内层磁障层和转轴之间的导磁通道的宽度,降低转子磁密饱和度,另一方面可以增强转子靠近转轴处的机械强度。靠近轴孔7的最内层磁障层的靠近轴孔7的侧边的弧线段的直径与转轴在q轴上的宽度的比值大于2,以合理利用 转子空间进行磁障层的布置。
在一些实施方式中,第一填充槽51的沿q轴方向的最大厚度为k,与其相邻的磁障层中的第二填充槽52沿q轴方向的最大厚度为k1,与其相连的导磁通道沿q轴方向的最小厚度为k2,则1<k/k1≤2,0.8<k/k2≤1.6。既保证第一填充槽51沿q轴方向的厚度以降低加工难度,又保证最外层导磁通道的宽度以提升电机性能。
在一些实施方式中,沿q轴靠近轴孔7的最内层磁障层的填充槽与转子外圆之间的间隔为h3,靠近转子外圆侧的最外层填充层与转子外圆之间的间隔为h4,则h4≥h3,且0≤h3≤2.5σ,σ为定子内圆内壁和转子外圆之间气隙的宽度。0≤h3≤2.5σ,即填充槽为开口槽或闭口槽。当填充槽为闭口槽时,限定其与转子外圆之间的最大间隔,可以减小漏磁;h4≥h3,可以减小内层磁障层的漏磁,同时保证外层磁障层处的机械强度。
在一些实施方式中,填充槽的靠近转子外圆侧的端部的沿q轴方向的最大宽度不大于填充槽的靠近转子q轴处的区域沿q轴方向的最大宽度。在一些实施例中,从转子外圆侧至转子q轴处,填充槽的沿q轴方向的宽度近似相等,宽度偏差不大于5%,保证转子磁障层之间的靠近气隙处的磁通道宽度,降低转子饱和度。设置填充槽的沿q轴方向的宽度近似相等可以在保证靠近气隙处磁通道宽度的同时,增大填充槽的面积,有助于改善起动。
在一些实施方式中,电机转子上至少包含5种以上不同横截面积的填充槽;填充槽(包括第一填充槽51、第二填充槽52)的总横截面积应占转子总流通面积(第一填充槽51、第二填充槽52、转子槽6的横截面积之和)的30%~70%。在一些实施例中,该比例为35%~50%。保证一定比例的填充槽横截面积,使电机具有一定的带载起动能力。
在一些实施方式中,所有填充槽的沿q轴方向厚度的最大值和最小值的比值τ满足1≤τ≤2。在一些实施例中,1.3≤τ≤1.5。限制该比值,一方面不会因填充槽沿q轴方向厚度过大而使导磁通道宽度过小进而影响效率,另一方面不会因填充槽沿q轴方向厚度过小而使填充槽横截面积过小进而影响起动。
在一些实施方式中,在q轴沿转子外圆指向轴孔的方向,各第二填充槽52沿d轴方向的宽度大致逐渐增大。在一些实施例中,在q轴沿转子外圆指向轴孔的方向,各第二填充槽52沿d轴方向的最大宽度至少3层连续增大。在一些实施例中,在q轴沿轴孔指向转子外圆的方向,从靠近d轴的第二层磁障层至靠近转子外圆侧的磁障层中,各第二填充槽52沿d轴方向的最大宽度连续减小。这样设置,可以在合理利用转子空间的情况下,保证合适横截面积的铸铝量,提升电机的起动能力。
在一些实施方式中,填充槽包括第一填充槽51和第二填充槽52的至少部分填充槽的槽内填充导电不导磁的材料,填充槽通过第二转子冲片两端的端环3进行自行短路连接,形成鼠笼结构,端环3材料与填充槽内填充材料相同。自行短路的鼠笼结构在电机起动阶 段提供异步转矩,以实现电机的自起动;多层磁障层为电机提供磁阻转矩,以实现电机的同步运行。
在一些实施方式中,转子槽6由弧线段和/或直线段组成,从转子轴孔7到转子外圆侧的方向,转子槽6弧线段的曲率半径逐渐变大,且同层转子槽6外圆弧曲率半径大于内圆弧曲率半径,弧线段朝轴孔7指向外圆方向突出;或转子槽6的两端沿d轴方向延伸成直线段,部分或全部转子槽6的两端平行于d轴,转子槽6的宽度从转子槽6中间位置(q轴位置)向两端(d轴方向)逐渐增加。转子中间开有轴孔7,这样的设置方式可以增大转子空间的利用率,合理布置转子槽6,以增大转子凸极比,提升电机磁阻转矩。
在一些实施方式中,从转子轴孔7至转子外圆方向,各层转子槽6的靠近两个第二填充槽52的端部之间的曲线长度逐渐递减,相邻转子槽6的曲线长度递减比例为5%~25%。转子中间设置有轴孔7,这样设置的目的是在合理利用转子空间的情况下,保证一定比例的磁障层占比,提升电机性能。
在一些实施方式中,轴孔7在q轴方向上的最大宽度不大于轴孔7在d轴方向上的最大宽度。q轴方向上设置有转子槽6,这样的设置方式可以增大转子空间的利用率,以便合理布置转子槽6,以增大转子凸极比,提升电机磁阻转矩。
在一些实施方式中,轴孔7的截面形状由弧线段和/或直线段组成,即轴孔7的形状不限于是圆形或椭圆形或类椭圆形或四边形,可以根据转子槽6的布置灵活选择轴孔7的形状。
转子两端的端环3上安装有平衡块,平衡块放置在端环3内孔边缘与外圆之间的径向宽度大的一侧。
本发明提供一种自起动同步磁阻电机转子,通过转子导条(也即填充槽被填充之后形成部件)提供的异步转矩实现电机的自起动,解决同步磁阻电机需要变频器驱动的问题,同时降低电机的损耗,提升电机的效率;该电机转子能够降低电机的谐波,降低转矩脉动,减小谐波损耗,提升电机效率和运行稳定性;能够增大转子的空气流通面积,,加快转子散热。
可以理解的是,本发明中转子铁芯相关结构的长度、宽度、厚度、直径等皆可以优选以mm为度量单位,在合理的情况下也可以选择采用其他的合适的度量单位。
根据本发明的实施例,还提供一种自起动同步磁阻电机,尤其是一种自起动同步磁阻两极电机,包括上述的电机转子,该电机轴输出端连接的负载惯量小于电机本身转轴系统惯量的60%。
根据本发明的实施例,还提供一种压缩机,包括上述的自起动同步磁阻电机。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组 合、叠加。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (42)

  1. 一种电机转子,包括转子铁芯,其特征在于,转子铁芯包括:
    第一转子冲片(4),第一转子冲片(4)上开设有填充槽、转子槽(6)和轴孔(7),填充槽包括第二填充槽(52)和第一填充槽(51);第一转子冲片(4)上沿q轴靠近转子外圆设置两外侧填充层,每一外层填充层包括第一填充槽(51);两外侧填充层之间沿q轴间隔设置有多层磁障层,每一所述多层磁障层包括转子槽(6)及处于转子槽(6)的两端的第二填充槽(52),同一层磁障层内,第二填充槽(52)与转子槽(6)之间具有分割筋(8);
    端环(3);
    第二转子冲片(2),设置在端环(3)与第一转子冲片(4)之间,第二转子冲片(2)上对应第一转子冲片(4)的填充槽设置有连通槽(21),第一转子冲片(4)上位于第二转子冲片(2)内孔边缘与外圆之间的转子槽(6)的总横截面积小于第一转子冲片(4)上转子槽(6)的总横截面积。
  2. 根据权利要求1所述的电机转子,其特征在于,第一转子冲片(4)上的位于第二转子冲片(2)内孔之内的转子槽(6)的总横截面积占转子槽(6)总横截面积的至少30%;和/或,第二转子冲片(2)外部轮廓的最大宽度不大于第一转子冲片(4)外圆的直径;和/或,第二转子冲片(2)内孔在q轴上的最大宽度不小于在d轴上的最大宽度。
  3. 根据权利要求1所述的电机转子,其特征在于,转子铁芯中心与第二转子冲片(2)内孔边缘上不同位置的点的连线中,至少有两条连线的长度不相等。
  4. 根据权利要求1所述的电机转子,其特征在于,第二转子冲片(2)内孔在q轴上的最大宽度与d轴上的最大宽度的比值为1~1.5;和/或,第二转子冲片(2)的轴向厚度不小于单片第一转子冲片(4)的厚度。
  5. 根据权利要求1所述的电机转子,其特征在于,第二转子冲片(2)上连通槽(21)的总横截面积不大于第一转子冲片(4)上设置的填充槽的总横截面积;和/或,第二转子冲片(2)上设置的连通槽(21)和第一转子冲片(4)上设置的填充槽位置对应相同,在同一位置处,第二转子冲片(2)上的单个连通槽(21)横截面积不大于第一转子冲片(4)上的单个填充槽横截面积。
  6. 根据权利要求1所述的电机转子,其特征在于,第二转子冲片(2)内孔与连通槽(21)之间沿d轴方向的宽度应大于该连通槽(21)与转子槽(6)之间的分割筋(8)的宽度;和/或,第二转子冲片(2)内孔边缘与外圆之间的径向宽度在不同位置不相等,且第二转子 冲片(2)在d轴上的径向宽度kd1与第二转子冲片(2)在q轴上的径向宽度kq1满足1.1≤kd1/kq1≤2.8。
  7. 根据权利要求1所述的电机转子,其特征在于,第一转子冲片(4)上的位于第二转子冲片(2)内孔之内的转子槽(6)的总横截面积占电机总流通面积的至少20%;和/或,从转子轴孔(7)侧至转子外圆侧,第一转子冲片(4)上各层磁障层中的转子槽(6)的位于第二转子冲片(2)内孔之内的横截面积逐渐减小。
  8. 根据权利要求1所述的电机转子,其特征在于,端环(3)外部轮廓的最大宽度不大于第二转子冲片(2)外部轮廓的最大宽度,由转子铁芯中心至端环(3)端面的最大距离不小于转子铁芯中心至第二转子冲片(2)端面的最大距离;和/或,端环(3)内孔边缘与外圆之间的径向宽度在d轴上为k9,在q轴上为k10,满足1.1≤k9/k10≤2.8。
  9. 根据权利要求1所述的电机转子,其特征在于,分割筋(8)的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋(8)对应的两个该中心点沿d轴方向的距离为L,该相邻两层磁障层中的填充槽之间形成的导磁通道沿q轴方向的最大距离为W,满足0≤L<2W。
  10. 根据权利要求1所述的电机转子,其特征在于,在d轴与q轴组成的第一象限内,分割筋(8)中心到d轴和q轴的距离满足kq=-ν*kd+λ,kq为分割筋(8)中心到q轴的距离,kd为分割筋(8)中心到d轴的距离,满足0.28≤ν≤0.46,和28≤λ≤33。
  11. 根据权利要求1所述的电机转子,其特征在于,在q轴沿轴孔指向转子外圆的方向,转子槽(6)在q轴上的宽度至少三层连续减小;和/或,相邻两个填充槽之间的导磁通道的最小宽度W1,d为与该两个填充槽对应的转子槽(6)之间形成的导磁通道的最小宽度,满足W1≥d。
  12. 根据权利要求1所述的电机转子,其特征在于,相邻两层磁障层之间的导磁通道沿q轴方向的最小距离h1应满足h1≥1.5h2,h2为该相邻两层磁障层中沿q轴方向宽度较小磁障层的沿q轴方向的最小宽度;和/或,相邻两层磁障层之间形成导磁通道,在q轴沿轴孔指向转子外圆的方向,各导磁通道在q轴上的宽度逐渐减小。
  13. 根据权利要求12所述的电机转子,其特征在于,在q轴沿轴孔指向转子外圆的方向,各导磁通道在q轴上的宽度至少三层连续减小,和/或,相邻两层磁障层之间形成导磁通道,对于由弧线段和直线段组成的导磁通道,从q轴上至q轴两侧,该导磁通道的宽度逐渐增大。
  14. 根据权利要求1所述的电机转子,其特征在于,各层磁障层中,转子槽(6)在q轴 上的宽度与转子槽(6)靠近填充槽端部的宽度的比值为τ1,从最内层磁障层至最外层磁障层,τ1逐渐增大;和/或,各层磁障层中,填充槽沿q轴方向的最大宽度与转子槽(6)在q轴上的宽度的比值为τ2,τ2>1.4。
  15. 根据权利要求1所述的电机转子,其特征在于,沿q轴靠近转子外圆的外层磁障层中,位于转子槽(6)两端的两个第二填充槽(52)的靠近转子槽(6)一侧的端部之间的沿d轴方向的宽度为k3;与其相邻的靠近轴孔(7)的内层磁障层中,位于转子槽(6)两端的两个第二填充槽(52)的靠近转子槽(6)一侧的端部之间的沿d轴方向的宽度为k4,则0.5≤k3/k4≤1或0.5≤k4/k3≤1。
  16. 根据权利要求1所述的电机转子,其特征在于,沿q轴靠近转子外圆的最外层磁障层中,位于转子槽(6)两端的两个第二填充槽(52)的靠近转子槽(6)一侧的端部之间的沿d轴方向的宽度为k5;靠近转子轴孔(7)的最内层磁障层中,转子槽(6)两端的两个第二填充槽(52)的靠近转子槽(6)一侧的端部之间的沿d轴方向的宽度为k6,则0.5≤k5/k6≤1或0.5≤k6/k5≤1。
  17. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(51)位于转子外周的q轴方向上,具有分段结构,由多个q轴填充槽(511)组成,相邻两个q轴填充槽(511)之间均设置有筋(9)。
  18. 根据权利要求17所述的电机转子,其特征在于,第一填充槽(51)具有筋(9)的数量为y,则y满足1≤y≤4;和/或,任意相邻两个q轴填充槽(511)之间的筋(9)沿d轴方向的宽度为L3,L3>0.1M1,L3>0.1M2,L3>0.05(M1+M2),M1和M2为该任意相邻两个q轴填充槽(511)的沿d轴方向的最大宽度。
  19. 根据权利要求18所述的电机转子,其特征在于,任意相邻两个q轴填充槽(511)之间的筋(9)沿d轴方向的宽度的和为∑L3,则∑L3>0.1∑(M1+M2),∑(M1+M2)为各q轴填充槽(511)的沿d轴方向的宽度的和。
  20. 根据权利要求17所述的电机转子,其特征在于,各q轴填充槽(511)的横截面积差值在±30%以内。
  21. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(51)两端与转子中心连线的夹角α1,满足20°≤α1≤60°;和/或,填充槽的长度延伸方向与d轴的平行角度偏差不超过5%。
  22. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(51)沿d轴方向的宽度小于与其相邻磁障层中的两个第二填充槽(52)的靠近转子槽(6)一侧的端部之间的沿 d轴方向的宽度。
  23. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(51)的内侧壁在q轴方向上到转子中心的距离k12与转子半径Rr的比值满足0.82≤k12/Rr≤0.96;和/或,靠近轴孔(7)的两层最内层磁障层的靠近轴孔(7)的侧边在q轴上的距离与转轴在q轴上的宽度的比值大于1.2。
  24. 根据权利要求1所述的电机转子,其特征在于,靠近轴孔(7)的最内层磁障层的靠近轴孔(7)的侧边的弧线段的直径与转轴在q轴上的宽度的比值大于2。
  25. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(51)的沿q轴方向的最大厚度为k,与其相邻的磁障层中的第二填充槽(52)沿q轴方向的最大厚度为k1,与其相连的导磁通道沿q轴方向的最小厚度为k2,则1<k/k1≤2,0.8<k/k2≤1.6。
  26. 根据权利要求1所述的电机转子,其特征在于,填充槽的靠近转子外圆侧的端部的沿q轴方向的最大宽度不大于填充槽的靠近转子q轴处的区域沿q轴方向的最大宽度。
  27. 根据权利要求26所述的电机转子,其特征在于,从转子外圆侧至转子q轴处,填充槽的沿q轴方向的宽度偏差不大于5%。
  28. 根据权利要求1的电机转子,其特征在于,第一转子冲片(4)上具有的填充槽中至少有五种横截面积不同的填充槽;和/或,第一填充槽(51)及第二填充槽(52)的总横截面积占第一填充槽(51)、第二填充槽(52)及转子槽(6)的总横截面积的30%~70%。
  29. 根据权利要求1所述的电机转子,其特征在于,所有填充槽的沿q轴方向厚度的最大值和最小值的比值τ满足1≤τ≤2。
  30. 根据权利要求29所述的电机转子,其特征在于,1.3≤τ≤1.5。
  31. 根据权利要求1所述的电机转子,其特征在于,在q轴沿转子外圆指向轴孔的方向,各第二填充槽(52)沿d轴方向的宽度逐渐增大。
  32. 根据权利要求31所述的电机转子,其特征在于,在q轴沿转子外圆指向轴孔的方向,各第二填充槽(52)沿d轴方向的最大宽度至少三层连续增大。
  33. 根据权利要求32所述的电机转子,其特征在于,在q轴沿轴孔指向转子外圆的方向,从第二层磁障层至靠近转子外圆的最外层磁障层中,各第二填充槽(52)沿d轴方向的最大宽度连续减小。
  34. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(51)和第二填充槽(52)的至少部分填充槽的槽内填充导电不导磁的材料,填充槽通过第二转子冲片两端的端环(3) 进行自行短路连接,形成鼠笼结构。
  35. 根据权利要求1所述的电机转子,其特征在于,转子槽(6)由弧线段和/或直线段组成,从转子轴孔(7)侧到转子外圆侧,转子槽(6)弧线段的曲率半径逐渐变大,且同层转子槽(6)外圆弧曲率半径大于内圆弧曲率半径,弧线段朝轴孔(7)指向外圆方向突出;或,转子槽(6)的两端沿d轴方向延伸成直线段,部分或全部转子槽(6)的两端平行于d轴,转子槽(6)的宽度从转子槽(6)中间位置向两端逐渐增加。
  36. 根据权利要求1所述的电机转子,其特征在于,从转子轴孔(7)至转子外圆方向,各层转子槽(6)的靠近两个第二填充槽(52)的端部之间的曲线长度逐渐递减,相邻转子槽(6)的曲线长度递减比例为5%~25%;和/或,轴孔(7)在q轴方向上的最大宽度不大于轴孔(7)在d轴方向上的最大宽度。
  37. 一种自起动同步磁阻电机,其特征在于,包括定子和权利要求1至36中任一项所述的电机转子。
  38. 根据权利要求37所述的自起动同步磁阻电机,其特征在于,分割筋(8)的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋(8)对应的两个该中心点沿d轴方向的距离为L,定子内圆内壁和转子外圆之间形成的气隙的宽度为σ,满足0≤L<8σ。
  39. 根据权利要求37所述的自起动同步磁阻电机,其特征在于,沿q轴靠近转子外圆的最外层磁障层的分割筋(8)的沿d轴方向的宽度为L1,靠近轴孔(7)的最内层磁障层的分割筋(8)沿d轴方向的宽度为L2,L1不小于L2,且L1≥0.5*σ,σ为定子内圆内壁与转子外圆之间的气隙的宽度。
  40. 根据权利要求37所述的自起动同步磁阻电机,其特征在于:
    第一填充槽(51)位于转子外周的q轴方向上,具有分段结构,由多个q轴填充槽(511)组成,相邻两个q轴填充槽(511)之间均设置有筋(9);
    各筋(9)之间的宽度差值在±20%以内,各筋(9)宽度的最小值L3应满足L3≥σ,σ为定子内圆内壁和转子外圆之间气隙的宽度。
  41. 根据权利要求37所述的自起动同步磁阻电机,其特征在于:
    沿q轴靠近轴孔(7)的最内层磁障层的填充槽与转子外圆之间的间隔为h3,靠近转子外圆侧的外侧填充层与转子外圆之间的间隔为h4,则h4≥h3,且0≤h3≤2.5σ,σ为定子内圆内壁和转子外圆之间气隙的宽度。
  42. 一种压缩机,其特征在于,包括权利要求37所述的自起动同步磁阻电机。
PCT/CN2022/127961 2022-01-26 2022-10-27 电机转子及其自起动同步磁阻电机、压缩机 WO2023142557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210092227.8A CN114520551A (zh) 2022-01-26 2022-01-26 电机转子及其自起动同步磁阻电机、压缩机
CN202210092227.8 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023142557A1 true WO2023142557A1 (zh) 2023-08-03

Family

ID=81596038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127961 WO2023142557A1 (zh) 2022-01-26 2022-10-27 电机转子及其自起动同步磁阻电机、压缩机

Country Status (2)

Country Link
CN (1) CN114520551A (zh)
WO (1) WO2023142557A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114520551A (zh) * 2022-01-26 2022-05-20 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865933A (ja) * 1994-08-11 1996-03-08 Matsushita Electric Ind Co Ltd モータのロータコア
CN108711967A (zh) * 2018-07-10 2018-10-26 珠海格力电器股份有限公司 转子组件及电机
CN110138115A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN113726045A (zh) * 2021-09-15 2021-11-30 珠海格力电器股份有限公司 电机转子和自起动同步磁阻电机
CN114520551A (zh) * 2022-01-26 2022-05-20 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865933A (ja) * 1994-08-11 1996-03-08 Matsushita Electric Ind Co Ltd モータのロータコア
CN108711967A (zh) * 2018-07-10 2018-10-26 珠海格力电器股份有限公司 转子组件及电机
CN110138115A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN113726045A (zh) * 2021-09-15 2021-11-30 珠海格力电器股份有限公司 电机转子和自起动同步磁阻电机
CN114520551A (zh) * 2022-01-26 2022-05-20 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Also Published As

Publication number Publication date
CN114520551A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
EP3672026B1 (en) Asynchronous starting and synchronous reluctance electric motor rotor, electric motor and compressor
JP4672083B2 (ja) 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
JP3453072B2 (ja) かご形誘導電動機のスロット構造
EP4037152A1 (en) Synchronous reluctance motor
WO2023142557A1 (zh) 电机转子及其自起动同步磁阻电机、压缩机
WO2020253198A1 (zh) 直接起动同步磁阻电机转子结构、电机
JP2022537089A (ja) 自己始動型同期リラクタンスモータ回転子、モータおよび圧縮機
CN110601481A (zh) 一种双转子永磁同步磁阻电机及配置方法
WO2023142548A1 (zh) 电机转子及其自起动同步磁阻电机、压缩机
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
WO2023184972A1 (zh) 一种电机转子、电机、压缩机及空调器
CN113964971A (zh) 电机转子和自起动同步磁阻电机
JP3466864B2 (ja) かご形誘導電動機の回転子およびその製造方法
CN110571955B (zh) 电机转子和同步磁阻电机
CN216819526U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216290385U (zh) 电机转子和自起动同步磁阻电机
CN216819525U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216819527U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216851460U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216851465U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216851461U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN114520554A (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN114614593A (zh) 电机转子及其自起动同步磁阻电机、压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923355

Country of ref document: EP

Kind code of ref document: A1