WO2020253198A1 - 直接起动同步磁阻电机转子结构、电机 - Google Patents

直接起动同步磁阻电机转子结构、电机 Download PDF

Info

Publication number
WO2020253198A1
WO2020253198A1 PCT/CN2019/128234 CN2019128234W WO2020253198A1 WO 2020253198 A1 WO2020253198 A1 WO 2020253198A1 CN 2019128234 W CN2019128234 W CN 2019128234W WO 2020253198 A1 WO2020253198 A1 WO 2020253198A1
Authority
WO
WIPO (PCT)
Prior art keywords
direct
filling
rotor
reluctance motor
synchronous reluctance
Prior art date
Application number
PCT/CN2019/128234
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
肖勇
史进飞
余钦宏
李霞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP19933656.1A priority Critical patent/EP3989401A4/en
Priority to JP2021559281A priority patent/JP7427019B2/ja
Priority to US17/605,470 priority patent/US20220216747A1/en
Publication of WO2020253198A1 publication Critical patent/WO2020253198A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the technical field of electrical equipment, and in particular to a rotor structure and a motor for directly starting synchronous reluctance motors.
  • This application claims the priority of the patent application filed to the State Intellectual Property Office of China on June 19, 2019 with the application number 201910533174.7 and the invention title "Direct-start synchronous reluctance motor rotor structure, motor”.
  • the direct-start synchronous reluctance motor combines the structural characteristics of an induction motor and a synchronous reluctance motor.
  • the start is realized by the torque generated by the squirrel cage, and the reluctance torque is generated by the rotor inductance gap to realize the constant speed operation. It can be directly connected to the power supply to realize the start operation .
  • the direct-start synchronous reluctance motor has no rare earth permanent magnet materials and no demagnetization problem.
  • the motor has low cost and good reliability; compared with asynchronous motors, it has high efficiency and constant speed.
  • the working principle is similar to that of an asynchronous motor. It is started by an asynchronous torque; when the synchronous speed is entered, the asynchronous torque is 0. At this time, the working principle is the same as that of a reluctance motor, which is synchronized by reluctance torque run.
  • the traditional synchronous reluctance motor requires a drive to start and control operation, which is costly and difficult to control, and the drive occupies a part of the loss, which reduces the efficiency of the entire motor system.
  • the patent with patent publication number CN106537740A provides a rotor, a reluctance machine, and a manufacturing method for the rotor.
  • the filler material of the rotor flux cutoff reaches the circumference of the rotor and forms a part of the circumference of the rotor. After filling the material in the flux cut-off part, cutting processing is required, which results in long manufacturing time, low efficiency, high manufacturing cost, large motor torque pulsation, and large vibration and noise.
  • the patent publication number CN207320974U provides a self-starting synchronous reluctance motor with an asymmetric structure rotor core to reduce torque ripple, thereby suppressing or reducing electromagnetic noise and electromagnetic vibration caused by torque ripple, but due to the asymmetric structure , It will introduce new electromagnetic force and generate new electromagnetic noise problems.
  • the main purpose of this application is to provide a direct-start synchronous reluctance motor rotor structure and motor to solve the problem of large vibration and noise in the prior art, so as to improve the reluctance torque of the motor, improve the efficiency of the motor, and increase the starting ability of the motor.
  • a rotor structure of a direct-start synchronous reluctance motor which includes: a rotor core, the rotor core is provided with a plurality of slit slots, and both ends of each slit slot
  • One filling groove is respectively provided to form a magnetic barrier layer, the first end of the filling groove is arranged adjacent to the slit groove, and the second end of the filling groove extends outward along the radial direction of the rotor core, and at least one filling groove
  • the second end of the rotor core and the side wall on the side of the d-axis away from the rotor core is provided with a hypotenuse structure, so that the d-axis magnetic flux of the rotor core enters the stator along the channel formed at the hypotenuse structure without magnetic flux. mutation.
  • the angle between the side wall of the filling groove on the side away from the d-axis and the hypotenuse structure disposed on the side wall is ⁇ , where 125° ⁇ 165°.
  • the second ends of all the filling grooves are provided with a bevel structure, or the second ends of the filling grooves arranged at intervals are provided with a bevel structure.
  • the distance from the first end to the second end of the hypotenuse structure is k, and the width of the filling groove is w, where 0.3w ⁇ k ⁇ w.
  • the angle of ⁇ is gradually set to increase in a direction gradually away from the d-axis.
  • a plurality of slit grooves and filling grooves can be formed by a combination of a linear structure and an arc structure.
  • the second end of the filling groove extends outward along the radial direction of the rotor core, and at least part of the second end of the filling groove communicates with the outer circumference of the rotor to form an open groove.
  • the width of the opening groove is m, where 0.1w ⁇ m ⁇ 0.7w.
  • the filling groove and its adjacent slit groove are arranged at an angle, and the magnetic channel formed between the side walls of two adjacent filling grooves is arranged parallel to or at an angle with the d-axis.
  • the length of the filling groove is gradually increased along the direction close to the d-axis.
  • the width between two adjacent filling grooves is gradually reduced in the direction away from the d-axis.
  • the width of the slit groove is gradually reduced outward along the radial direction of the rotor core.
  • the length of the slit groove is gradually reduced outward along the radial direction of the rotor core.
  • the width of the magnetically conductive channel formed between two adjacent slots is gradually reduced along the radial direction of the rotor core.
  • the filling groove is filled with a conductive and non-magnetic material, and the conductive and non-magnetic material and the conductive end rings at both ends of the rotor core form a squirrel cage structure.
  • the conductive non-magnetic material filled in the filling groove is consistent with the conductive end ring material, and more preferably, aluminum or aluminum alloy can be used.
  • the ratio of the filling area filled with the conductive magnetic isolation material to the total area of all filling grooves and slit grooves is Q2, where 0.3 ⁇ Q2 ⁇ 0.7.
  • a plurality of independent filling grooves are also provided at the outer edge of the rotor core of any magnetic pole, and reinforcing ribs are formed between adjacent independent filling grooves, and the width of the reinforcing ribs is L, where 0.5 ⁇ L ⁇ , ⁇ is the width of the air gap between the stator and the rotor core.
  • the sum of the total width of all slit slots on the q axis and the width of the independent filling slot on the q axis, and the ratio of the effective core width in the radial direction of the rotor core is Q1, where 0.35 ⁇ Q1 ⁇ 0.5 .
  • first reinforcing rib is arranged between the filling groove and the slit groove in the magnetic barrier layer of the same layer, and a second reinforcing rib is arranged between the filling groove and the outer edge of the rotor core.
  • the width of the first reinforcement rib and/or the second reinforcement rib is L4, where 0.8 ⁇ L4 ⁇ 3 ⁇ .
  • At least two magnetic barrier layers formed by the combination of the slit groove and the filling grooves at both ends thereof.
  • a motor which includes a direct-start synchronous reluctance motor rotor structure, and the direct-start synchronous reluctance motor rotor structure is the aforementioned direct-start synchronous reluctance motor rotor structure.
  • a bevel structure is provided on the side wall at the second end of the filling slot and away from the d-axis side of the rotor core, so that the d-axis magnetic flux of the rotor core is formed along the bevel structure There will be no sudden changes in the magnetic flux when the channel enters the stator.
  • This setting can reduce the motor reluctance torque ripple, thereby reducing the resulting vibration and noise, and can increase the d-axis inductance, increase the difference between the d-axis and q-axis magnetic flux, and generate greater reluctance torque.
  • the motor with the rotor structure outputs torque and improves the efficiency of the motor.
  • Fig. 1 shows a schematic structural diagram of a first embodiment of a rotor structure of a direct-start synchronous reluctance motor according to the present application
  • Fig. 2 shows a schematic structural diagram of a second embodiment of the rotor structure of a direct-start synchronous reluctance motor according to the present application
  • Fig. 3 shows a schematic diagram of the enlarged structure at A in Fig. 2;
  • Fig. 4a is a schematic diagram of a magnetic circuit without a beveled edge structure in the filling groove in the prior art
  • 4b is a schematic diagram of a magnetic circuit of a filling slot with a hypotenuse structure of the rotor structure of a direct-start synchronous reluctance motor according to the present application;
  • Figure 5 is a comparison diagram of torque curves between the motor of the application and the motor of the prior art
  • Fig. 6 is a comparison diagram of the starting speed curve of the motor of the application and the motor of the prior art
  • Fig. 7 shows a schematic structural diagram of a third embodiment of the rotor structure of a direct-start synchronous reluctance motor according to the present application
  • Fig. 8 shows a schematic structural diagram of a fourth embodiment of the rotor structure of a direct-start synchronous reluctance motor according to the present application
  • Fig. 9 shows a schematic structural diagram of a fifth embodiment of the rotor structure of a direct-start synchronous reluctance motor according to the present application.
  • Fig. 10 shows a schematic diagram of the rotor squirrel cage structure of a direct-start synchronous reluctance motor according to the present application
  • FIG. 11 shows a schematic structural diagram of a sixth embodiment of the rotor structure of a direct-start synchronous reluctance motor according to the present application
  • Fig. 12 shows a schematic structural diagram of a sixth embodiment of the rotor structure of a direct-start synchronous reluctance motor according to the present application.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between a device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here is explained accordingly.
  • a rotor structure of a direct-start synchronous reluctance motor is provided.
  • the rotor structure includes a rotor core 10.
  • a plurality of slit grooves 20 are provided on the rotor core 10.
  • a filling groove 30 is respectively provided at both ends of each slit groove 20 to form a magnetic barrier layer, and the first end of the filling groove 30 is arranged adjacent to the slit groove 20.
  • the second end of the filling groove 30 extends outward along the radial direction of the rotor core 10.
  • At least one side wall at the second end of the filling slot 30 and away from the d-axis side of the rotor core 10 is provided with a hypotenuse structure 31, so that the d-axis magnetic flux of the rotor core 10 is formed along the hypotenuse structure 31 When the channel enters the stator, the magnetic flux will not change suddenly.
  • a side wall at the second end of the filling slot 30 and away from the d-axis side of the rotor core 10 is provided with a hypotenuse structure 31 to make the d-axis magnetic flux of the rotor core 10 follow the hypotenuse
  • This setting can reduce the motor reluctance torque pulsation, thereby reducing the resulting vibration and noise, and can increase the d-axis inductance, increase the difference between the d-axis and q-axis magnetic flux, and produce greater reluctance torque, which increases
  • the motor with the rotor structure outputs torque and improves the efficiency of the motor. Among them, FIG.
  • FIG. 4a is a schematic diagram of a magnetic circuit when there is no beveled edge structure in the prior art.
  • a hypotenuse structure is provided on four adjacent filling grooves 30 in one pole.
  • the included angle between the side wall of the filling groove 30 on the side away from the d-axis and the hypotenuse structure 31 provided on the side wall is ⁇ , where 125° ⁇ 165°. More preferably, the included angle satisfies: 145° ⁇ 155°.
  • the distance from the first end to the second end of the hypotenuse structure 31 is k, and the width of the filling groove 30 is w, where 0.3w ⁇ k ⁇ w.
  • the angle of ⁇ is gradually set to increase in a direction gradually away from the d-axis.
  • the hypotenuse structure 31 By providing the hypotenuse structure 31, the sudden change of reluctance is reduced, the motor reluctance torque pulsation is reduced, and the d-axis inductance flowing into the stator can be increased, and the d-axis inductance can be increased.
  • the multiple slit grooves 20 and the filling grooves 30 may be linear structures, circular arc structures, multiple shapes combined structures, etc., as shown in FIG. 9.
  • the second end of the filling groove 30 extends outward along the radial direction of the rotor core 10, and at least a part of the second end of the filling groove 30 communicates with the outer circumference of the rotor to form an open groove.
  • the width m of the open groove satisfies : 0.1w ⁇ m ⁇ 0.7w, the open slot can reduce the q-axis inductance, increase the motor reluctance torque, and improve the motor efficiency.
  • the filling groove 30 and its adjacent slit groove 20 are arranged at an angle, and the magnetic channel formed between the side walls of two adjacent filling grooves 30 is parallel to the d axis or arranged at an angle, wherein the angle Smaller, so that the magnetic channel is approximately parallel to the d-axis.
  • the length of the filling groove 30 is gradually increased in the direction close to the d-axis.
  • the width between two adjacent filling grooves 30 is gradually reduced in the direction away from the d-axis. Effectively improve motor efficiency and improve motor starting ability.
  • the width of the slit groove 20 is gradually reduced outward in the radial direction of the rotor core 10.
  • the sum of the total width of all the slit grooves 20 on the q axis and the width of the independent filling groove 40 on the q axis has a ratio of Q1 to the effective core width in the radial direction, where 0.35 ⁇ Q1 ⁇ 0.5.
  • the length of the slot 20 is gradually reduced along the radial direction of the rotor core 10, and the width of the magnetic channel formed between two adjacent slots 20 is set to be outward along the radial direction of the rotor core 10. Set it gradually.
  • the filling groove 30 is used to fill a conductive and non-magnetic material, and the conductive and non-magnetic material and the conductive end rings 60 at both ends of the rotor core 10 form a squirrel cage structure, as shown in FIG. 10.
  • the conductive and non-magnetic material filled in the filling groove 30 is the same as the conductive end ring material, and more preferably, aluminum or aluminum alloy can be used.
  • the ratio of the filling area filled with the conductive magnetic isolation material to the total area of all filling grooves 30 and slit grooves 20 is 0.3-0.7, more preferably, the ratio is 0.4-0.6.
  • the effective core width is the width from the inner circle to the outer circle of the rotor core.
  • a plurality of independent filling grooves 40 are also provided at the outer edge of the rotor core 10 of any magnetic pole, and reinforcing ribs 50 are formed between adjacent independent filling grooves 40.
  • the width of the reinforcing ribs 50 is L, where 0.5 ⁇ L ⁇ , ⁇ is the width of the air gap between the stator and the rotor core 10. This setting can effectively reduce the torque ripple of the motor.
  • Two reinforcing ribs 50 are located between the three independent filling grooves 40.
  • the two reinforcing ribs are arranged in a figure eight shape and are symmetrical about the q axis.
  • a plurality of independent filling tanks 40 can also be connected to form a whole, as shown in FIG. 8, to increase the motor starting ability.
  • a first reinforcing rib is provided between the filling groove 30 and the slit groove 20 in the magnetic barrier layer of the same layer, and a second reinforcing rib is provided between the filling groove 30 and the outer circumference of the rotor.
  • the width of the rib is L4, where 0.8 ⁇ L4 ⁇ 3 ⁇ . In this way, the strength of the rotor structure is ensured, the magnetic flux leakage is minimized, and the efficiency of the motor is improved.
  • the magnetic barrier layer formed by the combination of the slit groove 20 and the filling grooves 30 at both ends thereof is at least two layers.
  • the magnetic barrier layers shown in FIGS. 1 to 2 are all four-layer structures.
  • the rotor structure in the foregoing embodiment can be used in the technical field of electrical equipment, that is, according to another aspect of the present application, a motor is provided.
  • the motor includes a direct-start synchronous reluctance motor rotor structure, and the direct-start synchronous reluctance motor rotor structure is the above-mentioned direct-start synchronous reluctance motor rotor structure.
  • the rotor structure of the direct-start synchronous reluctance motor of the present application is adopted, and the oblique edge structure is provided at the end of the filling slot to reduce the sudden change of reluctance, reduce the motor reluctance torque pulsation, and thereby reduce the vibration and noise generated thereby .
  • the hypotenuse structure can increase the flow of d-axis inductance into the stator, increase the d-axis inductance, and increase the motor output torque.
  • the motor reluctance torque pulsation can be reduced, thereby reducing the resulting vibration and noise, and the d-axis inductance can be increased, and the difference between the d-axis and q-axis magnetic flux can be increased. Larger reluctance torque increases motor output torque and improves motor efficiency.
  • the angle between the edge of the hypotenuse structure and the edge of the corresponding filling groove is ⁇ , which satisfies 125° ⁇ 165. ; More preferably, 145° ⁇ 155°, choose a proper angle range to ensure the effect of the hypotenuse structure.
  • the width between two adjacent filling grooves is L1, and the width L1 between two adjacent filling grooves gradually decreases in the direction away from the d-axis.
  • the slot width is L2, and the slot width L2 gradually decreases in the direction away from the center of the rotor core.
  • the width of the magnetic channel formed between two adjacent slots is L3, and the width of the magnetic channel L3 gradually decreases away from the center of the rotor core.
  • the magnetic channel near the center of the rotor has strong magnetic field strength, and the magnetic channel is designed to be wider to avoid occurrence Magnetic field saturation affects the output and efficiency of the motor.
  • the slit grooves and the corresponding filling grooves are combined to form a magnetic barrier layer, and all the filling grooves are filled with conductive and non-magnetic materials, more preferably, filled with aluminum or aluminum alloy to realize asynchronous starting of the motor.
  • the magnetic barrier layer produces a difference in inductance between the d-axis and the q-axis, and generates reluctance torque to maintain the synchronous operation of the motor.
  • the q-axis direction filling slot is composed of a plurality of partially independently divided filling slots, and the rib width between them is L, where 0.5 ⁇ L ⁇ , and ⁇ is the air gap width between the stator core and the rotor core.
  • the filling groove is divided by ribs, and the width of the ribs is smaller than the width of the air gap.
  • the filling slot can be used as a magnetic barrier layer to further increase the d-axis magnetic resistance and reduce the d-axis magnetic flux, and can be used as a starting squirrel cage to improve the starting performance of the motor.
  • the filling groove and the slit groove are arranged in pairs on the circumference of the rotor, and the magnetic barrier layer formed by the combination of the filling groove and the slit groove has at least two layers in the radial direction of the rotor core.
  • the width k of the hypotenuse structure is smaller than the width w of the end of the corresponding filling groove. More preferably, 0.3w ⁇ k ⁇ 0.7w. Setting a proper width of the hypotenuse structure can ensure the effectiveness of the hypotenuse structure and reduce magnetic leakage.
  • 4b and 4a are comparison diagrams of the influence of the hypotenuse structure and the non-hypotenuse structure on the magnetic field distribution of the motor. After the hypotenuse structure is set, the magnetic field can gradually transition into the stator through the incision, avoiding sudden changes in the magnetic field and reducing electromagnetic torque Peak value to achieve the purpose of reducing torque ripple. At the same time, the incision increases the width of the magnetic channel, increases the flow of the d-axis magnetic field into the stator, increases the d-axis inductance, and ensures the output torque of the motor.
  • the extending direction of the filling groove at both ends of the slit groove is approximately parallel to the d-axis, so that the d-axis magnetic flux flows smoothly in the d-axis direction.
  • the farther the filling groove is from the corresponding d-axis axis the shorter the extension in the d-axis direction, and the smaller the area of the filling groove.
  • the deep and narrow filling groove has a skin effect, and the unequal filling groove increases the torque drawn in the starting process, which helps to improve the starting performance of the motor.
  • the filling groove and the slit groove are arranged in pairs on the circumference of the rotor.
  • the magnetic barrier layer formed by the combination of the filling slot and the slit slot has at least two layers in the radial direction of the rotor core, forming a pair of poles and a multilayer magnetic barrier, increasing the inductance gap and increasing the reluctance torque;
  • Figure 5 is a comparison diagram of the motor torque curve between the technology of the application and the prior art. It can be seen that with the technical solution of the application, the torque ripple of the motor is reduced by about half, while the average torque of the motor is not reduced, achieving a better technical effect , Help to reduce the motor vibration noise caused by this.
  • the shape of the filling groove and the slit groove is not limited to a straight edge or an arc-shaped arrangement.
  • Fig. 6 is a comparison diagram of the speed curve of the motor starting process between the application technology and the prior art. It can be seen that the motor of the application has a fast starting speed, a short starting and stable time, and a stronger starting ability.
  • L is the width of the rib 50
  • L1 is the width of the magnetic channel formed between the side walls of two adjacent filling grooves
  • L2 is the width of the slit groove
  • L3 is the width of the two adjacent slits.
  • L4 is the width of the first reinforcement rib and the second reinforcement rib, in this embodiment, the width of the first reinforcement rib can be set to be the same as the width of the second reinforcement rib Or different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种直接起动同步磁阻电机转子结构、电机。直接起动同步磁阻电机转子结构,包括:转子铁芯,转子铁芯上设置有多个狭缝槽,各狭缝槽的两端分别设置有一个填充槽以形成磁障层,填充槽的第一端与狭缝槽相邻地设置,填充槽的第二端沿转子铁芯的径向方向向外延伸设置,至少一个填充槽的第二端且远离转子铁芯的d轴一侧的侧壁设置有斜边结构,以使转子铁芯的d轴磁通沿着斜边结构处形成的通道进入定子时磁通不会发生突变。这样设置能够降低电机磁阻转矩脉动,从而减小由此产生的振动噪声,又能增加d轴电感,增大d轴、q轴磁通量之差,产生更大的磁阻转矩,增加了具有该转子结构的电机输出转矩,提升电机效率。

Description

直接起动同步磁阻电机转子结构、电机 技术领域
本申请涉及电机设备技术领域,具体而言,涉及一种直接起动同步磁阻电机转子结构、电机。本申请要求于2019年6月19日提交至中国国家知识产权局、申请号为201910533174.7、发明名称为“直接起动同步磁阻电机转子结构、电机”的专利申请的优先权。
背景技术
直接起动同步磁阻电机结合了感应电机与同步磁阻电机的结构特点,通过鼠笼感应产生力矩实现起动,通过转子电感差距产生磁阻转矩实现恒转速运行,能够直接通入电源实现起动运行。直接起动同步磁阻电机与直接起动永磁电机相比,没有稀土永磁材料,也不存在退磁问题,电机成本低,可靠性好;与异步电机相比,效率高,转速恒定。直接起动同步磁阻电机起动时,工作原理与异步电机相似,通过异步转矩起动;当进入同步转速时,异步转矩为0,此时工作原理与磁阻电机一样,通过磁阻转矩同步运行。
传统的同步磁阻电机需要驱动器进行起动和控制运行,成本高,控制困难,而且驱动器占据一部分损耗,使整个电机系统效率下降。而现有技术中,专利公开号为CN106537740A的专利提供一种转子、磁阻机器和用于转子的制造方法,其转子通量截止部的填充材料到达转子周缘并且形成所述转子周缘的一部分,在通量截止部里填充材料后还需进行切削加工,制造时间长效率低,制造成本高,而且电机转矩脉动大,振动噪声大。专利公开号为CN207320974U的专利提供一种非对称结构转子铁芯的自启动同步磁阻电机来降低转矩脉动,从而抑制或者降低因转矩脉动引起电磁噪声及电磁振动,但由于采用不对称结构,会引入新的电磁力,产生新的电磁噪声问题。现有技术中,难以同时实现高效、低噪、高起动能力同步设计,现有技术往往存在一些缺陷。
发明内容
本申请的主要目的在于提供一种直接起动同步磁阻电机转子结构、电机,以解决现有技术中振动噪音大的问题,以提升电机磁阻转矩,提升电机效率,增加电机起动能力。
为了实现上述目的,根据本申请的一个方面,提供了一种直接起动同步磁阻电机转子结构,包括:转子铁芯,转子铁芯上设置有多个狭缝槽,各狭缝槽的两端分别设置有一个填充槽以形成磁障层,填充槽的第一端与狭缝槽相邻地设置,填充槽的第二端沿转子铁芯的径向方向向外延伸设置,至少一个填充槽的第二端且远离转子铁芯的d轴一侧的侧壁设置有斜边结构,以使转子铁芯的d轴磁通沿着斜边结构处形成的通道进入定子时磁通不会发生突变。
进一步地,填充槽的远离d轴一侧的侧壁与设置于该侧壁上的斜边结构的夹角为θ,其中,125°≤θ≤165°。
进一步地,145°≤θ≤155°。
进一步地,所有填充槽的第二端均设置斜边结构,或者,间隔设置的填充槽的第二端均设置斜边结构。
进一步地,斜边结构的第一端至第二端的距离为k,填充槽的宽度为w,其中,0.3w≤k<w。
进一步地,θ的角度沿逐渐远离d轴的方向逐渐增加地设置。
进一步地,多个狭缝槽及填充槽可由直线型结构、圆弧结构组合形成。
进一步地,填充槽的第二端沿转子铁芯的径向方向向外延伸,至少部分填充槽的第二端与转子外周圆连通以形成开口槽。
进一步地,开口槽宽度m,其中,0.1w≤m≤0.7w。
进一步地,填充槽与其相邻的狭缝槽具有夹角地设置,相邻两个填充槽的侧壁之间形成的导磁通道与d轴相平行或具有夹角地设置。
进一步地,填充槽的长度沿靠近d轴方向逐渐增加地设置。
进一步地,相邻两个填充槽之间的宽度沿远离d轴方向逐渐减小地设置。
进一步地,狭缝槽的宽度沿转子铁芯的径向方向向外逐渐减小地设置。
进一步地,狭缝槽的长度沿转子铁芯的径向方向向外逐渐减小地设置。
进一步地,相邻两个狭缝槽之间形成的导磁通道的宽度沿转子铁芯的径向方向向外逐渐减小地设置。
进一步地,填充槽中填充导电不导磁材料,导电不导磁材料与转子铁芯两端的导电端环形成鼠笼结构。
进一步地,填充槽中填充导电不导磁材料与导电端环材料一致,更优地,可采用铝或铝合金。
进一步地,填入导电隔磁材料的填充面积,与所有填充槽及狭缝槽总面积的比值为Q2,其中,0.3≤Q2≤0.7。
进一步地,位于任一磁极的转子铁芯的外边缘处还设置有多个独立填充槽,相邻独立填充槽之间形成加强筋,加强筋的宽度为L,其中,0.5σ≤L<σ,σ为定子与转子铁芯之间的气隙宽度。
进一步地,所有狭缝槽在q轴上的总宽度与q轴上的独立填充槽宽度之和,与转子铁芯的径向方向有效铁芯宽度的比值为Q1,其中,0.35≤Q1≤0.5。
进一步地,位于同一层的磁障层中的填充槽与狭缝槽之间设置有第一加强筋,填充槽与转子铁芯外边缘之间设置有第二加强筋。
进一步地,第一加强筋和/或第二加强筋的宽度为L4,其中,0.8σ≤L4≤3σ。
进一步地,多个独立填充槽沿转子铁芯的周向间隔地设置,多个独立填充槽占转子铁芯的圆心角为α,其中0.1τ≤α≤0.4τ,其中τ为极距角,τ=180°/p,p为极对数。
进一步地,狭缝槽与其两端的填充槽组合成的磁障层至少为两层。
根据本申请的另一方面,提供了一种电机,包括直接起动同步磁阻电机转子结构,直接起动同步磁阻电机转子结构为上述的直接起动同步磁阻电机转子结构。
应用本申请的技术方案,在填充槽的第二端且远离转子铁芯的d轴一侧的侧壁设置有斜边结构,以使转子铁芯的d轴磁通沿着斜边结构处形成的通道进入定子时磁通不会发生突变。这样设置能够降低电机磁阻转矩脉动,从而减小由此产生的振动噪声,又能增加d轴电感,增大d轴、q轴磁通量之差,产生更大的磁阻转矩,增加了具有该转子结构的电机输出转矩,提升电机效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的直接起动同步磁阻电机转子结构的第一实施例的结构示意图;
图2示出了根据本申请的直接起动同步磁阻电机转子结构的第二实施例的结构示意图;
图3示出了图2中的A处放大结构示意图;
图4a为现有技术中填充槽没有斜边结构的磁路示意图;
图4b为根据本申请的直接起动同步磁阻电机转子结构的具有斜边结构的填充槽的磁路示意图;
图5为本申请的电机与现有技术电机转矩曲线对比图;
图6为本申请的电机与现有技术电机起动转速曲线对比图;
图7示出了根据本申请的直接起动同步磁阻电机转子结构的第三实施例的结构示意图;
图8示出了根据本申请的直接起动同步磁阻电机转子结构的第四实施例的结构示意图;
图9示出了根据本申请的直接起动同步磁阻电机转子结构的第五实施例的结构示意图;
图10示出了根据本申请的直接起动同步磁阻电机转子鼠笼结构示意图;
图11示出了根据本申请的直接起动同步磁阻电机转子结构的第六实施例的结构示意图;
图12示出了根据本申请的直接起动同步磁阻电机转子结构的第六实施例的结构示意图。
其中,上述附图包括以下附图标记:
10、转子铁芯;
20、狭缝槽;
30、填充槽;31、斜边结构;
40、独立填充槽;
50、加强筋;
60、导电端环。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图3、图4b和图5所示,根据本申请的实施例,提供了一种直接起动同步磁阻电机转子结构。
具体地,如图1所示,该转子结构包括转子铁芯10。转子铁芯10上设置有多个狭缝槽20。各狭缝槽20的两端分别设置有一个填充槽30以形成磁障层,填充槽30的第一端与狭缝槽20相邻地设置。填充槽30的第二端沿转子铁芯10的径向方向向外延伸设置。至少一个填充槽30的第二端且远离转子铁芯10的d轴一侧的侧壁设置有斜边结构31,以使转子铁芯10的d轴磁通沿着斜边结构31处形成的通道进入定子时磁通不会发生突变。
在本实施例中,在填充槽30的第二端且远离转子铁芯10的d轴一侧的侧壁设置有斜边结构31,以使转子铁芯10的d轴磁通沿着斜边结构31处形成的通道进入定子时磁通不会发生突变。这样设置能够降低电机磁阻转矩脉动,从而减小由此产生的振动噪声,又能增加d轴电感,增大d轴、q轴磁通量之差,产生更大的磁阻转矩,增加了具有该转子结构的电机输出转矩,提升电机效率。其中,图4a为现有技术中没有斜边结构时的磁路示意图。如图2所示,在一个极内的相邻的四个填充槽30上设置斜边结构。当然,也可以像图1中在所有的填充槽上均设置斜边结构,也可间隔设置(图7所示),或任意搭配设置。
其中,填充槽30的远离d轴一侧的侧壁与设置于该侧壁上的斜边结构31的夹角为θ,其中,125°≤θ≤165°。更优地,夹角满足:145°≤θ≤155°。斜边结构31的第一端至第二端的距离为k,填充槽30的宽度为w,其中,0.3w≤k<w。θ的角度沿逐渐远离d轴的方向逐渐增加地设置。通过设置斜边结构31,减小磁阻突变,降低电机磁阻转矩脉动,同时能增大此处d轴电感流通进入定子,增加d轴电感。
多个狭缝槽20及填充槽30可为直线型结构、圆弧结构,多种形状组合结构等,如图9所示。填充槽30的第二端沿转子铁芯10的径向方向向外延伸,至少部分填充槽30的第二端与转子外周圆连通,形成开口槽,如图11所示,开口槽宽度m满足:0.1w≤m≤0.7w,开口槽可以减小q轴电感,提升电机磁阻转矩,提升电机效率。填充槽30与其相邻的狭缝槽20具有夹角地设置,相邻两个填充槽30的侧壁之间形成的导磁通道与d轴相平行或具有夹角地设置,其中该夹角较小,以使该导磁通道与d轴大致平行。填充槽30的长度沿靠近d轴方向逐渐增加地设置。相邻两个填充槽30之间的宽度沿远离d轴方向逐渐减小地设置。有效提升电机效率,提升电机起动能力。
进一步地,狭缝槽20的宽度沿转子铁芯10的径向方向向外逐渐减小地设置。所有狭缝槽20在q轴上总宽度与q轴上独立填充槽40宽度之和,与铁芯径向有效铁芯宽度的比值为Q1,其中,0.35≤Q1≤0.5。狭缝槽20的长度沿转子铁芯10的径向方向向外逐渐减小地设置 相邻两个狭缝槽20之间形成的导磁通道的宽度沿转子铁芯10的径向方向向外逐渐减小地设置。其中,填充槽30用于填充导电不导磁材料,导电不导磁材料与转子铁芯10两端的导电端环60形成鼠笼结构,如图10所示。填充槽30中填充导电不导磁材料与导电端环材料一致,更优地,可采用铝或铝合金。填入导电隔磁材料的填充面积,与所有填充槽30及狭缝槽20总面积的比值为0.3-0.7,更优地,比值为0.4-0.6.这样设置能够进一步地提高具有该转子结构的电机的效率,鼠笼结构能够帮助电机起动,适当填充面积可提升电机启动能力。其中,有效铁芯宽度为转子铁芯内圆至外圆之间的宽度。
位于任一磁极的转子铁芯10的外边缘处还设置有多个独立填充槽40,相邻独立填充槽40之间形成加强筋50,加强筋50的宽度为L,其中,0.5σ≤L<σ,σ为定子与转子铁芯10之间的气隙宽度。这样设置能够有效降低电机的转矩脉动。如图1所示,该独立填充槽40为三个,位于三个独立填充槽40之间具有两个加强筋50,两个加强筋成八字形设置,且关于q轴对称。多个独立填充槽40还可连通成为整体,如图8所示,增加电机起动能力。
其中,如图2所示,多个独立填充槽40沿转子铁芯10的周向间隔地设置,多个独立填充槽40占转子铁芯10的圆心角为α,其中0.1τ≤α≤0.4τ,其中τ为极距角,τ=180°/p,p为极对数。这样设置能够有效地提高电机的效率,同时保证电机起动能力。
进一步,位于同一层的磁障层中的所述填充槽30与狭缝槽20之间设置有第一加强筋,填充槽30与转子外周之间设置有第二加强筋。加强筋的宽度为L4,其中,0.8σ≤L4≤3σ。如此保证转子结构强度,并尽可能降低漏磁,提升电机效率。
优选地,狭缝槽20与其两端的填充槽30组合成的磁障层为至少两层。图1至图2中示出的磁障层均为四层结构。
上述实施例中的转子结构可以用于电机设备技术领域,即根据本申请的另一方面,提供了一种电机。该电机包括直接起动同步磁阻电机转子结构,直接起动同步磁阻电机转子结构为上述的直接起动同步磁阻电机转子结构。
具体地,采用本申请的直接起动同步磁阻电机转子结构,通过在填充槽端部设置斜边结构,减小磁阻突变,降低电机磁阻转矩脉动,从而减小由此产生的振动噪声。设置斜边结构,同时能增大此处d轴电感流通进入定子,增加d轴电感,增加电机输出转矩。
通过在填充槽端部优化斜边结构设计,即能降低电机磁阻转矩脉动,从而减小由此产生的振动噪声,又能增加d轴电感,增大d、q轴磁通量之差,产生更大的磁阻转矩,增加电机输出转矩,提升电机效率。其中,斜边结构边与对应的填充槽边之间角度为θ,满足125°≤θ≤165。;更优地,145°≤θ≤155°,选择合适的角度范围,保证斜边结构效果。进一步地,相邻两个填充槽之间的宽度为L1,而且相邻两个填充槽之间的宽度L1按远离d轴方向逐渐减小。狭缝槽宽度为L2,而且狭缝槽宽度L2按远离转子铁心中心方向逐渐减小。相邻两个狭缝槽之间形成的磁通道宽度为L3,而且磁通道宽度L3按远离转子铁心中心方向逐渐减小,靠近转子中心的磁通道磁场强度强,磁通道设计宽一些,避免出现磁场饱和影响电机出力及效率。
狭缝槽和对应的填充槽组合成形成磁障层,所有填充槽中填入导电不导磁材料,更优地,填入铝或者铝合金,实现电机异步起动。磁障层产生d轴、q轴电感差,产生磁阻转矩,维持电机同步运行。q轴方向填充槽由多个部分独立分割的填充槽组成,它们之间的筋宽为L,其中0.5σ≤L<σ,σ为定子铁芯与转子铁芯之间的气隙宽度。填充槽被筋分割,筋宽度小于气隙宽度,通过填充槽和筋来减小与定子作用产生的脉动,降低电机振动噪声。
q轴方向填充槽即独立填充槽相对于转子圆心所占角度为α,其中0.1τ≤α≤0.4τ,其中τ为极距角,即τ=180°/p,p为极对数。优选地,0.25τ≤α≤0.35τ。对于该实施例,p为2,τ=90°,因此9°≤α≤36°,优选地,22.5°≤α≤31.5°。如此,填充槽即可当做磁障层,进一步增加d轴磁阻,减小d轴磁通量,又可当做起动鼠笼,用于改善电机起动性能。填充槽和狭缝槽在转子圆周成对布置,填充槽和狭缝槽组合成的磁障层在转子铁心径向方向上层数至少两层以上。
斜边结构宽度k小于对应填充槽端部宽度w。更优地,0.3w≤k≤0.7w。设置合适的斜边结构宽度,即可保证斜边结构的有效性,又可减小漏磁。图4b和图4a为本申请的斜边结构与无斜边结构对电机磁场分布影响对比图,设置斜边结构后,磁场能够通过切口处逐渐过渡进入定子,避免磁场突变,减小电磁转矩峰值,达到降低转矩脉动的目的。同时切口增大了磁通道宽度,增大d轴磁场流通进入定子,增加d轴电感,保证电机输出转矩。
其中,狭缝槽两端的填充槽延伸方向与d轴大致平行,使d轴磁通在d轴方向流动顺畅。述填充槽距离对应d轴轴线越近,往d轴方向延伸长度越长,填充槽面积越大。相反地,填充槽距离对应d轴轴线越远,往d轴方向延伸长度越短,填充槽面积越小。深而窄的填充槽具有集肤效应,同时不等填充槽增加起动过程中牵入转矩,有助于提升电机起动性能。
进一步地,填充槽和狭缝槽在转子圆周成对布置。填充槽和狭缝槽组合成的磁障层在转子铁心径向方向上层数至少两层以上,形成成对的极以及多层磁障,增加电感差距,增大磁阻转矩;
图5为本申请技术与现有技术电机转矩曲线对比图,可以看出,采用本申请的技术方案,电机转矩脉动降低一半左右,同时电机平均转矩未降低,达到较好的技术效果,有助于降低由此产生的电机振动噪声。其中,填充槽和狭缝槽形状不限于直线边,或是弧形的设置方式。
图6为本申请技术与现有技术电机起动过程转速曲线对比图,可以看出,本申请电机起动速度快,起动和稳定时间短,起动能力更强。如图12所示,L为加强筋50的宽度,L1为相邻两个填充槽的侧壁之间形成的导磁通道的宽度,L2为狭缝槽的宽度,L3为相邻两个狭缝槽之间形成的导磁通道的宽度,L4为第一加强筋和第二加强筋的宽度,在本实施例中,可以将第一加强筋的宽度设置成与第二加强筋的宽度一致或不同均可。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种直接起动同步磁阻电机转子结构,其特征在于,包括:
    转子铁芯(10),所述转子铁芯(10)上设置有多个狭缝槽(20),各所述狭缝槽(20)的两端分别设置有一个填充槽(30)以形成磁障层,所述填充槽(30)的第一端与所述狭缝槽(20)相邻地设置,所述填充槽(30)的第二端沿所述转子铁芯(10)的径向方向向外延伸设置,至少一个所述填充槽(30)的第二端且远离所述转子铁芯(10)的d轴一侧的侧壁设置有斜边结构(31),以使所述转子铁芯(10)的d轴磁通沿着所述斜边结构(31)处形成的通道进入定子时磁通不会发生突变。
  2. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述填充槽(30)的远离所述d轴一侧的侧壁与设置于该侧壁上的所述斜边结构(31)的夹角为θ,其中,125°≤θ≤165°。
  3. 根据权利要求2所述的直接起动同步磁阻电机转子结构,其特征在于,145°≤θ≤155°。
  4. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所有填充槽(30)的第二端均设置所述斜边结构(31),或者,间隔设置的所述填充槽(30)的第二端均设置所述斜边结构(31)。
  5. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述斜边结构(31)的第一端至第二端的距离为k,所述填充槽(30)的宽度为w,其中,0.3w≤k<w。
  6. 根据权利要求2所述的直接起动同步磁阻电机转子结构,其特征在于,θ的角度沿逐渐远离所述d轴的方向逐渐增加地设置。
  7. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,多个所述狭缝槽(20)及所述填充槽(30)可由直线型结构、圆弧结构组合形成。
  8. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述填充槽(30)的第二端沿所述转子铁芯(10)的径向方向向外延伸,至少部分所述填充槽(30)的第二端与转子外周圆连通以形成开口槽。
  9. 根据权利要求8所述的直接起动同步磁阻电机转子结构,其特征在于,所述开口槽宽度m,其中,0.1w≤m≤0.7w。
  10. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述填充槽(30)与其相邻的所述狭缝槽(20)具有夹角地设置,相邻两个所述填充槽(30)的侧壁之间形成的导磁通道与d轴相平行或具有夹角地设置。
  11. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述填充槽(30)的长度沿靠近所述d轴方向逐渐增加地设置。
  12. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,相邻两个所述填充槽(30)之间的宽度沿远离所述d轴方向逐渐减小地设置。
  13. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述狭缝槽(20)的宽度沿所述转子铁芯(10)的径向方向向外逐渐减小地设置。
  14. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述狭缝槽(20)的长度沿所述转子铁芯(10)的径向方向向外逐渐减小地设置。
  15. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,相邻两个所述狭缝槽(20)之间形成的导磁通道的宽度沿所述转子铁芯(10)的径向方向向外逐渐减小地设置。
  16. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述填充槽(30)中填充导电不导磁材料,所述导电不导磁材料与所述转子铁芯(10)两端的导电端环形成鼠笼结构。
  17. 根据权利要求16所述的直接起动同步磁阻电机转子结构,其特征在于,填充槽(30)中填充导电不导磁材料与导电端环材料一致,更优地,可采用铝或铝合金。
  18. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,填入导电隔磁材料的填充面积,与所有填充槽(30)及狭缝槽(20)总面积的比值为Q2,其中,0.3≤Q2≤0.7。
  19. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,位于任一磁极的所述转子铁芯(10)的外边缘处还设置有多个独立填充槽(40),相邻所述独立填充槽(40)之间形成加强筋(50),所述加强筋(50)的宽度为L,其中,0.5σ≤L<σ,σ为定子与所述转子铁芯(10)之间的气隙宽度。
  20. 根据权利要求19所述的直接起动同步磁阻电机转子结构,其特征在于,所有狭缝槽(20)在q轴上的总宽度与q轴上的所述独立填充槽(40)宽度之和,与所述转子铁芯(10)的径向方向有效铁芯宽度的比值为Q1,其中,0.35≤Q1≤0.5。
  21. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,位于同一层的所述磁障层中的所述填充槽(30)与所述狭缝槽(20)之间设置有第一加强筋,所述填充槽(30)与所述转子铁芯(10)外边缘之间设置有第二加强筋。
  22. 根据权利要求21所述的直接起动同步磁阻电机转子结构,其特征在于,所述第一加强筋和所述第二加强筋中的至少一个的宽度为L4,其中,0.8σ≤L4≤3σ。
  23. 根据权利要求19所述的直接起动同步磁阻电机转子结构,其特征在于,多个所述独立填充槽(40)沿所述转子铁芯(10)的周向间隔地设置,多个所述独立填充槽(40)占所述转子铁芯(10)的圆心角为α,其中0.1τ≤α≤0.4τ,其中τ为极距角,τ=180°/p,p为极对数。
  24. 根据权利要求1所述的直接起动同步磁阻电机转子结构,其特征在于,所述狭缝槽(20)与其两端的所述填充槽(30)组合成的磁障层至少为两层。
  25. 一种电机,包括直接起动同步磁阻电机转子结构,其特征在于,所述直接起动同步磁阻电机转子结构为权利要求1至24中任一项所述的直接起动同步磁阻电机转子结构。
PCT/CN2019/128234 2019-06-19 2019-12-25 直接起动同步磁阻电机转子结构、电机 WO2020253198A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19933656.1A EP3989401A4 (en) 2019-06-19 2019-12-25 MOTOR AND DIRECT START SYNCHRONOUS RELUCTANCE MOTOR ROTOR STRUCTURE
JP2021559281A JP7427019B2 (ja) 2019-06-19 2019-12-25 直接起動同期リラクタンス・モータの回転子構造及びモータ
US17/605,470 US20220216747A1 (en) 2019-06-19 2019-12-25 Direct starting synchronous reluctance motor rotor and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910533174.7 2019-06-19
CN201910533174.7A CN110149015A (zh) 2019-06-19 2019-06-19 直接起动同步磁阻电机转子结构、电机

Publications (1)

Publication Number Publication Date
WO2020253198A1 true WO2020253198A1 (zh) 2020-12-24

Family

ID=67595752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128234 WO2020253198A1 (zh) 2019-06-19 2019-12-25 直接起动同步磁阻电机转子结构、电机

Country Status (5)

Country Link
US (1) US20220216747A1 (zh)
EP (1) EP3989401A4 (zh)
JP (1) JP7427019B2 (zh)
CN (1) CN110149015A (zh)
WO (1) WO2020253198A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149015A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN110112846B (zh) * 2019-06-19 2023-12-08 珠海格力电器股份有限公司 自起动同步磁阻电机转子结构、电机及压缩机
CN110535263A (zh) * 2019-09-27 2019-12-03 深圳市百盛传动有限公司 同步磁阻电机转子机构
CN112104180B (zh) * 2020-08-21 2023-05-09 石镇德 异步起动永磁辅助式同步磁阻电机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913607A (en) * 1957-01-16 1959-11-17 Allis Louis Co Synchronous induction motor
US5831367A (en) * 1997-02-13 1998-11-03 Emerson Electric Co. Line-start reluctance motor with grain-oriented rotor laminations
KR20070007672A (ko) * 2005-07-11 2007-01-16 엘지전자 주식회사 로터 및 동기 릴럭턴스 모터
CN202384968U (zh) * 2012-01-11 2012-08-15 珠海格力节能环保制冷技术研究中心有限公司 自起动式同步磁阻电机及其转子
CN205666745U (zh) * 2016-06-07 2016-10-26 徐辉 同步磁阻电机
CN106537740A (zh) 2014-08-04 2017-03-22 Ksb 股份公司 转子、磁阻机器和用于转子的制造方法
CN207320974U (zh) 2017-11-08 2018-05-04 卧龙电气集团股份有限公司 一种含非对称结构转子铁芯的自启动同步磁阻电机
WO2018083639A1 (en) * 2016-11-03 2018-05-11 Bonfiglioli Riduttori S.P.A. Self-starting synchronous reluctance motor
CN109038883A (zh) * 2017-06-08 2018-12-18 财团法人工业技术研究院 转子机构
CN110138117A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及转子结构制造的方法
CN110149015A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN209805521U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139790A (en) * 1977-08-31 1979-02-13 Reliance Electric Company Direct axis aiding permanent magnets for a laminated synchronous motor rotor
JP2003259615A (ja) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp リラクタンスモータ
JP2003333813A (ja) * 2002-05-15 2003-11-21 Okuma Corp シンクロナスリラクタンスモータのロータ
JP2015159706A (ja) * 2014-01-22 2015-09-03 日本精工株式会社 電動機、電動パワーステアリング装置及び車両
JP6571050B2 (ja) * 2016-06-29 2019-09-04 株式会社東芝 同期リラクタンス型回転電機
CN108768015B (zh) * 2018-07-20 2020-04-17 珠海格力电器股份有限公司 转子组件及电机

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913607A (en) * 1957-01-16 1959-11-17 Allis Louis Co Synchronous induction motor
US5831367A (en) * 1997-02-13 1998-11-03 Emerson Electric Co. Line-start reluctance motor with grain-oriented rotor laminations
KR20070007672A (ko) * 2005-07-11 2007-01-16 엘지전자 주식회사 로터 및 동기 릴럭턴스 모터
CN202384968U (zh) * 2012-01-11 2012-08-15 珠海格力节能环保制冷技术研究中心有限公司 自起动式同步磁阻电机及其转子
CN106537740A (zh) 2014-08-04 2017-03-22 Ksb 股份公司 转子、磁阻机器和用于转子的制造方法
CN205666745U (zh) * 2016-06-07 2016-10-26 徐辉 同步磁阻电机
WO2018083639A1 (en) * 2016-11-03 2018-05-11 Bonfiglioli Riduttori S.P.A. Self-starting synchronous reluctance motor
CN109038883A (zh) * 2017-06-08 2018-12-18 财团法人工业技术研究院 转子机构
CN207320974U (zh) 2017-11-08 2018-05-04 卧龙电气集团股份有限公司 一种含非对称结构转子铁芯的自启动同步磁阻电机
CN110138117A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及转子结构制造的方法
CN110149015A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN209805521U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3989401A4

Also Published As

Publication number Publication date
JP7427019B2 (ja) 2024-02-02
CN110149015A (zh) 2019-08-20
EP3989401A1 (en) 2022-04-27
US20220216747A1 (en) 2022-07-07
JP2022546890A (ja) 2022-11-10
EP3989401A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
WO2020253198A1 (zh) 直接起动同步磁阻电机转子结构、电机
WO2019114803A1 (zh) 异步起动同步磁阻电机转子、电机及压缩机
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
CN109378956B (zh) 转子结构、异步起动同步磁阻电机及压缩机
WO2020253194A1 (zh) 直接起动同步磁阻电机转子结构及具有其的电机
JP2006254552A (ja) 同期誘導電動機の回転子及び圧縮機
WO2020253192A1 (zh) 异步起动同步磁阻电机转子结构、电机及压缩机
US11777346B2 (en) Rotor assembly and motor
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
WO2020253195A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
US20210057946A1 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
CN210839094U (zh) 直接起动同步磁阻电机转子结构、电机
JP2023538492A (ja) 回転子構造、モーター及び回転子加工方法
CN209805521U (zh) 直接起动同步磁阻电机转子结构、电机
CN112671127A (zh) 转子结构、电机及转子加工方法
WO2020253193A1 (zh) 自起动同步磁阻电机转子结构及具有其的电机
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
JP4019838B2 (ja) 同期誘導電動機、及び圧縮機
CN209805522U (zh) 自起动同步磁阻电机转子结构及具有其的电机
CN216290383U (zh) 电机转子和自起动同步磁阻电机
CN113964971A (zh) 电机转子和自起动同步磁阻电机
CN216290385U (zh) 电机转子和自起动同步磁阻电机
JP2019022257A (ja) 回転電機
CN113964969A (zh) 电机转子和自起动同步磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019933656

Country of ref document: EP

Effective date: 20220119