WO2023142548A1 - 电机转子及其自起动同步磁阻电机、压缩机 - Google Patents

电机转子及其自起动同步磁阻电机、压缩机 Download PDF

Info

Publication number
WO2023142548A1
WO2023142548A1 PCT/CN2022/126906 CN2022126906W WO2023142548A1 WO 2023142548 A1 WO2023142548 A1 WO 2023142548A1 CN 2022126906 W CN2022126906 W CN 2022126906W WO 2023142548 A1 WO2023142548 A1 WO 2023142548A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
axis direction
along
width
filling
Prior art date
Application number
PCT/CN2022/126906
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
肖勇
李霞
史进飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023142548A1 publication Critical patent/WO2023142548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention belongs to the technical field of motors, and in particular relates to a motor rotor and a self-starting synchronous reluctance motor and a compressor thereof.
  • the self-starting synchronous reluctance motor combines the advantages of the asynchronous motor on the basis of the synchronous reluctance motor, and realizes self-starting through the asynchronous torque generated by the rotor guide bar, and does not need to be driven by a frequency converter.
  • the motors can achieve constant speed operation, low rotor losses, and improved efficiency during synchronous operation.
  • the motor does not use permanent magnet materials, the cost is low, and there is no problem of permanent magnet demagnetization.
  • due to the multi-layer magnetic barrier layer structure of the self-starting synchronous reluctance motor there is a problem of large harmonics in the motor.
  • the present invention provides a motor rotor and its self-starting synchronous reluctance motor and compressor, which can overcome the problem that the motor rotor of the self-starting synchronous reluctance motor in the related art has a multi-layer magnetic barrier layer structure, which leads to relatively high harmonics in the motor. big deficiency.
  • the present invention provides a motor rotor, which includes a first rotor punch, and a filling groove and a rotor groove are opened on the first rotor punch, and the filling groove includes a second filling groove and a first filling groove, and the first rotor punch
  • a multilayer magnetic barrier layer is arranged at intervals along the q-axis on the chip.
  • the multilayer magnetic barrier layer includes two outer magnetic barrier layers and a multilayer inner magnetic barrier layer between the two outer magnetic barrier layers.
  • the outer magnetic barrier layer includes a first The filling slot
  • the inner magnetic barrier layer includes the rotor slot and the second filling slot at both ends of the rotor slot, in the same inner magnetic barrier layer, there is a dividing rib between the second filling slot and the rotor slot, and the dividing rib is close to the outer circle of the rotor
  • the maximum distance along the q-axis direction of the magnetic conduction channels formed between the filled grooves in the magnetic barrier layer is W, which satisfies 0 ⁇ L ⁇ 2W.
  • the width of the ribs in the inner magnetic barrier layer adjacent to the first filling groove in the d-axis direction is L1
  • the first rotor punch has a shaft hole
  • the ribs in the inner magnetic barrier layer adjacent to the shaft hole have a width of L1
  • the width of the rib in the d-axis direction is L2, L1 is not less than L2, and L1 ⁇ 0.5* ⁇ .
  • the distance between the two center points corresponding to the division ribs of the barrier layer along the d-axis direction is k7;
  • the distance between the two center points corresponding to the dividing rib along the d-axis direction is k8, then 0 ⁇ k7/k8 ⁇ 0.6.
  • the filling groove is located on the outer circumference of the rotor, the distance between the second filling groove of the innermost magnetic barrier layer near the shaft hole and the outer circle of the rotor is L3, and the outermost magnetic barrier near the outer circle of the rotor The distance between the first filling groove of the layer and the outer circle of the rotor is L4, L4 ⁇ L3 and 0 ⁇ L3 ⁇ 2.5 ⁇ .
  • the maximum width along the q-axis direction of the end of the filling groove close to the rotor outer circle side is not greater than the maximum width along the q-axis direction of the region near the rotor q-axis of the filling groove.
  • the width deviation of the filling groove along the q-axis direction is no more than 5%.
  • the ratio between the maximum width and the minimum width of the filled groove in the q-axis direction is ⁇ , 1 ⁇ 2.
  • the maximum width of the second filling slot in each inner magnetic barrier layer along the d-axis direction increases gradually.
  • the maximum width of each second filling groove along the d-axis direction increases continuously in at least three layers along the q-axis from the outer circle of the rotor to the center of the shaft hole; and/or, along the q-axis From the center of the shaft hole 4 to the direction of the outer circle of the rotor, from the second inner magnetic barrier layer near the d-axis to the magnetic barrier layer near the outer circle of the rotor, the maximum width of each second filling groove along the d-axis direction is continuous decrease.
  • the rotor slots are composed of arc segments and/or straight segments. From the side of the shaft hole to the outer circle side of the rotor, the radius of curvature of the arc segments of the rotor slots gradually becomes larger, and the outer arc of the same layer of rotor slots The radius of curvature is greater than the radius of curvature of the inner arc, and the arc segment protrudes from the shaft hole to the outer circle of the rotor; or, the two ends of the rotor slot extend to the outer circle of the rotor along a direction parallel to the d-axis to form a straight line, and part or all of the rotor slot Both ends of the rotor slot are parallel to the d-axis, and the width of the rotor slot gradually increases from the middle position of the rotor slot to both ends.
  • the center of the shaft hole 4 points to the direction of the outer circle of the rotor, and the width of the rotor slot in the q-axis direction decreases continuously in at least 3 layers;
  • the width of the rotor slot along the q-axis direction is m2
  • the width of the first filling slot along the q-axis direction is m1
  • the sum of the widths of all rotor slots and the first filling slot along the q-axis direction is (m1+ ⁇ m2)
  • the minimum width of the magnetic conduction channel between two adjacent filled slots in two adjacent magnetic barrier layers is W1, W1 ⁇ d, and d is the rotor in the two adjacent magnetic barrier layers The minimum width of the permeable channel between slots.
  • W1/d > 1.15.
  • the minimum distance between the magnetic conduction channels between two adjacent rotor slots in the two adjacent magnetic barrier layers along the q-axis direction is h1, h1 ⁇ 1.5h2, and h2 is the magnetic
  • the width of the rotor slots in the barrier layer along the q-axis direction is smaller than the minimum width of the magnetic barrier layer along the q-axis direction.
  • the width of the first filled slot along the d-axis direction is smaller than the width along the d-axis direction between the ends of the two second filled slots in the adjacent magnetic barrier layer near the rotor slot side .
  • the ratio of the distance L5 from the inner sidewall of the first filling groove to the rotor center in the q-axis direction and the rotor radius Rr satisfies 0.82 ⁇ L5/Rr ⁇ 0.96.
  • the ratio of the distance along the q-axis direction of the two innermost magnetic barrier layers near the shaft hole side along the q-axis direction to the width of the rotating shaft along the q-axis direction is greater than 1.2; and/or, close to The ratio of the diameter of the arc section of the innermost magnetic barrier layer near the shaft hole side to the width of the rotating shaft along the q-axis direction is greater than 2.
  • the maximum thickness of the first filled groove along the q-axis direction is k
  • the maximum thickness of the second filled groove in the adjacent magnetic barrier layer along the q-axis direction is k1
  • the magnetic conduction channel connected to it The minimum thickness along the q-axis direction is k2, then 1 ⁇ k/k1 ⁇ 2, and/or, 0.8 ⁇ k/k2 ⁇ 1.6.
  • a magnetic conduction channel is formed between two adjacent magnetic barrier layers, along the q-axis from the center of the shaft hole 4 to the direction of the outer circle of the rotor, and the width of each magnetic conduction channel along the q-axis direction gradually decreases .
  • the width of each magnetic conduction channel along the q-axis direction decreases continuously in at least three layers; and/or, two adjacent layers of magnetic barriers A magnetic conduction channel is formed between the layers.
  • the width of the magnetic conduction channel gradually increases from the q-axis to both sides of the q-axis.
  • the ratio of the width of the rotor slot along the q-axis direction to the width of the rotor slot near the end of the filled slot is ⁇ 1, from the innermost magnetic barrier layer to the outermost magnetic barrier layer , ⁇ 1 increases gradually.
  • the ratio of the maximum width of the filling slot along the q-axis direction to the width of the rotor slot along the q-axis direction is ⁇ 2, ⁇ 2>1.4.
  • the width along the d-axis direction between the ends of the two second filled slots located at both ends of the rotor slot on the side close to the rotor slot is k3 ;
  • the width along the d-axis direction between the ends of the two second filling slots at both ends of the rotor slot near the rotor slot side is k4, 0.5 ⁇ k3/k4 ⁇ 1 or 0.5 ⁇ k4/k3 ⁇ 1.
  • the width along the d-axis direction between the ends of the two second filling slots at both ends of the outermost rotor slot near the outer circle of the rotor and the ends near the rotor slot side is k5;
  • the width along the d-axis direction between the two second filled slots at both ends of the innermost rotor slot on the side near the rotor slot side is k6, then 0.5 ⁇ k5/k6 ⁇ 1 or 0.5 ⁇ k6/k5 ⁇ 1.
  • the angle between the two ends of the first filling slot and the line connecting the rotor center is ⁇ 1, 20° ⁇ 1 ⁇ 60°; and/or, the number of the first filling slot is n, n ⁇ 1; and /or, the parallel angle deviation between the length extension direction of the filled groove and the d-axis does not exceed 5%;
  • the maximum width of the shaft hole in the q-axis direction on the first rotor punching plate is not greater than its maximum width in the d-axis direction; and/or, the shaft hole is composed of arc segments and/or straight segments .
  • the rotor core further includes a second rotor punch, the second rotor punch is disposed between the end ring and the first rotor punch, and the second rotor punch is provided with a communication groove corresponding to the filling groove.
  • the maximum width of the outer contour of the second rotor punching piece is not greater than the outer diameter of the first rotor punching piece, and the maximum width of the inner hole of the second rotor punching piece along the q-axis direction is not smaller than that along the d-axis The maximum width in the direction; and/or, the axial thickness of the second rotor punching is not less than the thickness of the single first rotor punching.
  • the ratio of the maximum width of the inner hole of the second rotor punch along the q-axis direction to the maximum width along the d-axis direction is 1 ⁇ 1.5.
  • the radial width between the inner hole of the second rotor punching piece and its outer circle is the smallest along the q-axis direction, and the radial width kd2 of the second rotor punching piece along the d-axis direction
  • the radial width kq2 satisfies 1.1 ⁇ kd2/kq2 ⁇ 2.8.
  • the total cross-sectional area of the communication slots on the second rotor punch is less than or equal to the total cross-sectional area of the filling slots on the first rotor punch.
  • the position of the communication slot on the second rotor punch is the same as that of the filling slot on the first rotor punch, and the cross-sectional area of a single communication slot on the second rotor punch is not larger than that on the first rotor punch at the same position.
  • the width along the d-axis direction between the inner hole of the second rotor punching plate and the communication slot is greater than the width of the dividing rib between the communication slot and the corresponding rotor slot along the d-axis direction.
  • the total cross-sectional area of the rotor slots on the inner peripheral side of the inner hole of the second rotor punching piece on the first rotor punching piece accounts for at least 20% of the total flow area of the motor flow slot; and/or, the first rotor
  • the total cross-sectional area of the rotor slots on the punching sheet within the bore of the second rotor punching sheet accounts for at least 30% of the total cross-sectional area of the rotor slots.
  • the total cross-sectional area of the rotor slots on the inner peripheral side of the inner hole of the second rotor punching piece on the first rotor punching piece accounts for 25% to 40% of the total flow area of the motor flow slot; and/or, The total cross-sectional area of the rotor slots located in the inner hole of the second rotor punch on one rotor punch accounts for 45% to 65% of the total cross-sectional area of the rotor slots.
  • the cross-sectional area of the rotor slots in each layer of the magnetic barrier layer on the first rotor punch located on the inner peripheral side of the inner hole of the second rotor punch slowing shrieking.
  • the maximum width of the outer contour of the end ring is not greater than the maximum width of the outer contour of the second rotor punch, and the maximum distance from the center of the rotor shaft hole to the end surface of the end ring is not less than the center of the rotor shaft hole to the second
  • the maximum distance between the end faces of the two rotor punching pieces; and/or, the radial width between the inner hole and the outer circle of the end ring is k9 in the direction of the d-axis, and k10 in the direction of the q-axis, then 1.1 ⁇ k9/k10 ⁇ 2.8 .
  • a balance weight is installed on the end ring, and the balance weight is located on a side with a larger radial width between the inner hole and the outer circle of the end ring.
  • At least part of the slots are filled with conductive and non-magnetic materials, and the short circuit is realized through the end rings at both ends of the second rotor punch to form a squirrel cage.
  • the d-axis and the q-axis divide the first rotor punch into four quadrants from the center of the shaft hole.
  • the minimum distance from the geometric center of the dividing rib to the d-axis is kd1
  • the present invention also provides a self-starting synchronous reluctance motor, which includes a stator and the above motor rotor.
  • the width of the air gap formed between the rotor core and the stator core is ⁇ , and 0 ⁇ L ⁇ 8 ⁇ .
  • the motor rotor according to claim 40 characterized in that, from the side of the shaft hole to the outer circle side of the rotor, the distance between the ends of the rotor slots (2) of each layer close to the two second filling slots (32) The length of the curve gradually decreases, and the decreasing ratio of the length of the curve of the adjacent rotor slot (2) is 5% to 25%; and/or, the dividing rib (5) has a minimum width L2 in the direction of the d-axis, L2 ⁇ 0.5* ⁇ , ⁇ It is the width of the air gap formed between the rotor core and the stator core.
  • the present invention also provides a compressor, including the self-starting synchronous reluctance motor mentioned above.
  • the motor rotor and its self-starting synchronous reluctance motor and compressor provided by the present invention limit the minimum distance between rotor filling slots, which can reduce the saturation of the magnetic conduction channels between the filling slots on the one hand, and on the other hand, can Open the relative position of the magnetic channel and the stator teeth, which helps to reduce the harmonics of the motor, reduce the torque ripple, reduce the harmonic loss, and improve the efficiency and stability of the motor.
  • Fig. 1 is a schematic diagram of the axial structure of the first rotor punching piece of the motor rotor according to the embodiment of the present invention
  • Fig. 2 is a schematic diagram of the axial structure of the second rotor punching piece of the motor rotor according to the embodiment of the present invention
  • FIG. 3 is a schematic diagram of the axial structure of an electronic rotor according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the axial structure of the first rotor punching piece of the motor rotor according to another embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the axial structure of the first rotor punching piece of the motor rotor according to another embodiment of the present invention.
  • Fig. 6 shows the current waveform comparison between the motor adopting the technical solution of the present invention and the motor in the prior art
  • Fig. 7 shows the torque ripple comparison between the motor adopting the technical solution of the present invention and the motor in the prior art
  • Fig. 8 shows the harmonic loss comparison between the motor adopting the technical solution of the present invention and the motor in the prior art
  • Fig. 9 shows the efficiency comparison between the motor adopting the technical solution of the present invention and the motor in the prior art
  • Fig. 10 is a schematic perspective view of the three-dimensional structure of the rotor of the motor according to the embodiment of the present invention.
  • a motor rotor including a rotor core, and the rotor core includes a first rotor punch 1, and a filling groove and a filling groove are opened on the first rotor punch 1.
  • the filling grooves include a second filling groove 32 and a first filling groove 31 .
  • the first rotor punch 1 is provided with multi-layer magnetic barrier layers at intervals along its q-axis.
  • the multi-layer magnetic barrier layer includes two outer magnetic barrier layers and a multi-layer inner magnetic barrier layer between the two outer magnetic barrier layers.
  • the outer magnetic barrier layer includes a first filling slot 31
  • the inner magnetic barrier layer includes a rotor slot 2 and second filling slots 32 at two ends of the rotor slot 2 .
  • L The distance between the two center points corresponding to the two dividing ribs 5 in the adjacent two layers of magnetic barrier layers along the d-axis direction is L, and the magnetic conduction channel formed between the filling grooves in the adjacent two layers of magnetic barrier layers is along the direction of q
  • W The maximum distance in the axial direction is W, then L should satisfy 0 ⁇ L ⁇ 2W. In one embodiment, 0 ⁇ L ⁇ W. In some embodiments, 0 ⁇ L ⁇ 0.8W.
  • the minimum distance between the filled slots of the rotor is limited, on the one hand, the saturation of the magnetic conduction channels between the filled slots can be reduced, and on the other hand, the relative positions of the magnetic conduction channels and the stator teeth can be staggered, which helps to reduce the Harmonics of the motor, reduce torque ripple, reduce harmonic loss, improve motor efficiency and operation stability.
  • 6 to 9 show the effect comparison between the technology of the present invention and the prior art. It can be seen from FIG. 6 that, compared with the prior art, the current waveform under the technology of the present invention is closer to a sine wave. It can be concluded from Fig. 7 that the torque ripple of the motor adopting the technical solution of the present invention is greatly reduced. It can be seen from FIG. 8 that the current harmonic content of the technology of the present invention is greatly reduced. It can be seen from FIG. 9 that under the technology of the present invention, the efficiency of the motor is improved at different torque points.
  • the aforementioned center point is the geometric center point of the axial plane where the side of the dividing rib 5 close to the outer circle of the rotor is located.
  • the aforementioned plane is a rectangular plane extending along the axial direction of the first rotor punching plate 1
  • the geometric center point of the rectangular plane is also the intersection point of the diagonals of the rectangular plane, projected on the axial direction of the first rotor punching plate 1, Then it is the midpoint of the side length of the side of the dividing rib 5 close to the outer circle of the rotor.
  • the width of the air gap formed between the rotor core and the stator core is ⁇ , and 0 ⁇ L ⁇ 8 ⁇ . In some embodiments, 0 ⁇ L ⁇ 6 ⁇ .
  • the splitting ribs 5 can enhance the mechanical strength of the rotor, reduce the deformation of the rotor during the manufacturing process, reduce the difficulty of the process, limit the relative distance between the filling slots of the rotor and the splitting ribs between the rotor slots, and increase the The pressure-bearing area between the two magnetic barrier layers forms a mutual support effect, which reduces the deformation of the rotor during the manufacturing process and reduces the difficulty of the process.
  • the width of the dividing rib 5 in the inner magnetic barrier layer adjacent to the first filling groove 31 in the d-axis direction is L1.
  • the first rotor punch has a shaft hole 4, and the width of the ribs 5 in the inner magnetic barrier layer adjacent to the shaft hole 4 is L2 in the direction of the d-axis, L1 is not less than L2, and L1 ⁇ 0.5* ⁇ , defining the ribs 5
  • the minimum width can reduce the difficulty of processing and improve the mechanical strength of the rotor; L1 ⁇ L2 can reduce the magnetic flux leakage of the inner magnetic barrier layer and improve the efficiency of the motor.
  • the dividing rib 5 corresponds to the side of the adjacent second filling slot 32 and/or rotor slot 2 parallel to or intersecting with the q-axis, that is, the shape of the dividing rib 5 is not limited to being rectangular, trapezoidal or arc-shaped. , the shape of the split ribs can be flexibly designed according to the direction of the magnetic flux leakage to reduce the magnetic flux leakage of the motor.
  • the distance between the two center points corresponding to the dividing ribs 5 of the magnetic barrier layer along the d-axis direction is k7; the dividing ribs 5 of the outermost magnetic barrier layer near the outer circle of the rotor and the innermost layer near the rotor shaft hole
  • the distance between the two center points corresponding to the dividing ribs 5 of the magnetic barrier layer along the d-axis direction is k8, so 0 ⁇ k7/k8 ⁇ 0.6.
  • the filling groove in the outer layer can form a supporting effect on the rotor groove 2 in the inner layer, reducing the deformation of the rotor during the manufacturing process.
  • the d-axis and the q-axis divide the first rotor punch 1 into four quadrants by the center of the shaft hole 4.
  • the first rotor punch 1 in the upper right corner of FIG. 4 is divided into ribs 5
  • the minimum distance from the geometric center to the d-axis is kd1
  • the minimum distance to the q-axis is kq1
  • kq1 - ⁇ *kd1+ ⁇ , where 0.28 ⁇ 0.46, v is dimensionless, 28 ⁇ 33
  • the quantity of ⁇ The outline is consistent with kq1 and kd1 to limit the position and width of the split ribs to further reduce the risk of rotor deformation.
  • the filling groove is located on the outer circumference of the rotor, the distance between the second filling groove 32 of the innermost magnetic barrier layer near the shaft hole and the outer circle of the rotor is L3, and the outermost magnetic barrier layer near the outer circle of the rotor
  • the distance between the first filling groove 31 of the barrier layer and the outer circle of the rotor is L4, where L4 ⁇ L3 and 0 ⁇ L3 ⁇ 2.5 ⁇ . 0 ⁇ L3 ⁇ 2.5 ⁇ , that is, the filling groove is an open groove or a closed groove.
  • the maximum distance between it and the outer circle of the rotor can be limited to reduce the magnetic flux leakage; L4 ⁇ L3 can reduce the magnetic flux leakage of the inner magnetic barrier layer, and at the same time ensure that the outer magnetic barrier layer mechanical strength.
  • the maximum width along the q-axis direction of the end of the filling groove close to the rotor outer circle side is not greater than the maximum width along the q-axis direction of the region near the rotor q-axis of the filling groove.
  • the widths of the filling grooves along the q-axis direction are approximately equal, and the width deviation is not greater than 5%.
  • the width of the magnetic channel near the air gap between the rotor magnetic barrier layers to reduce the saturation of the rotor; setting the width of the filling slot along the q-axis direction to be approximately equal (that is, not more than 5%) can ensure that the magnetic channel near the air gap While increasing the channel width, increasing the area to fill the groove helps to improve start-up.
  • the ratio between the maximum width and the minimum width of the filled groove in the q-axis direction is ⁇ , 1 ⁇ 2, and in some embodiments, 1.3 ⁇ 1.5. Limit the ratio, on the one hand, the width of the magnetic conduction channel will not be too small due to the thickness of the filling groove along the q-axis direction, which will affect the efficiency; on the other hand, the area of the filling groove will not be reduced due to the thickness of the filling groove along the q-axis direction If it is too small, it will affect the starting.
  • the maximum width of the second filling slot 32 in each inner magnetic barrier layer along the d-axis direction gradually increases, in some implementations
  • the maximum width of each second filling groove 32 along the d-axis direction increases continuously in at least three layers.
  • each second The maximum width of the filling groove 32 in the d-axis direction decreases continuously. This setting can ensure the amount of cast aluminum in a suitable area and improve the starting ability of the motor under the condition of rational use of the rotor space.
  • the rotor slot 2 is composed of an arc segment and/or a straight segment. From the center of the shaft hole to the outer circle of the rotor, the radius of curvature of the arc segment of the rotor slot 2 gradually becomes larger, and the same layer of rotor The radius of curvature of the outer arc of the slot is larger than the radius of curvature of the inner arc, and the arc segment protrudes from the shaft hole to the outer circle of the rotor.
  • the two ends of the rotor slot 2 extend to the outer circle of the rotor in a straight line in a direction parallel to the d-axis, part or all of the two ends of the rotor slot 2 are parallel to the d-axis, and the width of the rotor slot 2 starts from the middle position of the rotor slot 2 Gradually increase toward both ends.
  • the width of the rotor slot 2 in the q-axis direction decreases continuously at least three layers; the width of the rotor slot 2 along the q-axis direction is m2, and the first filling slot
  • the width of 31 along the q-axis direction is m1
  • the sum of the widths of all rotor slots 2 and the first filling slot 31 along the q-axis direction is (m1+ ⁇ m2)
  • the length of the curve between the ends of the rotor slots 2 of each layer near the two second filling slots 32 gradually decreases, and the length of the curve of the adjacent rotor slots 2 decreases gradually.
  • the ratio is 5% to 25%. The purpose of this setting is to ensure a certain proportion of the magnetic barrier layer and improve the performance of the motor under the condition of rational use of the rotor space.
  • the dividing rib 5 has a minimum width L2 in the d-axis direction, L2 ⁇ 0.5* ⁇ , ⁇ is the width of the air gap formed between the rotor core and the stator core, which can ensure the mechanical stability of the rotor structure. strength.
  • the minimum width of the magnetic conduction channel between the adjacent two filled slots in the two adjacent magnetic barrier layers is W1, W1 ⁇ d, and d is the magnetic conduction between the rotor slots in the adjacent two magnetic barrier layers
  • W1/d is the magnetic conduction between the rotor slots in the adjacent two magnetic barrier layers
  • the minimum width of the channel in some implementations, W1/d > 1.15. The purpose is to ensure that there is enough width between the filled grooves to avoid magnetic field saturation and affect the flow of magnetic flux in the channels between the magnetic barrier layers.
  • the minimum distance between the magnetic conduction channels between two adjacent rotor slots 2 in the two adjacent magnetic barrier layers along the q-axis direction is h1, h1 ⁇ 1.5h2, h2 is the rotor in the two adjacent magnetic barrier layers
  • the width of the groove 2 along the q-axis direction is smaller than the minimum width of the magnetic barrier layer along the q-axis direction. This setting can reduce the difficulty of rotor processing and ensure the uniformity and unsaturation of the magnetic density distribution of the rotor.
  • the width of the first filling slot 31 along the d-axis direction is smaller than the width along the d-axis between the ends of the two second filling slots 32 in the adjacent magnetic barrier layer near the rotor slot 2 side.
  • the width of the direction is to limit the width of the first filling groove 31 along the d-axis direction, so as to avoid deformation of the rotor to the shaft hole side or to the outer circle side due to excessive width.
  • the ratio of the distance L5 from the inner sidewall of the first filling groove 31 to the rotor center in the q-axis direction and the rotor radius Rr satisfies 0.82 ⁇ L5/Rr ⁇ 0.96. If L5/Rr is too small, the outermost magnetic conduction channel is too narrow, the motor loss increases, and the efficiency decreases; if L5/Rr is too large, the distance between the first filling groove 31 and the outer circle of the rotor is too small, and the processing difficulty increases .
  • the ratio of the distance along the q-axis direction of the two innermost magnetic barrier layers near the shaft hole side to the width of the rotating shaft along the q-axis direction is greater than 1.2.
  • the innermost magnetic barrier layer and The width of the magnetic conduction channel between the rotating shafts can reduce the saturation of the magnetic density of the rotor, and on the other hand, it can enhance the mechanical strength of the rotor near the rotating shaft; and/or, the side of the innermost magnetic barrier layer near the shaft hole side near the shaft hole
  • the ratio of the diameter of the arc segment of the side of the rotor to the width of the rotating shaft along the q-axis direction is greater than 2, so as to make reasonable use of the rotor space for the arrangement of the magnetic barrier layer.
  • the maximum thickness of the first filled groove 31 along the q-axis direction is k
  • the maximum thickness of the second filled groove 32 in the adjacent magnetic barrier layer along the q-axis direction is k1
  • the conductive The minimum thickness of the magnetic channel along the q-axis direction is k2, then 1 ⁇ k/k1 ⁇ 2, and/or, 0.8 ⁇ k/k2 ⁇ 1.6, which ensures the thickness of the first filling groove 31 along the q-axis direction to reduce processing difficulty , and ensure the width of the outermost magnetic channel to improve the performance of the motor.
  • a magnetic conduction channel is formed between two adjacent magnetic barrier layers, along the q-axis from the center of the shaft hole 4 to the outer circle of the rotor, and the width of each magnetic conduction channel along the q-axis direction gradually decreases. More preferably, along the q-axis from the center of the shaft hole 4 to the outer circle of the rotor, the width of each magnetic conduction channel along the q-axis direction decreases continuously in at least three layers. The closer to the shaft hole 4, the greater the effect of the magnetic conduction channel and the stator, the greater the impact on the performance of the motor. This setting ensures the width of the magnetic conduction channel near the shaft hole on the basis of reasonable use of the rotor space, which helps to improve the performance of the motor .
  • a magnetically permeable channel is formed between two adjacent magnetic barrier layers.
  • the width of the magnetically permeable channel (the definition of the width of the magnetically permeable channel is: the shortest distance from each point on one side of the two sides of the magnetic conduction channel to the other side) gradually increases.
  • the width of the magnetic conduction channel defined here is the width of the section through which the magnetic field lines on the rotor pass. Such setting helps to reduce the saturation of the magnetic density of the rotor and reduce the loss of the motor.
  • the ratio of the width of the rotor slot 2 along the q-axis direction to the width of the rotor slot 2 near the end of the filled slot is ⁇ 1, from the innermost magnetic barrier layer to the outermost magnetic barrier layer.
  • the barrier layer, ⁇ 1 increases gradually, which not only ensures the width of the magnetic conduction channel between the inner magnetic barrier layers, but also ensures a certain proportion of the magnetic barrier layer to improve the performance of the motor.
  • the ratio of the maximum width of the filled slot along the q-axis direction to the width of the rotor slot 2 along the q-axis direction is ⁇ 2, ⁇ 2>1.4. In some embodiments, 1.5 ⁇ 2 ⁇ 3.0. Limiting the ratio ensures that the filled slots have a certain width to increase the area of the arrangement; limiting the range of the ratio can also ensure the width of the magnetic conduction channels between the filled slots.
  • the width along the d-axis direction between the ends of the two second filling slots 32 located at both ends of the rotor slot 2 near the rotor slot 2 side is k3;
  • the width along the d-axis direction between the ends of the two second filling slots 32 located at both ends of the rotor slot 2 near the side of the rotor slot 2 is k4, 0.5 ⁇ k3/k4 ⁇ 1 or 0.5 ⁇ k4/k3 ⁇ 1.
  • this setting can increase the area of the filling slot and improve the starting ability of the motor.
  • the width along the d-axis direction between the ends of the two second filling grooves 31 on the two ends of the outermost rotor groove 2 near the outer circle side of the rotor, which is close to the rotor groove 2 side, is k5;
  • the width along the d-axis direction between the ends of the two second filling grooves 32 at both ends of the inner rotor groove 2 close to the rotor groove 2 is k6, then 0.5 ⁇ k5/k6 ⁇ 1 or 0.5 ⁇ k6/k5 ⁇ 1.
  • this setting can increase the area of the filling slot and improve the starting ability of the motor.
  • the included angle between the two ends of the first filling groove 31 and the center line of the rotor is ⁇ 1, 20° ⁇ 1 ⁇ 60°. In some embodiments, 30° ⁇ 1 ⁇ 50°. In some embodiments, 30° ⁇ 1 ⁇ 35°, set in this way, form a magnetic barrier layer and serve as a filling groove, which can be used as a magnetic barrier layer to increase the reluctance torque of the motor, and can also be used as a starting squirrel cage for To improve the motor starting performance.
  • the number of the first filling grooves 31 is n, n ⁇ 1, and the first filling grooves 31 are not limited to be arranged in one block or in blocks and the number of blocks can be flexibly selected according to the strength of the rotor and the size of the magnetic flux leakage of the rotor.
  • n the value of n is small; if the rotor strength is required to be large, the value of n is large; and/or, the length extension direction of the filling groove and the parallel angle deviation of the d-axis do not exceed 5%, so that the rotor The d-axis magnetic force lines flow smoothly, and the q-axis magnetic force lines are minimized to increase the motor salient difference and improve the motor output and efficiency.
  • the maximum width of the shaft hole 4 in the q-axis direction of the first rotor punching plate is not greater than its maximum width in the d-axis direction, and the rotor slot 2 is provided in the q-axis direction.
  • Such an arrangement can The utilization rate of the rotor space is increased so that the rotor slots 2 can be reasonably arranged to increase the salient pole ratio of the rotor and increase the reluctance torque of the motor.
  • the shaft hole 4 is composed of an arc segment and/or a straight line segment.
  • the shape of the shaft hole is not limited to a circle, an ellipse, a quasi-ellipse or a quadrangle, and the shape of the shaft hole can be flexibly set according to the arrangement of the rotor slots.
  • the rotor core further includes a second rotor punch 10, the second rotor punch 10 is disposed between the end ring 12 and the first rotor punch 1, and the second rotor punch 10 is provided with a corresponding filling groove.
  • a communication groove 11 (its effect is consistent with that of the filling groove).
  • the maximum width of the outer contour of the second rotor punching piece 10 is not greater than the outer diameter of the first rotor punching piece 1, and the maximum width of the inner hole of the second rotor punching piece 10 along the q-axis direction is not smaller than that along the q-axis direction.
  • the maximum width in the d-axis direction preferably, the ratio of the maximum width of the inner hole of the second rotor punching piece 10 along the q-axis direction to the maximum width along the d-axis direction is 1 to 1.5, and the second rotor punching piece 10 serves as the For a part, its outer contour needs to be no larger than the outer circle of the first rotor punch 1 to form an air gap with a certain width with the stator; the q-axis direction of its inner contour corresponds to the rotor groove of the first rotor punch, The width of the q-axis must not be smaller than the width of the d-axis, so that enough rotor slots are in direct contact with the air to form circulation slots and increase the heat dissipation of the rotor.
  • the axial thickness of the second rotor punch 10 is not less than the thickness of the single first rotor punch 1 to ensure the mechanical strength of the rotor.
  • the radial width between the inner hole of the second rotor punching plate 10 and its outer circle is the smallest along the q-axis direction, and the radial width kd2 of the second rotor punching plate 10 along the d-axis direction is less than that along the q-axis direction.
  • the radial width kq2 in the direction satisfies 1.1 ⁇ kd2/kq2 ⁇ 2.8, preferably, 1.2 ⁇ kd2/kq2 ⁇ 1.8, so as to ensure that enough rotor slots 2 on the first rotor plate 1 are located in the second rotor plate 10 inside the hole.
  • the total cross-sectional area of the communication slots 11 on the second rotor punch 10 is less than or equal to the total cross-sectional area of the filling slots on the first rotor punch 1
  • the communication grooves 11 on the second rotor punch 10 Groove 11 is the entrance for filling material into the filling groove on the first rotor punch 1, and a communication groove is provided on the second rotor punch 10 so that the filling material can enter the filling groove on the first rotor punch 1;
  • the total cross-sectional area of the communication groove 11 of the second rotor punch 10 is not greater than the total cross-sectional area of the filling groove provided on the first rotor punch 1, which can reduce the non-filling of the first rotor punch when filling materials.
  • the stress-bearing area of the groove part ensures its mechanical strength during the filling process and reduces the amount of deformation.
  • the communication groove 11 provided on the second rotor punch 10 is at the same position as the filling groove provided on the first rotor punch 1, and the cross-sectional area of a single communication groove 11 on the second rotor punch 10 is not larger than that of the first rotor at the same position.
  • the cross-sectional area of a single filling slot on punching 1 to reduce the local deformation of the first rotor punching when filling with material.
  • the width along the d-axis direction between the inner hole of the second rotor punching plate 10 and the communicating groove 11 is greater than the width of the dividing rib 5 between the communicating groove 11 and the corresponding rotor slot 2 along the d-axis direction , to ensure that the rotor slot 2 is not filled during the manufacturing process of the rotor.
  • the total cross-sectional area of the rotor slots 2 located on the inner peripheral side of the inner hole of the second rotor punch 10 on the first rotor punch 1 accounts for at least 20% of the total flow area of the motor flow slots, and in some implementations In one example, the total cross-sectional area of the rotor slots 2 on the inner peripheral side of the inner hole of the second rotor punch 1 on the first rotor punch 1 accounts for 25% to 40% of the total flow area of the motor flow slot; and/or, The total cross-sectional area of the rotor slots 2 on the first rotor punch 1 inside the inner hole of the second rotor punch 10 accounts for at least 30% of the total cross-sectional area of the rotor slots 2 .
  • the total cross-sectional area of the rotor slots 2 on the first rotor punching 1 inside the inner hole of the second rotor punching 10 accounts for 45% to 65% of the total cross-sectional area of the rotor slots 2, so as to ensure The rotor slots with enough area are in direct contact with the air to form circulation slots and increase the heat dissipation of the rotor.
  • the total flow area of the motor flow slot includes the total flow area of the flow slot of the stator core of the motor and the total cross-sectional area of the rotor slot 2 that is not blocked by the second rotor punch 10 (that is, in the second rotor punch 10). The total cross-sectional area of the rotor slot 2 within the inner hole of the sheet 10).
  • the rotor slots 2 in the magnetic barrier layers of the first rotor punching piece 1 are located on the inner peripheral side of the inner hole of the second rotor punching piece 10
  • the cross-sectional area gradually decreases.
  • the correspondingly formed end ring 12 has a certain thickness along the q-axis direction at the magnetic barrier layer near the outer circle of the rotor, which can ensure that the end ring 12 has a certain volume to improve the starting ability of the motor.
  • the maximum width of the outer contour of the end ring 12 is not greater than the maximum width of the outer contour of the second rotor punch 10, and the maximum distance from the center of the rotor shaft hole to the end surface of the end ring 12 is not less than the maximum width of the rotor shaft hole.
  • the maximum distance from the center to the end face of the second rotor punching piece 10, the maximum width of the outer contour of the end ring 12 is not greater than the maximum width of the outer contour of the second rotor punching piece 10, so as to ensure that the first rotor punching piece is located on the outer circle side of the rotor.
  • the part of the surface covered by the second rotor punching piece 10 is stressed when filling the material to reduce local deformation; the maximum distance from the center of the rotor shaft hole 4 to the end face of the end ring 12 is not less than the center of the rotor shaft hole 4 to the second rotor punching
  • the maximum distance between the end faces of the sheet 10 ensures that the rotor has a certain volume of the end ring, which helps to improve the starting ability of the motor.
  • the radial width between the inner hole and the outer circle of the end ring 12 is k9 in the d-axis direction and k10 in the q-axis direction, then 1.1 ⁇ k9/k10 ⁇ 2.8, in some embodiments, 1.2 ⁇ k9/k10 ⁇ 1.8, the inner filling groove near the shaft hole has a larger width along the d-axis direction, in order to make the filling groove self-short circuit, the radial width of the end ring in the d-axis direction is larger; in order to ensure that the rotor groove directly contacts the air area, the radial width of the end ring in the direction of the d-axis cannot be too large.
  • a balance weight is installed on the end ring 12 , and the balance weight is located on the side with a larger radial width between the inner hole and the outer circle of the end ring 12 .
  • At least part of the filling groove is filled with conductive and non-magnetic materials, and the short circuit is realized through the end rings 12 at both ends of the second rotor punch 1 to form a squirrel cage.
  • the material of the end ring 12 is the same as that of the filling material in the filling groove.
  • the self-short-circuited squirrel-cage structure provides asynchronous torque during the starting phase of the motor to realize the self-starting of the motor, which saves the loss of the controller and improves the efficiency of the motor.
  • the multi-layer magnetic barrier layer structure provides the reluctance torque for the motor to Realize the synchronous operation of the motor.
  • the distance between the side of the ribs 5 in the two adjacent magnetic barrier layers close to the outer circle of the rotor and the q-axis is not equal, that is, the side close to the outer circle of the rotor in the two adjacent magnetic barrier layers
  • the distance between the ribs of the outer magnetic barrier layer near the outer circle of the rotor and the q-axis is greater than or smaller than the ribs of the inner magnetic barrier layer of the two adjacent magnetic barrier layers near the rotor shaft hole
  • the distance between the side of 5 near the outer circle of the rotor and the q-axis is h3 ⁇ h4 in FIG. 4 . In some embodiments, h3>h4, while in FIG. 1 it is h3 ⁇ h4.
  • the plane where the side of the dividing rib 5 is located is parallel to or intersects the plane where the q-axis is located, that is, the shape of the dividing rib is not limited to a rectangle or a trapezoid or an arc. In some embodiments, as shown in FIG. 5 , a part of the dividing rib 5 The situation where the plane where the side is located intersects the plane where the q-axis is located, while the parallel case is shown in FIG. 1 .
  • the motor rotor structure provided by the present invention limits the minimum distance between the rotor filling slots, on the one hand, it can reduce the saturation of the magnetic conduction channels between the filled slots, and on the other hand, it can stagger the relative positions of the magnetic conduction channels and the stator teeth, which is beneficial It helps to reduce the harmonics of the motor, reduce the torque ripple, reduce the harmonic loss, improve the efficiency of the motor and the stability of operation; at the same time, the rotor can increase the The pressure-bearing area between two adjacent magnetic barrier layers forms a mutual support effect, which reduces the deformation of the rotor during the manufacturing process and reduces the difficulty of the process.
  • the length, width, thickness, diameter, etc. of the relevant structures of the rotor core in the present invention can preferably be measured in mm, and other suitable measurement units can also be selected under reasonable circumstances.
  • the present invention provides a self-starting synchronous reluctance motor rotor, which realizes the self-starting of the motor through the asynchronous torque provided by the rotor guide bar (that is, the part is formed after the filling groove is filled), and solves the problem that the synchronous reluctance motor needs to be driven by a frequency converter , at the same time reduce the loss of the motor and improve the efficiency of the motor; the motor rotor can reduce the harmonics of the motor, reduce the torque ripple, reduce the harmonic loss, improve the efficiency and operation stability of the motor; it can enhance the mechanical strength of the rotor, reduce The deformation of the rotor during the manufacturing process reduces the difficulty of the process.
  • a self-starting synchronous reluctance motor especially a self-starting synchronous reluctance two-pole motor, including the above-mentioned motor rotor, and the load inertia connected to the output end of the motor shaft is smaller than that of the motor's own shaft system 60% of inertia.
  • a compressor including the above self-starting synchronous reluctance motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

提供了一种电机转子及其自起动同步磁阻电机、压缩机。电机转子包括转子铁芯,转子铁芯包括第一转子冲片(1),第一转子冲片(1)上开设有填充槽和转子槽(2),填充槽包括第二填充槽(32)和第一填充槽(31),第一转子冲片(1)沿q轴间隔设置有多层磁障层,多层磁障层包括两个外侧磁障层以及处于两个外侧磁障层之间的多层内侧磁障层,外侧磁障层包括第一填充槽(31),内侧磁障层包括转子槽(2)及处于转子槽(2)的两端的第二填充槽(32),同一层内侧磁障层内,第二填充槽(32)与转子槽(2)之间具有分割筋(5)。

Description

电机转子及其自起动同步磁阻电机、压缩机
相关申请的交叉引用
本申请要求于2022年1月26日提交中国专利局,申请号为202210092265.3,申请名称为“电机转子及其自起动同步磁阻电机、压缩机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明属于电机技术领域,具体涉及一种电机转子及其自起动同步磁阻电机、压缩机。
背景技术
自起动同步磁阻电机在同步磁阻电机的基础上,结合了异步电机的优点,通过转子导条产生的异步转矩实现自起动,不需要再使用变频器驱动。与异步电机相比,电机可实现恒速运行,转子损耗低,同步运行时的效率提升。与异步起动永磁同步电机相比,电机不使用永磁体材料,成本低,且不存在永磁体退磁问题。但是,因自起动同步磁阻电机的多层磁障层结构,导致电机存在谐波较大的问题。
发明内容
因此,本发明提供一种电机转子及其自起动同步磁阻电机、压缩机,能够克服相关技术中的自起动同步磁阻电机的电机转子具有多层磁障层结构,导致电机存在谐波较大的不足。
为了解决上述问题,本发明提供一种电机转子,包括第一转子冲片,第一转子冲片上开设有填充槽和转子槽,填充槽包括第二填充槽和第一填充槽,第一转子冲片上沿q轴间隔设置有多层磁障层,多层磁障层包括两个外侧磁障层以及处于两个外侧磁障层之间的多层内侧磁障层,外侧磁障层包括第一填充槽,内侧磁障层包括转子槽及处于转子槽的两端的第二填充槽,同一层内侧磁障层内,第二填充槽与转子槽之间具有分割筋,分割筋的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋对应的两个该中心点沿d轴方向的距离为L,该相邻两层磁 障层中的填充槽之间形成的导磁通道沿q轴方向的最大距离为W,满足0≤L<2W。
在一些实施方式中,0≤L<W。
在一些实施方式中,0≤L≤0.8W。
在一些实施方式中,邻近第一填充槽的内侧磁障层中的分割筋在d轴方向上的宽度为L1,第一转子冲片具有轴孔,邻近轴孔的内侧磁障层中的分割筋在d轴方向上的宽度为L2,L1不小于L2,且L1≥0.5*σ。
在一些实施方式中,分割筋的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,靠近转子外圆侧的最外层磁障层的分割筋和与其相邻的磁障层的分割筋对应的两个该中心点沿d轴方向的距离为k7;靠近转子外圆侧的最外层磁障层的分割筋和靠近转子轴孔侧的最内层磁障层的分割筋对应的两个该中心点沿d轴方向的距离为k8,则0≤k7/k8≤0.6。
在一些实施方式中,填充槽位于转子外周,靠近轴孔侧的最内层磁障层的第二填充槽与转子外圆之间的间隔为L3,靠近转子外圆侧的最外层磁障层的第一填充槽与转子外圆之间的间隔为L4,L4≥L3且0≤L3≤2.5σ。
在一些实施方式中,填充槽的靠近转子外圆侧的端部的沿q轴方向的最大宽度不大于填充槽的靠近转子q轴处的区域沿q轴方向的最大宽度。
在一些实施方式中,从转子外圆侧至转子q轴处,填充槽的沿q轴方向的宽度偏差不大于5%。
在一些实施方式中,填充槽在q轴方向上的最大宽度与最小宽度之间的比值为τ,1≤τ≤2。
在一些实施方式中,沿着q轴由转子外圆指向轴孔的中心的方向,各内侧磁障层中的第二填充槽沿d轴方向的最大宽度逐渐增大。
在一些实施方式中,沿着q轴由转子外圆指向轴孔的中心的方向,各第二填充槽的沿d轴方向的最大宽度至少三层连续增大;和/或,沿着q轴由轴孔4的中心指向转子外圆的方向,从靠近d轴的第二层内侧磁障层至靠近转子外圆侧的磁障层中,各第二填充槽沿d轴方向的最大宽度连续减小。
在一些实施方式中,转子槽由弧线段和/或直线段组成,从轴孔侧到转子外圆侧,转子槽的弧线段的曲率半径逐渐变大,且同层转子槽外圆弧曲率半径大于内圆弧曲率半径,弧线段从轴孔向转子外圆方向突出;或者,转子槽的两端沿平行于d轴的方向向转子外圆延伸成直线段,部分或全部转子槽的两端平行于d轴,转子槽的宽度从转子槽的中间位置向两端逐渐增加。
在一些实施方式中,沿着q轴由轴孔4的中心指向转子外圆的方向,转子槽在q轴方向上的宽度至少3层连续减小;转子槽沿q轴方向的宽度为m2,第一填充槽沿q轴方向的宽度为m1,所有转子槽和第一填充槽沿q轴方向的宽度的和为(m1+∑m2),轴孔的孔壁到第一转子冲片外圆的宽度为m3,(m1+∑m2)/m3=0.2~0.5。
在一些实施方式中,第一转子冲片上具有的填充槽中至少有五种不同填充面积的填充槽;和/或,第一填充槽及第二填充槽的总填充面积占第一填充槽、第二填充槽及转子槽的总横截面积的30%~70%。
在一些实施方式中,相邻两层磁障层中的相邻两个填充槽之间的导磁通道的最小宽度为W1,W1≥d,d为该相邻两层磁障层中的转子槽之间的导磁通道的最小宽度。
在一些实施方式中,W1/d>1.15。
在一些实施方式中,相邻两层磁障层中的相邻两个转子槽之间的导磁通道沿q轴方向的最小距离为h1,h1≥1.5h2,h2为该相邻两层磁障层中的转子槽沿q轴方向宽度较小磁障层的沿q轴方向的最小宽度。
在一些实施方式中,第一填充槽沿d轴方向的宽度小于与其相邻的磁障层中的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度。
在一些实施方式中,第一填充槽的内侧壁在q轴方向上到转子中心的距离L5与转子半径Rr的比值满足0.82≤L5/Rr≤0.96。
在一些实施方式中,靠近轴孔侧的两层最内层磁障层的靠近轴孔侧的侧边沿q轴方向的距离与转轴沿q轴方向的宽度的比值大于1.2;和/或,靠近轴孔侧的最内层磁障层的靠近轴孔侧的侧边的弧线段的直径与转轴沿q轴方向的宽度的比值大于2。
在一些实施方式中,第一填充槽的沿q轴方向的最大厚度为k,与其相邻的磁障层中的第二填充槽沿q轴方向的最大厚度为k1,与其相连的导磁通道沿q轴方向的最小厚度为k2,则1<k/k1≤2,和/或,0.8<k/k2≤1.6。
在一些实施方式中,相邻两层磁障层之间形成导磁通道,沿着q轴由轴孔4的中心指向转子外圆的方向,各导磁通道沿q轴方向的宽度逐渐减小。
在一些实施方式中,沿着q轴由轴孔4的中心指向转子外圆的方向,各导磁通道沿q轴方向的宽度至少三层连续减小;和/或,相邻两层磁障层之间形成导磁通道,对于由弧线段和直线段组成的导磁通道,由q轴至q轴两侧,导磁通道的宽度逐渐增大。
在一些实施方式中,各层磁障层中,转子槽沿q轴方向的宽度与转子槽靠近填充槽端部的宽度的比值为τ1,从最内层磁障层至最外层磁障层,τ1逐渐增大。
在一些实施方式中,各层磁障层中,填充槽沿q轴方向的最大宽度与转子槽沿q轴方向的宽度的比值为τ2,τ2>1.4。
在一些实施方式中,靠近转子外圆侧的外层磁障层中,位于转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k3;与其相邻的靠近轴孔侧的内层磁障层中,位于转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k4,0.5≤k3/k4≤1或0.5≤k4/k3≤1。
在一些实施方式中,靠近转子外圆侧的最外层转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k5;靠近转子轴孔侧的最内层转子槽两端的两个第二填充槽的靠近转子槽一侧的端部之间的沿d轴方向的宽度为k6,则0.5≤k5/k6≤1或0.5≤k6/k5≤1。
在一些实施方式中,第一填充槽两端与转子中心连线的夹角为α1,20°≤α1≤60°;和/或,第一填充槽的个数为n,n≥1;和/或,填充槽的长度延伸方向与d轴的平行角度偏差不超过5%;。
在一些实施方式中,第一转子冲片上的轴孔在q轴方向上的最大宽度不大于其在d轴方向上的最大宽度;和/或,轴孔由弧线段和/或直线段组成。
在一些实施方式中,转子铁芯还包括第二转子冲片,第二转子冲片设置在端环与第一转子冲片之间,第二转子冲片上对应填充槽设置有连通槽。
在一些实施方式中,第二转子冲片的外部轮廓的最大宽度不大于第一转子冲片的外圆直径,第二转子冲片的内孔沿q轴方向的最大宽度不小于其沿d轴方向的最大宽度;和/或,第二转子冲片的轴向厚度不小于单片第一转子冲片的厚度。
在一些实施方式中,第二转子冲片的内孔沿q轴方向的最大宽度与沿d轴方向的最大宽度的比值为1~1.5。
在一些实施方式中,第二转子冲片的内孔与其外圆之间的径向宽度沿q轴方向最小,且第二转子冲片沿d轴方向的径向宽度kd2与其沿q轴方向的径向宽度kq2满足1.1≤kd2/kq2≤2.8。
在一些实施方式中,1.2≤kd2/kq2≤1.8。
在一些实施方式中,第二转子冲片上的连通槽的总横截面积小于或等于 第一转子冲片上的填充槽的总横截面积。
在一些实施方式中,第二转子冲片上设置的连通槽与第一转子冲片上设置的填充槽位置一样,第二转子冲片上的单个连通槽横截面积不大于相同位置处第一转子冲片上的单个填充槽的横截面积。
在一些实施方式中,第二转子冲片的内孔与连通槽之间沿d轴方向的宽度大于该连通槽与对应的转子槽之间的分割筋沿d轴方向的宽度。
在一些实施方式中,第一转子冲片上位于第二转子冲片的内孔内周侧的转子槽的总横截面积占电机流通槽总流通面积的至少20%;和/或,第一转子冲片上位于第二转子冲片内孔之内的转子槽的总横截面积占转子槽总横截面积的至少30%。
在一些实施方式中,第一转子冲片上位于第二转子冲片的内孔内周侧的转子槽的总横截面积占电机流通槽总流通面积的25%~40%;和/或,第一转子冲片上位于第二转子冲片内孔之内的转子槽的总横截面积占转子槽总横截面积的45%~65%。
在一些实施方式中,沿由转子轴孔中心至转子外圆的方向,第一转子冲片上各层磁障层中的转子槽的位于第二转子冲片的内孔内周侧的横截面积逐渐减小。
在一些实施方式中,端环的外部轮廓的最大宽度不大于第二转子冲片的外部轮廓的最大宽度,由转子轴孔的中心至端环端面的最大距离不小于转子轴孔的中心至第二转子冲片端面的最大距离;和/或,端环内孔与外圆之间的径向宽度在d轴方向上为k9,在q轴方向上为k10,则1.1≤k9/k10≤2.8。
在一些实施方式中,1.2≤k9/k10≤1.8。
在一些实施方式中,端环上安装有平衡块,平衡块处于端环内孔与外圆之间的径向宽度大的一侧。
在一些实施方式中,至少部分填充槽内填充导电不导磁材料,并且通过第二转子冲片两端的端环实现短路,形成鼠笼。
在一些实施方式中,d轴与q轴将第一转子冲片由其轴孔的中心均分为四个象限,在第一象限内,分割筋的几何中心到d轴的最小距离为kd1、到q轴的最小距离为kq1,kq1=-ν*kd1+λ,其中0.28≤ν≤0.46,28≤λ≤33。
本发明还提供一种自起动同步磁阻电机,包括定子和上述的电机转子。
在一些实施方式中,当转子铁芯与相应的定子组装后,转子铁芯与定子铁芯之间形成的气隙的宽度为σ,0≤L<8σ。
在一些实施方式中,0≤L≤6σ。
43、根据权利要求40所述的电机转子,其特征在于,从轴孔侧至转子外圆侧,各层转子槽(2)的靠近两个第二填充槽(32)的端部之间的曲线长度逐渐递减,相邻转子槽(2)的曲线长度递减比例为5%~25%;和/或,分割筋(5)在d轴方向上具有最小宽度L2,L2≥0.5*σ,σ为转子铁芯与定子铁芯之间形成的气隙的宽度。
本发明还提供一种压缩机,包括上述的自起动同步磁阻电机。
本发明提供的一种电机转子及其自起动同步磁阻电机、压缩机,限定转子填充槽之间的最小距离,一方面可以降低填充槽之间导磁通道的饱和度,另一方面可以错开导磁通道与定子齿的相对位置,这有助于降低电机的谐波,降低转矩脉动,减小谐波损耗,提升电机效率和运行的稳定性。
附图说明
图1为本发明实施例的电机转子的第一转子冲片的轴向的结构示意图;
图2为本发明实施例的电机转子的第二转子冲片的轴向的结构示意图;
图3为本发明实施例的电子转子的轴向的结构示意图;
图4为本发明另一实施例的电机转子的第一转子冲片的轴向结构示意图;
图5为本发明再一实施例的电机转子的第一转子冲片的轴向的结构示意图;
图6示出了采用本发明的技术方案的电机与现有技术中的电机的电流波形对比;
图7示出了采用本发明的技术方案的电机与现有技术中的电机的转矩脉动对比;
图8示出了采用本发明的技术方案的电机与现有技术中的电机的谐波损耗对比;
图9示出了采用本发明的技术方案的电机与现有技术中的电机的效率对比;
图10为本发明实施例的电机转子的立体结构示意图。
附图标记表示为:
1、第一转子冲片;2、转子槽;31、第一填充槽;32、第二填充槽;4、轴孔;5、分割筋;10、第二转子冲片;11、连通槽;12、端环。
具体实施方式
参见图1至图10所示,根据本发明的实施例,提供一种电机转子,包括转子铁芯,转子铁芯包括第一转子冲片1,第一转子冲片1上开设有填充槽和转子槽2。填充槽包括第二填充槽32和第一填充槽31。第一转子冲片1上沿其q轴间隔设置有多层磁障层,多层磁障层包括两个外侧磁障层以及处于两个外侧磁障层之间的多层内侧磁障层,外侧磁障层包括第一填充槽31,内侧磁障层包括转子槽2及处于转子槽2的两端的第二填充槽32。同一层内侧磁障层内,第二填充槽32与转子槽2之间具有分割筋5,分割筋5的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋5对应的两个该中心点沿d轴方向的距离为L,该相邻两层磁障层中的填充槽之间形成的导磁通道沿q轴方向的最大距离为W,则L应满足0≤L<2W。在一实施例中,0≤L<W。在一些实施例中,0≤L≤0.8W。该技术方案中,限定转子填充槽之间的最小距离,一方面可以降低填充槽之间导磁通道的饱和度,另一方面可以错开导磁通道与定子齿的相对位置,这有助于降低电机的谐波,降低转矩脉动,减小谐波损耗,提升电机效率和运行的稳定性。图6~图9所示示出了本发明技术与现有技术效果对比。由图6可以看出,相比于现有技术,本发明技术下的电流波形更加接近正弦波。由图7可以得出,采用本发明技术方案的电机转矩脉动大幅减低。由图8可以看出,本发明技术的电流谐波含量大幅减少。由图9可以看出,本发明技术下,不同转矩点,电机效率均提升。
需要说明的是,前述的中心点为分割筋5的靠近转子外圆一侧的侧边所在的轴向的平面的几何中心点,作为一个具体的实施方式,如图1所示,前述的平面为一个沿着第一转子冲片1的轴向延伸的矩形平面,这个矩形平面的几何中心点也即矩形平面的对角线的交点,在第一转子冲片1的轴向上投影后,则为分割筋5的靠近转子外圆一侧的侧边长度的中点。
在一些实施方式中,当转子铁芯与相应的定子铁芯组装后,转子铁芯与定子铁芯之间形成的气隙的宽度为σ,0≤L<8σ。在一些实施例中,0≤L≤6σ。在这些设置中,分割筋5可以增强转子的机械强度,减小转子在制造过程中的变形,降低工艺难度,限定转子各填充槽和转子槽之间分割筋的相对距离,可以增加相邻两个磁障层之间的承受压力的面积,形成相互支撑的效果,使得转子在制造过程中的变形减小,降低工艺难度。
在一些实施方式中,邻近第一填充槽31的内侧磁障层中的分割筋5在d 轴方向上的宽度为L1。第一转子冲片具有轴孔4,邻近轴孔4的内侧磁障层中的分割筋5在d轴方向上的宽度为L2,L1不小于L2,且L1≥0.5*σ,限定分割筋5的最小宽度,可以降低加工难度,提升转子机械强度;L1≥L2,可以减小内层磁障层漏磁,提升电机效率。
在一些实施方式中,分割筋5对应于相邻的第二填充槽32和/或转子槽2的侧边与q轴平行或者相交,即分割筋5的形状不限于是矩形或梯形或弧形,可以根据漏磁力线的走向灵活设计分割筋的形状,以减小电机漏磁。
在一些实施方式中,分割筋5的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,靠近转子外圆侧的最外层磁障层的分割筋5和与其相邻的磁障层的分割筋5对应的两个该中心点沿d轴方向的距离为k7;靠近转子外圆侧的最外层磁障层的分割筋5和靠近转子轴孔侧的最内层磁障层的分割筋5对应的两个该中心点沿d轴方向的距离为k8,则0≤k7/k8≤0.6。在一实施例中,0≤k7/k8≤0.4。在一实施例中,0≤k7/k8≤0.2。这样设置,处于外层的填充槽可以对处于内层的转子槽2形成支撑作用,减小转子在制造过程中的变形。
d轴与q轴将第一转子冲片1由其轴孔4的中心均分为四个象限,在第一象限内,例如图4的右上角区域的第一转子冲片1,分割筋5的几何中心到d轴的最小距离为kd1、到q轴的最小距离为kq1,kq1=-ν*kd1+λ,其中0.28≤ν≤0.46,v无量纲,28≤λ≤33,λ的量纲与kq1及kd1一致,以限定分割筋的位置和宽度,进一步降低转子发生形变的风险。
在一些实施方式中,填充槽位于转子外周,靠近轴孔侧的最内层磁障层的第二填充槽32与转子外圆之间的间隔为L3,靠近转子外圆侧的最外层磁障层的第一填充槽31与转子外圆之间的间隔为L4,L4≥L3且0≤L3≤2.5σ。0≤L3≤2.5σ,即填充槽为开口槽或闭口槽。当填充槽为闭口槽时,限定其与转子外圆之间的最大间隔,可以减小漏磁;L4≥L3,可以减小内层磁障层的漏磁,同时保证外层磁障层处的机械强度。
在一些实施方式中,填充槽的靠近转子外圆侧的端部的沿q轴方向的最大宽度不大于填充槽的靠近转子q轴处的区域沿q轴方向的最大宽度。在一些实施例中,从转子外圆侧至转子q轴处,填充槽的沿q轴方向的宽度近似相等,宽度偏差不大于5%。保证转子磁障层之间的靠近气隙处的磁通道宽度,降低转子饱和度;设置填充槽的沿q轴方向的宽度近似相等(也即不大于5%)可以在保证靠近气隙处磁通道宽度的同时,增大填充槽的面积,有助 于改善起动。
填充槽在q轴方向上的最大宽度与最小宽度之间的比值为τ,1≤τ≤2,在一些实施例中,1.3≤τ≤1.5。限制该比值,一方面不会因填充槽沿q轴方向厚度过大而使导磁通道宽度过小进而影响效率,另一方面不会因填充槽沿q轴方向厚度过小而使填充槽面积过小进而影响起动。
在一些实施方式中,沿着q轴由转子外圆指向轴孔4的中心的方向,各内侧磁障层中的第二填充槽32的沿d轴方向的最大宽度逐渐增大,在一些实施例中,沿着q轴由转子外圆指向轴孔4的中心的方向,各第二填充槽32沿d轴方向的最大宽度至少三层连续增大。在一些实施例中,沿着q轴由轴孔4的中心指向转子外圆的方向,从靠近d轴的第二层内侧磁障层至靠近转子外圆侧的磁障层中,各第二填充槽32沿d轴方向的最大宽度连续减小。这样设置,可以在合理利用转子空间的情况下,保证合适面积的铸铝量,提升电机的起动能力。
在一些实施方式中,转子槽2由弧线段和/或直线段组成,从轴孔中心指向转子外圆的方向上,转子槽2的弧线段的曲率半径逐渐变大,且同层转子槽外圆弧曲率半径大于内圆弧的曲率半径,弧线段朝从轴孔向转子外圆方向突出。或者,转子槽2的两端沿平行于d轴的方向向转子外圆延伸成直线段,部分或全部转子槽2的两端平行于d轴,转子槽2的宽度从转子槽2的中间位置向两端逐渐增加。转子中间开有轴孔4,这样的设置方式可以增大转子空间的利用率,合理布置转子槽,以增大转子凸极比,提升电机磁阻转矩。
沿着q轴由轴孔4的中心指向转子外圆的方向,转子槽2在q轴方向上的宽度至少3层连续减小;转子槽2沿q轴方向的宽度为m2,第一填充槽31沿q轴方向的宽度为m1,所有转子槽2和第一填充槽31沿q轴方向的宽度的和为(m1+∑m2),轴孔4的孔壁到第一转子冲片外圆的宽度为m3,(m1+∑m2)/m3=0.2~0.5,优选地,(m1+∑m2)/m3=0.3~0.4。选择合理的磁障占比,既保证足够的磁障宽度,又保证合理的磁通通道,增加电机凸极比的同时,防止出现磁路过饱和。
在一些实施方式中,从轴孔侧至转子外圆侧,各层转子槽2的靠近两个第二填充槽32的端部之间的曲线长度逐渐递减,相邻转子槽2的曲线长度递减比例为5%~25%,这样设置的目的是在合理利用转子空间的情况下,保证一定比例的磁障层占比,提升电机性能。
在一些实施方式中,分割筋5在d轴方向上具有最小宽度L2,L2≥0.5*σ,σ为转子铁芯与定子铁芯之间形成的气隙的宽度,可以保证转子部分结构的机械强度。
在一些实施方式中,第一转子冲片1上具有的填充槽(也即第一填充槽31及第二填充槽32)中至少有五种填充面积不同的填充槽;和/或,第一填充槽31及第二填充槽32的总填充面积占第一填充槽31、第二填充槽32及转子槽2的总横截面积的30%~70%,优选为35%~50%,保证一定比例的填充槽面积,使电机具有一定的带载起动能力。
相邻两层磁障层中的相邻两个填充槽之间的导磁通道的最小宽度为W1,W1≥d,d为该相邻两层磁障层中的转子槽之间的导磁通道的最小宽度,在一些实施中,W1/d>1.15。目的是要保证填充槽之间留有足够的宽度,避免出现磁场饱和,影响磁障层之间通道的磁通流通。
相邻两层磁障层中的相邻两个转子槽2之间的导磁通道沿q轴方向的最小距离为h1,h1≥1.5h2,h2为该相邻两层磁障层中的转子槽2沿q轴方向宽度较小磁障层的沿q轴方向的最小宽度。这样设置可以降低转子加工难度,保证转子磁密分布的均匀度和不饱和度。
在一些实施方式中,第一填充槽31沿d轴方向的宽度小于与其相邻的磁障层中的两个第二填充槽32的靠近转子槽2一侧的端部之间的沿d轴方向的宽度。这样设置的目的是限制第一填充槽31的沿d轴方向的宽度,以避免因宽度过大而导致转子向轴孔侧或向外圆侧的变形。
在一些实施方式中,第一填充槽31的内侧壁在q轴方向上到转子中心的距离L5与转子半径Rr的比值满足0.82≤L5/Rr≤0.96。若L5/Rr过小,则最外层导磁通道过窄,电机损耗增大,效率下降;若L5/Rr过大,则第一填充槽31与转子外圆距离过小,加工难度增大。靠近轴孔侧的两层最内层磁障层的靠近轴孔侧的侧边沿q轴方向的距离与转轴沿q轴方向的宽度的比值大于1.2,一方面可以保证最内层磁障层和转轴之间的导磁通道的宽度,降低转子磁密饱和度,另一方面可以增强转子靠近转轴处的机械强度;和/或,靠近轴孔侧的最内层磁障层的靠近轴孔侧的侧边的弧线段的直径与转轴沿q轴方向的宽度的比值大于2,以合理利用转子空间进行磁障层的布置。
在一些实施方式中,第一填充槽31的沿q轴方向的最大厚度为k,与其相邻的磁障层中的第二填充槽32沿q轴方向的最大厚度为k1,与其相连的导磁通道沿q轴方向的最小厚度为k2,则1<k/k1≤2,和/或,0.8<k/k2≤ 1.6,既保证第一填充槽31沿q轴方向的厚度以降低加工难度,又保证最外层导磁通道的宽度以提升电机性能。
相邻两层磁障层之间形成导磁通道,沿着q轴由轴孔4的中心指向转子外圆的方向,各导磁通道沿q轴方向的宽度逐渐减小。更优地,沿着q轴由轴孔4的中心指向转子外圆的方向,各导磁通道沿q轴方向的宽度至少三层连续减小。越靠近轴孔4的导磁通道与定子的作用越大,对电机性能影响越大,此设置在合理利用转子空间的基础上,保证靠近轴孔侧导磁通道宽度,有助于提升电机性能。
相邻两层磁障层之间形成导磁通道,对于由弧线段和直线段组成的导磁通道,由q轴至q轴两侧,导磁通道的宽度(导磁通道的宽度的定义为:导磁通道两个侧边中的一个侧边上的各点到另一个侧边的最短距离)逐渐增大。此处定义的导磁通道的宽度是转子上磁力线穿过的截面宽度,这样设置有助于降低转子磁密饱和度,降低电机损耗。
在一些实施方式中,各层磁障层中,转子槽2沿q轴方向的宽度与转子槽2靠近填充槽端部的宽度的比值为τ1,从最内层磁障层至最外层磁障层,τ1逐渐增大,既保证了内层磁障层之间的导磁通道的宽度,又保证一定比例的磁障层占比,改善电机性能。
在一些实施方式中,各层磁障层中,填充槽沿q轴方向的最大宽度与转子槽2沿q轴方向的宽度的比值为τ2,τ2>1.4。在一些实施例中,1.5<τ2<3.0。限制该比值,保证填充槽具有一定的宽度以增大其布置的面积;限制该比值的范围,也可以保证填充槽之间的导磁通道的宽度。
靠近转子外圆侧的外层磁障层中,位于转子槽2两端的两个第二填充槽32的靠近转子槽2一侧的端部之间的沿d轴方向的宽度为k3;与其相邻的靠近轴孔侧的内层磁障层中,位于转子槽2两端的两个第二填充槽32的靠近转子槽2一侧的端部之间的沿d轴方向的宽度为k4,0.5≤k3/k4≤1或0.5≤k4/k3≤1。受限于转子空间的情况下,这样设置可以增大填充槽的面积,提升电机起动能力。靠近转子外圆侧的最外层转子槽2两端的两个第二填充槽31的靠近转子槽2一侧的端部之间的沿d轴方向的宽度为k5;靠近转子轴孔侧的最内层转子槽2两端的两个第二填充槽32的靠近转子槽2一侧的端部之间的沿d轴方向的宽度为k6,则0.5≤k5/k6≤1或0.5≤k6/k5≤1。受限于转子空间的情况下,这样设置可以增大填充槽的面积,提升电机起动能力。
在一些实施方式中,第一填充槽31两端与转子中心连线的夹角为α1, 20°≤α1≤60°。在一些实施例中,30°≤α1≤50°。在一些实施例中,30°≤α1≤35°,如此设置,形成磁障层并作为填充槽,既可当做磁障层,增大电机的磁阻转矩,又可当做起动鼠笼,用于改善电机起动性能。
第一填充槽31的个数为n,n≥1,不限制第一填充槽31为整块布置或分块布置以及分块的个数,可根据转子强度需要和转子漏磁大小灵活选择,若需要转子漏磁小,则n的值小;若需要转子强度大,则n的值大;和/或,填充槽的长度延伸方向与d轴的平行角度偏差不超过5%,以使转子d轴磁力线顺畅流通,且尽量减少q轴磁力线,增大电机凸极差,提升电机出力及效率。
在一些实施方式中,第一转子冲片上的轴孔4在q轴方向上的最大宽度不大于其在d轴方向上的最大宽度,q轴方向上设置有转子槽2,这样的设置方式可以增大转子空间的利用率,以便合理布置转子槽2,以增大转子凸极比,提升电机磁阻转矩。
轴孔4由弧线段和/或直线段组成,轴孔的形状不限于为圆形或椭圆形或类椭圆形或四边形,可配合转子槽的布置灵活设置轴孔形状。
在一些实施方式中,转子铁芯还包括第二转子冲片10,第二转子冲片10设置在端环12与第一转子冲片1之间,第二转子冲片10上对应填充槽设置有连通槽11(其作用与填充槽一致)。
在一些实施方式中,第二转子冲片10的外部轮廓的最大宽度不大于第一转子冲片1的外圆直径,第二转子冲片10的内孔沿q轴方向的最大宽度不小于沿d轴方向的最大宽度,优选地,第二转子冲片10的内孔沿q轴方向的最大宽度与沿d轴方向的最大宽度的比值为1~1.5,第二转子冲片10作为转子的一部分,其外轮廓需不大于第一转子冲片1的外圆,以和定子之间形成具有一定宽度的气隙;其内轮廓的q轴方向上对应于第一转子冲片的转子槽,其q轴宽度需不小于d轴宽度,以使足够多面积的转子槽直接接触空气,形成流通槽,增加转子散热。
第二转子冲片10的轴向厚度不小于单片第一转子冲片1的厚度,以保证转子的机械强度。
在一些实施方式中,第二转子冲片10的内孔与其外圆之间的径向宽度沿q轴方向最小,且第二转子冲片10沿d轴方向的径向宽度kd2与其沿q轴方向的径向宽度kq2满足1.1≤kd2/kq2≤2.8,优选地,1.2≤kd2/kq2≤1.8,以保证第一转子冲片1上足够多的转子槽2位于第二转子冲片10的内孔之内。
在一些实施方式中,第二转子冲片10上的连通槽11的总横截面积小于或等于第一转子冲片1上的填充槽的总横截面积,第二转子冲片10上的连通槽11是向第一转子冲片1上的填充槽填充材料时的入口,在第二转子冲片10上设置连通槽,以使填充材料能够进入第一转子冲片1上的填充槽内;保证第二转子冲片10的连通槽11的总横截面积不大于第一转子冲片1上设置的填充槽的总横截面积,可以减小在填充材料时,第一转子冲片非填充槽部分的受力面积,保证其在填充材料过程中的机械强度,减小变形量。
第二转子冲片10上设置的连通槽11与第一转子冲片1上设置的填充槽位置一样,第二转子冲片10上的单个连通槽11横截面积不大于相同位置处第一转子冲片1上的单个填充槽的横截面积,以减小在填充材料时,第一转子冲片的局部变形。
在一些实施方式中,第二转子冲片10的内孔与连通槽11之间沿d轴方向的宽度大于该连通槽11与对应的转子槽2之间的分割筋5沿d轴方向的宽度,以保证转子在制造过程中,转子槽2内不被填充。
在一些实施方式中,第一转子冲片1上位于第二转子冲片10的内孔内周侧的转子槽2的总横截面积占电机流通槽总流通面积的至少20%,在一些实施例中,第一转子冲片1上位于第二转子冲片10的内孔内周侧的转子槽2的总横截面积占电机流通槽总流通面积的25%~40%;和/或,第一转子冲片1上位于第二转子冲片10内孔之内的转子槽2的总横截面积占转子槽2总横截面积的至少30%。在一些实施例中,第一转子冲片1上位于第二转子冲片10内孔之内的转子槽2的总横截面积占转子槽2总横截面积的45%~65%,以保证足够多面积的转子槽直接接触空气,形成流通槽,增加转子散热。需要说明的是,电机流通槽总流通面积包括电机的定子铁芯的流通槽总流通面积及未被第二转子冲片10遮挡的转子槽2的总横截面积(也即处于第二转子冲片10内孔之内的转子槽2的总横截面积)。
在一些实施方式中,沿由转子轴孔中心至转子外圆的方向,第一转子冲片1上各层磁障层中的转子槽2的位于第二转子冲片10的内孔内周侧的横截面积逐渐减小。此时对应形成的端环12在靠近转子外圆侧的磁障层处具有一定的沿q轴方向的厚度,可以保证端环12具有一定的体积,以改善电机起动能力。
在一些实施方式中,端环12的外部轮廓的最大宽度不大于第二转子冲片10的外部轮廓的最大宽度,由转子轴孔的中心至端环12端面的最大距离不小 于转子轴孔的中心至第二转子冲片10端面的最大距离,端环12外部轮廓的最大宽度不大于第二转子冲片10外部轮廓的最大宽度,以保证第一转子冲片的位于转子外圆侧的非第二转子冲片10覆盖面的部分,在填充材料时的受力,减小局部变形;转子轴孔4的中心至端环12端面的最大距离不小于转子轴孔4的中心至第二转子冲片10端面的最大距离,保证转子具有一定体积的端环,有助于改善电机起动能力。
端环12内孔与外圆之间的径向宽度在d轴方向上为k9,在q轴方向上为k10,则1.1≤k9/k10≤2.8,在一些实施例中,1.2≤k9/k10≤1.8,靠近轴孔侧的内层填充槽沿d轴方向的宽度较大,为了使填充槽自行短路,端环在d轴方向上的径向宽度较大;为了保证转子槽直接接触空气的面积,端环在d轴方向上的径向宽度不能过大。端环12上安装有平衡块,平衡块处于端环12内孔与外圆之间的径向宽度大的一侧。
至少部分填充槽内填充导电不导磁材料,并且通过第二转子冲片1两端的端环12实现短路,形成鼠笼,端环12材料与填充槽内填充材料相同。自行短路的鼠笼结构在电机起动阶段提供异步转矩,以实现电机的自起动,省去了控制器损耗,提升了电机的效率,多层磁障层结构为电机提供磁阻转矩,以实现电机的同步运行。
需要说明的是,相邻两层磁障层中的分割筋5的靠近转子外圆一侧的侧边与q轴的距离不相等,即相邻两层磁障层中的靠近转子外圆侧的外层磁障层的分割筋的靠近转子外圆一侧的侧边与q轴的距离大于或小于相邻两层磁障层中的靠近转子轴孔侧的内层磁障层的分割筋5的靠近转子外圆一侧的侧边与q轴的距离,如图4中的h3≠h4,在一些实施例中,h3>h4,而在图1中则是h3<h4。
分割筋5的侧面所在的平面与q轴所在的平面平行或相交,即分割筋的形状不限于是矩形或梯形或弧形,在一些实施例中,如图5示出的是部分分割筋5侧面所在的平面与q轴所在的平面相交的情形,而图1中则示出了平行的情况。
本发明提供的电机转子结构通过限定转子填充槽之间的最小距离,一方面可以降低填充槽之间导磁通道的饱和度,另一方面可以错开导磁通道与定子齿的相对位置,这有助于降低电机的谐波,降低转矩脉动,减小谐波损耗,提升电机效率和运行的稳定性;同时该转子通过限定转子各填充槽和转子槽之间分割筋的相对距离,可以增加相邻两个磁障层之间的承受压力的面 积,形成相互支撑的效果,使得转子在制造过程中的变形减小,降低工艺难度。
可以理解的是,本发明中转子铁芯相关结构的长度、宽度、厚度、直径等皆可以优选以mm为度量单位,在合理的情况下也可以选择采用其他的合适的度量单位。
本发明提供一种自起动同步磁阻电机转子,通过转子导条(也即填充槽被填充之后形成部件)提供的异步转矩实现电机的自起动,解决同步磁阻电机需要变频器驱动的问题,同时降低电机的损耗,提升电机的效率;该电机转子能够降低电机的谐波,降低转矩脉动,减小谐波损耗,提升电机效率和运行稳定性;能够增强转子的机械强度,减小转子在制造过程中的变形,降低工艺难度。
根据本发明的实施例,还提供一种自起动同步磁阻电机,尤其是一种自起动同步磁阻两极电机,包括上述的电机转子,该电机轴输出端连接的负载惯量小于电机本身转轴系统惯量的60%。
根据本发明的实施例,还提供一种压缩机,包括上述的自起动同步磁阻电机。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各实施例可以自由地组合、叠加。
以上仅为本发明的一些实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。以上仅是本发明的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (44)

  1. 一种电机转子,其特征在于,包括转子铁芯,转子铁芯包括第一转子冲片(1),第一转子冲片(1)上开设有填充槽和转子槽(2),填充槽包括第二填充槽(32)和第一填充槽(31),第一转子冲片(1)沿q轴间隔设置有多层磁障层,多层磁障层包括两个外侧磁障层以及处于两个外侧磁障层之间的多层内侧磁障层,外侧磁障层包括第一填充槽(31),内侧磁障层包括转子槽(2)及处于转子槽(2)的两端的第二填充槽(32),同一层内侧磁障层内,第二填充槽(32)与转子槽(2)之间具有分割筋(5),分割筋(5)的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,任意相邻两层磁障层中的两个分割筋(5)对应的两个该中心点沿d轴方向的距离为L,该相邻两层磁障层中的填充槽之间形成的导磁通道沿q轴方向的最大距离为W,满足0≤L<2W。
  2. 根据权利要求1所述的电机转子,其特征在于,0≤L<W。
  3. 根据权利要求2所述的电机转子,其特征在于,0≤L≤0.8W。
  4. 根据权利要求1所述的电机转子,其特征在于,邻近第一填充槽(31)的内侧磁障层中的分割筋(5)在d轴方向上的宽度为L1,第一转子冲片(1)具有轴孔(4),邻近轴孔(4)的内侧磁障层中的分割筋(5)在d轴方向上的宽度为L2,L1不小于L2,且L1≥0.5*σ。
  5. 根据权利要求1所述的电机转子,其特征在于,分割筋(5)的靠近转子外圆一侧的侧边所在的轴向的平面存在一个中心点,靠近转子外圆侧的最外层磁障层的分割筋(5)和与其相邻的磁障层的分割筋(5)对应的两个该中心点沿d轴方向的距离为k7;靠近转子外圆侧的最外层磁障层的分割筋(5)和靠近转子轴孔侧的最内层磁障层的分割筋(5)对应的两个该中心点沿d轴方向的距离为k8,则0≤k7/k8≤0.6。
  6. 根据权利要求1所述的电机转子,其特征在于,填充槽位于转子外周,靠近轴孔侧的最内层磁障层的第二填充槽(32)与转子外圆之间的间隔为L3,靠近转子外圆侧的最外层磁障层的第一填充槽(31)与转子外圆之间的间隔为L4,L4≥L3且0≤L3≤2.5σ;和/或,填充槽的靠近转子外圆侧的端部的沿q轴方向的最大宽度不大于填充槽的靠近转子q轴处的区域沿q轴方向的最大宽度。
  7. 根据权利要求6所述的电机转子,其特征在于,从转子外圆侧至转子q轴处,填充槽的沿q轴方向的宽度偏差不大于5%;和/或,填充槽在q轴方 向上的最大宽度与最小宽度之间的比值为τ,1≤τ≤2。
  8. 根据权利要求1所述的电机转子,其特征在于,沿q轴由转子外圆指向轴孔(4)的中心的方向,各内侧磁障层中的第二填充槽(32)沿d轴方向的最大宽度逐渐增大。
  9. 根据权利要求8所述的电机转子,其特征在于,沿着q轴由转子外圆指向轴孔(4)的中心的方向,各第二填充槽(32)的沿d轴方向的最大宽度至少三层连续增大;和/或,沿着q轴由轴孔4的中心指向转子外圆的方向,从靠近d轴的第二层内侧磁障层至靠近转子外圆侧的磁障层中,各第二填充槽(32)沿d轴方向的最大宽度连续减小。
  10. 根据权利要求1所述的电机转子,其特征在于,转子槽(2)由弧线段和/或直线段组成,从轴孔侧到转子外圆侧,转子槽(2)的弧线段的曲率半径逐渐变大,且同层转子槽外圆弧曲率半径大于内圆弧曲率半径,弧线段从轴孔向转子外圆方向突出;或者,转子槽(2)的两端沿平行于d轴的方向向转子外圆延伸成直线段,部分或全部转子槽(2)的两端平行于d轴,转子槽(2)的宽度从转子槽(2)的中间位置向两端逐渐增加。
  11. 根据权利要求10所述的电机转子,其特征在于,沿着q轴由轴孔(4)的中心指向转子外圆的方向,转子槽(2)在q轴方向上的宽度至少3层连续减小;转子槽(2)沿q轴方向的宽度为m2,第一填充槽(31)沿q轴方向的宽度为m1,所有转子槽(2)和第一填充槽(31)沿q轴方向的宽度的和为(m1+∑m2),轴孔(4)的孔壁到第一转子冲片外圆的宽度为m3,(m1+∑m2)/m3=0.2~0.5。
  12. 根据权利要求1所述的电机转子,其特征在于,第一转子冲片(1)上具有的填充槽中至少有五种填充面积不同的填充槽;和/或,第一填充槽(31)及第二填充槽(32)的总填充面积占第一填充槽(31)、第二填充槽(32)及转子槽(2)的总横截面积的30%~70%。
  13. 根据权利要求1所述的电机转子,其特征在于,相邻两层磁障层中的相邻两个填充槽之间的导磁通道的最小宽度为W1,W1≥d,d为该相邻两层磁障层中的转子槽之间的导磁通道的最小宽度。
  14. 根据权利要求13所述的电机转子,其特征在于,W1/d>1.15。
  15. 根据权利要求1所述的电机转子,其特征在于,相邻两层磁障层中的相邻两个转子槽(2)之间的导磁通道沿q轴方向的最小距离为h1,h1≥1.5h2,h2为该相邻两层磁障层中的转子槽(2)沿q轴方向宽度较小磁障层 的沿q轴方向的最小宽度;和/或,第一填充槽(31)沿d轴方向的宽度小于与其相邻的磁障层中的两个第二填充槽(32)的靠近转子槽(2)一侧的端部之间的沿d轴方向的宽度。
  16. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(31)的内侧壁在q轴方向上到转子中心的距离L5与转子半径Rr的比值满足0.82≤L5/Rr≤0.96;和/或,靠近轴孔侧的两层最内层磁障层的靠近轴孔侧的侧边沿q轴方向的距离与转轴沿q轴方向的宽度的比值大于1.2;和/或,靠近轴孔侧的最内层磁障层的靠近轴孔侧的侧边的弧线段的直径与转轴沿q轴方向的宽度的比值大于2。
  17. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(31)的沿q轴方向的最大厚度为k,与其相邻的磁障层中的第二填充槽(32)沿q轴方向的最大厚度为k1,与其相连的导磁通道沿q轴方向的最小厚度为k2,则1<k/k1≤2,和/或,0.8<k/k2≤1.6。
  18. 根据权利要求1所述的电机转子,其特征在于,相邻两层磁障层之间形成导磁通道,沿着q轴由轴孔(4)的中心指向转子外圆的方向,各导磁通道沿q轴方向的宽度逐渐减小。
  19. 根据权利要求18所述的电机转子,其特征在于,沿着q轴由轴孔(4)的中心指向转子外圆的方向,各导磁通道沿q轴方向的宽度至少三层连续减小;和/或,相邻两层磁障层之间形成导磁通道,对于由弧线段和直线段组成的导磁通道,由q轴至q轴两侧,导磁通道的宽度逐渐增大。
  20. 根据权利要求1所述的电机转子,其特征在于,各层磁障层中,转子槽(2)沿q轴方向的宽度与转子槽(2)靠近填充槽端部的宽度的比值为τ1,从最内层磁障层至最外层磁障层,τ1逐渐增大。
  21. 根据权利要求1所述的电机转子,其特征在于,各层磁障层中,填充槽沿q轴方向的最大宽度与转子槽(2)沿q轴方向的宽度的比值为τ2,τ2>1.4。
  22. 根据权利要求1的电机转子,其特征在于,靠近转子外圆侧的外层磁障层中,位于转子槽(2)两端的两个第二填充槽(32)的靠近转子槽(2)一侧的端部之间的沿d轴方向的宽度为k3;与其相邻的靠近轴孔侧的内层磁障层中,位于转子槽(2)两端的两个第二填充槽(32)的靠近转子槽(2)一侧的端部之间的沿d轴方向的宽度为k4,0.5≤k3/k4≤1或0.5≤k4/k3≤1。
  23. 根据权利要求1所述的电机转子,其特征在于,靠近转子外圆侧的最外层转子槽(2)两端的两个第二填充槽(31)的靠近转子槽(2)一侧的端部之间的沿d轴方向的宽度为k5;靠近转子轴孔侧的最内层转子槽(2)两端的两个第二填充槽(32)的靠近转子槽(2)一侧的端部之间的沿d轴方向的宽度为k6,则0.5≤k5/k6≤1或0.5≤k6/k5≤1。
  24. 根据权利要求1所述的电机转子,其特征在于,第一填充槽(31)两端与转子中心连线的夹角为α1,20°≤α1≤60°;和/或,第一填充槽(31)的个数为n,n≥1;和/或,填充槽的长度延伸方向与d轴的平行角度偏差不超过5%。
  25. 根据权利要求1所述的电机转子,其特征在于,第一转子冲片上的轴孔(4)在q轴方向上的最大宽度不大于其在d轴方向上的最大宽度;和/或,轴孔(4)由弧线段和/或直线段组成。
  26. 根据权利要求1所述的电机转子,其特征在于,转子铁芯还包括第二转子冲片(10),第二转子冲片(10)设置在端环(12)与第一转子冲片(1)之间,第二转子冲片(10)上对应填充槽设置有连通槽(11)。
  27. 根据权利要求26所述的电机转子,其特征在于,第二转子冲片(10)的外部轮廓的最大宽度不大于第一转子冲片(1)的外圆直径,第二转子冲片(10)的内孔沿q轴方向的最大宽度不小于其沿d轴方向的最大宽度;和/或,第二转子冲片(10)的轴向厚度不小于单片第一转子冲片(1)的厚度。
  28. 根据权利要求27所述的电机转子,其特征在于,第二转子冲片(10)的内孔沿q轴方向的最大宽度与沿d轴方向的最大宽度的比值为1~1.5;和/或,第二转子冲片(10)的内孔与其外圆之间的径向宽度沿q轴方向最小,且第二转子冲片(10)沿d轴方向的径向宽度kd2与其沿q轴方向的径向宽度kq2满足1.1≤kd2/kq2≤2.8。
  29. 根据权利要求28所述的电机转子,其特征在于,1.2≤kd2/kq2≤1.8。
  30. 根据权利要求26所述的电机转子,其特征在于,第二转子冲片(10)上的连通槽(11)的总横截面积小于或等于第一转子冲片(1)上的填充槽的总横截面积。
  31. 根据权利要求30所述的电机转子,其特征在于,第二转子冲片(10)上设置的连通槽(11)与第一转子冲片(1)上设置的填充槽位置一样,第二转子冲片(10)上的单个连通槽(11)横截面积不大于相同位置处第一转子冲片(1)上的单个填充槽的横截面积。
  32. 根据权利要求26所述的电机转子,其特征在于,第二转子冲片(10)的内孔与连通槽(11)之间沿d轴方向的宽度大于该连通槽(11)与对应的转子槽(2)之间的分割筋(5)沿d轴方向的宽度。
  33. 根据权利要求26所述的电机转子,其特征在于,第一转子冲片(1)上位于第二转子冲片(10)的内孔内周侧的转子槽(2)的总横截面积占电机流通槽总流通面积的至少20%;和/或,第一转子冲片(1)上位于第二转子冲片(10)内孔之内的转子槽(2)的总横截面积占转子槽(2)总横截面积的至少30%。
  34. 根据权利要求33所述的电机转子,其特征在于,第一转子冲片(1)上位于第二转子冲片(10)的内孔内周侧的转子槽(2)的总横截面积占电机流通槽总流通面积的25%~40%;和/或,第一转子冲片(1)上位于第二转子冲片(10)内孔之内的转子槽(2)的总横截面积占转子槽(2)总横截面积的45%~65%。
  35. 根据权利要求26所述的电机转子,其特征在于,沿由转子轴孔(4)中心至转子外圆的方向,第一转子冲片(1)上各层磁障层中的转子槽(2)的位于第二转子冲片(10)的内孔内周侧的横截面积逐渐减小。
  36. 根据权利要求26所述的电机转子,其特征在于,端环(12)的外部轮廓的最大宽度不大于第二转子冲片(10)的外部轮廓的最大宽度,由转子轴孔(4)的中心至端环(12)端面的最大距离不小于转子轴孔(4)的中心至第二转子冲片(10)端面的最大距离;和/或,端环(12)内孔与外圆之间的径向宽度在d轴方向上为k9,在q轴方向上为k10,则1.1≤k9/k10≤2.8。
  37. 根据权利要求36所述的电机转子,其特征在于,1.2≤k9/k10≤1.8。
  38. 根据权利要求26所述的电机转子,其特征在于,端环(12)上安装有平衡块,平衡块处于端环(12)内孔与外圆之间的径向宽度大的一侧。
  39. 根据权利要求1所述的电机转子,其特征在于,至少部分填充槽内填充导电不导磁材料,并且通过第二转子冲片(10)两端的端环(12)实现短路,形成鼠笼;和或/,d轴与q轴将第一转子冲片(1)由其轴孔(4)的中心均分为四个象限,在第一象限内,分割筋(5)的几何中心到d轴的最小距离为kd1、到q轴的最小距离为kq1,kq1=-ν*kd1+λ,其中0.28≤ν≤0.46,28≤λ≤33。
  40. 一种自起动同步磁阻电机,其特征在于,包括定子和权利要求1至39中任一项所述的电机转子。
  41. 根据权利要求40所述自起动同步磁阻电机,其特征在于,所述转子铁芯与定子之间形成的气隙的宽度为σ,0≤L<8σ。
  42. 根据权利要求41所述自起动同步磁阻电机,其特征在于,0≤L≤6σ。
  43. 根据权利要求40所述的电机转子,其特征在于,从轴孔侧至转子外圆侧,各层转子槽(2)的靠近两个第二填充槽(32)的端部之间的曲线长度逐渐递减,相邻转子槽(2)的曲线长度递减比例为5%~25%;和/或,分割筋(5)在d轴方向上具有最小宽度L2,L2≥0.5*σ,σ为转子铁芯与定子之间形成的气隙的宽度。
  44. 一种压缩机,其特征在于,包括权利要求40所述的自起动同步磁阻电机。
PCT/CN2022/126906 2022-01-26 2022-10-24 电机转子及其自起动同步磁阻电机、压缩机 WO2023142548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210092265.3 2022-01-26
CN202210092265.3A CN114598060A (zh) 2022-01-26 2022-01-26 电机转子及其自起动同步磁阻电机、压缩机

Publications (1)

Publication Number Publication Date
WO2023142548A1 true WO2023142548A1 (zh) 2023-08-03

Family

ID=81805590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126906 WO2023142548A1 (zh) 2022-01-26 2022-10-24 电机转子及其自起动同步磁阻电机、压缩机

Country Status (2)

Country Link
CN (1) CN114598060A (zh)
WO (1) WO2023142548A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598060A (zh) * 2022-01-26 2022-06-07 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186735A (ja) * 1999-12-22 2001-07-06 Mitsubishi Electric Corp リラクタンスモータ
CN106537728A (zh) * 2014-08-04 2017-03-22 Ksb 股份公司 转子和磁阻机器
CN110112846A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN113964971A (zh) * 2021-11-19 2022-01-21 珠海格力电器股份有限公司 电机转子和自起动同步磁阻电机
CN114598060A (zh) * 2022-01-26 2022-06-07 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186735A (ja) * 1999-12-22 2001-07-06 Mitsubishi Electric Corp リラクタンスモータ
CN106537728A (zh) * 2014-08-04 2017-03-22 Ksb 股份公司 转子和磁阻机器
CN110112846A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN113964971A (zh) * 2021-11-19 2022-01-21 珠海格力电器股份有限公司 电机转子和自起动同步磁阻电机
CN114598060A (zh) * 2022-01-26 2022-06-07 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Also Published As

Publication number Publication date
CN114598060A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
US11824409B2 (en) Direct starting synchronous reluctance motor rotor, motor and rotor manufacturing method
WO2019114803A1 (zh) 异步起动同步磁阻电机转子、电机及压缩机
US11942840B2 (en) Self-starting synchronous reluctance motor rotor, motor, and compressor
US20220216747A1 (en) Direct starting synchronous reluctance motor rotor and motor
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
WO2023142548A1 (zh) 电机转子及其自起动同步磁阻电机、压缩机
EP3926796A1 (en) Rotor structure of self-starting synchronous reluctance motor and motor having same
WO2023142557A1 (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN114123581A (zh) 自起动永磁辅助同步磁阻电机转子和电机
CN113964971A (zh) 电机转子和自起动同步磁阻电机
CN114123580B (zh) 自起动永磁辅助同步磁阻电机转子和电机
CN216290383U (zh) 电机转子和自起动同步磁阻电机
CN216851465U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216819527U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216851460U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216819526U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216290385U (zh) 电机转子和自起动同步磁阻电机
CN216819525U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216851461U (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216819528U (zh) 电机转子和自起动同步磁阻电机
CN114614593A (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN216290381U (zh) 电机转子和自起动同步磁阻电机
CN114520554A (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN217010461U (zh) 自起动同步磁阻电机转子、电机和压缩机
CN114598056A (zh) 电机转子及其自起动同步磁阻电机、压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923346

Country of ref document: EP

Kind code of ref document: A1