WO2023142320A1 - 复合集流体的制备方法 - Google Patents

复合集流体的制备方法 Download PDF

Info

Publication number
WO2023142320A1
WO2023142320A1 PCT/CN2022/094820 CN2022094820W WO2023142320A1 WO 2023142320 A1 WO2023142320 A1 WO 2023142320A1 CN 2022094820 W CN2022094820 W CN 2022094820W WO 2023142320 A1 WO2023142320 A1 WO 2023142320A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
preparation
copper
copper plating
current collector
Prior art date
Application number
PCT/CN2022/094820
Other languages
English (en)
French (fr)
Inventor
卢建栋
李学法
张国平
Original Assignee
江阴纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴纳力新材料科技有限公司 filed Critical 江阴纳力新材料科技有限公司
Publication of WO2023142320A1 publication Critical patent/WO2023142320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of new materials, in particular to a preparation method of a composite current collector.
  • Composite current collector is a new type of current collector material, which is made of metal-plated on both sides of the polymer substrate layer, showing a "sandwich structure".
  • the preparation method of the composite current collector is mainly to deposit a metal layer with a certain thickness on the upper and lower surfaces of the polymer substrate by physical vapor deposition (PVD) in a vacuum state, so that it can reach a certain square resistance, so that it can be electroplated or The standard of electroless plating, and then electroplating or electroless plating the material after double-sided metal deposition to thicken the metal layer, so that the square resistance of the material can meet the standard required by the secondary battery.
  • PVD physical vapor deposition
  • vacuum physical vapor deposition requires high equipment and is accompanied by high temperature, and the polymer substrate is easily deformed, wrinkled, bubbled, perforated, and brittle at high temperature.
  • the above-mentioned problems cannot be completely avoided by cooling treatment. Therefore, the yield rate of composite current collectors prepared by physical atmosphere is low, usually lower than 50%.
  • the physical vapor deposition speed is slow and the production efficiency is low; and because the physical vapor deposition needs to vaporize the metal, the energy consumed is very high.
  • the cooling of the polymer substrate also requires high energy, forming energy mutual impact, It causes a lot of energy loss, which is not conducive to carbon peaking and carbon neutralization.
  • One aspect of the present invention provides a method for preparing a composite current collector, which includes the following steps:
  • Laser femtosecond etching is performed on the polymer film to obtain a polymer film substrate; the polymer film substrate is contacted with an activation solution, dried, and subjected to ultraviolet light treatment to obtain an activated substrate; the activated Electroless copper plating on the base material;
  • the activation solution includes CuSO 4 with a concentration of 10g/L-20g/L, and NaH 2 PO 2 or KH 2 PO 2 with a concentration of 30g/L-40g/L.
  • the laser femtosecond etching has a wavelength of 150nm-350nm, a power of 10mW-50mW, and a time of 10fs-60fs.
  • the wavelength of the ultraviolet light treatment is 157 nm to 353 nm, and the time of the ultraviolet light treatment is 5 ms to 100 ms.
  • the contact treatment is coating the activation solution on the polymer film substrate to form an activation coating film with a thickness of 20 nm to 60 nm.
  • the drying temperature is 75°C-85°C, and the drying time is 2min-5min.
  • the material of the polymer film is one of polyethylene terephthalate, polyethylene, polypropylene, polyimide, polyether ether ketone and polymethyl methacrylate or more.
  • the polymer film has a thickness of 2 ⁇ m to 10 ⁇ m.
  • the electroless copper plating is alkaline electroless copper plating, and the thickness of the copper layer obtained by the electroless copper plating is 100 nm ⁇ 1000 nm.
  • the copper electroplating is acidic electrolytic copper plating, and the thickness of the copper layer obtained by the copper electroplating is 900nm-1100nm.
  • electroplating a chromium layer of 1 nm to 2 nm is also included.
  • etching holes By performing laser femtosecond etching on the polymer film, a large number of etching holes can be formed on the surface of the polymer film, so that the polarity of the surface of the non-polar polymer film is increased, and the gap between the surface of the non-polar polymer film and the metal layer with strong polarity after subsequent plating
  • the binding force is enhanced, and it can also form a locking effect with the metal layer, further improving the binding strength of the two.
  • the increase in polarity means better hydrophilicity, which helps to better absorb the activation of the next step Liquid, so as to successfully complete the activation; the polymer film is contacted with an activation solution of specific composition and concentration, and treated under ultraviolet light.
  • the divalent copper ions in the activation solution are reduced by H 2 PO 2 - Copper is formed into a simple substance, so that a nano-scale copper layer is formed on the surface of the polymer film, so as to achieve a certain square resistance, and subsequent electroless plating or electroplating can be carried out, replacing the physical vapor deposition step of preparing a composite current collector in the traditional technology, effectively reducing Reduce energy consumption and production costs, improve production efficiency.
  • the femtosecond-level etching time is extremely short, it will not cause macroscopic damage to the polymer film material itself, and thus will not affect its physical strength and performance. Therefore, the product yield is also effectively improved.
  • FIG. 1 is a process of an embodiment of the present invention and a scanning electron micrograph corresponding to each step after treatment.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the technical features described in open form include closed technical solutions consisting of the enumerated features, as well as open technical solutions including the enumerated features.
  • the above numerical interval is considered continuous, and includes the minimum and maximum values of the range, and every value between such minimum and maximum values.
  • a range refers to an integer, every integer between the minimum and maximum of the range is included.
  • the ranges may be combined. In other words, unless otherwise indicated, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein.
  • the percentage content involved in the present invention refers to mass percentage for solid-liquid mixing and solid-solid phase mixing, and refers to volume percentage for liquid-liquid phase mixing.
  • the percentage concentration involved in the present invention refers to the final concentration unless otherwise specified.
  • the final concentration refers to the proportion of the added component in the system after the component is added.
  • the temperature parameters in the present invention allow either constant temperature treatment or treatment within a certain temperature range.
  • the isothermal treatment allows the temperature to fluctuate within the precision of the instrument control.
  • One aspect of the present invention provides a method for preparing a composite current collector, which includes the following steps:
  • Laser femtosecond etching is performed on the polymer film to obtain the polymer film substrate; the polymer film substrate is contacted with the activation solution, dried, and subjected to ultraviolet light treatment to obtain the activated substrate; the activated substrate is chemically Copper plating;
  • the activation solution includes CuSO 4 with a concentration of 10g/L-20g/L, and NaH 2 PO 2 or KH 2 PO 2 with a concentration of 30g/L-40g/L.
  • Lithium batteries mainly store energy in electrode materials. Therefore, the common way to increase energy density is to optimize and develop electrode materials, or directly increase the proportion of active materials in the battery. However, the change of these active components will have a great impact on the performance of the battery, so the operation is complicated and the research and development cost is high. In order to solve this problem, the researchers disassembled the structure of the entire battery, trying to find new ideas. It has been found that the traditional metal current collector accounts for 15% or more of the lithium battery.
  • the thus prepared Composite current collector is 80% lighter than the original pure metal current collector; and because the weight ratio of the current collector is reduced, the energy density of the battery can be increased by 8% to 26 % (specific data varies with different battery types).
  • Copper is a metal with good conductivity and low cost, so it is widely used as a conductive material. Naturally, it is also very suitable for the preparation of composite current collectors. However, the boiling point of elemental copper is as high as 2835K. If physical vapor deposition is used to prepare copper-containing composite current collectors, even if copper itself is very cheap, due to the high requirements for equipment and temperature of physical vapor deposition, the production cost will still remain high. Moreover, in addition to achieving a certain square resistance, copper plating on the polymer surface also requires catalytic active centers. In traditional technologies, noble metals such as silver or palladium are usually used as catalytic active metals, which further increases production costs.
  • etching holes can be formed on the surface of the polymer film, so that the polarity of the surface of the non-polar polymer film is improved, and it is compatible with the metal layer with stronger polarity after subsequent plating.
  • the bonding force between them is enhanced, and it can also form a locking effect with the metal layer, which further improves the bonding strength between the two.
  • the increase in polarity means better hydrophilicity, which helps to better absorb the next step Activation solution, so as to successfully complete the activation; the polymer film is contacted with the activation solution of specific composition and concentration, and the treatment is carried out under ultraviolet light.
  • the divalent copper ions in the activation solution are absorbed by H 2 PO 2 -Reduce to simple copper, so that a layer of nano-scale copper layer is formed on the surface of the polymer film, so as to achieve a certain square resistance, and subsequent electroless plating or electroplating can be carried out, replacing the physical vapor deposition step of preparing composite current collectors in traditional technology, It does not need to be deposited in a vacuum environment, and there is basically no hedging of cold and heat energy, which effectively reduces energy consumption and production costs, and improves production efficiency; moreover, the nano-scale copper layer itself has electroless copper plating catalytic activity, so it can save traditional
  • the precious metal catalysts such as silver or palladium used in the technology further reduce the production cost.
  • the femtosecond-level etching time is extremely short, it will not cause macroscopic damage to the polymer film material itself, and thus will not affect its physical strength and performance. Therefore, the product yield is also effectively improved.
  • the concentration of CuSO 4 in the activation solution can be, for example, 12g/L, 13g/L, 14g/L, 15g/L, 16g/L, 17g/L, 18g/L or 19g/L.
  • the concentration of NaH 2 PO 2 or KH 2 PO 2 in the activation solution can be, for example, 32g/L, 33g/L, 34g/L, 35g/L, 36g/L, 37g/L, 38g/L or 39g /L.
  • the reducing agent is NaH 2 PO 2 .
  • the solvent of the activation solution is water, preferably deionized water.
  • the selection and concentration of the solute in the activation solution are crucial to realizing the technical effect of the present invention.
  • the oxidation-reduction potential of the copper salt matches the reducing agent, and the redox reaction is the most basic requirement; in addition, the speed of the redox reaction and the type of ions in the reaction system will also directly affect the formation effect of the nano-copper layer. If the concentration is set in an appropriate range, the reaction speed is fast and the production efficiency is high. At the same time, the grain growth will not be too large due to the fast reaction speed, so that the formed nano-copper layer structure is too loose, which affects the mechanical properties of the composite current collector. strength and conductivity.
  • the composite current collector prepared in the present invention is a composite negative electrode current collector.
  • the wavelength of laser femtosecond etching is 150nm-350nm, the power is 10mW-50mW, and the time is 10fs-60fs.
  • the wavelength of laser femtosecond etching may be, for example, 160nm, 165nm, 170nm, 175nm, 180nm, 185nm, 190nm, 195nm, 200nm, 220nm, 240nm, 260nm, 280nm, 300nm, 320nm or 340nm.
  • the power of laser femtosecond etching may be, for example, 15mW, 20mW, 25mW, 30mW, 35mW, 40mW or 45mW.
  • the laser femtosecond etching time may be, for example, 15 fs, 20 fs, 25 fs, 30 fs, 35 fs, 40 fs, 45 fs, 50 fs or 55 fs.
  • Appropriate laser femtosecond etching parameter settings can make the size and density of the holes formed by etching moderate, and improve the bonding force between the polymer film and the metal layer as much as possible without affecting the physical properties of the polymer film. Its hydrophilicity enables better subsequent adsorption of the activation solution.
  • the wavelength of the ultraviolet light is 157nm-353nm, and the time for the ultraviolet light treatment on the polymer film substrate after the contact treatment is 5ms-100ms.
  • the wavelength of the ultraviolet light can be, for example, 160nm, 165nm, 170nm, 175nm, 180nm, 185nm, 190nm, 195nm, 200nm, 220nm, 240nm, 260nm, 280nm, 300nm, 320nm, 340nm or 350nm.
  • the time for ultraviolet light treatment may be, for example, 10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 70ms, 80ms or 90ms.
  • Expose the contact-treated polymer film substrate to ultraviolet light for ultraviolet light treatment a large number of cellular particles will be generated on the surface of the substrate, and divalent copper ions will be reduced to copper simple substance by H 2 PO 2 - , thus making the substrate A layer of nano-scale copper layer is grown on the surface of the material.
  • the surface of the polymer film can reach the square resistance of electroplating or electroless plating, and has electroless plating catalytic activity, which can directly replace the traditional technology of physical vapor deposition and adding palladium or silver.
  • the step of using precious metals as catalysts effectively reduces the production cost and improves the yield rate.
  • Appropriate ultraviolet wavelengths have appropriate energy and can control the redox reaction rate within an appropriate range.
  • the contact treatment is coating the activation solution on the polymer film substrate to form an activation coating film with a thickness of 20 nm to 60 nm.
  • the thickness of the washcoat film may be, for example, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm or 55nm. Appropriate film thickness can provide enough raw material to form nano-copper layer, and lower the cost at the same time.
  • the drying temperature is 75°C-85°C, and the drying time is 2min-5min.
  • the drying temperature is 70° C. and the drying time is 3 minutes.
  • the polymer film is made of one or more of polyethylene terephthalate, polyethylene, polypropylene, polyimide, polyether ether ketone, and polymethyl methacrylate. kind. It can be understood that the preparation process of the polymer film may be various film-making processes common in the art, such as one or more of blown film-making process, salivation film-making process and biaxial stretching film-making process.
  • the intrinsic viscosity of the polymer solution is 0.5dL/g-0.8dL/g.
  • the intrinsic viscosity may be, for example, 0.6dL/g or 0.7dL/g. Films made from polymer solutions within a certain intrinsic viscosity range are more suitable for the process of this application.
  • the polymer film has a thickness of 2 ⁇ m to 10 ⁇ m.
  • the thickness of the polymer film may be, for example, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m or 9 ⁇ m. Setting the thickness of the polymer film within an appropriate range can be especially suitable for the preparation process of the present invention, so that the mechanical strength after etching will not be damaged because it is too thin, and the conductivity of the current collector will not be caused because it is too thick. Or the bonding force between composite layers is affected.
  • the electroless copper plating is alkaline electroless copper plating, and the thickness of the copper layer obtained by the electroless copper plating is 100 nm ⁇ 1000 nm. It can be understood that before the electroless copper plating, the activated substrate can be cleaned with deionized water to avoid the influence on the electroless copper plating. Electroless copper plating is mainly to form a thickened copper layer, so that the square resistance of the composite current collector can reach the standard required by the secondary battery. Any conventional alkaline electroless copper plating solution in this field can be used for copper plating. The thickness of the electroless copper plating layer can be adjusted as required, for example, it can be 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm or 900nm.
  • copper electroplating is also included after the electroless copper plating, the copper electroplating is acidic electrolytic copper plating, and the thickness of the copper layer obtained by the copper electroplating is 900nm-1100nm. It can be understood that before electroplating copper, the activated substrate after electroless copper plating can be cleaned with deionized water, so as to avoid affecting the electroplating copper. Copper electroplating is mainly to further thicken the copper layer to meet the use requirements of the secondary battery, and any common acidic electrolytic copper plating solution in this field can be used for copper plating.
  • the thickness of the electroplated copper layer can be adjusted according to needs, for example, it can be 910nm, 920nm, 930nm, 940nm, 950nm, 960nm, 970nm, 980nm, 990nm, 1000nm, 1010nm, 1020nm, 1030nm, 1040nm, 1050nm, 1060nm, 1070nm, 1080nm or 1090nm .
  • electroplating a chromium layer of 1 nm to 2 nm is further included after the electroless copper plating. It can be understood that before electrochrome plating, the activated substrate after electroplating copper can be cleaned with deionized water, so as to avoid affecting the electrochrome plating. Chromium electroplating is mainly to form an anti-oxidation protective layer to improve the service life of the composite current collector. Trivalent chromium or hexavalent chromium solutions can be used for chromium plating.
  • the steps of copper electroplating and chromium electroplating may be included at the same time, or only any one of them may be included.
  • the structure of the composite current collector is: polymer film layer-electroless copper plating layer-electroplated copper layer-electrochrome plating layer; step, the structure of the composite current collector is: polymer film layer-electroless copper plating layer-electrochrome plating layer.
  • drying is carried out at 75° C. to 85° C. for 2 minutes to 5 minutes, preferably at 80° C. for 3 minutes.
  • the present invention will be described in further detail below in conjunction with specific examples and comparative examples.
  • the instruments and raw materials used in the following examples are relatively specific, and may not be limited thereto in other specific examples; the weight of the relevant components mentioned in the examples of the description of the present invention can not only refer to the specific content of each component , can also represent the weight ratio relationship among the components. Therefore, as long as the content of the relevant components is scaled up or down according to the description of the embodiment of the present invention, it is within the scope disclosed in the embodiment of the description of the present invention.
  • the weight described in the description of the embodiments of the present invention may be ⁇ g, mg, g, kg and other well-known mass units in the field of chemistry and chemical engineering.
  • Laser femtosecond etching equipment American Newport femtosecond laser processing system;
  • Ultraviolet light processing equipment DK-8-KZ laser engraving machine working platform of Shenzhen Baoliwang Trading Co., Ltd.
  • a polyethylene terephthalate solution with an intrinsic viscosity of 0.6dL/g is prepared into a polyethylene terephthalate film with a thickness of 2 ⁇ m by blow molding process; set the wavelength of the laser femtosecond etching equipment 190nm, power is 25mW, etches polyethylene terephthalate film for 15fs to obtain polyethylene terephthalate base material; activate solution (composition: CuSO 4 concentration 15g/L, NaH 2 PO2 concentration 35g /L, solvent deionized water) coated on polyethylene terephthalate substrate to form a 50nm thick activation coating film, after drying at 80°C for 3min, under 180nm ultraviolet light Treat for 50ms to obtain an activated polyethylene terephthalate substrate;
  • the activated polyethylene terephthalate substrate is cleaned with deionized water, it is placed in an alkaline electroless copper plating solution (copper sulfate-formaldehyde system) for electroless copper plating, so that the copper layer is thickened to 1000nm; , after cleaning with deionized water, place it in an acidic copper electroplating solution (sulfuric acid-copper sulfate-chloride ion system) for electroplating copper (current density 5A/dm 2 ), so that the copper layer is thickened to 1000nm; take it out, and use deionized After washing with water, place it in a trivalent chromium plating solution for electroplating (current density 30A/dm 2 ) to form a 2nm thick anti-oxidation chromium layer, and then dry it at 80°C for 3 minutes to obtain polyethylene terephthalate Ester-copper composite current collector.
  • an alkaline electroless copper plating solution copper sulfate
  • Example 2 It is basically the same as in Example 1, except that the polymer is polypropylene with an intrinsic viscosity of 0.5 dL/g.
  • Example 2 It is basically the same as in Example 1, except that the polymer is polyimide with an intrinsic viscosity of 0.8 dL/g.
  • Example 2 It is basically the same as Example 1, except that the thickness of the polyethylene terephthalate film is 10 ⁇ m.
  • Example 2 Basically the same as Example 1, the difference is that CuSO 4 in the activation solution is changed to CuCl 2 (the concentration of Cu 2+ in the activation solution remains unchanged).
  • Example 2 It is basically the same as in Example 1, except that the reducing agent in the activation solution is formaldehyde with a content of 37%.
  • Example 2 It is basically the same as Example 1, except that the concentration of CuSO 4 in the activation solution is 30g/L, and the concentration of NaH 2 PO 2 is 60g/L.
  • Example 2 It is basically the same as Example 1, except that the thickness of the polyethylene terephthalate film is 0.5 ⁇ m.
  • Test method Use a four-probe tester to measure the sheet resistance of the front and back of the copper film after electroplating;
  • Test method tensile machine: tensile speed 50mm/min, unfold 3-4 circles of samples, take 5 sheet samples for each sample, and take the average value as the test result. It is required that the length direction is parallel to the axis of the fixture during measurement, and the sample should be kept in a straight line;
  • Example 1 twenty two MD 22 TD 8 MD 145, TD 160 Example 2 26 MD 21 TD 7 MD 145, TD 160 Example 3 38 MD 33 TD 16 MD 145, TD 160 Example 4 32 MD 36 TD 20 MD 180, TD 167 Comparative example 1 46 MD 20 TD 6 MD 135,TD 148 Comparative example 2 44 MD 16 TD 4 MD 115, TD 130 Comparative example 3 56 MD 19 TD 6 MD 132, TD 145 Comparative example 4 35 MD 16 TD 5 MD 102TD 108
  • the composite current collectors prepared in each embodiment of the present invention have good electrical conductivity and elongation at break, so they can not only play the most basic conductive role, but also ensure safety.
  • it is not easy to break, and the yield rate has been significantly improved compared with the traditional technology; and the preparation method is simple, the energy consumption is low, and the cost can be greatly reduced compared with the traditional physical vapor deposition method.
  • Example 1 Compared with Example 1, in Comparative Example 1, because the activation solution contains chloride ions, it has an impact on the growth of the nano-copper layer, which will cause the formed nano-copper layer to be relatively loose, so the conductivity decreases, and the metal layer and polymerization The binding force between the material layers also decreases, and the elongation at break is affected to a certain extent; in comparative example 2, formaldehyde is used as a reducing agent, because hydrogen gas is generated, which has a great influence on the formation of the nano-copper layer, resulting in the formation of the nano-copper layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Chemically Coating (AREA)

Abstract

本发明涉及新材料技术领域,特别是涉及复合集流体的制备方法。本发明通过对聚合物膜进行激光飞秒刻蚀,聚合物膜表面能形成大量刻蚀孔洞,使得非极性的聚合物膜表面极性提高,与后续镀覆的极性较强的金属层之间的结合力增强,且有助于更好地吸附下一步骤的活化液,从而顺利完成活化;采用特定组成和浓度的活化液对聚合物膜进行接触处理,并在紫外光下进行处理,由于激光效应,活化液中的二价铜离子被H 2PO 2 -还原成铜单质,使聚合物膜表面形成一层纳米级铜层,从而达到一定的方阻,可以进行后续的化学镀或电镀,替代了传统技术中制备复合集流体的物理气相沉积步骤,有效降低了能耗和生产成本,提高了生产效率。

Description

复合集流体的制备方法 技术领域
本发明涉及新材料技术领域,特别是涉及复合集流体的制备方法。
背景技术
复合集流体是一种新型的集流体材料,由高分子基材层两面镀金属制成,呈“三明治结构”。目前,复合集流体的制备方法主要是在高分子基材的上下表面采用真空状态下物理气相沉积法(PVD)沉积一定厚度的金属层,以使其达到一定的方阻,从而达到可以电镀或化学镀的标准,然后把双面沉积金属后的材料进行电镀或化学镀使金属层加厚,使材料的方阻能达到二次电池需要的标准。
然而,真空物理气相沉积对设备要求高,并且伴随着高温,而高分子基材在高温下很容易变形、起皱、窜泡、穿孔、变脆等,即使在沉积过程中实时对高分子材料进行冷却处理,上述问题也不能完全避免,因此,采用物理气息制备的复合集流体产品良率较低,通常低于50%。此外,物理气相沉积速度慢,生产效率低下;而且由于物理气相沉积需要把金属气化,所耗费的能量很高,同时,高分子基材的冷却也需要很高的能量,形成能量互冲,造成很大的能量损失,不利于碳达峰、碳中和。
发明内容
基于此,有必要提供一种能耗低、成本低、生产效率高且良品率高的复合集流体的制备方法。
本发明的一个方面,提供了一种复合集流体的制备方法,其包括以下步骤:
对聚合物膜进行激光飞秒刻蚀,制得聚合物膜基材;将所述聚合物膜基材与活化液接触处理,干燥,进行紫外光照处理,制得活化基材;将所述活化基材进行化学镀铜;
其中,所述活化液中包括浓度为10g/L~20g/L的CuSO 4,以及浓度为30g/L~40g/L的NaH 2PO 2或KH 2PO 2
在一些实施方式中,所述激光飞秒刻蚀的波长为150nm~350nm,功率为10mW~50mW,时间为10fs~60fs。
在一些实施方式中,所述紫外光照处理的波长为157nm~353nm,所述紫外光照处理的时间为5ms~100ms。
在一些实施方式中,所述接触处理为将所述活化液涂覆于所述聚合物膜基材,形成20nm~60nm厚的活化涂膜。
在一些实施方式中,所述干燥的温度为75℃~85℃,时间为2min~5min。
在一些实施方式中,所述聚合物膜的材质为聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰亚胺、聚醚醚酮以及聚甲基丙烯酸甲酯中的一种或多种。
在一些实施方式中,所述聚合物膜的厚度为2μm~10μm。
在一些实施方式中,所述化学镀铜为碱性化学镀铜,所述化学镀铜获得的铜层厚度为100nm~1000nm。
在一些实施方式中,所述化学镀铜后还包括电镀铜,所述电镀铜为酸性电解镀铜,所述电镀铜获得的铜层厚度为900nm~1100nm。
在一些实施方式中,所述化学镀铜后还包括电镀1nm~2nm的铬层。
通过对聚合物膜进行激光飞秒刻蚀,聚合物膜表面能形成大量刻蚀孔洞,使得非极性的聚合物膜表面极性提高,与后续镀覆的极性较强的金属层之间的结合力增强,而且还能与金属层能形成锁扣效应,进一步提高两者的结合强度, 此外,极性提高意味着亲水性更好,有助于更好地吸附下一步骤的活化液,从而顺利完成活化;采用特定组成和浓度的活化液对聚合物膜进行接触处理,并在紫外光下进行处理,由于激光效应,活化液中的二价铜离子被H 2PO 2 -还原成铜单质,使聚合物膜表面形成一层纳米级铜层,从而达到一定的方阻,可以进行后续的化学镀或电镀,替代了传统技术中制备复合集流体的物理气相沉积步骤,有效降低了能耗和生产成本,提高了生产效率。此外,由于飞秒级的刻蚀时间极短,对聚合物膜材料本身不会造成宏观的损伤,因而不会影响其物理强度和性能,因此,也有效提高了产品良率。
附图说明
图1为本发明一实施例的流程工艺及每一步骤处理后对应的扫描电镜图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在发明的描述中,“多种”的含义是至少两种,例如两种,三种等,除非另有明确具体的限定。在本发明的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术 语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
本发明中,涉及到数值区间,如无特别说明,上述数值区间内视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。
本发明中涉及的百分比含量,如无特别说明,对于固液混合和固相-固相混合均指质量百分比,对于液相-液相混合指体积百分比。
本发明中涉及的百分比浓度,如无特别说明,均指终浓度。所述终浓度,指添加成分在添加该成分后的体系中的占比。
本发明中的温度参数,如无特别限定,既允许为恒温处理,也允许在一定温度区间内进行处理。所述的恒温处理允许温度在仪器控制的精度范围内进行波动。
本发明的一个方面,提供了一种复合集流体的制备方法,其包括以下步骤:
对聚合物膜进行激光飞秒刻蚀,制得聚合物膜基材;将聚合物膜基材与活化液接触处理,干燥,进行紫外光照处理,制得活化基材;将活化基材进行化学镀铜;
其中,活化液中包括浓度为10g/L~20g/L的CuSO 4,以及浓度为30g/L~40g/L的NaH 2PO 2或KH 2PO 2
从1990年代左右大规模商用开始,锂离子电池的比能量密度大约以每年3%的速度提升,在增加能量密度的同时,人们希望锂离子电池能够更轻、更安全。锂电池主要将能量存储在电极材料中,因此,提升能量密度的常用思路就是优化和开发电极材料,或者直接增加活性物质在电池中的比例。然而,这些活性成分的改变对电池性能会造成较大的影响,因此操作复杂、研发成本高。为了解决这一问题,研发人员把整个电池的结构进行拆分,试图寻找新的思路。人们发现,传统的金属集流体占锂电池比重可达15%甚至更高,它由金属箔膜组成,重量大,功能单一,主要作为电子的传导载体,是电池内唯一不影响锂离子传输的组成部分,具有很大的开发空间,因此,通过对集流体进行优化,可以让电池的能量密度再进一步提升。于是,“三明治”结构的复合集流体应运而生,其以轻质的聚合物材料作为支撑体,在聚合物两面复合高纯度的金属薄膜,由于有机聚合物大大轻于金属,这样制备出来的复合集流体,总体厚度不增加的情况下(9微米左右),比原来的纯金属集流体变轻了80%;而由于集流体的重量占比减轻,电池能量密度就能够提升8%~26%(具体数据依电池类型的不同而不同)。
铜是一种导电性较好且廉价的金属,因此被广泛用作导电材料,自然,也非常适用于制备复合集流体。然而,单质铜的沸点高达2835K,若采用物理气相沉积进行含铜复合集流体的制备,即使铜本身非常廉价,由于物理气相沉积对设备和温度的高要求,仍然会导致生产成本居高不下。而且,在聚合物表面镀铜除了需要达到一定的方阻之外,还需要催化活性中心,传统技术中通常采用银或钯等贵金属作为催化活性金属,进一步提高了生产成本。
本发明通过对聚合物膜进行激光飞秒刻蚀,聚合物膜表面能形成大量刻蚀孔洞,使得非极性的聚合物膜表面极性提高,与后续镀覆的极性较强的金属层 之间的结合力增强,而且还能与金属层能形成锁扣效应,进一步提高两者的结合强度,此外,极性提高意味着亲水性更好,有助于更好地吸附下一步骤的活化液,从而顺利完成活化;采用特定组成和浓度的活化液对聚合物膜进行接触处理,并在紫外光下进行处理,由于激光效应,活化液中的二价铜离子被H 2PO 2 -还原成铜单质,使聚合物膜表面形成一层纳米级铜层,从而达到一定的方阻,可以进行后续的化学镀或电镀,替代了传统技术中制备复合集流体的物理气相沉积步骤,无需在真空环境下进行沉积,基本没有冷热能量对冲,有效降低了能耗和生产成本,提高了生产效率;而且,该纳米级铜层本身具有化学镀铜催化活性,因此还能减省传统技术中采用的银或钯等贵金属催化剂,更进一步降低了生产成本。此外,由于飞秒级的刻蚀时间极短,对聚合物膜材料本身不会造成宏观的损伤,因而不会影响其物理强度和性能,因此,也有效提高了产品良率。
可选地,活化液中CuSO 4的浓度例如可以是12g/L、13g/L、14g/L、15g/L、16g/L、17g/L、18g/L或19g/L。
可选地,活化液中NaH 2PO 2或KH 2PO 2的浓度例如可以是32g/L、33g/L、34g/L、35g/L、36g/L、37g/L、38g/L或39g/L。
优选地,还原剂选择NaH 2PO 2
在一些实施方式中,活化液的溶剂为水,优选为去离子水。
活化液中溶质的选择及浓度对实现本发明的技术效果至关重要。铜盐与还原剂的氧化还原电位匹配,能发生氧化还原反应是最基础的要求;此外,氧化还原反应的速度、反应体系中离子的种类也会直接影响纳米铜层的形成效果。将浓度设置在合适范围内,反应速度较快,生产效率高,同时不至于由于反应速度过快导致晶粒生长得太大,从而使得形成的纳米铜层结构过于疏松,影响 复合集流体的机械强度和导电效果。
优选地,本发明制备的复合集流体为复合负极集流体。
在一些实施方式中,激光飞秒刻蚀的波长为150nm~350nm,功率为10mW~50mW,时间为10fs~60fs。可选地,激光飞秒刻蚀的波长例如可以是160nm、165nm、170nm、175nm、180nm、185nm、190nm、195nm、200nm、220nm、240nm、260nm、280nm、300nm、320nm或340nm。可选地,激光飞秒刻蚀的功率例如可以是15mW、20mW、25mW、30mW、35mW、40mW或45mW。可选地,激光飞秒刻蚀的时间例如可以是15fs、20fs、25fs、30fs、35fs、40fs、45fs、50fs或55fs。合适的激光飞秒刻蚀参数设置可以使得刻蚀形成的孔洞尺寸和密度适中,在不对聚合物膜的物理性能造成影响的前提下,尽可能地提高聚合物膜与金属层的结合力,提高其亲水性,使得后续能更好地对活化液进行吸附。
在一些实施方式中,紫外光照处理时,紫外光的波长为157nm~353nm,将接触处理后的聚合物膜基材进行紫外光照处理的时间为5ms~100ms。可选地,紫外光的波长例如可以是160nm、165nm、170nm、175nm、180nm、185nm、190nm、195nm、200nm、220nm、240nm、260nm、280nm、300nm、320nm、340nm或350nm。可选地,紫外光照处理的时间例如可以是10ms、20ms、30ms、40ms、50ms、60ms、70ms、80ms或90ms。将接触处理后的聚合物膜基材暴露在紫外光下进行紫外光照处理,基材表面会生成大量的胞状微粒,同时二价铜离子会被H 2PO 2 -还原成铜单质,从而使得基材表面生长出一层纳米级的铜层,如此,聚合物膜表面可以达到电镀或化学镀的方阻,并且具有化学镀催化活性,可以直接取代传统技术中采用物理气相沉积和添加钯或银等贵金属作为催化剂的步骤,有效降低了生产成本,提高了良品率。合适的紫 外波长具备合适的能量,能控制氧化还原反应速度在合适范围内。
在一些实施方式中,接触处理为将活化液涂覆于聚合物膜基材,形成20nm~60nm厚的活化涂膜。可选地,活化涂膜的厚度例如可以是25nm、30nm、35nm、40nm、45nm、50nm或55nm。合适的涂膜厚度能提供足以形成纳米铜层的原料,同时使成本更低。
在一些实施方式中,干燥的温度为75℃~85℃,时间为2min~5min。优选地,干燥的温度为70℃,时间为3min。
在一些实施方式中,聚合物膜的材质为聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰亚胺、聚醚醚酮以及聚甲基丙烯酸甲酯中的一种或多种。可以理解,聚合物膜的制备工艺可以是本领域常见的各种制膜工艺,例如可以是吹塑制膜工艺、流涎制膜工艺以及双向拉伸制膜工艺中的一种或多种。
在一些实施方式中,制备聚合物膜时聚合物溶液的特性粘度为0.5dL/g~0.8dL/g,可选地,特性粘度例如可以是0.6dL/g或0.7dL/g。一定特性粘度范围内的聚合物溶液制得的膜更适用于本申请的工艺。
在一些实施方式中,聚合物膜的厚度为2μm~10μm。可选地,聚合物膜的厚度例如可以是3μm、4μm、5μm、6μm、7μm、8μm或9μm。将聚合物膜的厚度设置在合适范围内,能特别适用于本发明的制备工艺,不至于因为过薄而导致刻蚀后机械强度受损,也不至于因为过厚而导致集流体的导电性或复合层之间的结合力受到影响。
在一些实施方式中,化学镀铜为碱性化学镀铜,化学镀铜获得的铜层厚度为100nm~1000nm。可以理解,在进行化学镀铜前,可以先采用去离子水对活化基材进行清洗,可避免对化学镀铜造成影响。化学镀铜主要是为了形成加厚的铜层,使复合集流体的方阻能达到二次电池所需的标准,可采用任何本领域 常规通用的碱性化学镀铜溶液进行镀铜。化学镀铜层的厚度根据需要可以调整,例如可以是200nm、300nm、400nm、500nm、600nm、700nm、800nm或900nm。
在一些实施方式中,化学镀铜后还包括电镀铜,电镀铜为酸性电解镀铜,电镀铜获得的铜层厚度为900nm~1100nm。可以理解,在进行电镀铜前,可以先采用去离子水对化学镀铜后的活化基材进行清洗,可避免对电镀铜造成影响。电镀铜主要是为了进一步加厚铜层,以满足二次电池的使用需求,可采用任何本领域常规通用的酸性电解镀铜溶液进行镀铜。电镀铜层的厚度根据需要可以调整,例如可以是910nm、920nm、930nm、940nm、950nm、960nm、970nm、980nm、990nm、1000nm、1010nm、1020nm、1030nm、1040nm、1050nm、1060nm、1070nm、1080nm或1090nm。
在一些实施方式中,化学镀铜后还包括电镀1nm~2nm的铬层。可以理解,在进行电镀铬前,可以先采用去离子水对电镀铜后的活化基材进行清洗,可避免对电镀铬造成影响。电镀铬主要是为了形成防氧化保护层,以提高复合集流体的使用寿命,可采用三价铬或六价铬溶液进行镀铬。
可以理解,在复合集流体基材的制备工艺中,可以同时包括电镀铜和电镀铬的步骤,也可以仅包括其中任意一个。例如,同时包括电镀铜和电镀铬的步骤时,则复合集流体的结构为:聚合物膜层-化学镀铜层-电镀铜层-电镀铬层;若仅包括电镀铬层而不含电镀铜步骤,则复合集流体的结构为:聚合物膜层-化学镀铜层-电镀铬层。
在一些实施方式中,进行化学镀铜、电镀铜或者电镀铬后,在75℃~85℃条件下干燥2min~5min,优选地,在80℃条件下干燥3min。
以下结合具体实施例和对比例对本发明做进一步详细的说明。以下具体实 施例中未写明的实验参数,优先参考本申请文件中给出的指引,还可以参考本领域的实验手册或本领域已知的其它实验方法,或者参考厂商推荐的实验条件。可理解,以下实施例所用的仪器和原料较为具体,在其他具体实施例中,可不限于此;本发明说明书实施例中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本发明实施例说明书相关组分的含量按比例放大或缩小均在本发明说明书实施例公开的范围之内。具体地,本发明实施例说明书中所述的重量可以是μg、mg、g、kg等化学化工领域公知的质量单位。
仪器来源:
激光飞秒刻蚀设备:美国Newport飞秒激光加工系统;
紫外光处理设备:深圳宝利旺商贸有限公司的DK-8-KZ型激光雕刻机工作平台。
实施例1
将特性粘度0.6dL/g的聚对苯二甲酸乙二醇酯溶液通过吹塑制膜工艺制备成厚度为2μm的聚对苯二甲酸乙二醇酯薄膜;设置激光飞秒刻蚀设备的波长为190nm,功率为25mW,对聚对苯二甲酸乙二醇酯薄膜刻蚀15fs,得到聚对苯二甲酸乙二醇酯基材;将活化液(组成:CuSO 4浓度15g/L,NaH 2PO 2浓度35g/L,溶剂去离子水)涂覆在聚对苯二甲酸乙二醇酯基材上,形成50nm厚的活化涂膜,在80℃下干燥3min后,在180nm的紫外光下处理50ms,得到活化的聚对苯二甲酸乙二醇酯基材;
活化的聚对苯二甲酸乙二醇酯基材经去离子水清洗后,置于碱性化学镀铜溶液(硫酸铜-甲醛体系)中进行化学镀铜,使铜层加厚至1000nm;取出,用 去离子水清洗后,置于酸性电镀铜溶液(硫酸-硫酸铜-氯离子体系)中进行电镀铜(电流密度5A/dm 2),使铜层加厚至1000nm;取出,用去离子水清洗后,置于三价铬电镀液中进行电镀铬(电流密度30A/dm 2),形成2nm厚的防氧化铬层,然后在80℃下干燥3min,得到聚对苯二甲酸乙二醇酯-铜复合集流体。
实施例2
与实施例1基本相同,区别在于,聚合物选用特性粘度为0.5dL/g的聚丙烯。
实施例3
与实施例1基本相同,区别在于,聚合物选用特性粘度为0.8dL/g的聚酰亚胺。
实施例4
与实施例1基本相同,区别在于,聚对苯二甲酸乙二醇酯薄膜厚度为10μm。
对比例1
与实施例1基本相同,区别在于,活化液中的CuSO 4变为CuCl 2(活化液中Cu 2+的浓度不变)。
对比例2
与实施例1基本相同,区别在于,活化液中的还原剂为甲醛,含量为37%。
对比例3
与实施例1基本相同,区别在于,活化液中CuSO 4的浓度为30g/L,NaH 2PO 2的浓度60g/L。
对比例4
与实施例1基本相同,区别在于,聚对苯二甲酸乙二醇酯薄膜厚度为0.5μm。
将各实施例和对比例中制得的复合集流体进行下列各项测试,所得结果列入表1中。
(1)方阻测试
测试方法:使用四探针测试仪测量电镀后铜膜正反两面膜片电阻;
(2)断裂拉伸强度及断裂伸长率测试
测试方法:拉力机:拉伸速度50mm/min,展开3-4圈样品,每个样取5个片样,取平均值作为测试结果。要求测量时长度方向与夹具轴线平行,并保持样品直线状;
MD:纵向;TD:横向。
表1
组别 方阻/mΩ/□ 断裂伸长率/% 断裂拉伸强度/MPa
实施例1 22 MD 22 TD 8 MD 145,TD 160
实施例2 26 MD 21 TD 7 MD 145,TD 160
实施例3 38 MD 33 TD 16 MD 145,TD 160
实施例4 32 MD 36 TD 20 MD 180,TD 167
对比例1 46 MD 20 TD 6 MD 135,TD 148
对比例2 44 MD 16 TD 4 MD 115,TD 130
对比例3 56 MD 19 TD 6 MD 132,TD 145
对比例4 35 MD 16 TD 5 MD 102TD 108
从表1可知,本发明各实施例制得的复合集流体均具备较好的导电性和断裂伸长率,因此不仅能起到最基本的导电作用,安全性也有保证,在受到外力冲击或挤压时,不易破裂,而且良品率较传统技术有了明显的提升;且制备方法简单,能耗低,较传统的物理气相沉积方法成本能大幅下降。
相较于实施例1,对比例1中,由于活化液中含有氯离子,对纳米铜层的生长有影响,会导致形成的纳米铜层比较疏松,因此导电性有所下降,金属层和聚合物层之间的结合力也有所下降,断裂伸长率受到一定影响;对比例2中, 采用甲醛作为还原剂,由于会产生氢气,对纳米铜层的形成有很大的影响,导致纳米铜层结构中有孔洞,导电性和断裂伸长率大大下降;对比例3中,由于硫酸铜和还原剂的浓度过高,氧化还原反应速度过快,导致纳米铜的沉积速度过快,晶粒较大,形成的铜层不够致密,因此导电性和断裂伸长率也均有所下降;对比例4中,聚合物膜太薄,采用本发明的刻蚀工艺进行刻蚀时,会对聚合物膜本身的物理性能造成影响,导致制得的复合集流体断裂伸长率明显降低,且产品的良品率也明显下降。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准,说明书及附图可以用于解释权利要求的内容。

Claims (10)

  1. 一种复合集流体的制备方法,其特征在于,包括以下步骤:
    对聚合物膜进行激光飞秒刻蚀,制得聚合物膜基材;将所述聚合物膜基材与活化液接触处理,干燥,进行紫外光照处理,制得活化基材;将所述活化基材进行化学镀铜;
    其中,所述活化液中包括浓度为10g/L~20g/L的CuSO 4,以及浓度为30g/L~40g/L的NaH 2PO 2或KH 2PO 2
  2. 根据权利要求1所述的制备方法,其特征在于,所述激光飞秒刻蚀的波长为150nm~350nm,功率为10mW~50mW,时间为10fs~60fs。
  3. 根据权利要求1所述的制备方法,其特征在于,所述紫外光照处理的波长为157nm~353nm,所述紫外光照处理的时间为5ms~100ms。
  4. 根据权利要求1所述的制备方法,其特征在于,所述接触处理为将所述活化液涂覆于所述聚合物膜基材,形成20nm~60nm厚的活化涂膜。
  5. 根据权利要求1所述的制备方法,其特征在于,所述干燥的温度为75℃~85℃,时间为2min~5min。
  6. 根据权利要求1~5任一项所述的制备方法,其特征在于,所述聚合物膜的材质为聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰亚胺、聚醚醚酮以及聚甲基丙烯酸甲酯中的一种或多种。
  7. 根据权利要求1~5任一项所述的制备方法,其特征在于,所述聚合物膜的厚度为2μm~10μm。
  8. 根据权利要求1~5任一项所述的制备方法,其特征在于,所述化学镀铜为碱性化学镀铜,所述化学镀铜获得的铜层厚度为100nm~1000nm。
  9. 根据权利要求1~5任一项所述的制备方法,其特征在于,所述化学镀铜后还包括电镀铜,所述电镀铜为酸性电解镀铜,所述电镀铜获得的铜层厚度为900 nm~1100nm。
  10. 根据权利要求1~5任一项所述的制备方法,其特征在于,所述化学镀铜后还包括电镀1nm~2nm的铬层。
PCT/CN2022/094820 2022-01-27 2022-05-25 复合集流体的制备方法 WO2023142320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210102551.3 2022-01-27
CN202210102551.3A CN114551896A (zh) 2022-01-27 2022-01-27 复合集流体的制备方法

Publications (1)

Publication Number Publication Date
WO2023142320A1 true WO2023142320A1 (zh) 2023-08-03

Family

ID=81674498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094820 WO2023142320A1 (zh) 2022-01-27 2022-05-25 复合集流体的制备方法

Country Status (2)

Country Link
CN (1) CN114551896A (zh)
WO (1) WO2023142320A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678534A (zh) * 2022-05-30 2022-06-28 合肥国轩高科动力能源有限公司 一种负极复合集流体的制备方法及其制得的产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313030A (zh) * 2017-07-18 2017-11-03 西南科技大学 非金属基体化学镀无钯活化及化学镀低活性金属的方法
JP2019026879A (ja) * 2017-07-27 2019-02-21 株式会社クオルテック 電子部品の製造方法及び電子部品
CN109599563A (zh) * 2018-11-22 2019-04-09 欣旺达电子股份有限公司 锂离子电池集流体及其制备方法
CN110943228A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313030A (zh) * 2017-07-18 2017-11-03 西南科技大学 非金属基体化学镀无钯活化及化学镀低活性金属的方法
JP2019026879A (ja) * 2017-07-27 2019-02-21 株式会社クオルテック 電子部品の製造方法及び電子部品
CN109599563A (zh) * 2018-11-22 2019-04-09 欣旺达电子股份有限公司 锂离子电池集流体及其制备方法
CN110943228A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIHONG ZHANG, TANG GUANGCHAO, CUI KAIFANG: "Electroless copper plating on polyimide thin film after femtosecond laser etching and laser-induced activation", DIAN DU YU TU SHI = ELECTROPLATING & FINISHING, GUANGDONG QINGGONG DIANDU XUEHUI, CN, vol. 39, no. 21, 15 November 2020 (2020-11-15), CN , pages 1477 - 1480, XP093081908, ISSN: 1004-227X, DOI: 10.19289/j.1004-227x.2020.21.006 *
PAN WANG, CUI KAIFANG; ZHONG LIANG: "Laser-Induced Activation Electroless Copper Plating on Surface of Polyimide Plastics", ELECTROPLATING & POLLUTION CONTROL, vol. 40, no. 3, 30 May 2020 (2020-05-30), pages 30 - 33, XP093081910 *

Also Published As

Publication number Publication date
CN114551896A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN103328693B (zh) 具有高耐腐蚀性的多孔金属体及其制造方法
WO2023142321A1 (zh) 低能耗制备复合集流体的方法
WO2015045418A1 (ja) カーボンナノチューブ及びその分散液、並びに、カーボンナノチューブ含有膜および複合材料
WO2023142320A1 (zh) 复合集流体的制备方法
US9676034B2 (en) Method of manufacturing powder having high surface area
JP6768386B2 (ja) 多孔質炭素材料、固体高分子形燃料電池用触媒および固体高分子形燃料電池ならびに多孔質炭素材料の製造方法
Zhang et al. Doping of Laser‐Induced Graphene and Its Applications
JP2015146227A (ja) 導電膜の製造方法、導電膜、導電性フィルム及び色素増感太陽電池用電極
JP6056963B2 (ja) 燃料電池用触媒及びその製造方法
CN103418252A (zh) 一种陶瓷基碳纳米管无机复合膜及制备方法
JP2022120813A (ja) 超薄型銅箔とその作製方法
CN115911402A (zh) 一种锂离子电池用负极集流体及其制备方法
RU2456717C1 (ru) Способ формирования каталитического слоя твердополимерного топливного элемента
CN106319924A (zh) 一种中高强度碳纤维的表面处理方法
Liu et al. Temperature-controlled and shape-dependent ZnO/TiO2 heterojunction for photocathodic protection of nickel-coated magnesium alloys
JP2009181783A (ja) 燃料電池用触媒電極
EP4128394A1 (en) Carbon electrodes having improved electrocatalytic activity
JP2023531556A (ja) 水電解用セパレータ
Natarajan et al. Homogeneous platinum deposition on chemically modified carbon nanostructures as catalysts for PEMFCs
JP6148141B2 (ja) 金属多孔体及び金属多孔体の製造方法
Lin et al. Highly dispersed palladium nanoparticles on poly (N 1, N 3-dimethylbenzimidazolium) iodide-functionalized multiwalled carbon nanotubes for ethanol oxidation in alkaline solution
CN116140615B (zh) 一种高耐电磨损的银石墨电触头材料及其制备方法
JP5376217B2 (ja) 燃料電池の電極材料用の粒子の製造方法、燃料電池用電極材料およびその製造方法、ならびに、燃料電池用電極の製造方法
CN116154245B (zh) 一种可用于全钒液流电池的质子交换膜及其制备方法
CN110980693A (zh) 碳复合材料及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923132

Country of ref document: EP

Kind code of ref document: A1