WO2023142195A1 - 降温组件及其制备方法以及加热不燃烧烟弹及其制备方法 - Google Patents

降温组件及其制备方法以及加热不燃烧烟弹及其制备方法 Download PDF

Info

Publication number
WO2023142195A1
WO2023142195A1 PCT/CN2022/076947 CN2022076947W WO2023142195A1 WO 2023142195 A1 WO2023142195 A1 WO 2023142195A1 CN 2022076947 W CN2022076947 W CN 2022076947W WO 2023142195 A1 WO2023142195 A1 WO 2023142195A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
air
permeable
adhesive
preparing
Prior art date
Application number
PCT/CN2022/076947
Other languages
English (en)
French (fr)
Inventor
杨荣
王远航
张月川
Original Assignee
乐智有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐智有限公司 filed Critical 乐智有限公司
Publication of WO2023142195A1 publication Critical patent/WO2023142195A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present application relates to the field of electronic cigarettes, in particular to a method for preparing a cooling component, a method for preparing a heat-not-burn pod, a cooling component, and a heat-not-burn pod.
  • cooling components for cooling.
  • the cooling component when the cooling part is loaded into the cooling tube, one end of the cooling tube needs to be sealed first.
  • the sealing of the cooling component is difficult due to the difficulty in connecting the seal and the cooling tube, resulting in low efficiency of the sealing preparation process of the cooling component. , thereby reducing the filling efficiency of the cooling section.
  • the present application provides a method for preparing a cooling assembly.
  • the manufacturing method of the cooling assembly includes providing a plurality of cooling tubes, and the cooling tubes include a first end and a second end arranged opposite to each other.
  • the tube has a receiving space, the first end is put into the receiving space of the glue storage part, and is in contact with the adhesive in the receiving space, so that the first ends of the plurality of cooling tubes
  • the end face of the first end is flush with adhesive, and a first air-permeable seal is provided.
  • the end face of the first end adhered with adhesive is attached to the first air-permeable seal.
  • Cutting a gas-permeable sealing member to form a first gas-permeable sealing part sealing the first end, and filling the cooling part from the second end into the accommodating space of the cooling tube.
  • the present application also provides a method for preparing a heat-not-burn cartridge.
  • the preparation method of the heat-not-burn cartridge includes providing a tube body, the tube body has an accommodating space, and sealing the tube body with a sealing member. One end of the body, put the smoking part into the accommodating space from the end away from the sealing part, and make the smoking part adjacent to the sealing part, prepare the cooling component as described in the second aspect
  • the cooling assembly is loaded into the accommodating space from the end away from the sealing member, and the first end is arranged adjacent to the smoking part relative to the second end, and the filter member is installed from the end away from the sealing member into the holding space.
  • the present application also provides a cooling assembly
  • the cooling assembly includes a cooling tube
  • the cooling tube includes a first end and a second end opposite to each other
  • the cooling tube has a receiving space
  • a cooling part the cooling part is accommodated in the storage space, the range of the volume ratio a of the cooling part to the storage space is: 20% ⁇ a ⁇ 60%
  • the cooling component further includes a first adhesive layer and a first air-permeable sealing part
  • the cooling assembly further includes a second adhesive layer and a second air-permeable sealing part, when the cooling assembly includes a first adhesive layer and a first air-permeable sealing part: the first adhesive
  • the knot layer is arranged on the end surface of the first end and is located at a part of the first end adjacent to the end surface of the first end, and the first air-permeable sealing part is bonded to the first end surface through the first adhesive layer.
  • the cooling component includes a second adhesive layer and a second air-permeable sealing part: the second adhesive layer is disposed on the end surface of the second end and is located adjacent to the second end As for the end faces of the two ends, the second air-permeable sealing part is bonded to the end faces of the second end through the second adhesive layer.
  • the present application also provides a heat-not-burn pod
  • the heat-not-burn pod includes a tube body, the tube body has an accommodating space, a sealing piece, and the sealing piece is sealed to the first tube
  • a smoking part is arranged in the accommodating space, and is arranged adjacent to the sealing part, as in the cooling assembly described in the third aspect
  • the cooling assembly is arranged in the accommodating space
  • the smoking element is located at one end of the smoking element away from the sealing element
  • the first air-permeable sealing part is adjacent to the smoking element compared with the cooling part
  • a filter element is arranged in the accommodating space, And it is arranged on the side of the cooling component away from the smoking piece.
  • FIG. 1 is a schematic flow diagram of a method for preparing a cooling component provided in an embodiment of the present application
  • Fig. 2 is a schematic structural view of the cooling assembly prepared by the method for preparing the cooling assembly provided in the embodiment of Fig. 1;
  • Fig. 3 is a three-dimensional exploded view of the cooling assembly provided in the embodiment of Fig. 2;
  • Fig. 4 is a schematic structural view of the cooling tube in the cooling assembly provided in the embodiment of Fig. 2;
  • FIG. 5 is a schematic flow chart of a method for preparing a cooling component provided in another embodiment of the present application.
  • Fig. 6 is a schematic structural view of the cooling assembly prepared by the method for preparing the cooling assembly provided in the embodiment of Fig. 5;
  • Fig. 7 is an exploded perspective view of the cooling assembly provided in the embodiment of Fig. 6;
  • FIG. 8 is a schematic flowchart of a method for preparing a cooling component provided in another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for preparing a cooling component provided in another embodiment of the present application.
  • Fig. 10 is a schematic flow diagram of a method for preparing the first end with an adhesive in the method for preparing the cooling component provided in the embodiment of Fig. 1;
  • Fig. 11 is a schematic flowchart of a method for preparing the second end with an adhesive in the method for preparing the cooling component provided in the embodiment of Fig. 5;
  • Fig. 12 is a schematic flowchart of a method for preparing a cooling component provided in another embodiment of the present application.
  • Fig. 13 is a schematic structural view of the first air-permeable sealing part prepared by the method for preparing the cooling component provided in the embodiment of Fig. 12;
  • Fig. 14 is a schematic flow diagram of a method for preparing a first vent hole provided in an embodiment of the method for manufacturing a cooling component provided in the embodiment of Fig. 12;
  • Fig. 15 is a schematic flow diagram of a method for preparing a first vent hole provided by another embodiment in the method for preparing a cooling component provided by the embodiment in Fig. 12;
  • Fig. 16 is a schematic flowchart of a method for preparing a cooling component provided in another embodiment of the present application.
  • Fig. 17 is a schematic structural view of the second air-permeable sealing part prepared by the method for preparing the cooling component provided in the embodiment of Fig. 16;
  • Fig. 18 is a schematic flowchart of a method for preparing a second air hole provided by an embodiment of the method for preparing the cooling component provided by the embodiment of Fig. 16;
  • Fig. 19 is a schematic flowchart of a method for preparing a second air hole provided by another embodiment in the method for preparing the cooling component provided by the embodiment in Fig. 16;
  • Fig. 20 is a schematic flowchart of a method for preparing a heat-not-burn pod according to an embodiment of the present application
  • Fig. 21 is a schematic structural view of the heat-not-burn cartridge prepared by the method for preparing the heat-not-burn cartridge provided by the embodiment of Fig. 20;
  • Fig. 22 is a schematic structural diagram of a cooling component provided in an embodiment of the present application.
  • Fig. 23 is an enlarged schematic diagram of place I in the cooling assembly provided by the embodiment of Fig. 22;
  • Fig. 24 is an enlarged schematic diagram of II in the cooling assembly provided by the embodiment of Fig. 22;
  • Fig. 25 is a schematic structural diagram of a heat-not-burn pod provided by an embodiment of the present application.
  • Fig. 26 is an exploded perspective view of the heat-not-burn cartridge provided by the embodiment of Fig. 25 .
  • the present application provides a method for preparing a cooling assembly.
  • the manufacturing method of the cooling assembly includes providing a plurality of cooling tubes, and the cooling tubes include a first end and a second end arranged opposite to each other.
  • the tube has a receiving space, the first end is put into the receiving space of the glue storage part, and is in contact with the adhesive in the receiving space, so that the first ends of the plurality of cooling tubes
  • the end face of the first end is flush with adhesive, and a first air-permeable seal is provided.
  • the end face of the first end adhered with adhesive is attached to the first air-permeable seal.
  • Cutting a gas-permeable sealing member to form a first gas-permeable sealing part sealing the first end, and filling the cooling part from the second end into the accommodating space of the cooling tube.
  • the preparation method of the cooling assembly further includes turning over the glue storage part, placing the second end into the accommodating space of the glue accumulator, and contact with the adhesive in the accommodating space, so that the end faces of the second ends of the plurality of cooling tubes are flush and adhered with adhesive agent, providing a second air-permeable sealing member, attaching the end surface of the second end adhered with the adhesive to the second air-permeable sealing member, and cutting the second air-permeable sealing member to form a sealed A second gas-permeable seal on the face of the second end.
  • the cooling tubes include a first end and a second end arranged opposite to each other, and the cooling tubes have a receiving space", after the "put the first end into the into the accommodating space in the glue accumulator, and contact with the adhesive in the accommodating space, so that the end faces of the first ends of the plurality of cooling tubes are flush and adhered with the adhesive "Before, the preparation method of the cooling component also includes scraping off the adhesive in the glue storage part that exceeds the first preset height, and the range of the first preset height h1 is: 0.1mm ⁇ h1 ⁇ 0.3 mm.
  • the "put the first end into the accommodating space of the glue accumulator, and make contact with the adhesive in the accommodating space, so that the first ends of the plurality of cooling tubes The end face of the end is flush and adhesive is adhered” includes setting the glue accumulator on one side of the first end and spaced from the first end, from the second end to the The first end pushes the cooling tube, the pushing force F is: 1N ⁇ F ⁇ 1.5N, and the end face of the first end is immersed in the adhesive in the accommodating space until the first The end surface of the first end abuts against the glue storage member, so that the portion of the first end adjacent to the end surface of the first end is adhered with adhesive.
  • the preparation method of the cooling assembly further includes the step of attaching the first air-permeable seal to the end surface of the first end A part of the surrounding area is cut to form a first ventilation hole.
  • the said "cutting the area surrounding the part where the first air-permeable sealing member and the end face of the first end are attached to form a first air-vent hole” includes selecting the first air-permeable sealing member and the first air-permeable sealing member. A predetermined area in the area surrounded by the portion where the end face of the first end is bonded, and cutting an outer contour of the predetermined area to form a first ventilation hole.
  • the said "cutting the area surrounding the part where the first air-permeable sealing member and the end face of the first end are attached to form a first air-vent hole” includes selecting the first air-permeable sealing member and the first air-permeable sealing member. A predetermined area in the area surrounded by the portion where the end surface of the first end is bonded, and cutting the inside of the predetermined area to form the first ventilation hole.
  • the material of the cooling tube includes at least one of 50-200g/m2 white cardboard or 50-200g/m2 kraft paper.
  • the binder includes at least one of glutinous rice glue, lap glue, straw glue or white latex.
  • the first air-permeable sealing member includes at least one of 10-50 g/m2 silk cotton paper, 10-50 g/m2 highly air-permeable paper or 45-105 g/m2 butter paper.
  • the "cutting the first air-permeable seal” includes:
  • a cutter is used to cut the first air-permeable sealing member along the outline of the cooling tube.
  • the "cutting the first air-permeable seal” includes:
  • a laser is used to cut the first air-permeable sealing member along the outline of the cooling tube.
  • the cutting speed v1 of the laser 800mm/s ⁇ v1 ⁇ 1500mm/s.
  • the focal length d1 of the laser 30cm ⁇ d1 ⁇ 60cm.
  • the cooling material includes at least one of molecular sieve, medical stone, raw ore, ceramic adsorption material, far-infrared ball, filter ceramic ball, tourmaline ball, SPM copper-zinc alloy filter material and activated carbon.
  • the "filling the cooling part from the second end into the accommodating space of the cooling tube” includes:
  • the cooling part is loaded into the storage space of the cooling tube from the second end, and the volume ratio a of the cooling part to the storage space is: 20% ⁇ a ⁇ 60%.
  • the second air-permeable sealing member includes at least one of 10-50 g/m2 silk cotton paper, 10-50 g/m2 highly air-permeable paper or 45-105 g/m2 butter paper.
  • the present application also provides a method for preparing a heat-not-burn cartridge.
  • the preparation method of the heat-not-burn cartridge includes providing a tube body, the tube body has an accommodating space, and sealing the tube body with a sealing member. One end of the body, put the smoking part into the accommodating space from the end away from the sealing part, and make the smoking part adjacent to the sealing part, prepare the cooling component as described in the second aspect
  • the cooling assembly is loaded into the accommodating space from the end away from the sealing member, and the first end is arranged adjacent to the smoking part relative to the second end, and the filter member is installed from the end away from the sealing member into the holding space.
  • the present application also provides a cooling assembly
  • the cooling assembly includes a cooling tube
  • the cooling tube includes a first end and a second end opposite to each other
  • the cooling tube has a receiving space
  • a cooling part the cooling part is accommodated in the storage space, the range of the volume ratio a of the cooling part to the storage space is: 20% ⁇ a ⁇ 60%
  • the cooling component further includes a first adhesive layer and a first air-permeable sealing part
  • the cooling assembly further includes a second adhesive layer and a second air-permeable sealing part, when the cooling assembly includes a first adhesive layer and a first air-permeable sealing part: the first adhesive
  • the knot layer is arranged on the end surface of the first end and is located at a part of the first end adjacent to the end surface of the first end, and the first air-permeable sealing part is bonded to the first end surface through the first adhesive layer.
  • the cooling component includes a second adhesive layer and a second air-permeable sealing part: the second adhesive layer is disposed on the end surface of the second end and is located adjacent to the second end As for the end faces of the two ends, the second air-permeable sealing part is bonded to the end faces of the second end through the second adhesive layer.
  • the present application also provides a heat-not-burn pod
  • the heat-not-burn pod includes a tube body, the tube body has an accommodating space, a sealing piece, and the sealing piece is sealed to the first tube
  • a smoking part is arranged in the accommodating space, and is arranged adjacent to the sealing part, as in the cooling assembly described in the third aspect
  • the cooling assembly is arranged in the accommodating space
  • the smoking element is located at one end of the smoking element away from the sealing element
  • the first air-permeable sealing part is adjacent to the smoking element compared with the cooling part
  • a filter element is arranged in the accommodating space, And it is arranged on the side of the cooling component away from the smoking piece.
  • FIG. 1 is a schematic flow chart of the preparation method of the cooling component provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the preparation method of the cooling component provided in the embodiment of Fig. 1
  • FIG. 3 is an exploded perspective view of the cooling assembly provided in the embodiment of FIG. 2
  • FIG. 4 is a schematic structural view of the cooling tube in the cooling assembly 10 provided in the embodiment of FIG. 2 .
  • the preparation method of the cooling assembly 10 includes providing a plurality of cooling tubes 11, the cooling tubes 11 include a first end 111 and a second end 112 arranged opposite to each other, and the cooling tubes 11 have a receiving space 113. Put the first end 111 into the accommodating space in the glue accumulator, and contact with the adhesive in the accommodating space, so that the first ends 111 of the plurality of cooling tubes 11 The ends are flush and bonded with adhesive. A first air-permeable sealing member is provided, and the end surface of the first end 111 adhered with adhesive is bonded to the first air-permeable sealing member. The first air-permeable sealing member is cut to form the first air-permeable sealing part 12 sealing the first end 111 . And the cooling part 13 is loaded into the accommodation space 113 of the cooling tube 11 from the second end 112 .
  • the cooling component 10 is mainly applied to the heat-not-burn cartridge 1 .
  • the heat-not-burn pod 1 will form a high-temperature aerosol after being heated, and the temperature is 200-380°C.
  • the cooling component 10 is used to cool the high-temperature aerosol to a temperature suitable for smoking.
  • the manufacturing method of the cooling component 10 includes but not limited to S11, S12, S13, S14 and S15. Next, S11, S12, S13, S14 and S15 will be described in detail.
  • the manufacturing method of the cooling assembly 10 includes providing a plurality of cooling tubes 11 , the cooling tubes 11 include a first end 111 and a second end 112 oppositely disposed, and the cooling tubes 11 have a receiving space 113 .
  • the cooling tube 11 is a channel for circulating aerosol, and the high-temperature aerosol flows through the cooling tube 11, and after being cooled by the cooling tube 11, the gas The temperature of the sol will decrease somewhat.
  • the cooling pipe 11 is made of food-grade material, which can reduce or even not produce toxic substances when heated.
  • the material of the cooling pipe 11 may be, but not limited to, food grade materials such as white cardboard or kraft paper.
  • the cooling pipe 11 can be, but not limited to, white cardboard of 50-200 g/m2, kraft paper of 50-200 g/m2, and the like.
  • the diameter D1 of the cooling tube 11 is in the range of: 6mm ⁇ D1 ⁇ 6.6mm. If the diameter D1 of the cooling tube 11 is too small, the resistance to sucking the aerosol is too large, and if the diameter D1 of the cooling tube 11 is too large, the concentration of the aerosol in the cooling tube 11 will be too high. Small, affecting the taste of the inhaled aerosol. Therefore, the range of the diameter D1 of the cooling tube 11 is: 6mm ⁇ D1 ⁇ 6.6mm, which can make the aerosol concentration in the cooling tube 11 full while ensuring low suction resistance. It should be noted that the suction resistance refers to the resistance encountered when the aerosol is sucked into the cooling tube 11 and the aerosol is sucked out of the cooling tube 11 .
  • the binder is a food-grade binder, which can reduce or even not produce poisons when heated.
  • the binder may be, but not limited to, one or more food-grade binders in glutinous rice glue, lap glue, straw glue or white latex.
  • the first gas-permeable sealing member is made of a food-grade material, which can reduce or even eliminate the generation of poisons when heated.
  • the material of the first air-permeable sealing member may be, but not limited to, food-grade materials such as silk tissue paper, highly air-permeable paper, or butter paper.
  • the first air-permeable sealing member may be, but not limited to, 10-50 g/m2 silk cotton paper, 10-50 g/m2 highly air-permeable paper, or 45-105 g/m2 butter paper.
  • the size of the first air-permeable sealing member is much larger than the size of the end face of the first end 111, therefore, the first air-permeable sealing member can be used with multiple The end surface of the first end 111 of the cooling tube 11 is bonded.
  • the first air-permeable sealing member is cut along the outline of the cooling pipe 11, so that the formed first air-permeable sealing part 12 has the same diameter as the cooling pipe 11, So that the first air-permeable sealing part 12 can completely seal the end surface of the first end 111 without affecting the subsequent preparation and assembly of the cooling component 10 .
  • a cutter is used to cut the first air-permeable sealing member along the contour of the cooling tube 11 to form the first air-permeable sealing portion 12 sealing the end surface of the first end 111 .
  • the cutter is a hard metal material.
  • the material of the cutter can be but not limited to high carbon steel, alloy tool steel or black steel.
  • heat treatment and electroplating are carried out on the cutter to increase the strength, hardness, toughness and wear resistance of the cutting edge of the cutter, so that the first air-permeable sealing member along the cooling pipe 11 Cutting the contour is more efficient and quality.
  • the processing power P1 is: 1.5KW ⁇ P1 ⁇ 2.5KW
  • the processing air pressure is 1500MPa.
  • a laser is used to cut the first air-permeable sealing member along the outline of the cooling tube 11 to form the first air-permeable sealing portion 12 sealing the end surface of the first end 111 .
  • the laser emitted by the laser head cuts the first air-permeable sealing member along the outline of the cooling tube 11 along a first preset path, and the translation and rotation of the laser emitted by the laser head can make multiple The first gas permeable seal is cut. Since the laser has relatively high energy, the energy can be transferred to the first air-permeable sealing member, so that the place on the first air-permeable sealing member irradiated by the laser generates high temperature and burns.
  • the spots diameter of the laser beam irradiated on the first air-permeable sealing member is on the order of microns, which can be approximated as a point, the paths irradiated by the laser on the first air-permeable sealing member can be approximated as lines when connected.
  • the laser moves along the first preset path on the first air-permeable sealing member, the laser will burn each point on the first preset path to form micron-scale holes, and these holes formed by burning are connected to form incision.
  • the power P2 of the device carrying the laser head is: 60W ⁇ P2 ⁇ 150W
  • the power P3 of the laser head is: P2*60% ⁇ P3 ⁇ P2*80%
  • the laser head emits
  • the moving speed v1 of the laser is: 800mm/s ⁇ v1 ⁇ 1500mm/s
  • the focal length d1 of the laser emitted by the laser head is: 30cm ⁇ d1 ⁇ 60cm.
  • the laser head is fixed, and the cutting is performed only by the translation and rotation of the laser light emitted by the laser head.
  • the movement of the laser emitted by the laser head is driven by the translation and rotation of the laser head for cutting.
  • the laser head is fixed, and cutting is performed only through the translation and rotation of the laser light emitted by the laser head for illustration.
  • the cooling part 13 is arranged in the storage space 113 of the cooling tube 11, the cooling part 13 is a cooling material, and the cooling part 13 is used to accelerate the reduction of the temperature of the high-temperature aerosol, After the high-temperature aerosol flows through the entire cooling pipe 11, the temperature can be quickly reduced to a suitable suction temperature (eg, 40° C., etc.).
  • the cooling part 13 is a food-grade cooling material, which can reduce or even eliminate the generation of toxic substances when heated.
  • the material of the cooling part 13 may include, but not limited to, molecular sieves, medical stones, raw ores, ceramic adsorption materials, far-infrared balls, filter ceramic balls, tourmaline balls, SPM copper-zinc alloy filter materials, and activated carbon. at least one.
  • the cooling portion 13 can be in any shape.
  • the cooling portion 13 can be in the shape of granules, strips, or blocks, as long as the cooling portion 13 can be filled to In the cooling pipe 11, it is sufficient to play the role of cooling.
  • the range of the volume ratio of the cooling unit 13 to the housing space 113 is: 20% ⁇ a ⁇ 60%, which can make the cooling assembly 10 have Suitable suction resistance.
  • volume ratio a of the cooling portion 13 occupying the accommodation space 113 If the volume ratio a of the cooling portion 13 occupying the accommodation space 113 is too large, the resistance of the aerosol passing through the cooling portion 13 will be increased, resulting in excessive suction resistance. If the volume ratio a of the cooling unit 13 occupying the housing space 113 is too small, the contact area between the cooling unit 13 and the aerosol will be reduced, thereby reducing the cooling effect of the cooling unit 13 .
  • the present application provides a method for preparing the cooling assembly 10. First, the end surface of the first end 111 of the cooling tube 11 adhered with adhesive is attached to the first air-permeable sealing member, and then the first A gas-permeable seal is cut to form the first gas-permeable seal portion 12 on the end face of the first end 111, and then the cooling portion 13 is filled from the second end 112 into the accommodation space 113 of the cooling tube 11 middle. Therefore, when the method for preparing the cooling assembly 10 provided in the present application seals the end surface of the first end 111 of the cooling tube 11, it is not necessary to align the first air-permeable sealing portion 12 with the first end 111 one by one. The end surface can quickly seal the end surface of the first end 111 and fill the cooling part 13 . Therefore, the preparation method of the cooling assembly 10 provided in the present application improves the efficiency of the sealing process of the cooling tube 11 , thereby improving the filling efficiency of the cooling portion 13 .
  • FIG. 5 is a schematic flow chart of the preparation method of the cooling component provided by another embodiment of the present application; Schematic diagram of the structure of the cooling component; FIG. 7 is an exploded perspective view of the cooling component provided in the embodiment of FIG. 6 .
  • the preparation method of the cooling assembly 10 further includes turning over the glue storage part . Put the second end 112 into the accommodating space of the glue accumulator, and contact with the adhesive in the accommodating space, so that the second ends of the plurality of cooling tubes 11 The end faces of 112 are flush and adhered with adhesive.
  • a second air-permeable sealing member is provided, and the end surface of the second end 112 adhered with the adhesive is attached to the second air-permeable sealing member. And cutting the second air-permeable sealing member to form the second air-permeable sealing part 14 sealing the end face of the second end 112 .
  • the manufacturing method of the cooling component 10 includes but not limited to S11, S12, S13, S14, S15, S26, S27, S28 and S29.
  • S11 , S12 , S13 , S14 and S15 in this embodiment are the same as S11 , S12 , S13 , S14 and S15 in the previous embodiment.
  • S11, S12, S13, S14, S15, S26, S27, S28 and S29 will be described in detail.
  • the manufacturing method of the cooling assembly 10 includes providing a plurality of cooling tubes 11 , the cooling tubes 11 include a first end 111 and a second end 112 oppositely disposed, and the cooling tubes 11 have a receiving space 113 .
  • S11 , S12 , S13 , S14 and S15 are the same as S11 , S12 , S13 , S14 and S15 in the previous embodiment, and will not be repeated here.
  • the glue storage member is rotated by 180°, so as to turn the glue storage member from the side of the first end 111 to the side of the second end 112 .
  • the accommodating space of the glue storage member is filled with a binder, which is a food-grade binder, which can reduce or even not produce poisons when heated.
  • the binder may be, but not limited to, one or more food-grade binders in glutinous rice glue, lap glue, straw glue or white latex.
  • the second air-permeable sealing member is made of a food-grade material, which can reduce or even eliminate the generation of poisons when heated.
  • the material of the second air-permeable sealing member may be, but not limited to, food-grade materials such as silk tissue paper, highly air-permeable paper, or butter paper.
  • the second air-permeable sealing member may be, but not limited to, 10-50 g/m2 silk cotton paper, 10-50 g/m2 highly air-permeable paper, or 45-105 g/m2 butter paper.
  • the size of the second air-permeable sealing member is much larger than the size of the end surface of the second end 112, therefore, the second air-permeable sealing member can be used with multiple The end surface of the second end 112 of the cooling tube 11 is bonded.
  • Fig. 6 and Fig. 7 for the cooling assembly 10 prepared after step S29.
  • the diameter of the first air-permeable sealing part 12 is the same as that of the cooling tube 11, so that the second air-permeable sealing part 14 can completely seal the end surface of the second end 112 without affecting the cooling assembly 10. Subsequent preparation and assembly.
  • a cutter is used to cut the second air-permeable sealing member along the outline of the cooling tube 11 to form the second air-permeable sealing portion 14 sealing the end surface of the second end 112 .
  • the cutter is a hard metal material.
  • the material of the cutter can be but not limited to high carbon steel, alloy tool steel or black steel.
  • heat treatment and electroplating are carried out on the cutter to increase the strength, hardness, toughness and wear resistance of the cutting edge of the cutter, so that the second air-permeable sealing member along the cooling pipe 11 Cutting the contour is more efficient and quality.
  • the processing power P4 is: 1.5KW ⁇ P4 ⁇ 2.5KW
  • the processing air pressure is 1500MPa.
  • a laser is used to cut the second air-permeable sealing member along the outline of the cooling tube 11 to form the second air-permeable sealing portion 14 sealing the end surface of the second end 112 .
  • the laser emitted by the laser head cuts the second air-permeable sealing member along the outline of the cooling tube 11 along a second preset path, and the translation and rotation of the laser emitted by the laser head can make multiple The second gas-permeable seal is cut. Since the laser has relatively high energy, the energy can be transferred to the second air-permeable sealing member, so that the place on the second air-permeable sealing member irradiated by the laser generates high temperature and burns.
  • the spots diameter of the laser beam irradiated on the second gas-permeable sealing member is on the order of microns, which can be approximated as a point, the paths irradiated by the laser on the second gas-permeable sealing member can be connected to be approximated as lines.
  • the laser moves along the second preset path on the second air-permeable sealing member, the laser will burn each point on the second preset path to form micron-scale holes, and these holes formed by burning are connected to form incision.
  • the power P5 of the device carrying the laser head is: 60W ⁇ P5 ⁇ 150W
  • the power P6 of the laser head when it is working is: P5*60% ⁇ P6 ⁇ P5*80%
  • the laser head emits
  • the moving speed v2 of the laser light is: 800mm/s ⁇ v2 ⁇ 1500mm/s
  • the focal length d2 of the laser light emitted by the laser head is: 30cm ⁇ d2 ⁇ 60cm.
  • the laser head is fixed, and the cutting is performed only by the translation and rotation of the laser light emitted by the laser head.
  • the movement of the laser emitted by the laser head is driven by the translation and rotation of the laser head for cutting.
  • the laser head is fixed, and cutting is performed only through the translation and rotation of the laser light emitted by the laser head for illustration.
  • the end surface of the second end 112 of the cooling tube 11 adhered with the adhesive is bonded to the second air-permeable sealing member, and then the The second air-permeable sealing member is cut along the outline of the cooling tube 11 to form the second air-permeable sealing portion 14 on the end surface of the second end 112 . Therefore, when the method for preparing the cooling assembly 10 provided in the present application seals the end surface of the second end 112 of the cooling tube 11, it is not necessary to align the second air-permeable sealing portion 14 with the second end 112 one by one.
  • the end faces of the second ends 112 of the plurality of cooling tubes 11 can be sealed at one time, and then the second air-permeable sealing member is cut to form a second air-permeable seal for sealing the end faces of the second ends 112 part 14, thereby forming the cooling assembly 10. Therefore, the manufacturing method of the cooling assembly 10 provided in this embodiment improves the efficiency of the sealing process of the cooling tube 11 , thereby improving the production efficiency of the cooling assembly 10 .
  • FIG. 8 is a schematic flowchart of a method for preparing a cooling component provided in another embodiment of the present application.
  • the cooling tubes 11 after “providing a plurality of cooling tubes 11, the cooling tubes 11 include a first end 111 and a second end 112 disposed opposite to each other, and the cooling tubes 11 have a receiving space 113", after Said "put the first end 111 into the accommodating space of the glue accumulator, and make contact with the adhesive in the accommodating space, so that the first ends of the plurality of cooling tubes 11 Before the end face of the end 111 is flush and adhered with adhesive", the preparation method of the cooling assembly 10 also includes scraping off the adhesive exceeding the first preset height in the adhesive accumulator, the first The range of the preset height h1 is: 0.1mm ⁇ h1 ⁇ 0.3mm. It should be noted that this embodiment can be described in combination with any of the embodiments in FIG. 1 or FIG. 5 . In this embodiment, it is illustrated in combination with the embodiment in FIG. 5 .
  • the manufacturing method of the cooling component 10 includes but not limited to S11, S31, S12, S13, S14, S15, S26, S27, S28 and S29.
  • S11, S12, S13, S14, S15, S26, S27, S28 and S29 in this embodiment are the same as S11, S12, S13, S14, S15, S26, S27, S28 and S29 in the previous embodiment.
  • S11 , S31 , S12 , S13 , S14 , S15 , S26 , S27 , S28 and S29 will be described in detail.
  • the manufacturing method of the cooling assembly 10 includes providing a plurality of cooling tubes 11 , the cooling tubes 11 include a first end 111 and a second end 112 oppositely disposed, and the cooling tubes 11 have a receiving space 113 .
  • the range of the first preset height h1 is: 0.1mm ⁇ h1 ⁇ 0.3mm.
  • the height of the adhesive in the accommodating space of the glue storage member is kept consistent, thereby After the end surface of the first end 111 is immersed in the accommodating space and abuts against the bottom of the glue storage member, the first ends 111 of the plurality of cooling tubes 11 can be adhered to the same height. agent. Therefore, the subsequent gluing process of the plurality of cooling tubes 11 can maintain consistent quality, which improves the production quality of the cooling tubes 11 .
  • the range of the first preset height h1 is: 0.1mm ⁇ h1 ⁇ 0.3mm, which can ensure that the end surface of the first end 111 can firmly fit the first air-permeable sealing element without affecting the first air-permeable seal.
  • a gas-permeable sealing member is cut to form the first gas-permeable sealing portion 12 . If the first preset height h1 is too small, that is to say, too little adhesive adheres to the end surface of the first end 111 adjacent to the first end 111, the first end 111 will The end face of the device cannot securely fit the first gas-permeable seal.
  • the first preset height h1 is too large, that is, too much adhesive adheres to the end surface of the first end 111 adjacent to the first end 111, the first end 111 will Adhesive accumulated between the end surface adjacent to the first end 111 and the first air-permeable sealing member will affect the cutting of the first air-permeable sealing member, reduce the cutting efficiency, and easily One end 111 is formed with a burr.
  • S11, S12, S13, S14, S15, S26, S27, S28 and S29 in this embodiment are the same as S11, S12, S13, S14, S15, S26, S27, S28 and S29 in the previous embodiment, I won't repeat them here.
  • FIG. 9 is a schematic flowchart of a method for preparing a cooling component provided in another embodiment of the present application.
  • the preparation method of the cooling assembly 10 further includes Scrape off the adhesive exceeding the second preset height in the glue accumulator, the range of the second preset height h2 is: 0.1mm ⁇ h2 ⁇ 0.3mm.
  • this implementation mode can be combined with any of the implementation modes in FIG. 5 or FIG. 8 for illustration. In this implementation mode, it is illustrated in combination with the implementation mode in FIG. The limitation of the preparation method of the cooling component 10 provided.
  • the manufacturing method of the cooling component 10 includes but not limited to S11, S31, S12, S13, S14, S15, S26, S32, S27, S28 and S29.
  • S11, S31, S12, S13, S14, S15, S26, S27, S28 and S29 in this embodiment are the same as S11, S31, S12, S13, S14, S15, S26, S27, S28 in the previous embodiment. Same as S29.
  • S11 , S31 , S12 , S13 , S14 , S15 , S26, S27, S28 and S29 will be described in detail.
  • the manufacturing method of the cooling assembly 10 includes providing a plurality of cooling tubes 11 , the cooling tubes 11 include a first end 111 and a second end 112 oppositely disposed, and the cooling tubes 11 have a receiving space 113 .
  • the range of the first preset height h1 is: 0.1mm ⁇ h1 ⁇ 0.3mm.
  • the height of the adhesive in the accommodating space of the glue storage member is kept consistent, thereby After the end surface of the second end 112 is immersed in the accommodating space and abuts against the bottom of the glue storage member, the second ends 112 of the plurality of cooling tubes 11 can be adhered to the same height. agent. Therefore, the subsequent gluing process of the plurality of cooling tubes 11 can maintain consistent quality, which improves the production quality of the cooling tubes 11 .
  • the range of the second preset height h2 is: 0.1mm ⁇ h2 ⁇ 0.3mm, which can ensure that the end surface of the second end 112 can firmly fit the second air-permeable sealing element without affecting the second air-permeable seal.
  • the second air-permeable sealing part 14 is formed by cutting the two air-permeable sealing members. If the second predetermined height h2 is too small, that is to say, there is too little adhesive attached to the end surface of the second end 112 adjacent to the second end 112 , the second end 112 will The end face of the gas does not fit firmly against the second gas-permeable seal.
  • the second preset height h2 is too large, that is to say, too much adhesive adheres to the end surface of the second end 112 adjacent to the second end 112, the second end 112 will Adhesive accumulated between the end surface adjacent to the second end 112 and the second air-permeable sealing member will affect the cutting of the second air-permeable sealing member, reduce the cutting efficiency, and easily cut the second air-permeable sealing member
  • S11, S31, S12, S13, S14, S15, S26, S27, S28 and S29 in this embodiment are the same as S11, S31, S12, S13, S14, S15, S26, S27, S28 in the previous embodiment. It is the same as S29 and will not be repeated here.
  • FIG. 10 is a schematic flowchart of a method for preparing the first end with an adhesive in the method for preparing the cooling component provided in the embodiment of FIG. 1 .
  • the end face of the first end 111 of 11 is flush with the adhesive adhered to it" includes disposing the glue accumulator on one side of the first end 111 and spaced from the first end 111.
  • the cooling tube 11 is pushed from the second end 112 to the first end 111, and the pushing force F is: 1N ⁇ F ⁇ 1.5N.
  • the "put the first end 111 into the accommodating space of the glue storage part, and contact with the adhesive in the accommodating space, so that the multiple The end faces of the first ends 111 of the cooling tubes 11 are flush and adhered with adhesive” specifically include S121, S122 and S123.
  • S121, S122 and S123 will be described in detail.
  • the glue storage member is arranged on one side of the first end 111, and the glue storage member is arranged at intervals at the first end 111 to ensure the adhesiveness in the accommodating space.
  • the bonding agent is spaced apart from the first end 111 .
  • the second end 112 pushes the cooling tube 11 toward the first end 111 , and the pushing force F is: 1N ⁇ F ⁇ 1.5N.
  • the cooling tube 11 is pushed toward the first end 111 through the second end 112 , and the pushing force F is: 1N ⁇ F ⁇ 1.5N.
  • the first end 111 of the cooling tube 11 can be pushed into the adhesive in the accommodating space, and the cooling tube 11 will not be damaged due to excessive force. If the pushing force F is too small, the cooling tube 11 cannot be pushed into the accommodating space, or the first end 111 of the cooling tube 11 cannot be immersed in the adhesive in the accommodating space and The end surface of the first end 111 is made to abut against the bottom surface of the glue storage part, so that the first end 111 of the cooling tube 11 cannot fully adhere to the adhesive, so that the end surface of the first end 111 is subsequently adhered.
  • the first gas-permeable seal is not strong enough. If the pushing force F is too large, the cooling tube 11 will be easily pushed into the accommodating space, and the first end 111 of the cooling tube 11 is immersed in the adhesive in the accommodating space. Afterwards, the end surface of the first end 111 will abut against the bottom surface of the glue storage part, but because the pushing force F is too large, the end surface of the first end 111 may hit the bottom surface of the glue storage part, The first end 111 is damaged. Therefore, the force F that pushes the first end 111 of the cooling tube 11 into the adhesive in the accommodating space needs to be kept moderate. In this embodiment, the force F is: 1N ⁇ F ⁇ 1.5N.
  • a pressing plate is used to act on the end surface of the second end 112 to push the cooling tube 11 .
  • a pressing rod is used to act on the end surface of the second end 112 to push the cooling tube 11 .
  • the end surface of the first end 111 abuts against the glue storage member, specifically, the end surface of the first end 111 abuts against the bottom surface of the glue storage member, so that the first The end 111 can fully contact the adhesive in the accommodating space, so that the end surface of the first end 111 and the part of the first end 111 adjacent to the end surface of the first end 111 are adhered with adhesive, Therefore, it is ensured that when the end surface of the first end 111 is subsequently bonded to the first air-permeable sealing element, the end surface of the first end 111 and the first air-permeable sealing element can be bonded sufficiently firmly.
  • the end surfaces of the first ends 111 of the plurality of cooling tubes 11 abut against the bottom surface of the glue storage member, which can ensure that the first ends 111 of the plurality of cooling tubes 11 are adhered to the same degree of adhesive, Help to ensure the quality of production.
  • FIG. 11 is a schematic flowchart of a method for preparing the second end with an adhesive in the method for preparing the cooling component provided in the embodiment of FIG. 5 .
  • the end face of the second end 112 of 11 is flush with the adhesive adhered to it" includes disposing the glue accumulator on one side of the second end 112 and spaced from the second end 112 .
  • the cooling tube 11 is pushed from the first end 111 to the second end 112, and the magnitude of the pushing force F is: 1N ⁇ F ⁇ 1.5N.
  • the "put the second end 112 into the accommodating space of the glue storage part, and contact with the adhesive in the accommodating space, so that the multiple The end faces of the second ends 112 of the cooling tubes 11 are flush and adhered with adhesive” specifically include S271, S272 and S273.
  • S271, S272 and S273 will be described in detail.
  • the glue storage member is arranged on one side of the second end 112, and the glue storage member is arranged at intervals at the second end 112 to ensure the adhesiveness in the accommodating space.
  • the bonding agent is spaced apart from the second end 112 .
  • the second end 112 pushes the cooling tube 11 toward the first end 111, and the pushing force F is: 1N ⁇ F ⁇ 1.5N.
  • the cooling tube 11 is pushed toward the second end 112 through the first end 111 , and the pushing force F is: 1N ⁇ F ⁇ 1.5N.
  • the second end 112 of the cooling tube 11 can be pushed into the adhesive in the accommodating space, and the cooling tube 11 will not be damaged due to excessive force. If the pushing force F is too small, the cooling tube 11 cannot be pushed into the accommodating space, or the second end 112 of the cooling tube 11 cannot be immersed in the adhesive in the accommodating space and The end surface of the second end 112 is made to abut against the bottom surface of the glue storage member, so that the second end 112 of the cooling tube 11 cannot fully adhere to the adhesive, so that the end surface of the second end 112 is subsequently adhered.
  • the second gas-permeable seal is not strong enough. If the pushing force F is too large, the cooling tube 11 will be easily pushed into the accommodating space, and the second end 112 of the cooling tube 11 is immersed in the adhesive in the accommodating space. Afterwards, the end surface of the second end 112 will abut against the bottom surface of the glue storage part, but because the pushing force F is too large, the end surface of the second end 112 has the risk of hitting the bottom surface of the glue storage part, The second end 112 is damaged. Therefore, the force F that pushes the second end 112 of the cooling tube 11 into the adhesive in the accommodating space needs to be kept moderate. In this embodiment, the force F is: 1N ⁇ F ⁇ 1.5N.
  • a pressing plate is used to act on the end surface of the first end 111 to push the cooling tube 11 .
  • a pressing rod is used to act on the end surface of the first end 111 to push the cooling tube 11 .
  • the end surface of the second end 112 abuts against the glue storage piece, specifically, the end surface of the second end 112 abuts against the bottom surface of the glue storage piece, so that the second The end 112 can fully contact the adhesive in the accommodating space, so that the end surface of the second end 112 and the part of the second end 112 adjacent to the end surface of the second end 112 are adhered with adhesive, Therefore, it is ensured that when the end surface of the second end 112 is subsequently bonded to the second air-permeable sealing member, the end surface of the second end 112 and the second air-permeable sealing member can be bonded sufficiently firmly.
  • the end surfaces of the second ends 112 of the plurality of cooling tubes 11 abut against the bottom surface of the glue storage member, which can ensure that the second ends 112 of the plurality of cooling tubes 11 are adhered to the same degree of adhesive, Help to ensure the quality of production.
  • Fig. 12 is a schematic flow chart of a method for preparing a cooling component provided in another embodiment of the present application
  • Fig. 13 is a first air-permeable sealing part prepared by a method for preparing a cooling component provided in the embodiment of Fig. 12 Schematic diagram of the structure.
  • the preparation method of the cooling assembly 10 further includes making the first air-permeable sealing part and the The area surrounded by the portion where the end surface of the first end 111 is bonded is cut to form a first ventilation hole 121 . It should be noted that this embodiment can be described in combination with any of the embodiments in FIG. 1 or FIG. 5 . In this embodiment, it is illustrated in combination with the embodiment in FIG. 5 . The limitation of the preparation method of the cooling component 10 provided.
  • the manufacturing method of the cooling component 10 includes but not limited to S11, S12, S13, S41, S14, S15, S26, S27, S28 and S29.
  • S11, S12, S13, S14, S15, S26, S27, S28 and S29 in this embodiment are the same as S11, S12, S13, S14, S15, S26, S27, S28 and S29 in the foregoing embodiments.
  • S11 , S12 , S13 , S41 , S14 , S15 , S26 , S27 , S28 and S29 will be described in detail.
  • the manufacturing method of the cooling assembly 10 includes providing a plurality of cooling tubes 11 , the cooling tubes 11 include a first end 111 and a second end 112 oppositely disposed, and the cooling tubes 11 have a receiving space 113 .
  • the area surrounded by the part where the first air-permeable sealing member is attached to the end surface of the first end 111 refers to the area where the first air-permeable sealing part 12 formed in the subsequent step S14 is located. area.
  • the number of the first air holes 121 is one or more, and the shape of the first air holes 121 may be, but not limited to, circular, rectangular, polygonal or irregular.
  • the first ventilation hole 121 can increase the air permeability of the cooling tube 11 , thereby reducing the resistance of the aerosol flowing through the cooling tube 11 , so as to reduce the suction resistance.
  • the size of the first vent hole 121 is smaller than the size of the cooling material in the cooling portion 13 , so as to prevent the cooling material in the cooling portion 13 from leaking out of the first vent hole 121 .
  • S11, S12, S13, S14, S15, S26, S27, S28, and S29 in this embodiment are the same as S11, S12, S13, S14, S15, S26, S27, S28, and S29 in the foregoing embodiment. Let me repeat.
  • FIG. 14 is a schematic flowchart of a method for manufacturing the first air hole provided in an embodiment of the method for manufacturing the cooling component provided in the embodiment of FIG. 12 .
  • the "cutting the area surrounding the part where the first air-permeable sealing member is attached to the end surface of the first end 111 to form the first air-vent hole 121" includes selecting the first A predetermined area in an area surrounded by a portion of the air-permeable sealing member that is attached to the end surface of the first end 111 . And cutting the outer contour of the predetermined area to form the first ventilation hole 121 .
  • the "cutting the area surrounding the part where the first air-permeable sealing member is attached to the end surface of the first end 111 to form the first air-vent hole 121" includes S411 and S412 .
  • S411 and S412 will be described in detail.
  • the number of the preset area is one or more, and the shape of the preset area may be, but not limited to, a circle, a rectangle, a polygon, or an irregular shape.
  • the first air-permeable sealing member is cut along the outer contour of the predetermined area to form the first air-permeable hole 121 .
  • a laser is used to cut the first air-permeable sealing member, and the laser emitted by the laser head is used to cut the first air-permeable sealing member along the outer contour of the preset area, and the laser head is emitted to cut the first air-permeable sealing member.
  • Translation and rotation may cut a plurality of said first gas seals. Since the laser has relatively high energy, the energy can be transferred to the first air-permeable sealing member, so that the place on the first air-permeable sealing member irradiated by the laser generates high temperature and burns.
  • the spots diameter of the laser beam irradiated on the first air-permeable sealing member is on the order of microns, which can be approximated as a point, the paths irradiated by the laser on the first air-permeable sealing member can be approximated as lines when connected.
  • the laser moves on the first gas-permeable sealing member along the outer contour of the preset area, the laser will burn each point on the outer contour of the preset area to form micron-scale holes, and these burning forms The holes are connected to form a cut, so that the first predetermined area falls off to form the first air hole 121, and the laser is used to cut along the outer contour of the predetermined area, and the cutting speed is fast.
  • the power P1 of the device carrying the laser head is: 60W ⁇ P1 ⁇ 150W
  • the power P2 of the laser head when it is working is: P1*60% ⁇ P2 ⁇ P1*80%
  • the laser head emits
  • the moving speed v1 of the laser is: 800mm/s ⁇ v1 ⁇ 1500mm/s
  • the focal length d1 of the laser emitted by the laser head is: 30cm ⁇ d1 ⁇ 60cm.
  • the laser head is fixed, and the cutting is performed only by the translation and rotation of the laser light emitted by the laser head.
  • the movement of the laser emitted by the laser head is driven by the translation and rotation of the laser head for cutting.
  • the laser head is fixed, and cutting is performed only through the translation and rotation of the laser light emitted by the laser head for illustration.
  • FIG. 15 is a schematic flowchart of a method for manufacturing a first air hole provided in another embodiment of the method for manufacturing a cooling component provided in the embodiment in FIG. 12 .
  • the "cutting the area surrounding the part where the first air-permeable sealing member is attached to the end surface of the first end 111 to form the first air-vent hole 121" includes selecting a preset area. And cutting the inside of the predetermined area to form the first air hole 121 .
  • the "cutting the area surrounding the part where the first air-permeable sealing member is attached to the end surface of the first end 111 to form the first air-vent hole 121" includes S413 and S414 .
  • S413 and S414 will be described in detail.
  • the number of the preset area is one or more, and the shape of the preset area may be, but not limited to, a circle, a rectangle, a polygon, or an irregular shape.
  • the energy can be transferred to the first air-permeable sealing member, so that the place on the first air-permeable sealing member irradiated by the laser generates high temperature and burns .
  • the entire predetermined area is burned, thereby forming the first vent hole 121, no falling waste debris will be generated, and only the first air hole needs to be sucked away by a fan.
  • the flue gas generated by the combustion of the breathable seal does not require further treatment of waste chips, which simplifies the processing procedure.
  • the power P1 of the device carrying the laser head is: 60W ⁇ P1 ⁇ 150W
  • the power P2 of the laser head when it is working is: P1*60% ⁇ P2 ⁇ P1*80%
  • the laser head emits
  • the moving speed v1 of the laser is: 800mm/s ⁇ v1 ⁇ 1500mm/s
  • the focal length d1 of the laser emitted by the laser head is: 30cm ⁇ d1 ⁇ 60cm.
  • the laser head is fixed, and the cutting is performed only by the translation and rotation of the laser light emitted by the laser head.
  • the movement of the laser emitted by the laser head is driven by the translation and rotation of the laser head for cutting.
  • the laser head is fixed, and cutting is performed only through the translation and rotation of the laser light emitted by the laser head for illustration.
  • the spot size of the laser is constant, and the laser irradiates the entire preset area along one end of the outer contour of the preset area to the other end of the outer contour of the preset area, so that The entire predetermined area is burned to form the first ventilation hole 121 .
  • the spot size of the laser is constant, and the laser irradiates the entire preset area from the inside of the preset area to the outer contour of the preset area, so that the entire preset area
  • the first air holes 121 are formed by burning.
  • the spot size of the laser is adjusted, and when the laser irradiates the interior of the preset area, the spot size of the laser is increased to increase the speed of cutting the preset area by the laser. When the laser irradiates an area near the outer contour of the preset area, the spot size of the laser is reduced to prevent the laser from cutting into areas outside the preset area.
  • Fig. 16 is a schematic flow chart of a method for preparing a cooling component provided in another embodiment of the present application
  • Fig. 17 is a second air-permeable sealing part prepared by the method for preparing a cooling component provided in the embodiment of Fig. 16 Schematic diagram of the structure.
  • the preparation method of the cooling assembly 10 further includes making the second air-permeable sealing member and the The area surrounded by the portion where the end surface of the second end 112 is bonded is cut to form a second ventilation hole 141 . It should be noted that this embodiment can be described in conjunction with any of the embodiments in FIG. 5 or FIG. 12 . In this embodiment, it is illustrated in combination with the embodiment in FIG. 12 . The limitation of the preparation method of the cooling component 10 provided.
  • the manufacturing method of the cooling component 10 includes but not limited to S11, S12, S13, S41, S14, S15, S26, S27, S28, S42 and S29.
  • S11, S12, S13, S41, S14, S15, S26, S27, S28 and S29 in this embodiment are different from S11, S12, S13, S41, S14, S15, S26, S27, S28 and S28 in the previous embodiment.
  • S29 is the same.
  • S11, S12, S13, S41, S14, S15, S26, S27, S28, S42 and S29 will be described in detail.
  • the manufacturing method of the cooling assembly 10 includes providing a plurality of cooling tubes 11 , the cooling tubes 11 include a first end 111 and a second end 112 oppositely disposed, and the cooling tubes 11 have a receiving space 113 .
  • the area surrounded by the part where the second air-permeable sealing member is attached to the end surface of the second end 112 refers to the area where the second air-permeable sealing part 14 formed in the subsequent step S29 is located. area.
  • the number of the second air holes 141 is one or more, and the shape of the second air holes 141 may be, but not limited to, circular, rectangular, polygonal or irregular.
  • the second ventilation holes 141 can increase the air permeability of the cooling tube 11 , thereby reducing the resistance of the aerosol flowing through the cooling tube 11 , so as to reduce the suction resistance.
  • the size of the second vent hole 141 is smaller than the size of the cooling material in the cooling portion 13 , so as to prevent the cooling material in the cooling portion 13 from leaking out of the second vent hole 141 .
  • S11, S12, S13, S41, S14, S15, S26, S27, S28 and S29 in this embodiment are the same as S11, S12, S13, S41, S14, S15, S26, S27, S28 and S29 in the previous embodiment , which will not be repeated here.
  • FIG. 18 is a schematic flowchart of a method for preparing a second air hole provided in an embodiment of the method for manufacturing the cooling component provided in the embodiment of FIG. 16 .
  • the "cutting the area surrounding the part where the second air-permeable sealing member is attached to the end surface of the second end 112 to form the second air-vent hole 141" includes selecting the second The preset cutting area in the area surrounded by the part where the air-permeable sealing member is attached to the end surface of the second end 112 . And cutting the outer contour of the preset cutting area to form the second ventilation hole 141 .
  • the "cutting the area surrounding the part where the second air-permeable sealing member is attached to the end surface of the second end 112 to form the second air-vent hole 141" includes S421 and S422. .
  • S421 and S422 will be described in detail.
  • the number of the preset cutting domains is one or more, and the shape of the preset cutting domains may be, but not limited to, circular, rectangular, polygonal or irregular.
  • the second air-permeable sealing member is cut along the outer contour of the preset cutting area to form the second air-permeable hole 141 .
  • a laser is used to cut the second air-permeable sealing member, the laser emitted by the laser head cuts the second air-permeable sealing member along the outer contour of the preset cutting area, and the laser emitted by the laser head
  • the translation and rotation of can cut a plurality of said second gas-permeable seals. Since the laser has relatively high energy, the energy can be transferred to the second air-permeable sealing member, so that the place on the second air-permeable sealing member irradiated by the laser generates high temperature and burns.
  • the spots diameter of the laser beam irradiated on the second gas-permeable sealing member is on the order of microns, which can be approximated as a point, the paths irradiated by the laser on the second gas-permeable sealing member can be connected to be approximated as lines.
  • the laser moves on the second gas-permeable sealing member along the outer contour of the preset cutting region, the laser will burn each point on the outer contour of the preset cutting region to form micron-level holes, which The holes formed by burning are connected to form an incision, so that the first predetermined cutting area falls off to form the second air hole 141, and the laser is used to cut along the outer contour of the predetermined cutting area, and the cutting speed is fast .
  • the power P3 of the device carrying the laser head is: 60W ⁇ P3 ⁇ 150W
  • the power P4 of the laser head is: P3*60% ⁇ P4 ⁇ P3*80%
  • the laser head emits
  • the moving speed v2 of the laser light is: 800mm/s ⁇ v2 ⁇ 1500mm/s
  • the focal length d2 of the laser light emitted by the laser head is: 30cm ⁇ d2 ⁇ 60cm.
  • the laser head is fixed, and the cutting is performed only by the translation and rotation of the laser light emitted by the laser head.
  • the movement of the laser emitted by the laser head is driven by the translation and rotation of the laser head for cutting.
  • the laser head is fixed, and cutting is performed only through the translation and rotation of the laser light emitted by the laser head for illustration.
  • FIG. 19 is a schematic flowchart of a method for manufacturing a second air hole provided by another embodiment of the method for manufacturing a cooling component provided by the embodiment in FIG. 16 .
  • the "cutting the area surrounding the part where the second air-permeable sealing member is attached to the end surface of the second end 112 to form the second air-vent hole 141" includes selecting a preset cutting area . And cutting the inside of the preset cutting area to form the second ventilation hole 141 .
  • the "cutting the area surrounding the part where the second air-permeable sealing member is attached to the end surface of the second end 112 to form the second air-vent hole 141" includes S423 and S424 .
  • S423 and S424 will be described in detail.
  • the number of the preset cutting domains is one or more, and the shape of the preset cutting domains may be, but not limited to, circular, rectangular, polygonal or irregular.
  • the energy can be transferred to the second air-permeable sealing member, so that the place on the second air-permeable sealing member irradiated by the laser generates high temperature and burns .
  • the predetermined cutting region is completely burned, so as to form the second air hole 141, no falling waste will be generated, and only the fan needs to be used to suck away the The smoke generated by the combustion of the second gas-permeable sealing member does not require further treatment of waste chips, which simplifies the processing procedure.
  • the power P3 of the device carrying the laser head is: 60W ⁇ P1 ⁇ 150W
  • the power P4 of the laser head is: P3*60% ⁇ P4 ⁇ P3*80%
  • the laser head emits
  • the moving speed v2 of the laser light is: 800mm/s ⁇ v2 ⁇ 1500mm/s
  • the focal length d2 of the laser light emitted by the laser head is: 30cm ⁇ d2 ⁇ 60cm.
  • the laser head is fixed, and the cutting is performed only by the translation and rotation of the laser light emitted by the laser head.
  • the laser motion emitted by the laser head is driven to perform cutting.
  • the laser head is fixed, and cutting is performed only through the translation and rotation of the laser light emitted by the laser head for illustration.
  • the spot size of the laser is constant, and the laser irradiates the entire preset cutting region along one end of the outer contour of the preset cutting region to the other end on the outer contour of the preset cutting region , so that the entire preset cutting region is burned to form the second air hole 141 .
  • the spot size of the laser is constant, and the laser irradiates the entire preset cutting region from the inside of the preset cutting region to the outer contour of the preset cutting region, so that the entire preset cutting region The preset cutting area is burned to form the second ventilation hole 141 .
  • the spot size of the laser is adjusted, and when the laser irradiates the inside of the preset cutting area, the spot size of the laser is increased to increase the speed of cutting the preset cutting area by the laser. When the laser irradiates the area near the outer contour of the preset cutting area, the spot size of the laser is reduced to prevent the laser from cutting to areas outside the preset cutting area.
  • Figure 20 is a schematic flow chart of the preparation method of the heat-not-burn pod provided by an embodiment of the present application; Schematic diagram of the structure of the heat-not-burn pod.
  • the preparation method of the heat-not-burn pod 1 includes providing a tube body 20 having a containing space 21 . One end of the tube body 20 is sealed with a sealing member 30 . Install the smoking element 40 into the accommodating space 21 from the end away from the sealing element 30 , and make the smoking element 40 adjacent to the sealing element 30 .
  • the cooling assembly 10 prepared by the method for preparing the cooling assembly 10 described in any one of the above-mentioned embodiments into the accommodating space 21 from the end away from the sealing member 30, and make the first end 111 opposite to the The second end 112 is disposed adjacent to the smoking element 40 . And the filter element 50 is loaded into the accommodating space 21 from the end away from the sealing element 30 .
  • the preparation method of the heat-not-burn pod 1 includes but not limited to S51, S52, S53, S54 and S55. Next, S51, S52, S53, S54, and S55 will be described in detail.
  • the tube body 20 is made of food-grade material, so the tube body 20 can reduce or even not generate harmful substances when heated.
  • the tube body 20 may be, but not limited to, food grade materials such as white cardboard or kraft paper.
  • the tube body 20 may be, but not limited to, food grade materials such as 50-200 g/m2 white cardboard or 50-200 g/m2 kraft paper.
  • the sealing member 30 is made of food-grade material, so the sealing member 30 can reduce or even not generate harmful substances when heated.
  • the sealing member 30 can be, but not limited to, food-grade materials such as silk cotton paper, highly air-permeable paper, or butter paper.
  • the sealing member 30 may be, but not limited to, food grade materials such as 10-50 g/m2 silk cotton paper, 10-50 g/m2 highly air-permeable paper or 45-105 g/m2 butter paper.
  • the smoking element 40 is equipped with an aerosol base, which may be, but not limited to, a mixture of one or more of herbal plants, Chinese herbal medicines or tobacco leaves.
  • an aerosol base which may be, but not limited to, a mixture of one or more of herbal plants, Chinese herbal medicines or tobacco leaves.
  • the cooling component 10 is used to cool down the aerosol generated by heating the aerosol matrix in the smoking component, so as to cool down the aerosol to a temperature suitable for inhalation.
  • the first end 111 is arranged adjacent to the smoking element 40 relative to the second end 112, and the first air-permeable sealing part 12 in the cooling assembly 10 can prevent the cooling part from 13 falls into the smoking member 40 and mixes with the aerosol-forming substrate in the smoking member 40 .
  • the preparation method of the cooling component 10 please refer to any one of the foregoing implementation manners, and details will not be repeated here.
  • the filter element 50 is used to filter the aerosol cooled by the cooling assembly 10 and to filter impurities in the aerosol, so as to improve the fineness of the aerosol.
  • the cooling assembly 10 can be formed by sealing a plurality of cooling tubes 11 at one time, and then cutting along the outline of the cooling tubes 11 . Therefore, the production efficiency of the cooling component 10 in the preparation method of the heat-not-burn cartridge 1 provided in this embodiment is high, which improves the production efficiency of the heat-not-burn cartridge 1 .
  • Fig. 22 is a schematic structural diagram of a cooling component provided in an embodiment of the present application
  • Fig. 23 is an enlarged schematic diagram of a place I in the cooling component provided in the embodiment of Fig. 22
  • Fig. 24 is Fig. 22 is an enlarged schematic diagram of point II in the cooling component provided by the embodiment.
  • the cooling assembly 10 includes a cooling tube 11 and a cooling portion 13 .
  • the cooling tube 11 includes a first end 111 and a second end 112 oppositely disposed, and the cooling tube 11 has a receiving space 113 .
  • the cooling unit 13 is accommodated in the receiving space 113 , and the range of the volume ratio a of the cooling unit 13 in the receiving space 113 is: 20% ⁇ a ⁇ 60%.
  • the cooling assembly 10 further includes a first adhesive layer 15 and a first air-permeable sealing portion 12 . And/or, the cooling assembly 10 further includes a second adhesive layer 16 and a second air-permeable sealing portion 14 .
  • the cooling component 10 includes the first adhesive layer 15 and the first air-permeable sealing portion 12
  • the first adhesive layer 15 is disposed on the end surface of the first end 111 and is located adjacent to the first end 111. The portion of the end surface of the first end 111 is described.
  • the first air-permeable sealing portion 12 is bonded to the end surface of the first end 111 through the first adhesive layer 15 .
  • the cooling component 10 includes the second adhesive layer 16 and the second air-permeable sealing portion 14, the second adhesive layer 16 is disposed on the end surface of the second end 112 and is located adjacent to the second end 112. The portion of the end surface of the second end 112 is described.
  • the second air-permeable sealing portion 14 is bonded to the end surface of the second end 112 through the second adhesive layer 16 .
  • the range of the volume ratio a of the cooling unit 13 to the housing space 113 is: 20% ⁇ a ⁇ 60%, and the cooling efficiency of the cooling unit 13 can be kept.
  • the cooling assembly 10 has suitable suction resistance. If the volume ratio a of the cooling portion 13 occupying the accommodation space 113 is too large, the resistance of the aerosol passing through the cooling portion 13 will be increased, resulting in excessive suction resistance. If the volume ratio a of the cooling unit 13 occupying the housing space 113 is too small, the contact area between the cooling unit 13 and the aerosol will be reduced, thereby reducing the cooling effect of the cooling unit 13 .
  • the first adhesive layer 15 is disposed on the end surface of the first end 111 and located on the The portion of the first end 111 adjacent to the end surface of the first end 111, and the height h3 of the first adhesive layer 15 located at the portion of the first end 111 adjacent to the end surface of the first end 111 is: 0.1mm ⁇ h3 ⁇ 0.3mm.
  • the first air-permeable sealing portion 12 is bonded to the end surface of the first end 111 through the first adhesive layer 15 .
  • the first adhesive layer 15 is a food-grade adhesive, which can reduce or even not generate toxic substances when heated.
  • the first adhesive layer 15 may be, but not limited to, one or more food-grade adhesives such as glutinous rice glue, lap glue, straw glue, or white latex.
  • the first adhesive layer 15 increases the strength of the end surface of the first end 111 and the portion of the first end 111 adjacent to the end surface of the first end 111, so that the first end of the cooling tube 11
  • the end face of 111 can withstand greater pressure, which reduces or even eliminates the damage caused by the cooling component 10 being under pressure during the processing of the cooling component 10, and reduces or even eliminates the application of the cooling component 10 to heating.
  • the cooling component 10 is damaged due to pressure.
  • the first adhesive layer 15 may produce odor when heated, in this embodiment, the first adhesive layer 15 is baked to remove the odor in the first adhesive layer 15 , so that when the cooling component 10 is applied to the heat-not-burn pod 1 and heated, no peculiar smell will be produced, and the moisture in the first adhesive layer 15 is further reduced through baking treatment, so that the first adhesive The bonding layer 15 is solidified, further enhancing the bonding strength between the first bonding layer 15 and the end surface of the first end 111 .
  • the height h3 of the first adhesive layer 15 can ensure that the end surface of the first end 111 can firmly fit the first air-permeable sealing part 12 without affecting the connection between the end surface of the first end 111 and the The flatness of the bonding place of the first air-permeable sealing part 12 . If the height h3 is too small, that is, there is too little adhesive attached to the end surface of the first end 111 adjacent to the first end 111, the end surface of the first end 111 will not be firm. Attach the first air-permeable sealing part 12 .
  • the first end 111 will be adjacent to the first end 111.
  • Adhesive is accumulated between the end surface of one end 111 and the first gas-permeable sealing part 12, which increases the cutting thickness of the first gas-permeable sealing part 12 during cutting, which will affect the The cutting process of the first air-permeable sealing part 12 is easy to form burrs at the joint between the first air-permeable sealing part 12 and the end surface of the first end 111 during the cutting process of the first air-permeable sealing part 12 .
  • the cooling assembly 10 further includes a second adhesive layer 16 and a second air-permeable sealing portion 14, the second adhesive layer 16 is disposed on the end surface of the second end 112 and located at the The portion of the second end 112 adjacent to the end surface of the second end 112, and the height h4 of the second adhesive layer 16 located at the portion of the second end 112 adjacent to the end surface of the second end 112 is: 0.1 mm ⁇ h4 ⁇ 0.3mm.
  • the second air-permeable sealing portion 14 is bonded to the end surface of the second end 112 through the second adhesive layer 16 .
  • the second adhesive layer 16 is a food-grade adhesive, which can reduce or even not generate toxic substances when heated.
  • the second adhesive layer 16 may be, but not limited to, one or more food-grade adhesives among glutinous rice glue, lap glue, straw glue, or white latex.
  • the second adhesive layer 16 increases the strength of the end surface of the second end 112 and the portion of the second end 112 adjacent to the end surface of the second end 112, so that the second end of the cooling tube 11
  • the end face of 112 can withstand greater pressure, which reduces or even eliminates the damage of the cooling component 10 caused by the pressure during the processing of the cooling component 10, and reduces or even eliminates the application of the cooling component 10 to heating.
  • the cooling component 10 is damaged due to pressure.
  • the second adhesive layer 16 may produce peculiar smell when heated, in this embodiment, the second adhesive layer 16 is baked to remove the peculiar smell in the second adhesive layer 16 , so that when the cooling component 10 is applied to the heat-not-burn pod 1 and heated, it will no longer produce peculiar smell, and the moisture in the second adhesive layer 16 is further reduced through baking treatment, so that the second adhesive layer 16
  • the bonding layer 16 is solidified, further enhancing the bonding strength between the second bonding layer 16 and the end surface of the second end 112 .
  • the height h4 of the second adhesive layer 16 can ensure that the end surface of the second end 112 can firmly fit the second air-permeable sealing part 14 without affecting the connection between the end surface of the second end 112 and the The flatness of the bonding place of the second air-permeable sealing part 14 . If the height h4 is too small, that is, there is too little adhesive attached to the end surface of the second end 112 adjacent to the second end 112, the end surface of the second end 112 will not be firm. The second air-permeable sealing part 14 is bonded. If the height h4 is too large, that is, too much adhesive adheres to the end surface of the second end 112 adjacent to the second end 112, the second end 112 will be adjacent to the second end 112.
  • Adhesive is accumulated between the end faces of the two ends 112 and the second gas-permeable sealing part 14, which increases the thickness of the second gas-permeable sealing part 14 that needs to be cut during cutting, thus affecting the
  • the cutting process of the second air-permeable sealing part 14 is easy to form burrs at the joint between the second air-permeable sealing part 14 and the end surface of the second end 112 during the cutting process of the second air-permeable sealing part 14 .
  • FIG. 25 is a schematic structural view of a heat-not-burn pod provided in an embodiment of the present application
  • FIG. 26 is a three-dimensional exploded view of the heat-not-burn pod provided in the embodiment of FIG. 25.
  • the heat-not-burn pod 1 includes a tube body 20 , a sealing member 30 , a smoking member 40 , a filter member 50 and the cooling assembly 10 as described above.
  • the tube body 20 has a receiving space 21 .
  • the sealing member 30 is sealed on one end of the tube body 20 .
  • the smoking element 40 is disposed in the accommodating space 21 and adjacent to the sealing element 30 .
  • the cooling assembly 10 is disposed in the accommodating space 21 at the end of the smoking element 40 away from the sealing element 30 , and the first air-permeable sealing portion 12 is adjacent to the cooling portion 13 compared to the Smoker 40.
  • the filter element 50 is disposed in the accommodating space 21 and disposed on a side of the cooling assembly 10 away from the smoking element 40 .
  • the smoking element 40 is equipped with an aerosol generating matrix, so the smoking element 40 will generate high-temperature aerosol when heated. Sucking the heat-not-burn pod 1 through the filter element 50 will make the aerosol pass through the cooling component 10 and the filter element 50 sequentially from the smoking element 40 . After the aerosol flows through the cooling assembly 10 , the temperature will be reduced to a suitable suction temperature, so that the aerosol has a suitable suction temperature after flowing out of the filter element 50 .

Abstract

一种降温组件的制备方法、加热不燃烧烟弹的制备方法、降温组件及加热不燃烧烟弹。降温组件(10)的制备方法包括:提供多个降温管(11),降温管(11)包括相背设置的第一端(111)及第二端(112),降温管(11)具有收容空间(113);将第一端(111)放入蓄胶件中的容置空间中,并与容置空间内的粘结剂接触,以使得多个降温管(11)的第一端(111)的端面平齐且粘附有粘结剂;提供第一透气密封件,将粘附有粘结剂的第一端(111)的端面与第一透气密封件贴合;对第一透气密封件进行切割,形成密封第一端(111)的端面的第一透气密封部(12);以及将降温部(13)自第二端(112)装填至降温管(11)的收容空间(113)中。该降温组件(10)的制备方法提高了降温管(11)的密封工艺效率,从而提高了降温部(13)的装填效率。

Description

降温组件及其制备方法以及加热不燃烧烟弹及其制备方法
本申请要求于2022年1月30日提交中国专利局、申请号为202210114201.9、申请名称为“降温组件及其制备方法以及加热不燃烧烟弹及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子烟领域,具体涉及一种降温组件的制备方法、加热不燃烧烟弹的制备方法、降温组件及加热不燃烧烟弹。
背景技术
随着科技发展,使用加热不燃烧烟弹的用户越来越多,加热不燃烧烟弹中气溶胶基质被加热后会形成高温的气溶胶,因此加热不燃烧烟弹中需要增设带有降温部的降温组件以用于降温。降温组件在加工过程中,将降温部装填至降温管时,先需要密封降温管的一端,然,降温组件的密封由于密封件与降温管的对接难度大,导致降温组件的密封制备工艺效率低,从而降低了降温部的装填效率。
发明内容
第一方面,本申请提供了一种降温组件的制备方法,所述降温组件的制备方法包括提供多个降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间,将所述第一端放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第一端的端面平齐且粘附有粘结剂,提供第一透气密封件,将所述粘附有粘结剂的第一端的端面与所述第一透气密封件贴合,对所述第一透气密封件进行切割,形成密封所述第一端的第一透气密封部,以及将降温部自所述第二端装填至所述降温管的收容空间中。
第二方面,本申请还提供了一种加热不燃烧烟弹的制备方法,所述加热不燃烧烟弹的制备方法包括提供管体,所述管体具有容纳空间,利用密封件密封所述管体的一端,将发烟件自背离所述密封件一端装入所述容纳空间,并使得所述发烟件邻近所述封口件,将如第二方面所述的降温组件的制备方法所制备的降温组件自背离所述密封件一端装入所述容纳空间,并使得所述第一端相对于所述第二端邻近所述发烟件设置,以及将过滤件自背离所述密封件一端装入所述容纳空间。
第三方面,本申请还提供了一种降温组件,所述降温组件包括降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间,以及降温部,所述降温部收容于所述收容空间,所述降温部占所述收容空间体积比a的范围为:20%≦a≦60%,所述降温组件还包括第一粘结层及第一透气密封部,和/或,所述降温组件还包括第二粘结层及第二透气密封部,当所述降温组件包括第一粘结层及第一透气密封部时:所述第一粘结层设置于所述第一端的端面且位于所述第一端邻近所述第一端的端面的部分,所述第一透气密封部通过所述第一粘结层粘结于所述第一端的端面,当所述降温组件包括第二粘结层及第二透气密封部时:所述第二粘结层设置于所述第二端的端面且位于所述第二端邻近所述第二端的端面的部分,所述第二透气密封部通过所述第二粘结层粘接于所述第二端的端面。
第四方面,本申请还提供了一种加热不燃烧烟弹,所述加热不燃烧烟弹包括管体,所述管体具有容纳空间,封口件,所述封口件密封于所述第一管体的一端,发烟件,所述发烟件设置于所述容纳空间,且邻近所述封口件设置,如第三方面所述的降温组件,所述降温组件设置于所述容纳空间内,位于所述发烟件背离所述封口件的一端,且所述第一透气密封部相较于所述降温部邻近所述发烟件,以及过滤件,所述过滤件设置于容纳空间内,且设置于所述降温组件背离所述发烟件的一侧。
附图说明
图1为本申请一实施方式提供的降温组件的制备方法的流程示意图;
图2为图1实施方式提供的降温组件的制备方法所制备的降温组件的结构示意图;
图3为图2实施方式提供的降温组件的立体分解图;
图4为图2实施方式提供的降温组件中降温管的结构示意图;
图5为本申请又一实施方式提供的降温组件的制备方法的流程示意图;
图6为图5实施方式提供的降温组件的制备方法所制备的降温组件的结构示意图;
图7为图6实施方式提供的降温组件的立体分解图;
图8为本申请又一实施方式提供的降温组件的制备方法的流程示意图;
图9为本申请又一实施方式提供的降温组件的制备方法的流程示意图;
图10为图1实施方式提供的降温组件的制备方法中将第一端粘附粘结剂的制备方法的流程示意图;
图11为图5实施方式提供的降温组件的制备方法中将第二端粘附粘结剂的制备方法的流程示意图;
图12为本申请又一实施方式提供的降温组件的制备方法的流程示意图;
图13为图12实施方式提供的降温组件的制备方法所制备的第一透气密封部的结构示意图;
图14为图12实施方式提供的降温组件的制备方法中一实施方式提供的第一透气孔的制备方法的流程示意图;
图15为图12实施方式提供的降温组件的制备方法中另一实施方式提供的第一透气孔的制备方法的流程示意图;
图16为本申请又一实施方式提供的降温组件的制备方法的流程示意图;
图17为图16实施方式提供的降温组件的制备方法所制备的第二透气密封部的结构示意图;
图18为图16实施方式提供的降温组件的制备方法中一实施方式提供的第二透气孔的制备方法的流程示意图;
图19为图16实施方式提供的降温组件的制备方法中另一实施方式提供的第二透气孔的制备方法的流程示意图;
图20为本申请一实施方式提供的加热不燃烧烟弹的制备方法的流程示意图;
图21为图20实施方式提供的加热不燃烧烟弹的制备方法所制备的加热不燃烧烟弹的结构示意图;
图22为本申请一实施方式提供的降温组件的结构示意图;
图23为图22实施方式提供的降温组件中I处的放大示意图;
图24为图22实施方式提供的降温组件中II处的放大示意图;
图25为本申请一实施方式提供的加热不燃烧烟弹的结构示意图;
图26为图25实施方式提供的加热不燃烧烟弹的立体分解图。
具体实施方式
第一方面,本申请提供了一种降温组件的制备方法,所述降温组件的制备方法包括提供多个降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间,将所述第一端放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第一端的端面平齐且粘附有粘结剂,提供第一透气密封件,将所述粘附有粘结剂的第一端的端面与所述第一透气密封件贴合,对所述第一透气密封件进行切割,形成密封所述第一端的第一透气密封部,以及将降温部自所述第二端装填至所述降温管的收容空间中。
其中,在“将降温部自所述第二端装填至所述降温管的收容空间中”之后,所述降温组件的制备方法还包括,翻转所述蓄胶件,将所述第二端放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第二端的端面平齐且粘附有粘结剂,提供第二透气密封件,将所述粘附有粘结剂的第二端的端面与所述第二透气密封件贴合,以及对所述第二透气密封件进行切割,形成密封所 述第二端的端面的第二透气密封部。
其中,在所述“提供多个降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间”之后,在所述“将所述第一端放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第一端的端面平齐且粘附有粘结剂”之前,所述降温组件的制备方法还包括将所述蓄胶件中超过第一预设高度的粘结剂刮除,所述第一预设高度h1的范围为:0.1mm≤h1≤0.3mm。
其中,所述“将所述第一端放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第一端的端面平齐且粘附有粘结剂”包括将所述蓄胶件设置于所述第一端的一侧,且与所述第一端间隔设置,自所述第二端向所述第一端推动所述降温管,推动的力的大小F为:1N≤F≤1.5N,以及将所述第一端的端面浸入所述容置空间内的粘结剂,直至所述第一端的端面抵接所述蓄胶件,以使所述第一端邻近所述第一端的端面的部分粘附有粘结剂。
其中,在所述“提供第一透气密封件,将所述粘附有粘结剂的第一端的端面与所述第一透气密封件贴合”之后,在所述“对所述第一透气密封件进行切割,形成密封所述第一端的第一透气密封部”之前,所述降温组件的制备方法还包括对所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域进行切割形成第一透气孔。
其中,所述“对所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域进行切割形成第一透气孔”包括选定所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域内的预设区域,以及对所述预设区域的外轮廓进行切割形成第一透气孔。
其中,所述“对所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域进行切割形成第一透气孔”包括选定所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域内的预设区域,以及对所述预设区域的内部进行切割形成所述第一透气孔。
其中,所述降温管的材料包括50~200g/㎡的白卡纸或50~200g/㎡的牛皮纸中至少一种。
其中,所述粘结剂包括糯米胶、搭口胶、吸管胶或白乳胶中至少一种。
其中,所述第一透气密封件包括10~50g/㎡的丝棉纸、10~50g/㎡高透气性纸或者45~105g/㎡的牛油纸中至少一种。
其中,所述“对所述第一透气密封件进行切割”包括:
采用刀具对所述第一透气密封件沿所述降温管的外形轮廓进行切割。
其中,所述“对所述第一透气密封件进行切割”包括:
采用激光对所述第一透气密封件沿所述降温管的外形轮廓进行切割。
其中,所述激光的切割速度v1:800mm/s≤v1≤1500mm/s。
其中,所述激光的焦距d1:30cm≤d1≤60cm。
其中,所述降温材料包括分子筛、麦饭石、原矿石、陶瓷吸附材料、远红外球、过滤陶瓷球、电气石球、SPM铜锌合金滤料及活性碳中至少一种。
其中,所述“将降温部自所述第二端装填至所述降温管的收容空间中”包括:
将所述降温部自所述第二端装填至所述降温管的收容空间中,并使得所述降温部占所述收容空间体积比a为:20%≦a≦60%。
其中,所述第二透气密封件包括10~50g/㎡的丝棉纸、10~50g/㎡高透气性纸或者45~105g/㎡的牛油纸中至少一种。
第二方面,本申请还提供了一种加热不燃烧烟弹的制备方法,所述加热不燃烧烟弹的制备方法包括提供管体,所述管体具有容纳空间,利用密封件密封所述管体的一端,将发烟件自背离所述密封件一端装入所述容纳空间,并使得所述发烟件邻近所述封口件,将如第二方面所述的降温组件的制备方法所制备的降温组件自背离所述密封件一端装入所述容纳空间,并使得所述第一端相对于所述第二端邻近所述发烟件设 置,以及将过滤件自背离所述密封件一端装入所述容纳空间。
第三方面,本申请还提供了一种降温组件,所述降温组件包括降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间,以及降温部,所述降温部收容于所述收容空间,所述降温部占所述收容空间体积比a的范围为:20%≦a≦60%,所述降温组件还包括第一粘结层及第一透气密封部,和/或,所述降温组件还包括第二粘结层及第二透气密封部,当所述降温组件包括第一粘结层及第一透气密封部时:所述第一粘结层设置于所述第一端的端面且位于所述第一端邻近所述第一端的端面的部分,所述第一透气密封部通过所述第一粘结层粘结于所述第一端的端面,当所述降温组件包括第二粘结层及第二透气密封部时:所述第二粘结层设置于所述第二端的端面且位于所述第二端邻近所述第二端的端面的部分,所述第二透气密封部通过所述第二粘结层粘接于所述第二端的端面。
第四方面,本申请还提供了一种加热不燃烧烟弹,所述加热不燃烧烟弹包括管体,所述管体具有容纳空间,封口件,所述封口件密封于所述第一管体的一端,发烟件,所述发烟件设置于所述容纳空间,且邻近所述封口件设置,如第三方面所述的降温组件,所述降温组件设置于所述容纳空间内,位于所述发烟件背离所述封口件的一端,且所述第一透气密封部相较于所述降温部邻近所述发烟件,以及过滤件,所述过滤件设置于容纳空间内,且设置于所述降温组件背离所述发烟件的一侧。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请一实施方式提供了一种降温组件的制备方法。请一并参照图1、图2、图3及图4,图1为本申请一实施方式提供的降温组件的制备方法的流程示意图;图2为图1实施方式提供的降温组件的制备方法所制备的降温组件的结构示意图;图3为图2实施方式提供的降温组件的立体分解图;图4为图2实施方式提供的降温组件10中降温管的结构示意图。在本实施方式中,所述降温组件10的制备方法包括提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂。提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合。对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12。以及将降温部13自所述第二端112装填至所述降温管11的收容空间113中。
在本实施方式中,所述降温组件10主要应用于加热不燃烧烟弹1。所述加热不燃烧烟弹1在被加热后会形成高温的气溶胶,温度在200~380℃,所述降温组件10用于将高温的气溶胶降温至适宜抽吸的温度。
在本实施方式中,所述降温组件10的制备方法包括但不限于S11、S12、S13、S14及S15。接下来对S11、S12、S13、S14及S15进行详细描述。
S11,所述降温组件10的制备方法包括提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。
其中,在本实施方式中(请参照图4),所述降温管11为用于流通气溶胶的通道,高温的气溶胶流经 所述降温管11,经过所述降温管11的降温,气溶胶的温度会有所降低。所述降温管11为食用级材料,可在受热时减少甚至不产生有毒物。举例而言,所述降温管11的材料可以但不限于为白卡纸或者牛皮纸等食用级材料。具体地,所述降温管11可以但不限于为50~200g/㎡的白卡纸,50~200g/㎡的牛皮纸等。为了保有气溶胶的浓度及抽吸气溶胶的阻力感,所述降温管11的直径D1的范围为:6mm≦D1≦6.6mm。如若所述降温管11的直径D1过小,则会导致抽吸气溶胶的阻力过大,如若所述降温管11的直径D1过大,则会导致所述降温管11中气溶胶的浓度过小,影响抽吸气溶胶的口感。因此,所述降温管11的直径D1的范围为:6mm≦D1≦6.6mm,能够在保证抽吸阻力较小的情况下,使得所述降温管11中气溶胶的浓度饱满。需要说明的是,抽吸阻力是指通过将气溶胶抽吸至所述降温管11中,并将气溶胶从所述降温管11中抽吸出所遇到的阻力。
S12,将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂。
其中,在本实施方式中,粘结剂为食品级粘结剂,可在受热时减少甚至不产生毒物。举例而言,所述粘结剂可以但不限于为糯米胶、搭口胶、吸管胶或白乳胶等中的一种或多种食品级粘结剂。在本实施方式中,通过将所述第一端111的端面浸入所述容置空间内的粘结剂并抵接所述蓄胶件的底部以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂,从而使得所述多个降温管11后续的粘粘工序更加平稳且牢固。
S13,提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合。
其中,在本实施方式中,所述第一透气密封件为食品级材料,可在受热时减少甚至不产生毒物。举例而言,所述第一透气密封件的材料可以但不限于为丝绵纸、高透气性纸或者牛油纸等食品级材料。具体地,所述第一透气密封件可以但不限于为10~50g/㎡的丝棉纸、10~50g/㎡高透气性纸或者45~105g/㎡的牛油纸等。需要说明的是,在本实施方式中,所述第一透气密封件的尺寸远大于所述第一端111的端面的尺寸,因此,所述第一透气密封件可以一次性与多个所述降温管11的第一端111的端面进行贴合。
S14,对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12。
其中,在本实施方式中,对所述第一透气密封件沿所述降温管11的外形轮廓进行切割,可使得形成的所述第一透气密封部12与所述降温管11的直径相同,以使得所述第一透气密封部12能够完整密封所述第一端111的端面,且不影响所述降温组件10的后续制备及组装。
在一实施方式中,采用刀具对所述第一透气密封件沿所述降温管11的外形轮廓进行切割,形成密封所述第一端111的端面的第一透气密封部12。所述刀具为硬质金属材料,举例而言,所述刀具的材料可以但不限于为高碳钢、合金工具钢或乌钢等。进一步地,对所述刀具进行热处理碎火和电镀以增加所述刀具的增加刃口的强度、硬度、韧性和耐磨性,以使得对所述第一透气密封件沿所述降温管11的外形轮廓进行切割更有效率及质量。具体地,可以但不限于采用精密车削机床进行加工,加工功率P1为:1.5KW≤P1≤2.5KW,加工气压为1500MPa。
在另一实施方式中,采用激光对所述第一透气密封件沿所述降温管11的外形轮廓进行切割,形成密封所述第一端111的端面的第一透气密封部12。具体地,通过激光头发出的激光沿第一预设路径对所述第一透气密封件沿所述降温管11的外形轮廓进行切割,且通过激光头发出的激光的平移和旋转可以对多个所述第一透气密封件进行切割。由于激光具有较高的能量,因此可以将能量传递至所述第一透气密封件上,使得所述第一透气密封件上被激光照射过的地方产生高温而燃烧。又因为激光的照射在所述第一透气密封件上的光斑直径为微米级别,可近似为点,所以激光在所述第一透气密封件上照射过的路径连接起来可近似为线条。当激光在所述第一透气密封件上沿第一预设路径进行运动时,激光会对第一预设路径上的各个点进行燃烧形成微米级别的洞,这些燃烧形成的洞连接起来进而形成切口。具体地,承载所述激光头的设备的功率P2为:60W≤P2≤150W,且所述激光头工作时的功率P3为:P2*60%≤P3≤P2*80%,所述激光头 发出的激光的运动速度v1为:800mm/s≤v1≤1500mm/s,所述激光头发出的激光的焦距d1为:30cm≤d1≤60cm。需要说明的是,在一实施方式中,所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割。在另一实施方式中,通过所述激光头的平移与旋转,从而带动所述激光头发出的激光运动进行切割。在本实施方式中,以所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割进行示例性说明。
S15,将降温部13自所述第二端112装填至所述降温管11的收容空间113中。
其中,经过步骤S15之后制备得到的所述降温组件10请参照图2。在本实施方式中,所述降温部13设于所述降温管11的收容空间113中,所述降温部13为降温材料,且所述降温部13用于加速降低高温的气溶胶的温度,使得高温的气溶胶在流经整个降温管11后,温度能够快速降低至适宜的抽吸温度(例如40℃等)。具体地,所述降温部13为食用级的降温材料,能够在受热时减少甚至不产生有毒物。举例而言,所述降温部13的材料可以但不限于包括分子筛、麦饭石、原矿石、陶瓷吸附材料、远红外球、过滤陶瓷球、电气石球、SPM铜锌合金滤料及活性碳中至少一种。在本实施方式中,所述降温部13可以为任意形状,举例而言,所述降温部13可以但不限于为颗粒状、条状或者块状等形状,只要所述降温部13能够填充至所述降温管11中,并起到降温的作用即可。具体地,所述降温部13占所述收容空间113体积比的范围为:20%≦a≦60%,能够在保有所述降温部13的降温效率的情况下,使得所述降温组件10具有适宜的抽吸阻力。如若所述降温部13占所述收容空间113的体积比a过大,则会增加气溶胶通过所述降温部13的阻力,从了使得抽吸阻力过大。如若所述降温部13占所述收容空间113的体积比a过小,则会降低所述降温部13与气溶胶的接触面积,从而降低了所述降温部13的降温效果。
本申请提供了一种降温组件10的制备方法,先将粘附有粘结剂的所述降温管11的第一端111的端面与所述第一透气密封件贴合,再对所述第一透气密封件进行切割,形成所述第一端111的端面的第一透气密封部12,然后将所述降温部13自所述第二端112装填填至所述降温管11的收容空间113中。因此,本申请提供的降温组件10的制备方法在对所述降温管11的第一端111的端面进行密封时,无需逐个对准所述第一透气密封部12与所述第一端111的端面,可快速密封所述第一端111的端面并装填所述降温部13。因此本申请提供的降温组件10的制备方法提高了降温管11的密封工艺效率,从而提高了降温部13的装填效率。
请一并参照图5、图6及图7,图5为本申请又一实施方式提供的降温组件的制备方法的流程示意图;图6为图5实施方式提供的降温组件的制备方法所制备的降温组件的结构示意图;图7为图6实施方式提供的降温组件的立体分解图。在本实施方式中,在“将降温部13自所述第二端112装填至所述降温管11的收容空间113中”之后,所述降温组件10的制备方法还包括翻转所述蓄胶件。将所述第二端112放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂。提供第二透气密封件,将所述粘附有粘结剂的第二端112的端面与所述第二透气密封件贴合。以及对所述第二透气密封件进行切割,形成密封所述第二端112的端面的第二透气密封部14。
具体地,在本实施方式中,所述降温组件10的制备方法包括但不限于S11、S12、S13、S14、S15、S26、S27、S28及S29。其中,本实施方式中的S11、S12、S13、S14及S15与前一实施方式中的S11、S12、S13、S14及S15相同。接下来对S11、S12、S13、S14、S15、S26、S27、S28及S29进行详细描述。
S11,所述降温组件10的制备方法包括提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。
S12,将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂。
S13,提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合。
S14,对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12。
S15,将降温部13自所述第二端112装填至所述降温管11的收容空间113中。
S11、S12、S13、S14及S15与前一实施方式中的S11、S12、S13、S14及S15相同,在此不再赘述。
S26,翻转所述蓄胶件。
其中,在本实施方式中,将所述蓄胶件旋转180°,以将所述蓄胶件从所述第一端111一侧翻转至所述第二端112的一侧。
S27,将所述第二端112放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂。
其中,在本实施方式中,所述蓄胶件的容置空间内装有粘结剂,粘结剂为食品级粘结剂,可在受热时减少甚至不产生毒物。举例而言,所述粘结剂可以但不限于为糯米胶、搭口胶、吸管胶或白乳胶等中的一种或多种食品级粘结剂。在本实施方式中,通过将所述第二端112的端面浸入所述容置空间内的粘结剂并抵接所述蓄胶件的底部以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂,从而使得所述多个降温管11后续的粘粘工序更加平稳且牢固。
S28,提供第二透气密封件,将所述粘附有粘结剂的第二端112的端面与所述第二透气密封件贴合。
其中,在本实施方式中,所述第二透气密封件为食品级材料,可在受热时减少甚至不产生毒物。举例而言,所述第二透气密封件的材料可以但不限于为丝绵纸、高透气性纸或者牛油纸等食品级材料。具体地,所述第二透气密封件可以但不限于为10~50g/㎡的丝棉纸、10~50g/㎡高透气性纸或者45~105g/㎡的牛油纸等。需要说明的是,在本实施方式中,所述第二透气密封件的尺寸远大于所述第二端112的端面的尺寸,因此,所述第二透气密封件可以一次性与多个所述降温管11的第二端112的端面进行贴合。
S29,对所述第二透气密封件进行切割,形成密封所述第二端112的端面的第二透气密封部14。
其中,经过步骤S29之后制备所得到的降温组件10请参照图6及图7.在本实施方式中,对所述第二透气密封件沿所述降温管11的外形轮廓进行切割,可使得形成的所述第一透气密封部12与所述降温管11的直径相同,以使得所述第二透气密封部14能够完整密封所述第二端112的端面,且不影响所述降温组件10的后续制备及组装。
在一实施方式中,采用刀具对所述第二透气密封件沿所述降温管11的外形轮廓进行切割,形成密封所述第二端112的端面的第二透气密封部14。所述刀具为硬质金属材料,举例而言,所述刀具的材料可以但不限于为高碳钢、合金工具钢或乌钢等。进一步地,对所述刀具进行热处理碎火和电镀以增加所述刀具的增加刃口的强度、硬度、韧性和耐磨性,以使得对所述第二透气密封件沿所述降温管11的外形轮廓进行切割更有效率及质量。具体地,可以但不限于采用精密车削机床进行加工,加工功率P4为:1.5KW≤P4≤2.5KW,加工气压为1500MPa。
在另一实施方式中,采用激光对所述第二透气密封件沿所述降温管11的外形轮廓进行切割,形成密封所述第二端112的端面的第二透气密封部14。具体地,通过激光头发出的激光沿第二预设路径对所述第二透气密封件沿所述降温管11的外形轮廓进行切割,且通过激光头发出的激光的平移和旋转可以对多个所述第二透气密封件进行切割。由于激光具有较高的能量,因此可以将能量传递至所述第二透气密封件上,使得所述第二透气密封件上被激光照射过的地方产生高温而燃烧。又因为激光的照射在所述第二透气密封件上的光斑直径为微米级别,可近似为点,所以激光在所述第二透气密封件上照射过的路径连接起来可近似为线条。当激光在所述第二透气密封件上沿第二预设路径进行运动时,激光会对第二预设路径上的各个点进行燃烧形成微米级别的洞,这些燃烧形成的洞连接起来进而形成切口。具体地,承载所述激光头的设备的功率P5为:60W≤P5≤150W,且所述激光头工作时的功率P6为:P5*60%≤P6≤P5*80%,所述激光头发出的激光的运动速度v2为:800mm/s≤v2≤1500mm/s,所述激光头发出的激光的焦距d2为:30cm≤d2≤60cm。需要说明的是,在一实施方式中,所述激光头固定不变,仅通过所述激光头发出的激光 的平移与旋转进行切割。在另一实施方式中,通过所述激光头的平移与旋转,从而带动所述激光头发出的激光运动进行切割。在本实施方式中,以所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割进行示例性说明。
本实施方式提供的一种降温组件10的制备方法,先将粘附有粘结剂的所述降温管11的第二端112的端面与所述第二透气密封件贴合,再对所述第二透气密封件沿所述降温管11的外形轮廓进行切割,形成所述第二端112的端面的第二透气密封部14。因此,本申请提供的降温组件10的制备方法在对所述降温管11的第二端112的端面进行密封时,无需逐个对准所述第二透气密封部14与所述第二端112的端面,可以先一次性对多个所述降温管11的第二端112的端面进行密封,然后对所述第二透气密封件进行切割形成密封所述第二端112的端面的第二透气密封部14,从而形成所述降温组件10。因此本实施方式提供的降温组件10的制备方法提高了降温管11的密封工艺效率,从而提高了降温组件10的生产效率。
请参照图8,图8为本申请又一实施方式提供的降温组件的制备方法的流程示意图。在本实施方式中,在所述“提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113”之后,在所述“将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂”之前,所述降温组件10的制备方法还包括将所述蓄胶件中超过第一预设高度的粘结剂刮除,所述第一预设高度h1的范围为:0.1mm≤h1≤0.3mm。需要说明的是,本实施方式可结合至图1或图5中任一实施方式中进行说明,在本实施方式中,以结合至图5中实施方式进行示意,图8不应当理解为对本申请提供的降温组件10的制备方法的限定。
具体地,在本实施方式中,所述降温组件10的制备方法包括但不限于S11、S31、S12、S13、S14、S15、S26、S27、S28及S29。其中,本实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29与前一实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29相同。接下来对S11、S31、S12、S13、S14、S15、S26、S27、S28及S29进行详细描述。
S11,所述降温组件10的制备方法包括提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。
S31,将所述蓄胶件中超过第一预设高度的粘结剂刮除,所述第一预设高度h1的范围为:0.1mm≤h1≤0.3mm。
其中,在本实施方式中,通过将所述蓄胶件中超过第一预设高度的粘结剂刮除,以使得所述蓄胶件的容置空间中的粘结剂高度保持一致,从而使得所述第一端111的端面浸入所述容置空间中并抵接所述蓄胶件的底部后,所述多个降温管11的所述第一端111能够粘附相同高度的粘结剂。因此,所述多个降温管11后续粘粘工序能够保持质量一致,提高了所述降温管11的生产质量。此外,所述第一预设高度h1的范围为:0.1mm≤h1≤0.3mm,可保证所述第一端111的端面能够牢固贴合所述第一透气密封件,且不影响所述第一透气密封件切割形成所述第一透气密封部12。如若所述第一预设高度h1过小,即粘附在所述第一端111邻近所述第一端111的端面的部分粘附的粘结剂过少,会使得所述第一端111的端面不能牢固贴合所述第一透气密封件。如若所述第一预设高度h1过大,即粘附在所述第一端111邻近所述第一端111的端面的部分粘附的粘结剂过多,会使得所述第一端111邻近所述第一端111的端面的部分与所述第一透气密封件之间堆积有粘结剂,会影响对所述第一透气密封件进行切割,降低切割效率,且容易在所述第一端111面形成毛边。
S12,将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂。
S13,提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合。
S14,对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12。
S15,将降温部13自所述第二端112装填至所述降温管11的收容空间113中。
S26,翻转所述蓄胶件。
S27,将所述第二端112放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂。
S28,提供第二透气密封件,将所述粘附有粘结剂的第二端112的端面与所述第二透气密封件贴合。
S29,对所述第二透气密封件进行切割,形成密封所述第二端112的端面的第二透气密封部14。
其中,本实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29与前一实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29相同,在此不再赘述。
请参照图9,图9为本申请又一实施方式提供的降温组件的制备方法的流程示意图。在本实施方式中,在所述“翻转所述蓄胶件”之后,在所述“将所述第二端112放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂”之前,所述降温组件10的制备方法还包括将所述蓄胶件中超过第二预设高度的粘结剂刮除,所述第二预设高度h2的范围为:0.1mm≤h2≤0.3mm。需要说明的是,本实施方式可结合至图5或图8中任一实施方式中进行说明,在本实施方式中,以结合至图8中实施方式进行示意,图9不应当理解为对本申请提供的降温组件10的制备方法的限定。
具体地,在本实施方式中,所述降温组件10的制备方法包括但不限于S11、S31、S12、S13、S14、S15、S26、S32、S27、S28及S29。其中,本实施方式中的S11、S31、S12、S13、S14、S15、S26、S27、S28及S29与前一实施方式中的S11、S31、S12、S13、S14、S15、S26、S27、S28及S29相同。接下来对S11、S31、S12、S13、S14、S15、S26、S32、S27、S28及S29进行详细描述。
S11,所述降温组件10的制备方法包括提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。
S31,将所述蓄胶件中超过第一预设高度的粘结剂刮除,所述第一预设高度h1的范围为:0.1mm≤h1≤0.3mm。
S12,将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂。
S13,提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合。
S14,对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12。
S15,将降温部13自所述第二端112装填至所述降温管11的收容空间113中。
S26,翻转所述蓄胶件。
S32,将所述蓄胶件中超过第二预设高度的粘结剂刮除,所述第二预设高度h2的范围为:0.1mm≤h2≤0.3mm。
其中,在本实施方式中,通过将所述蓄胶件中超过第二预设高度的粘结剂刮除,以使得所述蓄胶件的容置空间中的粘结剂高度保持一致,从而使得所述第二端112的端面浸入所述容置空间中并抵接所述蓄胶件的底部后,所述多个降温管11的所述第二端112能够粘附相同高度的粘结剂。因此,所述多个降温管11后续粘粘工序能够保持质量一致,提高了所述降温管11的生产质量。此外,所述第二预设高度h2的范围为:0.1mm≤h2≤0.3mm,可保证所述第二端112的端面能够牢固贴合所述第二透气密封件,且不影响所述第二透气密封件切割形成所述第二透气密封部14。如若所述第二预设高度h2过小,即粘附在所述第二端112邻近所述第二端112的端面的部分粘附的粘结剂过少,会使得所述第二端112的端面不能牢固贴合所述第二透气密封件。如若所述第二预设高度h2过大,即粘附在所述第二端112邻近所述第二端112的端面的部分粘附的粘结剂过多,会使得所述第二端112邻近所述第二端112的端面的部分与所述第二透气密封件之间堆积有粘结剂,会影响对所述第二透气密封件进行切割,降低切割效率,且容易在所述第二端 112面形成毛边。
S27,将所述第二端112放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂。
S28,提供第二透气密封件,将所述粘附有粘结剂的第二端112的端面与所述第二透气密封件贴合。
S29,对所述第二透气密封件进行切割,形成密封所述第二端112的端面的第二透气密封部14。
其中,本实施方式中的S11、S31、S12、S13、S14、S15、S26、S27、S28及S29与前一实施方式中的S11、S31、S12、S13、S14、S15、S26、S27、S28及S29相同,在此不再赘述。
请参照图10,图10为图1实施方式提供的降温组件的制备方法中将第一端粘附粘结剂的制备方法的流程示意图。在本实施方式中,所述“将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂”包括将所述蓄胶件设置于所述第一端111的一侧,且与所述第一端111间隔设置。自所述第二端112向所述第一端111推动所述降温管11,推动的力的大小F为:1N≤F≤1.5N。以及将所述第一端111的端面浸入所述容置空间内的粘结剂,直至所述第一端111的端面抵接所述蓄胶件,以使所述第一端111邻近所述第一端111的端面的部分粘附有粘结剂。
具体地,在本实施方式中,所述“将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂”的具体包括S121、S122及S123。接下来对S121、S122及S123进行详细描述。
S121,将所述蓄胶件设置于所述第一端111的一侧,且与所述第一端111间隔设置。
其中,在本实施方式中,所述蓄胶件设置于所述第一端111的一侧,且所述蓄胶件于所述第一端111间隔设置以保证所述容置空间中的粘结剂与所述第一端111间隔设置。
S122,所述第二端112向所述第一端111推动所述降温管11,推动的力的大小F为:1N≤F≤1.5N。
其中,在本实施方式中,通过所述第二端112向所述第一端111推动所述降温管11,且推动的力的大小F为:1N≤F≤1.5N。使得所述降温管11的第一端111能够被推动至所述容置空间内的粘结剂中,且所述降温管11不会因受力过大而损伤。如若推动的力F过小,则所述降温管11无法被推动至所述容置空间内,或者所述降温管11的第一端111无法浸入所述容置空间中的粘结剂中并使得所述第一端111的端面抵接所述蓄胶件的底面,从而导致所述降温管11的第一端111无法充分粘附粘结剂,使得后续所述第一端111的端面粘结所述第一透气密封件不够牢固。如若推动的力F过大,则所述降温管11会很容易被推动进入所述容置空间内,且所述降温管11的第一端111在浸入所述容置空间中的粘结剂后,所述第一端111的端面会抵接所述蓄胶件的底面,但由于推动的力F过大,所述第一端111的端面存在撞击所述蓄胶件的底面的风险,使得所述第一端111受损。因此,将所述降温管11的第一端111推动至所述容置空间内的粘结剂中的力F需要保持适度大小,在本实施方式中,推动的力的大小F为:1N≤F≤1.5N。在一实施方式中,采用压板作用于所述第二端112的端面,以推动所述降温管11。在另一实施方式中,采用压杆作用于所述第二端112的端面,以推动所述降温管11。在其它实施方式中,可以但不限于采用压块或其它具有驱动力的部件作用于所述第二端112,只要能够提供大小为F的力作用于所述第二端112,并将所述降温管11的第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂即可。
S123,将所述第一端111的端面浸入所述容置空间内的粘结剂,直至所述第一端111的端面抵接所述蓄胶件,以使所述第一端111邻近所述第一端111的端面的部分粘附有粘结剂。
其中,在本实施方式中,所述第一端111的端面抵接所述蓄胶件,具体地,所述第一端111的端面抵接所述蓄胶件的底面,使得所述第一端111能够充分接触所述容置空间内的粘结剂,使得所述第一端111的端面及所述第一端111邻近所述第一端111的端面的部分粘附有粘结剂,从而保证了所述第一端111的 端面在后续粘结所述第一透气密封件时,所述第一端111的端面与所述第一透气密封件能够粘结得足够牢固。此外,所述多个降温管11的第一端111的端面抵接所述蓄胶件的底面,能够保证所述多个降温管11的第一端111粘附有粘结剂的程度相同,有利于保证生产质量。
请参照图11,图11为图5实施方式提供的降温组件的制备方法中将第二端粘附粘结剂的制备方法的流程示意图。在本实施方式中,所述“将所述第二端112放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂”包括将所述蓄胶件设置于所述第二端112的一侧,且与所述第二端112间隔设置。自所述第一端111向所述第二端112推动所述降温管11,推动的力的大小F为:1N≤F≤1.5N。以及将所述第二端112的端面浸入所述容置空间内的粘结剂,直至所述第二端112的端面抵接所述蓄胶件,以使所述第二端112邻近所述第二端112的端面的部分粘附有粘结剂。
具体地,在本实施方式中,所述“将所述第二端112放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂”的具体包括S271、S272及S273。接下来对S271、S272及S273进行详细描述。
S271,将所述蓄胶件设置于所述第二端112的一侧,且与所述第二端112间隔设置。
其中,在本实施方式中,所述蓄胶件设置于所述第二端112的一侧,且所述蓄胶件于所述第二端112间隔设置以保证所述容置空间中的粘结剂与所述第二端112间隔设置。
S272,所述第二端112向所述第一端111推动所述降温管11,推动的力的大小F为:1N≤F≤1.5N。
其中,在本实施方式中,通过所述第一端111向所述第二端112推动所述降温管11,且推动的力的大小F为:1N≤F≤1.5N。使得所述降温管11的第二端112能够被推动至所述容置空间内的粘结剂中,且所述降温管11不会因受力过大而损伤。如若推动的力F过小,则所述降温管11无法被推动至所述容置空间内,或者所述降温管11的第二端112无法浸入所述容置空间中的粘结剂中并使得所述第二端112的端面抵接所述蓄胶件的底面,从而导致所述降温管11的第二端112无法充分粘附粘结剂,使得后续所述第二端112的端面粘结所述第二透气密封件不够牢固。如若推动的力F过大,则所述降温管11会很容易被推动进入所述容置空间内,且所述降温管11的第二端112在浸入所述容置空间中的粘结剂后,所述第二端112的端面会抵接所述蓄胶件的底面,但由于推动的力F过大,所述第二端112的端面存在撞击所述蓄胶件的底面的风险,使得所述第二端112受损。因此,将所述降温管11的第二端112推动至所述容置空间内的粘结剂中的力F需要保持适度大小,在本实施方式中,推动的力的大小F为:1N≤F≤1.5N。在一实施方式中,采用压板作用于所述第一端111的端面,以推动所述降温管11。在另一实施方式中,采用压杆作用于所述第一端111的端面,以推动所述降温管11。在其它实施方式中,可以但不限于采用压块或其它具有驱动力的部件作用于所述第一端111,只要能够提供大小为F的力作用于所述第一端111,并将所述降温管11的第二端112放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂即可。
S273,将所述第二端112的端面浸入所述容置空间内的粘结剂,直至所述第二端112的端面抵接所述蓄胶件,以使所述第二端112邻近所述第二端112的端面的部分粘附有粘结剂。
其中,在本实施方式中,所述第二端112的端面抵接所述蓄胶件,具体地,所述第二端112的端面抵接所述蓄胶件的底面,使得所述第二端112能够充分接触所述容置空间内的粘结剂,使得所述第二端112的端面及所述第二端112邻近所述第二端112的端面的部分粘附有粘结剂,从而保证了所述第二端112的端面在后续粘结所述第二透气密封件时,所述第二端112的端面与所述第二透气密封件能够粘结得足够牢固。此外,所述多个降温管11的第二端112的端面抵接所述蓄胶件的底面,能够保证所述多个降温管11的第二端112粘附有粘结剂的程度相同,有利于保证生产质量。
请参照图12及图13,图12为本申请又一实施方式提供的降温组件的制备方法的流程示意图;图13 为图12实施方式提供的降温组件的制备方法所制备的第一透气密封部的结构示意图。在本实施方式中,在所述“提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合”之后,在所述“对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12”之前,所述降温组件10的制备方法还包括对所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域进行切割形成第一透气孔121。需要说明的是,本实施方式可结合至图1或图5中任一实施方式中进行说明,在本实施方式中,以结合至图5中实施方式进行示意,图12不应当理解为对本申请提供的降温组件10的制备方法的限定。
具体地,在本实施方式中,所述降温组件10的制备方法包括但不限于S11、S12、S13、S41、S14、S15、S26、S27、S28及S29。其中,本实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29与前述实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29相同。接下来对S11、S12、S13、S41、S14、S15、S26、S27、S28及S29进行详细描述。
S11,所述降温组件10的制备方法包括提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。
S12,将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂。
S13,提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合。
S41,对所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域进行切割形成第一透气孔121。
其中,在本实施方式中,所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域,指的是后续S14步骤形成的所述第一透气密封部12所在区域。在本实施方式中,所述第一透气孔121的数量为一个或多个,所述第一透气孔121的形状可以但不限于为圆形、矩形、多边形或者不规则形状等。所述第一透气孔121能够增加所述降温管11的透气性,从而降低了气溶胶流经所述降温管11的阻力,以降低抽吸阻力。需要说明的是,所述第一透气孔121的尺寸小于所述降温部13中降温材料的尺寸,以防止所述降温部13中的降温材料从所述第一透气孔121中漏出。
S14,对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12。
S15,将降温部13自所述第二端112装填至所述降温管11的收容空间113中。
S26,翻转所述蓄胶件。
S27,将所述第二端112放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂。
S28,提供第二透气密封件,将所述粘附有粘结剂的第二端112的端面与所述第二透气密封件贴合。
S29,对所述第二透气密封件进行切割,形成密封所述第二端112的端面的第二透气密封部14。
本实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29与前述实施方式中的S11、S12、S13、S14、S15、S26、S27、S28及S29相同,在此不再赘述。
请参照图14,图14为图12实施方式提供的降温组件的制备方法中一实施方式提供的第一透气孔的制备方法的流程示意图。在本实施方式中,所述“对所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域进行切割形成第一透气孔121”包括选定所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域内的预设区域。以及对所述预设区域的外轮廓进行切割形成第一透气孔121。
具体地,在本实施方式中,所述“对所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域进行切割形成第一透气孔121”包括S411及S412。接下来对S411及S412进行详细描述。
S411,选定所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域内的预设区域。
其中,在本实施方式中,所述预设区域的数量为一个或多个,所述预设区域的形状可以但不限于为圆 形、矩形、多边形或者不规则形状等。
S412,对所述预设区域的外轮廓进行切割形成第一透气孔121。
其中,在本实施方式中,在所述第一透气密封件上沿所述预设区域的外轮廓进行切割,以形成所述第一透气孔121。具体地,采用激光对所述第一透气密封件进行切割,通过激光头发出的激光沿所述预设区域的外轮廓对所述第一透气密封件进行切割,且通过激光头发出的激光的平移和旋转可以对多个所述第一透气密封件进行切割。由于激光具有较高的能量,因此可以将能量传递至所述第一透气密封件上,使得所述第一透气密封件上被激光照射过的地方产生高温而燃烧。又因为激光的照射在所述第一透气密封件上的光斑直径为微米级别,可近似为点,所以激光在所述第一透气密封件上照射过的路径连接起来可近似为线条。当激光在所述第一透气密封件上沿所述预设区域的外轮廓进行运动时,激光会对所述预设区域的外轮廓上的各个点进行燃烧形成微米级别的洞,这些燃烧形成的洞连接起来进而形成切口,以使得所述第一预设区域脱落而形成所述第一透气孔121,通过激光沿着所述预设区域的外轮廓进行切割,切割速度快。具体地,承载所述激光头的设备的功率P1为:60W≤P1≤150W,且所述激光头工作时的功率P2为:P1*60%≤P2≤P1*80%,所述激光头发出的激光的运动速度v1为:800mm/s≤v1≤1500mm/s,所述激光头发出的激光的焦距d1为:30cm≤d1≤60cm。需要说明的是,在一实施方式中,所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割。在另一实施方式中,通过所述激光头的平移与旋转,从而带动所述激光头发出的激光运动进行切割。在本实施方式中,以所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割进行示例性说明。
请参照图15,图15为图12实施方式提供的降温组件的制备方法中另一实施方式提供的第一透气孔的制备方法的流程示意图。在本实施方式中,所述“对所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域进行切割形成第一透气孔121”包括选定预设区域。以及对所述预设区域的内部进行切割形成所述第一透气孔121。
具体地,在本实施方式中,所述“对所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域进行切割形成第一透气孔121”包括S413及S414。接下来对S413及S414进行详细描述。
S413,选定所述第一透气密封件与所述第一端111的端面贴合的部分所环绕的区域内的预设区域。
其中,在本实施方式中,所述预设区域的数量为一个或多个,所述预设区域的形状可以但不限于为圆形、矩形、多边形或者不规则形状等。
S414,对所述预设区域的内部进行切割形成所述第一透气孔121。
其中,在本实施方式中,由于激光具有较高的能量,因此可以将能量传递至所述第一透气密封件上,使得所述第一透气密封件上被激光照射过的地方产生高温而燃烧。通过激光照射所述预设区域上每一个点使得所述预设区域全部燃烧掉,从而形成所述第一透气孔121,不会产生脱落的废屑,只需要利用风机抽走所述第一透气密封件燃烧产生的烟气,无需进一步地处理废屑,使得加工程序简化。具体地,承载所述激光头的设备的功率P1为:60W≤P1≤150W,且所述激光头工作时的功率P2为:P1*60%≤P2≤P1*80%,所述激光头发出的激光的运动速度v1为:800mm/s≤v1≤1500mm/s,所述激光头发出的激光的焦距d1为:30cm≤d1≤60cm。需要说明的是,在一实施方式中,所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割。在另一实施方式中,通过所述激光头的平移与旋转,从而带动所述激光头发出的激光运动进行切割。在本实施方式中,以所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割进行示例性说明。
在一实施方式中,激光的光斑大小不变,所述激光沿着所述预设区域的外轮廓上一端照射整个所述预设区域至所述预设区域的外轮廓上另一端,从而将整个所述预设区域燃烧掉形成所述第一透气孔121。
在另一实施方式中,激光的光斑大小不变,所述激光自所述预设区域的内部照射整个所述预设区域至所述预设区域的外轮廓,从而将整个所述预设区域燃烧掉形成所述第一透气孔121。
在又一实施方式中,调整激光的光斑大小,当所述激光照射所述预设区域内部时,调大所述激光的光斑尺寸,加快所述激光切割所述预设区域的速度。当所述激光照射所述预设区域的外轮廓附近区域时,调小所述激光的光斑尺寸,避免所述激光切割到所述预设区域之外的区域。
请参照图16及图17,图16为本申请又一实施方式提供的降温组件的制备方法的流程示意图;图17为图16实施方式提供的降温组件的制备方法所制备的第二透气密封部的结构示意图。在本实施方式中,在所述“提供第二透气密封件,将所述粘附有粘结剂的第二端112的端面与所述第二透气密封件贴合”之后,在所述“对所述第二透气密封件进行切割,形成密封所述第二端112的第二透气密封部14”之前,所述降温组件10的制备方法还包括对所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域进行切割形成第二透气孔141。需要说明的是,本实施方式可结合至图5或图12中任一实施方式中进行说明,在本实施方式中,以结合至图12中实施方式进行示意,图15不应当理解为对本申请提供的降温组件10的制备方法的限定。
具体地,在本实施方式中,所述降温组件10的制备方法包括但不限于S11、S12、S13、S41、S14、S15、S26、S27、S28、S42及S29。其中,本实施方式中的S11、S12、S13、S41、S14、S15、S26、S27、S28及S29与前述实施方式中的S11、S12、S13、S41、S14、S15、S26、S27、S28及S29相同。接下来对S11、S12、S13、S41、S14、S15、S26、S27、S28、S42及S29进行详细描述。
S11,所述降温组件10的制备方法包括提供多个降温管11,所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。
S12,将所述第一端111放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第一端111的端面平齐且粘附有粘结剂。
S13,提供第一透气密封件,将所述粘附有粘结剂的第一端111的端面与所述第一透气密封件贴合。
S41,对所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域进行切割形成第一透气孔121。
S14,对所述第一透气密封件进行切割,形成密封所述第一端111的第一透气密封部12。
S15,将降温部13自所述第一端111装填至所述降温管11的收容空间113中。
S26,翻转所述蓄胶件。
S27,将所述第二端112放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管11的所述第二端112的端面平齐且粘附有粘结剂。
S28,提供第二透气密封件,将所述粘附有粘结剂的第二端112的端面与所述第二透气密封件贴合。
S42,对所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域进行切割形成第二透气孔141。
其中,在本实施方式中,所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域,指的是后续S29步骤形成的所述第二透气密封部14所在区域。在本实施方式中,所述第二透气孔141的数量为一个或多个,所述第二透气孔141的形状可以但不限于为圆形、矩形、多边形或者不规则形状等。所述第二透气孔141能够增加所述降温管11的透气性,从而降低了气溶胶流经所述降温管11的阻力,以降低抽吸阻力。需要说明的是,所述第二透气孔141的尺寸小于所述降温部13中降温材料的尺寸,以防止所述降温部13中的降温材料从所述第二透气孔141中漏出。
S29,对所述第二透气密封件进行切割,形成密封所述第二端112的端面的第二透气密封部14。
本实施方式中的S11、S12、S13、S41、S14、S15、S26、S27、S28及S29与前述实施方式中的S11、S12、S13、S41、S14、S15、S26、S27、S28及S29相同,在此不再赘述。
请参照图18,图18为图16实施方式提供的降温组件的制备方法中一实施方式提供的第二透气孔的制备方法的流程示意图。在本实施方式中,所述“对所述第二透气密封件与所述第二端112的端面贴合的部 分所环绕的区域进行切割形成第二透气孔141”包括选定所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域内的预设切割域。以及对所述预设切割域的外轮廓进行切割形成第二透气孔141。
具体地,在本实施方式中,所述“对所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域进行切割形成第二透气孔141”包括S421及S422。接下来对S421及S422进行详细描述。
S421,选定所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域内的预设切割域。
其中,在本实施方式中,所述预设切割域的数量为一个或多个,所述预设切割域的形状可以但不限于为圆形、矩形、多边形或者不规则形状等。
S422,对所述预设切割域的外轮廓进行切割形成第二透气孔141。
其中,在本实施方式中,在所述第二透气密封件上沿所述预设切割域的外轮廓进行切割,以形成所述第二透气孔141。具体地,采用激光对所述第二透气密封件进行切割,通过激光头发出的激光沿所述预设切割域的外轮廓对所述第二透气密封件进行切割,且通过激光头发出的激光的平移和旋转可以对多个所述第二透气密封件进行切割。由于激光具有较高的能量,因此可以将能量传递至所述第二透气密封件上,使得所述第二透气密封件上被激光照射过的地方产生高温而燃烧。又因为激光的照射在所述第二透气密封件上的光斑直径为微米级别,可近似为点,所以激光在所述第二透气密封件上照射过的路径连接起来可近似为线条。当激光在所述第二透气密封件上沿所述预设切割域的外轮廓进行运动时,激光会对所述预设切割域的外轮廓上的各个点进行燃烧形成微米级别的洞,这些燃烧形成的洞连接起来进而形成切口,以使得所述第一预设切割域脱落而形成所述第二透气孔141,通过激光沿着所述预设切割域的外轮廓进行切割,切割速度快。具体地,承载所述激光头的设备的功率P3为:60W≤P3≤150W,且所述激光头工作时的功率P4为:P3*60%≤P4≤P3*80%,所述激光头发出的激光的运动速度v2为:800mm/s≤v2≤1500mm/s,所述激光头发出的激光的焦距d2为:30cm≤d2≤60cm。需要说明的是,在一实施方式中,所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割。在另一实施方式中,通过所述激光头的平移与旋转,从而带动所述激光头发出的激光运动进行切割。在本实施方式中,以所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割进行示例性说明。
请参照图19,图19为图16实施方式提供的降温组件的制备方法中另一实施方式提供的第二透气孔的制备方法的流程示意图。在本实施方式中,所述“对所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域进行切割形成第二透气孔141”包括选定预设切割域。以及对所述预设切割域的内部进行切割形成所述第二透气孔141。
具体地,在本实施方式中,所述“对所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域进行切割形成第二透气孔141”包括S423及S424。接下来对S423及S424进行详细描述。
S423,选定所述第二透气密封件与所述第二端112的端面贴合的部分所环绕的区域内的预设切割域。
其中,在本实施方式中,所述预设切割域的数量为一个或多个,所述预设切割域的形状可以但不限于为圆形、矩形、多边形或者不规则形状等。
S424,对所述预设切割域的内部进行切割形成所述第二透气孔141。
其中,在本实施方式中,于激光具有较高的能量,因此可以将能量传递至所述第二透气密封件上,使得所述第二透气密封件上被激光照射过的地方产生高温而燃烧。通过激光照射所述预设切割域上每一个点使得所述预设切割域全部燃烧掉,从而形成所述第二透气孔141,不会产生脱落的废屑,只需要利用风机抽走所述第二透气密封件燃烧产生的烟气,无需进一步地处理废屑,使得加工程序简化。具体地,承载所述激光头的设备的功率P3为:60W≤P1≤150W,且所述激光头工作时的功率P4为:P3*60%≤P4≤P3*80%,所述激光头发出的激光的运动速度v2为:800mm/s≤v2≤1500mm/s,所述激光头发出的激光的焦距d2为:30cm≤d2≤60cm。需要说明的是,在一实施方式中,所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割。在另一实施方式中,通过所述激光头的平移与旋转,从而带动所述激光头发出的 激光运动进行切割。在本实施方式中,以所述激光头固定不变,仅通过所述激光头发出的激光的平移与旋转进行切割进行示例性说明。
在一实施方式中,激光的光斑大小不变,所述激光沿着所述预设切割域的外轮廓上一端照射整个所述预设切割域至所述预设切割域的外轮廓上另一端,从而将整个所述预设切割域燃烧掉形成所述第二透气孔141。
在另一实施方式中,激光的光斑大小不变,所述激光自所述预设切割域的内部照射整个所述预设切割域至所述预设切割域的外轮廓,从而将整个所述预设切割域燃烧掉形成所述第二透气孔141。
在又一实施方式中,调整激光的光斑大小,当所述激光照射所述预设切割域内部时,调大所述激光的光斑尺寸,加快所述激光切割所述预设切割域的速度。当所述激光照射所述预设切割域的外轮廓附近区域时,调小所述激光的光斑尺寸,避免所述激光切割到所述预设切割域之外的区域。
请参照图20及图21,图20为本申请一实施方式提供的加热不燃烧烟弹的制备方法的流程示意图;图21为图20实施方式提供的加热不燃烧烟弹的制备方法所制备的加热不燃烧烟弹的结构示意图。所述加热不燃烧烟弹1的制备方法包括提供管体20,所述管体20具有容纳空间21。利用封口件30密封所述管体20的一端。将发烟件40自背离所述封口件30一端装入所述容纳空间21,并使得所述发烟件40邻近所述封口件30。将如前述任意一实施方式所述的降温组件10的制备方法所制备的降温组件10自背离所述封口件30一端装入所述容纳空间21,并使得所述第一端111相对于所述第二端112邻近所述发烟件40设置。以及将过滤件50自背离所述封口件30一端装入所述容纳空间21。
在本实施方式中,所述加热不燃烧烟弹1的制备方法包括但不限于S51、S52、S53、S54及S55。接下来对S51、S52、S53、S54及S55进行详细说明。
S51,提供管体20,所述管体20具有容纳空间21。
其中,在本实施方式中,所述管体20为食用级材料,因此所述管体20在受热时可减少甚至不产生有害物质。举例而言,所述管体20可以但不限于为白卡纸或牛皮纸等食用级材料。具体地,所述管体20可以但不限于为50-200g/㎡的白卡纸或50-200g/㎡的牛皮纸等食用级材料。
S52,利用封口件30密封所述管体20的一端。
其中,在本实施方式中,所述封口件30为食用级材料,因此所述封口件30在受热时可减少甚至不产生有害物质。举例而言,所述封口件30可以但不限于为丝棉纸、高透气性纸或牛油纸等食用级材料。具体地,所述封口件30可以但不限于为10-50g/㎡丝棉纸、10-50g/㎡高透气性纸或45~105g/㎡的牛油纸等食用级材料。
S53,将发烟件40自背离所述封口件30一端装入所述容纳空间21,并使得所述发烟件40邻近所述封口件30。
其中,在本实施方式中,所述发烟件40装有气溶胶基质,气溶胶基质可以但不限于为草本植物、中草药或烟叶中的一种或多种的混合物。当所述发烟件40受热时,所述发烟件40内的气溶胶基质会受热产生气溶胶基质。
S54,将如前述任意一实施方式所述的降温组件10的制备方法所制备的降温组件10自背离所述封口件30一端装入所述容纳空间21,并使得所述第一端111相对于所述第二端112邻近所述发烟件40设置。
其中,在本实施方式中,所述降温组件10用于将所述发烟组件中气溶胶基质受热产生的气溶胶进行降温,以使所述气溶胶降温至适宜吸食的温度。在本实施方式中,所述第一端111相对于所述第二端112邻近所述发烟件40设置,所述降温组件10中的所述第一透气密封部12能够防止所述降温部13掉入所述发烟件40中与所述发烟件40中的气溶胶形成基质混合。所述降温组件10的制备方法请参见前述任意一实施方式,在此不再赘述。
S55,将过滤件50自背离所述封口件30一端装入所述容纳空间21。
其中,在本实施方式中,所述过滤件50用于过滤经过降温组件10降温的气溶胶,过滤气溶胶中的杂质,以提高气溶胶的细腻感。
在本实施方式中,由于降温组件10可以先一次性对多个所述降温管11进行密封,然后沿所述降温管11的外形轮廓进行切割,从而形成所述降温组件10。因此本实施方式提供的加热不燃烧烟弹1的制备方法中的降温组件10的生产效率高,提高了所述加热不燃烧烟弹1的生产效率。
请一并参照图22、图23及图24,图22为本申请一实施方式提供的降温组件的结构示意图;图23为图22实施方式提供的降温组件中I处的放大示意图;图24为图22实施方式提供的降温组件中II处的放大示意图。所述降温组件10包括降温管11及降温部13。所述降温管11包括相背设置的第一端111及第二端112,所述降温管11具有收容空间113。所述降温部13收容于所述收容空间113,所述降温部13占所述收容空间113体积比a的范围为:20%≦a≦60%。所述降温组件10还包括第一粘结层15及第一透气密封部12。和/或,所述降温组件10还包括第二粘结层16及第二透气密封部14。当所述降温组件10包括第一粘结层15及第一透气密封部12时,所述第一粘结层15设置于所述第一端111的端面且位于所述第一端111邻近所述第一端111的端面的部分。所述第一透气密封部12通过所述第一粘结层15粘结于所述第一端111的端面。当所述降温组件10包括第二粘结层16及第二透气密封部14时,所述第二粘结层16设置于所述第二端112的端面且位于所述第二端112邻近所述第二端112的端面的部分。所述第二透气密封部14通过所述第二粘结层16粘接于所述第二端112的端面。
在本实施方式中,所述降温部13占所述收容空间113体积比a的范围为:20%≦a≦60%,能够在保有所述降温部13的降温效率的情况下,使得所述降温组件10具有适宜的抽吸阻力。如若所述降温部13占所述收容空间113的体积比a过大,则会增加气溶胶通过所述降温部13的阻力,从了使得抽吸阻力过大。如若所述降温部13占所述收容空间113的体积比a过小,则会降低所述降温部13与气溶胶的接触面积,从而降低了所述降温部13的降温效果。
在本实施方式中,当所述降温组件10包括第一粘结层15及第一透气密封部12时,所述第一粘结层15设置于所述第一端111的端面且位于所述第一端111邻近所述第一端111的端面的部分,且所述第一粘结层15位于所述第一端111邻近所述第一端111的端面的部分的高度h3为:0.1mm≤h3≤0.3mm。所述第一透气密封部12通过所述第一粘结层15粘结于所述第一端111的端面。在本实施方式中,所述第一粘结层15为食品级粘结剂,可在受热时减少甚至不产生毒物。举例而言,所述第一粘结层15可以但不限于为糯米胶、搭口胶、吸管胶或白乳胶等中的一种或多种食品级粘结剂。所述第一粘结层15增加了所述第一端111的端面及所述第一端111邻近所述第一端111的端面的部分的强度,使得所述降温管11所述第一端111的端面能够承受更大的压力,降低甚至消除了所述降温组件10在加工过程中所述降温组件10因受压而导致的受损,且降低甚至消除了所述降温组件10应用于加热不燃烧烟弹1插入烟具时,所述降温组件10因受压而导致的受损。由于所述第一粘结层15在受热时可能会产生异味,在本实施方式中,所述第一粘结层15经过烘烤处理,将所述第一粘结层15中的异味去除掉,使得所述降温组件10应用于加热不燃烧烟弹1中加热时不会再产生异味,且通过烘烤处理进一步减少了所述第一粘结层15中的水分,使得所述第一粘结层15固化,进一步增强了所述第一粘结层15与所述第一端111的端面的粘结强度。此外,所述第一粘结层15的高度h3可保证所述第一端111的端面能够牢固贴合所述第一透气密封部12,且不影响所述第一端111的端面与所述第一透气密封部12的贴合处的平整度。如若所述高度h3过小,即粘附在所述第一端111邻近所述第一端111的端面的部分粘附的粘结剂过少,会使得所述第一端111的端面不能牢固贴合所述第一透气密封部12。如若所述高度h3过大,即粘附在所述第一端111邻近所述第一端111的端面的部分粘附的粘结剂过多,会使得所述第一端111邻近所述第一端111的端面的部分与所述第一透气密封部12之间堆积有粘结剂,增加了所述第一透气密封部12在切割加工时所需要切割的厚度,从而会影响对所述第一透气密封部12的切割加工,容易在所述第一透气密封部12切割加工的过程中,在所述第一 透气密封部12与所述第一端111的端面的贴合处形成毛边。
在本实施方式中,当所述降温组件10还包括第二粘结层16及第二透气密封部14时,所述第二粘结层16设置于所述第二端112的端面且位于所述第二端112邻近所述第二端112的端面的部分,且所述第二粘结层16位于所述第二端112邻近所述第二端112的端面的部分的高度h4为:0.1mm≤h4≤0.3mm。所述第二透气密封部14通过所述第二粘结层16粘结于所述第二端112的端面。在本实施方式中,所述第二粘结层16为食品级粘结剂,可在受热时减少甚至不产生毒物。举例而言,所述第二粘结层16可以但不限于为糯米胶、搭口胶、吸管胶或白乳胶等中的一种或多种食品级粘结剂。所述第二粘结层16增加了所述第二端112的端面及所述第二端112邻近所述第二端112的端面的部分的强度,使得所述降温管11所述第二端112的端面能够承受更大的压力,降低甚至消除了所述降温组件10在加工过程中所述降温组件10因受压而导致的受损,且降低甚至消除了所述降温组件10应用于加热不燃烧烟弹1插入烟具时,所述降温组件10因受压而导致的受损。由于所述第二粘结层16在受热时可能会产生异味,在本实施方式中,所述第二粘结层16经过烘烤处理,将所述第二粘结层16中的异味去除掉,使得所述降温组件10应用于加热不燃烧烟弹1中加热时不会再产生异味,且通过烘烤处理进一步减少了所述第二粘结层16中的水分,使得所述第二粘结层16固化,进一步增强了所述第二粘结层16与所述第二端112的端面的粘结强度。此外,所述第二粘结层16的高度h4可保证所述第二端112的端面能够牢固贴合所述第二透气密封部14,且不影响所述第二端112的端面与所述第二透气密封部14的贴合处的平整度。如若所述高度h4过小,即粘附在所述第二端112邻近所述第二端112的端面的部分粘附的粘结剂过少,会使得所述第二端112的端面不能牢固贴合所述第二透气密封部14。如若所述高度h4过大,即粘附在所述第二端112邻近所述第二端112的端面的部分粘附的粘结剂过多,会使得所述第二端112邻近所述第二端112的端面的部分与所述第二透气密封部14之间堆积有粘结剂,增加了所述第二透气密封部14在切割加工时所需要切割的厚度,从而会影响对所述第二透气密封部14的切割加工,容易在所述第二透气密封部14切割加工的过程中,在所述第二透气密封部14与所述第二端112的端面的贴合处形成毛边。
请参照图25及图26,图25为本申请一实施方式提供的加热不燃烧烟弹的结构示意图;图26为图25实施方式提供的加热不燃烧烟弹的立体分解图。所述加热不燃烧烟弹1包括管体20、封口件30、发烟件40、过滤件50及如上述所述的降温组件10。所述管体20具有容纳空间21。所述封口件30密封于所述管体20的一端。所述发烟件40设置于所述容纳空间21,且邻近所述封口件30设置。所述降温组件10设置于所述容纳空间21内,位于所述发烟件40背离所述封口件30的一端,且所述第一透气密封部12相较于所述降温部13邻近所述发烟件40。所述过滤件50设置于容纳空间21内,且设置于所述降温组件10背离所述发烟件40的一侧。
在本实施方式中,所述发烟件40装有气溶胶生成基质,因此所述发烟件40在受热时会产生高温的气溶胶。通过过滤件50对所述加热不燃烧烟弹1进行抽吸,会使得所述气溶胶从发烟件40处依次通过所述降温组件10及所述过滤件50。所述气溶胶流经所述降温组件10后温度将降低至适宜的抽吸温度,使得所述气溶胶从所述过滤件50流出后具有适宜的抽吸温度。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种降温组件的制备方法,其特征在于,所述降温组件的制备方法包括:
    提供多个降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间;
    将所述第一端放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第一端的端面平齐且粘附有粘结剂;
    提供第一透气密封件,将所述粘附有粘结剂的第一端的端面与所述第一透气密封件贴合;
    对所述第一透气密封件进行切割,形成密封所述第一端的端面的第一透气密封部;以及
    将降温部自所述第二端装填至所述降温管的收容空间中。
  2. 如权利要求1所述的降温组件的制备方法,其特征在于,在“将降温部自所述第二端装填至所述降温管的收容空间中”之后,所述降温组件的制备方法还包括:
    翻转所述蓄胶件;
    将所述第二端放入所述蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第二端的端面平齐且粘附有粘结剂;
    提供第二透气密封件,将所述粘附有粘结剂的第二端的端面与所述第二透气密封件贴合;以及
    对所述第二透气密封件进行切割,形成密封所述第二端的端面的第二透气密封部。
  3. 如权利要求1或2所述的降温组件的制备方法,其特征在于,在所述“提供多个降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间”之后,在所述“将所述第一端放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第一端的端面平齐且粘附有粘结剂”之前,所述降温组件的制备方法还包括:
    将所述蓄胶件中超过第一预设高度的粘结剂刮除,所述第一预设高度h1的范围为:0.1mm≤h1≤0.3mm。
  4. 如权利要求1所述的降温组件的制备方法,其特征在于,所述“将所述第一端放入蓄胶件中的容置空间中,并与所述容置空间内的粘结剂接触,以使得所述多个降温管的所述第一端的端面平齐且粘附有粘结剂”包括:
    将所述蓄胶件设置于所述第一端的一侧,且与所述第一端间隔设置;
    自所述第二端向所述第一端推动所述降温管,推动的力度大小F为:1N≤F≤1.5N;以及
    将所述第一端的端面浸入所述容置空间内的粘结剂,直至所述第一端的端面抵接所述蓄胶件,以使所述第一端邻近所述第一端的端面的部分粘附有粘结剂。
  5. 如权利要求1或2所述的降温组件的制备方法,其特征在于,在所述“提供第一透气密封件,将所述粘附有粘结剂的第一端的端面与所述第一透气密封件贴合”之后,在所述“对所述第一透气密封件进行切割,形成密封所述第一端的第一透气密封部”之前,所述降温组件的制备方法还包括:
    对所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域进行切割形成第一透气孔。
  6. 如权利要求5所述的降温组件的制备方法,其特征在于,所述“对所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域进行切割形成第一透气孔”包括:
    选定所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域内的预设区域;以及
    对所述预设区域的外轮廓进行切割形成第一透气孔。
  7. 如权利要求5所述的降温组件的制备方法,其特征在于,所述“对所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域进行切割形成第一透气孔”包括:
    选定所述第一透气密封件与所述第一端的端面贴合的部分所环绕的区域内的预设区域;以及
    对所述预设区域的内部进行切割形成所述第一透气孔。
  8. 如权利要求1所述的降温组件的制备方法,其特征在于,所述降温管的材料包括50~200g/㎡的白卡纸或50~200g/㎡的牛皮纸中至少一种。
  9. 如权利要求1所述的降温组件的制备方法,其特征在于,所述粘结剂包括糯米胶、搭口胶、吸管胶或白乳胶中至少一种。
  10. 如权利要求1所述的制备方法,其特征在于,所述第一透气密封件包括10~50g/㎡的丝棉纸、10~50g/㎡高透气性纸或者45~105g/㎡的牛油纸中至少一种。
  11. 如权利要求1所述的降温组件的制备方法,其特征在于,所述“对所述第一透气密封件进行切割”包括:采用刀具对所述第一透气密封件沿所述降温管的外形轮廓进行切割。
  12. 如权利要求1所述的降温组件的制备方法,其特征在于,所述“对所述第一透气密封件进行切割”包括:采用激光对所述第一透气密封件沿所述降温管的外形轮廓进行切割。
  13. 如权利要求11所述的降温组件的制备方法,其特征在于,所述激光的切割速度v1:800mm/s≤v1≤1500mm/s。
  14. 如权利要求11所述的降温组件的制备方法,其特征在于,所述激光的焦距d1:30cm≤d1≤60cm。
  15. 如权利要求1所述的降温组件的制备方法,奇特正在于,所述降温材料包括分子筛、麦饭石、原矿石、陶瓷吸附材料、远红外球、过滤陶瓷球、电气石球、SPM铜锌合金滤料及活性碳中至少一种。
  16. 如权利要求1所述的降温组件的制备方法,其特征在于,所述“将降温部自所述第二端装填至所述降温管的收容空间中”包括:将所述降温部自所述第二端装填至所述降温管的收容空间中,并使得所述降温部占所述收容空间体积比a为:20%≦a≦60%。
  17. 如权利要求2所述的降温组件的制备方法,其特征在于,所述第二透气密封件包括10~50g/㎡的丝棉纸、10~50g/㎡高透气性纸或者45~105g/㎡的牛油纸中至少一种。
  18. 一种加热不燃烧烟弹的制备方法,其特征在于,所述加热不燃烧烟弹的制备方法包括:
    提供管体,所述管体具有容纳空间;
    利用密封件密封所述管体的一端;
    将发烟件自背离所述密封件一端装入所述容纳空间,并使得所述发烟件邻近所述封口件;
    将如权利要求1-17任意一项所述的降温组件的制备方法所制备的降温组件自背离所述密封件一端装入所述容纳空间,并使得所述第一端相对于所述第二端邻近所述发烟件设置;以及
    将过滤件自背离所述密封件一端装入所述容纳空间。
  19. 一种降温组件,其特征在于,所述降温组件包括:降温管,所述降温管包括相背设置的第一端及第二端,所述降温管具有收容空间;以及降温部,所述降温部收容于所述收容空间,所述降温部占所述收容空间体积比a的范围为:20%≦a≦60%;所述降温组件还包括第一粘结层及第一透气密封部;和/或,所述降温组件还包括第二粘结层及第二透气密封部;当所述降温组件包括第一粘结层及第一透气密封部时:所述第一粘结层设置于所述第一端的端面且位于所述第一端邻近所述第一端的端面的部分,所述第一透气密封部通过所述第一粘结层粘结于所述第一端的端面;当所述降温组件包括第二粘结层及第二透气密封部时:所述第二粘结层设置于所述第二端的端面且位于所述第二端邻近所述第二端的端面的部分,所述第二透气密封部通过所述第二粘结层粘接于所述第二端的端面。
  20. 一种加热不燃烧烟弹,其特征在于,所述加热不燃烧烟弹包括:管体,所述管体具有容纳空间;封口件,所述封口件密封于所述第一管体的一端;发烟件,所述发烟件设置于所述容纳空间,且邻近所述封口件设置;如权利要求19所述的降温组件,所述降温组件设置于所述容纳空间内,位于所述发烟件背离所述封口件的一端,且所述第一透气密封部相较于所述降温部邻近所述发烟件;以及过滤件,所述过滤件设置于容纳空间内,且设置于所述降温组件背离所述发烟件的一侧。
PCT/CN2022/076947 2022-01-30 2022-02-18 降温组件及其制备方法以及加热不燃烧烟弹及其制备方法 WO2023142195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114201.9 2022-01-30
CN202210114201.9A CN114515020A (zh) 2022-01-30 2022-01-30 降温组件及其制备方法以及加热不燃烧烟弹及其制备方法

Publications (1)

Publication Number Publication Date
WO2023142195A1 true WO2023142195A1 (zh) 2023-08-03

Family

ID=81596001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076947 WO2023142195A1 (zh) 2022-01-30 2022-02-18 降温组件及其制备方法以及加热不燃烧烟弹及其制备方法

Country Status (2)

Country Link
CN (1) CN114515020A (zh)
WO (1) WO2023142195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114953602A (zh) * 2022-06-09 2022-08-30 乐智有限公司 管体的制备方法、管体及加热不燃烧烟弹

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170042221A1 (en) * 2014-04-30 2017-02-16 British American Tobacco (Investments) Limited Aerosol-cooling element and arrangements for use with apparatus for heating a smokable material
CN107536100A (zh) * 2017-09-26 2018-01-05 南通鑫源实业有限公司 一种具有腔体式容器段的加热不燃烧卷烟
CN109393550A (zh) * 2018-10-31 2019-03-01 云南恒罡科技有限公司 一种加热不燃烧制品的封口方式
CN110141008A (zh) * 2019-07-04 2019-08-20 前海国健华烟科技(深圳)有限公司 加热不燃烧的植物草本烟弹及其组装方法
CN110279145A (zh) * 2019-06-14 2019-09-27 广东精彩国际生物科技有限公司 一种封堵装置以及封堵工艺
CN110367587A (zh) * 2019-07-18 2019-10-25 索图电子(惠州)有限公司 烟气处理部、使用该烟气处理部的低温不燃烧颗粒型烟支及其生产工艺
CN110477448A (zh) * 2019-08-26 2019-11-22 广东神农烟科技术有限公司 一种烟弹加香降温过滤嘴及其制备方法
CN211657377U (zh) * 2019-12-14 2020-10-13 江西中烟工业有限责任公司 一种新型加热不燃烧卷烟
CN112021654A (zh) * 2020-09-18 2020-12-04 新火智造(深圳)有限公司 一体式加热不燃烧烟支
CN215347041U (zh) * 2021-04-21 2021-12-31 李翰林 一种基于管筒隔热的不燃烧烟弹
CN113907401A (zh) * 2021-09-30 2022-01-11 深圳市真味生物科技有限公司 膏体发烟单元、其制备方法、加热不燃烧烟弹及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170042221A1 (en) * 2014-04-30 2017-02-16 British American Tobacco (Investments) Limited Aerosol-cooling element and arrangements for use with apparatus for heating a smokable material
CN107536100A (zh) * 2017-09-26 2018-01-05 南通鑫源实业有限公司 一种具有腔体式容器段的加热不燃烧卷烟
CN109393550A (zh) * 2018-10-31 2019-03-01 云南恒罡科技有限公司 一种加热不燃烧制品的封口方式
CN110279145A (zh) * 2019-06-14 2019-09-27 广东精彩国际生物科技有限公司 一种封堵装置以及封堵工艺
CN110141008A (zh) * 2019-07-04 2019-08-20 前海国健华烟科技(深圳)有限公司 加热不燃烧的植物草本烟弹及其组装方法
CN110367587A (zh) * 2019-07-18 2019-10-25 索图电子(惠州)有限公司 烟气处理部、使用该烟气处理部的低温不燃烧颗粒型烟支及其生产工艺
CN110477448A (zh) * 2019-08-26 2019-11-22 广东神农烟科技术有限公司 一种烟弹加香降温过滤嘴及其制备方法
CN211657377U (zh) * 2019-12-14 2020-10-13 江西中烟工业有限责任公司 一种新型加热不燃烧卷烟
CN112021654A (zh) * 2020-09-18 2020-12-04 新火智造(深圳)有限公司 一体式加热不燃烧烟支
CN215347041U (zh) * 2021-04-21 2021-12-31 李翰林 一种基于管筒隔热的不燃烧烟弹
CN113907401A (zh) * 2021-09-30 2022-01-11 深圳市真味生物科技有限公司 膏体发烟单元、其制备方法、加热不燃烧烟弹及其制备方法

Also Published As

Publication number Publication date
CN114515020A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2023142195A1 (zh) 降温组件及其制备方法以及加热不燃烧烟弹及其制备方法
CN1020667C (zh) 提高坚固度烟卷的制造方法和其方法的产品
CN1030277C (zh) 吸烟制品
WO2005037074A3 (en) Multi-energy x-ray source
WO2014104078A1 (ja) 非燃焼吸引型たばこ製品用香味源及び非燃焼吸引型たばこ製品
HRP921342A2 (en) Substrate material for smoking articles
RU2011148250A (ru) Генерирующий аэрозоль материал для курительного изделия
CN1700864A (zh) 对香烟制品及其可点燃抽吸填充材料的改进
CN1098617A (zh) 吸收性物品及控制其穿戴处的湿度的方法
CN1845668A (zh) 包括连续排列的发芽单元的种子带
JP2010075081A (ja) 細胞シート搬送治具
EA039025B1 (ru) Капсула для введения в головную часть кальяна, машина для табачной промышленности и способ изготовления такой капсулы
JP4580444B2 (ja) フィルムカット装置及びフィルムカット方法
JP2013526846A (ja) 分解可能なプラグラップ及びその用途
WO2023142196A1 (zh) 降温组件及其制备方法以及加热不燃烧烟弹及其制备方法
US20150351453A1 (en) Smoking apparatus accessory and method of using the same
JP3234645U (ja) たばこカプセル及び間接加熱式たばこ製品
JP5483274B2 (ja) 軟骨用移植材
CA2484026A1 (en) A method and a device for moistening a medical implant or transplant
TW200421340A (en) Manufacturing device of optical recording medium (2)
CN206995332U (zh) 一种具有一体化立体电极的低温等离子手术刀
JP4498304B2 (ja) 卵の殻開方法及び卵の殻開装置
WO2021029374A1 (ja) 被加熱芳香発生基材、その基材を用いた被加熱芳香発生源、その発生体を備えた被加熱芳香カートリッジ、及び、その基材の製造方法
TWI316927B (zh)
CN106754439A (zh) 一种分离单细胞的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923017

Country of ref document: EP

Kind code of ref document: A1