WO2023141810A1 - 显示面板、显示装置 - Google Patents

显示面板、显示装置 Download PDF

Info

Publication number
WO2023141810A1
WO2023141810A1 PCT/CN2022/073989 CN2022073989W WO2023141810A1 WO 2023141810 A1 WO2023141810 A1 WO 2023141810A1 CN 2022073989 W CN2022073989 W CN 2022073989W WO 2023141810 A1 WO2023141810 A1 WO 2023141810A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
reflective wall
orthographic projection
microstructure
Prior art date
Application number
PCT/CN2022/073989
Other languages
English (en)
French (fr)
Inventor
朱贺玲
陈振彰
韵夏伟
孙元浩
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/073989 priority Critical patent/WO2023141810A1/zh
Priority to CN202280000086.0A priority patent/CN116830026A/zh
Priority to US18/018,723 priority patent/US20240258475A1/en
Publication of WO2023141810A1 publication Critical patent/WO2023141810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a display device.
  • Mini/Micro LED Mini/Micro Light-Emitting Diode, micro light-emitting diode
  • LCD Liquid Crystal Display, liquid crystal display
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • Mini/Micro LED display technology is still immature, and there is a significant problem of large viewing angle difference.
  • an embodiment of the present application provides a display panel, including:
  • a first reflective wall is arranged around the light-emitting unit, and the height of the first reflective wall along the direction perpendicular to the substrate is greater than the height of the light-emitting unit along the direction perpendicular to the substrate;
  • a first microstructure layer located on a side of the first reflective wall away from the substrate
  • the orthographic projection of the first microstructure layer on the substrate at least overlaps with the orthographic projection of the first reflective wall on the substrate, and the first microstructure layer extends perpendicular to the The distance from the direction of the substrate to the substrate is greater than or equal to the distance from the surface of the first reflective wall away from the substrate along the direction perpendicular to the substrate to the substrate.
  • the first microstructure layer and the first reflective wall are an integrated structure
  • the distance between the first microstructure layer extending from the direction perpendicular to the substrate to the substrate is equal to the distance from the surface of the first reflective wall away from the substrate extending perpendicular to the direction of the substrate to the substrate. distance between bottoms.
  • the display panel further includes a functional layer, the functional layer is located on the side of the first reflective wall away from the substrate, and the first microstructure layer is located on the functional layer A side away from the first reflective wall; the first microstructure layer and the functional layer are an integrated structure;
  • the distance between the first microstructure layer extending perpendicular to the substrate to the substrate is greater than the distance between the surface of the first reflective wall away from the substrate extending perpendicular to the substrate to the substrate distance between bottoms.
  • the orthographic projection of the functional layer on the substrate and the orthographic projection of the first reflective wall on the substrate overlap, and the functional layer is on the substrate
  • the orthographic projection on the base and the orthographic projection of the light emitting unit on the substrate overlap.
  • the functional layer is a patterned film structure
  • the orthographic projection of the functional layer on the substrate is orthogonal to the orthographic projection of the first reflective wall on the substrate. overlap, and the orthographic projection of the functional layer on the substrate and the orthographic projection of the light emitting unit on the substrate do not overlap each other.
  • the light emitting unit includes a plurality of light emitting subunits located on the substrate; a second A reflective wall, the first reflective wall and the second reflective wall are arranged on the same layer;
  • the orthographic projection of the functional layer on the substrate overlaps with the orthographic projection of the second reflective wall on the substrate, and the orthographic projection of the first microstructure layer on the substrate overlaps with the orthographic projection of the second reflective wall on the substrate.
  • the orthographic projections of the second reflective wall on the substrate overlap.
  • the orthographic projection of the reflective wall on the substrate is located within the orthographic projection of the first microstructure layer on the substrate, and the light emitting subunit is located on the substrate
  • the orthographic projection on the substrate and the orthographic projection of the first microstructure layer on the substrate do not overlap each other
  • the reflective wall includes the first reflective wall and the second reflective wall, and the first The reflective wall is connected to the second reflective wall.
  • the display panel further includes a second microstructure layer
  • both the surface of the first microstructure layer away from the substrate and the surface of the second microstructure layer away from the substrate have a rough microstructure; the first The distribution density of the microstructures in the microstructure layer is greater than the distribution density of the microstructures in the second microstructure layer.
  • the distribution density of the microstructure gradually decreases along a first direction, and the first direction is a direction in which the first microstructure layer points to the second microstructure layer.
  • the second microstructure layer when the orthographic projection of the functional layer on the substrate and the orthographic projection of the light emitting unit on the substrate overlap, the second microstructure layer is located
  • the side of the functional layer away from the substrate, the second microstructure layer and the functional layer are an integrated structure; and the second microstructure layer and the first microstructure layer are arranged in the same layer.
  • the functional layer, the first reflective wall and the substrate form an enclosed space, and both the light emitting unit and the second reflective wall are located in the enclosed space;
  • the display panel also includes a first filling layer, the first filling layer fills the space in the closed space except the light emitting unit and the second reflective wall, the first filling layer and the function At least one of the layers includes diffusing particles.
  • the material of the functional layer includes a black compound, and the material of the first filling layer includes a light-transmitting compound;
  • the functional layer and the first filling layer are an integrated structure, and the materials of the functional layer and the first filling layer both include a black compound.
  • the display panel when the orthographic projection of the functional layer on the substrate and the orthographic projection of the light emitting unit on the substrate do not overlap each other, the display panel further includes a second filling layer, the second filling layer covers the light-emitting subunit;
  • the second microstructure layer is located on a side of the second filling layer away from the substrate.
  • the distance between the surface of the second filling layer away from the substrate and the direction perpendicular to the substrate to the substrate is equal to the distance between the functional layer and the substrate. The distance between the surface and the direction perpendicular to the substrate to the substrate;
  • the second microstructure layer and the second filling layer are an integrated structure, and the second microstructure layer and the first microstructure layer are arranged in the same layer.
  • the second filling layer also covers the functional layer, and the surface of the second microstructure layer away from the substrate extends perpendicularly to the substrate to the substrate. The distance between them is greater than the distance between the surface of the first microstructure layer away from the substrate and the direction perpendicular to the substrate to the substrate.
  • the display panel further includes a protective layer covering the second filling layer and the functional layer.
  • the refractive index of the reflective wall is smaller than the refractive index of the first filling layer, and the reflective wall is configured to enable at least part of the reflection from the first filling layer to reflect The light from the wall is totally reflected.
  • embodiments of the present application further provide a display device, including the display panel as described above.
  • Figures 1-22 are structural schematic diagrams of twenty-two types of display panels provided in the embodiments of the present application.
  • 23-25 are intermediate structural views of a method for manufacturing a display panel provided by the embodiments of the present application.
  • 26-28 are intermediate structural diagrams of another method for manufacturing a display panel provided by the embodiments of the present application.
  • An embodiment of the present application provides a display panel, as shown in FIG. 1 or FIG. 2 , including:
  • At least one light emitting unit 1 located on the substrate 100;
  • the first reflective wall W1 is arranged around the light-emitting unit 1, and the height h2 of the first reflective wall W1 along the direction perpendicular to the substrate 100 is greater than the height h1 of the light-emitting unit 1 along the direction perpendicular to the substrate 100;
  • the first microstructure layer 31 is located on the side of the first reflective wall W1 away from the substrate 100;
  • the orthographic projection of the first microstructure layer 31 on the substrate 100 overlaps at least the orthographic projection of the first reflective wall W1 on the substrate 100, and the first microstructure layer 31 extends perpendicular to the substrate 100 to the substrate 100.
  • the distance d between the bottoms 100 is greater than or equal to the distance h2 between the surface of the first reflective wall W1 away from the substrate 100 and the direction perpendicular to the substrate 100 to the substrate 100 .
  • the light emitting unit 1 includes a plurality of light emitting subunits, for example, including a light emitting subunit 11 , a light emitting subunit 12 and a light emitting subunit 13 .
  • the light emitting colors of the light emitting subunits in the same light emitting unit 1 are different, for example, the light emitting subunit 11 emits red light, the light emitting subunit 12 emits green light, and the light emitting subunit 1 emits green light.
  • Unit 13 emits blue light.
  • the display panel when used as the backlight of a display product, and the display product also includes a color conversion layer located on the light-emitting side of the light-emitting unit, the light-emitting colors of the light-emitting subunits in the same light-emitting unit 1 can be the same .
  • the light-emitting subunit at this time can emit blue light.
  • the light-emitting subunit can be a light-emitting chip, for example, the light-emitting subunit can be a Mini LED chip or a Micro LED chip.
  • the arrangement of the light emitting units 1 is not limited, and may be determined according to actual conditions.
  • the drawings provided in the embodiments of the present application are drawn by taking a plurality of light emitting units 1 arranged in a rectangular array as an example.
  • the first reflective wall W1 has a mesh structure, and it can be understood that the first reflective wall W1 surrounding each light emitting unit 1 is connected as a whole.
  • the first reflective wall W1 surrounding each light emitting unit 1 may also be an independent structure, that is, the first reflective wall W1 surrounding two adjacent light emitting units 1 is not connected. The embodiment of the present application is described by taking the connection of the first reflective wall W1 surrounding each light emitting unit 1 as a whole as an example.
  • the figure formed by the inner contour of the orthographic projection of the first reflective wall W1 surrounding each light-emitting unit 1 on the substrate 100 may be a polygon; for example, the polygon may be as shown in FIG. 3 rectangle.
  • the figure formed by the inner contour of the orthographic projection of the first reflective wall W1 surrounding each light emitting unit 1 on the substrate 100 may also be an arc; for example, the arc may be an ellipse.
  • the figure formed by the inner contour of the orthographic projection of the first reflective wall W1 of each light-emitting unit 1 on the substrate 100 may also be a figure formed by a combination of a polygon and an arc; for example, a combination of a rectangle and two semicircles graphics.
  • the height h2 of the first reflective wall W1 along the direction perpendicular to the substrate 100 is equal to two to three times the height h1 of the light emitting unit 1 along the direction perpendicular to the substrate 100 .
  • the cross-sectional shape of the first reflecting wall W1 along the direction perpendicular to the substrate 100 may be a trapezoid or an inverted trapezoid as shown in FIG. 20 and FIG. 21 .
  • the material of the first reflective wall W1 is a light-transmitting material with a certain range of refractive index, for example, the refractive index of the material of the first reflective wall W1 is smaller than that between the first reflective wall W1 and the light emitting unit 1
  • the refractive index of the material of the filling layer (the first filling layer T1 or the second filling layer T2).
  • the material of the first reflective wall W1 may further include reflective particles, such as titanium dioxide particles.
  • the reflective wall (including the first reflective wall W1 and the second reflective wall W2 ) may adopt 3D printing, embossing, glue dispensing and other processes, but is not limited to these manufacturing methods.
  • the orthographic projection of the first microstructure layer 31 on the substrate 100 overlaps at least the orthographic projection of the first reflective wall W1 on the substrate 100 means: first, in combination with FIG. 3 and As shown in FIG. 4, the orthographic projection of the first microstructure layer 31 on the substrate 100 only overlaps with the orthographic projection of the first reflective wall W1 on the substrate 100; secondly, the display panel also includes a first filling layer T1 In the case of , the orthographic projection of the first microstructure layer 31 on the substrate 100 not only overlaps with the orthographic projection of the first reflective wall W1 on the substrate 100, the orthographic projection of the first microstructure layer 31 on the substrate 100 It may also overlap with the orthographic projection of the first filling layer T1 on the substrate 100 .
  • the orthographic projection of the first microstructure layer 31 on the substrate 100 only overlaps with the orthographic projection of the first reflective wall W1 on the substrate 100, which can be understood as: referring to FIG. 2 , the first microstructure
  • the outer contour of the orthographic projection of the layer 31 on the substrate 100 overlaps with the outer contour of the orthographic projection of the surface of the first reflective wall W1 away from the substrate 100 on the substrate 100; or, the first microstructure layer 31 is far away from the substrate 100
  • the outer contour of the orthographic projection of the surface on the substrate 100 is located within the outer contour of the orthographic projection of the first reflective wall W1 on the substrate 100 .
  • the first microstructure layer 31 when the first microstructure layer 31 is located on the side of the first barrier W1 away from the substrate 100 and is in direct contact with the first barrier W1, the first microstructure layer 31 along the direction perpendicular to the substrate 100 to the substrate 100 is equal to the distance h2 between the surface of the first reflective wall W1 away from the substrate 100 and the direction perpendicular to the substrate 100 to the substrate 100 .
  • the display panel further includes a functional layer 2.
  • the first microstructure layer 31 is located on the side of the functional layer 2 away from the substrate 100 and is in direct contact with the functional layer 2, The distance d from the first microstructure layer 31 to the substrate 100 along the direction perpendicular to the substrate 100 is greater than the distance h2 from the surface of the first reflective wall W1 away from the substrate 100 to the substrate 100 along the direction perpendicular to the substrate 100 .
  • the surface of the first microstructure layer 31 has a rough and uneven microstructure, which may be called a pitted structure, and may be prepared by embossing technology or micro-engraving technology.
  • the specific size of the pitted structure is not limited here. Exemplarily, the size of the pit structure may be nanoscale or micronscale.
  • the height h2 of the first reflective wall W1 along the direction perpendicular to the substrate 100 is greater than the height of the light-emitting unit 1 along the direction perpendicular to the substrate 100 h1; In this way, the first reflective wall W1 can reflect at least part of the large-angle light emitted by the light-emitting unit 1 to improve the light efficiency of the display panel.
  • the first microstructure layer 31 is provided on the side of the first reflective wall W1 far away from the substrate 100, because the orthographic projection of the first microstructure layer 31 on the substrate 100 is at least the same as that of the first reflective wall W1 on the substrate 100
  • the orthographic projections overlap, so that the orthographic projection of the first microstructure layer 31 on the substrate 100 surrounds the orthographic projection of the light emitting unit 1 on the substrate 100, so that the first microstructure layer 31 can transmit and pass through the light emitting unit 1
  • the large-angle light rays passing through the first microstructure layer 31 are dispersed, thereby improving the large viewing angle aberration problem of the display panel.
  • the line perpendicular to the light-emitting surface is the normal line, and the direction of the normal line is specified as 0°.
  • the first microstructure layer 31 and the first reflective wall W1 are an integrated structure
  • the distance d between the first microstructure layer 31 and the substrate 100 in the direction perpendicular to the substrate 100 is equal to the distance h2 between the surface of the first reflective wall W1 away from the substrate 100 and the direction perpendicular to the substrate 100 to the substrate 100 .
  • the meaning of the integrated structure is explained: using the same material, it is manufactured simultaneously in one process, and the first microstructure layer 31 and the first reflector wall There is actually no interface between walls W1.
  • the meaning of the description of the integrated structure involved in the following text is similar to that here, and will not be repeated here.
  • the outer contour of the orthographic projection of the first microstructure layer 31 on the substrate 100 and the first reflective wall W1 overlaps; or, the outline of the orthographic projection of the surface of the first microstructure layer 31 away from the substrate 100 on the substrate 100 is located at the first reflective wall W1 within the outer contour of the orthographic projection on the substrate 100 .
  • the display panel further includes a functional layer 2, the functional layer 2 is located on the side of the first reflective wall W1 away from the substrate 100, and the first microstructure layer 31 is located on the functional layer 2.
  • the side away from the first reflective wall W1; the first microstructure layer 31 and the functional layer 2 are an integrated structure;
  • the distance d from the first microstructure layer 31 to the substrate 100 along the direction perpendicular to the substrate 100 is greater than the distance h2 from the surface of the first reflective wall W1 away from the substrate 100 to the substrate 100 along the direction perpendicular to the substrate 100 .
  • the material of the functional layer 2 is a black composite, and the black composite includes a light-transmitting polymer matrix material and black micro-nano fillers.
  • the black compound includes black glue, wherein the black glue includes silica gel and carbon black.
  • the particle size range of carbon black is 10nm-500nm.
  • the functional layer 2 made of a black compound can reduce the brightness of the display panel in the dark state, thereby improving the contrast of the display panel;
  • the first microstructure layer 31 is arranged on the surface, and the first microstructure layer 31 can disperse the large-angle light emitted by the light emitting unit 1 and pass through the first microstructure layer 31, thereby improving the large viewing angle difference problem of the display panel.
  • the first microstructure layer 31 is arranged on the light-emitting side surface of the functional layer 2 , which has simple design, low manufacturing process difficulty, low cost and easy realization.
  • Fig. 1-Fig. 2, Fig. 5-Fig. 6, Fig. 10-Fig. The orthographic projections on 100 overlap, and the orthographic projections of the functional layer 2 on the substrate 100 overlap with the orthographic projections of the light emitting unit 1 on the substrate 100 . It can be understood that at this time, the functional layer 2 is a thin film structure on the entire surface.
  • the functional layer 2 is a thin film structure on the whole surface, and the orthographic projection and reflective walls (W1 and W2) of the functional layer 2 on the substrate 100 are in the The orthographic projections on the substrate 100 overlap, and the orthographic projections of the functional layer 2 on the substrate 100 and the orthographic projections of the light emitting unit 1 on the substrate 100 overlap, and the first microstructure layer 31 is located on the functional layer 2 away from the substrate 100 , and the orthographic projection of the first microstructure layer 31 on the substrate 100 overlaps with the orthographic projection of the reflective wall on the substrate 100 .
  • the functional layer 2 is a whole-surface film structure
  • the orthographic projection of the functional layer 2 on the substrate 100 overlaps with the orthographic projection of the reflective wall on the substrate 100
  • the orthographic projection of the functional layer 2 on the substrate 100 overlaps with the orthographic projection of the light emitting unit 1 on the substrate 100
  • the first microstructure layer 31 is located on the surface of the functional layer 2 away from the substrate 100
  • the first microstructure layer 31 The orthographic projection of the structure layer 31 on the substrate 100 overlaps with the orthographic projection of the reflection wall on the substrate 100
  • the second microstructure layer 32 is located on the surface of the functional layer 2 away from the substrate 100
  • the first microstructure The orthographic projection of layer 31 on substrate 100 and the orthographic projection of luminous unit 1 on substrate 100 overlap.
  • the functional layer 2 is a thin film structure on the entire surface, and the orthographic projection of the functional layer 2 on the substrate 100 overlaps with the orthographic projection of the reflective wall on the substrate 100, And the orthographic projection of the functional layer 2 on the substrate 100 overlaps with the orthographic projection of the light emitting unit 1 on the substrate 100 , and the first microstructure layer 31 is located on the surface of the reflection wall away from the substrate 100 .
  • the material of the functional layer 2 is black composite.
  • the functional layer 2 can absorb possible light leakage, thereby significantly reducing the brightness of the display panel in a dark state, thereby greatly improving the contrast of the display panel.
  • the functional layer 2 is a patterned thin film structure, the orthographic projection of the functional layer 2 on the substrate 100 and the first reflective wall W1 on the substrate 100
  • the orthographic projections of the functional layer 2 on the substrate 100 overlap, and the orthographic projections of the light emitting unit 1 on the substrate 100 do not overlap each other. It can be understood that at this time, the functional layer 2 is not provided on the light emitting unit 1 .
  • the first microstructure layer 31 is located on the side of the patterned functional layer 2 away from the substrate, and the first microstructure layer 31 on the substrate 100 The orthographic projection and the orthographic projection of the reflecting wall on the substrate 100 overlap.
  • the first microstructure layer 31 is located on the side of the patterned functional layer 2 away from the substrate, and the orthographic projection of the first microstructure layer 31 on the substrate 100 and The orthographic projections of the reflective walls on the substrate 100 overlap, and the display panel further includes a second filling layer T2, the second microstructure layer 32 is located on the surface of the second filling layer T2 away from the substrate 100, and the second microstructure Layer 32 may be an integral structure with the second filling layer T2.
  • the first microstructure layer 31 is located between the patterned functional layer 2 and the reflective wall, and the first microstructure layer 31 and the reflective wall are an integrated structure .
  • the first microstructure layer 31 is located between the patterned functional layer 2 and the reflective wall, and the first microstructure layer 31 and the reflective wall are an integrated structure
  • the display panel further includes a second filling layer T2
  • the second microstructure layer 32 is located on the surface of the second filling layer T2 away from the substrate 100
  • the second microstructure layer 32 can be an integrated structure with the second filling layer T2 .
  • the material of the functional layer 2 is black composite. Since the functional layer 2 is a patterned thin film structure, when the display panel is in a bright state, the functional layer 2 can absorb a small part of the light emitted from the side of the light emitting unit 1. Since the brightness of the display panel in the bright state is very large, the The brightness effect in the bright state can be almost ignored; when the display panel is in the dark state, the functional layer 2 can absorb the light leakage that may exist from the side of the light-emitting unit 1, and can alleviate the problem of light leakage in the dark state to a certain extent, so that it can be certain Increase the contrast of the display panel to a certain extent.
  • the light-emitting unit 1 includes a plurality of light-emitting subunits (such as including a light-emitting subunit 11, a light-emitting subunit 12, and a light-emitting subunit 13) located on a substrate 100; the same A second reflective wall W2 is also arranged between two adjacent light-emitting subunits (between the light-emitting subunit 11 and the light-emitting subunit 12, between the light-emitting subunit 12 and the light-emitting subunit 13) in the light-emitting unit 1.
  • the reflective wall W1 and the second reflective wall W2 are arranged on the same layer; the orthographic projection of the functional layer 2 on the substrate 100 overlaps with the orthographic projection of the second reflective wall W2 on the substrate 100, and the first microstructure layer 31 is placed on the substrate The orthographic projection on 100 and the orthographic projection of the second reflective wall W2 on the substrate 100 overlap.
  • first reflective wall W1 and the second reflective wall W2 are connected to form a network structure as shown in FIG. 7 .
  • the first reflective wall W1 and the second reflective wall W2 may be configured as an integrated structure.
  • first reflective wall W1 and the second reflective wall W2 may be disposed independently of each other.
  • the first microstructure layer 31 can be disposed on the surface of the functional layer 2 away from the substrate 100 ; as shown in FIG. 8 , the first microstructure layer 31 is on the substrate 100
  • the orthographic projection of the first reflective wall W1 on the substrate 100 overlaps, and the orthographic projection of the first microstructure layer 31 on the substrate 100 overlaps with the orthographic projection of the second reflective wall W2 on the substrate 100 .
  • the first microstructure layer 31 can be disposed on the surface of the functional layer 2 away from the substrate 100, the orthographic projection of the first microstructure layer 31 on the substrate 100 and the first reflection wall W1 on the substrate
  • the orthographic projections on 100 overlap, the orthographic projections of the first microstructure layer 31 on the substrate 100 overlap with the orthographic projections of the second reflective wall W2 on the substrate 100, and the orthographic projections of the first microstructure layer 31 on the substrate 100
  • the orthographic projection partially overlaps the orthographic projection of the at least one light emitting subunit on the substrate 100 .
  • the first microstructure layer 31 may be disposed on the surface of the reflective wall (including the first reflective wall W1 and the second reflective wall W2) away from the substrate 100, and the first microstructure layer
  • the structural layer 31 and the reflective wall are an integrated structure.
  • FIG. 7 and FIG. The orthographic projection profiles of the two reflective walls W2) on the substrate 100 overlap; or, the orthographic projection of the first microstructure layer 31 on the substrate 100 is located between the reflective walls (including the first reflective wall W1 and the second reflective wall W2) within the orthographic projection on the substrate 100 .
  • the orthographic projection S1 of the reflecting wall on the substrate 100 is located within the orthographic projection S3 of the first microstructure layer 31 on the substrate 100, And the orthographic projection S2 of the light-emitting subunit on the substrate 100 and the orthographic projection S3 of the first microstructure layer 31 on the substrate 100 do not overlap each other, the reflective wall includes a first reflective wall W1 and a second reflective wall W2, and The first reflective wall W1 is connected to the second reflective wall W2.
  • the inner contour of the orthographic projection S3 of the first microstructure layer 31 on the substrate 100 is not limited.
  • the inner contour of the orthographic projection S3 of the first microstructure layer 31 on the substrate 100 may be an arc, such as a circle as shown in FIG. 9 .
  • the orthographic projection S1 of the reflective wall on the substrate 100 is located within the orthographic projection S3 of the first microstructure layer 31 on the substrate 100 means: the orthographic projection of the reflective wall on the substrate 100
  • the outline of the first microstructure layer 31 on the substrate 100 is overlapped with the outline of the orthographic projection S3 of the outline of S1; or, as shown in FIG. Layer 31 is within the contour of the orthographic projection S3 on substrate 100 .
  • the display panel further includes a second microstructure layer 32; the orthographic projection of the second microstructure layer 32 on the substrate 100 and The orthographic projection of the light emitting unit 1 on the substrate 100 overlaps, and the orthographic projection of the second microstructure layer 32 on the substrate 100 is connected to the orthographic projection of the first microstructure layer 31 on the substrate 100 .
  • the first microstructure layer 31 and the second microstructure layer 32 are arranged in the same layer, then the first microstructure layer 31 and the second microstructure layer 32 connected.
  • the distance between the first microstructure layer 31 and the substrate 100 along the direction perpendicular to the substrate 100 is the same as the distance between the second microstructure layer 32 and the substrate 100 along the direction perpendicular to the substrate 100 In this way, the first microstructure layer 31 and the second microstructure layer 32 can be produced in one embossing (or engraving) process.
  • both the first microstructure layer 31 and the second microstructure layer 32 are located on the surface of the functional layer 2 away from the substrate 100 .
  • the first microstructure layer 31 is located on the surface of the reflective wall (including the first reflective wall W1 and the second reflective wall W2) away from the substrate 100, and the second microstructure layer 32 is located on
  • the first filling layer T1 is away from the surface of the side of the substrate 100, and the height between the first filling layer T1 and the substrate 100 along the direction perpendicular to the substrate 100 is equal to that of the reflection wall along the direction perpendicular to the substrate 100 to the substrate. Height between base 100.
  • the functional layer 2 is a patterned film structure, and the orthographic projection of the functional layer 2 on the substrate 100 overlaps with the orthographic projection of the reflective walls (W1 and W2) on the substrate 100, And the orthographic projection of the functional layer 2 on the substrate 100 and the orthographic projection of the light-emitting unit 1 on the substrate 100 do not overlap each other;
  • the first microstructure layer 31 is located on the surface of the functional layer 2 away from the substrate 100
  • the second The second microstructure layer is located on the surface of the second filling layer T2 away from the substrate 100, and the distance from the surface of the functional layer 2 away from the substrate 100 along the direction perpendicular to the substrate 100 to the substrate 100 is equal to The distance between the surface of the second filling layer T2 away from the substrate 100 and the substrate 100 along a direction perpendicular to the substrate 100 .
  • the first microstructure layer 31 and the second microstructure layer 32 are located in different layers, and the orthographic projection of the second microstructure layer 32 on the substrate 100 is the same as that of the first microstructure layer.
  • the orthographic projection of the structural layer 31 on the substrate 100 is connected.
  • the first microstructure layer 31 is located on the surface of the reflection wall away from the substrate 100, the first microstructure layer 31 is located between the reflection wall and the functional layer 2; the second microstructure layer 32 is located on the second filling layer T2
  • the surface on one side away from the substrate 100, and the distance between the surface of the second microstructure layer 32 away from the substrate 100 along the direction perpendicular to the substrate 100 to the substrate 100 is equal to that of the functional layer 2 away from the surface of the substrate 100 along the The distance from the direction perpendicular to the substrate 100 to the substrate 100 .
  • both the surface of the first microstructure layer 31 away from the substrate 100 and the surface of the second microstructure layer 32 away from the substrate 100 have rough and uneven microstructures;
  • the distribution density of the microstructures is greater than the distribution density of the microstructures in the second microstructure layer 32 .
  • the distribution density of the microstructures in the first microstructure layer 31 is not limited here.
  • the microstructures in the first microstructure layer 31 may be uniformly distributed, or the microstructures in the first microstructure layer 31 may be distributed according to a certain density gradient.
  • the distribution density of the microstructures in the second microstructure layer 32 is not limited here.
  • the microstructures in the second microstructure layer 32 may be uniformly distributed, or the microstructures in the second microstructure layer 32 may be distributed according to a certain density gradient.
  • the distribution density of the microstructure gradually decreases along the first direction, and the first direction is a direction in which the first microstructure layer 31 points to the second microstructure layer 32 .
  • the large viewing angle aberration problem of the display panel may be aggravated as the viewing angle increases, so the distribution density of the microstructures in the second microstructure layer 32 that overlaps the orthographic projection of the light-emitting unit with the orthographic projection is set to be smaller than the orthographic projection. Projecting the distribution density of the microstructures in the first microstructure layer 31 in the orthographic projection surrounding the light emitting unit 1 can better improve the large viewing angle difference problem of the display panel and improve the display effect.
  • the second microstructure layer 32 Located on the side of the functional layer 2 away from the substrate 100 , the second microstructure layer 32 and the functional layer 2 are an integrated structure; and the second microstructure layer 32 and the first microstructure layer 31 are arranged in the same layer.
  • the distance between the first microstructure layer 31 and the substrate 100 along the direction perpendicular to the substrate 100 is the same as the distance between the second microstructure layer 32 and the substrate 100 along the direction perpendicular to the substrate 100 In this way, the first microstructure layer 31 and the second microstructure layer 32 can be produced in one embossing (or engraving) process.
  • the second microstructure layer 32 and the first microstructure layer 31 are arranged in the same layer, and the second microstructure layer 32 is located on the side of the functional layer 2 away from the substrate 100 .
  • a microstructure layer 31 is located on a side of the functional layer 2 away from the substrate 100 .
  • the functional layer 2, the first reflective wall W1 and the substrate 100 form a closed space, and the light emitting unit 1 and the second reflective wall W2 are located in the closed space; the display panel also A first filling layer T1 is included, the first filling layer T1 fills the space in the enclosed space except the light emitting unit 1 and the second reflective wall W2, at least one of the first filling layer T1 and the functional layer 2 includes diffusion particles.
  • the light emitting unit 1 can be encapsulated and protected.
  • the material of the functional layer 2 includes a black compound
  • the material of the first filling layer T1 includes a light-transmitting compound
  • the functional layer 2 and the first filling layer T1 are an integrated structure, and the functional layer 2 and the material of the first filling layer T1 both include a black compound.
  • the material of the functional layer 2 includes black compound, and the material of the first filling layer T1 includes light-transmitting glue.
  • the refractive index of the transparent glue is in the range of 1.4-1.65, for example, the refractive index of the transparent glue may be 1.48.
  • the black compound may be black glue
  • the black glue includes light-transmitting glue (such as silica gel) and carbon black, wherein the carbon black has a particle size ranging from 10 nm to 500 nm.
  • the light-transmitting compound may be white glue
  • the white glue includes light-transmitting glue (such as silica gel) and titanium dioxide, wherein the particle size of the titanium dioxide ranges from 10 nm to 300 nm.
  • the meaning that at least one of the first filling layer T1 and the functional layer 2 includes diffusion particles is: the first filling layer T1 includes diffusion particles; or, the functional layer 2 includes diffusion particles; or, the first filling layer T1 and the functional layer 2 Both include diffuse particles.
  • the diffusion particles may include inorganic particles, and the inorganic particles include titanium dioxide (TiO2) or light-transmitting glass particles.
  • the diffusion particles may include organic particles, for example, light-transmitting resin particles.
  • the transmittance of the display panel can be further improved, thereby improving the brightness of the display panel and reducing power consumption.
  • the transmittance of the display panel can be increased by 10%-20%.
  • the material of the light-transmitting resin particles in the filling layer is different from the matrix material of the filling layer, and the specific materials of the two are not limited here, and can be determined according to actual conditions.
  • the display panel when the orthographic projection of the functional layer 2 on the substrate 100 and the orthographic projection of the light emitting unit 1 on the substrate 100 do not overlap each other, the display panel further includes a second filling layer T2,
  • the second filling layer T2 covers the light-emitting subunits ( 11 , 12 and 13 ); wherein, the second microstructure layer 32 is located on a side of the second filling layer T2 away from the substrate 100 .
  • the distance between the surface of the second filling layer T2 away from the substrate 100 and the direction perpendicular to the direction of the substrate 100 to the substrate 100 is equal to the surface of the functional layer 2 away from the substrate 100 Extend the distance between the direction perpendicular to the substrate 100 and the substrate; it can be understood that at this time, the surface of the second filling layer T2 away from the substrate 100 and the surface of the functional layer 2 away from the substrate 100 are located in the same plane;
  • the second microstructure layer 32 and the second filling layer T2 are an integrated structure, and the second microstructure layer 32 and the first microstructure layer 31 are arranged in the same layer.
  • the material of the second filling layer T2 is the same as that of the first filling layer T1.
  • the material of the second filling layer T2 includes transparent glue.
  • the refractive index of the transparent glue is in the range of 1.4-1.65, for example, the refractive index of the transparent glue may be 1.48.
  • the material of the functional layer 2 includes a black compound
  • the material of the second filling layer T2 includes a light-transmitting compound
  • the functional layer 2 and the second filling layer T2 are an integrated structure, and the functional layer 2 and the material of the second filling layer T2 both include a black compound.
  • the light-transmitting compound may be white glue
  • the white glue includes light-transmitting glue (such as silica gel) and titanium dioxide, wherein the particle size of the titanium dioxide ranges from 10 nm to 300 nm.
  • the material of the second filling layer T2 may be the same as that of the first filling layer T1.
  • the second filling layer T2 also covers the patterned functional layer 2 to facilitate the subsequent preparation of the protective layer 4 .
  • the surface of the second microstructure layer 32 away from the substrate 100 extends vertically to the direction between the substrate 100 and the substrate 100.
  • the distance is greater than the distance between the surface of the first microstructure layer 31 away from the substrate 100 and the direction perpendicular to the substrate 100 to the substrate 100 .
  • the display panel further includes a protective layer 4 covering the second filling layer T2 and the functional layer 2 .
  • the protective layer 4 can be in direct contact with the functional layer 2; or, as shown in FIG. 1, the protective layer 4 can be in direct contact with the functional layer 2, and the protective layer 4 can also be in contact with the functional layer 2.
  • the first microstructure layer 31 is in direct contact; or, as shown in FIG. 10 , the protective layer 4 is in direct contact with the first microstructure layer 31 and the second microstructure layer 32 at the same time; It may be in direct contact with the second filling layer T2.
  • the material of the protective layer 4 is not limited here, and may be determined according to actual conditions.
  • the protective layer 4 may be a glass substrate.
  • the reflective wall has a refractive index smaller than that of the first filling layer T1 , and the reflective wall is configured to totally reflect at least part of light emitted from the first filling layer T1 to the reflective wall.
  • the reflective wall has a refractive index smaller than that of the second filling layer T2, and the reflective wall is configured to totally reflect at least part of light emitted from the second filling layer T2 to the reflective wall.
  • the reflective wall includes a first reflective wall W1 and a second reflective wall W2.
  • the material of the reflective wall includes a light-transmitting matrix and reflective particles.
  • the material of the reflective wall may be white glue, and the reflective particles may include titanium dioxide.
  • the height h2 of the first reflective wall W1 along the direction perpendicular to the substrate 100 is greater than the height of the light-emitting unit 1 along the direction perpendicular to the substrate 100 h1; In this way, the first reflective wall W1 can reflect at least part of the large-angle light emitted by the light-emitting unit 1 to improve the light efficiency of the display panel.
  • the first microstructure layer 31 is provided on the side of the first reflective wall W1 far away from the substrate 100, because the orthographic projection of the first microstructure layer 31 on the substrate 100 is at least the same as that of the first reflective wall W1 on the substrate 100
  • the orthographic projections overlap, so that the orthographic projection of the first microstructure layer 31 on the substrate 100 surrounds the orthographic projection of the light emitting unit 1 on the substrate 100, so that the first microstructure layer 31 can transmit and pass through the light emitting unit 1
  • the large-angle light rays passing through the first microstructure layer 31 are dispersed, thereby improving the large viewing angle aberration problem of the display panel.
  • the viewing angle deviation can be reduced from 30 ⁇ to within 12 ⁇ , which is acceptable for the display panel. within the range of color shift; on the other hand, the light extraction efficiency can be increased to 20%-200%; on the other hand, in the case of using black glue to prepare the functional layer 2, on the side of the functional layer 2 away from the substrate 1
  • the provision of the first microstructure layer 31 can ensure that the viewing angle is within the specification, and can also make the contrast of the display panel reach the level of one million.
  • the microstructure layer provided by the embodiment of the present application can also reduce the thickness of the display panel and realize lightness and thinning while improving the large viewing angle difference and the brightness uniformity of the display panel. .
  • Embodiments of the present application also provide a display device, including the display panel as described above.
  • the above display device is a Mini/Micro LED (Mini/Micro Light-Emitting Diode, Micro Light-Emitting Diode) display device.
  • Mini/Micro LED Mini/Micro Light-Emitting Diode, Micro Light-Emitting Diode
  • the first reflective wall W1 by setting the first reflective wall W1 around the light-emitting unit 1, the height h2 of the first reflective wall W1 along the direction perpendicular to the substrate 100 is greater than that of the light-emitting unit 1 along the direction perpendicular to the substrate 100. In this way, the first reflective wall W1 can reflect at least part of the large-angle light emitted by the light-emitting unit 1 to improve the light efficiency of the display panel.
  • the first microstructure layer 31 is provided on the side of the first reflective wall W1 far away from the substrate 100, because the orthographic projection of the first microstructure layer 31 on the substrate 100 is at least the same as that of the first reflective wall W1 on the substrate 100
  • the orthographic projections overlap, so that the orthographic projection of the first microstructure layer 31 on the substrate 100 surrounds the orthographic projection of the light emitting unit 1 on the substrate 100, so that the first microstructure layer 31 can transmit and pass through the light emitting unit 1
  • the large-angle light rays passing through the first microstructure layer 31 are dispersed, thereby improving the large viewing angle aberration problem of the display panel.
  • the embodiment of the present application also provides a method for preparing a display panel as shown in FIG. 12, specifically as follows:
  • the embodiment of the present application also provides a method for preparing a display panel as shown in FIG. 20 , specifically as follows:
  • the manufacturing methods of display panels with other structures provided in the embodiments of the present application can be determined by referring to the above methods, or can be determined in combination with the manufacturing methods in the related art, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种显示面板、显示装置,涉及显示技术领域,包括衬底;位于衬底上的至少一个发光单元;第一反射墙,围绕发光单元设置,第一反射墙延垂直于衬底方向上的高度大于发光单元延垂直于衬底方向上的高度;第一微结构层,位于第一反射墙远离衬底的一侧;其中,第一微结构层在衬底上的正投影至少和第一反射墙在衬底上的正投影交叠,且第一微结构层延垂直于衬底方向到衬底之间的距离大于或等于第一反射墙远离衬底的表面延垂直于衬底方向到衬底之间的距离。本申请的实施例提供的显示面板能够改善大视角色偏的问题,且具有较高的亮度均一性和较高的对比度。

Description

显示面板、显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、显示装置。
背景技术
Mini/Micro LED(Mini/Micro Light-Emitting Diode,微发光二极管)显示技术,相对于传统的LCD(Liquid Crystal Display,液晶显示器)显示和OLED(Organic Light-Emitting Diode,有机发光二极管)显示技术,由于其具有较高的显示对比度和较优的画面质量,引起行业内的广泛关注。
然而,Mini/Micro LED显示技术发展尚不成熟,存在较显著的大视角色差问题。
发明内容
本申请的实施例采用如下技术方案:
第一方面,本申请的实施例提供了一种显示面板,包括:
衬底;
位于所述衬底上的至少一个发光单元;
第一反射墙,围绕所述发光单元设置,所述第一反射墙延垂直于所述衬底方向上的高度大于所述发光单元延垂直于所述衬底方向上的高度;
第一微结构层,位于所述第一反射墙远离所述衬底的一侧;
其中,所述第一微结构层在所述衬底上的正投影至少和所述第一反射墙在所述衬底上的正投影交叠,且所述第一微结构层延垂直于所述衬底方向到所述衬底之间的距离大于或等于所述第一反射墙远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
在本申请的一些实施例中,所述第一微结构层和所述第一反射墙为一体化结构;
所述第一微结构层延垂直于所述衬底方向到所述衬底之间的距离等于所述第一反射墙远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
在本申请的一些实施例中,所述显示面板还包括功能层,所述功能层位于所述第一反射墙远离所述衬底的一侧,所述第一微结构层位于所述功能层远离所述第一反射墙的一侧;所述第一微结构层和所述功能层为一体化结构;
所述第一微结构层延垂直于所述衬底方向到所述衬底之间的距离大于所述第一反射墙远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
在本申请的一些实施例中,所述功能层在所述衬底上的正投影和所述第一反射墙在所述衬底上的正投影交叠,且所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影交叠。
在本申请的一些实施例中,所述功能层为图案化的薄膜结构,所述功能层在所述衬底上的正投影和所述第一反射墙在所述衬底上的正投影交叠,且所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影互不交叠。
在本申请的一些实施例中,所述发光单元包括位于所述衬底上的多个发光子单元;同一所述发光单元中相邻的两个所述发光子单元之间还设置有第二反射墙,所述第一反射墙和所述第二反射墙同层设置;
所述功能层在所述衬底上的正投影和所述第二反射墙在所述衬底上的正投影交叠,所述第一微结构层在所述衬底上的正投影和所述第二反射墙在所述衬底上的正投影交叠。
在本申请的一些实施例中,反射墙在所述衬底上的正投影位于所述第一微结构层在所述衬底上的正投影以内,且所述发光子单元在所述衬底上的正投影和所述第一微结构层在所述衬底上的正投影互不交叠,所述反射墙包括所述第一反射墙和所述第二反射墙,且所述第一反射墙和所述第二反射墙相连。
在本申请的一些实施例中,所述显示面板还包括第二微结构层;
所述第二微结构层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影交叠,且所述第二微结构层在所述衬底上的正投影和所述第一微结构层在所述衬底上的正投影相连。
在本申请的一些实施例中,所述第一微结构层远离所述衬底的表面和所述第二微结构层远离所述衬底的表面均具有粗糙不平的微结构;所述第一微结构层中的所述微结构的分布密度大于所述第二微结构层中 的所述微结构的分布密度。
在本申请的一些实施例中,所述微结构的分布密度延第一方向逐渐降低,所述第一方向为所述第一微结构层指向所述第二微结构层的方向。
在本申请的一些实施例中,所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影交叠的情况下,所述第二微结构层位于所述功能层远离所述衬底的一侧,所述第二微结构层和所述功能层为一体化结构;且所述第二微结构层和所述第一微结构层同层设置。
在本申请的一些实施例中,所述功能层、所述第一反射墙和所述衬底构成封闭空间,所述发光单元和所述第二反射墙均位于所述封闭空间内;
所述显示面板还包括第一填充层,所述第一填充层填充所述封闭空间中除所述发光单元和所述第二反射墙之外的空间,所述第一填充层和所述功能层中的至少一个包括扩散粒子。
在本申请的一些实施例中,所述功能层的材料包括黑色复合物,所述第一填充层的材料包括透光复合物;
或者,所述功能层和所述第一填充层为一体化结构,所述功能层和所述第一填充层的材料均包括黑色复合物。
在本申请的一些实施例中,所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影互不交叠的情况下,所述显示面板还包括第二填充层,所述第二填充层覆盖所述发光子单元;
所述第二微结构层位于所述第二填充层远离所述衬底的一侧。
在本申请的一些实施例中,所述第二填充层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离等于所述功能层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离;
所述第二微结构层和所述第二填充层为一体化结构,且所述第二微结构层和所述第一微结构层同层设置。
在本申请的一些实施例中,所述第二填充层还覆盖所述功能层,所述第二微结构层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离大于所述第一微结构层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
在本申请的一些实施例中,所述显示面板还包括保护层,所述保护层覆盖所述第二填充层和所述功能层。
在本申请的一些实施例中,所述反射墙的折射率小于所述第一填充层的折射率,所述反射墙被配置为能够使至少部分从所述第一填充层射向所述反射墙的光线发生全反射。
第二方面,本申请的实施例还提供了一种显示装置,包括如前文所述的显示面板。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1-图22分别为本申请实施例提供的二十二种显示面板的结构示意图;
图23-图25为本申请的实施例提供的一种显示面板的制备方法中间结构图;
图26-图28为本申请的实施例提供的另一种显示面板的制备方法中间结构图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本申请的示意性图解,并非一定是按比例绘制。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行部分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
本申请的实施例提供了一种显示面板,参考图1或图2所示,包括:
衬底100;
位于衬底100上的至少一个发光单元1;
第一反射墙W1,围绕发光单元1设置,第一反射墙W1延垂直于衬底100方向上的高度h2大于发光单元1延垂直于衬底100方向上的高度h1;
第一微结构层31,位于第一反射墙W1远离衬底100的一侧;
其中,第一微结构层31在衬底100上的正投影至少和第一反射墙W1在衬底100上的正投影交叠,且第一微结构层31延垂直于衬底100方向到衬底100之间的距离d大于或等于第一反射墙W1远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离h2。
在示例性的实施例中,发光单元1包括多个发光子单元,例如,包括发光子单元11、发光子单元12和发光子单元13。
在示例性的实施例中,当该显示面板直接进行显示时,同一发光单元1中各发光子单元的发光颜色不同,例如发光子单元11发出红光、发光子单元12发出绿光,发光子单元13发出蓝光。
在示例性的实施例中,当该显示面板作为显示产品的背光,且该显示产品还包括位于发光单元出光侧的色转换层时,同一发光单元1中的各发光子单元的发光颜色可以相同。示例性的,此时的发光子单元可以 发出蓝光。
这里对于上述发光子单元的具体结构不进行限制。示例性的,发光子单元可以为发光芯片,例如,发光子单元可以为Mini LED芯片或者Micro LED芯片。
这里对于发光单元1的排列方式不进行限定,具体可以根据实际情况确定。本申请的实施例提供的附图以多个发光单元1呈矩形阵列排布为例进行绘制。
在示例性的实施例中,参考图3所示,第一反射墙W1呈网状结构,可以理解,围绕各发光单元1的第一反射墙W1连接为一体。当然,围绕每个发光单元1的第一反射墙W1还可以为独立的结构,即围绕相邻两个发光单元1的第一反射墙W1不连接。本申请的实施例以围绕各发光单元1的第一反射墙W1连接为一体为例进行说明。
在示例性的实施例中,围绕每个发光单元1的第一反射墙W1在衬底100上的正投影的内轮廓构成的图形可以为多边形;例如,该多边形可以为如图3所示的矩形。或者,围绕每个发光单元1的第一反射墙W1在衬底100上的正投影的内轮廓构成的图形还可以为弧形;例如,该弧形可以为椭圆形。或者,围绕每个发光单元1的第一反射墙W1在衬底100上的正投影的内轮廓构成的图形还可以为多边形与弧形组合形成的图形;例如,矩形与两个半圆组合形成的图形。
在示例性的实施例中,第一反射墙W1延垂直于衬底100方向上的高度h2等于发光单元1延垂直于衬底100方向上的高度h1的两倍到三倍。
在示例性的实施例中,第一反射墙W1延垂直于衬底100方向的截面图形的形状可以为梯形或者如图20和图21所示的倒梯形。
在示例性的实施例中,第一反射墙W1的材料为具有一定折射率范围的透光材料,例如,第一反射墙W1的材料的折射率小于第一反射墙W1和发光单元1之间的填充层(第一填充层T1或第二填充层T2)的材料的折射率。
示例性的,第一反射墙W1的材料中还可以包括反射粒子,例如二氧化钛粒子。
示例性的,反射墙(包括第一反射墙W1和第二反射墙W2)可以采用3D打印、压印、点胶等工艺,但不局限于这几种制作方式。
在示例性的实施例中,第一微结构层31在衬底100上的正投影至少和第一反射墙W1在衬底100上的正投影交叠的含义为:其一、结合图3和图4所示,第一微结构层31在衬底100上的正投影仅和第一反射墙W1在衬底100上的正投影交叠;其二、在显示面板还包括第一填充层T1的情况下,第一微结构层31在衬底100上的正投影不仅和第一反射墙W1在衬底100上的正投影交叠,第一微结构层31在衬底100上的正投影还可以和第一填充层T1在衬底100上的正投影部分交叠。
需要说明的是,第一微结构层31在衬底100上的正投影仅和第一反射墙W1在衬底100上的正投影交叠可以理解为:参考图2所示,第一微结构层31在衬底100上的正投影的外轮廓和第一反射墙W1远离衬底100的表面在衬底100上的正投影的外轮廓重叠;或者,第一微结构层31远离衬底100的表面在衬底100上的正投影的外轮廓位于第一反射墙W1在衬底100上的正投影的外轮廓以内。
在示例性的实施例中,参考图2所示,当第一微结构层31位于第一挡墙W1远离衬底100一侧,且和第一挡墙W1直接接触时,第一微结构层31延垂直于衬底100方向到衬底100之间的距离d等于第一反射墙W1远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离h2。
在示例性的实施例中,参考图1所示,显示面板还包括功能层2,当第一微结构层31位于功能层2远离衬底100的一侧,且和功能层2直接接触时,第一微结构层31延垂直于衬底100方向到衬底100之间的距离d大于第一反射墙W1远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离h2。
在示例性的实施例中,第一微结构层31表面具有粗糙不平的微结构,可以将该微结构称为麻点结构,可以通过压印技术或者微型雕刻技术制备。
这里对于上述麻点结构的具体尺寸不进行限定。示例性的,麻点结构的尺寸可以为纳米级或微米级。
需要说明的是,在衬底100和各发光单元1之间还可以包括其它结构和膜层,这里仅介绍与发明点相关的结构,该显示面板包括的其它结构和部件可以参考相关技术。
在本申请的实施例中,通过设置第一反射墙W1围绕发光单元1, 第一反射墙W1延垂直于衬底100方向上的高度h2大于发光单元1延垂直于衬底100方向上的高度h1;这样,第一反射墙W1能够反射发光单元1发出的至少部分大角度光线,提高显示面板的光效。另外,第一反射墙W1远离衬底100的一侧设置第一微结构层31,由于第一微结构层31在衬底100上的正投影至少和第一反射墙W1在衬底100上的正投影交叠,使得第一微结构层31在衬底100上的正投影围绕发光单元1在衬底100上的正投影,这样,第一微结构层31能够将发光单元1发出的且穿过第一微结构层31的大角度光线打散,从而改善显示面板的大视角色差问题。
需要说明的是,以显示面板的出光面为基准面,垂直出光面的线为法线,法线方向规定为0°,和法线之间的夹角越大,视角越大;在显示面板中,由于不同发光子单元发出的不同颜色的光线在大视角下的光线强度不同,从而使得混光之后的颜色不同,引起大视角色差。
在本申请的一些实施例中,参考图2、图6和图11所示,第一微结构层31和第一反射墙W1为一体化结构;
第一微结构层31延垂直于衬底100方向到衬底100之间的距离d等于第一反射墙W1远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离h2。
以第一微结构层31和第一反射墙W1为一体化结构为例,说明一体化结构的含义:采用相同的材料,在一次工艺中同时制作,且第一微结构层31和第一反射墙W1之间实际并不存在界面。后文中涉及到的一体化结构的描述和此处的含义类似,不再赘述。
在示例性的实施例中,当第一微结构层31和第一反射墙W1为一体化结构时,第一微结构层31在衬底100上的正投影的外轮廓和第一反射墙W1远离衬底100的表面在衬底100上的正投影的外轮廓重叠;或者,第一微结构层31远离衬底100的表面在衬底100上的正投影的外轮廓位于第一反射墙W1在衬底100上的正投影的外轮廓以内。
在本申请的一些实施例中,参考图1所示,显示面板还包括功能层2,功能层2位于第一反射墙W1远离衬底100的一侧,第一微结构层31位于功能层2远离第一反射墙W1的一侧;第一微结构层31和功能层2为一体化结构;
第一微结构层31延垂直于衬底100方向到衬底100之间的距离d 大于第一反射墙W1远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离h2。
在示例性的实施例中,功能层2的材料为黑色复合物,黑色复合物包括透光高分子基体材料和黑色微纳米填料。
示例性的,黑色复合物包括黑胶,其中,黑胶中包括硅胶和炭黑。
示例性的,炭黑的粒径范围为10nm-500nm。
在本申请的实施例中,一方面,材料为黑色复合物的功能层2可以降低显示面板在暗态下的亮度,从而提高显示面板的对比度;另一方面,通过在功能层2的出光侧表面设置第一微结构层31,第一微结构层31能够将发光单元1发出的且穿过第一微结构层31的大角度光线打散,从而改善显示面板的大视角色差问题,另外,在功能层2的出光侧表面设置第一微结构层31,其设计简单、制备工艺难度低、成本低且易于实现。
在本申请的一些实施例中,参考图1-图2、图5-图6、图10-图12所示,功能层2在衬底100上的正投影和第一反射墙W1在衬底100上的正投影交叠,且功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影交叠。可以理解,此时,功能层2为整面的薄膜结构。
在示例性的实施例中,参考图1、图5和图12所示,功能层2为整面的薄膜结构,功能层2在衬底100上的正投影和反射墙(W1和W2)在衬底100上的正投影交叠,且功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影交叠,第一微结构层31位于功能层2远离衬底100的一侧的表面,且第一微结构层31在衬底100上的正投影和反射墙在衬底100上的正投影交叠。
在示例性的实施例中,参考图10所示,功能层2为整面的薄膜结构,功能层2在衬底100上的正投影和反射墙在衬底100上的正投影交叠,且功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影交叠,第一微结构层31位于功能层2远离衬底100的一侧的表面,且第一微结构层31在衬底100上的正投影和反射墙在衬底100上的正投影交叠,第二微结构层32位于功能层2远离衬底100的一侧的表面,且第一微结构层31在衬底100上的正投影和发光单元1在衬底100上的正投影交叠。
在示例性的实施例中,参考图2和图6,功能层2为整面的薄膜结 构,功能层2在衬底100上的正投影和反射墙在衬底100上的正投影交叠,且功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影交叠,第一微结构层31位于反射墙远离衬底100的一侧的表面。
在实际应用中,功能层2的材料为黑色复合物。在显示面板处于亮态的情况下,由于发光单元1的发光强度较高,很小一部分显示光线被功能层吸收,大部分的显示光线能够穿透功能层2;在显示面板处于暗态的情况下,功能层2能够将可能存在的漏光吸收,从而,显著的降低显示面板的暗态亮度,从而很大程度上提高了显示面板的对比度。
在本申请的一些实施例中,参考图13-图21所示,功能层2为图案化的薄膜结构,功能层2在衬底100上的正投影和第一反射墙W1在衬底100上的正投影交叠,且功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影互不交叠。可以理解,此时,发光单元1的上方并未设置功能层2。
在示例性的实施例中,参考图13和图15所示,第一微结构层31位于图案化的功能层2远离衬底的一侧,且第一微结构层31在衬底100上的正投影和反射墙在衬底100上的正投影交叠。
在示例性的实施例中,参考图18所示,第一微结构层31位于图案化的功能层2远离衬底的一侧,且第一微结构层31在衬底100上的正投影和反射墙在衬底100上的正投影交叠,且显示面板还包括第二填充层T2,第二微结构层32位于第二填充层T2远离衬底100一侧的表面,且第二微结构层32可以和第二填充层T2为一体化结构。
在示例性的实施例中,参考图14和图16所示,第一微结构层31位于图案化的功能层2和反射墙之间,第一微结构层31和反射墙为一体化的结构。
在示例性的实施例中,参考图17和图19所示,第一微结构层31位于图案化的功能层2和反射墙之间,第一微结构层31和反射墙为一体化的结构,显示面板还包括第二填充层T2,第二微结构层32位于第二填充层T2远离衬底100一侧的表面,且第二微结构层32可以和第二填充层T2为一体化结构。
在实际应用中,功能层2的材料为黑色复合物。由于功能层2为图案化的薄膜结构,在显示面板处于亮态的情况下,功能层2能够吸收发光单元1侧面发出的光线的很少一部分,由于亮态下显示面板的亮度很 大,对亮态下的亮度影响几乎可以忽略;在显示面板处于暗态的情况下,功能层2能够将可能存在从发光单元1侧边的漏光吸收,能够一定程度减轻暗态漏光的问题,从而能够一定程度提高显示面板的对比度。
在本申请的一些实施例中,参考图5所示,发光单元1包括位于衬底100上的多个发光子单元(例如包括发光子单元11、发光子单元12和发光子单元13);同一发光单元1中相邻的两个发光子单元(发光子单元11和发光子单元12之间,发光子单元12和发光子单元13之间)之间还设置有第二反射墙W2,第一反射墙W1和第二反射墙W2同层设置;功能层2在衬底100上的正投影和第二反射墙W2在衬底100上的正投影交叠,第一微结构层31在衬底100上的正投影和第二反射墙W2在衬底100上的正投影交叠。
在示例性的实施例中,第一反射墙W1和第二反射墙W2相连可以形成如图7所示的网状结构。在实际应用中,可以将第一反射墙W1和第二反射墙W2设置为一体化的结构。
在示例性的实施例中,第一反射墙W1和第二反射墙W2可以相互独立设置。
在示例性的实施例中,参考图5所示,第一微结构层31可以设置在功能层2远离衬底100的表面;参考图8所示,第一微结构层31在衬底100上的正投影和第一反射墙W1在衬底100上的正投影重叠,第一微结构层31在衬底100上的正投影和第二反射墙W2在衬底100上的正投影重叠。
在示例性的实施例中,第一微结构层31可以设置在功能层2远离衬底100的表面,第一微结构层31在衬底100上的正投影和第一反射墙W1在衬底100上的正投影重叠,第一微结构层31在衬底100上的正投影和第二反射墙W2在衬底100上的正投影重叠,且第一微结构层31在衬底100上的正投影和至少一个发光子单元在衬底100上的正投影部分交叠。
在示例性的实施例中,参考图6所示,第一微结构层31可以设置在反射墙(包括第一反射墙W1和第二反射墙W2)远离衬底100的表面,且第一微结构层31和反射墙为一体化结构,此时,结合图7和图8所示,第一微结构层31在衬底100上的正投影轮廓和反射墙(包括第一反射墙W1和第二反射墙W2)在衬底100上的正投影轮廓重叠; 或者,第一微结构层31在衬底100上的正投影位于反射墙(包括第一反射墙W1和第二反射墙W2)在衬底100上的正投影以内。
在本申请的一些实施例中,结合图5、图7和图9所示,反射墙在衬底100上的正投影S1位于第一微结构层31在衬底100上的正投影S3以内,且发光子单元在衬底100上的正投影S2和第一微结构层31在衬底100上的正投影S3互不交叠,反射墙包括第一反射墙W1和第二反射墙W2,且第一反射墙W1和第二反射墙W2相连。
这里对于第一微结构层31在衬底100上的正投影S3的内轮廓不进行限定。示例性的,第一微结构层31在衬底100上的正投影S3的内轮廓可以为弧形,例如图9中所示的圆形。
在示例性的实施例中,反射墙在衬底100上的正投影S1位于第一微结构层31在衬底100上的正投影S3以内的含义为:反射墙在衬底100上的正投影S1的轮廓第一微结构层31在衬底100上的正投影S3的轮廓重叠;或者,如图5中所示的,反射墙在衬底100上的正投影S1的轮廓位于第一微结构层31在衬底100上的正投影S3轮廓以内。
在本申请的一些实施例中,参考图10、图11、图18和图19所示,显示面板还包括第二微结构层32;第二微结构层32在衬底100上的正投影和发光单元1在衬底100上的正投影交叠,且第二微结构层32在衬底100上的正投影和第一微结构层31在衬底100上的正投影相连。
在示例性的实施例中,参考图10、图11和图18所示,第一微结构层31和第二微结构层32同层设置,则第一微结构层31和第二微结构层32相连。
这里同层设置的含义为:第一微结构层31沿垂直于衬底100的方向到衬底100之间的距离与第二微结构层32沿垂直于衬底100的方向到衬底100之间的距离相等,这样,第一微结构层31和第二微结构层32可以在一次压印(或雕刻)工艺中制备。
示例性的,参考图10所示,第一微结构层31和第二微结构层32均位于功能层2远离衬底100的一侧的表面。
示例性的,参考图11所示,第一微结构层31位于反射墙(包括第一反射墙W1和第二反射墙W2)远离衬底100的一侧的表面,第二微结构层32位于第一填充层T1远离衬底100的一侧的表面,且第一填充层T1沿垂直于衬底100的方向到衬底100之间的高度等于反射墙沿 垂直于衬底100的方向到衬底100之间的高度。
示例性的,参考图18所示,功能层2为图案化的薄膜结构,功能层2在衬底100上的正投影和反射墙(W1和W2)在衬底100上的正投影交叠,且功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影互不交叠;第一微结构层31位于功能层2远离衬底100的一侧的表面,第二微结构层位于第二填充层T2远离衬底100的一侧的表面,且功能层2远离衬底100的一侧的表面沿垂直于衬底100的方向到衬底100之间的距离等于第二填充层T2远离衬底100的一侧的表面沿垂直于衬底100的方向到衬底100之间的距离。
在示例性的实施例中,参考图19所示,第一微结构层31和第二微结构层32位于不同层,且第二微结构层32在衬底100上的正投影和第一微结构层31在衬底100上的正投影相连。具体的,第一微结构层31位于反射墙远离衬底100的一侧的表面,第一微结构层31位于反射墙和功能层2之间;第二微结构层32位于第二填充层T2远离衬底100的一侧的表面,且第二微结构层32远离衬底100的表面沿垂直于衬底100的方向到衬底100之间的距离等于功能层2远离衬底100的表面沿垂直于衬底100的方向到衬底100之间的距离。
在本申请的一些实施例中,第一微结构层31远离衬底100的表面和第二微结构层32远离衬底100的表面均具有粗糙不平的微结构;第一微结构层31中的微结构的分布密度大于第二微结构层32中的微结构的分布密度。
这里对于第一微结构层31中的微结构的分布密度不进行限定。示例性的,第一微结构层31中的微结构可以均匀分布,或者,第一微结构层31中的微结构可以按照一定密度梯度分布。
这里对于第二微结构层32中的微结构的分布密度不进行限定。示例性的,第二微结构层32中的微结构可以均匀分布,或者,第二微结构层32中的微结构可以按照一定密度梯度分布。
在本申请的一些实施例中,微结构的分布密度延第一方向逐渐降低,第一方向为第一微结构层31指向第二微结构层32的方向。
在实际应用中,显示面板的大视角色差问题可能会随着视角的增大而加剧,故而设置将正投影与发光单元的正投影重叠的第二微结构层32中微结构的分布密度小于正投影围绕发光单元1的正投影第一微结 构层31中微结构的分布密度,能够更好的改善显示面板的大视角色差问题,提高显示效果。
在本申请的一些实施例中,参考图10所示,功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影交叠的情况下,第二微结构层32位于功能层2远离衬底100的一侧,第二微结构层32和功能层2为一体化结构;且第二微结构层32和第一微结构层31同层设置。
这里同层设置的含义为:第一微结构层31沿垂直于衬底100的方向到衬底100之间的距离与第二微结构层32沿垂直于衬底100的方向到衬底100之间的距离相等,这样,第一微结构层31和第二微结构层32可以在一次压印(或雕刻)工艺中制备。
在示例性的实施例中,参考图10所示,第二微结构层32和第一微结构层31同层设置,第二微结构层32位于功能层2远离衬底100的一侧,第一微结构层31位于功能层2远离衬底100的一侧。
在本申请的一些实施例中,参考图10所示,功能层2、第一反射墙W1和衬底100构成封闭空间,发光单元1和第二反射墙W2均位于封闭空间内;显示面板还包括第一填充层T1,第一填充层T1填充封闭空间中除发光单元1和第二反射墙W2之外的空间,第一填充层T1和功能层2中的至少一个包括扩散粒子。
在示例性的实施例中,通过在发光单元1周边设置第一填充层T1,可以对发光单元1起到封装和保护的作用。
在示例性的实施例中,功能层2的材料包括黑色复合物,第一填充层T1的材料包括透光复合物;或者,功能层2和第一填充层T1为一体化结构,功能层2和第一填充层T1的材料均包括黑色复合物。
在示例性的实施例中,功能层2的材料包括黑色复合物,第一填充层T1的材料包括透光胶。
示例性的,透光胶的折射率范围为1.4-1.65,例如,透光胶的折射率可以为1.48。
示例性的,黑色复合物可以为黑胶,黑胶包括透光胶(例如硅胶)和炭黑,其中,炭黑的粒径范围为10nm-500nm。
示例性的,透光复合物可以为白胶,白胶包括透光胶(例如硅胶)和二氧化钛,其中,二氧化钛的粒径范围为10nm-300nm。
第一填充层T1和功能层2中的至少一个包括扩散粒子的含义为: 第一填充层T1包括扩散粒子;或者,功能层2中包括扩散粒子;或者,第一填充层T1和功能层2中均包括扩散粒子。
示例性的,扩散粒子可以包括无机粒子,无机粒子包括二氧化钛(TiO2)或透光玻璃微粒。
示例性的,扩散粒子可以包括有机粒子,例如,透光的树脂粒子。
在实施例的实施例中,通过在第一填充层T1中添加透光的粒子,能够在进一步提高显示面板的透过率,进而提高显示面板的亮度,降低功耗。实验证明,通过在第一填充层T1中添加透光粒子,显示面板的透过率能够提升10%-20%。
需要说明的是,填充层中的透光树脂粒子的材料区别于填充层的基体材料,这里对于两者的具体材料不进行限定,可以根据实际情况确定。
在本申请的一些实施例中,功能层2在衬底100上的正投影和发光单元1在衬底100上的正投影互不交叠的情况下,显示面板还包括第二填充层T2,第二填充层T2覆盖发光子单元(11、12和13);其中,第二微结构层32位于第二填充层T2远离衬底100的一侧。
在示例性的实施例中,参考图18所示,第二填充层T2远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离等于功能层2远离衬底100的表面延垂直于衬底100方向到衬底之间的距离;可以理解,此时,第二填充层T2远离衬底100的表面和功能层2远离衬底100的表面位于同一平面内;
其中,第二微结构层32和第二填充层T2为一体化结构,且第二微结构层32和第一微结构层31同层设置。
在示例性的实施例中,第二填充层T2的材料和第一填充层T1的材料相同。
示例性的,第二填充层T2的材料包括透光胶。
示例性的,透光胶的折射率范围为1.4-1.65,例如,透光胶的折射率可以为1.48。
在示例性的实施例中,功能层2的材料包括黑色复合物,第二填充层T2的材料包括透光复合物;或者,功能层2和第二填充层T2为一体化结构,功能层2和第二填充层T2的材料均包括黑色复合物。
示例性的,透光复合物可以为白胶,白胶包括透光胶(例如硅胶)和二氧化钛,其中,二氧化钛的粒径范围为10nm-300nm。
在示例性的实施例中,第二填充层T2的材料可以和第一填充层T1的材料相同。
在示例性的实施例中,参考图17和图22所示,第二填充层T2还覆盖图案化的功能层2,以便于后续保护层4的制备。
其中,在第二填充层T2远离衬底100的表面设置有第二微结构层32时,第二微结构层32远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离大于第一微结构层31远离衬底100的表面延垂直于衬底100方向到衬底100之间的距离。
在本申请的一些实施例中,显示面板还包括保护层4,保护层4覆盖第二填充层T2和功能层2。
在示例性的实施例中,参考图2所示,保护层4可以和功能层2直接接触;或者,参考图1所示,保护层4可以和功能层2直接接触,保护层4还可以和第一微结构层31直接接触;或者,参考图10所示,保护层4同时和第一微结构层31、第二微结构层32直接接触;或者,参考图15所示,保护层4还可以和第二填充层T2直接接触。
这里对于保护层4的材料不进行限定,具体可以根据实际情况确定。
示例性的,保护层4可以为玻璃基板。
在示例性的实施例中,反射墙的折射率小于第一填充层T1的折射率,反射墙被配置为能够使至少部分从第一填充层T1射向反射墙的光线发生全反射。
在示例性的实施例中,反射墙的折射率小于第二填充层T2的折射率,反射墙被配置为能够使至少部分从第二填充层T2射向反射墙的光线发生全反射。其中,反射墙包括第一反射墙W1和第二反射墙W2。
在示例性的实施例中,反射墙的材料包括透光基体和反射粒子。
示例性的,反射墙的材料可以为白胶,反射粒子可以包括二氧化钛。
在本申请的实施例中,通过设置第一反射墙W1围绕发光单元1,第一反射墙W1延垂直于衬底100方向上的高度h2大于发光单元1延垂直于衬底100方向上的高度h1;这样,第一反射墙W1能够反射发光单元1发出的至少部分大角度光线,提高显示面板的光效。另外,第一反射墙W1远离衬底100的一侧设置第一微结构层31,由于第一微结构层31在衬底100上的正投影至少和第一反射墙W1在衬底100上 的正投影交叠,使得第一微结构层31在衬底100上的正投影围绕发光单元1在衬底100上的正投影,这样,第一微结构层31能够将发光单元1发出的且穿过第一微结构层31的大角度光线打散,从而改善显示面板的大视角色差问题。
在实际测试中,通过采用本申请的实施例提供的显示面板,相较于相关技术中的显示面板,一方面,可将视角色偏由30‰降低至12‰以内,达到了显示面板可接受的色偏范围以内;另一方面,可以将出光效率提升至20%-200%;又一方面,在使用黑胶制备功能层2的情况下,再在功能层2远离衬底1的一侧设置第一微结构层31,能够保证视角色偏在规格内,且还能够使得显示面板的对比度达到百万级别。另外,相对于相关技术中的透镜结构,本申请的实施例提供的微结构层在在改善大视角色差,提升显示面板的亮度均一性的情况下,还能够降低显示面板的厚度,实现轻薄化。
本申请的实施例还提供了一种显示装置,包括如前文所述的显示面板。
这里对于该显示装置包括的显示面板的具体结构不再赘述,具体可以参考前文的说明。
上述显示装置为Mini/Micro LED(Mini/Micro Light-Emitting Diode,微发光二极管)显示装置。
在本申请的实施例提供的显示装置中,通过设置第一反射墙W1围绕发光单元1,第一反射墙W1延垂直于衬底100方向上的高度h2大于发光单元1延垂直于衬底100方向上的高度h1;这样,第一反射墙W1能够反射发光单元1发出的至少部分大角度光线,提高显示面板的光效。另外,第一反射墙W1远离衬底100的一侧设置第一微结构层31,由于第一微结构层31在衬底100上的正投影至少和第一反射墙W1在衬底100上的正投影交叠,使得第一微结构层31在衬底100上的正投影围绕发光单元1在衬底100上的正投影,这样,第一微结构层31能够将发光单元1发出的且穿过第一微结构层31的大角度光线打散,从而改善显示面板的大视角色差问题。
本申请的实施例还提供了一种如图12所示的显示面板的制备方法, 具体如下:
S1、采用雕刻工艺在保护层4(玻璃基板)上形成与第一微结构层31上的微结构互补的结构;在玻璃基板上形成整面的功能层2,通过压印,功能层2和玻璃基板相接触的表面形成如图26所示的第一微结构层31;
S2、在功能层2远离保护层4的表面形成如图27所示的反射墙(包括第一反射墙W1和第二反射墙W2);
S3、将各发光子单元固定在在衬底100上,并形成如图28所示的图案化的第一填充层T1;
S4、将如图27所示的结构和如图28所示的结构贴合在一起,得到如图12所示的显示面板。
需要说明的是,在衬底100和各发光子单元之间还可以包括其它结构和膜层,这里仅介绍与发明点相关的结构,该显示面板包括的其它结构和部件可以参考相关技术。
本申请的实施例还提供了一种如图20所示的显示面板的制备方法,具体如下:
S01、采用雕刻工艺在保护层4(玻璃基板)上形成与第一微结构层31上的微结构互补的结构;在玻璃基板上形成图案化的功能层2,通过压印,功能层2和玻璃基板相接触的表面形成如图23所示的第一微结构层31;
S02、在功能层2远离保护层4的表面形成如图24所示反射墙(包括第一反射墙W1和第二反射墙W2);
S3、将各发光子单元固定在在衬底100上,并形成如图25所示的图案化的第二填充层T2;
S4、将如图24所示的结构和如图25所示的结构贴合在一起,得到如图20所示的显示面板。
本申请的实施例提供的其它结构的显示面板的制备方法可以参考上述方法,或者,结合相关技术中的制备方法确定,这里不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种显示面板,其中,包括:
    衬底;
    位于所述衬底上的至少一个发光单元;
    第一反射墙,围绕所述发光单元设置,所述第一反射墙延垂直于所述衬底方向上的高度大于所述发光单元延垂直于所述衬底方向上的高度;
    第一微结构层,位于所述第一反射墙远离所述衬底的一侧;
    其中,所述第一微结构层在所述衬底上的正投影至少和所述第一反射墙在所述衬底上的正投影交叠,且所述第一微结构层延垂直于所述衬底方向到所述衬底之间的距离大于或等于所述第一反射墙远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
  2. 根据权要求1所述的显示面板,其中,所述第一微结构层和所述第一反射墙为一体化结构;
    所述第一微结构层延垂直于所述衬底方向到所述衬底之间的距离等于所述第一反射墙远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
  3. 根据权要求1所述的显示面板,其中,所述显示面板还包括功能层,所述功能层位于所述第一反射墙远离所述衬底的一侧,所述第一微结构层位于所述功能层远离所述第一反射墙的一侧;所述第一微结构层和所述功能层为一体化结构;
    所述第一微结构层延垂直于所述衬底方向到所述衬底之间的距离大于所述第一反射墙远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
  4. 根据权要求3所述的显示面板,其中,所述功能层在所述衬底上的正投影和所述第一反射墙在所述衬底上的正投影交叠,且所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影交叠。
  5. 根据权要求3所述的显示面板,其中,所述功能层为图案化的薄膜结构,所述功能层在所述衬底上的正投影和所述第一反射墙在所述衬底上的正投影交叠,且所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影互不交叠。
  6. 根据权要求4或5所述的显示面板,其中,所述发光单元包括位于所述衬底上的多个发光子单元;同一所述发光单元中相邻的两个所述发光子单元之间还设置有第二反射墙,所述第一反射墙和所述第二反射墙同层设置;
    所述功能层在所述衬底上的正投影和所述第二反射墙在所述衬底上的正投影交叠,所述第一微结构层在所述衬底上的正投影和所述第二反射墙在所述衬底上的正投影交叠。
  7. 根据权要求6所述的显示面板,其中,反射墙在所述衬底上的正投影位于所述第一微结构层在所述衬底上的正投影以内,且所述发光子单元在所述衬底上的正投影和所述第一微结构层在所述衬底上的正投影互不交叠,所述反射墙包括所述第一反射墙和所述第二反射墙,且所述第一反射墙和所述第二反射墙相连。
  8. 根据权要求7所述的显示面板,其中,所述显示面板还包括第二微结构层;
    所述第二微结构层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影交叠,且所述第二微结构层在所述衬底上的正投影和所述第一微结构层在所述衬底上的正投影相连。
  9. 根据权要求8所述的显示面板,其中,所述第一微结构层远离所述衬底的表面和所述第二微结构层远离所述衬底的表面均具有粗糙不平的微结构;所述第一微结构层中的所述微结构的分布密度大于所述第二微结构层中的所述微结构的分布密度。
  10. 根据权要求9所述的显示面板,其中,所述微结构的分布密度延第一方向逐渐降低,所述第一方向为所述第一微结构层指向所述第二微结构层的方向。
  11. 根据权要求8所述的显示面板,其中,所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影交叠的情况下,所述第二微结构层位于所述功能层远离所述衬底的一侧,所述第二微结构层和所述功能层为一体化结构;且所述第二微结构层和所述第一微结构层同层设置。
  12. 根据权要求11所述的显示面板,其中,所述功能层、所述第一反射墙和所述衬底构成封闭空间,所述发光单元和所述第二反射墙均位于所述封闭空间内;
    所述显示面板还包括第一填充层,所述第一填充层填充所述封闭空间中除所述发光单元和所述第二反射墙之外的空间,所述第一填充层和所述功能层中的至少一个包括扩散粒子。
  13. 根据权要求12所述的显示面板,其中,所述功能层的材料包括黑色复合物,所述第一填充层的材料包括透光复合物;
    或者,所述功能层和所述第一填充层为一体化结构,所述功能层和所述第一填充层的材料均包括黑色复合物。
  14. 根据权要求8所述的显示面板,其中,所述功能层在所述衬底上的正投影和所述发光单元在所述衬底上的正投影互不交叠的情况下,所述显示面板还包括第二填充层,所述第二填充层覆盖所述发光子单元;
    所述第二微结构层位于所述第二填充层远离所述衬底的一侧。
  15. 根据权要求14所述的显示面板,其中,所述第二填充层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离等于所述功能层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离;
    所述第二微结构层和所述第二填充层为一体化结构,且所述第二微结构层和所述第一微结构层同层设置。
  16. 根据权要求14所述的显示面板,其中,所述第二填充层还覆盖所述功能层,所述第二微结构层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离大于所述第一微结构层远离所述衬底的表面延垂直于所述衬底方向到所述衬底之间的距离。
  17. 根据权要求15或16所述的显示面板,其中,所述显示面板还包括保护层,所述保护层覆盖第二填充层和所述功能层。
  18. 根据权要求12所述的显示面板,其中,所述反射墙的折射率小于所述第一填充层的折射率,所述反射墙被配置为能够使至少部分从所述第一填充层射向所述反射墙的光线发生全反射。
  19. 一种显示装置,其中,包括如权利要求1-18中任一项所述的显示面板。
PCT/CN2022/073989 2022-01-26 2022-01-26 显示面板、显示装置 WO2023141810A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/073989 WO2023141810A1 (zh) 2022-01-26 2022-01-26 显示面板、显示装置
CN202280000086.0A CN116830026A (zh) 2022-01-26 2022-01-26 显示面板、显示装置
US18/018,723 US20240258475A1 (en) 2022-01-26 2022-01-26 Display panel and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/073989 WO2023141810A1 (zh) 2022-01-26 2022-01-26 显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2023141810A1 true WO2023141810A1 (zh) 2023-08-03

Family

ID=87470114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073989 WO2023141810A1 (zh) 2022-01-26 2022-01-26 显示面板、显示装置

Country Status (3)

Country Link
US (1) US20240258475A1 (zh)
CN (1) CN116830026A (zh)
WO (1) WO2023141810A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216281A (ja) * 2010-03-31 2011-10-27 Shimada Precision Kk 回折格子を利用した導光板及び液晶テレビ用直下型バックライト装置
CN108572481A (zh) * 2018-03-08 2018-09-25 厦门天马微电子有限公司 背光模组及显示装置
CN109188776A (zh) * 2018-10-31 2019-01-11 厦门天马微电子有限公司 一种背光模组以及电子设备
CN109686868A (zh) * 2019-01-31 2019-04-26 上海天马微电子有限公司 显示面板和显示装置
CN111370560A (zh) * 2020-02-12 2020-07-03 上海天马微电子有限公司 微型led显示面板、制作方法、母版及显示装置
CN211879404U (zh) * 2020-03-27 2020-11-06 京东方科技集团股份有限公司 显示基板及显示装置
CN112447931A (zh) * 2020-11-20 2021-03-05 厦门天马微电子有限公司 一种显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216281A (ja) * 2010-03-31 2011-10-27 Shimada Precision Kk 回折格子を利用した導光板及び液晶テレビ用直下型バックライト装置
CN108572481A (zh) * 2018-03-08 2018-09-25 厦门天马微电子有限公司 背光模组及显示装置
CN109188776A (zh) * 2018-10-31 2019-01-11 厦门天马微电子有限公司 一种背光模组以及电子设备
CN109686868A (zh) * 2019-01-31 2019-04-26 上海天马微电子有限公司 显示面板和显示装置
CN111370560A (zh) * 2020-02-12 2020-07-03 上海天马微电子有限公司 微型led显示面板、制作方法、母版及显示装置
CN211879404U (zh) * 2020-03-27 2020-11-06 京东方科技集团股份有限公司 显示基板及显示装置
CN112447931A (zh) * 2020-11-20 2021-03-05 厦门天马微电子有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
US20240258475A1 (en) 2024-08-01
CN116830026A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN108878626A (zh) 一种显示面板及制作方法、显示装置
US10693103B2 (en) Light-emitting device and manufacturing method thereof, electronic apparatus
CN101782203B (zh) 一种包含自由曲面反射器的背光系统
US10483431B2 (en) Light source module and display device
WO2020025054A1 (zh) 一种发光装置及其制备方法
TWM580691U (zh) Direct type backlight
US12096674B2 (en) Color conversion assembly, display panel and manufacturing method of color conversion assembly
WO2021031292A1 (zh) 背光模组
CN108803142A (zh) 光源及其制备方法、背光模组、显示面板
WO2022160803A1 (zh) 一种发光模组和显示装置
CN101782204A (zh) 一种光源倒置且使用自由曲面反射器的led背光结构
CN209765923U (zh) 一种具有补偿结构的背光源
CN113960837A (zh) 双面显示装置
WO2023141810A1 (zh) 显示面板、显示装置
CN101520570A (zh) 发光装置、背光模组与平面显示器
US20240103318A1 (en) Quantum dot lens and backlight module
WO2023000419A1 (zh) 一种背光模组以及显示装置
TW202227887A (zh) 背光裝置
KR101824035B1 (ko) 백라이트 유닛 및 그를 이용한 디스플레이 장치
WO2019227795A1 (zh) 背光模组及显示装置
WO2023201699A1 (zh) 显示基板及显示装置
US11609453B2 (en) Light source assembly, display module and method of manufacturing light source assembly
TWI384283B (zh) 發光二極體之背光模組
CN201731370U (zh) 一种包含自由曲面反射器的背光系统
WO2022241687A1 (zh) 背光模组、显示装置和制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000086.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18018723

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922661

Country of ref document: EP

Kind code of ref document: A1