WO2022160803A1 - 一种发光模组和显示装置 - Google Patents

一种发光模组和显示装置 Download PDF

Info

Publication number
WO2022160803A1
WO2022160803A1 PCT/CN2021/125864 CN2021125864W WO2022160803A1 WO 2022160803 A1 WO2022160803 A1 WO 2022160803A1 CN 2021125864 W CN2021125864 W CN 2021125864W WO 2022160803 A1 WO2022160803 A1 WO 2022160803A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
area
substrate
emitting module
Prior art date
Application number
PCT/CN2021/125864
Other languages
English (en)
French (fr)
Inventor
张志忠
孙彦军
刘磊
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to GB2219443.5A priority Critical patent/GB2611248A/en
Priority to US17/908,313 priority patent/US20230095991A1/en
Publication of WO2022160803A1 publication Critical patent/WO2022160803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting module and a display device.
  • the light-emitting module is a component that provides a light source for display products. According to the different distribution positions of the light source, it is divided into two types: side light type and direct type. Compared with edge-lit light sources, direct-lit light sources have more advantages in luminous uniformity and brightness, and compared with edge-lit light sources, direct-lit light sources are easier to achieve high dynamic range images (High-Dynamic Range, referred to as HDR).
  • HDR High-Dynamic Range
  • the present disclosure provides a light-emitting module and a display device, so as to improve the problems of lamp shadow, uneven light output and thick light-emitting module in the prior art light-emitting module.
  • An embodiment of the present disclosure provides a light-emitting module, the light-emitting module is used to provide a light source for a display panel, and the light-emitting module includes:
  • the light-emitting substrate is provided with a plurality of light-emitting elements arranged in an array;
  • An optical film group is located on the light-emitting side of the light-emitting substrate, the optical film group at least includes a diffusion plate, and the orthographic projection of all the light-emitting elements located on the light-emitting substrate on the diffusion plate is located at the at least part of the area of the light-emitting substrate is in direct physical contact with the diffusion plate.
  • the light-emitting substrate comprises: a lamp board base material, and a first reflective layer on the side of the lamp board base material facing the diffuser plate;
  • the first reflective layer includes a plurality of hollows arranged at intervals, the hollows are arranged corresponding to the light-emitting elements, and the orthographic projection of at least one of the light-emitting elements on the light board substrate is located in the corresponding hollows in the light-emitting element. In the orthographic projection of the light panel substrate.
  • the surface of the first reflective layer away from the light panel substrate is in direct physical contact with the diffuser panel, and/or the surface of the light-emitting element facing away from the light panel substrate The surface is in direct physical contact with the diffuser plate.
  • the smallest distance between the centers of any two adjacent light-emitting elements is taken as the first distance; the light-emitting elements are away from the The distance between the surface of the light plate base material and the surface of the diffuser plate facing the light-emitting substrate is taken as the second distance;
  • the first distance is greater than the second distance.
  • the first reflective layer includes a main body part and an extension part, and the extension part is located on at least one side of the main body part.
  • the main body part and the extension part have an integral structure, and a first angle exists between the extension part and the main body part, and the first angle is not equal to zero.
  • the light-emitting substrate includes at least one support member, the support member is located on the side where the light-emitting element of the light board substrate is located, and the support member is directly physically connected to the diffuser plate touch.
  • the support member is disposed corresponding to at least one of the hollows, and the orthographic projection of the support on the lamp panel substrate corresponds to the corresponding hollow on the lamp panel substrate.
  • the orthographic projections overlap at least partially.
  • the light-emitting substrate further includes: a second reflection layer located between the lamp board substrate and the first reflection layer;
  • the distance from the surface of the second reflective layer away from the lamp board base material to the lamp board base material is smaller than the maximum distance from the surface of the light-emitting element away from the lamp board base material to the lamp board base material.
  • the light-emitting substrate further includes: a first wiring layer located between the lamp board base material and the second reflective layer, and a first wiring layer located on the lamp board base material away from the The second wiring layer on one side of the first reflective layer.
  • the light-emitting substrate includes a plurality of sub-light-emitting substrates, the plurality of the sub-light-emitting substrates are arranged in sequence at least along the first direction and/or the second direction, and the plurality of the sub-light-emitting substrates are formed by splicing the light-emitting substrate.
  • At least two of the sub-light-emitting substrates are correspondingly provided with the same first reflective layer, and the at least two sub-light-emitting substrates are located on the corresponding first reflective layer on the lamp board substrate within the orthographic projection area.
  • the first gap there is a first gap between the adjacent sub-light-emitting substrates along the arrangement direction, and the first gap is 0.08 mm ⁇ 0.12 mm.
  • each of the sub-light-emitting substrates has a plurality of light-emitting units arranged in an array, each of the light-emitting units includes a plurality of light-emitting elements connected in series, and the plurality of light-emitting elements connected in series The elements are arranged in an array.
  • the light-emitting module further includes light-emitting control chips corresponding to the plurality of sub-light-emitting substrates one-to-one;
  • n light-emitting units are electrically connected to the same positive output pin of the light-emitting control chip, and the output ends of the m light-emitting units are electrically connected to the same negative output pin of the light-emitting control chip, wherein, n is less than the total number of the light-emitting units in the sub-light-emitting substrate, and m is less than the total number of the light-emitting units in the sub-light-emitting substrate.
  • the light-emitting substrate includes a first area and a second area, the second area is located in the first area in the orthographic projection of the light-emitting substrate, and the second area is located in the first area.
  • the orthographic projection area of the light-emitting substrate is smaller than the orthographic projection area of the first region on the light-emitting substrate; wherein, the second region coincides with the display region of the display panel;
  • the light-emitting substrate further includes a third area, the orthographic projection of the third area on the light-emitting substrate is located in the first area, and the orthographic projection of the third area on the light-emitting substrate is the same as the second area.
  • the orthographic projections of the regions on the light-emitting substrate do not overlap, and a plurality of the light-emitting elements are arranged in the third region.
  • the maximum distance between the light-emitting element located in the third area and the edge of the second area is 0.5 mm ⁇ 1.5 mm; In two extending directions, the maximum distance between the light-emitting element in the third area and the edge of the second area is 0.5 mm to 1.5 mm, wherein the first area is rectangular, and the first extending direction is rectangular.
  • the extension direction of the long side, and the second extension direction is the extension direction of the short side of the rectangle.
  • the optical film group further includes: a diffusion sheet on the side of the diffusion plate away from the light-emitting substrate, the diffusion sheet includes a first surface facing the diffusion plate, and a diffusion sheet away from the light-emitting substrate
  • the second surface of the diffuser plate at least one of the first surface and the second surface is provided with a plurality of microstructure units, and a light conversion material is provided at a corresponding position of each of the microstructure units.
  • the diffusion sheet includes an inner area and a peripheral area located on at least one side of the inner area, and the second area of the light-emitting substrate is in the orthographic projection of the diffusion sheet and the surrounding area.
  • the peripheral area overlaps; the microstructure units are located only in the peripheral area.
  • the first surface is a rectangle, the extending direction of the long side of the rectangle is taken as the third direction, and the direction of the short side of the rectangle is taken as the fourth direction;
  • the peripheral area further Including a corner area, the corner area is the part of the peripheral area extending along the third direction, and the area formed by the intersection of the part of the peripheral area extending along the fourth direction;
  • the density distribution of the microstructure units in the corner area satisfies the following relation:
  • the outer contour of the orthographic projection of the first region of the light-emitting substrate on the diffuser is located in the peripheral region, and the second region of the light-emitting substrate is located in the peripheral region.
  • the outer contour of the orthographic projection of the diffuser is located in the peripheral area.
  • the peripheral area includes a first peripheral area and a second peripheral area, the second peripheral area is located on a side of the first peripheral area away from the inner area; the first peripheral area The average distribution density of the microstructure units in the peripheral region is smaller than the average distribution density of the microstructure units in the second peripheral region.
  • the distribution density of the microstructure units in a unit area gradually decreases.
  • the outer contour of the orthographic projection of the first region of the light-emitting substrate on the diffuser sheet is located in the second peripheral region, and the second region of the light-emitting substrate is located in the second peripheral region.
  • the outer contour of the orthographic projection of the diffusing sheet is located in the first peripheral region.
  • the second peripheral area further includes a corner area, and the corner area is a portion of the second peripheral area extending along the first extending direction, and the second peripheral area an area formed by intersecting portions of the area extending along the second extending direction;
  • the average distribution density of the microstructure units in the corner area is greater than the average distribution density of the microstructure units in other areas in the second peripheral area.
  • the plurality of microstructure units are located on the second surface, the inner region of the second surface has substantially the same roughness as the first surface, the first surface The roughness is less than the roughness of the peripheral region.
  • the light-emitting module further includes a backplane located on a side of the light-emitting substrate away from the diffuser plate, the backplane includes a bottom plate, and the bottom plate faces the diffuser plate. side panels extending from one side;
  • the side of the light-emitting substrate facing the backplane has a first colloid, and the light-emitting substrate is fixed to the backplane through the first colloid.
  • the first colloid includes a colloidal base material, a first adhesive layer located on the side of the colloidal base material facing the sub-light-emitting substrate, and a first adhesive layer located on the side of the colloidal base material facing the bottom plate second adhesive layer on one side.
  • the surface of the diffuser plate facing the light-emitting substrate has a plurality of microstructures, and the microstructures are depressions facing the surface of the light-emitting substrate relative to the diffuser plate.
  • the microstructure is a pyramid structure, and a bottom surface of the pyramid structure is a virtual surface coplanar with a surface of the diffusion plate facing the light-emitting substrate.
  • the roughness of the surface of the diffuser plate facing away from the light-emitting substrate is smaller than the roughness of the surface of the diffuser plate facing the light-emitting substrate.
  • the thickness of the diffuser plate is 2.5mm ⁇ 3.5mm.
  • the diffuser plate includes a diffuser body, and a light diffusing agent and shielding particles mixed in the diffuser body.
  • the diffuser plate includes a diffuser body and a plurality of closed cavities inside the body, and the cavities are filled with air.
  • the diffuser plate has a first diffuser surface facing the light-emitting substrate, and a second diffuser surface facing away from the light-emitting substrate, and connecting the first diffuser surface and the second diffuser surface at least one side surface of the diffusing surface; at least one of the side surfaces is provided with a third reflective layer.
  • the optical film group further includes: a light conversion film located between the diffuser plate and the diffuser sheet.
  • the third reflective layer and the light conversion film have a second gap.
  • the light-emitting element is a Min-LED.
  • An embodiment of the present disclosure provides a display device, including the light-emitting module provided by the embodiment of the present disclosure, and further comprising: a display panel located on a light-emitting side of the light-emitting module.
  • the back plate includes: a bottom plate, and a side plate extending from the bottom plate toward one side of the diffuser plate;
  • the display device further includes: a plastic frame fixed to the end of the side plate; the display panel is fixed to the plastic frame through foam.
  • the light-emitting module further includes: a front frame located on the side of the back panel away from the light-emitting substrate, the front frame includes: a frame for accommodating the plastic frame and the back panel A bottom frame, and a side frame extending from the bottom frame toward one side of the display panel, the front frame is fixed to the bottom plate by nuts.
  • the light emitting module further includes: a rear case located on a side of the bottom frame away from the back plate, and the rear case is fixed to the front frame through a buckle.
  • the light-emitting module includes: a light-emitting substrate and an optical film group.
  • the optical film group is located on the light-emitting side of the light-emitting substrate.
  • the orthographic projection of all light-emitting elements on the diffuser plate is located in the diffuser plate, and further, the light emitted by the light-emitting elements is modulated by the diffuser plate, on the one hand to ensure uniform light output to avoid lamp shadows, and on the other hand to prevent unmodulated light from leaking directly from the edge This leads to the appearance of obvious bright areas around.
  • the orthographic projection of the light-emitting substrate on the diffuser plate can be located in the orthographic projection area of the diffuser plate, and the area of the orthographic projection area of the light-emitting substrate in this direction is smaller than that of the diffuser plate in this direction.
  • the area of the orthographic projection area of the light-emitting substrate is reduced, so as to ensure that the light emitted by all the light-emitting elements on the light-emitting substrate is modulated by the diffuser plate while reducing the size of the light-emitting substrate to achieve a narrow frame of the light-emitting module;
  • the direct physical contact of the diffuser plate can make the overall thickness of the light-emitting module smaller, and realize the ultra-thin light-emitting module.
  • FIG. 1 is one of a schematic cross-sectional structure diagram of a light-emitting module provided by an embodiment of the present disclosure
  • FIG. 2A is a schematic diagram of an arrangement structure of a sub-light-emitting substrate according to an embodiment of the present disclosure
  • FIG. 2B is a schematic diagram of the arrangement structure of another sub-light-emitting substrate according to an embodiment of the present disclosure
  • FIG. 2C is a schematic top-view structure diagram of a light-emitting substrate according to an embodiment of the present disclosure
  • FIG. 2D is a schematic structural diagram of a light-emitting element according to an embodiment of the present disclosure.
  • FIG. 2E is a schematic diagram of the distribution of a light-emitting element according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a light-emitting unit according to an embodiment of the present disclosure
  • FIG. 4A is one of the schematic cross-sectional structural diagrams of the light-emitting substrate provided by the embodiment of the present disclosure.
  • 4B is the second schematic cross-sectional structure diagram of the light-emitting substrate provided by the embodiment of the present disclosure.
  • 4C is a schematic structural diagram of a sub-light-emitting substrate and a first reflective layer provided by an embodiment of the present disclosure
  • FIG. 4D is a schematic cross-sectional view at the dotted line in FIG. 4C;
  • FIG. 4E is a schematic structural diagram of a light-emitting module including a support member according to an embodiment of the present disclosure
  • FIG. 4F is a schematic structural diagram of a light-emitting element T distribution provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional structural diagram of a specific light-emitting substrate according to an embodiment of the present disclosure
  • 6A is the second schematic cross-sectional structure diagram of the light emitting module provided by the embodiment of the present disclosure.
  • 6B is one of the schematic diagrams of a diffuser plate provided by an embodiment of the present disclosure.
  • FIG. 6C is the second schematic diagram of a diffuser plate provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional structural diagram of a first colloid provided in an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a back plate and a diffuser plate according to an embodiment of the present disclosure.
  • FIG. 9 is one of the surface schematic diagrams of the diffuser plate provided by the embodiment of the present disclosure.
  • FIG. 10A is a third schematic cross-sectional structure diagram of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 10B is one of the top schematic views of the diffusion plate and the quantum dot membrane provided by the embodiment of the present disclosure.
  • FIG. 11 is a fourth schematic cross-sectional structure diagram of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 12A is one of the top schematic diagrams of the diffusion sheet provided by the embodiment of the present disclosure.
  • FIG. 12B is the second schematic top view of the diffusion sheet provided by the embodiment of the present disclosure.
  • FIG. 13 is a schematic cross-sectional view of a diffusion sheet provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of the distribution of microstructure units provided in an embodiment of the present disclosure.
  • 15A is a fifth schematic diagram of a cross-sectional structure of a light-emitting module according to an embodiment of the present disclosure.
  • FIG. 15B is the second schematic top view of the diffusion plate and the quantum dot membrane provided by the embodiment of the present disclosure.
  • FIG. 16 is a fourth schematic diagram of a cross-sectional structure of a display device according to an embodiment of the present disclosure.
  • the present disclosure provides a light-emitting module for providing a light source for a display panel, as shown in FIG. 1 , including:
  • Light-emitting substrate 2 specifically, a plurality of light-emitting elements T arranged in an array may be provided on the light-emitting substrate 2, and specifically, the light-emitting elements T may be located on at least one side of the light-emitting substrate 2;
  • the optical film group 3 is located on the light-emitting side of the light-emitting substrate 1, and the optical film group 3 at least includes a diffuser plate 31, and the orthographic projection of all the light-emitting elements T on the light-emitting substrate 2 on the diffuser plate 31 is located on the diffuser plate 31.
  • At least a partial area of the light-emitting substrate 2 is in direct physical contact with the diffusion plate 31 .
  • the light-emitting module includes: a light-emitting substrate 2 , an optical film group 3 , the optical film group 3 is located on the light-emitting side of the light-emitting substrate 1 , the optical film group 3 at least includes a diffusion plate 31 , and all the The orthographic projection of the light-emitting element T on the diffuser plate 31 is located in the diffuser plate 31, and further, the light emitted by the light-emitting element T is modulated by the diffuser plate 31, on the one hand to ensure uniform light output to avoid lamp shadows, and on the other hand to avoid unmodulated light. Leaking directly from the edges results in noticeable bright areas all around.
  • the orthographic projection here is the orthographic projection along the thickness direction of the diffuser plate 31 , that is, the orthographic projections of all light-emitting elements T on the light-emitting substrate 2 along the thickness direction of the diffuser plate 31 are located on the diffuser plate 31 itself along the direction of the thickness. within the orthographic projection area. Further, the orthographic projection of the light-emitting substrate 2 on the diffuser plate 31 can be located in the orthographic projection area of the diffuser plate 31, and the area of the orthographic projection area of the light-emitting substrate 2 in this direction is smaller than the orthographic projection of the diffuser plate 31 in this direction.
  • the area of the projection area can be reduced to reduce the size of the light-emitting substrate while ensuring that the light emitted by all the light-emitting elements T on the light-emitting substrate 2 is modulated by the diffuser plate 31 , so as to realize the narrow frame of the light-emitting module. Moreover, at least a part of the area of the light-emitting substrate 2 is in direct physical contact with the diffuser plate 31 , so that the overall thickness of the light-emitting module can be reduced, thereby realizing an ultra-thin light-emitting module.
  • the light-emitting substrate 2 includes a plurality of sub-light-emitting substrates 200 .
  • the plurality of sub-light-emitting substrates 200 are sequentially arranged at least along the first direction. They are arranged in sequence in the horizontal direction, wherein the first direction is the horizontal direction; they can also be arranged in sequence in the vertical direction, as shown in FIG. 2B , where the first direction is the vertical direction.
  • the following is a schematic illustration by taking a plurality of sub-light-emitting substrates 200 arranged in the lateral direction as an example:
  • the first gap Gap between adjacent sub-light-emitting substrates 200 along the arrangement direction there is a first gap Gap between adjacent sub-light-emitting substrates 200 along the arrangement direction, and the first gap is 0.08 mm ⁇ 0.12 mm.
  • a plurality of sub-light-emitting substrates 200 are assembled to form the light-emitting substrate 2 .
  • the light-emitting substrate 2 includes a plurality of sub-light-emitting substrates 200 arranged in sequence along the same direction, and the plurality of sub-light-emitting substrates 200 are spliced to form the light-emitting substrate 2, which can prevent the light-emitting substrate 2 from being an integrated structure, which is large and easy to damage. , which is not conducive to the assembly of the light-emitting module.
  • the first gap Gap between adjacent sub-light-emitting substrates 200 is 0.1 ( ⁇ 0.02) mm.
  • each sub-light-emitting substrate 200 has a plurality of light-emitting units 210 arranged in an array.
  • each light-emitting unit 210 includes: an input end V1, an output end V2, As well as a plurality of light-emitting elements T electrically connected between the input end V1 and the output end V2 and connected in series in sequence, the independent light-emitting control of each light-emitting unit 210 can be realized.
  • each light-emitting unit 210 includes nine light-emitting elements T connected in series. It should be noted that FIG.
  • each sub-light-emitting substrate 200 may also be a light-emitting unit 210 with other rows and columns, and each light-emitting unit 210 may have light-emitting elements T with other rows and columns, which is not considered in the present disclosure. limit.
  • the light-emitting element T provided by the embodiment of the present disclosure may be a Mini Light Emitting Diode (Mini-LED).
  • Mini-LED is small in size and high in brightness, and can be widely used in backlight modules of display devices, and can finely adjust the backlight, thereby realizing the display of High-Dynamic Range (HDR) images.
  • a typical size (eg, length) of a Mini-LED is 50-150 microns, eg, 80-120 microns.
  • the light-emitting module further includes light-emitting control chips 220 corresponding to the sub-light-emitting substrates 200 one-to-one.
  • the light-emitting control chip 220 includes PIN1-96 pins, wherein PIN1-24 are positive pins, PINs 25-96 are negative pins, four light-emitting units 210 share one negative pin, and 12 light-emitting units 210 shares a positive pin, specifically, for example, the input terminals V1 of the 12 light-emitting units 210 may be electrically connected to the same positive pin, and the output terminals V2 of the four light-emitting units 210 may be electrically connected to the same negative pin, In order to realize that 12 light-emitting units 210 share one positive pin, and four light-emitting units 210 share one negative pin.
  • each sub-light-emitting substrate 200 includes: a lamp board substrate 201 ; It includes a plurality of hollows T0 arranged at intervals, the hollows T0 are correspondingly arranged with the light-emitting elements T, and the orthographic projection of at least one light-emitting element T on the lamp board substrate 201 is located in the orthographic projection of the corresponding hollow T0 on the lamp board substrate 201 .
  • the surface of the first reflective layer 2092 away from the lamp panel substrate 201 is in direct physical contact with the diffuser plate 31
  • the surface of the light emitting element T away from the lamp panel substrate 201 is in direct physical contact with the diffuser panel 31 .
  • each sub-light-emitting substrate 200 includes: a first wiring layer 202 located between the lamp board substrate 201 and the first reflective layer 2092 , a first wiring layer 202 located between the first wiring layer 202 and the first A second reflective layer 2091 between the reflective layers 2092, and a second wiring layer 203 located on the side of the lamp panel substrate 201 away from the first reflective layer 2092; the second reflective layer 2091 is far from the surface of the lamp panel substrate 201 to The distance k1 of the light board substrate 201 is smaller than the maximum distance k2 from the surface of the light-emitting element T facing away from the light board substrate 201 to the light board substrate 201.
  • the light-emitting element T facing away from the light board substrate 201 is a curved surface
  • the light-emitting element T The maximum distance k2 from the surface facing away from the lamp board substrate 201 to the lamp board substrate 201 is the maximum distance from the vertex of the light-emitting element T away from the surface of the lamp board substrate 201 to the lamp board substrate 201 .
  • the first wiring layer 202 and the second wiring layer 203 are respectively disposed on both sides of the light board substrate 201, which can reduce the wiring complexity during single-layer wiring.
  • the second reflective layer 2091 may be provided with a hollow area at the position where the light emitting element T is located, so that the light emitting element T can conduct conduction with the first wiring layer 201 or the second wiring layer 203 below through the hollow area.
  • the first reflective layer 2092 can be a reflective layer formed by coating, or can be a reflective layer attached or stacked on the lamp board substrate 201 .
  • the second reflective layer 2092 is a reflective layer formed on the lamp panel substrate 201 through a coating process, and the first reflective layer 2091 is a reflective film attached to the lamp panel substrate 201 or stacked on the lamp panel Reflective sheet on substrate 201 .
  • the second reflective layer 2091 coated on the side of the light-emitting substrate 2 facing the diffuser plate 31 may be a white oil layer to reflect light to the diffuser plate 31 side and increase light utilization.
  • the coating thickness of the white oil layer is not uniform or the color is mixed with errors, chromatic aberration will occur.
  • a first reflective layer 2092 (specifically, a first reflective layer 2092 can be provided on the side of the second reflective layer 2091 facing the diffuser plate 31) is a white film), the first reflective layer 2092 can be disposed on the side of the second reflective layer facing the diffuser 31 by attachment or other means, the first reflective layer 2092 can improve the light utilization rate and improve the different sub-light-emitting substrates The chromatic aberration between 200 and the chromatic aberration at different positions within the single light-emitting substrate 200.
  • the first reflective layer 2092 may be a single film layer structure or a composite structure composed of multiple film layers.
  • the first reflective layer 2092 has a hollow hole at the position corresponding to each light-emitting element T.
  • the top surface of the light-emitting element T (the surface away from the lamp board substrate 201 ) can be aligned with the first reflective layer 2092.
  • the surface of the layer 2092 facing the diffuser plate 31 is flush or substantially flush, so that the first reflective layer can also protect the light emitting element without adversely affecting the light extraction efficiency of the light emitting element.
  • the light-emitting element includes a light-emitting chip and an encapsulation structure covering the light-emitting chip.
  • the surface of the encapsulation structure may be a curved surface, so the top surface of the light-emitting element T and the surface of the first reflective layer 2092 facing the diffuser plate 31 Flush or substantially flush may also mean that the surface of the package structure of the light emitting element is flush or substantially flush with the surface of the first reflective layer 2092 facing the diffusion plate 31 .
  • the surface of the package structure of the light emitting element is flush or substantially flush with the surface of the first reflective layer 2092 facing the diffusion plate 31 .
  • due to actual process errors it may be difficult to realize that each position of the light-emitting substrate 2 is in direct physical contact with the diffuser plate 31 .
  • the light-emitting substrate 2 is in direct physical contact with the diffuser plate 31 , which may be the The light-emitting element T is in direct physical contact with the diffuser plate 31 , the first reflective layer 2092 may also be in direct physical contact with the diffuser plate 31 , or both the light-emitting element T and the cover film 2092 may be in direct physical contact with the diffuser plate 31 .
  • at least one of the light-emitting element T of the light-emitting substrate 2 and the first reflective layer 2092 is in direct physical contact with the diffuser plate 31, which can realize an ultra-thin light-emitting module with zero light mixing distance.
  • the light emitting module includes a backplane 1 .
  • the backplane 1 may include: a bottom plate 110 , and the bottom plate 110 faces the diffuser plate
  • the side plate 120 extending from one side of 31.
  • the first reflective layer 2092 includes a main body part Y1 and an extension part Y2, and the extension part Y2 is located on at least one side of the main body part Y1.
  • the orthographic projections of all the light-emitting elements T on the light-emitting substrate 2 along the thickness direction of the lamp board base material 201 are located within the range defined by the outer peripheral edge of the orthographic projection of the main body portion Y1 in this direction.
  • the main body part Y1 and the extension part Y2 have an integral structure, and a first angle ⁇ exists between the extension part Y2 and the main body part Y1 , and the first angle ⁇ is not equal to zero.
  • the first reflective layer 2092 can be in the shape of a reflective sheet, which is directly stacked on the lamp board substrate 201, and the extension Y2 of the first reflective layer 2092 is bent toward the side of the diffuser plate 31, and further the extension can be Y2 is overlapped on the side plate 120 of the back plate 1 for fixing.
  • the extension part Y2 can be bent in a plane form or in an arc surface form, and the extension part Y2 can be fixedly connected with the back plate 1 .
  • the first reflection layer 2092 further includes an extension portion Y2, and there is a first angle between the extension portion Y2 and the main body portion Y1, so that the reflection area can be enlarged and the overall brightness of the light emitting module can be improved.
  • At least two sub-light-emitting substrates 200 are provided with the same first reflective layer 2092 correspondingly.
  • the upper and lower sub-light-emitting substrates 200 on the side correspond to the first reflective layer 2092 on the right side, and at least two sub-light-emitting substrates 200 are located in the orthographic projection area of the corresponding first reflective layer 2092 in the light panel substrate 201 .
  • corresponding to the same first reflective layer 2092 can be understood as the first reflective layer 2092 corresponding to the at least two sub-light-emitting substrates 200 is an integrally formed complete communication structure.
  • At least two sub-light-emitting substrates 200 are correspondingly provided with the same first reflective layer 2092 , which can enhance the uniformity of light output from the light-emitting substrate 2 and reduce the effect of seams between adjacent sub-light-emitting substrates 200 on the uniformity of light output.
  • the orthographic projections of all light-emitting elements T on the at least two sub-light-emitting substrates 200 along the thickness direction of the light-emitting board substrate 201 are located at The main body portion Y1 of the same first reflective layer 2092 is within the range defined by the outer peripheral edge of the orthographic projection of the direction.
  • the light-emitting substrate 201 includes at least one supporter K, the supporter K is located on the side of the light-emitting element T of the light board substrate 201, and the supporter K is in direct physical contact with the diffuser plate 31.
  • the support member K can be fixed on the side of the light panel base material 201 facing the diffuser plate 31 by means of snapping or bonding.
  • a through hole/groove structure for matching the snap structure is provided on the upper part, so as to fix the support member K.
  • the support member K is disposed corresponding to at least one hollow T0 , and the orthographic projection of the support member K on the lamp panel substrate 201 at least partially overlaps with the orthographic projection of the corresponding hollow T0 on the lamp panel substrate 201 .
  • the smallest distance between the centers of any two adjacent light-emitting elements T is taken as the first distance D.
  • the light-emitting element T in the second row and second column in 4C is taken as an example for illustration.
  • It has a second oblique distance d2, and has a third vertical distance d3 from the light-emitting element T directly above, wherein the second oblique distance d2 is greater than the first lateral distance d1 and also greater than the third vertical distance d3.
  • either one of d1 and d3 can be used as the first distance D, and when the first horizontal distance d1 and the third vertical distance d3 are not equal, the higher of the The smaller one is used as the first distance D; the distance between the light-emitting element T facing away from the surface of the lamp board substrate 201 and the surface of the diffuser plate 31 facing the light-emitting substrate 2 is used as the second distance D2; the first distance D1 is greater than the second distance D1 Distance D2.
  • the first distance D1 is greater than the second distance D2, and the light-emitting modules composed of light-emitting substrates with different parameters can achieve the purpose of reducing the light mixing distance, thereby realizing the thinning of the display device.
  • FIG. 4C is a schematic illustration of the light-emitting substrate 201 having three rows and three columns of light-emitting elements T.
  • the light-emitting substrate 201 may also be light-emitting elements T with other numbers of rows and columns, which is not used in the present disclosure. limited.
  • a first adhesive layer located on the side of the first adhesive layer away from the lamp board substrate, a The first solder resist layer on the side of the power supply layer away from the first adhesive layer; the side of the second wiring layer away from the base material of the lamp board is also sequentially provided with: a second adhesive layer, a second adhesive layer located on the second adhesive layer away from the second wiring The ground layer on one side of the layer, and the second solder mask layer on the side of the ground layer away from the second adhesive layer.
  • the light-emitting substrate 2 includes the first area BB (the distribution area of the light-emitting elements T, that is, the outer contour formed by the outermost light-emitting elements T, and all the light-emitting elements T are located along the thickness direction of the light-emitting substrate 2 .
  • the light-emitting substrate 2 further includes a third area CC, and the orthographic projection of the third area CC on the light-emitting substrate 2 is located in the first area BB and the orthographic projection of the third area CC on the light-emitting substrate 2 does not overlap with the orthographic projection of the second area AA on the
  • the maximum distance h1 between the light-emitting element T in the third area CC and the edge of the second area AA is 0.5 mm to 1.5 mm, specifically, it can be 0.8 mm;
  • the maximum distance h2 between the light-emitting element T in the third area CC and the edge of the second area AA is 0.5 mm to 1.5 mm, specifically, 0.8 mm, wherein the first area BB is a rectangle, and the first area BB is a rectangle.
  • the first extension direction AB is the extension direction of the long side of the rectangle
  • the second extension direction CD is the extension direction of the short side of the rectangle.
  • the light-emitting substrate 2 is also provided with light-emitting elements T in areas other than the second area AA, but when the distance between the outermost light-emitting element T on the light-emitting substrate 2 and the second area AA is too large, the light-emitting element T will be wasted, The light source cannot be fully utilized, and if the distance value is too small, the peripheral part of the display area will be insufficiently lit, and the peripheral edge will be dark, which will affect the taste of the picture.
  • the maximum distance h1 between T and the edge of the second area AA is 0.5mm ⁇ 1.5mm; parallel to the second extending direction CD, the maximum distance h2 between the light-emitting element T in the third area CC and the edge of the second area is 0.5mm ⁇ 1.5mm , while avoiding the waste of the light-emitting element T, at the same time, it can avoid the problem that the distance value is too small, which will lead to insufficient peripheral light and dark peripheral edges, which affects the taste of the picture.
  • the distance h1 between the outer contour of the first area BB and the outer contour of the second area AA in the first extending direction AB is smaller than the outer contour of the first area BB and the outer contour of the second area AA in the second extending direction CD
  • the spacing h2 is smaller than the outer contour of the first area BB and the outer contour of the second area AA in the second extending direction CD
  • the spacing h2 since a single light-emitting element T (which may be an unpackaged light-emitting chip, including a positive electrode Ta and a negative electrode Tb) is rectangular as shown in FIG.
  • the light intensity distribution of the light emitting element T is greater than the light intensity distribution in the left and right directions of its width, and the arrangement of the light emitting element T in the light emitting substrate 2 is shown in FIG.
  • the long side of the light emitting element T is parallel to the short side of the light emitting substrate 2
  • the short side of T is parallel to the long side of the light-emitting substrate 2
  • the light-emitting brightness in the direction of the long side of the light-emitting substrate 2 is greater than the light-emitting brightness in the direction of the short side of the light-emitting substrate 2
  • h1 is smaller than h2, which can prevent uneven image quality.
  • Compensation adjustment is used to improve the problem of unevenness of the peripheral image caused by the above-mentioned different emission angles of the light-emitting elements.
  • h2 may be 1.100mm ⁇ 1.200, specifically, for example, h2 may be 1.147mm, and h1 may be specifically 0.700mm ⁇ 0.800mm, and specifically, for example, h1 may be 0.793mm.
  • the first region BB may be approximately rectangular, or may be approximately square.
  • the light-emitting module further includes a backplane 1 located on the side of the light-emitting substrate 2 away from the diffuser plate 31 .
  • the backplane 1 may include: a bottom plate 110 , and the bottom plate 110 faces the diffuser plate.
  • the side plate 120 extending from one side of 31 ; the side of each sub-light-emitting substrate 200 facing the back plate 1 has a first glue 12 , and the sub-light-emitting substrate 200 is fixed to the back plate 1 by the first glue 12 .
  • the first colloid 12 includes a colloidal substrate 121 , a first adhesive layer 122 located on the side of the colloidal substrate 121 facing the sub-light-emitting substrate 200 , and a second adhesive layer 123 located on the side of the colloidal substrate 121 facing the backplane 1 . .
  • the first colloid 12 includes a colloidal substrate 121 , which can avoid the first adhesive layer 122 and the second adhesive layer 123 when the first colloid 12 is at high temperature and high humidity.
  • the first adhesive layer 122 and the second adhesive layer 124 have the same adhesive properties (the materials and adhesive ratios are the same), which can increase the exhaust performance.
  • the initial adhesion increases reworkability, and the initial adhesion is low, so that the first glue 12 can be easily removed without replacing the first glue 12, and re-attached to improve the assembly efficiency, while ensuring that no displacement occurs after increasing the roller pressing.
  • the first colloid 12 may be an easy-to-pull glue.
  • the light emitting module further includes a buffer pad 13 , and the diffusion plate 31 is in contact with the back plate 1 through at least one buffer pad 13 .
  • the diffuser plate 31 may be easily cracked (crack) due to impact during vibration, and the vibration and expansion can be buffered by the buffer pad 13 .
  • the buffer pad 13 includes corner pads as shown in FIG. 8 , and the diffuser plate 31 is in contact with the back plate 1 through the buffer pad 13 at its four corners.
  • the buffer pad 13 limits the amount of movement of the diffuser plate 31 along the direction parallel to its surface facing the light-emitting substrate 2 , and along the thickness direction of the diffuser plate 31 , the diffuser plate 31 is sandwiched between the light-emitting substrate 2 and other parts of the optical module 3 . Between the optical films, the light-emitting substrate 2 and the back plate 1 are fixed, and the other optical films of the optical film group 3 are limited by the plastic frame, so the amount of movement of the diffuser 31 along its thickness direction is also limited, so as to ensure The diffusion plate 31 and the light-emitting substrate 2 are in direct contact with each other with no gap.
  • the buffer pad 13 may be an injection-molded pad with a hardness of 40HA (Shore hardness).
  • the diffuser plate 31 may include a diffuser body, and a light diffusing agent and shielding particles mixed in the diffusion body.
  • the shielding particles may be titanium dioxide
  • the diffusion plate 31 is formed by adjusting The content of titanium dioxide in the ratio can control the shielding property of the diffuser plate 31 , so that the diffuser plate 31 has a diffusing effect and at the same time, the diffuser plate 31 is prevented from being a fully transparent structure.
  • the material of the diffuser body can be polystyrene or polycarbonate.
  • the light diffusing agent may be organic silicon diffusion particles or inorganic diffusion particles, wherein the organic silicon diffusion particles are polymer microspheres connected by silicon-oxygen bonds and have a three-dimensional structure.
  • the light diffusing particles themselves In the form of a white powder, it is added to the diffuser plate 31, because the organic lipophilic group benzyl will be uniformly dispersed in the matrix as a fine transparent glass sphere, and the inclusion of silica particles can appropriately increase the diffusion plate.
  • Heat resistance For the main body of the diffuser plate made of polystyrene or polycarbonate, the extrusion molding temperature is 180°C ⁇ 230°C, and the heat resistance of the silicone diffuser particles is higher than 400°C, which will not cause molecular damage due to processing.
  • the light source When the light passes through the diffuser plate Different from the refractive index difference of the diffusing particles, the light source is penetratingly refracted, changing the light path, achieving the purpose of uniform light and transparency, and at the same time meeting the requirements of haze value and light transmittance.
  • the thickness h3 of the diffuser plate 31 can be 2.5mm ⁇ 3.5mm, so as to reduce the overall thickness of the light-emitting module as much as possible, and to prevent the light emitted by the light-emitting substrate from generating light spots or lamp shadows on the diffuser plate, thereby affecting the subsequent display device formed display effect.
  • the distance between adjacent light-emitting elements T is too large, even if it is refracted multiple times, the amount of light refracted to the middle area of the adjacent lamps will be significantly smaller than the amount of light in the area facing the lamps, resulting in a difference in brightness and darkness; the diffusion of the diffuser plate
  • the diffusing ability is poor, the light is difficult to be refracted to the middle area, and when the shielding is poor, the difference between light and dark will be directly highlighted.
  • Increasing the thickness of the diffuser plate 31 increases the refraction of the light on the one hand. The number of times also increases the shielding ability of the diffuser plate 31 .
  • the main body of the diffusion plate may include a plurality of closed cavities Q, and the cavity Q may be air (air bubbles), which occurs when the light enters the diffusion plate 31 and encounters the cavity Q.
  • the cavity Q may be air (air bubbles), which occurs when the light enters the diffusion plate 31 and encounters the cavity Q.
  • Multi-angle and multi-direction scattering, refraction and reflection can increase the diffusivity and shielding properties, so as to ensure the diffusion effect and shielding effect of the diffuser plate 31, the thickness of the diffuser plate 31 can be further reduced to achieve a thin light-emitting module. change.
  • the refractive index of the diffusing particles is 1.43
  • the body of the diffusing plate is filled with air (the refractive index is 1.0)
  • the light enters the reflective diffusing plate through the diffusing plate body with a refractive index of 1.59
  • the refraction angle is higher than the diffusing angle. The larger the refraction angle of the particles, the better the use of light in the interior.
  • the diffuser plate 31 may have a multi-layer composite structure, wherein a plurality of closed cavities Q may be included in the intermediate layer, so as to prevent the multiple closed cavities Q from forming surface protrusions on the upper and lower surfaces of the diffuser plate 31 , causing damage to adjacent layers.
  • the surface of the diffuser plate 31 facing the light-emitting substrate 2 has a plurality of microstructures, which can refract light in multiple directions and increase the utilization rate of light efficiency.
  • the microstructure may be a microstructure that is recessed relative to the surface of the diffuser plate 31 facing the light-emitting substrate 2, so as to prevent the microstructure from scratching the light-emitting substrate 2 or the optical film material directly adjacent to it; further, the plurality of microstructures
  • the structure may be a heavy-grained structure, that is, the plurality of microstructures include a plurality of microstructures with different sizes and are distributed in a disorderly manner.
  • FIG. 9 shows another implementation manner of the multiple microstructures.
  • the side of the diffuser plate 31 facing the light-emitting substrate 2 has 3*3 microstructures.
  • FIG. 9 only The schematic illustration is given that the side of the diffuser plate 31 facing the light-emitting substrate 2 has 3*3 microstructures.
  • the side of the diffuser plate 31 facing the light-emitting substrate 2 may also have other numbers of microstructures.
  • the microstructures may be arranged in a one-to-one correspondence with the light-emitting elements T, or may not be arranged in a one-to-one correspondence with the light-emitting elements T.
  • the microstructure may be a pyramid structure, and the bottom surface of the pyramid structure is a virtual surface coplanar with the surface of the diffuser plate 31 facing the light-emitting substrate 2 , and a pyramid-shaped microstructure is formed by concave inward with the surface as a reference.
  • the pyramid structure may be a triangular pyramid, a quadrangular pyramid, a pentagonal pyramid or a hexagonal pyramid.
  • the surface of the diffuser plate 31 facing the light-emitting substrate 2 has a plurality of microstructures, and the microstructures are in the shape of a polyhedron, which can effectively improve the utilization rate of light, and make full use of the multiple surfaces of the microstructures to refract light at multiple angles. , the brightness of the diffuser can be increased by 8% to 10% without changing the shielding property of the diffuser.
  • the surface roughness of the diffuser plate 31 away from the light-emitting substrate 2 is smaller than the surface roughness of the diffuser plate 31 facing the light-emitting substrate 2 .
  • the side of the diffuser plate 31 facing the light-emitting substrate 2 has a microstructure, which can increase the utilization rate of light efficiency and improve the uniform light effect of the diffuser plate.
  • the plate 31 faces the surface roughness of the light-emitting substrate 2, so as to further avoid the damage of the surface microstructure to the adjacent optical films.
  • the surface of the diffuser plate 31 facing away from the light-emitting substrate 2 is a smooth surface, that is, the surface roughness is less than a certain threshold, so as to avoid the risk of the adjacent optical films being scratched by the diffuser plate.
  • the optical film group 3 further includes: a light conversion film 32 on the side of the diffuser plate 31 away from the light-emitting substrate 2 , and the light conversion film 32 on the side away from the diffuser plate 31 also includes a light conversion film 32 .
  • a diffusion sheet 33 may be provided, and the light conversion film 32 is located between the diffusion plate 31 and the diffusion sheet 33 .
  • the light conversion film 32 can convert the light emitted by the light emitting substrate 2 into white light.
  • the light emitting element of the light emitting substrate 2 emits blue light.
  • the light conversion film 32 may include quantum dots, which is a quantum dot light conversion film.
  • the diffusing plate 31 has a first diffusing surface 311 facing the light-emitting substrate 2, a second diffusing surface 312 facing the light conversion film 32, and at least one side surface 313 connecting the first diffusing surface 311 and the second diffusing surface 312;
  • a third reflective layer 35 is disposed on at least one side surface 313 ; the third reflective layer 35 and the light conversion film 32 have a second gap J in a direction parallel to the side surface 313 and perpendicular to the second diffusion surface 312 .
  • At least one side surface 313 is provided with the third reflective layer 35, so that when the light irradiated by the light-emitting substrate 2 passes through the diffuser plate 31 and exits from the side surface 313, the emitted light is further reflected back into the diffuser plate 31, so that the It is finally emitted from the second diffusing surface 312, which further improves the light emitting efficiency of the light emitting module.
  • the two can be designed to avoid, for example, the third reflective layer 3 is not provided at the position where the diffuser plate and the buffer pad are in contact,
  • the surface of the third reflective layer 3 facing away from the side surface 313 of the diffuser plate and the stepped structure formed by the side surface 313 of the diffuser plate cooperate with the buffer pad 13 to form a limit, which assists the positioning of the diffuser plate 313 .
  • the third reflective layer 35 and the light conversion film 32 have a second gap J.
  • the third reflective layer 35 is limited by the sticking process, and the side of the diffuser 31 cannot be fully affixed, and a small gap needs to be left.
  • One is to prevent the third reflective layer 35 from being pasted beyond the upper and lower sides of the diffuser plate 31 and interacting with the light conversion film 32 , and the other is to prevent the overflow of glue after the diffuser plate 31 and cause poor picture.
  • the light conversion film 32 has an overlapping portion 321 that overlaps with the diffuser plate 31 , that is, the orthographic projection of the overlapping portion 321 of the light conversion film 32 on the diffuser plate 31 and the diffuser plate 31 Coinciding with the conversion film extension 322 extending from the superposition 321 along the side facing the side plate 120 of the backplane 1 , the orthographic projection of the third reflective layer 35 on the light conversion film 32 is only located in the area where the conversion film extension 322 is located.
  • the optical film set 3 provided by the embodiment of the present disclosure further includes: The diffusion sheet 33 on the side of the membrane 32 away from the diffusion plate 31, the diffusion sheet 33 includes a first surface 331 facing the diffusion plate 31, and a second surface 332 away from the diffusion plate 31; the first surface 331 and the second surface of the diffusion sheet 33 At least one of the 332 is provided with a plurality of microstructure units Z3 (specifically, the microstructure units Z3 can be dots), and each microstructure unit Z3 is provided with a light conversion material Z4 at a corresponding position (specifically, the light conversion material can be Specifically, the light conversion material Z4 may only cover the position of the microstructure unit Z3, and the light conversion material Z4 emits white light when irradiated by the light emitted from the light-emitting substrate 2.
  • the microstructure unit Z3 may be a depression relative to the first surface 331 , and the coating thickness of the light conversion material Z4 may be 3-5 ⁇ m.
  • the light conversion material Z4 covering the position of the microstructure unit Z3 can be understood as the light conversion material Z4 only located on the surface of the microstructure unit Z3, and no light is provided between the adjacent microstructure units Z3.
  • the conversion material for example, in a partial area, a plurality of microstructure units Z3 are distributed at intervals, and the light conversion materials Z4 corresponding to the microstructure units Z3 are also distributed at intervals.
  • the light emitted by the light-emitting element T may be blue light
  • the light-conversion material Z4 may be a yellow light-conversion material.
  • the light-conversion material Z4 may be a yellow phosphor. is converted to white light.
  • the diffusion sheet 33 includes an inner area N, and a peripheral area Z located on at least one side of the inner area N.
  • the peripheral area Z may be located on opposite sides of the inner area N, for example , located on the upper and lower sides, or the left and right sides, of the inner area N as shown in FIG. 12B .
  • the microstructure unit Z3 is only located in the peripheral area Z; and the orthographic projection of the second area AA of the light-emitting substrate 2 on the diffusion sheet 33 overlaps with the peripheral area Z.
  • At least one of the first surface 331 and the second surface 332 of the diffusion sheet 33 has a plurality of microstructure units Z3 and corresponding light conversion materials Z4, so as to improve the edge blue light leakage phenomenon in at least one viewing angle direction, Improve look and feel.
  • a peripheral area Z is formed around the inner area of the diffuser 33, and a plurality of microstructure units Z3 and light conversion materials Z4 are provided in the peripheral area, for example, the plurality of microstructure units Z3 are distributed in a ring shape , and the surface of the microstructure unit Z3 is covered with a light conversion material Z4, which can reduce the risk of blue light leakage at any viewing angle.
  • the micro-structure unit Z3 can usually be formed on the surface of the diffuser by rolling or engraving, and in terms of process realization, the control of the density distribution and size change of the micro-structure unit Z3 is also more flexible and simple. In some processes, it is difficult to directly form the light conversion material with a specific density distribution or size change on the untreated diffuser plate plane, while in the embodiment of the present disclosure, the light conversion material is coated on the surface of the formed microstructure unit Z3 by a transfer process. Z4, that is, the light conversion material Z4 only covers the position of the microstructural unit Z3, and the setting position of the light conversion material Z4 and the control of the coverage area at the corresponding position can be realized by adjusting the formation position of the microstructural unit Z3.
  • the light conversion material Z4 can control the density of the light conversion material Z4 through the distribution of the microstructural units Z3, so that the light conversion material Z4 can be used to convert the blue light leaked from the periphery into white light with uniform brightness and chromaticity, so as to achieve the effect of no chromatic aberration around the periphery.
  • the first surface 331 of the diffusion sheet 33 is a rectangle, the extending direction of the long side of the rectangle is taken as the third direction EF, and the direction of the short side of the rectangle is taken as the fourth direction GH; Including the corner zone ZZ, the corner zone ZZ is the part of the peripheral zone Z extending along the third direction EF, and the zone formed by intersecting the part of the peripheral zone Z extending along the fourth direction GH; specifically, the third direction EF may be the second direction.
  • CD is the same, and the fourth direction GH can be the same as the first direction AB;
  • the density distribution of the microstructure unit Z3 in the corner zone ZZ satisfies the following relationship:
  • the density distribution of microstructure units satisfies the following relation:
  • the density distribution of microstructure units satisfies the following relation:
  • F X is the dot distribution density in the width direction corresponding to the grid region i in the width direction
  • F Y is the dot distribution density in the longitudinal direction corresponding to the j grid region in the length direction
  • Z is the dot density value in the rectangular area enclosed by the ith and j.
  • the density variation range of the grid area is 42% to 84%, and the density gradually decreases from the corner area ZZ to the interior.
  • the peripheral area Z may include a first peripheral area Z1 and a second peripheral area Z2 , and the second peripheral area Z2 is located at a distance of the first peripheral area Z1 away from the inner area N.
  • the side, ie the first peripheral zone Z1, is located between the inner zone N and the second peripheral zone Z2.
  • the first peripheral area Z1 may form an annular area surrounding the inner area N
  • the second peripheral area Z2 may form an annular area surrounding the first peripheral area Z1.
  • the average distribution density of the microstructural units Z3 in the first peripheral area Z1 is smaller than the average distribution density of the microstructural units in the second peripheral area Z2.
  • the average distribution density of the microstructural units Z3 can be understood as the microstructural units Z3 The proportion of the total projected area of in the projected area of the area.
  • the average distribution density of the microstructure units Z3 in the first peripheral area Z1 smaller than the average distribution density of the microstructure units Z3 in the second peripheral area Z2
  • the distribution density of the microstructure units in the unit area gradually decreases, as shown in FIG. 14 .
  • the microstructure units Z3 in the peripheral area Z may also be distributed in a disorderly manner in the third direction EF, the microstructure units Z3 in the peripheral area are in an orderly arrangement in the fourth direction GH, and the first The surface 311 is rectangular, the third direction EF is the extending direction of the long side of the rectangle, and the fourth direction GH is the direction that the short side of the rectangle extends.
  • the peripheral area Z and the display area Y have an overlapping area.
  • the outer contour of the first area BB of the light emitting substrate 2 projected on the diffuser sheet 33 is located in the peripheral area Z
  • the outer contour of the second area AA on the orthographic projection of the diffusing sheet 33 is located in the peripheral area Z.
  • the outer contour of the first region BB of the light-emitting substrate 2 is located in the second peripheral region Z2 of the diffusion sheet 33 .
  • the outer contour of the second area AA of the light-emitting substrate 2 is located in the peripheral area Z of the diffuser 33 .
  • the orthographic projection area of the second area AA of the light-emitting substrate 2 along the thickness direction of the light-emitting substrate has an overlapping area with the orthographic projection area of the first peripheral area Z1 of the diffusion sheet 33 along the direction, and the projection overlap area is Area is greater than zero.
  • the orthographic outline of the first area BB and the orthographic outline of the second area AA of the light-emitting substrate 2 are both located in the peripheral area Z of the diffusion sheet 33 , which can ensure the light-emitting area located at the outermost periphery of the light-emitting substrate 2 .
  • the light emitted by the element T can also be modulated by the microstructure unit Z3 and the light conversion material Z4 on the diffuser 33, thereby completely avoiding the problem of blue light leakage from the edge;
  • the first peripheral area Z1 of 33 because the orthographic outline of the second area AA coincides with the outline of the display area Y of the display panel, considering that when light leakage actually occurs, the amount of light leakage at the edge contour position of the second area AA is compared with that near the second area AA.
  • the amount of light leakage from the edge contour of an area BB is relatively small, and the distribution density of the microstructure units Z3 in the first peripheral area Z1 is smaller than the distribution density of the microstructure units Z3 in the second peripheral area Z2.
  • the second peripheral area Z2 further includes a corner area Z5 , and the corner area Z5 is the part of the second peripheral area Z2 extending along the first extending direction AB, and the second peripheral area Z2 is along the first extending direction AB.
  • the average distribution density of the microstructural units Z3 in the corner zone Z5 is greater than the average distribution density of the microstructural units Z3 in other areas of the second peripheral area Z2.
  • the area and shape of the orthographic projection region of the microstructure unit Z3 on the first surface 311 or the second surface 312 may be consistent, or may gradually change.
  • the shape of the microstructure unit Z3 may be oval or circular.
  • the microstructure unit Z3 is located on the second surface 332 , the inner area N of the second surface 332 is roughly the same as the roughness of the first surface 331 , and the roughness of the first surface 331 is smaller than that of the second surface 331 .
  • the roughness of the peripheral zone Z of the surface 332 is not limited to the first surface 331 .
  • the optical film set 3 further includes: a composite brightness enhancement sheet 34 located on the side of the diffusion sheet 33 away from the diffusion plate 31 to improve the brightness of the light emitting module.
  • the outer edges of the light conversion film 32 are provided with lugs 320
  • the side plates 120 of the back plate 1 have grooves corresponding to the lugs 320
  • the lugs 320 are matched with the grooves.
  • the light conversion film 32 is positioned.
  • the outer edges of the diffusing sheet 33 and the composite brightening sheet 34 are also provided with lugs, and the diffusing sheet 33 and the composite brightening sheet 34 are positioned by matching with the corresponding grooves of the back plate 1 .
  • the present disclosure further provides a display device, as shown in FIG. 11 and FIG. 16 , including the light-emitting module provided by the embodiment of the present disclosure, and further comprising: a display panel 8 on the light-emitting side of the light-emitting module.
  • the display panel includes a display area Y and a non-display area located at the periphery of the display area Y.
  • the light-emitting substrate 2 has a second area AA that coincides with the orthographic projection edge of the display area Y; along the thickness direction of the display panel, the diffusion sheet
  • the orthographic projection of the peripheral area Z of 33 overlaps with the orthographic projection of the display area Y, and further, the orthographic projection of the first sub-peripheral area Z1 of the diffusion sheet 33 overlaps with the orthographic projection of the display area Y.
  • the light emitting module further includes: a plastic frame 7 fixed to the end of the side plate 120 , and the display panel 8 is fixed to the plastic frame 7 through the foam 71 .
  • a groove may be provided at the position of the plastic frame 7 facing the side plate 120 , and the side plate 120 may be limited and fixed to the plastic frame 7 through the groove.
  • the display device further includes: a front frame 10 located on the side of the back panel 1 away from the light-emitting substrate 2 , the front frame 10 includes: a bottom frame 101 for accommodating the plastic frame 7 and the back panel 1 , and The side frame 102 extending from the bottom frame 101 toward the side of the display panel 8 , and the front frame 10 is fixed to the bottom plate 1 by nuts 103 .
  • the light emitting module further includes: a rear shell 9 located on the side of the bottom frame 101 away from the backplane 1 , and the rear shell 9 can be fixed to the front frame 10 through a buckle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种发光模组和显示装置,以改善现有技术的发光模组存在灯影,出光不均,发光模组较厚的问题。发光模组,用于为显示面板提供光源,发光模组包括:发光基板(2),发光基板(2)设置有呈阵列排布的多个发光元件(T);光学膜组(3),光学膜组(3)位于发光基板(2)的出光侧,光学膜组(3)至少包括扩散板(31),位于发光基板(2)上的所有发光元件(T)在扩散板(31)的正投影位于扩散板(31)内;发光基板(2)的至少部分区域与扩散板(31)直接物理接触。

Description

一种发光模组和显示装置
相关申请的交叉引用
本申请要求在2021年02月01日提交中国专利局、申请号为202110135974.0、申请名称为“一种发光模组和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种发光模组和显示装置。
背景技术
发光模组是给显示器产品提供光源的组件,根据光源分布位置的不同,分为侧光式和直下式两种。相对于侧光式光源而言,直下式光源在发光均匀性和发光亮度上都更具优势,且相较于侧入式光源,直下式光源更易实现高动态范围图像(High-Dynamic Range,简称HDR)。
发明内容
本公开提供一种发光模组和显示装置,以改善现有技术的发光模组存在灯影,出光不均,发光模组较厚的问题。
本公开实施例提供一种发光模组,所述发光模组用于为显示面板提供光源,所述发光模组包括:
发光基板,所述发光基板设置有呈阵列排布的多个发光元件;
光学膜组,所述光学膜组位于所述发光基板的出光侧,所述光学膜组至少包括扩散板,位于所述发光基板上的所有所述发光元件在所述扩散板的正投影位于所述扩散板内;所述发光基板的至少部分区域与所述扩散板直接物理接触。
在一种可能的实施方式中,所述发光基板包括:灯板基材,以及位于所 述灯板基材面向所述扩散板一侧的第一反射层;
所述第一反射层包括多个间隔设置的镂空,所述镂空与所述发光元件对应设置,至少一个所述发光元件在所述灯板基材的正投影位于对应的所述镂空在所述灯板基材的正投影内。
在一种可能的实施方式中,所述第一反射层远离所述灯板基材的表面与所述扩散板直接物理接触,和/或,所述发光元件的背离所述灯板基材的表面与所述扩散板直接物理接触。
在一种可能的实施方式中,在平行于所述灯板基材的平面,将任意相邻两个所述发光元件的中心距离中最小者作为第一距离;将所述发光元件背离所述灯板基材的表面,与所述扩散板面向所述发光基板的表面之间的距离作为第二距离;
所述第一距离大于所述第二距离。
在一种可能的实施方式中,所述第一反射层包括主体部和延伸部,所述延伸部位于所述主体部的至少一侧。
在一种可能的实施方式中,所述主体部与所述延伸部为一体结构,且所述延伸部与所述主体部之间存在第一角度,所述第一角度不等于零。
在一种可能的实施方式中,所述发光基板包括至少一个支撑件,所述支撑件位于所述灯板基材的所述发光元件所在侧,且所述支撑件与所述扩散板直接物理接触。
在一种可能的实施方式中,所述支撑件与至少一个所述镂空对应设置,所述支撑件在所述灯板基材的正投影与对应的所述镂空在所述灯板基材的正投影至少部分重叠。
在一种可能的实施方式中,所述发光基板还包括:位于所述灯板基材与所述第一反射层之间的第二反射层;
所述第二反射层远离所述灯板基材的表面到所述灯板基材的距离,小于所述发光元件背离所述灯板基材的表面到所述灯板基材的最大距离。
在一种可能的实施方式中,所述发光基板还包括:位于所述灯板基材与 所述第二反射层之间的第一走线层,以及位于所述灯板基材背离所述第一反射层一侧的第二走线层。
在一种可能的实施方式中,所述发光基板包括多个子发光基板,多个所述子发光基板至少沿第一方向和/或第二方向依次排布,多个所述子发光基板拼接形成所述发光基板。
在一种可能的实施方式中,至少两个所述子发光基板对应设置同一所述第一反射层,所述至少两个子发光基板位于对应的所述第一反射层在所述灯板基材的正投影区域内。
在一种可能的实施方式中,相邻所述子发光基板之间在沿排布方向具有第一间隙,所述第一间隙为0.08mm~0.12mm。
在一种可能的实施方式中,每一所述子发光基板具有多个呈阵列排布的发光单元,每一所述发光单元包括多个串联的发光元件,所述多个串联的所述发光元件呈阵列排布。
在一种可能的实施方式中,所述发光模组还包括与多个所述子发光基板一一对应的发光控制芯片;
n个所述发光单元的输入端电连接在所述发光控制芯片的同一正极输出引脚,m个所述发光单元的输出端电连接在所述发光控制芯片的同一负极输出引脚,其中,n小于所述子发光基板中所述发光单元的总数量,m小于所述子发光基板中所述发光单元的总数量。
在一种可能的实施方式中,所述发光基板包括第一区域和第二区域,所述第二区域在所述发光基板的正投影位于所述第一区域内,且所述第二区域在所述发光基板的正投影面积小于所述第一区域在所述发光基板的正投影面积;其中,所述第二区域与所述显示面板的显示区域重合;
所述发光基板还包括第三区域,所述第三区域在所述发光基板的正投影位于所述第一区域内,且所述第三区域在所述发光基板的正投影与所述第二区域在所述发光基板的正投影不交叠,所述第三区域内设置有多个所述发光元件。
在一种可能的实施方式中,在平行于第一延伸方向上,位于所述第三区域的所述发光元件与所述第二区域边缘的最大距离为0.5mm~1.5mm;在平行于第二延伸方向,所述第三区域的所述发光元件与所述第二区域边缘的最大距离为0.5mm~1.5mm,其中,所述第一区域为矩形,所述第一延伸方向为矩形的长边延伸方向,所述第二延伸方向为矩形的短边延伸方向。
在一种可能的实施方式中,所述光学膜组还包括:位于所述扩散板背离所述发光基板一侧的扩散片,所述扩散片包括面向所述扩散板的第一表面,以及背离所述扩散板的第二表面;所述第一表面、所述第二表面中至少一者设置有多个微结构单元,每个所述微结构单元对应位置设置有光转换材料。
在一种可能的实施方式中,所述扩散片包括内部区域,以及位于所述内部区域至少一侧的周边区域,所述发光基板的所述第二区域在所述扩散片的正投影与所述周边区域存在交叠;所述微结构单元仅位于所述周边区域。
在一种可能的实施方式中,所述第一表面为矩形,将所述矩形的长边延伸方向作为所述第三方向,所述矩形的短边方向作为第四方向;所述周边区域还包括拐角区,所述拐角区为所述周边区域沿所述第三方向延伸的部分,和所述周边区域沿所述第四方向延伸的部分交叉形成的区域;
所述拐角区的所述微结构单元密度分布满足如下关系式:
Z=λF X*F y
在所述三方向上相邻两个所述拐角区之间的区域内,所述微结构单元密度分布满足如下关系式:
Figure PCTCN2021125864-appb-000001
在所述第四方向上相邻两个所述拐角区之间的区域内,所述微结构单元密度分布满足如下关系式:
Figure PCTCN2021125864-appb-000002
其中,
Figure PCTCN2021125864-appb-000003
将每一平行于所述第三方向的所述周边区域沿所述第四方向由外至内依次等分为I个划分区域,将每一平行于所述第四方向的所述周边区域沿所述第三方向由外至内依次等分为J个划分区域,i代表所述微结构单元在所述第四方向的第i个区域,i=1,2,……I;j代表所述微结构单元在所述第三方向的区域,j=1,2,……J;λ为经验常数值。
在一种可能的实施方式中,所述发光基板的所述第一区域在所述扩散片的正投影的外轮廓位于所述周边区域内,所述发光基板的所述第二区域在所述扩散片的正投影的外轮廓位于所述周边区域内。
在一种可能的实施方式中,所述周边区域包括第一周边区域和第二周边区域,所述第二周边区域位于所述第一周边区域远离所述内部区域的一侧;所述第一周边区域的所述微结构单元的平均分布密度小于所述第二周边区域的所述微结构单元的平均分布密度。
在一种可能的实施方式中,在由所述第二周边区域指向所述第一周边区域的方向上,所述微结构单元在单位面积内的分布密度逐渐降低。
在一种可能的实施方式中,所述发光基板的所述第一区域在所述扩散片正投影的外轮廓位于所述第二周边区域内,所述发光基板的所述第二区域在所述扩散片正投影的外轮廓位于所述第一周边区域内。
在一种可能的实施方式中,所述第二周边区域还包括边角区,所述边角区为所述第二周边区域沿所述第一延伸方向延伸的部分,和所述第二周边区域沿所述第二延伸方向延伸的部分交叉形成的区域;
所述边角区内所述微结构单元的平均分布密度,大于所述第二周边区域中其它区域内所述微结构单元的平均分布密度。
在一种可能的实施方式中,所述多个微结构单元位于所述第二表面,所述第二表面的所述内部区域与所述第一表面的粗糙度大致相同,所述第一表面的粗糙度小于所述周边区域的粗糙度。
在一种可能的实施方式中,所述发光模组还包括位于所述发光基板背离所述扩散板一侧的背板,所述背板包括:底板,以及由所述底板朝向所述扩散板一侧延伸出的侧板;
所述发光基板面向所述背板的一侧具有第一胶体,所述发光基板通过所述第一胶体与所述背板固定。
在一种可能的实施方式中,所述第一胶体包括胶体基材,位于所述胶体基材面向所述子发光基板一侧的第一胶层,以及位于所述胶体基材面向所述底板一侧的第二胶层。
在一种可能的实施方式中,所述扩散板的面向所述发光基板的一面具有多个微结构,所述微结构为相对所述扩散板面向所述发光基板表面的凹陷。
在一种可能的实施方式中,所述微结构为棱锥结构,所述棱锥结构的底面为与所述扩散板的面向所述发光基板的表面共面的虚拟表面。
在一种可能的实施方式中,所述扩散板背离所述发光基板表面的粗糙度小于所述扩散板面向所述发光基板表面的粗糙度。
在一种可能的实施方式中,所述扩散板的厚度为2.5mm~3.5mm。
在一种可能的实施方式中,所述扩散板包括扩散主体,以及混合于所述扩散主体内的光扩散剂和遮蔽粒子。
在一种可能的实施方式中,所述扩散板包括扩散主体以及位于主体内的多个封闭腔体,所述腔体内为空气。
在一种可能的实施方式中,所述扩散板具有面向所述发光基板的第一扩散表面,以及背离所述发光基板的第二扩散表面,以及连接所述第一扩散表面和所述第二扩散表面的至少一个侧面;至少一个所述侧面设置有第三反射层。
在一种可能的实施方式中,所述光学膜组还包括:位于所述扩散板与所述扩散片之间的光转换膜。
在一种可能的实施方式中,在平行于所述侧面且垂直于所述第二扩散表面的方向,所述第三反射层与所述光转换膜具有第二间隙。
在一种可能的实施方式中,所述发光元件为Min-LED。
本公开实施例提供一种显示装置,包括如本公开实施例提供的所述发光模组,还包括:位于所述发光模组出光侧的显示面板。
在一种可能的实施方式中,所述背板包括:底板,以及由所述底板朝向所述扩散板一侧延伸出的侧板;
所述显示装置还包括:与所述侧板端部固定的胶框;所述显示面板通过泡棉与所述胶框固定。
在一种可能的实施方式中,所述发光模组还包括:位于所述背板背离所述发光基板一侧的前框,所述前框包括:容纳所述胶框和所述背板的底框,以及由所述底框朝向所述显示面板一侧延伸出的侧框,所述前框通过螺母与所述底板固定。
在一种可能的实施方式中,所述发光模组还包括:位于所述底框的背离所述背板一侧的后壳,所述后壳通过卡扣与所述前框固定。
本公开实施例有益效果如下:本公开实施例中,发光模组,包括:发光基板,光学膜组,光学膜组位于发光基板的出光侧,光学膜组至少包括扩散板,位于发光基板上的所有发光元件在扩散板的正投影位于所述扩散板内,进而,发光元件出射的光线均被扩散板调制,一方面保证出光均匀避免灯影,另一方面避免未经调制的光线直接从边缘泄漏导致四周出现明显亮区,进一步的,可以使发光基板的正投影在扩散板的正投影位于扩散板的正投影区域内,且发光基板在该方向的正投影区域的面积小于扩散板在该方向的正投影区域的面积,从而在确保发光基板上所有发光元件出射的光线被扩散板调制的同时缩减发光基板的尺寸,以实现发光模组的窄边框化;而且,发光基板的至少部分区域与扩散板直接物理接触,可以使发光模组整体具有较小的厚度,实现超薄化发光模组。
附图说明
图1为本公开实施例提供的发光模组的剖视结构示意图之一;
图2A为本公开实施例提供的一种子发光基板的排布结构示意图;
图2B为本公开实施例提供的另一种子发光基板的排布结构示意图;
图2C为本公开实施例提供的一种发光基板的俯视结构示意图;
图2D为本公开实施例提供的一种发光元件的结构示意图;
图2E为本公开实施例提供的一种发光元件的分布示意图;
图3为本公开实施例提供的一种发光单元的结构示意图;
图4A为本公开实施例提供的发光基板的剖视结构示意图之一;
图4B为本公开实施例提供的发光基板的剖视结构示意图之二;
图4C为本公开实施例提供的子发光基板与第一反射层的构示意图;
图4D为图4C中虚线处的截面示意图;
图4E为本公开实施例提供的含有支撑件的发光模组的构示意图;
图4F为本公开实施例提供的发光元件T分布的构示意图;
图5为本公开实施例提供的一种具体的发光基板的剖视结构示意图;
图6A为本公开实施例提供的发光模组的剖视结构示意图之二;
图6B为本公开实施例提供的一种扩散板的示意图之一;
图6C为本公开实施例提供的一种扩散板的示意图之二;
图7为本公开实施例提供的第一胶体的剖视结构示意图;
图8为本公开实施例提供的背板与扩散板的结构示意图;
图9为本公开实施例提供的扩散板的表面示意图之一;
图10A为本公开实施例提供的发光模组的剖视结构示意图之三;
图10B为本公开实施例提供的扩散板与量子点膜片的俯视示意图之一;
图11为本公开实施例提供的发光模组的剖视结构示意图之四;
图12A为本公开实施例提供的扩散片的俯视示意图之一;
图12B为本公开实施例提供的扩散片的俯视示意图之二;
图13为本公开实施例提供的扩散片的剖视示意图;
图14为本公开实施例提供的微结构单元的分布示意图;
图15A为本公开实施例提供的发光模组的剖视结构示意图之五;
图15B为本公开实施例提供的扩散板与量子点膜片的俯视示意图之二;
图16为本公开实施例提供的显示装置的剖视结构示意图之四。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
本公开实施提供一种发光模组,用于为显示面板提供光源参见图1所示,包括:
发光基板2;具体的,发光基板2上可以设置有呈阵列排布的多个发光元件T,具体的,发光元件T可以位于发光基板2的至少一侧;
光学膜组3,光学膜组3位于发光基板1的出光侧,光学膜组3至少包括扩散板31,位于发光基板2上的所有发光元件T在扩散板31的正投影位于所述扩散板31内;
发光基板2的至少部分区域与扩散板31直接物理接触。
本公开实施例中,发光模组,包括:发光基板2,光学膜组3,光学膜组3位于发光基板1的出光侧,光学膜组3至少包括扩散板31,位于发光基板2上的所有发光元件T在扩散板31的正投影位于所述扩散板31内,进而,发光元件T出射的光线均被扩散板31调制,一方面保证出光均匀避免灯影,另一方面避免未经调制的光线直接从边缘泄漏导致四周出现明显亮区。需要说明的是,此处的正投影为沿扩散板31厚度方向的正投影,也即发光基板2上所有发光元件T沿扩散板31厚度方向的正投影均位于扩散板31本身沿该方向的正投影区域内。进一步的,可以使发光基板2的正投影在扩散板31的正投影位于扩散板31的正投影区域内,且发光基板2在该方向的正投影区域的面积小于扩散板31在该方向的正投影区域的面积,从而在确保发光基板2上所有发光元件T出射的光线被扩散板31调制的同时缩减发光基板的尺寸,以实现发光模组的窄边框化。而且,发光基板2的至少部分区域与扩散板31直接物理接触,可以使发光模组整体具有较小的厚度,实现超薄化发光模组。
在具体实施时,参见图2A和图2B所示,发光基板2包括多个子发光基板200,具体的,多个子发光基板200至少沿第一方向依次排布,例如,可以沿图2A所示的横向依次排布,其中第一方向为横向;也可以沿竖向依次排布,如图2B所示,其中,第一方向为竖向。以下以多个子发光基板200沿横向排布为例进行示意说明:
具体的,参见图2C所示,相邻子发光基板200之间沿排布方向具有第一间隙Gap,第一间隙为0.08mm~0.12mm。多个子发光基板200拼接形成发光基板2。本公开实施例中,发光基板2包括多个沿同一方向依次排布的子发光基板200,多个子发光基板200拼接形成发光基板2,可以避免发光基板2为一体结构,整体较大,易于损坏,不利于发光模组的组装。具体的,相邻子发光基板200之间具有第一间隙Gap为0.1(±0.02)mm。
在具体实施时,结合图2C所示,每一子发光基板200具有多个呈阵列排布的发光单元210,参见图3所示,每一发光单元210包括:输入端V1,输 出端V2,以及电连接在输入端V1和输出端V2之间且依次串联多个的发光元件T,可以实现对每一发光单元210的独立发光控制。具体的,例如,每一发光单元210包括依次串联的9个发光元件T。需要说明的是,图2C是以每一子发光基板200具有9行3列发光单元210进行的示意性说明,图3是以每一发光单元210具有三行三列发光元件T为例进行的示意说明,在具体实施时,每一子发光基板200还可以是具有其它行和其它列数量的发光单元210,每一发光单元210可以具有其它行列数量的发光元件T,本公开不以此为限。
在具体实施时,本公开实施例提供的发光元件T可以为迷你发光二极管(Mini Light Emitting Diode,Mini-LED)。Mini-LED的尺寸小且亮度高,可以大量应用于显示装置的背光模组中,并对背光进行精细调节,从而实现高动态范围图像(High-Dynamic Range,HDR)的显示。例如,Mini-LED的典型尺寸(例如长度)为50微米~150微米,例如80微米~120微米。
在具体实施时,结合图2C所示,发光模组还包括与子发光基板200一一对应的发光控制芯片220,具体的,每一子发光基板200对应设置一个驱动该子发光基板200的发光控制芯片220;n个发光单元210的输入端V1电连接在发光控制芯片220的同一正极输出引脚,m个发光单元的输出端电连接在发光控制芯片220的同一负极输出引脚,其中,n小于子发光基板200中发光单元210的总数量,m小于子发光基板200中发光单元210的总数量,如此,可以通过发光控制芯片220的一个输出引脚输出的信号,同时控制多个发光单元210的发光,实现发光模组的分区控制和区域调光(Local Dimming)。具体的,例如,发光控制芯片220包括PIN1~96个引脚,其中,PIN1~24为正极引脚,PIN25~96为负极引脚,4个发光单元210共用一个负极引脚,12个发光单元210共用一个正极引脚,具体的,例如,可以是12个发光单元210的输入端V1均电连接于同一正极引脚,4个发光单元210的输出端V2均电连接于同一负极引脚,以实现12个发光单元210共用一个正极引脚,4个发光单元210共用一个负极引脚。
在具体实施时,参见图4A所示,每一子发光基板200包括:灯板基材 201,以及位于灯板基材201面向扩散板31一侧的第一反射层2092;第一反射层2092包括多个间隔设置的镂空T0,镂空T0与发光元件T对应设置,至少一个发光元件T在灯板基材201的正投影位于对应的镂空T0在灯板基材201的正投影内。相应的,第一反射层2092远离灯板基材201的表面与扩散板31直接物理接触,和/或,发光元件T的背离灯板基材201的表面与扩散板31直接物理接触。
在具体实施时,参见图4B所示,每一子发光基板200包括:位于灯板基材201与第一反射层2092之间的第一走线层202,位于第一走线层202与第一反射层2092之间的第二反射层2091,以及位于灯板基材201背离第一反射层2092一侧的第二走线层203;第二反射层2091远离灯板基材201的表面到灯板基材201的距离k1,小于发光元件T背离灯板基材201的表面到灯板基材201的最大距离k2,发光元件T背离灯板基材201的表面为曲面时,发光元件T背离灯板基材201的表面到灯板基材201的最大距离k2,即为发光元件T背离灯板基材201表面的顶点到灯板基材201的最大距离。本公开实施例中,分别在灯板基材201的两面设置有第一走线层202和第二走线层203,可以降低单层布线时的走线复杂度。具体的,第二反射层2091可以在发光元件T所在的位置设置有镂空区域,以使发光元件T可以通过镂空区域与下方的第一走线层201或第二走线层203导通。
在具体实施时,第一反射层2092可以为通过涂覆形成的反射层,也可以为通过贴附或者叠设在灯板基材201上的反射层。在一些示例中,第二反射层2092为通过涂覆工艺形成在灯板基材201的反射层,第一反射层2091为贴附在灯板基材201上的反射膜或者叠设在灯板基材201上的反射片。
需要说明的是,在具体实施时,发光基板2面向扩散板31一侧涂覆的第二反射层2091可以为白油层,以进行将光反射到扩散板31一侧,增加光利用率。但在实际工艺中,白油层表面涂覆厚度不均匀或者颜色调配有误差时,会产生色差,如此,在第二反射层2091的面向扩散板31的一侧设置第一反射层2092(具体可以为白色膜层),该第一反射层2092可以通过贴附或者其 他的方式设置在第二反射层面向扩散板31的一侧,第一反射层2092可以提高光利用率和改善不同子发光基板200之间的色差,以及单子发光基板200内不同位置的色差。具体的,第一反射层2092具体可以为单膜层结构或多个膜层组成的复合结构。第一反射层2092在对应每个发光元件T的位置会有镂空的孔,在设置第一反射层2092后,发光元件T的顶面(背离灯板基材201的表面)可以与第一反射层2092的面向扩散板31的表面齐平或大致齐平,从而第一反射层在避免给发光元件的出光效率带来负面影响的前提下,还可以起到对发光元件的保护作用。在一些示例中,发光元件包括发光芯片和覆盖发光芯片的封装结构,进一步地,封框结构的表面可以为曲面,因此发光元件T的顶面与第一反射层2092的面向扩散板31的表面平齐或大致齐平也可以指的是,发光元件的封装结构的表面与第一反射层2092的面向扩散板31的表面齐平或大致齐平。具体的,因实际工艺误差,可能较难实现发光基板2的各个位置均与扩散板31直接物理接触,因此,发光基板2的至少部分区域与扩散板31直接物理接触,可以是发光基板2的发光元件T与扩散板31直接物理接触,也可以是第一反射层2092与扩散板31直接物理接触,或者,也可以是发光元件T、覆盖膜2092二者均与扩散板31直接物理接触。本公开实施例中,发光基板2的发光元件T与第一反射层2092中的至少一者与扩散板31直接物理接触,可以实现零混光距离的超薄发光模组。
在一些示例中,参见图4C和图4D所示,其中图4D为图4C沿虚线的截面示意图,发光模组包括背板1,背板1可以包括:底板110,以及由底板110朝向扩散板31一侧延伸出的侧板120。第一反射层2092包括主体部Y1和延伸部Y2,延伸部Y2位于主体部Y1的至少一侧。例如,发光基板2上所有的发光元件T沿灯板基材201厚度方向的正投影均位于由主体部Y1在该方向的正投影的外周边缘限定的范围内。具体的,主体部Y1与延伸部Y2为一体结构,且延伸部Y2与主体部Y1之间存在第一角度α,第一角度α不等于零。具体的,第一反射层2092具体可以为反射片状,直接叠设在灯板基材201上,第一反射层2092的延伸部Y2朝扩散板31一侧弯折,进一步的可以将延伸部 Y2搭接在背板1的侧板120上进行固定。具体的,延伸部Y2可以是以平面形式弯折,或者弧面形式弯折,并且延伸部Y2可以与背板1固定连接。本公开实施例中,第一反射层2092还包括延伸部Y2,并且延伸部Y2与主体部Y1之间存在第一角度,从而可以增大反射区域,提升发光模组的整体亮度。
具体的,结合图4C所示,至少两个子发光基板200对应设置同一第一反射层2092,例如,图4C中,左侧的上下两个子发光基板200对应左侧的第一反射层2092,右侧的上下两个子发光基板200对应右侧的第一反射层2092,至少两个子发光基板200位于对应的第一反射层2092在灯板基材201的正投影区域内。需要说明的是,对应同一第一反射层2092可以理解为,该至少两个子发光基板200对应的第一反射层2092是一个一体成型的完整连通结构。本公开实施例中,至少两个子发光基板200对应设置同一第一反射层2092,可以增强发光基板2的出光均匀化,降低相邻子发光基板200间的拼缝对于出光均匀性的影响。
在一些示例中,当至少两个子发光基板200对应设置同一第一反射层2092时,该至少两个子发光基板200上的所有发光元件T沿灯板基材201厚度方向的正投影,均位于由同一第一反射层2092的主体部Y1在该方向的正投影的外周边缘限定的范围内。
在具体实施时,参见图4E所示,发光基板201包括至少一个支撑件K,支撑件K位于灯板基材201的发光元件T所在侧,且支撑件K与扩散板31直接物理接触。具体的,支撑件K可以通过卡合方式或者粘接的方式固定在灯板基材201朝向扩散板31的一侧,例如,在支撑件K上设置弹性卡扣结构,在灯板基材201上设置用于配合该卡扣结构的通孔/凹槽结构,以将支撑件K固定。具体的,支撑件K与至少一个镂空T0对应设置,支撑件K在灯板基材201的正投影与对应的镂空T0在灯板基材201的正投影至少部分重叠。
在具体实施时,参见图4E和图4F所示,在平行于灯板基材201的平面,将任意相邻两个发光元件T的中心距离中最小者作为第一距离D,例如,以图4C中第二行第二列的发光元件T为例进行示意说明,该发光元件T与相邻 左侧的发光元件T之间具有第一横向距离d1,与左斜上方的发光元件T之间具有第二斜向距离d2,与正上方的发光元件T具有第三竖向距离d3,其中,第二斜向距离d2大于第一横向距离d1,也大于第三竖向距离d3,当第一横向距离d1和第三竖向距离d3相等时,可以将d1和d3中的任一者作为第一距离D,当第一横向距离d1和第三竖向距离d3不等时,可以将其中较小的一者作为第一距离D;将发光元件T背离灯板基材201的表面,与扩散板31面向发光基板2的表面之间的距离作为第二距离D2;第一距离D1大于第二距离D2。本公开实施例中,第一距离D1大于第二距离D2,由不同参数的发光基板构成的发光模组均可实现减少混光距离的目的,从而实现显示装置的薄型化。需要说明的是,图4C是以发光基板201具有三行三列发光元件T进行的示意说明,在具体实施时,发光基板201还可以是具有其它行列数量的发光元件T,本公开不以此为限。
具体的,结合图5所示,第二反射层2091与第一走线层202之间还依次设置有:第一胶层、位于第一胶层背离灯板基材一侧的电源层、位于电源层背离第一胶层一侧的第一阻焊层;第二走线层的背离灯板基材的一侧还依次设置有:第二胶层、位于第二胶层背离第二走线层一侧的地层、位于地层背离第二胶层一侧的第二阻焊层。
在具体实施时,结合图2C所示,发光基板2包括第一区域BB(发光元件T的分布区域,即,最外围发光元件T构成的外轮廓,所有发光元件T在沿发光基板2厚度方向的正投影均位于该分布区域中)和第二区域AA(与显示面板的显示区域重合的区域),第二区域AA在发光基板2的正投影位于第一区域BB内,且第二区域AA在发光基板2的正投影小于第一区域BB在发光基板2的正投影面积,其中,第二区域AA与显示面板的显示区域Y完全重合(即,第二区域AA沿发光基板2厚度方向的正投影的边缘,与显示面板的显示区Y沿该方向的正投影的边缘完全重合);发光基板2还包括第三区域CC,第三区域CC在发光基板2的正投影位于第一区域BB内,且第三区 域CC在发光基板2的正投影与第二区域AA在发光基板2的正投影不交叠,第三区域CC内设置有多个发光元件。
在具体实施时,在平行于第一延伸方向AB上,第三区域CC的发光元件T与第二区域AA边缘的最大距离h1为0.5mm~1.5mm,具体的,可以为0.8mm;在平行于第二延伸方向CD,第三区域CC的发光元件T与第二区域AA边缘的最大距离h2为0.5mm~1.5mm,具体的,可以为0.8mm,其中,第一区域BB为矩形,第一延伸方向AB为矩形的长边延伸方向,第二延伸方向CD为矩形的短边延伸方向。即,发光基板2在第二区域AA以外的区域也设置有发光元件T,但是当发光基板2上最外围的发光元件T到第二区域AA的距离值太大时会造成发光元件T浪费,光源无法完全利用,距离值太小会导致显示区的周边部分光线不足,周边边缘发暗,影响画面品味,本公开实施例中,在平行于第一延伸方向AB,第三区域CC的发光元件T与第二区域AA边缘的最大距离h1为0.5mm~1.5mm;在平行于第二延伸方向CD,第三区域CC的发光元件T与第二区域边缘的最大距离h2为0.5mm~1.5mm,在避免发光元件T浪费的情形下,同时可以避免距离值太小会导致周边光线不足,周边边缘发暗,影响画面品味的问题。
在具体实施时,第一区域BB外轮廓与第二区域AA外轮廓在第一延伸方向AB上的间距h1,小于第一区域BB外轮廓与第二区域AA外轮廓在第二延伸方向CD上的间距h2。本公开实施例中,由于单个发光元件T(可以为未封装时的发光芯片,包括正极Ta和负极Tb)为如图2D所示的矩形状,该发光元件T在长向的上下两个方向的光量分布大于其宽向的左右两方向的光量分布,而发光元件T在发光基板2中的排布如图2E所示,发光元件T的长边平行于发光基板2的短边,发光元件T的短边平行于发光基板2的长边,发光基板2的长边所在方向的发光亮度要大于发光基板2的短边所在方向的发光亮度,而h1小于h2,可以对画质不均匀进行补偿调整,改善因上述的发光元件的发射角度不一样产生的周边画面不均匀的问题。具体的,例如,h2可以为1.100mm~1.200,具体的,例如,h2可以为1.147mm,h1具体可 以为0.700mm~0.800mm,具体的,例如,h1可以为0.793mm。需要说明的是,在具体实施时,由于实际的工艺限制,使第一区域BB为完全规整的矩形较难,第一区域BB为矩形可以理解为大致为矩形。具体的,第一区域BB可以大致为长方形,或者,也可以大致为正方形。
在具体实施时,参见图6A和图7所示,发光模组还包括位于发光基板2背离扩散板31一侧的背板1,背板1可以包括:底板110,以及由底板110朝向扩散板31一侧延伸出的侧板120;每一子发光基板200的面向背板1的一侧具有第一胶体12,子发光基板200通过第一胶体12与背板1固定。具体的,第一胶体12包括胶体基材121,位于胶体基材121面向子发光基板200一侧的第一胶层122,以及位于胶体基材121面向背板1一侧的第二胶层123。相比于无胶体基材的胶体结构,本公开实施例中,第一胶体12包括胶体基材121,可以避免第一胶体12在高温高湿时,第一胶层122以及第二胶层123内部分子断裂进而引起胶蠕动导致子发光基板210拼缝变化影响后续形成的显示装置的显示画面品味。具体的,第一胶层122与第二胶层124胶性相同(材质以及胶性的配比都一样),可以增加排气性,即,贴到子发光基板200上没有气泡产生,同时降低初粘,增加重工性,初粘低便于在贴合未到位情况下,可以在不更换第一胶体12可轻易取下,重新贴附以提高组装效率,同时保证增加滚轮按压后不发生移位。具体的,第一胶体12可以为易拉胶。
在具体实施时,参见图8所示,发光模组还包括缓冲垫13,扩散板31通过至少一个缓冲垫13与背板1接触。具体的,扩散板31若直接和背板1接触,震动时撞击易导致扩散板31碎裂(Crack),通过缓冲垫13可以对震动和膨胀进行缓冲。例如,缓冲垫13包括如图8所示的角垫,扩散板31在其四角位置均通过缓冲垫13与背板1接触,而在限定扩散板31在发光模组内的活动量时,利用缓冲垫13来限制扩散板31沿平行于其朝向发光基板2的表面的方向的活动量,而沿扩散板31的厚度方向,因扩散板31夹设于发光基板2与光学模组3的其他光学膜片之间,其中发光基板2与背板1固定,光学膜组3的其他光学膜片通过胶框被限位,所以扩散板31沿其厚度方向的活 动量也被限制,从而可保证扩散板31和发光基板2直接0间隙直接接触。具体的,缓冲垫13可以为硬度为40HA(邵氏硬度)的注塑垫块。
在具体实施时,结合图6A所示,扩散板31可以包括扩散主体,以及混合于扩散主体内的光扩散剂和遮蔽粒子,具体的,遮蔽粒子可以为钛白粉,通过调整形成该扩散板31配比中的钛白粉含量,可以控制扩散板31的遮蔽性,使扩散板31具有扩散作用的同时,避免扩散板31为全透明结构。扩散主体的材料具体可以为聚苯乙烯或聚碳酸酯,遇到与其折射率相异介质时,会发生多角度、多方向的折射、反射与散射的现象,从而改变光的行进路线,实现入射光充分散色,实现更柔和、均匀的照射效果,为显示照明组件提供均匀面光源。具体的,光扩散剂可以为有机硅扩散粒子,也可以为无机扩散粒子,其中,有机硅扩散粒子是一种以硅氧键连接,三维立体结构的聚合物微球,这种光扩散粒子本身为一种白色粉末状,加入到扩散板31中,因为有机亲油基团苯甲基会以一种细微的透明玻璃球体均匀分散在基体中,且含有二氧化硅微粒可以适当增加扩散板的耐热性。聚苯乙烯或聚碳酸酯材质的扩散板主体,挤出成型的温度分别为180℃~230℃,有机硅扩散粒子耐热性大于400℃不会因为加工而造成分子损坏,当光通过扩散板与扩散粒子的折射率差异,光源穿透式的进行折射,改变光的进行路线,达到匀光而又透明的目的,同时满足雾度值和透光率需求。
具体的,扩散板31的厚度h3可以为2.5mm~3.5mm,以在尽量减少发光模组整体厚度的同时,避免发光基板发出的光线在扩散板产生光斑或灯影,进而影响后续形成的显示装置的显示效果。在具体实施时,若相邻发光元件T之间的间距太大,即便多次折射,折射至相邻灯中间区域的光量会明显小于灯正对区域的光量,造成明暗差;扩散板的扩散性和/或遮蔽性不足,扩散能力较差时光线难以被折射至中间区域,而遮蔽性较差时这种明暗差异会直接被凸显出来,其中增加扩散板31厚度一方面增加了光线被折射的次数,同时也增加了扩散板31的遮蔽能力。
在具体实施时,参见图6B所示,扩散板主体中可以包括多个封闭腔体Q, 腔体Q内可以为空气(空气泡),光线进入扩散板31后遇到腔体Q时会发生多角度多方向的散射、折射、反射,其扩散性和遮蔽性均可以增加,从而在确保扩散板31的扩散效果和遮蔽效果的前提下,进一步缩减扩散板31厚度,实现发光模组的薄型化。具体的,在一种可能的实施方式中,扩散粒子折射率为1.43,扩散板主体中填充空气(折射率为1.0),光线经过扩散板主体折射率1.59进入反射式扩散板,折射角度比扩散粒子折射角度大,更好的使光线在内部得到利用。
具体的,参见图6C所示,扩散板31可以多层复合结构,其中,中间层中可以包括多个封闭腔体Q,避免多个封闭腔体Q在扩散板31的上下表面形成表面凸起,引起相邻膜层的损伤。
在具体实施时,扩散板31的面向发光基板2的一面具有多个微结构,可以使光线多方向折射,增加光效利用率。其中,微结构可以是相对扩散板31面向发光基板2的表面为凹陷的微结构,以避免该微结构划伤与其直接相邻的发光基板2或者光学膜材;进一步地,所述多个微结构可以为重裁纹结构,也即该多个微结构包括多个尺寸不同的微结构,且呈杂乱无章式分布。
图9示出了所述多个微结构的另一种实现方式,具体的,如图9所示,扩散板31的面向发光基板2的一面具有3*3个微结构,当然,图9仅是以扩散板31的面向发光基板2的一面具有3*3个微结构进行的示意说明,在具体实施时,扩散板31的面向发光基板2的一面还可以具有其它数量的微结构。微结构具体可以与发光元件T进行一一对应设置,也可以不是与发光元件T进行一一对应进行设置。具体的,微结构可以为棱锥结构,棱锥结构的底面为与扩散板31的面向发光基板2的表面共面的虚拟表面,以该表面为基准向内凹陷形成棱锥状的微结构。具体的,棱锥结构可以为三棱锥、四棱锥、五棱锥或六棱锥。本公开实施例中,扩散板31的面向发光基板2的一面具有多个微结构,且微结构呈多面体状,可以有效提升光利用率,充分利用微结构的多个表面对光线进行多角度折射,在不改变扩散板遮蔽性前提下可使扩散板辉度提高8%~10%。
在具体实施时,扩散板31背离发光基板2的表面粗糙度小于扩散板31面向发光基板2的表面粗糙度。一方面,扩散板31的面向发光基板2的一面具有微结构,可以增加光效利用率、提升扩散板的匀光效果,而另一方面使扩散板31背离发光基板2的表面粗糙度小于扩散板31面向发光基板2的表面粗糙度,从而进一步避免表面微结构对相邻光学膜的损伤。具体的,扩散板31的背离发光基板2的表面为平滑表面,即该表面粗糙度小于一定阈值,以避免相邻的光学膜材被扩散板划伤的风险。
在具体实施时,参见图10A、图11所示,光学膜组3还包括:位于扩散板31的背离发光基板2一侧的光转换膜32,光转换膜32背离扩散板31的一侧还可以设置有扩散片33,光转换膜32位于扩散板31与扩散片33之间。光转换膜32可以将发光基板2发出的光转换为白光,例如,发光基板2的发光元件出射光为蓝光,采用光转换膜32可以将发光基板2发出的蓝光转换为白光。具体的,例如,光转换膜32可以包括量子点,为量子点光转换膜。
具体的,扩散板31具有面向发光基板2的第一扩散表面311,以及面向光转换膜32的第二扩散表面312,以及连接第一扩散表面311和第二扩散表面312的至少一个侧面313;至少一个侧面313上设置有第三反射层35;在平行于侧面313且垂直于第二扩散表面312的方向,第三反射层35与光转换膜32具有第二间隙J。本公开实施例中,至少一个侧面313设置有第三反射层35,可以使发光基板2照射的光线经过扩散板31由侧面313出射时,将该出射的光线进一步反射回扩散板31内,使其最终从第二扩散表面312射出,进一步提高发光模组的出光效率。其中,在扩散板31的至少一个侧面313同时设置第三反射层3和缓冲垫13时,可以将二者进行避让设计,例如在扩散板与缓冲垫接触的位置不设置第三反射层3,使得第三反射层3背离扩散板侧面313的表面与扩散板侧面313形成的台阶结构与缓冲垫13之间配合形成限位,辅助实现扩散板313定位。而且,第三反射层35与光转换膜32具有第二间隙J,可以,第三反射层35受贴付工艺限制,不能把扩散板31侧边上下全部贴满,需要留一点间隙。一是防止第三反射层35贴付超出扩散板31上 下面和光转换膜32互相影响,二是超出扩散板31后会溢胶导致画面不良。
在具体实施时,结合图10A和图10B所示,光转换膜32具有与扩散板31重合的重合部321,即,光转换膜32的重合部321在扩散板31的正投影与扩散板31重合,以及由重合部321沿朝向背板1的侧板120一侧延伸出的转换膜延伸部322,第三反射层35在光转换膜32的正投影仅位于转换膜延伸部322所在区域。
需要指出的是,在实现全面屏的过程中,灯影(Hotspot)和四周发亮等都是很难解决的问题,而且,现在模组的边框要求越来越窄,且其厚度要求越来越薄,在窄边框甚至无边框的技术发展趋势下,显示屏四周存在边缘发亮的问题,具体的,当发光元件本身发蓝光时,表现为四周边缘发蓝光,也即显示屏的显示区边缘与其他位置形成明显的色差不良,对Mini LED实现高动态范围图像的显示应用带来障碍。基于此,在具体实施时,参见图11、图12B和图13所示,其中,图13为图12B沿OO’的截面示意图,本公开实施例提供的光学膜组3还包括:位于光转换膜32的背离扩散板31一侧的扩散片33,扩散片33包括面向扩散板31的第一表面331,以及背离扩散板31的第二表面332;扩散片33第一表面331、第二表面332中的至少一者设置有多个微结构单元Z3(具体的,微结构单元Z3可以为网点),每个微结构单元Z3对应位置设置有光转换材料Z4(具体的,光转换材料可以为荧光粉),具体的,光转换材料Z4可以仅覆盖微结构单元Z3所在位置,光转换材料Z4经发光基板2出射的光照射时出射白光。具体的,微结构单元Z3可以为相对第一表面331的凹陷,光转换材料Z4的涂覆厚度可以为3~5μm。结合图13所示,仅覆盖微结构单元Z3所在位置的光转换材料Z4,可以理解为光转换材料Z4只位于微结构单元Z3的表面,而在相邻微结构单元Z3之间不设置有光转换材料,具体的,例如,在部分区域,多个微结构单元Z3彼此间隔分布,与微结构单元Z3对应的光转换材料Z4也为间隔分布。具体的,发光元件T发光的光可以为蓝光,光转换材料Z4可以为黄色光转换材料,例如,光转换材料Z4可以为黄色荧光粉,当发光元件T发出的蓝光射至光转换材料后可被转换 为白光。
在具体实施时,结合图12B所示,扩散片33包括内部区域N,以及位于内部区域N至少一侧的周边区域Z,具体的,周边区域Z可以位于内部区域N的相对的两侧,例如,位于如图12B中内部区域N的上下两侧,或者左右两侧。进一步地,微结构单元Z3仅位于周边区域Z;且发光基板2的第二区域AA在扩散片33的正投影与周边区域Z存在交叠。本公开实施例中,扩散片33第一表面331、第二表面332中的至少一者具有多个微结构单元Z3以及相应的光转换材料Z4,从而在至少一个视角方向改善边缘漏蓝光现象,改善观感。具体的,在扩散片33的内部区域的四周均形成有周边区域Z时,且周边区域均设置有多个微结构单元Z3以及光转换材料Z4时,例如多个微结构单元Z3呈环状分布,且微结构单元Z3表面覆盖有光转换材料Z4,可以降低任意视角发生漏蓝光的风险。需要说明的是,通常可通过滚压或者雕刻等工艺在扩散片的表面形成微结构单元Z3,而在工艺实现上,微结构单元Z3的密度分布及大小变化的控制也较为灵活简单,但现有的工艺难以直接在未经处理的扩散板平面上形成特定密度分布或大小变化的光转换材料,而本公开实施例通过转印工艺在已形成的微结构单元Z3的表面涂覆光转换材料Z4,也即光转换材料Z4仅覆盖微结构单元Z3所在位置,即可通过调节微结构单元Z3的形成位置实现对光转换材料Z4的设置位置以及在相应位置处的覆盖面积的控制,如果不是仅在微结构单元Z3设置光转换材料Z4,也即在扩散片表面的整个周边区全部涂覆,则无法控制光转换材料Z4密度,本公开实施例中,仅在微结构单元Z3所在位置覆盖光转换材料Z4,可以通过微结构单元Z3分布来控制光转换材料Z4密度,从而可利用光转换材料Z4将周边漏出的蓝光转换为亮度及色度均一的白光,实现周边无色差效果。
在具体实施时,参见图12A所示,扩散片33的第一表面331为矩形,将矩形的长边延伸方向作为第三方向EF,矩形的短边方向作为第四方向GH;周边区域Z还包括拐角区ZZ,拐角区ZZ为周边区域Z沿第三方向EF延伸的部分,和周边区域Z沿第四方向GH延伸的部分交叉形成的区域;具体的, 第三方向EF可以与第二方向CD相同,第四方向GH可以与第一方向AB相同;
拐角区ZZ的微结构单元Z3密度分布满足如下关系式:
Z=F X*F y
在三方向上相邻两个拐角区之间的区域内,微结构单元密度分布满足如下关系式:
Figure PCTCN2021125864-appb-000004
在第四方向上相邻两个拐角区之间的区域内,微结构单元密度分布满足如下关系式:
Figure PCTCN2021125864-appb-000005
其中,
Figure PCTCN2021125864-appb-000006
将每一平行于第三方向EF的周边区域Z沿第四方向由外至内依次等分为I个划分区域,将每一平行于第四方向GH的周边区域Z沿第三方向EF由外至内依次等分为J个划分区域,i代表微结构单元Z3在第四方向GH的第i个区域,i=1,2,……I;j代表微结构单元Z3在第三方向EF的区域,j=1,2,……J;λ为经验常数值。
具体的,F X为宽度方向对应i所在网格区域在宽度方向的网点分布密度,F Y为长度方向对应j网格区域在长度方向的网点分布密度。Z为第i和j所围成的矩形区域内的网点密度值。如图12B所示,将两方向划分区域,例如可以取i=100,j=120(i、j越大,网格划分越精细,但是运算难度越大,可根据实际需求定义i、j数值)。因拐角区ZZ位置光线少,四个拐角区ZZ位置函数为Z=λF X*F y(例如,如图12B拐角区ZZ所示,结合需要布置网点区域,横向和竖向网格数量此处取5,即i为1~5,j为1~5),λ为经验常数值,可根据拐角区ZZ实际位置和光线分布,此处选择λ=6,代入可算得长度和宽 度方向不同网格区域密度变化区间为42%~84%,由拐角区ZZ到内部密度逐渐变小。
具体的,结合图11、图12B、图13所示,周边区域Z可以包括第一周边区域Z1,以及第二周边区域Z2,第二周边区域Z2位于第一周边区域Z1远离内部区域N的一侧,也即第一周边区域Z1位于内部区域N和第二周边区域Z2之间。具体的,第一周边区域Z1可以形成一个包围内部区域N的环状区域,第二周边区域Z2形成一个包围第一周边区域Z1的环状区域。具体的,第一周边区域Z1的微结构单元Z3的平均分布密度小于第二周边区域Z2的微结构单元平均分布密度,具体的,微结构单元Z3的平均分布密度可以理解为是微结构单元Z3的总投影面积占该区投影面积的比例。本公开实施例中,考虑到实际产品中边缘区域的光线分布特点,通过将第一周边区域Z1的微结构单元Z3的平均分布密度小于第二周边区域Z2的微结构单元Z3平均分布密度,可以使周边出光一致,避免出现周边局部区域出现过亮或者过暗的情况,并且在微结构单元Z3均涂覆有光转换材料的前提下,可以避免周边出现局部色差的情况。
具体的,在由第二周边区域Z2指向第一周边区域Z1的方向上,微结构单元在单位面积内的分布密度逐渐降低,如图14所示。
在具体实施时,周边区域Z的微结构单元Z3分布方式也可以是:在第三方向EF呈无序排布,周边区域的微结构单元Z3在第四方向GH呈有序排布,第一表面311为矩形,第三方向EF为矩形的长边延伸方向,第四方向GH为矩形的短边延伸方向。
在具体实施时,结合图11所示,周边区域Z与显示区域Y具有重叠区域。具体的,发光基板2的第一区域BB在扩散片33正投影的外轮廓位于周边区域Z内,第二区域AA在扩散片33正投影的外轮廓位于周边区域Z内。具体的,结合图11所示,发光基板2的第一区域BB的外轮廓位于扩散片33的第二周边区域Z2内。具体的,发光基板2的第二区域AA的外轮廓位于扩散片 33的周边区域Z内,具体的,发光基板2的第二区域AA的外轮廓位于扩散片33的第一周边区域Z1内。进一步的,发光基板2的第二区域AA沿发光基板厚度方向的正投影区域,与扩散片33的第一周边区域Z1沿该方向的正投影区域存在交叠区,且该投影交叠区的面积大于零。本公开实施例中,发光基板2的第一区域BB的正投影外轮廓和第二区域AA的正投影外轮廓均位于扩散片33的周边区Z内,可以确保位于发光基板2最外围的发光元件T发出的光线也可被扩散片33上的微结构单元Z3和光转换材料Z4调制,从而彻底避免边缘漏蓝光的问题;而且,发光基板2的第二区域AA的正投影外轮廓位于扩散片33的第一周边区域Z1内,因为第二区域AA的正投影外轮廓与显示面板显示区Y轮廓重合,考虑到实际发生漏光时,第二区域AA边缘轮廓位置的漏光量相较于靠近第一区域BB边缘轮廓的漏光量相对较少,再加上第一周边区域Z1的微结构单元Z3的分布密度小于第二周边区域Z2的微结构单元Z3的分布密度,当第二区域AA的正投影外轮廓位于第一周边区域Z1内时,可避免最终发光模组的与显示区Y的边缘对应的区域因微结构单元Z3和光转换材料Z4的分布密度过大,导致发光模组在该区域与中央区域的形成出光色差,例如,当发光元件T的出射光为蓝光,而色转换材料为黄色荧光粉时,若第二区域AA的正投影外轮廓位于荧光粉分布密度较大的第二周边区域Z2内时,会导致此区域出射光线偏黄,与出射白光的中央区域形成明显色差。
在具体实施时,结合图12B所示,第二周边区域Z2还包括边角区Z5,边角区Z5为第二周边区域Z2沿第一延伸方向AB延伸的部分,和第二周边区域Z2沿第二延伸方向CD延伸的部分交叉形成的区域。具体的,边角区Z5的微结构单元Z3平均分布密度大于第二周边区域Z2其它区域内的微结构单元Z3平均分布密度。
具体的,微结构单元Z3在第一表面311或第二表面312上的正投影区域的面积以及形状可以一致,也可以逐渐变化。具体的,微结构单元Z3的形状为具体可以椭圆形或圆形。
在具体实施时,结合图13所示,微结构单元Z3位于第二表面332,第二表面332的内部区域N与第一表面331的粗糙度大致相同,第一表面331的粗糙度小于第二表面332的周边区域Z的粗糙度。
在具体实施时,参见图15A所示,光学膜组3还包括:位于扩散片33的背离扩散板31一侧的复合增亮片34,以提升发光模组的亮度。
在具体实施时,结合图15B所示,光转换膜32的外边缘均设置有凸耳320,背板1的侧板120具有与凸耳320对应的凹槽,凸耳320与凹槽配合,对光转换膜32进行定位。类似的,扩散片33、复合增亮片34的外边缘也均设置有凸耳,通过与背板1对应的凹槽配合,对扩散片33、复合增亮片34进行定位。
本公开实施顺利还提供一种显示装置,结合图11和图16所示,包括如本公开实施例提供的发光模组,还包括:位于发光模组出光侧的显示面板8。显示面板包括显示区域Y和位于显示区域Y外围的非显示区,沿显示面板厚度方向,发光基板2具有与显示区域Y的正投影边缘重合的第二区域AA;沿显示面板厚度方向,扩散片33的周边区域Z的正投影与显示区域Y的正投影存在重合,进一步地,扩散片33的第一子周边区域Z1的正投影与显示区域Y的正投影存在重合。
在具体实施时,结合图16所示,发光模组还包括:与侧板120端部固定的胶框7,显示面板8通过泡棉71与胶框7固定。具体的,胶框7面向侧板120的位置可以设置有凹槽,侧板120具体可以通过凹槽与胶框7进行限位固定。
在具体实施时,结合图16所示,显示装置还包括:位于背板1背离发光基板2一侧的前框10,前框10包括:容纳胶框7和背板1的底框101,以及由底框101朝向显示面板8一侧延伸出的侧框102,前框10通过螺母103与底板1固定。
在具体实施时,结合图16所示,发光模组还包括:位于底框101的背离背板1一侧的后壳9,后壳9可以通过卡扣与前框10固定。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (42)

  1. 一种发光模组,其中,所述发光模组用于为显示面板提供光源,所述发光模组包括:
    发光基板,所述发光基板设置有呈阵列排布的多个发光元件;
    光学膜组,所述光学膜组位于所述发光基板的出光侧,所述光学膜组至少包括扩散板,位于所述发光基板上的所有所述发光元件在所述扩散板的正投影位于所述扩散板内;所述发光基板的至少部分区域与所述扩散板直接物理接触。
  2. 如权利要求1所述的发光模组,其中,所述发光基板包括:灯板基材,以及位于所述灯板基材面向所述扩散板一侧的第一反射层;
    所述第一反射层包括多个间隔设置的镂空,所述镂空与所述发光元件对应设置,至少一个所述发光元件在所述灯板基材的正投影位于对应的所述镂空在所述灯板基材的正投影内。
  3. 如权利要求2所述的发光模组,其中,所述第一反射层远离所述灯板基材的表面与所述扩散板直接物理接触,和/或,所述发光元件的背离所述灯板基材的表面与所述扩散板直接物理接触。
  4. 如权利要求2所述的发光模组,其中,在平行于所述灯板基材的平面,将任意相邻两个所述发光元件的中心距离中最小者作为第一距离;将所述发光元件背离所述灯板基材的表面,与所述扩散板面向所述发光基板的表面之间的距离作为第二距离;
    所述第一距离大于所述第二距离。
  5. 如权利要求2所述的发光模组,其中,所述第一反射层包括主体部和延伸部,所述延伸部位于所述主体部的至少一侧。
  6. 如权利要求5所述的发光模组,其中,所述主体部与所述延伸部为一体结构,且所述延伸部与所述主体部之间存在第一角度,所述第一角度不等于零。
  7. 如权利要求2所述的发光模组,其中,所述发光基板包括至少一个支撑件,所述支撑件位于所述灯板基材的所述发光元件所在侧,且所述支撑件与所述扩散板直接物理接触。
  8. 如权利要求7所述的发光模组,其中,所述支撑件与至少一个所述镂空对应设置,所述支撑件在所述灯板基材的正投影与对应的所述镂空在所述灯板基材的正投影至少部分重叠。
  9. 如权利要求2所述的发光模组,其中,所述发光基板还包括:位于所述灯板基材与所述第一反射层之间的第二反射层;
    所述第二反射层远离所述灯板基材的表面到所述灯板基材的距离,小于所述发光元件背离所述灯板基材的表面到所述灯板基材的最大距离。
  10. 如权利要求9所述的发光模组,其中,所述发光基板还包括:位于所述灯板基材与所述第二反射层之间的第一走线层,以及位于所述灯板基材背离所述第一反射层一侧的第二走线层。
  11. 如权利要求2所述的发光模组,其中,所述发光基板包括多个子发光基板,多个所述子发光基板至少沿第一方向和/或第二方向依次排布,多个所述子发光基板拼接形成所述发光基板。
  12. 如权利要求11所述的发光模组,其中,至少两个所述子发光基板对应设置同一所述第一反射层,所述至少两个子发光基板位于对应的所述第一反射层在所述灯板基材的正投影区域内。
  13. 如权利要求11所述的发光模组,其中,相邻所述子发光基板之间在沿排布方向具有第一间隙,所述第一间隙为0.08mm~0.12mm。
  14. 如权利要求11所述的发光模组,其中,每一所述子发光基板具有多个呈阵列排布的发光单元,每一所述发光单元包括多个串联的发光元件,所述多个串联的所述发光元件呈阵列排布。
  15. 如权利要求14所述的发光模组,其中,所述发光模组还包括与多个所述子发光基板一一对应的发光控制芯片;
    n个所述发光单元的输入端电连接在所述发光控制芯片的同一正极输出 引脚,m个所述发光单元的输出端电连接在所述发光控制芯片的同一负极输出引脚,其中,n小于所述子发光基板中所述发光单元的总数量,m小于所述子发光基板中所述发光单元的总数量。
  16. 如权利要求1所述的发光模组,其中,所述发光基板包括第一区域和第二区域,所述第二区域在所述发光基板的正投影位于所述第一区域内,且所述第二区域在所述发光基板的正投影面积小于所述第一区域在所述发光基板的正投影面积;其中,所述第二区域与所述显示面板的显示区域重合;
    所述发光基板还包括第三区域,所述第三区域在所述发光基板的正投影位于所述第一区域内,且所述第三区域在所述发光基板的正投影与所述第二区域在所述发光基板的正投影不交叠,所述第三区域内设置有多个所述发光元件。
  17. 如权利要求16所述的发光模组,其中,在平行于第一延伸方向上,位于所述第三区域的所述发光元件与所述第二区域边缘的最大距离为0.5mm~1.5mm;在平行于第二延伸方向,所述第三区域的所述发光元件与所述第二区域边缘的最大距离为0.5mm~1.5mm,其中,所述第一区域为矩形,所述第一延伸方向为矩形的长边延伸方向,所述第二延伸方向为矩形的短边延伸方向。
  18. 如权利要求16所述的发光模组,其中,所述光学膜组还包括:位于所述扩散板背离所述发光基板一侧的扩散片,所述扩散片包括面向所述扩散板的第一表面,以及背离所述扩散板的第二表面;所述第一表面、所述第二表面中至少一者设置有多个微结构单元,每个所述微结构单元对应位置设置有光转换材料。
  19. 如权利要求18所述的发光模组,其中,所述扩散片包括内部区域,以及位于所述内部区域至少一侧的周边区域,所述发光基板的所述第二区域在所述扩散片的正投影与所述周边区域存在交叠;所述微结构单元仅位于所述周边区域。
  20. 如权利要求19所述的发光模组,其中,所述第一表面为矩形,将所 述矩形的长边延伸方向作为所述第三方向,所述矩形的短边方向作为第四方向;所述周边区域还包括拐角区,所述拐角区为所述周边区域沿所述第三方向延伸的部分,和所述周边区域沿所述第四方向延伸的部分交叉形成的区域;
    所述拐角区的所述微结构单元密度分布满足如下关系式:
    Z=λF X*F y
    在所述三方向上相邻两个所述拐角区之间的区域内,所述微结构单元密度分布满足如下关系式:
    Figure PCTCN2021125864-appb-100001
    在所述第四方向上相邻两个所述拐角区之间的区域内,所述微结构单元密度分布满足如下关系式:
    Figure PCTCN2021125864-appb-100002
    其中,
    Figure PCTCN2021125864-appb-100003
    0<Z<1,将每一平行于所述第三方向的所述周边区域沿所述第四方向由外至内依次等分为I个划分区域,将每一平行于所述第四方向的所述周边区域沿所述第三方向由外至内依次等分为J个划分区域,i代表所述微结构单元在所述第四方向的第i个区域,i=1,2,……I;j代表所述微结构单元在所述第三方向的区域,j=1,2,……J;λ为经验常数值。
  21. 如权利要求19所述的发光模组,其中,所述发光基板的所述第一区域在所述扩散片的正投影的外轮廓位于所述周边区域内,所述发光基板的所述第二区域在所述扩散片的正投影的外轮廓位于所述周边区域内。
  22. 如权利里要求21所述的发光模组,其中,所述周边区域包括第一周边区域和第二周边区域,所述第二周边区域位于所述第一周边区域远离所述内部区域的一侧;所述第一周边区域的所述微结构单元的平均分布密度小于所述第二周边区域的所述微结构单元的平均分布密度。
  23. 如权利要求22所述的发光模组,其中,在由所述第二周边区域指向所述第一周边区域的方向上,所述微结构单元在单位面积内的分布密度逐渐降低。
  24. 如权利要求22所述的发光模组,其中,所述发光基板的所述第一区域在所述扩散片正投影的外轮廓位于所述第二周边区域内,所述发光基板的所述第二区域在所述扩散片正投影的外轮廓位于所述第一周边区域内。
  25. 如权利要求22所述的发光模组,其中,所述第二周边区域还包括边角区,所述边角区为所述第二周边区域沿所述第一延伸方向延伸的部分,和所述第二周边区域沿所述第二延伸方向延伸的部分交叉形成的区域;
    所述边角区内所述微结构单元的平均分布密度,大于所述第二周边区域中其它区域内所述微结构单元的平均分布密度。
  26. 如权利要求15所述的发光模组,其中,所述多个微结构单元位于所述第二表面,所述第二表面的所述内部区域与所述第一表面的粗糙度大致相同,所述第一表面的粗糙度小于所述周边区域的粗糙度。
  27. 如权利要求1所述的发光模组,其中,所述发光模组还包括位于所述发光基板背离所述扩散板一侧的背板,所述背板包括:底板,以及由所述底板朝向所述扩散板一侧延伸出的侧板;
    所述发光基板面向所述背板的一侧具有第一胶体,所述发光基板通过所述第一胶体与所述背板固定。
  28. 如权利要求27所述的发光模组,其中,所述第一胶体包括胶体基材,位于所述胶体基材面向所述子发光基板一侧的第一胶层,以及位于所述胶体基材面向所述底板一侧的第二胶层。
  29. 如权利要求1所述的发光模组,其中,所述扩散板的面向所述发光基板的一面具有多个微结构,所述微结构为相对所述扩散板面向所述发光基板表面的凹陷。
  30. 如权利要求29所述的发光模组,其中,所述微结构为棱锥结构,所述棱锥结构的底面为与所述扩散板的面向所述发光基板的表面共面的虚拟表 面。
  31. 如权利要求29所述的发光模组,其中,所述扩散板背离所述发光基板表面的粗糙度小于所述扩散板面向所述发光基板表面的粗糙度。
  32. 如权利要求1所述的发光模组,其中,所述扩散板的厚度为2.5mm~3.5mm。
  33. 如权利要求1所述的发光模组,其中,所述扩散板包括扩散主体,以及混合于所述扩散主体内的光扩散剂和遮蔽粒子。
  34. 如权利要求1所述的发光模组,其中,所述扩散板包括扩散主体以及位于所述扩散主体内的多个封闭腔体,所述腔体内为空气。
  35. 如权利要求1所述的发光模组,其中,所述扩散板具有面向所述发光基板的第一扩散表面,以及背离所述发光基板的第二扩散表面,以及连接所述第一扩散表面和所述第二扩散表面的至少一个侧面;至少一个所述侧面设置有第三反射层。
  36. 如权利要求35所述的发光模组,其中,所述光学膜组还包括:位于所述扩散板与所述扩散片之间的光转换膜。
  37. 如权利要求36所述的发光模组,其中,在平行于所述侧面且垂直于所述第二扩散表面的方向,所述第三反射层与所述光转换膜具有第二间隙。
  38. 如权利要求1所述的发光模组,其中,所述发光元件为Min-LED。
  39. 一种显示装置,其中,包括如权利要求1-38任一项所述的发光模组,还包括:位于所述发光模组出光侧的显示面板。
  40. 如权利要求39所述的显示装置,其中,所述背板包括:底板,以及由所述底板朝向所述扩散板一侧延伸出的侧板;
    所述显示装置还包括:与所述侧板端部固定的胶框;所述显示面板通过泡棉与所述胶框固定。
  41. 如权利要求40所述的显示装置,其中,所述发光模组还包括:位于所述背板背离所述发光基板一侧的前框,所述前框包括:容纳所述胶框和所述背板的底框,以及由所述底框朝向所述显示面板一侧延伸出的侧框,所述 前框通过螺母与所述底板固定。
  42. 如权利要求41所述的显示装置,其中,所述发光模组还包括:位于所述底框的背离所述背板一侧的后壳,所述后壳通过卡扣与所述前框固定。
PCT/CN2021/125864 2021-02-01 2021-10-22 一种发光模组和显示装置 WO2022160803A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2219443.5A GB2611248A (en) 2021-02-01 2021-10-22 Light-emitting module and display device
US17/908,313 US20230095991A1 (en) 2021-02-01 2021-10-22 Light-emitting module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110135974.0A CN114842741A (zh) 2021-02-01 2021-02-01 一种发光模组和显示装置
CN202110135974.0 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022160803A1 true WO2022160803A1 (zh) 2022-08-04

Family

ID=82560926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125864 WO2022160803A1 (zh) 2021-02-01 2021-10-22 一种发光模组和显示装置

Country Status (4)

Country Link
US (1) US20230095991A1 (zh)
CN (1) CN114842741A (zh)
GB (1) GB2611248A (zh)
WO (1) WO2022160803A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542612A (zh) * 2022-11-28 2022-12-30 惠科股份有限公司 背光模组及显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115437177A (zh) * 2022-10-10 2022-12-06 厦门天马微电子有限公司 拼接面板、背光模组及显示装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200823553A (en) * 2006-11-30 2008-06-01 Chung-Ming Hu Seamless LCD display manufacturing method
TW200841089A (en) * 2007-04-09 2008-10-16 Chu-Liang Cheng Light source module and liquid crystal display
TW200949301A (en) * 2008-05-30 2009-12-01 Au Optronics Corp Light diffusion device, backlight module and liquid crystal display
CN103672569A (zh) * 2012-09-04 2014-03-26 友达光电股份有限公司 背光模组
CN103760716A (zh) * 2014-01-22 2014-04-30 北京京东方显示技术有限公司 阵列基板及显示装置
CN106773315A (zh) * 2017-01-13 2017-05-31 深圳市华星光电技术有限公司 背光模组及液晶显示器
CN106842701A (zh) * 2017-01-11 2017-06-13 深圳市华星光电技术有限公司 一种背光模组和液晶显示器
CN206990979U (zh) * 2017-05-09 2018-02-09 微鲸科技有限公司 直下式背光源模组和液晶显示装置
CN107728379A (zh) * 2017-11-10 2018-02-23 欧浦登(顺昌)光学有限公司 一种超薄直下式背光平板液晶显示模组
CN109375402A (zh) * 2018-11-01 2019-02-22 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN210181346U (zh) * 2019-06-18 2020-03-24 合肥惠科金扬科技有限公司 一种背光模组和显示装置
CN111061091A (zh) * 2019-12-31 2020-04-24 厦门天马微电子有限公司 一种光学模组及显示装置
CN210639389U (zh) * 2019-07-19 2020-05-29 昆山龙腾光电股份有限公司 一种发光源、背光模组及其显示装置
CN210865431U (zh) * 2020-02-26 2020-06-26 北京京东方显示技术有限公司 一种背光模组、拼接屏及显示装置
CN211980636U (zh) * 2019-12-25 2020-11-20 深圳市聚飞光电股份有限公司 一种led背光模组和显示装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200823553A (en) * 2006-11-30 2008-06-01 Chung-Ming Hu Seamless LCD display manufacturing method
TW200841089A (en) * 2007-04-09 2008-10-16 Chu-Liang Cheng Light source module and liquid crystal display
TW200949301A (en) * 2008-05-30 2009-12-01 Au Optronics Corp Light diffusion device, backlight module and liquid crystal display
CN103672569A (zh) * 2012-09-04 2014-03-26 友达光电股份有限公司 背光模组
CN103760716A (zh) * 2014-01-22 2014-04-30 北京京东方显示技术有限公司 阵列基板及显示装置
CN106842701A (zh) * 2017-01-11 2017-06-13 深圳市华星光电技术有限公司 一种背光模组和液晶显示器
CN106773315A (zh) * 2017-01-13 2017-05-31 深圳市华星光电技术有限公司 背光模组及液晶显示器
CN206990979U (zh) * 2017-05-09 2018-02-09 微鲸科技有限公司 直下式背光源模组和液晶显示装置
CN107728379A (zh) * 2017-11-10 2018-02-23 欧浦登(顺昌)光学有限公司 一种超薄直下式背光平板液晶显示模组
CN109375402A (zh) * 2018-11-01 2019-02-22 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN210181346U (zh) * 2019-06-18 2020-03-24 合肥惠科金扬科技有限公司 一种背光模组和显示装置
CN210639389U (zh) * 2019-07-19 2020-05-29 昆山龙腾光电股份有限公司 一种发光源、背光模组及其显示装置
CN211980636U (zh) * 2019-12-25 2020-11-20 深圳市聚飞光电股份有限公司 一种led背光模组和显示装置
CN111061091A (zh) * 2019-12-31 2020-04-24 厦门天马微电子有限公司 一种光学模组及显示装置
CN210865431U (zh) * 2020-02-26 2020-06-26 北京京东方显示技术有限公司 一种背光模组、拼接屏及显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542612A (zh) * 2022-11-28 2022-12-30 惠科股份有限公司 背光模组及显示装置
CN115542612B (zh) * 2022-11-28 2023-03-21 惠科股份有限公司 背光模组及显示装置
US11846405B1 (en) 2022-11-28 2023-12-19 HKC Corporation Limited Backlight module and display device

Also Published As

Publication number Publication date
CN114842741A (zh) 2022-08-02
TW202232795A (zh) 2022-08-16
US20230095991A1 (en) 2023-03-30
GB2611248A (en) 2023-03-29
GB202219443D0 (en) 2023-02-01

Similar Documents

Publication Publication Date Title
TWI700533B (zh) 具有直下式背光單元的顯示器
CN109725458B (zh) 背光单元及包括背光单元的液晶显示装置
WO2021051787A1 (zh) 一种显示装置及背光模组
JP5179651B2 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2022160803A1 (zh) 一种发光模组和显示装置
WO2019223202A1 (zh) 面光源背光模组及液晶显示面板
CN109752882B (zh) 背光单元和包括背光单元的液晶显示装置
CN102478188A (zh) 背光单元和使用背光单元的显示装置
CN202303188U (zh) Led光源的透镜结构及其应用的led封装体
WO2020233282A1 (zh) 透镜结构、光源结构、背光模组和显示装置
KR20130061796A (ko) 광학 어셈블리, 백라이트 유닛 및 그를 이용한 디스플레이 장치
CN109445180B (zh) 一种背光模组及显示装置
JP6663471B2 (ja) 異形液晶発光装置
WO2019007068A1 (zh) 背光模组、显示装置
WO2021047030A1 (zh) 一种背光模组及其制备方法、显示装置
JP2023512767A (ja) パターン反射体を含むバックライト
WO2021190414A1 (zh) 一种显示装置
WO2023155527A1 (zh) 背光模组及显示装置
US20190129251A1 (en) Lighting device and image display device
WO2018214611A1 (zh) 背光模组及液晶显示装置
TWI750935B (zh) 擴散板及具擴散板的背光模組
US20240006565A1 (en) Light-emitting module and method for manufacturing the same, display panel, and electronic device
US10782469B2 (en) Light guide plate and its fabricating method, as well as backlight module
WO2022247941A1 (zh) 一种显示装置
TWI838652B (zh) 發光模組和顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202219443

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211022

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.11.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21922394

Country of ref document: EP

Kind code of ref document: A1