WO2023140223A1 - ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の制御方法 - Google Patents

ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の制御方法 Download PDF

Info

Publication number
WO2023140223A1
WO2023140223A1 PCT/JP2023/001041 JP2023001041W WO2023140223A1 WO 2023140223 A1 WO2023140223 A1 WO 2023140223A1 JP 2023001041 W JP2023001041 W JP 2023001041W WO 2023140223 A1 WO2023140223 A1 WO 2023140223A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
display device
head
image light
image
Prior art date
Application number
PCT/JP2023/001041
Other languages
English (en)
French (fr)
Inventor
智貴 山本
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023140223A1 publication Critical patent/WO2023140223A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/06Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators

Definitions

  • the present invention relates to a head-up display device and its control method, and for example, to technology for a head-up display device using AR (Augmented Reality).
  • AR Augmented Reality
  • Patent Document 1 shows a head-up display device that can effectively prevent the intrusion of external light such as sunlight.
  • the head-up display device includes a shutter section having a plurality of shutters, and changes the size of a transmission window formed in the shutter section according to the size of a display image displayed by the display section to prevent external light from entering and damage to the display section.
  • HUD Head Up Display
  • the HUD displays driving information such as vehicle speed and engine speed, navigation information, etc. by projecting them onto a windshield (windshield) or the like.
  • windshield windshield
  • the driver can obtain the information necessary for driving without moving the line of sight to the instrument panel incorporated in the dashboard. Therefore, it is possible to contribute to safe driving.
  • a HUD using AR (referred to as an AR-HUD) requires a wide display area.
  • the opening provided on the optical path of the image light that is, on the optical path from the display panel to the windshield.
  • the wider the opening the easier it is for sunlight to enter through an optical path opposite to the optical path of the image light. As a result, the display panel is likely to be damaged.
  • Patent Document 1 a method of changing the size of the transmission window is conceivable.
  • the size of the transmissive window portion is changed according to the size of the display image, there may still be spots where sunlight is concentrated on the display panel, and thus sufficient protection cannot always be achieved.
  • the optical path of sunlight is blocked, the optical path of image light from the display panel is also blocked at the same time, so there is a period of time during which the user cannot visually recognize the virtual image.
  • the present invention has been made in view of the above, and one of its purposes is to provide a head-up display device and a method of controlling the same that can reduce the time period during which the user cannot visually recognize the virtual image while preventing damage due to sunlight.
  • a typical head-up display device is a head-up display device for vehicles, and includes a video display device, a video light projection section, and a switching section.
  • the image display device emits image light of an image.
  • the image light projection unit displays a virtual image in front of the vehicle by projecting and reflecting the image light emitted from the image display device onto the display area.
  • the switching unit is provided on the optical path of the image light and switches between an optical path formation state in which the optical path of the image light is formed and an optical path non-formation state in which the optical path of the image light is not formed.
  • FIG. 1 is a schematic diagram showing a configuration example of a vehicle equipped with a head-up display device according to Embodiment 1;
  • FIG. 2 is a schematic diagram showing a configuration example of a main part of the HUD device in FIG. 1;
  • FIG. 3 is a diagram showing a more detailed configuration example and operation example of the HUD device in FIG. 2;
  • FIG. FIG. 4 is a perspective view showing an example of the appearance of the HUD device shown in FIG. 3;
  • 4 is a block diagram showing a configuration example of main parts of a control system included in the HUD device shown in FIG. 3;
  • FIG. 6 is a block diagram showing a configuration example of a part related to an information acquisition unit in FIG. 5;
  • FIG. 6 is a diagram illustrating an example of processing contents of a temperature detection unit in FIG. 5;
  • FIG. 6 is a diagram illustrating an example of processing contents of a temperature detection unit in FIG. 5;
  • FIG. 4 is a time chart showing an example of a control method of the light source in FIG. 3;
  • FIG. 4 is a time chart showing an example of a shutter control method in FIG. 3;
  • FIG. 4A and 4B are diagrams for explaining a specific application example of the shutter in FIG. 3 and an operation example at that time;
  • FIG. 4A and 4B are diagrams for explaining a specific application example of the shutter in FIG. 3 and an operation example at that time;
  • FIG. FIG. 4 is a time chart showing an example of the relationship between the control method of the light source and the shutter in FIG.
  • FIG. 3 is a diagram showing a specific example of the condition determination (step S100) shown in FIG. 12;
  • FIG. 14 is a diagram that supplements FIG. 13 and shows an example of the positional relationship between the sun and the vehicle.
  • 4A and 4B are diagrams for explaining another specific application example of the shutter in FIG. 3 and an operation example at that time;
  • FIG. 4A and 4B are diagrams for explaining another specific application example of the shutter in FIG. 3 and an operation example at that time;
  • FIG. 4A and 4B are diagrams for explaining still another specific application example of the shutter in FIG. 3 and an operation example at that time;
  • FIG. 4A and 4B are diagrams for explaining still another specific application example of the shutter in FIG. 3 and an operation example at that time;
  • FIG. FIG. 10 is a diagram for explaining a specific application example of the shutter and an operation example at that time in the HUD device according to the second embodiment;
  • FIG. 10 is a diagram for explaining a specific application example of the shutter and an operation example at that time in the HUD device according to the second embodiment;
  • FIG. 1 is a schematic diagram showing a configuration example of a vehicle equipped with a head-up display device according to Embodiment 1.
  • FIG. A head-up display (HUD) device 1 shown in FIG. 1 is mounted on a vehicle 2 which is one of vehicles.
  • the vehicle 2 is typically an automobile, but is not necessarily limited to this, and may be a railroad vehicle or the like. Also, the vehicle is not limited to a vehicle, and may be an aircraft or the like.
  • the vehicle 2 is usually equipped with a control unit (not shown) called an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the control unit acquires vehicle information 4 from, for example, various sensors installed in each part of the vehicle 2 and also from a navigation device. Various sensors detect, for example, various events occurring in the vehicle 2, and also detect various parameter values related to the driving situation.
  • the HUD device 1 acquires vehicle information 4 acquired by the control unit, for example, using CAN (Controller Area Network) communication or the like.
  • the vehicle information 4 includes, for example, speed information and gear information of the vehicle 2, steering angle information, lamp lighting information, external light information, distance information, infrared information, engine ON/OFF information, camera video information inside and outside the vehicle, acceleration gyro information, GPS (Global Positioning System) information, navigation information, vehicle-to-vehicle communication information, road-to-vehicle communication information, and the like.
  • GPS Global Positioning System
  • the GPS information also includes information such as the current time.
  • the HUD device 1 projects an image onto the display area 5 such as the windshield 3 based on such vehicle information 4 . As a result, the HUD device 1 allows the user such as the driver to visually recognize the image projected on the display area 5 as a virtual image, more specifically, as a virtual image superimposed on the landscape in front of the vehicle 2 .
  • FIG. 2 is a schematic diagram showing a configuration example of the main part of the HUD device in FIG.
  • the HUD device 1 shown in FIG. 2 includes an image display device 35, mirrors M1 and M2 that are light reflecting members, and a switching unit, for example, a shutter 68.
  • the image display device 35 is, for example, a projector, an LCD (Liquid Crystal Display), or the like, displays an image based on input image data, and generates and emits image light of the displayed image.
  • the image display device 35 specifically includes a light source 65 , an optical component 63 a and a display panel 64 .
  • the light source 65 is, for example, an LED (Light Emitting Diode) light source, a laser light source, or the like, and irradiates the display panel 64 with backlight. Specifically, the light source 65 turns on the backlight when turned on, and turns off the backlight when turned off.
  • the optical component 63 a is, for example, a lens for a light source, and adjusts the optical path of the backlight so that the display panel 64 is uniformly illuminated with the backlight from the light source 65 .
  • the display panel 64 is typically a liquid crystal panel (LCD: Liquid Crystal Display).
  • the display panel 64 displays an image by modulating the backlight from the light source 65 according to the input image data, more specifically by modulating the transmittance of each pixel.
  • the mirror M2 is, for example, a plane mirror, and is provided on the optical path 30 of the image light between the image display device 35 and the mirror M1.
  • the mirror M2 functions as an image light reflection section that reflects the image light from the image display device 35 to the mirror M1.
  • the mirror M1 is, for example, a concave mirror (magnifying mirror), and is provided on the optical path 30 of the image light between the mirror M2 and the display area 5 .
  • the mirror M1 functions as an image light projection unit that allows a user such as the driver 6 to visually recognize the projected image light as a virtual image by projecting the image light emitted from the image display device 35 onto the display area 5. That is, the image light projection unit projects the image light emitted from the image display device 35 onto the display area 5 of the vehicle and reflects it, thereby displaying a virtual image in front of the vehicle.
  • the mirror (image light projection portion) M1 reflects and expands the image light reflected by the mirror (image light reflection portion) M2, and projects the image light onto the display area 5 through the opening 7.
  • the image light projected onto the display area 5 is reflected by the display area 5 and enters the eyes of the driver 6 .
  • the driver 6 visually recognizes the image light projected on the display area 5 as a virtual image beyond the transparent windshield 3, superimposed on the landscape (roads, buildings, people, etc.) outside the vehicle.
  • the information represented by the virtual image includes, for example, road signs, the current speed of the own vehicle, and various information added to objects on the landscape, that is, AR information.
  • the mirrors M1 and M2 may be, for example, free-form surface mirrors, mirrors having an asymmetrical shape with respect to the optical axis, or the like.
  • the installation angle of the mirror (image light reflecting portion) M2 is fixed.
  • the mirror (image light projection section) M1 includes a drive mechanism 62 .
  • the drive mechanism 62 includes, for example, a motor, and rotates the mirror M1 by rotating the motor.
  • the position of the display area 5 on the windshield 3, that is, the vertical position of the virtual image visually recognized by the driver 6 can be adjusted. Further, for example, by increasing the area of the mirror M1 and the opening 7, the area of the display area 5 can be expanded, and more information can be projected onto the display area 5.
  • FIG. This makes it possible to realize an AR function that adds various types of information to an object in the landscape and displays the object.
  • the shutter 68 is provided on the optical path 30 of the image light, that is, in the example shown in FIG. 2, on the optical path 30 of the image light between the image display device 35 and the mirror (image light reflection section) M2.
  • the shutter 68 is controlled to an optical path formation state in which an optical path for image light is formed, or an optical path non-formation state in which an optical path for image light is not formed.
  • the shutter 68 transmits light when the optical path is formed, and blocks light when the optical path is not formed.
  • the shutter 68 is typically a liquid crystal shutter or the like capable of switching between transmission and light blocking at high speed. Although the details will be described later, switching between the optical path formation state and the optical path non-formation state is performed at such a high speed that the driver 6 can visually recognize the image light projected onto the display area 5 as a virtual image.
  • FIG. 3 is a diagram showing a more detailed configuration example and operation example of the HUD device in FIG. 4 is a perspective view showing an example of the appearance of the HUD device shown in FIG. 3.
  • FIG. 3 The HUD device 1 shown in FIG. 3 includes an image display device 35, a shutter 68, mirrors M1 and M2, and a driving mechanism 62 similar to those in FIG. Furthermore, in FIG. 3, a solar radiation sensor 66 and an optical component 63b are provided inside the housing 61. As shown in FIG.
  • a solar radiation sensor 66 detects the position of the sun 60 and the intensity of sunlight 31 .
  • the optical component 63 b is a lens for projection, and is provided on the optical path of the image light between the image display device 35 and the shutter 68 .
  • the optical component 63b adjusts the spread of image light from the display panel 64, for example. 3, illustration of the optical component 63a in the image display device 35 shown in FIG. 2 is omitted for the sake of simplification of the description.
  • the installation angle of the mirror (image light projection unit) M1 is adjusted via the drive mechanism 62, thereby controlling the projection mode in which the image light is projected onto the display area or the non-projection mode in which the image light is not projected onto the display area.
  • the direction of the arrow shown in FIG. 3 is the direction in which the mirror M1 is rotated, and the direction in which the projection mode is switched to the non-projection mode.
  • the sunlight 31 can enter the display panel 64 along the optical path 33a opposite to the optical path of the image light. As a result, the display panel 64 may be damaged. Therefore, by controlling the mirror M1 to the non-projection mode, it is possible to form an optical path 33b that prevents the sunlight 31 from entering the display panel 64.
  • the shutter 68 is provided in FIG. 3, even if the mirror M1 is controlled to the projection mode, the sunlight 31 can be prevented from entering the display panel 64 by fixing the shutter to a non-optical path forming state, for example, a light shielding state.
  • the shutter 68 may deteriorate due to exposure to strong sunlight 31 depending on the material or the like. For this reason, it is desirable to provide a non-projection mode and adjust the installation angle of the mirror M1 so that the optical path 33b deviates from the shutter 68.
  • Whether or not to control the mirror (image light projection unit) M1 to the non-projection mode can be determined based on the detection result of the solar radiation sensor 66, for example. Further, although not shown, a temperature sensor for detecting the ambient temperature may be installed inside the housing 61 . Then, whether or not to control the mirror M1 to the non-projection mode may be determined based on the ambient temperature. However, for example, when acquiring the ambient temperature from a temperature sensor installed in the vehicle 2 , there is no need to install the temperature sensor in the housing 61 .
  • the housing 61 is formed with the opening 7 shown in FIG.
  • a mirror (image light projection portion) M1 is installed so as to reflect the light from the mirror (image light reflection portion) M2 to the cover member 71, that is, the opening portion 7.
  • a solar radiation sensor 66 is installed in the housing 61 , for example, around the cover member 71 or the like.
  • the solar radiation sensor 66 may be configured and arranged to detect sunlight intensity when the position (azimuth and elevation) of the sun 60 is within a predetermined range. For example, the light path of the sunlight 31 deviates from the display panel 64 depending on the angle of incidence of the sunlight 31 with respect to the mirror M1 and thus the position of the sun 60, so the possibility of damage to the display panel 64 can be ignored. That is, the possibility of damage can be ignored depending on the season, time zone, direction of the vehicle 2, and the like.
  • the range of incident angles in which the possibility of damage can be ignored in other words, the range of incident angles in which the possibility of damage cannot be ignored can be predetermined based on the optical conditions (for example, installation position, installation angle, size, etc.) of the optical system including the mirrors M1 and M2 and the optical component 63b. Therefore, the sunlight sensor 66 detects the sunlight intensity within a predetermined range of incident angles (the position of the sun 60) in which the possibility of damage to the display panel 64 cannot be ignored.
  • the solar radiation sensor 66 for example, there is a method of physically limiting the incident angle of the sunlight incident on the light receiving element by appropriately installing an opening, a shielding plate, etc. around the light receiving element such as a photodiode.
  • a known solar radiation sensor capable of detecting both the position of the sun 60 and the intensity of the sunlight may be used to perform signal processing by combining the detected position information and the sunlight intensity information.
  • the solar radiation sensor 66 does not necessarily need to detect the position of the sun 60, and may be configured and arranged to detect at least the intensity of the sunlight.
  • FIG. 5 is a block diagram showing a configuration example of main parts of a control system included in the HUD device shown in FIG. 5 .
  • the HUD device 1 shown in FIG. 5 includes a control unit 10, a video processing unit 11, an audio processing unit 12, a communication unit 13, an information acquisition unit 14, a temperature detection unit 15, a nonvolatile memory 17, a volatile memory 18, a shutter driving unit 21, a light source driving unit 22, and a driving mechanism 62, which are connected to each other via a bus.
  • the HUD device 1 also includes an audio driver 19, a display driver 20, a speaker 25, a display panel 64, a light source 65, a solar sensor 66, a shutter 68, and a mirror (image projection unit) M1.
  • the information acquisition unit 14 is configured by, for example, a CAN interface circuit or a LIN (Local Interconnect Network) interface circuit, and acquires the vehicle information 4 from the control unit using CAN communication or LIN communication as described in FIG.
  • the communication unit 13 is composed of, for example, a wired communication interface circuit or a wireless communication interface circuit based on a predetermined communication standard, and communicates various control information other than the vehicle information 4 with the outside of the HUD device 1 .
  • the light source driving section 22 is configured by, for example, an LED driver circuit or the like, and drives the light source 65 .
  • the light source drive unit 22 controls the brightness of the backlight from the light source 65 by periodically switching between presence/absence of voltage application to the light source 65, for example.
  • the light source driving unit 22 controls the brightness of the backlight using, for example, PWM (Pulse Width Modulation) control or the like.
  • the video processing unit 11 Based on the vehicle information 4 and the like, the video processing unit 11 generates video data that determines the video to be displayed on the display panel 64 and, by extension, the video to be projected on the display area 5 shown in FIG. At this time, the video processing unit 11 generates video data after correcting various distortions that may occur due to the curvature of the windshield 3, for example.
  • the video processing unit 11 is implemented by, for example, a processor executing a video processing program stored in the volatile memory 18 .
  • the display driver 20 is configured by, for example, an LCD driver circuit or the like.
  • the display driver 20 drives each display element (pixel) included in the display panel 64 based on the video data from the video processing unit 11 . Accordingly, the display driver 20 causes the display panel 64 to modulate the backlight from the light source 65 and display an image based on the image data.
  • the audio processing unit 12 generates audio data based on the vehicle information 4 or the like as necessary.
  • the voice data is generated, for example, when performing voice guidance of the navigation device or when issuing a warning to the driver 6 by the AR function.
  • the audio driver 19 drives the speaker 25 based on the audio data from the audio processing unit 12 and causes the speaker 25 to output audio.
  • the audio processing unit 12 is implemented, for example, by a processor executing an audio processing program stored in the volatile memory 18 .
  • the shutter drive unit 21 is configured by a driver circuit corresponding to the type of the shutter 68, for example.
  • the shutter drive unit 21 controls the shutter 68 to the optical path formation state or the optical path non-formation state, as described with reference to FIG.
  • the drive mechanism 62 is composed of, for example, a motor and a motor driver circuit for driving the motor.
  • a drive mechanism 62 adjusts the installation angle of the mirror M1.
  • the temperature detection unit 15 detects the temperature of the video display device 35 , more specifically, the temperature of the display panel 64 . At this time, the temperature detection unit 15 calculates the temperature of the display panel 64 based on the detection result from the solar radiation sensor 66, that is, the sunlight intensity and the like, although the details will be described later. That is, it may be difficult to directly detect the temperature of the display panel 64 due to mounting restrictions or the like.
  • the temperature detection unit 15 is provided in such a case, and indirectly detects the temperature of the display panel 64 by a predetermined calculation.
  • the temperature detection unit 15 is implemented, for example, by a processor executing a temperature detection program stored in the volatile memory 18 .
  • the control unit 10 controls the HUD device 1 as a whole. As one of them, the control unit 10 controls the brightness of the backlight from the light source 65 via the light source driving unit 22 . That is, the control unit 10 uses PWM control or the like to control ON/OFF of the light source 65 , that is, control presence/absence of voltage application to the light source 65 . Furthermore, the control unit 10 controls the shutter 68 via the shutter driving unit 21 so that the optical path formation state and the optical path non-formation state are periodically switched.
  • the control unit 10 is realized, for example, by executing a control program stored in the volatile memory 18 by a processor.
  • the control unit 10, the video processing unit 11, the audio processing unit 12, the communication unit 13, the information acquisition unit 14, the temperature detection unit 15, the nonvolatile memory 17, and the volatile memory 18 can be realized by a microcontroller or the like including a processor and various peripheral circuits. However, some or all of these may be appropriately realized by FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), or the like.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • FIG. 6 is a block diagram showing a configuration example of the part related to the information acquisition unit in FIG.
  • the information acquisition unit 14 acquires vehicle information 4 generated by an information acquisition device such as various sensors via a control unit (not shown).
  • FIG. 6 shows an example of the information acquisition device.
  • the vehicle speed sensor 41 detects the speed of the vehicle 2 in FIG. 1 and generates speed information as a detection result.
  • the shift position sensor 42 detects the current gear and generates gear information as a detection result.
  • the steering wheel steering angle sensor 43 detects the current steering wheel steering angle and generates steering wheel steering angle information as a detection result.
  • the headlight sensor 44 detects ON/OFF of the headlight and generates lamp lighting information as a detection result.
  • the illuminance sensor 45 and the chromaticity sensor 46 detect external light and generate external light information as detection results.
  • the ranging sensor 47 detects the distance between the vehicle 2 and an external object, and generates distance information as a detection result.
  • the infrared sensor 48 detects the presence or absence of an object at a short distance of the vehicle 2, the distance, and the like, and generates infrared information as a detection result.
  • the engine start sensor 49 detects ON/OFF of the engine and generates ON/OFF information as a detection result.
  • the acceleration sensor 50 and the gyro sensor 51 detect the acceleration and angular velocity of the vehicle 2, respectively, and generate acceleration gyro information representing the attitude and behavior of the vehicle 2 as detection results.
  • the temperature sensor 52 detects the temperature inside and outside the vehicle and generates temperature information as a detection result.
  • the road-to-vehicle communication radio transmitter/receiver 53 generates road-to-vehicle communication information through road-to-vehicle communication between the vehicle 2 and roads, signs, traffic lights, and the like.
  • the vehicle-to-vehicle communication radio transmitter/receiver 54 generates vehicle-to-vehicle communication information through vehicle-to-vehicle communication between the vehicle 2 and other vehicles in the vicinity.
  • the vehicle interior camera 55 and the vehicle exterior camera 56 generate vehicle interior camera image information and vehicle exterior camera image information by photographing the interior and exterior of the vehicle, respectively.
  • the in-vehicle camera 55 is, for example, a DMS (Driver Monitoring System) camera that captures the posture of the driver 6 shown in FIG. 2 and the position and movement of the eyes. In this case, by analyzing the imaged video, it is possible to grasp the fatigue state of the driver 6, the position of the line of sight, and the like.
  • DMS Driver Monitoring System
  • the vehicle exterior camera 56 photographs the surrounding conditions such as the front and rear of the vehicle 2, for example.
  • the vehicle exterior camera 56 includes, for example, a drive recorder that records a video of the driving situation.
  • the GPS receiver 57 generates GPS information obtained by receiving GPS signals. For example, the GPS receiver 57 can also obtain the current time.
  • a VICS (Vehicle Information and Communication System, registered trademark) receiver 58 generates VICS information obtained by receiving VICS signals.
  • the GPS receiver 57 and VICS receiver 58 may be provided as part of the navigation device. It should be noted that the various information acquisition devices shown in FIG. 6 can be appropriately deleted, added with devices of other types, or replaced with devices of other types.
  • FIG. 7A and 7B are diagrams for explaining an example of the processing contents of the temperature detection unit in FIG. 5.
  • FIG. FIG. 7A shows a HUD device 1 similar to that of FIG.
  • FIG. 7B shows an extracted portion of the image display device 35 in FIG. 7A.
  • the temperature of the display panel 64 can be estimated from the ambient temperature Ta of the image display device 35, the amount of temperature rise ⁇ T(I) due to sunlight 31, and the amount of temperature rise ⁇ T(L) due to heat radiation from the light source 65.
  • the ambient temperature Ta is detected by the temperature sensor installed in the HUD device 1 or the temperature sensor 52 installed in the vehicle 2, as described in FIG.
  • a temperature rise amount ⁇ T(I) accompanying sunlight 31 is calculated based on the sunlight intensity detected by the solar radiation sensor 66 .
  • the amount of temperature rise ⁇ T(L) due to heat radiation from the light source 65 is calculated based on the luminance of the backlight set for the light source 65, that is, the duty ratio of PWM control.
  • the temperature detection unit 15 indirectly detects the temperature of the display panel 64 by calculation using the ambient temperature Ta, the temperature increase amount ⁇ T(I), and the temperature increase amount ⁇ T(L).
  • the amount of temperature rise ⁇ T(L) accompanying thermal radiation from the light source 65 is a parameter that can be controlled by the brightness of the backlight. Therefore, for example, when the temperature of the display panel 64 detected by the temperature detection unit 15 exceeds a predetermined threshold, the control unit 10 reduces the brightness of the backlight, that is, reduces the duty ratio of PWM control, thereby suppressing an increase in the temperature of the display panel 64.
  • the control section 10 may control the mirror (image light projection section) M1 to the non-projection mode via the driving mechanism 62.
  • the mirror M1 when the mirror M1 is controlled to the non-projection mode, the driver 6 cannot visually recognize the virtual image. Therefore, it is beneficial to use the shutter 68 to perform control as described below.
  • FIG. 8 is a time chart showing an example of a light source control method in FIG.
  • the control unit 10 suppresses the temperature rise amount ⁇ T(L) due to the heat radiation from the light source 65, so it can control the brightness of the backlight.
  • the control unit 10 may also control the brightness of the backlight in response to a request from the driver 6, for example, an operation by the driver 6.
  • FIG. 8 is a time chart showing an example of a light source control method in FIG.
  • the control unit 10 suppresses the temperature rise amount ⁇ T(L) due to the heat radiation from the light source 65, so it can control the brightness of the backlight.
  • the control unit 10 may also control the brightness of the backlight in response to a request from the driver 6, for example, an operation by the driver 6.
  • the control unit 10 controls the on/off of the light source 65 via the light source driving unit 22, for example, using PWM control as shown in FIG.
  • Each PWM period Tpwm includes an ON period Ton during which the voltage Vf is applied to the light source 65 and an OFF period Toff during which no voltage is applied to the light source 65 .
  • the light source 65 is turned on during the ON period Ton and turned off during the OFF period Toff.
  • the image light becomes brighter as the duty ratio approaches 100%, and becomes darker as it approaches 0%.
  • FIG. 9 is a time chart showing an example of the shutter control method in FIG. 10A and 10B are diagrams for explaining a specific application example of the shutter in FIG. 3 and an operation example at that time.
  • the control unit 10 controls the shutter 68 to an optical path formation state, for example, transmission, during an ON period Ton when the voltage Vf is applied to the light source 65, and controls the shutter 68 to an optical path non-formation state, for example, light blocking during an OFF period Toff when no voltage is applied to the light source 65.
  • the control unit 10 controls such transmission/light blocking of the shutter 68 via the shutter driving unit 21 .
  • the shutter 68 shown in FIGS. 10A and 10B is, for example, a transmissive/absorptive liquid crystal shutter.
  • the shutter 68 transmits light by being controlled to the optical path formation state during the ON period Ton of the light source 65 . That is, the image light 32 from the image display device 35 passes through the shutter 68 and enters the mirror M2. Also, the sunlight 31 from the mirror M2 passes through the shutter 68 and enters the image display device 35 .
  • the shutter 68 absorbs light by being controlled to the non-optical path formation state during the OFF period Toff of the light source 65 . That is, the shutter 68 blocks the sunlight 31 to the display panel 64 by absorbing the sunlight 31 .
  • the shutter 68 When using a liquid crystal shutter, the shutter 68 itself may have heat due to the absorption of sunlight 31 .
  • the control unit 10 for example, control the temperature of the shutter 68 in addition to the display panel 64 .
  • the control unit 10 can estimate the temperature of the shutter 68 based on, for example, the sunlight intensity detected by the solar sensor 66, the duty ratio when the shutter 68 is PWM-controlled, the ambient temperature Ta, and the like. Then, when the estimated temperature of the shutter 68 exceeds the threshold, the control unit 10 controls the mirror M1 to the non-projection mode to prevent the shutter 68 from being damaged.
  • the installation position of the shutter 68 is not limited to the optical path of the image light 32 between the optical component 63b and the mirror (image light reflecting portion) M2 as shown in FIGS. 10A and 10B.
  • the shutter 68 may be installed on the optical path of the image light 32 between the image display device 35 and the optical component 63b, or between the mirror (image light reflection portion) M2 and the mirror (image light projection portion) M1.
  • the shutter 68 may be placed in contact with the reflecting surface of the mirror M2.
  • the shutter 68 may be installed on the optical path of the image light 32 between the mirror (image light projection unit) M1 and the display area 5, for example, at the opening 7.
  • the required area of the shutter 68 may also increase accordingly. Also, if the installation position of the shutter 68 is too close to the display panel 64 , heat radiation from the shutter 68 absorbing the sunlight 31 may cause the temperature of the display panel 64 to rise. From the viewpoint of balancing these two matters, it is desirable that the shutter 68 be installed at the locations shown in FIGS. 10A and 10B.
  • the length of the PWM cycle Tpwm shown in FIG. 8 is not particularly limited, it is on the order of ms, for example.
  • the driver 6 can continuously view the virtual image due to the afterimage of the virtual image projected during the ON period Ton, despite the presence of the OFF period Toff.
  • PWM control is used as a method of controlling the shutter 68 in the embodiment, it is not always necessary to use PWM control. That is, as a necessary condition, the length of the period during which the shutter 68 is controlled so as not to form the optical path, here the length of the off period Toff, should be such that the driver 6 can continuously view the image light 32 as a virtual image.
  • the control mode for controlling the shutter 68 so that the optical path formation state and the optical path non-formation state are periodically switched is referred to as a switching control mode or a first control mode.
  • the controller 10 controls the shutter 68 between the optical path formation state/optical path non-formation state in conjunction with turning on/off the light source 65, as shown in FIG.
  • the control mode in which the shutter 68 is fixed in the optical path formation state for example, in transmission regardless of whether the light source 65 is on or off is referred to as the optical path formation control mode or the second control mode.
  • a control mode in which the shutter 68 is fixed in the light path non-forming state for example, in a light shielding state, is referred to as a light path non-forming control mode or a third control mode.
  • the driver 6 can visually recognize the image light 32 as a virtual image, but on the other hand, sunlight 31 may enter the image display device 35 .
  • the non-optical path formation control mode the sunlight 31 can be prevented from entering the image display device 35, but the driver 6 cannot visually recognize the image light 32 as a virtual image.
  • the switching control mode it is possible to prevent the sunlight 31 from entering the image display device 35 while allowing the driver 6 to visually recognize the image light 32 as a virtual image.
  • the shutter 68 can transmit all the image light 32 emitted from the display panel 64 during the ON period Ton. Further, the shutter 68 can block sunlight 31 from entering the display panel 64 during the OFF period Toff during which the image light 32 from the display panel 64 is not emitted. As a result, the period during which the sunlight 31 is incident is limited to the ON period Ton within the PWM cycle Tpwm, so the temperature rise amount ⁇ T(I) due to the sunlight 31 shown in FIG. 7B can be suppressed. As a result, it is possible to prevent damage to the image display device 35, more specifically, the display panel 64, caused by the sunlight 31, and reduce the time period during which the driver 6 cannot visually recognize the virtual image.
  • the default state of the shutter 68 may be transmission, and the default state may be light blocking.
  • the shutter 68 is controlled to be light-shielding by application of the voltage Vf when the default state is transmission, and is controlled to be light-transmission by the application of the voltage Vf when the default state is light blocking.
  • the power consumption associated with the control of the shutter 68 can be suppressed. That is, in a general usage pattern of the HUD device 1, the period during which the shutter 68 is controlled to transmit light is longer than the period during which the shutter 68 is controlled to block light.
  • the shutter 68 whose default state is light blocking is used, damage to the display panel 64 can be prevented even if the shutter 68 becomes uncontrollable for some reason.
  • FIG. 11 is a time chart showing an example of the relationship between the control method of the light source and the shutter in FIG. 3 and the sunlight intensity.
  • the controller 10 performs control to lower the duty ratio of the PWM control for the light source 65 when the sunlight intensity increases. As a result, the amount of temperature rise ⁇ T(L) due to the light source 65 and thus the temperature rise of the display panel 64 can be suppressed.
  • control unit 10 controls the shutter 68 in switching control mode in conjunction with the PWM control of the light source 65 .
  • the sunlight 31 can be blocked by the shutter 68 during the OFF period Toff that has become longer due to the decrease in the duty ratio, so that the temperature rise amount ⁇ T(I) accompanying the sunlight 31 and thus the temperature rise of the display panel 64 can be suppressed to a greater extent.
  • the ON/OFF of the light source 65 using PWM control and controlling the shutter 68 to the optical path formation state/optical path non-formation state in conjunction with the ON/OFF of the light source 65, it is possible to synergistically obtain the effect of suppressing the temperature rise of the display panel 64.
  • the switching control mode is used so as to interlock with the on/off of the light source 65, but in some cases, it is possible to use a method of PWM-controlling the shutter 68 in a state in which the display panel 64 constantly emits image light, that is, in a state in which the light source 65 is always on. Even when such a method is used, the effect of suppressing the amount of temperature rise ⁇ T(I) due to sunlight 31 can be obtained. However, in this case, compared to the case where the light source 65 is turned on/off, the temperature rise amount ⁇ T(L) due to the light source 65 increases, and the power consumption caused by the light source 65 also increases. From such a point of view, it is beneficial to use a switching control mode to interlock with the on/off of the light source 65 .
  • FIG. 12 is a flow chart showing an example of the processing contents of the control unit accompanying control of the shutter in FIG.
  • the control unit 10 repeatedly executes the flow shown in FIG. 12 at a predetermined control cycle.
  • the control unit 10 performs conditional determination for the determination item A (step S100).
  • the control unit 10 controls the shutter 68 in the switching control mode (step S101). That is, the control unit 10 controls the shutter 68 so that the optical path formation state/optical path non-formation state is periodically switched.
  • the shutter 68 is controlled to the optical path formation state/optical path non-formation state in conjunction with the turning on/off of the light source 65.
  • step S100 determines whether the shutter 68 is the optical path formation control mode. That is, the controller 10 fixes the shutter 68 to the optical path forming state. Further, when the determination result in step S100 is determination result [3], the control unit 10 controls the shutter 68 in the optical path non-formation control mode (step S103). That is, the controller 10 fixes the shutter 68 to the non-optical path formation state.
  • FIG. 13 is a diagram showing a specific example of the condition determination (step S100) shown in FIG.
  • FIG. 14 is a diagram that supplements FIG. 13 and shows an example of the positional relationship between the sun and the vehicle.
  • FIG. 13 shows examples 1 to 13 as specific examples of the condition determination (step S100) in FIG. In Examples 1 to 13, correspondence relationships between determination item A and determination result [1], determination result [2], and determination result [3] are shown.
  • the control unit 10 determines whether or not the sunlight sensor 66 detects the sunlight 31 . Specifically, the control unit 10 determines the substantial presence or absence of the sunlight 31 based on the detection result of the solar radiation sensor 66, for example, by classification such as day/night and sunny/cloudy. When the control unit 10 determines that the sunlight 31 is detected, the determination result is [1], and the shutter 68 is controlled in the switching control mode. When it is determined that the sunlight 31 is not detected, the determination result is [2], and the shutter 68 is controlled in the optical path formation control mode. Note that in example 1, determination result [3] is not used.
  • the control unit 10 determines whether the sunlight intensity detected by the solar radiation sensor 66 exceeds the threshold. Specifically, for example, the control unit 10 determines whether or not the sunlight intensity detected by the solar radiation sensor 66 is at a level that can cause damage to the display panel 64, based on a threshold value. Therefore, in example 2, a threshold value that is relatively large is used. Note that the controller 10 may determine whether or not the sunlight 31 is detected, for example, using a sufficiently smaller threshold value than in Example 2 in Example 1. FIG. Further, in Examples 1 and 2, the control unit 10 may make determinations including the position of the sun 60 by the configuration and placement of the solar radiation sensor 66 as described with reference to FIG.
  • the control unit 10 controls the shutter 68 in the switching control mode as determination result [1] when the sunlight intensity exceeds the threshold, and controls the shutter 68 in the optical path formation control mode as determination result [2] when the sunlight intensity does not exceed the threshold.
  • the switching control mode when the sunlight intensity exceeds the threshold, it is possible to suppress the temperature increase amount ⁇ T(I) accompanying the sunlight 31 .
  • the optical path formation control mode is used to reduce the frequency of ON/OFF operations of the shutter 68, reduce power consumption, and suppress abrasion of the shutter 68. Note that in example 2, determination result [3] is not used.
  • Example 3 the control unit 10 determines whether the current estimated temperature of the display panel 64, which is estimated from the ambient temperature Ta, the temperature rise amount ⁇ T(L) according to the image brightness, and the temperature rise amount ⁇ T(I) according to the sunlight intensity, exceeds the threshold. That is, the control unit 10 makes determination based on the detection result of the temperature detection unit 15 .
  • the control unit 10 controls the shutter 68 in the switching control mode as determination result [1], and when the sunlight intensity does not exceed the threshold, the determination result is [2] and controls the shutter 68 in the optical path formation control mode. Note that in example 3, determination result [3] is not used.
  • Example 4 unlike in Example 3, the control unit 10 determines whether the temperature of the display panel 64 after a certain period of time, which is estimated from the ambient temperature Ta, the temperature increase amount ⁇ T(L) according to the image luminance, and the temperature increase amount ⁇ T(I) according to the sunlight intensity, exceeds the threshold value. Specifically, for example, the control unit 10 estimates the temperature of the display panel 64 after a certain period of time by reflecting the rate of change of the temperature rise amounts ⁇ T(L) and ⁇ T(I), transient characteristics, and the like, and when the estimated temperature exceeds the threshold, the switching control mode is applied at the present time. In Example 3, when a rapid temperature rise occurs, the temperature of the display panel 64 may rise beyond expectations due to control delays. By using Example 4, it is possible to cope with such a case.
  • Example 5 the control unit 10 determines whether or not an abnormality is detected in the drive mechanism 62 attached to the mirror M1. When determining that an abnormality is detected, the control unit 10 sets the determination result [3] and controls the shutter 68 in the optical path non-formation control mode. Note that in Example 5, determination result [1] and determination result [2] are not used.
  • a case where an abnormality is detected is, for example, a case where an overcurrent, an overload, an overtemperature, or the like is detected in the driving mechanism 62 such as a motor. In this case, since the protection operation using the mirror M1, that is, the transition to the non-projection mode cannot be performed, the display panel 64 is reliably prevented from being damaged by using the optical path non-formation control mode.
  • Example 6 the control unit 10 determines whether the control state of the mirror M1 is the non-projection mode.
  • the control unit 10 controls the shutter 68 in the optical path formation control mode as the determination result [2], or controls the shutter 68 in the optical path non-formation control mode as the determination result [3].
  • the shutter 68 is in a standby state without the sunlight 31 entering, so it may be controlled in either the optical path formation control mode or the optical path non-formation control mode. Note that in Example 6, the determination result [1] is not used.
  • Example 7 the control unit 10 determines whether the ambient temperature Ta of the video display device 35 has exceeded the threshold.
  • the control unit 10 controls the shutter 68 in the switching control mode as determination result [1], and when it does not exceed the threshold, determines the determination result [2] and controls the shutter 68 in the optical path formation control mode.
  • the permissible value of the temperature rise amount ⁇ T(I) due to the sunlight 31 is reduced accordingly. Therefore, by using the switching control mode, the amount of temperature rise ⁇ T(I) is suppressed and damage to the display panel 64 is prevented. Note that in Example 7, determination result [3] is not used.
  • the control unit 10 determines whether the altitude (in other words, the elevation angle) of the sun 60 calculated based on the position information of the vehicle 2, such as latitude and longitude information, and the information on the current date and time, is within a predetermined range.
  • the position information of the vehicle 2 and the information of the current date and time can be obtained from GPS information or the like included in the vehicle information 4, for example.
  • the control unit 10 gives the determination result [1] and controls the shutter 68 in the switching control mode.
  • the predetermined range is, for example, a relatively high altitude range and a range in which the sunlight intensity can be relatively strong. Note that in Example 8, determination result [3] is not used.
  • the control unit 10 determines whether the altitude (in other words, the elevation angle) " ⁇ " of the sun 60 and the relative azimuth angle " ⁇ - ⁇ ” of the sun 60 calculated based on the position information of the vehicle 2, such as latitude and longitude information, and information on the current date and time, are within predetermined ranges.
  • “ ⁇ ” is the azimuth angle of the sun 60
  • “ ⁇ ” is the azimuth angle (in other words, orientation) of the vehicle 2 .
  • a relative azimuth angle “ ⁇ ” of the sun 60 represents the azimuth angle of the sun 60 relative to the orientation of the vehicle 2 as shown in FIG.
  • the azimuth angle “ ⁇ ” of the sun 60 is calculated based on the GPS information included in the vehicle information 4, such as the positional information of the vehicle 2 and information on the current date and time.
  • the direction “ ⁇ ” of the vehicle 2 is calculated based on acceleration gyro information, GPS information, etc. included in the vehicle information 4 .
  • the control unit 10 sets the determination result [1] and controls the shutter 68 in the switching control mode.
  • the control unit 10 determines result [2] and controls the shutter 68 in the optical path formation control mode. Note that, in Example 9, the determination result [3] is not used.
  • Example 8 if the altitude of the sun 60 is within a predetermined range, it is determined that strong sunlight 31 may enter, and the switching control mode is used. As a result, the amount of temperature rise ⁇ T(I) due to sunlight 31 is suppressed.
  • Example 9 even if the altitude of the sun 60 is within a predetermined range, if the vehicle 2 is oriented such that the sunlight 31 does not enter the display panel 64, it is determined that the strong sunlight 31 does not enter, and the optical path formation control mode is used instead of the switching control mode. As a result, compared to the case of example 8, the frequency of the ON/OFF operation of the shutter 68 is reduced, and it becomes possible to reduce power consumption, suppress wear of the shutter 68, and the like. Note that, in Example 9, the determination result [3] is not used.
  • Example 10 the control unit 10 determines whether or not the illuminance acquired from the illuminance sensor 45 of the vehicle 2 via the information acquisition unit 14 exceeds the threshold. When the obtained illuminance exceeds the threshold, the control unit 10 controls the shutter 68 in the switching control mode as determination result [1], and when it does not exceed the threshold, determines the determination result [2] and controls the shutter 68 in the optical path formation control mode.
  • the intensity of sunlight or the like is indirectly determined based on the detection result of the illuminance sensor 45 . Then, when it is determined that the sunlight intensity or the like is strong, the control unit 10 uses the switching control mode to suppress the temperature increase amount ⁇ T(I) accompanying the sunlight 31 . Note that in example 10, determination result [3] is not used.
  • Example 11 the control unit 10 determines whether the temperature obtained from the temperature sensor 52 of the vehicle 2 via the information obtaining unit 14 exceeds the threshold. When the obtained temperature exceeds the threshold, the control unit 10 controls the shutter 68 in the switching control mode as determination result [1], and when it does not exceed the threshold, determines the determination result [2] and controls the shutter 68 in the optical path formation control mode. In example 11, the control unit 10 detects or estimates the ambient temperature Ta or the like, for example, based on the temperature acquired from the temperature sensor 52, and controls the shutter 68 based on the result. Note that in Example 11, determination result [3] is not used.
  • the control unit 10 determines whether or not an abnormality in the operation of the HUD device 1 is detected.
  • the control unit 10 sets the determination result [3] and controls the shutter 68 in the optical path non-formation control mode. For example, when an abnormality occurs in the image display device 35 and strong image light 32 is emitted from the image display device 35, the driver 6 may visually recognize the image light 32, which may interfere with driving.
  • the optical path non-formation control mode is used when it is determined that an abnormality has been detected. Note that in Example 12, determination result [1] and determination result [2] are not used.
  • Example 13 if the HUD device 1 is in operation, the control unit 10 sets the determination result to [1] and controls the shutter 68 in the switching control mode. That is, in Example 13, the optical path formation control mode and the optical path non-formation control mode are not used, and the switching control mode is always used. Even in this case, for example, it is possible to sufficiently prevent damage to the display panel 64 by controlling the duty ratio according to the intensity of the sunlight with respect to the light source 65, or by using the protective operation of the mirror M1 together.
  • FIGS. 15A and 15B are diagrams for explaining another specific application example of the shutter in FIG. 3 and an operation example at that time.
  • the shutter 68 shown in FIGS. 15A and 15B is, for example, a transmission/diffusion type liquid crystal shutter.
  • the shutter 68 is controlled to the optical path forming state so that light is transmitted as in the case of FIG. 10A.
  • the shutter 68 diffuses light unlike the case of FIG. 10B by being controlled to the non-optical path formation state during the OFF period Toff of the light source 65 . That is, the shutter 68 blocks the sunlight 31 to the display panel 64 by diffusing the sunlight 31 . In this case, part of the diffused sunlight 31 can be incident on the display panel 64, but the incident energy is small, so the sunlight 31 is substantially blocked.
  • the installation location of the shutter 68 is not limited to the location between the optical component 63b and the mirror M2 as shown in FIGS. 15A and 15B, and can be changed as appropriate, as in FIGS. 10A and 10B. That is, the shutter 68 may be installed at a location between the image display device 35 and the optical component 63b, a location between the mirror (image light reflection portion) M2 and the mirror (image light projection portion) M1, or a location at the opening 7. Alternatively, the shutter 68 may be placed in contact with the reflecting surface of the mirror M2.
  • the installation location of the shutter 68 is too close to the display panel 64, for example, if it is located between the image display device 35 and the optical component 63b, the diffused sunlight 31 is likely to enter the display panel 64.
  • the installation location of the shutter 68 is preferably the location shown in FIGS. 15A and 15B.
  • the sunlight diffused by the shutter 68 may become stray light and reach the eyes of the driver 6 after being emitted from the opening 7 . For this reason, it is desirable to install, for example, a wall-shaped light shielding component or the like around the shutter 68 .
  • FIGS. 16A and 16B are diagrams explaining still another specific application example of the shutter in FIG. 3 and an operation example at that time.
  • the shutter 68 shown in FIGS. 16A and 16B is, for example, a MEMS (Micro Electro Mechanical Systems) shutter.
  • the shutter 68 is controlled to the optical path forming state so that light is transmitted as in the case of FIG. 10A.
  • the shutter 68 is controlled to the non-optical path formation state during the OFF period Toff of the light source 65, thereby reflecting light unlike the case of FIG. 10B. That is, the shutter 68 blocks the sunlight 31 to the display panel 64 by reflecting the sunlight 31 .
  • the shutter 68 is desirably installed so that the reflected light does not go to the mirror M2, as shown in FIGS. 16A and 16B.
  • the shutter 68 is desirably installed so that the surface normal SN of the shutter 68 and the optical axis of the image light 32 intersect.
  • the portion of the housing 61 that receives the reflected light is made of a highly heat-resistant material or a highly heat-dissipating material.
  • heat radiation fins or the like may be installed at the portion where the reflected light hits.
  • the installation location of the shutter 68 is not limited to the location between the optical component 63b and the mirror M2 as shown in FIGS. 16A and 16B, and can be changed as appropriate as in FIGS. 10A and 10B.
  • the shutter 68 is installed near the display panel 64, the problem of heat dissipation to the display panel 64 as in the case of FIG. 10B and the problem of diffused light entering the display panel 64 as in the case of FIG.
  • a switching unit for example, the shutter 68 is provided on the optical path of the image light 32, and the shutter 68 is controlled to periodically switch between the optical path formation state and the optical path non-formation state.
  • the shutter 68 is controlled to periodically switch between the optical path formation state and the optical path non-formation state.
  • an optical path formation control mode and an optical path non-formation control mode are provided, and the optical path formation control mode and the optical path non-formation control mode can be selected according to various conditions, thereby eliminating unnecessary on/off operations of the shutter.
  • the mirror (image light projection unit) M1 it becomes possible to prevent damage to the display panel 64 more reliably.
  • FIGS. 17A and 17B are diagrams for explaining a specific application example of the shutter and an operation example at that time in the HUD device according to the second embodiment.
  • the shutter 68 shown in FIGS. 17A and 17B is, for example, a transmissive/reflective MEMS shutter, as in FIGS. 16A and 16B.
  • image display device 35 and shutter 68 are arranged such that shutter 68 reflects image light from image display device 35 to mirror M2.
  • the shutter 68 reflects light rather than transmits it during the ON period Ton of the light source 65, that is, in the optical path forming state. Specifically, the shutter 68 reflects the image light 32 from the image display device 35 to the mirror M2 and reflects the sunlight 31 from the mirror M2 to the image display device 35 .
  • the shutter 68 transmits light instead of reflecting it during the OFF period Toff of the light source 65, that is, when the optical path is not formed.
  • the shutter 68 blocks the sunlight 31 to the display panel 64 by transmitting the sunlight 31 .
  • the portion of the housing 61 that is exposed to transmitted light be made of a highly heat-resistant material or a highly heat-dissipating material. Alternatively, heat radiating fins or the like may be installed at the portion where the transmitted light hits.
  • FIGS. 17A and 17B show an example in which the shutter 68 is separately installed, but as another modification using the reflection characteristics of the shutter 68, for example, in FIGS. 10A and 10B, it is possible to replace the mirror M2 with a MEMS shutter.
  • the MEMS shutter reflects the light during the ON period Ton of the light source 65, that is, in the optical path forming state, thereby forming an optical path similar to that in FIG. 10A.
  • the MEMS shutter transmits light during the OFF period Toff of the light source 65, that is, in the state where the optical path is not formed, and an optical path is formed such that the sunlight 31 is transmitted through the mirror M2 in FIG. 10B.
  • HUD head-up display
  • 2 2... vehicle
  • 4 vehicle information
  • 5 display area
  • 6 driver (user)
  • 10 control unit
  • 14 information acquisition unit
  • 15 temperature detection unit
  • 30 optical path of image light
  • 32 ... image light
  • 35 ... image display device
  • 60 sun
  • 62 drive mechanism
  • 64 display panel
  • 65 light source
  • 68 shutter
  • M1 mirror
  • M2 image light reflection portion
  • SN surface normal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Instrument Panels (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

太陽光に伴う破損を防止しつつ、利用者が虚像を視認できない時間帯を削減することが可能なヘッドアップディスプレイ装置およびその制御方法を提供する。本発明によれば、持続可能な開発目標の「3すべての人に健康と福祉を」に貢献する。映像表示装置35は、映像を表示し、表示した映像の映像光を出射する。ミラー(映像光投射部)M1は、映像表示装置35から出射された映像光を表示領域5に投射して反射させることで、投射された映像光を虚像として利用者に視認させる。シャッター68は、映像光の光路30上に設けられ、映像光の光路を形成する光路形成状態、または映像光の光路を形成しない光路非形成状態に切り替える。

Description

ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の制御方法
 本発明は、ヘッドアップディスプレイ装置およびその制御方法に関し、例えば、AR(Augmented Reality:拡張現実)を利用したヘッドアップディスプレイ装置の技術に関する。
 特許文献1には、太陽光などの外光の侵入を効果的に防ぐことができるヘッドアップディスプレイ装置が示される。当該ヘッドアップディスプレイ装置は、複数のシャッターを有するシャッター部を備え、表示部が表示する表示画像の大きさに応じて、シャッター部に形成される透過窓部の大きさを変化させることで、外光の侵入、ひいては、表示部の破損を防ぐ。
特開2015-152746号公報
 例えば、自動車等の車両を代表とする乗り物には、ヘッドアップディスプレイ(Head Up Display、明細書では「HUD」と略す)が搭載される場合がある。HUDは、車速やエンジン回転数といった走行情報や、ナビゲーション情報等をウィンドシールド(フロントガラス)等に投射して表示する。HUDを用いると、運転者は、ダッシュボードに組み込まれる計器盤、いわゆるインパネに視線を移動することなく運転に必要な情報を得ることができる。このため、安全運転に寄与することが可能になる。
 一方、HUDでは、近年、実在する風景上の対象物に各種情報を付加して表示するようなARの利用が望まれる。特に、ARを利用したHUD(AR-HUDと呼ぶ)では、広い表示領域が必要とされる。表示領域を広げるためには、映像光の光路上、すなわち表示パネルからウィンドシールドへの光路上に設けられる開口部を広げる必要がある。ただし、開口部を広げるほど、映像光の光路とは逆向きの光路で太陽光が入射し易くなる。その結果として、表示パネルが破損し易くなる。
 そこで、特許文献1のように、透過窓部の大きさを変化させる方式が考えられる。ただし、表示画像の大きさに応じて透過窓部の大きさを変化させた場合であっても、表示パネル上に太陽光の集光箇所が依然として生じ得るため、十分な保護が図れるとは限らない。十分な保護を図るためには、例えば、太陽光が入射する光路を遮断することが望まれる。しかしながら、通常、太陽光の光路を遮断すると、表示パネルからの映像光の光路も同時に遮断されるため、利用者が虚像を視認できない時間帯が生じる。
 本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、太陽光に伴う破損を防止しつつ、利用者が虚像を視認できない時間帯を削減することが可能なヘッドアップディスプレイ装置およびその制御方法を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 代表的なヘッドアップディスプレイ装置は、乗り物用のヘッドアップディスプレイ装置であって、映像表示装置と、映像光投射部と、切替部と、を備える。映像表示装置は、映像の映像光を出射する。映像光投射部は、映像表示装置から出射された映像光を表示領域に投射して反射させることで、虚像を乗り物の前方に表示する。切替部は、映像光の光路上に設けられ、映像光の光路を形成する光路形成状態、または映像光の光路を形成しない光路非形成状態に切り替える。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、ヘッドアップディスプレイ装置において、太陽光に伴う破損を防止しつつ、利用者が虚像を視認できない時間帯を削減することが可能になる。
実施の形態1によるヘッドアップディスプレイ装置を搭載した車両の構成例を示す概略図である。 図1におけるHUD装置の主要部の構成例を示す概略図である。 図2におけるHUD装置のより詳細な構成例および動作例を示す図である。 図3に示されるHUD装置の外形例を示す斜視図である。 図3に示されるHUD装置に含まれる制御系の主要部の構成例を示すブロック図である。 図5において、情報取得部に関わる箇所の構成例を示すブロック図である。 図5における温度検出部の処理内容の一例を説明する図である。 図5における温度検出部の処理内容の一例を説明する図である。 図3における光源の制御方法の一例を示すタイムチャートである。 図3におけるシャッターの制御方法の一例を示すタイムチャートである。 図3におけるシャッターの具体的な適用例と、その際の動作例を説明する図である。 図3におけるシャッターの具体的な適用例と、その際の動作例を説明する図である。 図3における光源およびシャッターの制御方法と、太陽光強度との関係の一例を示すタイムチャートである。 図5において、シャッターの制御に伴う制御部の処理内容の一例を示すフロー図である。 図12に示される条件判定(ステップS100)の具体例を示す図である。 図13を補足する図であり、太陽と車両との位置関係の一例を示す図である。 図3におけるシャッターの別の具体的な適用例と、その際の動作例を説明する図である。 図3におけるシャッターの別の具体的な適用例と、その際の動作例を説明する図である。 図3におけるシャッターの更に別の具体的な適用例と、その際の動作例を説明する図である。 図3におけるシャッターの更に別の具体的な適用例と、その際の動作例を説明する図である。 実施の形態2によるHUD装置において、シャッターの具体的な適用例と、その際の動作例を説明する図である。 実施の形態2によるHUD装置において、シャッターの具体的な適用例と、その際の動作例を説明する図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 <HUD装置の概要>
 図1は、実施の形態1によるヘッドアップディスプレイ装置を搭載した車両の構成例を示す概略図である。図1に示されるヘッドアップディスプレイ(HUD)装置1は、乗り物の一つである車両2に搭載される。車両2は、代表的には、自動車であるが、必ずしもこれに限定されず、鉄道車両等であってもよい。また、乗り物は、車両に限らず、航空機等であってもよい。また、車両2には、通常、ECU(Electronic Control Unit)と呼ばれる制御ユニット(図示せず)が搭載される。
 当該制御ユニットは、例えば、車両2の各部に設置された各種センサや、加えて、ナビゲーション装置等から車両情報4を取得する。各種センサは、例えば、車両2で生じた各種イベントを検知し、また、走行状況に関する各種パラメータ値を検知する。HUD装置1は、制御ユニットによって取得された車両情報4を、例えばCAN(Controller Area Network)通信等を用いて取得する。
 車両情報4には、例えば、車両2の速度情報やギア情報、ハンドル操舵角情報、ランプ点灯情報、外光情報、距離情報、赤外線情報、エンジンON/OFF情報、車内外のカメラ映像情報、加速度ジャイロ情報、GPS(Global Positioning System)情報、ナビゲーション情報、車車間通信情報、および路車間通信情報等が含まれる。GPS情報の中には、現在時刻等の情報も含まれる。HUD装置1は、このような車両情報4に基づいて、ウィンドシールド3等の表示領域5に映像を投射する。これにより、HUD装置1は、運転者等の利用者に、表示領域5に投射された映像を虚像として、詳細には車両2の前方の風景に重畳された虚像として視認させる。
 図2は、図1におけるHUD装置の主要部の構成例を示す概略図である。図2に示すHUD装置1は、映像表示装置35と、光反射部材であるミラーM1,M2とに加えて、切替部、例えばシャッター68を備える。映像表示装置35は、例えば、プロジェクタやLCD(Liquid Crystal Display)等であり、入力された映像データに基づいて映像を表示し、表示した映像の映像光を生成して出射する。映像表示装置35は、詳細には、光源65と、光学部品63aと、表示パネル64とを備える。
 光源65は、例えば、LED(Light Emitting Diode)光源や、レーザ光源等であり、表示パネル64にバックライトを照射する。詳細には、光源65は、オンに制御された際にバックライトを点灯し、オフに制御された際にバックライトを消灯する。光学部品63aは、例えば、光源用のレンズであり、光源65からのバックライトが表示パネル64に均一に照射されるようにバックライトの光路を調整する。表示パネル64は、代表的には、液晶パネル(LCD:Liquid Crystal Display)である。表示パネル64は、入力された映像データに応じて、光源65からのバックライトを変調することで、詳細には、透過率を画素毎に変調することで、映像を表示する。
 ミラーM2は、例えば、平面鏡であり、映像表示装置35とミラーM1との間の映像光の光路30上に設けられる。ミラーM2は、映像表示装置35からの映像光をミラーM1に反射する映像光反射部として機能する。ミラーM1は、例えば、凹面鏡(拡大鏡)であり、ミラーM2と、表示領域5との間の映像光の光路30上に設けられる。ミラーM1は、映像表示装置35から出射された映像光を表示領域5に投射することで、投射された映像光を虚像として運転者6等の利用者に視認させる映像光投射部として機能する。つまり、映像光投射部は、映像表示装置35から出射された映像光を乗り物の表示領域5に投射して反射させることで、虚像を乗り物の前方に表示するものである。
 詳細には、ミラー(映像光投射部)M1は、ミラー(映像光反射部)M2で反射された映像光を反射および拡大し、開口部7を介して表示領域5に投射する。表示領域5に投射された映像光は、表示領域5で反射され、運転者6の目に入射する。その結果、運転者6は、表示領域5に投射された映像光を、透明のウィンドシールド3の先の虚像として、車外の風景(道路や建物、人など)に重畳される形で視認する。虚像が表す情報の中には、例えば、道路標識や、自車の現速度や、風景上の対象物に付加される各種情報、すなわちAR情報等、様々なものが含まれる。
 なお、ミラーM1,M2は、例えば、自由曲面ミラーや光軸非対称の形状を有するミラー等であってよい。ここで、ミラー(映像光反射部)M2は、設置角度が固定される。一方、ミラー(映像光投射部)M1は、駆動機構62を含んでいる。これにより、ミラーM1は、駆動機構62を介して設置角度が可変調整される。駆動機構62は、例えば、モータを含み、モータの回転動作によってミラーM1を回転させる。ミラーM1の角度を、回転軸を中心に回転しながら調整することで、映像光を表示領域5に投射する投射モードまたは映像光を表示領域5に投射しない非投射モードに切り替えることが可能となる。
 また、投射モードにおいてミラーM1の設置角度を調整することで、ウィンドシールド3上の表示領域5の位置、すなわち、運転者6が視認する虚像の上下方向の位置を調整できる。また、例えば、ミラーM1および開口部7を大面積化することで、表示領域5の面積を拡大でき、より多くの情報を表示領域5に投射することが可能になる。これにより、風景上の対象物に各種情報を付加して表示するAR機能が実現できる。
 シャッター68は、映像光の光路30上、図2に示される例では、映像表示装置35とミラー(映像光反射部)M2との間の映像光の光路30上に設けられる。シャッター68は、映像光の光路を形成する光路形成状態、または映像光の光路を形成しない光路非形成状態に制御される。図2に示される例では、シャッター68は、光路形成状態では光を透過し、光路非形成状態では光を遮光する。シャッター68は、代表的には、透過/遮光を高速に切り替えることが可能な液晶シャッター等である。詳細は後述するが、光路形成状態と光路非形成状態との切り替えは、運転者6が表示領域5に投射された映像光を虚像として視認できる程度に速い速度で行われる。
 <HUD装置の詳細>
 図3は、図2におけるHUD装置のより詳細な構成例および動作例を示す図である。図4は、図3に示されるHUD装置の外形例を示す斜視図である。図3に示すHUD装置1は、筐体61内に、図2の場合と同様の映像表示装置35、シャッター68、ミラーM1,M2および駆動機構62を備える。さらに、図3では、筐体61内に、日射センサ66と光学部品63bとが設けられる。
 日射センサ66は、太陽60の位置および太陽光31の強度を検知する。光学部品63bは、投射用のレンズであり、映像表示装置35とシャッター68との間の映像光の光路上に設けられる。光学部品63bは、例えば、表示パネル64からの映像光の広がり等を調整する。なお、図3では、記載の簡略化のため、図2に示した映像表示装置35内の光学部品63aの図示は省略されている。
 ここで、ミラー(映像光投射部)M1は、駆動機構62を介して設置角度が調整されることによって、映像光を表示領域に投射する投射モード、または映像光を表示領域に投射しない非投射モードに制御される。図3に示す矢印方向は、ミラーM1を回転する方向となり、投射モードから非投射モードに切り替える方向となる。投射モードでは、映像光が表示領域に投射される一方で、当該映像光の光路とは逆向きの光路33aで太陽光31が表示パネル64に入射され得る。その結果、表示パネル64が破損するおそれがある。そこで、ミラーM1を非投射モードに制御することで、太陽光31が表示パネル64に入射されないような光路33bを形成することができる。
 なお、図3では、シャッター68が設けられるため、仮に、ミラーM1が投射モードに制御された状態であっても、シャッターを光路非形成状態、例えば遮光に固定することで、太陽光31の表示パネル64への入射を防止することができる。ただし、シャッター68は、材質等によっては、強い太陽光31が照射されることで劣化するような場合がある。このため、非投射モードを設け、シャッター68から外れる光路33bとなるように、ミラーM1の設置角度を調整することが望ましい。
 ミラー(映像光投射部)M1を非投射モードに制御するか否かは、例えば、日射センサ66の検知結果に基づいて判定することができる。また、図示は省略されるが、筐体61内には、さらに、周囲温度を検知するための温度センサが設置されてもよい。そして、当該周囲温度に基づいて、ミラーM1を非投射モードに制御するか否かを判定してもよい。ただし、例えば、車両2に設置された温度センサから周囲温度を取得する場合には、筐体61に温度センサを設置する必要はない。
 図4において、筐体61には、図3に示した開口部7が形成され、当該開口部7に、グレアトラップ等と呼ばれる透明色のカバー部材71が設置される。筐体61内には、図3に示したように、ミラー(映像光反射部)M2からの光をカバー部材71、すなわち開口部7に反射するようにミラー(映像光投射部)M1が設置される。また、筐体61には、例えば、カバー部材71の周辺等に日射センサ66が設置される。
 日射センサ66は、太陽60の位置(方位および仰角)が所定範囲内に存在する場合に太陽光強度を検知するような構成および配置であってよい。例えば、ミラーM1に対する太陽光31の入射角、ひいては太陽60の位置によっては、太陽光31の光路が表示パネル64から逸脱するため、表示パネル64の破損の可能性を無視できる。すなわち、季節、時間帯、車両2の向き等によっては、破損の可能性を無視できる。
 この破損の可能性を無視できる入射角の範囲、言い換えれば破損の可能性を無視できない入射角の範囲は、ミラーM1,M2および光学部品63bを含む光学系の光学条件(例えば、設置位置、設置角度、サイズ等)に基づいて予め定めることができる。そこで、日射センサ66は、この表示パネル64の破損の可能性を無視できない入射角(太陽60の位置)の範囲を所定範囲として、この所定範囲内で太陽光強度を検知する。
 具体的な日射センサ66の構成として、例えば、フォトダイオード等の受光素子周りに開口部や遮蔽板等を適宜設置することで、受光素子に入射される太陽光の入射角を物理的に制限するような方式が挙げられる。または、太陽60の位置および太陽光強度の両方を検知可能な既知の日射センサ(例えば、4個の受光素子の光強度バランスで位置を検知するセンサ等)を用いて、検知された位置情報と太陽光強度情報とを組み合わせて信号処理を行うような方式であってもよい。なお、日射センサ66は、必ずしも太陽60の位置を検知する必要はなく、少なくとも太陽光強度を検知するように構成および配置されればよい。
 <HUD装置の制御系の構成>
 図5は、図3に示されるHUD装置に含まれる制御系の主要部の構成例を示すブロック図である。図5に示されるHUD装置1は、互いにバスで接続される、制御部10、映像処理部11、音声処理部12、通信部13、情報取得部14、温度検出部15、不揮発性メモリ17、揮発性メモリ18、シャッター駆動部21、光源駆動部22および駆動機構62を備える。また、当該HUD装置1は、音声用ドライバ19、表示用ドライバ20、スピーカ25、表示パネル64、光源65、日射センサ66、シャッター68およびミラー(映像投射部)M1を備える。
 不揮発性メモリ17には、各種プログラムや各種データが保存される。不揮発性メモリ17に保存された各種プログラムや各種データは、適宜、揮発性メモリ18にコピーされ、プロセッサによって参照される。情報取得部14は、例えば、CANインタフェース回路またはLIN(Local Interconnect Network)インタフェース回路などで構成され、図1で述べたように、CAN通信またはLIN通信を用いて制御ユニットから車両情報4を取得する。通信部13は、例えば、所定の通信規格に基づく有線通信インタフェース回路または無線通信インタフェース回路で構成され、HUD装置1の外部との間で、車両情報4を除く各種制御情報等を通信する。
 光源駆動部22は、例えば、LEDドライバ回路等によって構成され、光源65を駆動する。その一つして、光源駆動部22は、例えば、光源65に対する電圧印加の有り/無しを周期的に切り替えることで、光源65からのバックライトの輝度を制御する。具体的には、光源駆動部22は、例えば、PWM(Pulse Width Modulation)制御等を用いてバックライトの輝度を制御する。
 映像処理部11は、車両情報4などに基づいて、表示パネル64に表示する映像、ひいては、図2に示した表示領域5に投射する映像を定める映像データを生成する。この際に、映像処理部11は、例えば、ウィンドシールド3の曲率等によって生じ得る各種歪みを補正したのちの映像データを生成する。映像処理部11は、例えば、プロセッサが、揮発性メモリ18に保存された映像処理プログラムを実行すること等で実現される。
 表示用ドライバ20は、例えば、LCDドライバ回路等によって構成される。表示用ドライバ20は、映像処理部11からの映像データに基づいて、表示パネル64に含まれる各表示素子(画素)を駆動する。これにより、表示用ドライバ20は、表示パネル64に、光源65からのバックライトを変調させ、映像データに基づく映像を表示させる。
 音声処理部12は、必要に応じて、車両情報4などに基づく音声データを生成する。音声データは、例えば、ナビゲーション装置の音声案内を行う場合や、AR機能によって運転者6に警告を発行する場合などで生成される。音声用ドライバ19は、音声処理部12からの音声データに基づいてスピーカ25を駆動し、スピーカ25に音声を出力させる。音声処理部12は、例えば、プロセッサが、揮発性メモリ18に保存された音声処理プログラムを実行すること等で実現される。
 シャッター駆動部21は、例えば、シャッター68の種類に応じたドライバ回路で構成される。シャッター駆動部21は、図2で述べたように、シャッター68を光路形成状態または光路非形成状態に制御する。駆動機構62は、例えば、モータおよび、当該モータを駆動するモータドライバ回路等によって構成される。駆動機構62は、ミラーM1の設置角度を調整する。
 温度検出部15は、映像表示装置35、詳細には、表示パネル64の温度を検出する。この際に、温度検出部15は、詳細は後述するが、日射センサ66からの検知結果、すなわち太陽光強度等に基づいて、表示パネル64の温度を演算によって推定する。すなわち、実装上の制約等により、表示パネル64の温度を直接的に検出することが困難となる場合がある。温度検出部15は、このような場合に設けられ、所定の演算によって表示パネル64の温度を間接的に検出する。温度検出部15は、例えば、プロセッサが、揮発性メモリ18に保存された温度検出プログラムを実行すること等で実現される。
 制御部10は、HUD装置1全体を制御する。その一つとして、制御部10は、光源駆動部22を介して光源65からのバックライトの輝度を制御する。すなわち、制御部10は、PWM制御等を用いて、光源65のオン/オフ、すなわち光源65への電圧印加の有り/無しを制御する。さらに、制御部10は、光路形成状態と光路非形成状態とが周期的に切り替わるように、シャッター駆動部21を介してシャッター68を制御する。制御部10は、例えば、プロセッサが、揮発性メモリ18に保存された制御プログラムを実行すること等で実現される。
 なお、制御部10、映像処理部11、音声処理部12、通信部13、情報取得部14、温度検出部15、不揮発性メモリ17および揮発性メモリ18は、プロセッサおよび各種周辺回路を備えたマイクロコントローラ等で実現され得る。ただし、これらの一部または全ては、適宜、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等で実現されてもよい。
 図6は、図5において、情報取得部に関わる箇所の構成例を示すブロック図である。情報取得部14は、各種センサ等の情報取得デバイスによって生成された車両情報4を、図示しない制御ユニットを介して取得する。図6には、当該情報取得デバイスの一例が示される。
 図6において、車速センサ41は、図1の車両2の速度を検知し、検知結果となる速度情報を生成する。シフトポジションセンサ42は、現在のギアを検知し、検知結果となるギア情報を生成する。ハンドル操舵角センサ43は、現在のハンドル操舵角を検知し、検知結果となるハンドル操舵角情報を生成する。ヘッドライトセンサ44は、ヘッドライトのON/OFFを検知し、検知結果となるランプ点灯情報を生成する。照度センサ45および色度センサ46は、外光を検知し、検知結果となる外光情報を生成する。
 測距センサ47は、車両2と外部の物体との間の距離を検知し、検知結果となる距離情報を生成する。赤外線センサ48は、車両2の近距離における物体の有無や距離等を検知し、検知結果となる赤外線情報を生成する。エンジン始動センサ49は、エンジンのON/OFFを検知し、検知結果となるON/OFF情報を生成する。加速度センサ50およびジャイロセンサ51は、車両2の加速度および角速度をそれぞれ検知し、検知結果として、車両2の姿勢や挙動を表す加速度ジャイロ情報を生成する。温度センサ52は、車内外の温度を検知し、検知結果となる温度情報を生成する。
 路車間通信用無線送受信機53は、車両2と、道路、標識、信号機等との間の路車間通信によって路車間通信情報を生成する。車車間通信用無線送受信機54は、車両2と周辺の他の車両との間の車車間通信によって車車間通信情報を生成する。車内用カメラ55および車外用カメラ56は、それぞれ、車内および車外を撮影することで車内のカメラ映像情報および車外のカメラ映像情報を生成する。車内用カメラ55は、例えば、図2に示した運転者6の姿勢や、眼の位置、動き等を撮影するDMS(Driver Monitoring System)用のカメラ等である。この場合、撮像された映像を解析することで、運転者6の疲労状況や視線の位置等が把握できる。
 一方、車外用カメラ56は、例えば、車両2の前方や後方といった周囲の状況を撮影する。この場合、撮像された映像を解析することで、周辺に存在する他の車両や人などの障害物の有無、建物や地形、雨や積雪、凍結、凹凸等といった路面状況、および道路標識等を把握することが可能になる。また、車外用カメラ56には、例えば、走行中の状況を映像で記録するドライブレコーダ等も含まれる。
 GPS受信機57は、GPS信号を受信することで得られるGPS情報を生成する。例えば、GPS受信機57によって、現在時刻を取得することも可能である。VICS(Vehicle Information and Communication System、登録商標)受信機58は、VICS信号を受信することで得られるVICS情報を生成する。GPS受信機57やVICS受信機58は、ナビゲーション装置の一部として設けられてもよい。なお、図6に示される各種情報取得デバイスに関しては、適宜、削除することや、他の種類のデバイスを追加することや、他の種類のデバイスに置き換えることが可能である。
 <温度検出部と太陽光対策について>
 図7Aおよび図7Bは、図5における温度検出部の処理内容の一例を説明する図である。図7Aには、図3の場合と同様のHUD装置1が示される。図7Bには、図7Aにおける映像表示装置35の部分が抽出して示される。図7Bに示されるように、表示パネル64の温度は、映像表示装置35の周囲温度Taと、太陽光31に伴う温度上昇量ΔT(I)と、光源65からの熱放射に伴う温度上昇量ΔT(L)とによって推定することができる。
 周囲温度Taは、図3で述べたように、HUD装置1内に設置された温度センサか、または、車両2内に設置された温度センサ52によって検知される。太陽光31に伴う温度上昇量ΔT(I)は、日射センサ66によって検知された太陽光強度に基づいて算出される。光源65からの熱放射に伴う温度上昇量ΔT(L)は、光源65に設定されるバックライトの輝度、すなわちPWM制御のデューティ比等に基づいて算出される。温度検出部15は、このような周囲温度Taと、温度上昇量ΔT(I)と、温度上昇量ΔT(L)とを用いた演算によって表示パネル64の温度を間接的に検出する。
 ここで、光源65からの熱放射に伴う温度上昇量ΔT(L)は、バックライトの輝度によって制御可能なパラメータである。このため、制御部10は、例えば、温度検出部15によって検出された表示パネル64の温度が、所定の閾値を超えるような場合には、バックライトの輝度を下げる、すなわちPWM制御のデューティ比を下げることで、表示パネル64の温度上昇を抑制することが可能である。
 一方、例えば、太陽光31に伴う温度上昇量ΔT(I)が非常に大きいような場合には、このようなバックライトの輝度制御を用いたとしても、表示パネル64の温度上昇を抑制することが困難となり得る。このような場合、制御部10は、駆動機構62を介してミラー(映像光投射部)M1を非投射モードに制御すればよい。ただし、ミラーM1を非投射モードに制御した場合、運転者6は、虚像を視認できなくなる。そこで、シャッター68を用いて、以下に述べるような制御を行うことが有益となる。
 <シャッターの詳細>
 図8は、図3における光源の制御方法の一例を示すタイムチャートである。図7Bで述べたように、制御部10は、光源65からの熱放射に伴う温度上昇量ΔT(L)を抑制するため、バックライトの輝度を制御することができる。また、制御部10は、運転者6からの要求、例えば、運転者6による操作に応じて、バックライトの輝度を制御する場合もある。
 このような場合、制御部10は、光源駆動部22を介して、例えば、図8に示されるようなPWM制御を用いて光源65のオン/オフを制御する。各PWM周期Tpwmには、光源65に電圧Vfが印加されるオン期間Tonと、光源65に電圧が印加されないオフ期間Toffとが設けられる。光源65は、オン期間Tonで点灯し、オフ期間Toffで消灯する。PWM周期Tpwmに対するオン期間Tonの比率(=Ton/Tpwm)は、デューティ比[%]と呼ばれる。映像光は、デューティ比が100%に近づくほど明るくなり、0%に近づくほど暗くなる。
 図9は、図3におけるシャッターの制御方法の一例を示すタイムチャートである。図10Aおよび図10Bは、図3におけるシャッターの具体的な適用例と、その際の動作例を説明する図である。図9に示されるように、制御部10は、光源65に電圧Vfを印加するオン期間Tonでは、シャッター68を光路形成状態、例えば透過に制御し、光源65に電圧を印加しないオフ期間Toffでは、シャッター68を光路非形成状態、例えば遮光に制御する。詳細には、制御部10は、このようなシャッター68の透過/遮光を、シャッター駆動部21を介して制御する。
 図10Aおよび図10Bは、映像光32を表示領域に投射する投射モードでの動作を示す。具体例として、図10Aおよび図10Bに示されるシャッター68は、例えば、透過/吸収型の液晶シャッターである。図10Aに示されるように、シャッター68は、光源65のオン期間Tonでは、光路形成状態に制御されることで光を透過する。すなわち、映像表示装置35からの映像光32は、シャッター68を透過し、ミラーM2に入射する。また、ミラーM2からの太陽光31は、シャッター68を透過し、映像表示装置35に入射する。一方、図10Bに示されるように、シャッター68は、光源65のオフ期間Toffでは、光路非形成状態に制御されることで光を吸収する。すなわち、シャッター68は、太陽光31を吸収することで、表示パネル64への太陽光31を遮光する。
 液晶シャッターを用いる場合、太陽光31の吸収によってシャッター68自身が熱を持ち得る。これに伴うシャッター68の破損を防止するため、制御部10は、例えば、表示パネル64に加えて、シャッター68の温度管理を行うことが望ましい。具体例として、制御部10は、例えば、日射センサ66で検知された太陽光強度、シャッター68をPWM制御する際のデューティ比、および周囲温度Ta等に基づいて、シャッター68の温度を推定できる。そして、制御部10は、シャッター68の推定温度が閾値を超えた場合には、ミラーM1を非投射モードに制御することで、シャッター68の破損を防止すればよい。
 また、シャッター68の設置箇所は、図10Aおよび図10Bに示されるような、光学部品63bとミラー(映像光反射部)M2との間の映像光32の光路上に限らない。例えば、シャッター68の設置箇所は、映像表示装置35と光学部品63bとの間、またはミラー(映像光反射部)M2とミラー(映像光投射部)M1との間の映像光32の光路上であってもよい。この際に、シャッター68は、ミラーM2の反射面に接する形で設置されてもよい。あるいは、シャッター68の設置箇所は、ミラー(映像光投射部)M1と表示領域5との間の映像光32の光路上、例えば、開口部7の箇所であってもよい。
 ただし、映像光32は開口部7に近づくほど広がり得るため、これに応じて必要とされるシャッター68の面積も大きくなり得る。また、シャッター68の設置箇所が表示パネル64に近過ぎる場合、太陽光31を吸収したシャッター68からの放熱が表示パネル64の温度上昇を招くおそれがある。これら2つの事項のバランスをとる観点では、シャッター68の設置箇所は、図10Aおよび図10Bに示される箇所が望ましい。
 ここで、図8に示したPWM周期Tpwmの長さは、特に限定はされないが、例えば、msオーダである。このようなPWM周期Tpwmを用いた場合、運転者6は、オン期間Tonで投射された虚像の残像によって、オフ期間Toffが存在するにも関わらず、虚像を持続的に視認することができる。なお、実施の形態では、シャッター68の制御方法として、PWM制御が用いられるが、必ずしもPWM制御が用いられる必要はない。すなわち、必要な条件として、シャッター68が光路非形成状態に制御される期間、ここではオフ期間Toffの長さは、運転者6が映像光32を虚像として持続的に視認できる長さであればよい。
 明細書では、図9に示したように、光路形成状態と光路非形成状態とが周期的に切り替わるようにシャッター68を制御する制御モードを、切り替え制御モードまたは第1の制御モードと呼ぶ。切り替え制御モードの代表例として、制御部10は、図9に示したように、光源65のオン/オフに連動して、シャッター68を光路形成状態/光路非形成状態に制御する。
 一方、明細書では、図9の場合と異なり、光源65のオン/オフに関わらず、シャッター68を光路形成状態に固定する、例えば透過に固定する制御モードを、光路形成制御モードまたは第2の制御モードと呼ぶ。同様に、光源65のオン/オフに関わらず、シャッター68を光路非形成状態に固定する、例えば遮光に固定する制御モードを、光路非形成制御モードまたは第3の制御モードと呼ぶ。
 例えば、光路形成制御モードを用いた場合、運転者6は映像光32を虚像として視認できるが、その反面、映像表示装置35への太陽光31の入射が生じ得る。また、光路非形成制御モードを用いた場合、映像表示装置35への太陽光31の入射を防止できるが、その反面、運転者6は映像光32を虚像として視認できなくなる。一方、切り替え制御モードを用いると、運転者6に映像光32を虚像として視認させつつ、映像表示装置35への太陽光31の入射を抑制できる。
 具体的には、切り替え制御モードでは、シャッター68は、オン期間Tonで出射された表示パネル64からの映像光32を、全て透過することができる。また、シャッター68は、表示パネル64からの映像光32が出射されないオフ期間Toffにおいて、太陽光31の表示パネル64への入射を遮光することができる。その結果、太陽光31が入射される期間は、PWM周期Tpwm内のオン期間Tonに限定されるため、図7Bに示した太陽光31に伴う温度上昇量ΔT(I)を抑制できる。これらにより、太陽光31に伴う映像表示装置35、詳細には表示パネル64の破損を防止しつつ、運転者6が虚像を視認できない時間帯を削減することが可能になる。
 なお、シャッター68は、デフォルト状態が透過であるものと、デフォルト状態が遮光であるものとが存在し得る。シャッター68は、デフォルト状態が透過である場合、電圧Vfの印加によって遮光に制御され、デフォルト状態が遮光である場合、電圧Vfの印加によって透過に制御される。デフォルト状態が透過であるシャッター68を用いると、シャッター68の制御に伴う消費電力を抑制できる。すなわち、HUD装置1の一般的な使用形態では、シャッター68を透過に制御する期間は、シャッター68を遮光に制御する期間よりも長くなる。一方、デフォルト状態が遮光であるシャッター68を用いると、何らかの原因でシャッター68を制御できなくなった場合でも、表示パネル64の破損を防止することができる。
 図11は、図3における光源およびシャッターの制御方法と、太陽光強度との関係の一例を示すタイムチャートである。図11に示されるように、制御部10は、太陽光強度が強くなると、光源65に対するPWM制御のディーティ比を下げる制御を行う。これにより、光源65に伴う温度上昇量ΔT(L)、ひいては表示パネル64の温度上昇を抑制することができる。
 さらに、制御部10は、当該光源65のPWM制御に連動して、シャッター68を切り替え制御モードで制御する。これにより、ディーティ比の低下に伴いより長くなったオフ期間Toffにおいて、太陽光31をシャッター68で遮光できるため、太陽光31に伴う温度上昇量ΔT(I)、ひいては、表示パネル64の温度上昇をより大きく抑制することができる。このように、PWM制御を用いて光源65のオン/オフを制御し、当該光源65のオン/オフに連動して、シャッター68を光路形成状態/光路非形成状態に制御することで、表示パネル64の温度上昇を抑制する効果を相乗的に得ることが可能になる。
 <切り替え制御モードの変形例>
 図9では、光源65のオン/オフに連動させるように切り替え制御モードを用いたが、場合によっては、表示パネル64が常時映像光を出射した状態、すなわち、光源65が常時オンの状態で、シャッター68をPWM制御するような方式を用いることも可能である。このような方式を用いた場合であっても、太陽光31に伴う温度上昇量ΔT(I)を抑制する効果が得られる。ただし、この場合、光源65のオン/オフに連動させる場合と比較して、光源65に伴う温度上昇量ΔT(L)が増加し、さらに、光源65で生じる消費電力も増大する。このような観点では、光源65のオン/オフに連動させるように切り替え制御モードを用いることが有益となる。
 <シャッターの制御方法の詳細>
 図12は、図5において、シャッターの制御に伴う制御部の処理内容の一例を示すフロー図である。制御部10は、図12の示されるフローを所定の制御周期で繰り返し実行する。図12において、制御部10は、判定項目Aに対する条件判定を行う(ステップS100)。制御部10は、ステップS100での判定結果が判定結果[1]の場合、シャッター68を切り替え制御モードで制御する(ステップS101)。すなわち、制御部10は、光路形成状態/光路非形成状態が周期的に切り替わるようにシャッター68を制御し、詳細には、例えば、光源65のオン/オフに連動してシャッター68を光路形成状態/光路非形成状態に制御する。
 一方、制御部10は、ステップS100での判定結果が判定結果[2]の場合、シャッター68を光路形成制御モードで制御する(ステップS102)。すなわち、制御部10は、シャッター68を光路形成状態に固定する。また、制御部10は、ステップS100での判定結果が判定結果[3]の場合、シャッター68を光路非形成制御モードで制御する(ステップS103)。すなわち、制御部10は、シャッター68を光路非形成状態に固定する。
 図13は、図12に示される条件判定(ステップS100)の具体例を示す図である。図14は、図13を補足する図であり、太陽と車両との位置関係の一例を示す図である。図13には、図12における条件判定(ステップS100)の具体例として、例1~例13が示される。例1~例13では、判定項目Aと、判定結果[1]、判定結果[2]および判定結果[3]との対応関係が示される。
 例1において、制御部10は、日射センサ66による太陽光31の検知有無を判定する。詳細には、制御部10は、日射センサ66の検知結果に基づいて、例えば、昼間/夜間、晴れ/曇りといったような区分で、太陽光31の実質的な存在有無を判定する。制御部10は、太陽光31を検知有りと判定した場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御し、太陽光31を検知無しと判定した場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。なお、例1では、判定結果[3]は、用いられない。
 例2において、制御部10は、日射センサ66で検知した太陽光強度が閾値を超えたか否かを判定する。詳細には、制御部10は、例えば、日射センサ66で検知された太陽光強度が表示パネル64の破損を招き得る程度であるか否かを、閾値に基づいて判定する。このため、例2では、ある程度大きい閾値が用いられる。なお、制御部10は、例えば、例1において、例2の場合よりも十分に小さい閾値を用いて、太陽光31の検知有無を判定してもよい。また、例1および例2では、制御部10は、図4で述べたような日射センサ66の構成および配置によって、太陽60の位置を含めて判定を行ってもよい。
 制御部10は、太陽光強度が閾値を超えた場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御し、太陽光強度が閾値を超えない場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。太陽光強度が閾値を超えた場合に、切り替え制御モードを用いることで、太陽光31に伴う温度上昇量ΔT(I)を抑制することが可能になる。一方、太陽光強度が閾値を超えない場合、光路形成制御モードを用いることで、シャッター68のオン/オフ動作の頻度が減り、消費電力を低減することや、シャッター68の摩耗を抑制すること等が可能になる。なお、例2では、判定結果[3]は、用いられない。
 例3において、制御部10は、周囲温度Ta、映像輝度に応じた温度上昇量ΔT(L)、および太陽光強度に応じた温度上昇量ΔT(I)から推定される現時点での表示パネル64の推定温度が、閾値を超えたか否かを判定する。すなわち、制御部10は、温度検出部15の検出結果に基づいて判定を行う。制御部10は、現時点での表示パネル64の推定温度が閾値を超えた場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御し、太陽光強度が閾値を超えない場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。なお、例3では、判定結果[3]は、用いられない。
 例4において、制御部10は、例3の場合と異なり、周囲温度Ta、映像輝度に応じた温度上昇量ΔT(L)、および太陽光強度に応じた温度上昇量ΔT(I)から推定される一定時間後の表示パネル64の温度が、閾値を超えたか否かを判定する。詳細には、制御部10は、例えば、温度上昇量ΔT(L),ΔT(I)の変化率や、過渡特性等を反映して一定時間後の表示パネル64の温度を推定し、当該推定した温度が閾値を超えた場合には、現時点で切り替え制御モードを適用する。例3では、急激な温度上昇が生じた場合、表示パネル64の温度が、制御遅延によって想定を超えて上昇する可能性がある。例4を用いると、このような場合にも対応することが可能になる。
 例5において、制御部10は、ミラーM1に装着された駆動機構62における異常検出の有無を判定する。制御部10は、異常検出有りと判定した場合には、判定結果[3]として、シャッター68を光路非形成制御モードで制御する。なお、例5では、判定結果[1]および判定結果[2]は、用いられない。異常検出有りの場合とは、例えばモータ等の駆動機構62において、過電流、過負荷、過温度等が検出された場合である。この場合、ミラーM1を用いた保護動作、すなわち非投射モードへの遷移が実行不可となるため、光路非形成制御モードを用いることで、表示パネル64の破損を確実に防止する。
 例6において、制御部10は、ミラーM1の制御状態が非投射モードであるか否かを判定する。制御部10は、ミラーM1の制御状態が非投射モードである場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御するか、または、判定結果[3]として、シャッター68を光路非形成制御モードで制御する。非投射モードでは、シャッター68は、太陽光31が入射されずに待機している状態であるため、光路形成制御モードまたは光路非形成制御モードのいずれで制御されてもよい。なお、例6では、判定結果[1]は、用いられない。
 例7において、制御部10は、映像表示装置35の周囲温度Taが閾値を超えたか否かを判定する。制御部10は、周囲温度Taが閾値を超えた場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御し、閾値を超えない場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。周囲温度Taが閾値を超えた場合、その分だけ、太陽光31に伴う温度上昇量ΔT(I)の許容値は低下する。そこで、切り替え制御モードを用いることで、温度上昇量ΔT(I)を抑制し、表示パネル64の破損を防止する。なお、例7では、判定結果[3]は、用いられない。
 例8において、制御部10は、車両2の位置情報、例えば、緯度および経度情報と、現在日時の情報とに基づいて算出される太陽60の高度(言い換えれば仰角)が所定範囲にあるか否かを判定する。車両2の位置情報や、現在日時の情報は、例えば、車両情報4に含まれるGPS情報等から取得され得る。制御部10は、太陽60の高度が所定範囲にある場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御し、所定範囲にない場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。所定範囲は、例えば、相対的に高い高度の範囲であり、太陽光強度が相対的に強くなり得る範囲である。なお、例8では、判定結果[3]は、用いられない。
 例9において、制御部10は、車両2の位置情報、例えば、緯度および経度情報と、現在日時の情報とに基づいて算出される太陽60の高度(言い換えれば仰角)“α”と、太陽60の相対方位角“β-γ”とが、それぞれ、所定範囲にあるか否かを判定する。“β”は、太陽60の方位角であり、“γ”は、車両2の方位角(言い換えれば向き)である。太陽60の相対方位角“β-γ”は、図14に示されるように、車両2の向きを基準した太陽60の方位角を表す。太陽60の方位角“β”は、車両情報4に含まれるGPS情報等、例えば車両2の位置情報および現在日時の情報等に基づいて算出される。車両2の向き“γ”は、車両情報4に含まれる加速度ジャイロ情報やGPS情報等に基づいて算出される。
 制御部10は、太陽60の高度“α”が所定範囲にあり、すなわちAmin≦α≦Amaxを満たし、かつ、太陽60の相対方位角“β-γ”が所定範囲にある、すなわちBmin≦β-γ≦Bmaxを満たす場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御する。一方、制御部10は、太陽60の高度“α”が所定範囲にないか、または、相対方位角“β-γ”が所定範囲にない場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。なお、例9では、判定結果[3]は、用いられない。
 ここで、例8では、太陽60の高度が所定範囲にあれば、強い太陽光31が入射し得る状況と判定され、切り替え制御モードが用いられる。これにより、太陽光31に伴う温度上昇量ΔT(I)が抑制される。一方、例9では、太陽60の高度が所定範囲にあったとしても、太陽光31が表示パネル64に入射されないような車両2の向きになっていれば、強い太陽光31が入射されない状況と判定され、切り替え制御モードではなく、光路形成制御モードが用いられる。これにより、例8の場合と比較して、シャッター68のオン/オフ動作の頻度が減り、消費電力を低減することや、シャッター68の摩耗を抑制すること等が可能になる。なお、例9では、判定結果[3]は、用いられない。
 例10において、制御部10は、情報取得部14を介して車両2の照度センサ45から取得した照度が、閾値を超えたか否かを判定する。制御部10は、取得した照度が閾値を超えた場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御し、閾値を超えない場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。例10では、照度センサ45の検知結果に基づいて、太陽光強度等が間接的に判定される。そして、制御部10は、太陽光強度等が強いと判定される場合には、切り替え制御モードを用いて太陽光31に伴う温度上昇量ΔT(I)を抑制する。なお、例10では、判定結果[3]は、用いられない。
 例11において、制御部10は、情報取得部14を介して車両2の温度センサ52から取得した温度が、閾値を超えたか否かを判定する。制御部10は、取得した温度が閾値を超えた場合には、判定結果[1]として、シャッター68を切り替え制御モードで制御し、閾値を超えない場合には、判定結果[2]として、シャッター68を光路形成制御モードで制御する。例11では、制御部10は、例えば、温度センサ52から取得した温度に基づいて、周囲温度Ta等を検知または推定し、その結果に基づいてシャッター68を制御する。なお、例11では、判定結果[3]は、用いられない。
 例12において、制御部10は、HUD装置1の動作における異常検出の有無を判定する。制御部10は、異常検出有りと判定した場合には、判定結果[3]として、シャッター68を光路非形成制御モードで制御する。例えば、映像表示装置35に異常が発生し、映像表示装置35から強い映像光32が出射されたような場合、当該映像光32を運転者6が視認することで、運転に支障が生じるおそれがある。このような事態を代表に、HUD装置1に異常が生じた場合でも安全性を確保するため、異常検出有りと判定された場合には、光路非形成制御モードが用いられる。なお、例12では、判定結果[1]および判定結果[2]は、用いられない。
 例13において、制御部10は、HUD装置1が動作中であれば、判定結果[1]として、シャッター68を切り替え制御モードで制御する。すなわち、例13では、光路形成制御モードおよび光路非形成制御モードは用いられず、常に、切り替え制御モードが用いられる。この場合であっても、例えば、光源65に対する太陽光強度に応じたディーティ比の制御や、または、ミラーM1による保護動作等と併用することで、表示パネル64の破損を十分に防止することが可能である。
 なお、例1~例12に示した各判定項目Aは、それぞれ単独で用いることも、適宜組み合わせて用いることも可能である。
 <シャッターの各種適用例>
 図15Aおよび図15Bは、図3におけるシャッターの別の具体的な適用例と、その際の動作例を説明する図である。図15Aおよび図15Bに示されるシャッター68は、例えば、透過/拡散型の液晶シャッターである。図15Aに示されるように、当該シャッター68は、光源65のオン期間Tonでは、光路形成状態に制御されることで図10Aの場合と同様に光を透過する。
 一方、図15Bに示されるように、当該シャッター68は、光源65のオフ期間Toffでは、光路非形成状態に制御されることで、図10Bの場合と異なり光を拡散する。すなわち、当該シャッター68は、太陽光31を拡散することで、表示パネル64への太陽光31を遮光する。この場合、拡散された一部の太陽光31は表示パネル64に入射され得るが、その入射エネルギーは小さいため、実質的に、太陽光31は遮光される。
 シャッター68の設置箇所に関しては、図15Aおよび図15Bに示されるような、光学部品63bとミラーM2との間の箇所に限らず、図10Aおよび図10Bの場合と同様に、適宜変更可能である。すなわち、シャッター68の設置箇所は、映像表示装置35と光学部品63bとの間の箇所、またはミラー(映像光反射部)M2とミラー(映像光投射部)M1との間の箇所、あるいは開口部7の箇所等であってもよい。また、シャッター68は、ミラーM2の反射面に接する形で設置されてもよい。
 ただし、シャッター68の設置箇所が表示パネル64に近過ぎる場合、例えば、映像表示装置35と光学部品63bとの間の箇所である場合、拡散された太陽光31が表示パネル64に入射され易くなる。この観点で、シャッター68の設置箇所は、図15Aおよび図15Bに示される箇所が望ましい。また、シャッター68で拡散された太陽光は、迷光となり、開口部7から出射されたのち運転者6の目に到達する可能性がある。このため、シャッター68の周辺には、例えば、壁状の遮光部品等が設置されるのが望ましい。
 図16Aおよび図16Bは、図3におけるシャッターの更に別の具体的な適用例と、その際の動作例を説明する図である。図16Aおよび図16Bに示されるシャッター68は、例えば、MEMS(Micro Electro Mechanical Systems)シャッターである。図16Aに示されるように、当該シャッター68は、光源65のオン期間Tonでは、光路形成状態に制御されることで図10Aの場合と同様に光を透過する。一方、図16Bに示されるように、当該シャッター68は、光源65のオフ期間Toffでは、光路非形成状態に制御されることで、図10Bの場合と異なり光を反射する。すなわち、当該シャッター68は、太陽光31を反射することで、表示パネル64への太陽光31を遮光する。
 ここで、図16Bでは、図10Bの場合と異なり、シャッター68で反射された太陽光31は、入射光路とは逆の光路を通って開口部7から出射されたのち、運転者6の目に到達する可能性がある。このため、シャッター68は、図16Aおよび図16Bに示されるように、反射光がミラーM2に向かわないように設置されることが望ましい。具体的には、シャッター68は、シャッター68の面法線SNと映像光32の光軸とが交差するように設置されることが望ましい。また、筐体61における反射光が当たる部分は、高耐熱の材料や、放熱性の高い材料で構成されるのが望ましい。あるいは、反射光が当たる部分に放熱フィン等を設置してもよい。
 シャッター68の設置箇所に関しては、図16Aおよび図16Bに示されるような、光学部品63bとミラーM2との間の箇所に限らず、図10Aおよび図10Bの場合と同様に、適宜変更可能である。この際には、シャッター68が表示パネル64の近くに設置された場合であっても、図10Bの場合のような表示パネル64への放熱の問題や、図15Bの場合のような表示パネル64への拡散光の入射の問題は生じ難い。一方、シャッター68の設置箇所として、反射光が運転者6の目に到達しないように、ミラー(映像光投射部)M1と表示領域5との間の箇所、例えば開口部7の箇所は、除外されることが望ましい。
 <実施の形態1の主要な効果>
 以上、実施の形態1のHUD装置1では、映像光32の光路上に切替部、例えばシャッター68が設けられ、当該シャッター68は、光路形成状態と光路非形成状態とが周期的に切り替わるように制御される。これにより、太陽光31に伴う表示パネル64の破損を防止しつつ、利用者が虚像を視認できない時間帯を削減することが可能になる。また、このような切り替え制御モードに加えて、光路形成制御モードや光路非形成制御モードを設け、各種条件に応じて光路形成制御モードや光路非形成制御モードも選択できるようにすることで、不必要なシャッターのオン/オフ動作を無くすことができる。さらに、ミラー(映像光投射部)M1による保護動作と組み合わせることで、表示パネル64の破損をより確実に防止することが可能になる。
 (実施の形態2)
 <シャッターの適用例>
 図17Aおよび図17Bは、実施の形態2によるHUD装置において、シャッターの具体的な適用例と、その際の動作例を説明する図である。図17Aおよび図17Bに示されるシャッター68は、図16Aおよび図16Bの場合と同様に、例えば、透過/反射型のMEMSシャッターである。ただし、図17Aおよび図17Bでは、シャッター68が映像表示装置35からの映像光をミラーM2に反射するように、映像表示装置35およびシャッター68が配置されている。
 これに伴い、図17Aに示されるように、シャッター68は、図16Aの場合と異なり、光源65のオン期間Tonでは、すなわち光路形成状態では、光を透過するのではなく反射する。具体的には、当該シャッター68は、映像表示装置35からの映像光32をミラーM2に反射し、また、ミラーM2からの太陽光31を映像表示装置35に反射する。
 一方、図17Bに示されるように、当該シャッター68は、図16Bの場合と異なり、光源65のオフ期間Toffでは、すなわち光路非形成状態では、光を反射するのではなく透過する。当該シャッター68は、太陽光31を透過することで、表示パネル64への太陽光31を遮光する。筐体61における透過光が当たる部分は、高耐熱の材料や、放熱性の高い材料で構成されるのが望ましい。あるいは、透過光が当たる部分に放熱フィン等を設置してもよい。
 なお、図17Aおよび図17Bでは、シャッター68を別途設置する例を示したが、シャッター68の反射特性を利用した別の変形例として、例えば、図10Aおよび図10Bにおいて、ミラーM2をMEMSシャッターに置き換えることも可能である。この場合、当該MEMSシャッターは、光源65のオン期間Tonでは、すなわち光路形成状態では、光を反射し、これに伴い、図10Aの場合と同様の光路が形成される。一方、当該MEMSシャッターは、光源65のオフ期間Toffでは、すなわち光路非形成状態では、光を透過し、図10Bにおいて、ミラーM2が太陽光31を透過するような光路が形成される。
 以上、実施の形態2のHUD装置1を用いることでも、実施の形態1で述べた各種効果と同様の効果が得られる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、前述した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、実施の形態に係る技術を用いると、前述したように、太陽光に伴う表示パネルの破損を防止しつつ、利用者が虚像を視認できない時間帯を削減することが可能になる。また、フロントガラス等に投射された行き先や速度などのナビゲーション情報表示の他に、対向車や歩行者を検知した際のアラート情報表示などの走行に必要な情報の映像を視認でき、運転者の視点移動を軽減して安全運転の支援に寄与する情報表示装置(ヘッドアップディスプレイ装置)を提供できる。これにより、交通事故を防止することが可能となる。さらに、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3.すべての人に健康と福祉を」に貢献することが可能になる。
 1…ヘッドアップディスプレイ(HUD)装置、2…車両、4…車両情報、5…表示領域、6…運転者(利用者)、10…制御部、14…情報取得部、15…温度検出部、30…映像光の光路、32…映像光、35…映像表示装置、60…太陽、62…駆動機構、64…表示パネル、65…光源、68…シャッター、M1…ミラー(映像光投射部)、M2…ミラー(映像光反射部)、SN…面法線

Claims (17)

  1.  乗り物用のヘッドアップディスプレイ装置であって、
     映像の映像光を生成して出射する映像表示装置と、
     前記映像表示装置から出射された前記映像光を前記乗り物の表示領域に投射して反射させることで、虚像を前記乗り物の前方に表示する映像光投射部と、
     前記映像光の光路上に設けられ、前記映像光の光路を形成する光路形成状態、または前記映像光の光路を形成しない光路非形成状態に切り替える切替部と、
    を備え、
     前記切替部が前記光路非形成状態に切り替えられる期間の長さは、前記映像光を虚像として持続的に視認できる長さである、
    ヘッドアップディスプレイ装置。
  2.  請求項1記載のヘッドアップディスプレイ装置において、
     さらに、前記映像表示装置と前記映像光投射部との間の前記映像光の光路上に設けられ、前記映像表示装置からの前記映像光を前記映像光投射部に反射する映像光反射部を備える、
    ヘッドアップディスプレイ装置。
  3.  請求項2記載のヘッドアップディスプレイ装置において、
     前記切替部は、前記映像表示装置と前記映像光反射部との間の前記映像光の光路上に設けられる、
    ヘッドアップディスプレイ装置。
  4.  請求項2記載のヘッドアップディスプレイ装置において、
     前記切替部は、前記映像光反射部と前記映像光投射部との間の前記映像光の光路上に設けられる、
    ヘッドアップディスプレイ装置。
  5.  請求項1~4のいずれか1項に記載のヘッドアップディスプレイ装置において、
     前記切替部は、前記光路形成状態では光を透過し、前記光路非形成状態では、光を吸収するか、または、光を拡散する、
    ヘッドアップディスプレイ装置。
  6.  請求項1~4のいずれか1項に記載のヘッドアップディスプレイ装置において、
     前記切替部は、前記光路形成状態では光を透過し、前記光路非形成状態では光を反射し、
     前記切替部は、前記切替部の面法線と前記映像光の光軸とが交差するように設置される、
    ヘッドアップディスプレイ装置。
  7.  請求項1~4のいずれか1項に記載のヘッドアップディスプレイ装置において、
     前記切替部は、前記光路形成状態では光を反射し、前記光路非形成状態では光を透過する、
    ヘッドアップディスプレイ装置。
  8.  請求項1記載のヘッドアップディスプレイ装置において、
     前記映像表示装置および前記切替部を制御する制御部、を備える、
    ヘッドアップディスプレイ装置。
  9.  請求項8記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記光路形成状態と前記光路非形成状態とが切り替わるように、前記切替部を制御する、
    ヘッドアップディスプレイ装置。
  10.  請求項8記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記光路形成状態と前記光路非形成状態とが周期的に切り替わるように、前記切替部を制御する、
    ヘッドアップディスプレイ装置。
  11.  請求項10記載のヘッドアップディスプレイ装置において、
     前記映像表示装置は、
     オンに制御された際にバックライトを点灯し、オフに制御された際に前記バックライトを消灯する光源と、
     前記光源からの前記バックライトを変調することで前記映像を表示する表示パネルと、
    を備え、
     前記制御部は、PWM制御を用いて前記光源のオン/オフを制御し、前記光源のオン/オフに連動して、前記切替部を前記光路形成状態/前記光路非形成状態に制御する、
    ヘッドアップディスプレイ装置。
  12.  請求項10または11記載のヘッドアップディスプレイ装置において、
     前記制御部は、条件判定を行い、前記条件判定の判定結果に基づいて、前記光路形成状態と前記光路非形成状態とを周期的に切り替える第1の制御モードか、前記光路形成状態に固定する第2の制御モードを用いて、前記切替部を制御する、
    ヘッドアップディスプレイ装置。
  13.  請求項12記載のヘッドアップディスプレイ装置において、
     前記映像表示装置の温度を検出する温度検出部を有し、
     前記制御部は、前記温度検出部で検出された温度が閾値を超えた場合には、前記第1の制御モードを用いて前記切替部を制御し、前記閾値を超えない場合には、前記第2の制御モードを用いて前記切替部を制御する、
    ヘッドアップディスプレイ装置。
  14.  請求項12記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記乗り物の位置情報と、現在日時の情報とに基づいて太陽の高度を算出し、算出した前記太陽の高度が所定範囲にある場合には、前記第1の制御モードを用いて前記切替部を制御し、前記所定範囲にない場合には、前記第2の制御モードを用いて前記切替部を制御する、
    ヘッドアップディスプレイ装置。
  15.  請求項12記載のヘッドアップディスプレイ装置において、
     前記制御部は、さらに、前記映像光投射部を制御し、
     前記映像光投射部は、
     前記映像光を前記表示領域に向けて反射するミラーと、
     前記ミラーの設置角度を調整する駆動機構と、
    を有し、
     前記制御部は、前記駆動機構を介して前記ミラーの設置角度を調整することで、前記映像光投射部を、前記映像光を前記表示領域に投射しない非投射モード、または、前記映像光を前記表示領域に投射する投射モードに制御する、
    ヘッドアップディスプレイ装置。
  16.  請求項15記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記駆動機構の動作に異常を検出した場合には、前記光路非形成状態に固定する第3の制御モードを用いて、前記切替部を制御する、
    ヘッドアップディスプレイ装置。
  17.  乗り物に搭載されるヘッドアップディスプレイ装置の制御方法であって、
     前記乗り物に関する情報を取得し、
     取得した前記乗り物に関する情報を表す映像を表示し、表示した映像の映像光を出射し、
     出射した前記映像光を表示領域に投射することで、投射された前記映像光を虚像として利用者に視認させ、
     前記映像光の光路上に設けられ、前記映像光の光路を形成する光路形成状態、または前記映像光の光路を形成しない光路非形成状態に制御される切替部を用いて前記映像光の光路を制御し、
     前記映像光の光路を制御する際に、前記光路形成状態と前記光路非形成状態とが周期的に切り替わる第1の制御モード、または前記光路形成状態に固定する第2の制御モード、または前記光路非形成状態に固定する第3の制御モードに切り替えるように、前記切替部を制御する、
    ヘッドアップディスプレイ装置の制御方法。
     
PCT/JP2023/001041 2022-01-24 2023-01-16 ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の制御方法 WO2023140223A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022008347A JP2023107265A (ja) 2022-01-24 2022-01-24 ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の制御方法
JP2022-008347 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023140223A1 true WO2023140223A1 (ja) 2023-07-27

Family

ID=87348769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001041 WO2023140223A1 (ja) 2022-01-24 2023-01-16 ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の制御方法

Country Status (2)

Country Link
JP (1) JP2023107265A (ja)
WO (1) WO2023140223A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114869A (ja) * 2003-10-03 2005-04-28 Optrex Corp 表示装置
JP2011197236A (ja) * 2010-03-18 2011-10-06 Fujitsu Ltd 画像表示装置
US20140132852A1 (en) * 2011-06-22 2014-05-15 Wolfgang-Peter Pawusch Display Device Having A Liquid Crystal Display And Method For Protecting A Liquid Crystal Display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114869A (ja) * 2003-10-03 2005-04-28 Optrex Corp 表示装置
JP2011197236A (ja) * 2010-03-18 2011-10-06 Fujitsu Ltd 画像表示装置
US20140132852A1 (en) * 2011-06-22 2014-05-15 Wolfgang-Peter Pawusch Display Device Having A Liquid Crystal Display And Method For Protecting A Liquid Crystal Display

Also Published As

Publication number Publication date
JP2023107265A (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
JP6818100B2 (ja) 投射型表示装置
US11847980B2 (en) Head-up display apparatus
US9612463B2 (en) Display device having a liquid crystal display and method for protecting a liquid crystal display
CN110682856B (zh) 车辆
US10754153B2 (en) Vehicle display apparatus
US8035495B2 (en) Rear view mirror, monitoring apparatus and monitoring method
CN110471181B (zh) 车辆用显示装置
KR101789984B1 (ko) 차량용 사이드 미러 카메라 시스템
US20060158715A1 (en) Variable transmissivity window system
JP2016541003A (ja) グレア防止スクリーンを備えるデータ表示眼鏡
WO2018171211A1 (zh) 车载系统和交通工具
JP2019113809A (ja) ヘッドアップディスプレイ装置
CN114460744A (zh) 基于车辆信息解除抬头显示器保护模式的方法和装置
JP7182411B2 (ja) ヘッドアップディスプレイ装置
WO2023140223A1 (ja) ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の制御方法
JP7055559B2 (ja) ヘッドアップディスプレイ装置
CN108152960B (zh) 车载平视显示方法及系统
JP6658483B2 (ja) 車両用表示制御装置及び車両用表示システム
WO2020049873A1 (ja) ヘッドアップディスプレイ装置
JP2020067650A (ja) 車両用表示装置
WO2023243213A1 (ja) ヘッドアップディスプレイ装置
JP2020067651A (ja) 車両用表示装置
JP2024007661A (ja) ヘッドアップディスプレイ装置
WO2024004297A1 (ja) ヘッドアップディスプレイ装置
US11970116B2 (en) Operating method of optical system in vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743217

Country of ref document: EP

Kind code of ref document: A1