WO2020049873A1 - ヘッドアップディスプレイ装置 - Google Patents

ヘッドアップディスプレイ装置 Download PDF

Info

Publication number
WO2020049873A1
WO2020049873A1 PCT/JP2019/027695 JP2019027695W WO2020049873A1 WO 2020049873 A1 WO2020049873 A1 WO 2020049873A1 JP 2019027695 W JP2019027695 W JP 2019027695W WO 2020049873 A1 WO2020049873 A1 WO 2020049873A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
distance
vehicle
display device
driver
Prior art date
Application number
PCT/JP2019/027695
Other languages
English (en)
French (fr)
Inventor
裕己 永野
康彦 國井
昭央 三沢
望 下田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2020049873A1 publication Critical patent/WO2020049873A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a head-up display device mounted on a vehicle and capable of adjusting a display distance of an image.
  • HUD head-up display device
  • the first method in which the distance from the driver's eyes to the virtual image (display distance) is fixed, and the method in which an object (such as a preceding vehicle or a pedestrian) visible in front of the windshield is used.
  • the HUD is provided with an adjustment mechanism for adjusting the display distance of the virtual image.
  • Patent Document 1 proposes a method using a movable lens, a functional liquid crystal film, and the like.
  • the distance at which the driver's viewpoint concentrates depends on the surrounding environment and driving conditions during driving.
  • the displayed virtual image does not match the viewpoint and is difficult to see. Therefore, the driver needs to move his or her viewpoint to the virtual image, which may increase eye fatigue and make it impossible to concentrate on driving.
  • the viewpoint distance during driving changes frequently at all times depending on traffic conditions and the like, so that the display distance follows the display distance in real time, which is troublesome for the driver. It is hard to see. As described above, any of the first to third systems is hardly a display that can be visually recognized comfortably by the driver.
  • An object of the present invention is to provide a head-up display device in which a driver's viewpoint movement is small and an image can be visually recognized comfortably.
  • a head-up display device includes a vehicle information acquisition unit that acquires vehicle information regarding a traveling state of a vehicle, an image display device that generates an image to be projected, and a driver's eyes.
  • a display distance adjustment mechanism that adjusts the display distance to the virtual image
  • a control unit that controls the video display device and the display distance adjustment mechanism, including, using the vehicle information acquired via the vehicle information acquisition unit,
  • the present running state of the vehicle is determined, and the display distance to the virtual image is adjusted via the display distance adjusting mechanism according to the running state.
  • the viewpoint distance at which the driver is most likely to concentrate in each traveling state is stored in the memory as a recommended value of the display distance in the traveling state
  • the control unit refers to the recommended value stored in the memory to determine the display distance. adjust.
  • the image is displayed based on the viewpoint distance at which the driver is most likely to concentrate in accordance with the traveling state, so that there is an effect that the image can be visually recognized with little viewpoint movement.
  • FIG. 2 is a block diagram showing a configuration of a control system of the HUD.
  • 9 is a flowchart illustrating control of a display distance.
  • FIG. 5 is a diagram illustrating a relationship between a display distance and occurrence of a double image. The figure which shows the example of the recommended value of the display distance set according to a driving
  • HUD head-up display device
  • FIG. 1 is a diagram showing an outline of a HUD mounted on a vehicle.
  • the HUD 1 is mounted on the vehicle 2 and projects an image generated by the image display device 30 onto a windshield 3 (also referred to as a windshield) of the vehicle 2 via a mirror 52.
  • the image reflected by the windshield 3 enters the driver's eyes and can be viewed.
  • the video to be displayed contains information related to driving, and supports driving operation.
  • the inside of the HUD 1 includes a vehicle information acquisition unit 10 that acquires various types of vehicle information 4, a control unit 20 that generates video information to be displayed based on the vehicle information acquisition unit 10, a display distance adjustment mechanism 40 that adjusts a display distance of an image, It has a mirror driving unit 50 that drives the mirror 52, a speaker 60 that outputs audio information, and the like.
  • the vehicle information 4 includes, in addition to speed information and gear information indicating the driving state of the vehicle, steering wheel angle information, illuminance information indicating brightness outside the vehicle, map information indicating a running position, and the like.
  • FIG. 2 is a diagram showing an image display operation by HUD1.
  • An image for display is emitted from the image display device 30 installed below the dashboard of the vehicle 2.
  • the emitted image is adjusted in display distance by the display distance adjusting mechanism 40, is reflected by the first mirror 51 and the second mirror 52, and is projected toward the windshield 3.
  • the first mirror 51 is fixed, and the second mirror 52 is rotatable by the mirror driving unit 50.
  • the image converged and projected from the mirror 52 is reflected by the windshield 3, enters the driver's eye 5, and forms an image on the retina, so that the image can be visually recognized.
  • the driver sees the virtual image 9 existing in front of the windshield 3.
  • the display distance adjusting mechanism 40 adjusts the display distance from the driver's eyes 5 to the virtual image 9 in the direction of the arrow according to the driving state under the control of the control unit 20.
  • the mirror driving unit 50 rotates the mirror 52 in accordance with the height of the driver's eyes 5 to adjust the display position (height direction) of the virtual image 9. With these adjustments, the driver can visually recognize the virtual image 9 at a position where the virtual image 9 is easy to see.
  • FIG. 3 is a block diagram showing the configuration of the control system of HUD1.
  • Various vehicle information 4 is input to the vehicle information acquisition unit 10 and sent to the control unit 20.
  • An electronic control unit (ECU, Electronic Control Unit) 21 in the control unit 20 generates a video signal (display content) displayed by the HUD 1 and various control signals for the HUD 1 based on the input vehicle information 4.
  • the audio output unit 22 generates an audio signal to the speaker 60.
  • the nonvolatile memory 23 stores programs executed by the ECU 21 and various control data, and the memory 24 stores video information and control information.
  • the image display device 30 includes a light source 31 such as an LED or a laser, an illumination optical system (not shown), and a display element 32 such as a liquid crystal element.
  • the image light generated by the display element 32 is transmitted through a display distance adjusting mechanism 40. And is emitted toward the mirror 52.
  • the light source adjusting unit 25 in the control unit 20 controls the light source 31 in the video display device 30.
  • the distortion correction unit 26 corrects the distortion of the video signal to be displayed, and the display element driving unit 27 drives the display element 32 in the video display device 30 based on the corrected video signal.
  • the display distance adjustment unit 28 outputs a drive signal for adjusting the display distance of an image to the display distance adjustment mechanism 40.
  • the mirror adjustment unit 29 outputs a drive signal for adjusting the position and orientation of the mirror 52 to the mirror drive unit 50.
  • the ECU 21 determines the current running state using the vehicle information 4 acquired via the vehicle information acquiring unit 10, and instructs the display distance adjusting unit 28 to control the display distance.
  • the traveling state is divided as shown in FIG. 9 described later. Therefore, daytime and nighttime judgments are made using the illuminance information and the time information in the vehicle information 4.
  • the speed information, the gear information, and the map information it is determined whether the vehicle is traveling on a general road or a highway. Further, it is determined whether the vehicle is turning right or left or traveling straight by using the steering information and the map information.
  • the display distance adjustment unit 28 switches the display distance of the image according to the traveling state.
  • a viewpoint distance at which the driver is most likely to concentrate in various traveling states is obtained in advance, and this is set as a recommended value in the traveling state and stored in the nonvolatile memory 23.
  • the ECU 21 determines the display distance with reference to the recommended value.
  • FIG. 4 is a diagram illustrating a configuration example of hardware relating to acquisition of the vehicle information 4.
  • the acquisition of the vehicle information 4 is performed by an information acquisition device such as various sensors installed in the vehicle 2 under the control of an electronic control unit (ECU) 21 in the control unit 20, for example. Note that not all of these devices need to be provided to execute the operation of the present embodiment, and other types of devices may be added as appropriate.
  • ECU electronice control unit
  • the vehicle speed sensor 101 acquires speed information of the vehicle 2.
  • the shift position sensor 102 acquires the current gear information of the vehicle 2.
  • the steering wheel angle sensor 103 acquires steering wheel angle information.
  • the headlight sensor 104 acquires lamp lighting information related to On / Off of the headlight.
  • the illuminance sensor 105 and the chromaticity sensor 106 acquire information on the brightness and hue of external light.
  • the distance measurement sensor 107 acquires distance information between the vehicle 2 and an external object.
  • the infrared sensor 108 acquires infrared information related to the presence or absence of an object at a short distance from the vehicle 2 and the distance.
  • Engine start sensor 109 detects engine On / Off information.
  • the acceleration sensor 110 and the gyro sensor 111 acquire acceleration gyro information including acceleration and angular velocity as information on the attitude and behavior of the vehicle 2.
  • the temperature sensor 112 acquires temperature information inside and outside the vehicle.
  • the roadside-vehicle communication wireless transceiver 113 is provided by road-vehicle communication between the vehicle 2 and the roadside device, and the vehicle-to-vehicle communication wireless transceiver 114 is provided by vehicle-to-vehicle communication between the vehicle 2 and other surrounding vehicles. , To acquire information around the vehicle 2.
  • the camera (inside the vehicle) 115 and the camera (outside the vehicle) 116 capture images of the situation inside and outside the vehicle, respectively, to acquire camera video information (inside / outside the vehicle).
  • the camera (outside the vehicle) 116 captures a situation around the vehicle 2 such as in front of or behind the vehicle 2.
  • a GPS (Global Positioning System) receiver 117 receives a GPS signal and acquires GPS information.
  • a VICS (Vehicle Information and Communication System) receiver 118 receives a VICS signal and acquires VICS information. By acquiring these information and comparing it with the map data, map information indicating the position and traveling direction of the vehicle 2 is generated.
  • FIG. 5 is a diagram showing a configuration example of the display distance adjusting mechanism 40.
  • the display distance adjustment mechanism 40 is a mechanism that adjusts the distance of the displayed virtual image from the driver's eyes 5 based on an instruction from the control unit 20 (display distance adjustment unit 28), and various display distance adjustment methods. Is possible.
  • a display distance adjusting mechanism 40 using a movable lens will be described as an example.
  • the image projected from the image display device 30 is imaged by a diffuser (diffuser) 41 and then incident on a mirror 52 via a movable lens 42 provided in a plurality of (here, three) areas. You.
  • Each movable lens 42 can be individually moved along the optical axis direction by a lens movable mechanism (not shown).
  • the display position of the virtual image 9 based on the image projected from the image display device 30 is determined according to the distance between the diffusion plate 41 and each movable lens 42. Therefore, by moving the movable lens 42, the focal length can be changed for each area, and the display distance of the virtual image can be changed.
  • the display distance of the corresponding virtual image can be reduced. Conversely, by moving the movable lens 42 to a position farther from the diffusion plate 41 in the lowermost area, the display distance of the corresponding virtual image can be made longer.
  • the number of movable lenses 42 is not limited to three as shown, and may be appropriately configured according to the number of desired areas.
  • Other methods of adjusting the display distance include a method using a movable diffusion plate that fixes the lens position and moves the diffusion plate in the optical axis direction, and a method using a functional liquid crystal film as the diffusion plate.
  • FIG. 6 is a flowchart showing the control of the display distance.
  • the following processing is performed by the ECU 21 in the control unit 20 controlling the display distance adjusting unit 28 according to the traveling state.
  • the running state will be described in accordance with the sections in FIG. 9 described later.
  • S202 The ECU 21 determines whether the current brightness is daytime or nighttime based on the illuminance information and the time information. However, here, the time when the illuminance is brighter than a predetermined value is defined as daytime, and the time when the illuminance is darker than the predetermined value is defined as nighttime. Therefore, according to the time information, even when it is daytime, when the illuminance is dark, it is determined to be nighttime.
  • S203 The ECU 21 determines whether the traveling road is a general road or a highway based on speed information, gear information, and map information.
  • the ECU 21 determines whether the driving operation state is a right / left turn traveling (including an intersection traveling) or a straight traveling using the steering information and the map information. If the result of the determination is that the vehicle is traveling right and left (judgment: Yes), the process proceeds to S206, and if the vehicle is traveling straight (other than at an intersection) (determination: No), the process proceeds to S205.
  • the ECU 21 refers to the recommended value of the display distance stored in the nonvolatile memory 23, and reads out the recommended value La in the current running state. An example of the recommended value of the display distance will be described later with reference to FIG. S206: The ECU 21 measures the distance Lb to an object ahead (a preceding vehicle, a pedestrian, a traffic light, etc.) by the distance measuring sensor 107.
  • the ECU 21 sends the values of the display distances La and Lb acquired in S205 or S206 to the display distance adjustment unit 28.
  • the display distance adjusting unit 28 drives the display distance adjusting mechanism 40 to adjust the display distance of the image projected from the image display device 30 to be La and Lb. Thereafter, the process returns to S201 and the above processing is repeated.
  • the traveling state is daytime or nighttime, and whether the traveling road is a general road or a highway, and the display distance is adjusted according to the current traveling state. Yes, but not limited to this.
  • the setting of the optimal display distance (recommended value) in various running states will be described.
  • FIG. 7 is a diagram showing the results of measuring the driver's viewpoint distance in various running states.
  • the viewpoint distance during driving is measured using a commercially available line-of-sight measuring instrument, and the measurement result is expressed as a frequency distribution (%) for each viewpoint distance.
  • the viewpoint distance is classified as 0 to 0.8 m and 0.8 to 5 m.
  • a comparison is made between daytime and nighttime as driving conditions, and comparison between general roads (city area, residential area) and highways as driving roads.
  • a range where the frequency distribution of the viewpoint distance is high exists depending on the traveling state, and the following knowledge was obtained regarding the optimal display distance.
  • the driver looks within 40 m with a probability of 85% or more. That is, even if a virtual image is displayed at a distance exceeding 40 m, the focus is not adjusted to the virtual image if the viewpoint during driving remains unchanged, and viewing the virtual image involves movement of the viewpoint.
  • the display distance on a general road in the daytime is preferably 20 m or less.
  • the display distance on a highway in the daytime is longer than that of a general road, and is preferably 40 m or less.
  • the probability of seeing 5m or less on a nighttime general road is 93.4% in total. From this result, the display distance is fixed at 5 m.
  • the display distance on the highway at night is longer than the general road, and is 40 m or less.
  • the driver can view the image comfortably with little viewpoint movement.
  • the display distance is fixed according to the traveling state, compared to the method of following the display position one by one in accordance with the distance to the front object and the current viewpoint position, the annoyance due to the frequent switching of the display distance is eliminated. Will be resolved.
  • FIG. 8 is a diagram showing the relationship between the virtual image display distance and the occurrence of double images obtained by simulation. Assuming that the inclination angle of the windshield 3 is 45 degrees, the angle difference ⁇ is obtained from the angle ⁇ 1 of the inner reflected light and the angle ⁇ 2 of the outer reflected light. It can be seen that the angle difference ⁇ increases as the display distance L decreases.
  • FIG. 9 is a diagram illustrating an example of the recommended value La of the display distance set according to the traveling state.
  • the range is from 10 m to 20 m in consideration of avoiding double images.
  • the viewpoint is prioritized and fixed at 5 m.
  • Expressways both daytime and nighttime range from 10 m to 40 m in consideration of double images. The driver can set a desired distance within this range.
  • the display distance is adjusted to the distance Lb to the object in front.
  • the viewpoint is easily concentrated on the position of the object ahead when turning right or left, and it is preferable to display the viewpoint at a distance where the viewpoint does not move. For example, when a crossing pedestrian is 4 m away, a virtual image (such as a warning icon) is displayed at a distance of 4 m.
  • the recommended value of the display distance is determined based on the viewpoint distance at which the driver's viewpoint is most likely to concentrate in various driving states obtained in advance and the lower limit distance at which the double image is not visually recognized.
  • the virtual image display position is switched according to the traveling state with reference to this. Therefore, it is possible to provide a head-up display device that allows a driver to visually recognize an image comfortably with little viewpoint movement.
  • HUD Head-up display device
  • vehicle vehicle
  • 3 Windshield (windshield)
  • 4 Vehicle information
  • 9 Virtual image
  • 10 vehicle information acquisition unit
  • 20 control unit
  • 21 electronic control unit
  • 23 Non-volatile memory
  • 28 display distance adjustment unit
  • 30 video display device
  • 40 display distance adjustment mechanism
  • 41 Diffusing plate (diffuser)
  • 42 Movable lens.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Instrument Panels (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本発明は、運転者の視点移動が少なく映像を快適に視認できるヘッドアップディスプレイ装置を提供する。映像を投射して車両の前方に虚像を表示するヘッドアップディスプレイ装置1は、車両2の走行状態に関する車両情報4を取得する車両情報取得部10と、運転者5から見た虚像9までの表示距離を調整する表示距離調整機構40を備える。表示距離の調整では、予め、各走行状態において運転者が最も集中しやすい視点距離をその走行状態における表示距離の推奨値としてメモリ23に記憶しておく。そして、車両情報取得部10を介して取得した車両情報から現在の走行状態を判断し、メモリ23に記憶された推奨値を参照して、走行状態に応じて表示距離調整機構40を介して虚像の表示距離を調整する。

Description

ヘッドアップディスプレイ装置
 本発明は、車両に搭載し映像の表示距離を調整可能なヘッドアップディスプレイ装置に関するものである。
 近年、車両のフロントガラスを介して前方に映像情報を虚像として表示する車両用映像表示装置(ヘッドアップディスプレイ装置(以下、HUD))が実用化されている。その際、表示する映像情報として運転者向けの情報を提供することで、車両の運転操作を支援することができる。
 映像(虚像)を表示する際、運転者の目から見える虚像までの距離(表示距離)を固定とする第1の方式と、フロントガラスの前方に見える物体(先行車両や歩行者など)までの距離に合わせる第2の方式や、運転者の注目している視点位置までの距離に合わせる第3の方式がある。表示距離を可変とする第2、第3の方式では、HUDには、虚像の表示距離を調整するための調整機構が備えられる。例えば特許文献1には、可動式レンズや機能性液晶フィルムなどを用いる方式が提案されている。
国際公開第2017-134861号公報
 運転時の周囲環境や走行状態によって運転者の視点が集中する距離は変化する。虚像の表示距離を固定とする第1の方式では、表示された虚像と視点が合わず見にくいものとなる。よって運転者は、虚像までの視点移動が必要になり、目の疲れを助長させ運転に集中できなくなる恐れがある。
 その点、前方物体(先行車両や歩行者など)までの距離に合わせる第2の方式では、運転者の視点が物体位置にあれば虚像までの視点移動は不要となる。しかし、前方物体が必ずしも運転者が注目する対象物とは限らず、また物体が複数存在する場合には、運転者の注意力をどの物体に合わせるべきかを判断するのは困難である。さらに、運転者の視点距離に合わせる第3の方式では、運転中の視点距離は交通状況等によって始終頻繁に変化するものであるから、表示距離をこれにリアルタイムに追従させる結果、運転者にとって煩わしく見にくいものとなる。このように、第1~第3のいずれの方式も、運転者にとって快適に視認できる表示とは言い難いものであった。
 本発明の目的は、運転者の視点移動が少なく映像を快適に視認できるヘッドアップディスプレイ装置を提供することである。
 上記課題を解決するため、本発明によるヘッドアップディスプレイ装置は、車両の走行状態に関する車両情報を取得する車両情報取得部と、投射する映像を生成する映像表示装置と、運転者の目から見た虚像までの表示距離を調整する表示距離調整機構と、映像表示装置と表示距離調整機構を制御する制御部と、を備え、制御部は、車両情報取得部を介して取得した車両情報を用いて現在の車両の走行状態を判断し、走行状態に応じて表示距離調整機構を介して虚像までの表示距離を調整する構成とした。ここに、各走行状態において運転者が最も集中しやすい視点距離をその走行状態における表示距離の推奨値としてメモリに記憶し、制御部は、メモリに記憶された推奨値を参照して表示距離を調整する。
 本発明によれば、走行状態に応じて運転者が最も集中しやすい視点距離に基づいて映像を表示するので、視点移動が少なく映像を快適に視認できる効果がある。
車両に搭載したヘッドアップディスプレイ装置(HUD)の概要を示す図。 HUDによる映像表示動作を示す図。 HUDの制御系の構成を示すブロック図。 車両情報の取得に係るハードウェアの構成例を示す図。 表示距離調整機構の構成例を示す図。 表示距離の制御を示すフローチャート。 各種走行状態における運転者の視点距離を計測した結果を示す図。 表示距離と二重像発生の関係を示す図。 走行状態に応じて設定する表示距離の推奨値の例を示す図。
 本発明によるヘッドアップディスプレイ装置(以下、HUD)の実施形態について、図面を用いて説明する。
 図1は、車両に搭載したHUDの概要を示す図である。HUD1は車両2に搭載され、映像表示装置30で生成した映像をミラー52を介して車両2のフロントガラス3(ウィンドシールドとも呼ぶ)に投射する。ウィンドシールド3で反射した映像は運転者の目に入射し、映像を視認することができる。表示する映像には運転に関連する情報が含まれ、運転操作を支援するものとなる。
 HUD1の内部は、各種の車両情報4を取得する車両情報取得部10と、これをもとに表示する映像情報を生成する制御部20と、映像の表示距離を調整する表示距離調整機構40、ミラー52を駆動するミラー駆動部50、音声情報を出力するスピーカ60などを有する。車両情報4には車両の運転状態を示す速度情報やギア情報などの他に、ハンドル操舵角情報、車外の明るさを示す照度情報、走行位置を示す地図情報などが含まれる。
 図2は、HUD1による映像表示動作を示す図である。車両2のダッシュボードの下部に設置された映像表示装置30から、表示用の映像が出射される。出射された映像は、表示距離調整機構40にて映像の表示距離が調整され、第1のミラー51と第2のミラー52で反射され、ウィンドシールド3に向けて投射される。第1のミラー51は固定されており、第2のミラー52はミラー駆動部50により回転可能となっている。
 ミラー52から収束して投射された映像は、ウィンドシールド3にて反射され運転者の目5に入射して網膜上に結像することで、映像を視認することができる。そのとき運転者は、ウィンドシールド3の前方に存在する虚像9を見ていることになる。ここで表示距離調整機構40は、制御部20からの制御により、走行状態に応じて運転者の目5から見た虚像9までの表示距離を矢印の方向に調整する。ミラー駆動部50は、運転者の目5の高さに応じてミラー52を軸回転させ、虚像9の表示位置(高さ方向)を調整する。これらの調整により、運転者は虚像9を見やすい位置で視認することができる。
 図3は、HUD1の制御系の構成を示すブロック図である。車両情報取得部10には各種の車両情報4が入力され、制御部20へ送られる。制御部20内の電子制御ユニット(ECU、Electronic Control Unit)21は、入力した車両情報4に基づきHUD1が表示する映像信号(表示コンテンツ)や、HUD1に対する各種制御信号を生成する。音声出力部22はスピーカ60への音声信号を生成する。不揮発性メモリ23は、ECU21が実行するプログラムや各種制御データを格納し、メモリ24は、映像情報や制御情報を記憶する。
 映像表示装置30は、LEDやレーザなどの光源31、照明光学系(図示せず)、液晶素子などの表示素子32からなり、表示素子32で生成された映像光を表示距離調整機構40を介してミラー52に向けて出射する。
 制御部20内の光源調整部25は、映像表示装置30内の光源31を制御する。歪み補正部26は、表示する映像信号の歪みを補正し、表示素子駆動部27は、補正された映像信号に基づき映像表示装置30内の表示素子32を駆動する。
 表示距離調整部28は、映像の表示距離を調整するための駆動信号を表示距離調整機構40に出力する。ミラー調整部29は、ミラー52の位置や姿勢を調整するための駆動信号をミラー駆動部50に出力する。
 本実施例では、ECU21は、車両情報取得部10を介して取得した車両情報4を用いて現在の走行状態を判断し、表示距離調整部28に対し表示距離についての制御を指示する。具体的には、後述する図9のように走行状態を区分する。そのため、車両情報4の中の照度情報や時刻情報を用いて、昼間と夜間の判断を行う。また、速度情報、ギア情報、地図情報を用いて、一般道走行か高速道走行かを判断する。さらには、操舵情報や地図情報を用いて、右左折走行か直進走行かを判断する。これらの走行状態に応じて、表示距離調整部28は映像の表示距離を切り替える。
 表示距離の制御では、予め各種走行状態において運転者が最も集中しやすい視点距離を求め、これをその走行状態における推奨値とし、不揮発性メモリ23に記憶している。ECU21はこの推奨値を参照して表示距離を決定する。
 図4は、車両情報4の取得に係るハードウェアの構成例を示す図である。車両情報4の取得は、例えば、制御部20内の電子制御ユニット(ECU)21の制御の下、車両2に設置された各種のセンサ等の情報取得デバイスにより行われる。なお、本実施例の動作を実行するために必ずしもこれら全てのデバイスを備えている必要はなく、また、適宜他の種類のデバイスを追加してもよい。
 車速センサ101は、車両2の速度情報を取得する。シフトポジションセンサ102は、車両2の現在のギア情報を取得する。ハンドル操舵角センサ103は、ハンドル操舵角情報を取得する。ヘッドライトセンサ104は、ヘッドライトのOn/Offに係るランプ点灯情報を取得する。照度センサ105および色度センサ106は、外光の明るさと色合いの情報を取得する。測距センサ107は、車両2と外部の物体との間の距離情報を取得する。赤外線センサ108は、車両2の近距離における物体の有無や距離等に係る赤外線情報を取得する。エンジン始動センサ109は、エンジンOn/Off情報を検知する。
 加速度センサ110およびジャイロセンサ111は、車両2の姿勢や挙動の情報として、加速度や角速度からなる加速度ジャイロ情報を取得する。温度センサ112は車内外の温度情報を取得する。路車間通信用無線送受信機113は、車両2と路側機との間の路車間通信により、車車間通信用無線送受信機114は、車両2と周辺の他の車両との間の車車間通信により、車両2の周辺の情報を取得する。
 カメラ(車内)115およびカメラ(車外)116は、それぞれ、車内および車外の状況の画像を撮影してカメラ映像情報(車内/車外)を取得する。特にカメラ(車外)116では、車両2の前方や後方等の周囲の状況を撮影する。得られた画像を解析することにより、例えば、周辺の他の車両や歩行者等の移動物の有無、建物や地形、路面状況(雨や積雪、凍結、凹凸等)などを把握することが可能である。
 GPS(Global Positioning System:全地球測位システム)受信機117は、GPS信号を受信してGPS情報を取得する。VICS(Vehicle Information and Communication System:道路交通情報通信システム、登録商標(以下同様))受信機118は、VICS信号を受信してVICS情報を取得する。これらの情報を取得して地図データと照合することで、車両2の位置や進行方向を示す地図情報を生成する。
 図5は、表示距離調整機構40の構成例を示す図である。表示距離調整機構40は、制御部20(表示距離調整部28)からの指示に基づいて、表示される虚像の運転者の目5からの距離を調整する機構であり、各種の表示距離調整手法が可能である。ここではその一例として、可動式レンズを用いた表示距離調整機構40について説明する。
 映像表示装置30から投射された映像は、拡散板(ディフューザ)41で結像した後、複数(ここでは3個)のエリアに分けて設けられた可動式レンズ42を介してミラー52に入射される。各可動式レンズ42は、図示しないレンズ可動機構によって、それぞれ個別に光軸方向に沿って移動させることができる。映像表示装置30から投射された映像に基づく虚像9の表示位置は、拡散板41と各可動式レンズ42との距離に応じて決定される。よって、可動式レンズ42を移動させることで、エリア毎に焦点距離を変えて、虚像の表示距離を変化させることができる。
 具体的には、例えば図5に示すように、最上部のエリアでは可動式レンズ42を拡散板41に近い位置に移動させることで、対応する虚像の表示距離を近くすることができる。逆に、最下部のエリアでは可動式レンズ42を拡散板41から遠い位置に移動させることで、対応する虚像の表示距離を遠くすることができる。なお、可動式レンズ42の数は図示するような3個に限定されず、所望のエリアの数に応じて適宜構成すればよい。
 この他の表示距離調整手法として、レンズ位置を固定し拡散板を光軸方向に移動させる可動式拡散板を用いる方法、拡散板として機能性液晶フィルムを用いる方法などが可能である。
 図6は、表示距離の制御を示すフローチャートである。以下の処理は、制御部20内のECU21が走行状態に応じて表示距離調整部28を制御して行う。なお、走行状態は、後述する図9の区分に従って説明する。
  S201:ECU21は、車両情報取得部10を介し、車両の走行状態に関する情報を取得する。具体的には、外光の明るさを示す照度情報や時刻情報、車両の速度情報やギア情報、操舵情報、地図情報などを取得する。
 S202:ECU21は、照度情報や時刻情報を基に、現在の明るさが昼間か夜間かを判定する。ただしここでは、照度が所定値よりも明るいときを昼間、照度が所定値よりも暗いときを夜間とする。よって、時刻情報では昼間でも、照度が暗いときは夜間と判定する。
  S203:ECU21は、速度情報、ギア情報、地図情報を基に、走行中の道路が一般道か高速道かを判定する。
 S204:さらにECU21は、操舵情報や地図情報を用いて、運転操作状態が右左折走行時(交差点走行時を含む)か直進走行時かを判定する。判定の結果、右左折走行時であれば(判定:Yes)S206へ進み、直進走行時(交差点以外)であれば(判定:No)、S205へ進む。
 S205:ECU21は、不揮発性メモリ23に記憶している表示距離の推奨値を参照し、現在の走行状態での推奨値Laを読み出す。表示距離の推奨値の例は、図9で後述する。
  S206:ECU21は、測距センサ107で前方物体(先行車両、歩行者、信号機など)までの距離Lbを測定する。
 S207:ECU21は、S205またはS206で取得した表示距離La,Lbの値を表示距離調整部28に送る。表示距離調整部28は表示距離調整機構40を駆動して、映像表示装置30から投射される映像の表示距離がLa,Lbとなるよう調整する。その後、S201に戻り上記処理を繰り返す。
 上記のフローチャートでは、走行状態が昼間か夜間か、走行中の道路が一般道か高速道か、を判定し、現在の走行状態に応じて表示距離を調整したが、走行状態の区分は一例であり、これに限定されない。
  次に、各種走行状態における最適な表示距離(推奨値)の設定について説明する。
 図7は、各種走行状態における運転者の視点距離を計測した結果を示す図である。一般の被験者を対象に、市販の視線計測器を用いて運転中の視点距離を計測し、計測結果を視点距離ごとの度数分布(%)で表している。なお、視点距離は、0~0.8m、0.8~5m、のように区分している。走行状態として、昼間/夜間の比較、また走行道路として一般道(市街地、住宅街)と高速道の比較を行っている。視点計測の結果、走行状態に応じて視点距離の度数分布の高い範囲(視点が最も集中しやすい範囲)が存在し、最適な表示距離について次の知見が得られた。
 各走行状態において、運転者は85%以上の確率で40m以内を見ている。すなわち40mを超える距離に虚像を表示しても運転時の視点のままでは焦点が虚像に合わず、虚像を見るには視点の移動を伴うことになる。
 昼間の一般道では、比較的遠くを見る確率が高いものの、20m以上はあまり見ていない。よって、昼間の一般道での表示距離は20m以下が良い。昼間の高速道での表示距離は一般道よりも遠くし、40m以下が良い。
  夜間の一般道では、5m以下を見る確率が合計93.4%にもなる。この結果から、表示距離を5mに固定する。夜間の高速道での表示距離は一般道よりも遠くし、40m以下とする。
 このように、運転者の視点が最も集中しやすい範囲に表示距離を設定することで、運転者は視点移動が少なく、かつ快適に映像を視認することができる。つまり、前方物体までの距離や現時点の視点位置に合わせて表示位置を逐一追従させる方式に比べ、表示距離が走行状態に応じて固定されているので、表示距離が頻繁に切り替わることによる煩わしさが解消される。
 一方、表示距離が極端に近い場合には、二重像の発生により虚像が見にくくなる問題がある。HUDでは、フロントガラスの内側による反射光と、フロントガラスの外側による反射光が運転者の目に入射されることで、虚像の表示位置がずれて二重に視認され、映像の視認性を低下させてしまう。よって、これを避けるのが望ましい。
 図8は、虚像表示距離と二重像発生の関係をシミュレーションにより求めた図である。フロントガラス3の傾斜角を45度と仮定し、内側反射光の角度θ1と、外側反射光の角度θ2から角度差Δθを求めたものである。表示距離Lが小さくなると角度差Δθが大きくなることが分かる。
 二重像に対し、通常の視力(両眼視力=0.7)を有する人間が視認することのできる角度差Δθは、0.024deg以上と言われる。よって、角度差Δθがこの検知限以下となるような距離に表示すれば、二重像を視認することがない。この図から、表示距離Lの下限値は約10mとするのが適当と言える。なお、運転者の視力に応じて検知限が異なるので、それに合わせて表示距離の下限値を変更するようにしてもよい。例えば、両眼視力=1.0の運転者なら下限値を約15mとすればよい。
  本実施例では、図7の視点計測結果と、図8の二重像回避条件を組み合わせて、好適な表示距離(推奨値)を決定する。
 図9は、走行状態に応じて設定する表示距離の推奨値Laの例を示す図である。
  昼間の一般道では二重像回避を考慮して10m~20mの範囲とするが、夜間の一般道では視点を優先させ5mに固定する。高速道(昼間、夜間とも)は二重像を考慮して10m~40mの範囲とする。なお、運転者はこの範囲内で好みの距離に設定することができる。
 一方、右左折時、信号機付近、交差点付近などを走行時は、表示距離を前方物体までの距離Lbに合わせる。その理由は、右左折時等には視点が前方物体の位置に集中しやすく、視点移動のない距離で表示するのが好ましい。例えば、横断歩行者が4m先にいるとき、4mの距離に虚像(警告アイコンなど)を表示する。
 以上述べたように本実施例によれば、予め求めた各種走行状態において運転者の視点が最も集中しやすい視点距離と、二重像が視認されない下限距離をもとに表示距離の推奨値を定め、これを参照して走行状態に応じて虚像表示位置を切り替えるようにした。よって運転者にとって、視点移動が少なく映像を快適に視認できるヘッドアップディスプレイ装置を提供できる。
 本実施例で説明した走行状態の区分と表示距離の推奨値は一例に過ぎず、車両の使用環境に応じて様々な変形が可能であることは言うまでもない。
 1:ヘッドアップディスプレイ装置(HUD)、
 2:車両、
 3:ウィンドシールド(フロントガラス)、
 4:車両情報、
 9:虚像、
 10:車両情報取得部、
 20:制御部、
 21:電子制御ユニット(ECU)、
 23:不揮発性メモリ、
 28:表示距離調整部、
 30:映像表示装置、
 40:表示距離調整機構、
 41:拡散板(ディフューザ)、
 42:可動式レンズ。

Claims (8)

  1.  車両に搭載し、映像を投射することで運転者に対して前記車両の前方に虚像を表示するヘッドアップディスプレイ装置において、
     前記車両の走行状態に関する車両情報を取得する車両情報取得部と、
     投射する映像を生成する映像表示装置と、
     運転者の目から見た虚像までの表示距離を調整する表示距離調整機構と、
     前記映像表示装置と前記表示距離調整機構を制御する制御部と、を備え、
     前記制御部は、前記車両情報取得部を介して取得した車両情報を用いて現在の前記車両の走行状態を判断し、走行状態に応じて前記表示距離調整機構を介して虚像までの表示距離を調整することを特徴とするヘッドアップディスプレイ装置。
  2.  請求項1に記載のヘッドアップディスプレイ装置において、
     各走行状態において運転者が最も集中しやすい視点距離をその走行状態における表示距離の推奨値としてメモリに記憶し、
     前記制御部は、前記メモリに記憶された推奨値を参照して表示距離を調整することを特徴とするヘッドアップディスプレイ装置。
  3.  請求項2に記載のヘッドアップディスプレイ装置において、
     前記メモリに記憶する表示距離の推奨値は、表示された虚像について運転者により二重像が視認されないための表示距離の下限値以上に設定したことを特徴とするヘッドアップディスプレイ装置。
  4.  請求項2に記載のヘッドアップディスプレイ装置において、
     前記メモリに記憶する表示距離の推奨値は、走行状態を昼間と夜間に区別し、昼間の場合は夜間の場合よりも大きい、または等しく設定したことを特徴とするヘッドアップディスプレイ装置。
  5.  請求項2に記載のヘッドアップディスプレイ装置において、
     前記メモリに記憶する表示距離の推奨値は、走行状態を一般道と高速道に区別し、一般道の場合は高速道の場合よりも小さく設定したことを特徴とするヘッドアップディスプレイ装置。
  6.  請求項2に記載のヘッドアップディスプレイ装置において、
     走行状態が右左折時、または信号機付近、または交差点付近を走行する場合は、前記制御部は、前方物体までの距離に合わせて虚像を表示させることを特徴とするヘッドアップディスプレイ装置。
  7.  車両に搭載したヘッドアップディスプレイ装置により映像を表示する映像表示方法において、
     映像を投射して運転者に対して前記車両の前方に虚像を表示するステップと、
     車両情報を取得して現在の前記車両の走行状態を判断するステップと、
     走行状態に応じて運転者の目から見た虚像までの表示距離を調整するステップと、を備え、
     前記表示距離を調整するステップでは、
     予め、各走行状態における運転者の視点距離を計測し、運転者が最も集中しやすい視点距離をその走行状態における表示距離の推奨値としてメモリに記憶しておき、前記メモリに記憶された推奨値を参照して表示距離を調整することを特徴とする映像表示方法。
  8.  請求項7に記載の映像表示方法において、
     前記表示距離を調整するステップでは、さらに、
     予め、表示された虚像について運転者により二重像が視認されないための表示距離の下限値を求め、前記メモリに記憶する表示距離の推奨値は、前記下限値以上に設定したことを特徴とする映像表示方法。
PCT/JP2019/027695 2018-09-05 2019-07-12 ヘッドアップディスプレイ装置 WO2020049873A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018165851A JP7344635B2 (ja) 2018-09-05 2018-09-05 ヘッドアップディスプレイ装置
JP2018-165851 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020049873A1 true WO2020049873A1 (ja) 2020-03-12

Family

ID=69723151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027695 WO2020049873A1 (ja) 2018-09-05 2019-07-12 ヘッドアップディスプレイ装置

Country Status (2)

Country Link
JP (1) JP7344635B2 (ja)
WO (1) WO2020049873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779470A (zh) * 2022-03-16 2022-07-22 青岛虚拟现实研究院有限公司 一种增强现实抬头显示系统的显示方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190157A1 (ja) * 2014-06-13 2015-12-17 三菱電機株式会社 虚像表示装置
WO2017002312A1 (ja) * 2015-06-30 2017-01-05 パナソニックIpマネジメント株式会社 表示装置、表示方法および表示媒体
WO2017134866A1 (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 ヘッドアップディスプレイ装置
WO2018117012A1 (ja) * 2016-12-19 2018-06-28 マクセル株式会社 ヘッドアップディスプレイ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780663B2 (ja) 2016-02-10 2020-11-04 株式会社リコー 情報表示装置
US11538334B2 (en) 2017-11-30 2022-12-27 Nippon Seiki Co., Ltd. Head-up display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190157A1 (ja) * 2014-06-13 2015-12-17 三菱電機株式会社 虚像表示装置
WO2017002312A1 (ja) * 2015-06-30 2017-01-05 パナソニックIpマネジメント株式会社 表示装置、表示方法および表示媒体
WO2017134866A1 (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 ヘッドアップディスプレイ装置
WO2018117012A1 (ja) * 2016-12-19 2018-06-28 マクセル株式会社 ヘッドアップディスプレイ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779470A (zh) * 2022-03-16 2022-07-22 青岛虚拟现实研究院有限公司 一种增强现实抬头显示系统的显示方法

Also Published As

Publication number Publication date
JP7344635B2 (ja) 2023-09-14
JP2020037351A (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6629889B2 (ja) ヘッドアップディスプレイ装置
US11685393B2 (en) Vehicle automated driving system
JP6717856B2 (ja) ヘッドアップディスプレイ装置
JP7233490B2 (ja) 情報表示装置
US8514099B2 (en) Vehicle threat identification on full windshield head-up display
US10250860B2 (en) Electronic apparatus and image display method
JP6655732B2 (ja) ヘッドアップディスプレイシステム
JP2019217790A (ja) ヘッドアップディスプレイ装置
US10971116B2 (en) Display device, control method for placement of a virtual image on a projection surface of a vehicle, and storage medium
US10996479B2 (en) Display device, display control method, and storage medium
WO2018003650A1 (ja) ヘッドアップディスプレイ
JP2019113809A (ja) ヘッドアップディスプレイ装置
JP7111582B2 (ja) ヘッドアップディスプレイシステム
WO2020049873A1 (ja) ヘッドアップディスプレイ装置
JP6772527B2 (ja) 車両の制御装置
JP6872441B2 (ja) ヘッドアップディスプレイ装置
JP2019015936A (ja) ヘッドアップディスプレイ装置
JP2018185555A (ja) 車両の制御装置
CN115480402A (zh) 显示方法及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856888

Country of ref document: EP

Kind code of ref document: A1