WO2023140162A1 - 光合波器 - Google Patents

光合波器 Download PDF

Info

Publication number
WO2023140162A1
WO2023140162A1 PCT/JP2023/000522 JP2023000522W WO2023140162A1 WO 2023140162 A1 WO2023140162 A1 WO 2023140162A1 JP 2023000522 W JP2023000522 W JP 2023000522W WO 2023140162 A1 WO2023140162 A1 WO 2023140162A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical multiplexer
light
directional coupler
optical coupling
Prior art date
Application number
PCT/JP2023/000522
Other languages
English (en)
French (fr)
Inventor
勇多 矢部
明 姫野
浩一 堀井
修 川崎
一樹 岩端
洋次郎 亀井
哲文 吉田
Original Assignee
セーレンKst株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレンKst株式会社 filed Critical セーレンKst株式会社
Publication of WO2023140162A1 publication Critical patent/WO2023140162A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Definitions

  • the present invention relates to an optical multiplexer for inputting a plurality of visible lights of different wavelengths from respective waveguides and outputting multiplexed light obtained by multiplexing the plurality of visible lights by a directional coupler, wherein both at least one input waveguide and output waveguide connected to the directional coupler have a tapered structure.
  • optical multiplexer that uses multiple laser diodes as light sources and multiplexes and outputs visible light from the light sources via a waveguide
  • the optical multiplexer is manufactured by laminating silicon oxide films with low and high refractive indices on a silicon substrate using a known chemical vapor deposition (CVD) method, sputtering method, or the like, followed by patterning by photolithography using a photomask to form a waveguide and a directional coupler made of a silicon oxide film with a high refractive index, and then laminating a silicon oxide film with a low refractive index.
  • CVD chemical vapor deposition
  • the optical multiplexer in order to incorporate the optical multiplexer into the temple of eyeglasses, etc., it is desirable that it be smaller than the temple, and a strict manufacturing tolerance is required when manufacturing the directional coupler that constitutes the optical multiplexer.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide an optical multiplexer that enables miniaturization and enables production of directional couplers with stable quality and accuracy. Another object of the present invention is to provide an image projection apparatus including the optical multiplexer.
  • the present invention provides an optical multiplexer for inputting a plurality of visible lights of different wavelengths from respective waveguides and outputting multiplexed light obtained by combining the plurality of visible lights by a directional coupler from the waveguides, characterized in that at least one input waveguide and output waveguide connected to the directional coupler both have a tapered structure.
  • the tapered structure means a structure in which the width of the waveguide gradually decreases or the width of the waveguide gradually increases while maintaining the same thickness of the waveguide.
  • the tapered structure is provided in the curved portion of the waveguide.
  • the width of the waveguide of the optical coupling portion in the directional coupler is preferably 0.8 to 1.4 ⁇ m.
  • the plurality of visible lights having different wavelengths include at least red light, green light and blue light.
  • the image projection device includes the optical multiplexer.
  • optical multiplexer that can be used for image projection devices such as glasses-type terminals and portable projectors.
  • the optical multiplexer of the present invention can be used for various applications other than the above, such as lighting and backlighting, if necessary, but it is preferably used for image projection devices such as the spectacle-type terminals and portable projectors.
  • FIG. 1 is a diagram showing an outline of a conventional directional coupler; FIG. It is a figure which shows the outline
  • FIG. 4 is a diagram showing the light intensity of propagating light when the waveguide widths of the directional couplers are different and the distance between the inner surfaces of the optical coupling waveguides is the same.
  • FIG. 4 is a diagram showing the relationship between waveguide coupling length and waveguide width when the center-to-center distance of optical coupling waveguides is fixed at 2.8 ⁇ m in the present invention.
  • 1 is a diagram of an optical multiplexer of Example 1.
  • FIG. 3 is a diagram of an optical multiplexer of Comparative Example 1;
  • FIG. 4 is a diagram showing the relationship between waveguide width error and multiplexing efficiency in Example 1.
  • FIG. 8 is a diagram showing the relationship between waveguide width error and multiplexing efficiency in Comparative Example 1.
  • FIG. 1 is a diagram showing an outline of a conventional directional coupler.
  • input light 101 having wavelength 1 and input light 102 having wavelength 2 different from wavelength 1 are input from the left into the waveguide, they pass through curved portion 104 and are guided to optical coupling waveguide 105.
  • the cross-sectional shape of the two waveguides in the optical coupling waveguide 105 is square or rectangular.
  • the two waveguides have an optical coupling waveguide length 106 , an optical coupling waveguide inner surface distance 107 , and an optical coupling waveguide center to center distance 108 . Also, the waveguide widths 109 are all the same.
  • the optical coupling waveguide 105 since the two waveguides are adjacent to each other at a short distance, the lights having two different wavelengths travel back and forth in each other's waveguides while propagating, and then multiplexed to output the multiplexed output light 103.
  • multiplexing a state in which two or more lights with different wavelengths are coupled to one waveguide and mixed together.
  • FIG. 2 is a diagram showing an outline of a directional coupler according to the present invention.
  • a tapered structure in which the width of the waveguide changes is provided in the curved portion 104, and the width 110 of the optical coupling waveguide 105 is smaller than the width 109 of the waveguides in the input light portion and the output light portion.
  • the description of the distance 107 between the inner surfaces and the distance 108 between the centers of the optical coupling waveguides is omitted.
  • FIG. 3 is a diagram showing the repetition period of the light intensity wave (propagating light intensity wave) through which the input light propagates in the optical coupling waveguide 105 of the directional coupler of FIG.
  • the vertical axis represents the light intensity value with the maximum value being 100%
  • the horizontal axis represents the optical coupling waveguide length 106 .
  • the distance 107 between the inner surfaces of the optical coupling waveguide is fixed at 1.0 ⁇ m, and the solid line is assumed to be “1.0 ⁇ m/1.2 ⁇ m/2.2 ⁇ m” for “the distance 107 between the inner surfaces of the optical coupling waveguide/the waveguide width 109 of the optical coupling waveguide/the center-to-center distance 108 of the optical coupling waveguide”, and the dashed line is for the case of “1.0 ⁇ m/1.8 ⁇ m/2.8 ⁇ m”. is a simulation result using the beam propagation method (BPM).
  • the maximum value (100%) of the light intensity represents a state in which the input light does not exist in the waveguide and is 100% transferred to the adjacent waveguide
  • the minimum value (0%) represents the state in which 100% of the input light exists in the waveguide and is not transferred to the adjacent waveguide.
  • FIG. 4 shows the optical coupling waveguide length 106 and the optical coupling waveguide when the center-to-center distance of the optical coupling waveguide is fixed at 2.8 ⁇ m for blue light (B), green light (G), and red light (R), respectively, in the optical coupling waveguide 105 of the directional coupler of FIG. It is a figure showing the result of having simulated the relationship of the road widths 109 and 110.
  • FIG. 4 shows the optical coupling waveguide length 106 and the optical coupling waveguide when the center-to-center distance of the optical coupling waveguide is fixed at 2.8 ⁇ m for blue light (B), green light (G), and red light (R), respectively, in the optical coupling waveguide 105 of the directional coupler of FIG. It is a figure showing the result of having simulated the relationship of the road widths 109 and 110.
  • the optical coupling waveguide width is preferably 0.8 to 1.4 ⁇ m. Moreover, it is more preferably 1.0 to 1.2 ⁇ m.
  • the waveguide thickness in the present invention is preferably 1.0 to 3.0 ⁇ m, more preferably 1.2 to 2.5 ⁇ m, even more preferably 1.4 to 2.0 ⁇ m.
  • the refractive index difference in the present invention is preferably 0.5 to 2.0%, more preferably 0.7 to 1.8%, even more preferably 1.0 to 1.5%.
  • the waveguide thickness is less than 1.0 ⁇ m or if the refractive index difference is less than 0.5%, light confinement in the waveguide is weakened, making it difficult to bend the waveguide while light is confined, and a sensitive response to minute disturbances in the waveguide structure to increase loss, impairing practical waveguide functions.
  • FIG. 5(a) is a diagram of an optical multiplexer according to Example 1 of the present invention.
  • Blue light (B), red light (R), and green light (G) are input from the upper left side to three waveguides with a waveguide width of 1.8 ⁇ m.
  • blue light (B) and red light (R) are input.
  • the waveguide width is changed from 1.8 ⁇ m to 1.2 ⁇ m by the tapered structure provided in the curved portion of the waveguide
  • the above-described combined light and the optical coupling waveguide are combined using a second directional coupler having a waveguide width of 1.2 ⁇ m and a distance between the inner surfaces of the optical coupling waveguide of 1.0 ⁇ m.
  • the tapered structure may be provided on the straight portion of the waveguide, it is preferable to provide it on the curved portion because the overall length of the optical multiplexer can be reduced.
  • each directional coupler may have a left-right asymmetrical shape, such as connecting with a waveguide width of 1.2 ⁇ m without adopting the left-right symmetrical tapered structure. Therefore, in FIG. 5A, the width of the waveguide at the connection portion is changed from 1.2 ⁇ m to 1.5 ⁇ m, and then set to 1.2 ⁇ m again, which is the asymmetric shape described above.
  • FIG. 5(b) is a diagram showing simulation results of optical coupling when light is input from the lower side and light is output from the upper side for red light (R), green light (G), and blue light (B), respectively, in FIG. 5(a).
  • the ratios of the output light intensity were 99%, 93% and 95% when the input light intensity of red light (R), green light (G) and blue light (B) was 100%.
  • FIGS. 6(a) and 6(b) are diagrams showing an optical multiplexer of Comparative Example 1 having a structure in which all waveguide widths are 1.8 ⁇ m and the distance between the inner surfaces of the optical coupling waveguides is the same as in Example 1 above, and a diagram showing simulation results of optical coupling, and a multiplexer with a total length of 1950 ⁇ m can be obtained.
  • the ratios of the output light intensity were 87%, 85% and 87% when the input light intensity of red light (R), green light (G) and blue light (B) was 100%.
  • Example 1 can reduce the center-to-center distance of the optical coupling waveguides by using narrower waveguides than Comparative Example 1, so that the total length of the optical coupler can be shortened and the ratio of the output light intensity to the input light intensity can be increased.
  • FIG. 7 shows the relationship between the waveguide width error and the multiplexing efficiency when the waveguide width of the optical coupling waveguide of Example 1 is 1.20 ⁇ m.
  • a narrower waveguide width is a negative error
  • a wider waveguide width is a positive error.
  • the multiplexing efficiency at an error of ⁇ 0.10 ⁇ m is 88% or more.
  • the multiplexing efficiency means the ratio of the light intensity of each of the plurality of visible lights that are combined and output in the multiplexed output light, when the light intensity of each of the plurality of visible lights having different wavelengths input to the waveguide is taken as 100%.
  • FIG. 8 shows the relationship between the waveguide width error and the multiplexing efficiency when the waveguide width of the optical coupling waveguide of Comparative Example 1 is 1.80 ⁇ m, as in FIG. It can be seen that the multiplexing efficiency at an error of ⁇ 0.10 ⁇ m is 65% or more.
  • Example 1 can achieve stable quality and accuracy because it can reduce the decrease in the multiplexing efficiency with respect to the waveguide width error of the optical coupling waveguide compared to Comparative Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

小型化を可能とすると共に、方向性結合器を安定した品質、精度で製造することが可能な光合波器を提供する。また、前記光合波器を含む画像投影装置を提供する。 波長の異なる複数の可視光をそれぞれの導波路から入力し、前記複数の可視光を方向性結合器によって合波した多重光を導波路から出力する光合波器であって、方向性結合器に接続する少なくとも1つの入力導波路及び出力導波路が共にテーパー構造を有することにより、光合波器の全長を短くして小型化を可能とすると共に、光結合導波路の導波路幅の誤差に対する合波効率の低下量を少なくして、安定した品質、精度で製造することが可能な光合波器を得る。

Description

光合波器
 本発明は、波長の異なる複数の可視光をそれぞれの導波路から入力し、前記複数の可視光を方向性結合器によって合波した多重光を導波路から出力する光合波器であって、方向性結合器に接続する少なくとも1つの入力導波路及び出力導波路が共にテーパー構造を有することを特徴とする光合波器に関する。
 近年、眼鏡型端末や携帯型プロジェクタ等の画像投影装置において、複数のレーザダイオードを光源として用い、導波路を経由して前記光源からの可視光を合波して出力する光合波器が知られている(特許文献1を参照)。前記光合波器は、シリコン基板上に公知の化学気相成長法(CVD)やスパッタリング法等を用いて低屈折率及び高屈折率の酸化シリコン膜を積層形成した後、フォトマスクを用いたフォトリソグラフィー法によりパターニングを行い、高屈折率の酸化シリコン膜からなる導波路及び方向性結合器を形成した後、さらに低屈折率酸化シリコン膜を積層形成するという製造工程を経て製造される。
 ここで、前記光合波器を眼鏡のテンプル等に組み込むためにはテンプルより小型であることが望ましく、また、光合波器を構成する方向性結合器を作製する際に厳しい作製トレランスが要求されるため、歩留まりが低下するという問題があることから(特許文献2を参照)、前記方向性結合器を安定した品質、精度で製造する必要がある。
特開2013-195603号公報 特開2019-035876号公報
 本発明は、このような事情に鑑みてなされたものであり、小型化を可能とすると共に、方向性結合器を安定した品質、精度で製造することが可能な光合波器を提供することである。また、前記光合波器を含む画像投影装置を提供することである。
 本発明は、波長の異なる複数の可視光をそれぞれの導波路から入力し、前記複数の可視光を方向性結合器によって合波した多重光を導波路から出力する光合波器であって、方向性結合器に接続する少なくとも1つの入力導波路及び出力導波路が共にテーパー構造を有することを特徴とする光合波器を提供する。
 ここで、前記テーパー構造は、導波路の厚みを同一に保ったまま、導波路の幅が徐々に小さくなる、または導波路の幅が徐々に大きくなる構造を意味する。
 前記テーパー構造が導波路の曲線部分に設けられていることが好ましい。
 前記方向性結合器における光結合部分の導波路の幅が0.8~1.4μmであることが好ましい。
 前記波長の異なる複数の可視光が、少なくとも赤色光、緑色光及び青色光を含むことが好ましい。
 前記光合波器を含む画像投影装置であることが好ましい。
 本発明によれば、眼鏡型端末や携帯型プロジェクタ等の画像投影装置用途等に使用することが可能な小型の光合波器を提供することができる。本発明の光合波器は、必要に応じて上記以外に照明、バックライト等のさまざまな用途にも用いることができるが、前記眼鏡型端末や携帯型プロジェクタ等の画像投影装置用途に用いることが好ましい。
従来の方向性結合器の概要を示す図である。 本発明における方向性結合器の概要を示す図である。 方向性結合器の導波路幅が異なり、且つ光結合導波路の内側面間距離を同じにした場合の伝搬光の光強度を示す図である。 本発明における、光結合導波路の中心間距離を2.8μmで固定したときの導波路結合長と導波路幅の関係を表す図である。 実施例1の光合波器の図である。 比較例1の光合波器の図である。 実施例1の導波路幅の誤差と合波効率の関係を表す図である。 比較例1の導波路幅の誤差と合波効率の関係を表す図である。
 以下、本発明を実施するための実施例について、図面を参照しながら説明する。なお、本発明は以下の実施例に限られるものではない。
 図1は、従来の方向性結合器の概要を示す図であり、波長1を有する入力光101、及び波長1と異なる波長2を有する入力光102を左方向から導波路に入力すると、それぞれ曲線部分104を通過し、光結合導波路105に導かれる。光結合導波路105における2つの導波路の断面形状は正方形または長方形である。前記2つの導波路は光結合導波路長106、光結合導波路の内側面間距離107、及び光結合導波路の中心間距離108を有している。また、導波路幅109はすべて同一である。
 光結合導波路105において、2つの導波路が近距離で隣接していることから、異なる2つの波長を有する光は互いの導波路を行きつ戻りつ移行しながら伝搬した後、合波して多重出力光103が出力される。ここで、波長の異なる2つ以上の光が1つの導波路に結合して混在している状態を合波という。
 図2は、本発明における方向性結合器の概要を示す図であり、導波路の幅が変化するテーパー構造が曲線部分104に設けられており、光結合導波路105の幅110は、入力光部分及び出力光部分の導波路の幅109より小さくなっている。ここで、光結合導波路の内側面間距離107、中心間距離108の記載は省略した。
 図3は、図2の方向性結合器の光結合導波路105における入力光が伝搬する光強度の波(伝搬光強度波)の繰り返し周期を示す図である。縦軸は最大値を100%とする光強度の値、横軸は光結合導波路長106を表す。光結合導波路の内側面間距離107を1.0μmに固定し、実線は「光結合導波路の内側面間距離107/光結合導波路の導波路幅109/光結合導波路の中心間距離108」を「1.0μm/1.2μm/2.2μm」と仮定した場合、破線は「1.0μm/1.8μm/2.8μm」と仮定した場合について、周知の電磁場解析法であるビーム伝搬法(BPM)を用いたシミュレーション結果である。
 ここで、「光結合導波路の内側面間距離107」+「光結合導波路の導波路幅109、110」=「光結合導波路の中心間距離108」の関係式が成り立つ。
 光強度の極大値(100%)は、入力光が当該導波路に存在せず、隣接する導波路に100%移行している状態を表しており、極小値(0%)は、入力光が当該導波路に100%存在し、隣接する導波路には移行していない状態を表す。
 図3から、光結合導波路の内側面間距離107を不変とし、導波路幅109、110を小さくした場合、中心間距離108を小さくすることができ、光結合導波路105における入力光の伝搬光強度波の繰り返し周期が早くなることから、方向性結合器の長さを小さくできることがわかる。
 図4は、図2の方向性結合器の光結合導波路105において、導波路厚みを1.6μm、導波路(高屈折率の酸化シリコン)と周囲のクラッド(低屈折率の酸化シリコン)との屈折率差を1.1%と仮定した場合における、それぞれ青色光(B)、緑色光(G)及び赤色光(R)について、光結合導波路の中心間距離を2.8μmで固定した時の光結合導波路長106と光結合導波路幅109、110の関係をシミュレーションした結果を表す図である。
 光結合導波路幅が0.8~1.4μmの範囲における光結合導波路長の傾きが小さいことから、上記光結合導波路幅であれば、光結合導波路長の製造誤差の許容範囲が広いことがわかる。したがって、光結合導波路幅は0.8~1.4μmであることが好ましい。また、1.0~1.2μmであることがより好ましい。
 本発明における導波路厚みは1.0~3.0μmであることが好ましく、1.2~2.5μmであることがより好ましく、1.4~2.0μmであることがさらに好ましい。
 また、本発明における前記屈折率差は0.5~2.0%であることが好ましく、0.7~1.8%であることがより好ましく、1.0~1.5%であることがさらに好ましい。
 光の伝搬において、導波路厚みが1.0μm未満の場合、または前記屈折率差が0.5%未満である場合、導波路における光の閉じ込めが弱くなり、光を閉じ込めたまま導波路を曲げることが困難となること、及び導波路構造の微小な乱れに敏感に反応して損失が増大すること等、実用的な導波路機能が損なわれる。逆に、導波路厚みが3.0μmを超える場合、または前記屈折率差が2.0%を超える場合、単一モード動作が失われ、複数のモードの光が伝わる多モード導波路となる。多モード導波路では、各モードに対する結合特性が大きく異なることから、導波路伝搬光の各モードのパワーの割合を制御することは困難であるので、本発明のような方向性結合器を活用する分野での使用は難しくなる。
 図5(a)は、本発明の実施例1の光合波器の図である。導波路幅が1.8μmである3本の導波路に対し、左側の上から青色光(B)、赤色光(R)及び緑色光(G)を入力し、最初に青色光(B)及び赤色光(R)が、導波路の曲線部分に設けられたテーパー構造により、導波路幅が1.8μmから1.2μmに変化した後、光結合導波路の導波路幅が1.2μm、光結合導波路の内側面間距離が1.0μmの第1の方向性結合器を用いて合波され、次に、緑色光(G)が、導波路の曲線部分に設けられたテーパー構造により、導波路幅が1.8μmから1.2μmに変化した後、上記合波光と光結合導波路の導波路幅が1.2μm、光結合導波路の内側面間距離が1.0μmの第2の方向性結合器を用いて合波され、最終的に右側の1番下の導波路に設けられたテーパー構造により、導波路幅が1.2μmから1.8μmに変化した後、青色光(B)、赤色光(R)及び緑色光(G)の合波光を出力する、全長1305μmの光合波器を得ることができる。テーパー構造は導波路の直線部分に設けてもよいが、光合波器の全長を小さくできることから曲線部分に設けることが好ましい。
 ここで、図5(a)の赤色光(R)の導波路における第1の方向性結合器の出力導波路、及び第2の方向性結合器の入力導波路の接続部分の形状について、導波路幅が1.2μmから1.8μm及び1.8μmから1.2μmに変化するように、それぞれの方向性結合器の入力側と出力側の導波路形状を左右対称のテーパー構造としてもよいが、前記接続部分の長さが大きくなることから、前記左右対称のテーパー構造を採用せずに1.2μmの導波路幅として接続する等、それぞれの方向性結合器の入力側と出力側の導波路を左右非対称の形状としてもよい。したがって、図5(a)においては、前記接続部分の導波路幅を1.2μmから1.5μmに変化した後、再び1.2μmとする前記左右非対称の形状とした。複数の方向性結合器を用いた光合波器の場合、方向性結合器を安定した品質、精度で製造すると共に光合波器の小型化を可能とするため、それぞれの方向性結合器の接続部分に前記左右対称のテーパー構造を採用せず、前記複数の方向性結合器の入力側と出力側の導波路形状が左右非対称となる形状を用いることが好ましい。
 また、図5(b)は、図5(a)における、それぞれ赤色光(R)、緑色光(G)及び青色光(B)について、下側から光が入力し、上側から光が出力する場合の光結合のシミュレーション結果を示す図である。
 実施例1の光合波器における、それぞれ赤色光(R)、緑色光(G)及び青色光(B)の入力光強度を100%とした場合の出力光強度の割合は、99%、93%及び95%であった。
 図6(a)及び図6(b)は、導波路の幅を全て1.8μmとし、光結合導波路の内側面間距離が上記実施例1と同じである構造を有する比較例1の光合波器の図及び光結合のシミュレーション結果を示す図であり、全長1950μmの合波器を得ることができる。
 比較例1の光合波器における、それぞれ赤色光(R)、緑色光(G)及び青色光(B)の入力光強度を100%とした場合の出力光強度の割合は、87%、85%及び87%であった。
 図5、図6の比較より、実施例1は、比較例1に比べ、幅の狭い導波路を使用することで光結合導波路の中心間距離を小さくすることが出来るため、光合破器の全長を短くすると共に、入力光強度に対する出力光強度の割合も大きくすることができることがわかる。
 図7は、実施例1の光結合導波路の導波路幅を1.20μmとした場合に対する導波路幅の誤差に対する合波効率の関係を示す。導波路幅が細くなる場合は負の誤差、太くなる場合は正の誤差である。誤差±0.10μmにおける合波効率は88%以上であることがわかる。
 ここで、合波効率は、導波路に入力された波長の異なる複数の可視光のそれぞれの光強度を100%とした場合に対し、多重出力光において、合波して出力される前記複数の可視光のそれぞれの光強度の割合を意味する。
 図8は、図7と同様に比較例1の光結合導波路の導波路幅を1.80μmとした場合に対する導波路幅の誤差に対する合波効率の関係を示す。誤差±0.10μmにおける合波効率は65%以上であることがわかる。
 図7、図8の比較より、実施例1は、比較例1に対して光結合導波路の導波路幅の誤差に対する合波効率の低下量を少なくすることができることから、安定した品質、精度を実現できることがわかる。
 

Claims (5)

  1.  波長の異なる複数の可視光をそれぞれの導波路から入力し、前記複数の可視光を方向性結合器によって合波した多重光を導波路から出力する光合波器であって、方向性結合器に接続する少なくとも1つの入力導波路及び出力導波路が共にテーパー構造を有することを特徴とする光合波器。
  2.  前記テーパー構造が導波路の曲線部分に設けられている請求項1に記載された光合波器。
  3.  前記方向性結合器における光結合部分の導波路幅が0.8~1.4μmである請求項1または2に記載された光合波器。
  4.  前記波長の異なる複数の可視光が、少なくとも赤色光、緑色光及び青色光を含む請求項1~3のいずれか1つに記載された光合波器。
  5.  請求項1~4のいずれか1つに記載された光合波器を含む画像投影装置。
     
PCT/JP2023/000522 2022-01-18 2023-01-12 光合波器 WO2023140162A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022005883A JP2023104721A (ja) 2022-01-18 2022-01-18 光合波器
JP2022-005883 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023140162A1 true WO2023140162A1 (ja) 2023-07-27

Family

ID=87348779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000522 WO2023140162A1 (ja) 2022-01-18 2023-01-12 光合波器

Country Status (2)

Country Link
JP (1) JP2023104721A (ja)
WO (1) WO2023140162A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230014A (ja) * 1994-02-03 1995-08-29 Corning Inc 2つの導波路間の近接結合のための集積光装置
WO2008108422A1 (ja) * 2007-03-07 2008-09-12 Nec Corporation 光導波路モジュール
JP2008261942A (ja) * 2007-04-10 2008-10-30 Sumitomo Electric Ind Ltd 光源装置、プロジェクタ光学系、及びプロジェクタ装置
WO2017142076A1 (ja) * 2016-02-18 2017-08-24 日本電信電話株式会社 光合波回路
JP2018180513A (ja) * 2017-04-17 2018-11-15 日本電信電話株式会社 モニタリング機能付き光源
US20180372957A1 (en) * 2015-12-15 2018-12-27 Wuhan Research Institute of Post and Telecommunications Broadband polarization beam splitter/combiner based on gradient waveguide directional coupler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230014A (ja) * 1994-02-03 1995-08-29 Corning Inc 2つの導波路間の近接結合のための集積光装置
WO2008108422A1 (ja) * 2007-03-07 2008-09-12 Nec Corporation 光導波路モジュール
JP2008261942A (ja) * 2007-04-10 2008-10-30 Sumitomo Electric Ind Ltd 光源装置、プロジェクタ光学系、及びプロジェクタ装置
US20180372957A1 (en) * 2015-12-15 2018-12-27 Wuhan Research Institute of Post and Telecommunications Broadband polarization beam splitter/combiner based on gradient waveguide directional coupler
WO2017142076A1 (ja) * 2016-02-18 2017-08-24 日本電信電話株式会社 光合波回路
JP2018180513A (ja) * 2017-04-17 2018-11-15 日本電信電話株式会社 モニタリング機能付き光源

Also Published As

Publication number Publication date
JP2023104721A (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
CN111487713B (zh) 光合波回路
JPH02195309A (ja) 光結合素子
JP2007286430A (ja) 複合光学素子及び投影光学装置
JP6691518B2 (ja) 光集積回路
JP2001318253A (ja) 光導波路型方向性結合器およびこの光導波路型方向性結合器を用いた光導波回路
WO2017169922A1 (ja) 偏波分離素子
WO2016098476A1 (ja) 光導波路素子、受光装置、光通信装置、光変調器、光共振器、及び光導波路素子の製造方法
WO2023140162A1 (ja) 光合波器
JP2019035877A (ja) 光集積回路
WO2021177166A1 (ja) 光合波装置
JPH079490B2 (ja) 厚膜導波路
JP3261391B2 (ja) 偏波無依存型光アイソレータ
CN220252207U (zh) 一种波导合波器
US6690856B2 (en) Optical waveguide filter using multi-mode interference
JP7178328B2 (ja) 合分波素子および光源モジュール
WO2021177167A1 (ja) 背景光を低減した光合波器
WO2023037702A1 (ja) 光導波路素子及び光源モジュール
JPH0749430A (ja) 光回路部品
JP2018063333A (ja) モード合分波光回路
TW499581B (en) Planar waveguide diffractive beam splitter/beam coupler
JP2005309413A (ja) 光学素子およびそれを用いた分波素子
JP2020194188A (ja) 広帯域分岐光回路
WO2014156959A1 (ja) 端面光結合型シリコン光集積回路
JP3405066B2 (ja) 光分岐器
CN115480343A (zh) 一种基于双模干涉的平面光波导rgb耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743157

Country of ref document: EP

Kind code of ref document: A1