WO2023140064A1 - 眼科情報処理装置及び眼科情報処理プログラム - Google Patents

眼科情報処理装置及び眼科情報処理プログラム Download PDF

Info

Publication number
WO2023140064A1
WO2023140064A1 PCT/JP2022/048028 JP2022048028W WO2023140064A1 WO 2023140064 A1 WO2023140064 A1 WO 2023140064A1 JP 2022048028 W JP2022048028 W JP 2022048028W WO 2023140064 A1 WO2023140064 A1 WO 2023140064A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
eye
time
information processing
drawing data
Prior art date
Application number
PCT/JP2022/048028
Other languages
English (en)
French (fr)
Inventor
和則 河内山
一成 清水
通浩 滝井
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022008928A external-priority patent/JP2023107640A/ja
Priority claimed from JP2022008927A external-priority patent/JP2023107639A/ja
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Publication of WO2023140064A1 publication Critical patent/WO2023140064A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present disclosure relates to an ophthalmic information processing apparatus and an ophthalmic information processing program.
  • Patent Literature 1 discloses an ophthalmologic apparatus that measures the refractive power and intraocular distance of an eye to be inspected, and displays changes over time in the measured refractive power and intraocular distance of the eye to be inspected on a display unit.
  • the ocular refractive power which indicates the refractive power of the entire eye, is an index that indicates whether the eye to be examined is myopic.
  • myopia There are various types of myopia. One of them is axial myopia caused by excessive extension of the axial length of the eye. Observing changes in axial length may be useful in diagnosing axial myopia. Also, in order to make a comprehensive diagnosis of myopia, it is necessary to consider various information. It is difficult for conventional ophthalmic devices to sufficiently improve the efficiency of myopia diagnosis.
  • An object of the present disclosure is to provide an ophthalmic information processing apparatus and an ophthalmic information processing program that can improve the efficiency of myopia diagnosis.
  • An ophthalmologic information processing apparatus provided by a typical embodiment of the present disclosure is an ophthalmologic information processing apparatus that processes ophthalmologic information about an eye to be examined, wherein the control unit of the ophthalmic information processing apparatus performs, as the ophthalmologic information about the eye to be examined, at least a value of the axial length of the eye and an ocular refractive power value that indicates the refractive power of the entire eye, in a value acquisition process that specifies an examination time and acquires each value corresponding to the same eye to be examined that is acquired in the value acquisition process, and arranges the values corresponding to the same eye to be examined in chronological order according to the examination time. and a drawing data generating process for generating drawing data for drawing on one displayed chart.
  • An ophthalmologic information processing program provided by a typical embodiment of the present disclosure is an ophthalmologic information processing program for processing ophthalmologic information of an eye to be examined, and includes a value acquisition step of acquiring at least a value of the axial length of the eye and a value of ocular refractive power indicating the refractive power of the entire eye as the ophthalmologic information of the eye to be examined by specifying an examination time, and drawing each value corresponding to the same eye acquired in the value acquisition step and displaying them in chronological order according to the examination time. and a drawing data generation step of generating drawing data for drawing.
  • the efficiency of myopia diagnosis can be improved.
  • the control unit of the ophthalmologic information processing apparatus exemplified in the present disclosure acquires at least the axial length value and the ocular refractive power value indicating the refractive power of the entire eye.
  • the control unit generates drawing data for drawing one chart in which the obtained values corresponding to the same eye to be examined are arranged in chronological order according to the examination period.
  • the ophthalmologic information processing apparatus can provide a user such as a doctor with a chart in which each value is arranged and displayed in chronological order according to the examination time. Therefore, the ophthalmologic information processing apparatus can improve the efficiency of myopia diagnosis.
  • the control unit of the ophthalmologic information processing apparatus of the first aspect illustrated in the present disclosure acquires the value of the axial length of the eye and the value of the eyeball refractive power.
  • the control unit generates drawing data for drawing one chart in which the obtained values corresponding to the same eye to be examined are arranged in chronological order according to the examination period.
  • the chart corresponding to the drawing data to be generated has a first axis showing the value of the axial length on a scale corresponding to a predetermined unit amount, and a second axis arranged in parallel with the first axis.
  • the axial length values are displayed according to the scale of the first axis, and the values of the ocular refractive power are displayed according to the scale of the second axis, arranged in chronological order according to the examination time.
  • the scale of the first axis indicates the value of the eye axial length on a scale corresponding to a predetermined unit amount.
  • a scale for ocular power in the second axis is provided corresponding to the amount of change in ocular power value when the axial length value changes by a unit amount.
  • the amount of change in the eyeball refractive power value when the axial length value changes by the unit amount may be a value within the range of 1 diopter to 3 diopters when the unit amount is 1 mm.
  • the amount of change in the value of the eyeball refractive power when the value of the axial length changes by a unit amount can be derived from at least one of a study using a Gullstrand model eye, a formula for determining the power of an intraocular lens (hereinafter referred to as "IOL"), a correlation between the axial length and the degree of progression of refractive error, and the like. If a scale of ocular power values in the second axis is provided that matches the amount of variation derived in this way, the user will be more likely to properly compare the two values. Therefore, the ophthalmologic information processing apparatus can provide the user with a chart that facilitates understanding of the correlation between the amount of change in the value of the axial length of the eye and the amount of change in the value of the eyeball refractive power.
  • the drawing data may be generated by setting the time series range displayed in one chart from the earliest examination period to the latest examination period.
  • the control unit can generate drawing data for drawing one chart that can list each value obtained by the value obtaining process from the earliest examination period to the latest examination period. Therefore, the ophthalmologic information processing apparatus can allow the user to view the history of the myopia state of the subject's eye in one chart, so that the user can easily observe even the long-term myopia tendency.
  • the control unit may execute range acquisition processing for acquiring range specification information that specifies the time-series range displayed in one chart.
  • the drawing data generation process may generate drawing data specifying a time-series range to be displayed in one chart according to the range specification information acquired by the range acquisition process.
  • a user who has identified the type of myopia of the eye to be examined by viewing a chart may wish to observe the progress of the identified type of myopia at arbitrary intervals. Since the control unit executes range acquisition processing, the user can arbitrarily specify the time-series range displayed in one chart.
  • the control unit may perform a time acquisition process of specifying and acquiring time information indicating at least one of the first time during which the subject performed work that affects the progression of myopia and the second time that the subject performed work that affects myopia suppression.
  • the drawing data generation process may generate drawing data in which time information is reflected in chronological order.
  • Myopia tends to progress more easily as the amount of time spent with near-sightedness to look closer, such as when studying, reading, or watching the screens of televisions, personal computers, and game machines, increases.
  • myopia may be suppressed as the amount of time spent with distant vision, such as sports, commuting, or attending school, increases.
  • the control unit can execute time acquisition processing, it is possible to present to the user a single chart reflecting time information indicating at least one of the first time during which the work affecting the progression of myopia was performed and the second time during which the work affecting the suppression of myopia was performed. A user can consider the degree of progress of myopia in accordance with the time information by viewing one chart in which the time information is reflected.
  • the control unit may execute a treatment information acquisition process for acquiring treatment information indicating the content of the treatment for the eye to be examined and the time when the treatment was performed.
  • the drawing data generation process may generate drawing data reflecting treatment information in chronological order.
  • various treatments related to the subject's eye may be performed, such as prescriptions for eyeglasses, contact lenses, drugs, etc., and surgery, depending on the condition of myopia.
  • the control unit executes treatment information acquisition processing, it is possible to present the user with one chart reflecting the treatment information.
  • the user can consider the myopia status of the subject's eye in relation to various treatments by viewing one chart reflecting the treatment information.
  • the control unit may execute factor information acquisition processing for acquiring genetic factor information indicating the subject's genetic factors related to myopia.
  • the drawing data generation process may generate drawing data corresponding to the chart displaying the genetic factor information.
  • One of the causes of myopia is genetic factors. Genetic factors include, for example, having close relatives who are myopic, having a gene that tends to cause myopia, and the like. Since the control unit can execute factor information acquisition processing, it is possible to present the user with a chart displaying the genetic factor information. The user can grasp the subject's myopia status and the subject's genetic factor information related to myopia at once by viewing one chart.
  • the drawing data generation process may generate drawing data corresponding to a diagram showing a first boundary value for determining that the subject's eye is myopic and a second boundary value for indicating that the subject's eye is more myopic than the first boundary value, according to the first axis or the second axis.
  • the user can easily grasp the degree of myopia intensity indicated by the eye axial length value or eyeball refractive power value acquired by the value acquisition process and displayed in the chart corresponding to the first axis or the second axis.
  • the control unit may execute a level acquisition process for acquiring the level of possibility that the myopia of the subject will progress by specifying the timing.
  • the drawing data generation process may generate drawing data in which levels are reflected in chronological order.
  • Factors that cause myopia include environmental factors and genetic factors.
  • a doctor or the like may determine the level of possibility that the subject's myopia will progress by comprehensively determining a plurality of factors.
  • the control unit can acquire the level of the risk of myopia of the subject, so that the user can be presented with a single chart reflecting the level of the possibility of progression of myopia of the subject. By looking at one chart, the user can grasp the level of possibility that myopia progresses in the subject in association with the value of the axial length and the value of the eyeball refractive power, so that the diagnosis of myopia can be performed from various angles.
  • the level may be derived based on at least one of the first time during which the subject performs a task that affects the progression of myopia and the second time that the subject performs a task that affects myopia suppression.
  • the first and second hours are environmental events that fluctuate depending on the subject's lifestyle habits. Since the ophthalmology information processing can reflect the level of possibility that the subject's myopia progresses in the chart, the user who sees the chart can grasp the environmental factors related to the subject's myopia in chronological order.
  • the control unit of the second aspect of the ophthalmologic information processing apparatus exemplified in the present disclosure acquires the value of the corneal refractive power in addition to the value of the axial length of the eye and the value of the refractive power of the entire eye.
  • the control unit generates drawing data for drawing one chart in which the obtained values corresponding to the same eye to be examined are arranged in chronological order according to the examination period.
  • the ophthalmologic information processing apparatus can provide a user such as a doctor with a chart in which the axial length value, the refractive power value of the entire eye, and the corneal refractive power value are displayed in chronological order according to the examination time.
  • the ophthalmologic information processing apparatus can allow the user to multilaterally determine the type of myopia of the subject's eye and the degree of progress of myopia by allowing the user to view one chart. Therefore, the ophthalmologic information processing apparatus can improve the efficiency of myopia diagnosis.
  • the value related to the corneal refractive power may include at least either a value indicating the corneal refractive power or a value indicating the accuracy of keratoconus, which is calculated based on the corneal refractive power.
  • the ophthalmologic information processing apparatus can allow the user to multilaterally determine the type and cause of myopia.
  • the control unit may execute selection information acquisition processing for acquiring selection information for selecting which of the axial length value, the refractive power value of the entire eye, and the value related to the corneal refractive power to be displayed in one chart.
  • the drawing data generation process may generate drawing data corresponding to the selection information acquired by the selection information acquisition process.
  • the user may want to pay attention to the change over time of the specified type of myopia by displaying the values corresponding to the specified type of myopia in the chart without displaying the values that do not correspond to the specified type of myopia in the chart. Since the control unit can execute selection information acquisition processing, the user can arbitrarily select values displayed in one chart, thereby improving the efficiency of diagnosis.
  • the drawing data may be generated by setting the time series range displayed in one chart from the earliest examination period to the latest examination period.
  • control unit can generate drawing data for drawing one chart that can list all the values obtained by the value obtaining process from the earliest examination period to the latest examination period. Therefore, the ophthalmologic information processing apparatus can allow the user to view the history of the myopia state of the subject's eye in one chart, so that the user can easily observe even the long-term myopia tendency.
  • the control unit may execute range acquisition processing for acquiring range specification information that specifies the time-series range displayed in one chart.
  • the drawing data generation process may generate drawing data specifying a time-series range to be displayed in one chart according to the range specification information acquired by the range acquisition process.
  • a user who has identified the type of myopia of the eye to be examined by viewing a chart may wish to observe the progress of the identified type of myopia at arbitrary intervals. Since the control unit can execute range acquisition processing, the user can arbitrarily designate a time-series range to be displayed in one chart.
  • the control unit may execute a treatment information acquisition process for acquiring treatment information indicating the content of the treatment for the eye to be examined and the time when the treatment was performed.
  • the drawing data generation process may generate drawing data reflecting treatment information in chronological order.
  • various treatments related to the subject's eye may be performed, such as prescriptions for eyeglasses, contact lenses, drugs, etc., and surgery, depending on the condition of myopia.
  • the control unit can execute treatment information acquisition processing, it is possible to present a user with one chart reflecting treatment information. A user can judge the state of myopia from the relationship with various treatments by viewing one chart reflecting the treatment information.
  • the efficiency of myopia diagnosis is improved.
  • FIG. 2 is a block diagram showing an electrical configuration of the ophthalmologic information processing apparatus 1;
  • FIG. 4 is an explanatory diagram of measurement value history data 20.
  • FIG. 3 is an explanatory diagram of treatment history data 30.
  • FIG. 4 is an explanatory diagram of myopia-related data 40.
  • FIG. 5 is an explanatory diagram showing an example of a chart 50 corresponding to initial drawing data;
  • FIG. 6 is an explanatory diagram showing an example of a diagram 60 corresponding to drawing data;
  • FIG. 7 is an explanatory diagram showing an example of a chart 70 corresponding to drawing data;
  • FIG. 5 is an explanatory diagram showing an example of a chart 50 corresponding to initial drawing data;
  • FIG. 6 is an explanatory diagram showing an example of a diagram 60 corresponding to drawing data;
  • FIG. 7 is an explanatory diagram showing an example of
  • FIG. 8 is an explanatory diagram showing an example of a chart 80 corresponding to drawing data; 4 is an explanatory diagram of measurement value history data 21.
  • FIG. 9 is a flow chart of ophthalmologic information processing in the second embodiment.
  • FIG. 9 is an explanatory diagram showing an example of a chart 90 corresponding to initial drawing data;
  • FIG. 3 is an explanatory diagram showing an example of a chart 100 corresponding to drawing data;
  • FIG. 11 is an explanatory diagram showing an example of a chart 110 corresponding to drawing data;
  • FIG. 12 is an explanatory diagram showing an example of a chart 120 corresponding to drawing data;
  • the ophthalmologic information processing apparatus 1 is an ophthalmologic apparatus that executes at least one of photography, examination, and measurement of an eye to be examined.
  • the ophthalmic device may be any of various ophthalmic devices such as an OCT device, a scanning laser ophthalmoscope (SLO), a fundus camera, a corneal endothelial cell imager, an eye axial length measuring device, an eye refractive power measuring device, and an intraocular pressure measuring device.
  • the ophthalmologic information is information obtained by photographing, examination, measurement, etc. by an ophthalmologic apparatus.
  • the ophthalmologic information processing apparatus 1 is an optical interference type axial length measuring apparatus capable of acquiring the ocular axial length and the refractive power of the entire eye as ophthalmologic information by examining an eye to be examined.
  • the refractive power of the entire eye is hereinafter referred to as eyeball refractive power.
  • the ophthalmologic information processing apparatus 1 is not limited to an ophthalmologic apparatus.
  • the ophthalmologic information processing apparatus 1 may be a personal computer (hereinafter referred to as “PC”) or a mobile terminal that can acquire and process ophthalmologic information from an external ophthalmologic apparatus, an electronic chart, an external storage device such as a server that stores ophthalmic information, or the like. Acquisition of ophthalmic information by the ophthalmic information processing apparatus 1 may be performed by the user of the ophthalmic information processing apparatus 1 manually inputting the ophthalmic information to the ophthalmic information processing apparatus 1 via the operation unit 12 described later.
  • PC personal computer
  • the electrical configuration of the ophthalmologic information processing apparatus 1 includes a control unit 10 , a storage unit 11 electrically connected to the control unit 10 , an operation unit 12 , a display unit 13 , a printing unit 15 , a drive unit 16 and an external device connection unit 18 .
  • the control unit 10 includes a CPU that controls the entire ophthalmologic information processing apparatus 1 .
  • the control unit 10 includes a predetermined electric circuit or the like that transmits drive signals (for example, drive current) to the display unit 13, the print unit 15, and the drive unit 16 according to instructions from the CPU.
  • the storage unit 11 includes a ROM, a RAM, a flash memory, etc. for storing various parameters required when various programs are executed by the control unit 10 .
  • the storage unit 11 stores a program for causing the control unit 10 to execute ophthalmologic information processing, which will be described later with reference to FIG.
  • the control unit 10 functions as an example of a processor that executes print execution processing by developing programs stored in the storage unit 11 .
  • a program for executing ophthalmologic information processing may be downloaded, for example, from a server connected to a network (not shown) via an external device connection unit 18, which will be described later, that is, transmitted as a transmission signal and stored in the storage unit 11.
  • the program for executing ophthalmologic information processing may be stored in a non-temporary storage medium such as an HDD provided in the server.
  • the operation unit 12 is buttons or the like operated by the user to input various instructions to the ophthalmologic information processing apparatus 1 .
  • the operation unit 12 may be an operation device such as a keyboard, mouse, or touch panel.
  • the display unit 13 is a device capable of displaying various images, such as a monitor and a projector.
  • the printing unit 15 is a print head that prints images.
  • the printing unit 15 may be any print head such as a thermal print head, an inkjet head, an LED print head, or the like.
  • the drive unit 16 has various components necessary for the ophthalmologic information processing apparatus 1 to perform imaging, examination, and measurement of the subject's eye.
  • the external device connection unit 18 is an input/output interface for electrically connecting to other ophthalmologic devices or external information devices such as PCs.
  • the external device connection unit 18 may be configured so that an external information device can be wirelessly connected.
  • the measurement value history data 20 will be described with reference to FIG. In the first embodiment, the measured value history data 20 is stored in the storage section 11 .
  • the measured value history data 20 is a database that stores a plurality of pieces of ophthalmologic information acquired by the ophthalmologic information processing apparatus 1 .
  • the “examination date and time” indicates the date and time when the ophthalmologic information of the eye to be examined was obtained.
  • ID is information for identifying a subject.
  • R/L indicates whether the eye to be examined is the right eye or the left eye of the subject. When the value of R/L is "R”, it indicates the right eye, and when it is "L", it indicates the left eye.
  • AL and “REF.” are ophthalmologic information of the subject's eye.
  • AL indicates the value of the axial length of the eye to be examined.
  • the unit of AL is "mm”.
  • REF. indicates the ocular refractive power of the eye to be examined.
  • the unit of REF. is
  • the measured value history data 20 stores each value of the ophthalmologic information acquired by the ophthalmologic information processing apparatus 1 in association with the examination date/time, ID, and R/L. In addition to the values of the ophthalmologic information acquired by the ophthalmologic information processing apparatus 1, the measurement value history data 20 may store various values manually input to the ophthalmologic information processing apparatus 1 by the user of the ophthalmologic information processing apparatus 1 operating the operation unit 12.
  • treatment history data 30 is stored in storage unit 11 .
  • the treatment history data 30 is a database that stores treatment histories related to the subject's eye. "ID" and “R/L” in the treatment history data 30 are the same as in the measurement value history data 20 shown in FIG.
  • the treatment history data 30 stores information about treatment for each of the subject's right eye and left eye corresponding to the ID, corresponding to the date and time when the treatment was performed.
  • the treatment history data 30 is provided for each ID.
  • the treatment history data 30 stores a plurality of pieces of information on treatments for the subject's eye according to IDs.
  • the treatment history data 30 shown in FIG. 3 is an example of the treatment history data 30 corresponding to the IDs of "A101" and "G034".
  • Treatments related to the eye to be examined include prescription of eyeglasses, prescription of contact lenses, administration of medicines and supplements, and therapeutic actions such as surgery.
  • Drugs include not only eye drops, but also oral drugs, injection drugs, and the like.
  • treatment details indicates the details of the treatment for the subject's eye.
  • the treatment content is one of "eye drops”, “glasses”, “contact lenses”, and “surgery”.
  • Eye drops refers to administration of a given eye drop.
  • a plurality of "eye drops” columns may be provided according to the type of eye drops.
  • Glasses indicates a prescription for eyeglasses.
  • Contact Lens refers to a contact lens prescription.
  • “Surgery” indicates the performance of a given surgery.
  • a plurality of “surgery” columns may be provided according to the content of the operation.
  • the treatment history data 30 may also be configured to indicate other treatment details such as administration of internal medicine.
  • the “Date of action” column indicates the date when the action corresponding to the "Details of action” was taken.
  • Information indicating the details of the treatment content corresponding to the treatment implementation date is hereinafter referred to as "treatment information".
  • the treatment information indicating "administration start” and “administration end” indicates that the administration of eye drops has started and that the administration has ended.
  • the action information indicating " ⁇ ” indicates that the action corresponding to the content of the action is continuously performed.
  • the treatment information indicating "prescription” indicates that a prescription corresponding to the content of the treatment has been made.
  • the action information indicating "-” indicates that the action corresponding to the content of the action is not performed.
  • the treatment information indicates that the predetermined surgery has been performed. That is, the treatment information indicates the content of the treatment for the eye to be examined and the time when the treatment for the eye to be examined was performed. Regarding the treatment information corresponding to "glasses" and "contact lenses", it is assumed that the content of the prescription that has been performed once continues until the next prescription.
  • the treatment history data 30 may be stored in the storage unit 11 by being imported from an external information device via the external device connection unit 18. Further, the treatment history data 30 may store values manually input to the ophthalmologic information processing apparatus 1 by the user of the ophthalmologic information processing apparatus 1 operating the operation unit 12 .
  • the myopia-related data 40 will be described with reference to FIG.
  • the myopia related data 40 is stored in the storage unit 11 .
  • the myopia-related data 40 is provided for each ID.
  • the myopia-related data 40 shown in FIG. 4 is an example of the myopia-related data 40 corresponding to the IDs of "G034" and "C425.”
  • the myopia-related data 40 is a database that stores myopia-related information.
  • the myopia-related information is information about the subject and includes information that may affect myopia and information that indicates the level of influence on myopia.
  • the myopia-related information is roughly divided into three types: "genetic factor information", "environmental factor information” and "myopia risk level".
  • the genetic factor information indicates the subject's genetic factor for myopia.
  • the environmental factor information indicates the subject's environmental factors related to myopia. Myopia is thought to involve a combination of genetic and environmental factors. Therefore, the myopia-related information preferably includes genetic factor information and environmental factor information. However, only one of the genetic factor information and the environmental factor information may be used as the myopia-related information.
  • the genetic factor information includes information on "myopia status of parents" and information on "other genetic risks". "Parental myopic status" is whether one or both of the subject's parents are myopic. The user can obtain the myopia status of the parents by, for example, interviewing the subject. By manually inputting the acquired content to the ophthalmologic information processing apparatus 1 by the user, the information indicating the "myopia status of the parents" is stored in the myopia-related data 40 .
  • the genetic factor information may include the myopia status of other close relatives such as brothers of the subject instead of the "parents' myopia status".
  • “Other genetic risk” indicates the high likelihood that the subject will be genetically myopic, obtained by analyzing various genes involved in the onset and progression of myopia.
  • “other genetic risks” known methods such as those based on blood test results of subjects are used.
  • “other genetic risk” is indicated by three levels of “low”, “medium” and “high”.
  • the user manually inputs information indicating "other genetic risks” derived by a known method to the ophthalmologic information processing apparatus 1, thereby storing the information indicating "other genetic risks” in the myopia-related data 40.
  • the subject's "myopia status of parents” and “other genetic risks” are registered in the subject's electronic medical record stored in the external information device.
  • the “myopia status of the parents” and the “other genetic risks” may be stored in the myopia-related data 40.
  • Various methods that will be developed in the future may be adopted for derivation of "other genetic risks”.
  • the first embodiment defines, as environmental factor information, the "first hour” during which the subject performs work that affects the progression of myopia, and the "second hour” during which the subject performs work that affects the suppression of myopia.
  • the first hour is the time the subject spent in near vision for near vision.
  • the time spent on daily activities such as studying, reading, and watching the screens of televisions, personal computers, and game consoles corresponds to the first hour.
  • the second hour is the time the subject spent with distance vision to see far.
  • the second time corresponds to the time of daily activities such as sports, commuting to work and school. It is believed that the longer the first time, the more myopia progresses. It is believed that the longer the second time, the easier it is to suppress the progression of myopia.
  • “Environmental factors" can change as the subject's living behavior changes.
  • the user can obtain the first time and the second time, such as by interviewing the subject.
  • the myopia-related data 40 is configured so that the first time and the second time can be stored in association with the timing of hearing from the subject.
  • the user interviews the subject for the first time and the second time each time an examination using the ophthalmologic information processing apparatus 1 is performed.
  • the first time and the second time obtained from the subject are stored in the myopia-related data 40 by the user inputting the first time and the second time to the ophthalmologic information processing apparatus 1 via the operation unit 12 .
  • the first time and the second time are blank.
  • the first time and the second time may be registered in the subject's electronic medical record stored in the external information device.
  • the first time and the second time may be stored in the myopia-related data 40 by importing electronic medical record information from the external information device via the external device connection unit 18 .
  • both the first time and the second time are input to the ophthalmologic information processing apparatus 1 and stored in the myopia-related data 40 .
  • at least one of the first time and the second time may be input to the ophthalmologic information processing apparatus 1 and stored in the myopia-related data 40 .
  • the onset of myopia may be suppressed by exposure to light with a predetermined brightness or more for a predetermined period of time.
  • "violet light” which is visible light with a wavelength of 360 to 400 nm contained in sunlight, may suppress the progression of myopia. People can be exposed to light above a predetermined brightness and violet light contained in sunlight by performing outdoor activities. Therefore, the "second time" may be the time during which the outdoor activity was performed.
  • the myopia risk level indicates the level of possibility that the subject's myopia will progress, as judged by the user.
  • the myopia risk level is indicated by four stages of VH (Very High), H (High), M (Middle), and L (Low).
  • VH Very High
  • H High
  • M M
  • L Low
  • a user such as a doctor can determine the myopia risk level by comprehensively considering the subject's genetic factors, environmental factors, and the like.
  • information such as whether the subject correctly instilled the eye drops in the prescribed amount and frequency, whether the subject wore the prescribed contact lens correctly, and the like may be used.
  • the myopia risk level is determined each time the user performs an examination using the ophthalmologic information processing apparatus 1 .
  • the myopia risk level is stored in the myopia-related data 40 by manually inputting the determined myopia risk level into the ophthalmologic information processing apparatus 1 by the user.
  • the myopia risk level may be registered in the subject's electronic medical record stored in the external information device.
  • the myopia risk level may be stored in the myopia-related data 40 by importing electronic medical record information from an external information device via the external device connection unit 18 .
  • the measurement value history data 20, the treatment history data 30, and the myopia-related data 40 are not limited to the storage unit 11.
  • the measurement value history data 20, the treatment history data 30, and the myopia-related data 40 may be stored in a storage unit, a server, or the like of an external information device that can be connected to the ophthalmologic information processing apparatus 1 via the external device connection unit 18.
  • the server may be an on-premises server of the provider of the ophthalmologic information processing apparatus 1, or may be another server such as a so-called cloud server.
  • the control unit 10 of the ophthalmologic information processing apparatus 1 may refer to the measurement value history data 20, the treatment history data 30, and the myopia-related data 40 via the external device connection unit 18, and execute the ophthalmologic information processing described later.
  • the ophthalmologic information processing is executed when the controller 10 detects an instruction to inspect the subject's eye.
  • a user inputs an instruction to examine an eye to be examined to the ophthalmologic information processing apparatus 1 via the operation unit 12 .
  • each processing step is abbreviated as "S".
  • Each step of the ophthalmologic information processing of the ophthalmologic information processing apparatus 1 is not limited to the example executed by the CPU of the control unit 10 of the ophthalmologic information processing apparatus 1, and may be partially or wholly executed by another electronic device (for example, an ASIC, etc.) or the CPU of a PC, which is an external information device.
  • Each step of ophthalmologic information processing may be distributed and processed by a plurality of electronic devices (for example, a plurality of CPUs). Each step of the ophthalmologic information processing can be changed in order, omitted, or added as necessary.
  • a mode in which an operating system (OS) or the like running on the ophthalmologic information processing apparatus 1 performs part or all of the ophthalmologic information processing based on instructions from the control unit 10 is also included in the scope of the present disclosure.
  • OS operating system
  • the control unit 10 acquires the current date and time as the examination date and time (S1).
  • the control unit 10 stores the acquired inspection date and time in the measurement value history data 20 .
  • the control unit 10 acquires an ID (S2). Acquisition of the ID may be performed by acquiring what the user inputs to the ophthalmologic information processing apparatus 1 via the operation unit 12 .
  • the ophthalmologic information processing apparatus 1 may be provided with an information reading unit such as a card reader, and the ID may be acquired by reading information indicating the ID contained in a card such as a patient registration card of a medical institution by the information reading unit.
  • the control unit 10 stores the acquired ID in the measurement value history data 20 in association with the examination date and time acquired in the process of S1.
  • the control unit 10 acquires the value of R/L (S3). Acquisition of the R/L value may be performed by acquiring what the user inputs to the ophthalmologic information processing apparatus 1 via the operation unit 12 . The value of R/L may be obtained by automatic determination by the control unit 10 according to the position of the subject's eye with respect to the ophthalmologic information processing apparatus 1 and the like. The control unit 10 stores the value of R/L in the measurement value history data 20 in association with the ID acquired in the process of S2. The eye to be examined is specified by the processes of S2 and S3.
  • the control unit 10 uses AL and REF. (S5). By driving the drive unit 16, the control unit 10 controls the AL and REF. Measure and get the measurements. Note that the control unit 10 may acquire part or all of the ophthalmologic information from other external information equipment or the like connected to the ophthalmologic information processing apparatus 1 via the external equipment connection unit 18 . For example, AL of the ophthalmologic information is obtained from the first ophthalmologic apparatus, and REF. may be obtained from the second ophthalmic device. Further, as described above, the control unit 10 may perform the processing of S5 by obtaining the information that the user manually inputs to the ophthalmologic information processing apparatus 1 via the operation unit 12 by looking at the ophthalmologic information described in the subject's chart or the like.
  • AL of the ophthalmologic information
  • REF may be obtained from the second ophthalmic device.
  • the control unit 10 may perform the processing of S5 by obtaining the information that the user manually inputs to the ophthalmologic information processing apparatus 1 via the
  • the control unit 10 acquires past ophthalmologic information corresponding to the same eye to be examined as the eye to be examined identified in the processing of S2 and S3 by extracting it from the measurement value history data 20 (S6).
  • the control unit 10 generates drawing data for drawing one chart in which the values of the ophthalmologic information acquired in the processes of S5 and S6 are arranged in chronological order according to the examination time (S11).
  • the drawing data generated in the process of S11 is called "initial drawing data”.
  • the control unit 10 stores the generated initial drawing data in the storage unit 11 .
  • the control unit 10 outputs initial drawing data (S12).
  • the drawing data generated in the ophthalmologic information processing including the initial drawing data is output by displaying on the display unit 13 .
  • a chart 50 shows an example of a chart when the left eye of the subject with the ID of "G034" is the subject's eye.
  • the chart 50 has a time axis 51 as a horizontal axis.
  • a time axis 51 indicates the passage of time on a predetermined scale.
  • the chart 50 has an AL axis 521 and a REF.
  • Axis 522 comprises two longitudinal axes.
  • the AL axis 521 is the vertical axis that indicates the value of AL. REF.
  • Axis 522 is REF.
  • the vertical axis indicates the value of
  • Chart 50 includes AL graph 56 and REF.
  • a graph 57 is provided.
  • the AL graph 56 is a graph in which the AL values correspond to the scale of the AL axis 521 and the inspection dates correspond to the scale of the time axis 51 and are arranged in chronological order.
  • the marker for arranging the AL values according to the examination date and time is " ⁇ ".
  • Graph 57 shows REF. The value of REF. It is a graph arranged in chronological order according to the inspection date and time while being associated with an axis 522 .
  • the marker for arranging the values of is " ⁇ ".
  • the chart 50 includes an ID column 551, a left/right column 552, a latest value column 553, and the like.
  • An ID column 551 is a column for displaying an ID or the like on the chart 50 .
  • the left/right column 552 is a column for displaying in the chart 50 whether the eye to be examined is the right eye or the left eye.
  • the latest value column 553 contains the AL graph 56 and REF. This column is for displaying the type of each marker of the graph 57 and the value of the latest ophthalmologic information on the chart 50 .
  • the amount of change in eyeball refractive power when the axial length is changed by 1 mm is calculated to be 2.57D.
  • the SRK formula which is one of the calculation formulas for determining the power of the IOL, defines that when the axial length of the eye is changed by 1 mm, the power of the IOL changes by 2.5D.
  • the amount of change in the ocular refractive power value when the axial length value is changed by a unit amount can be influenced by race, age, and the like. Therefore, assuming that the axial length of the eye changes due to axial myopia after taking into account the average characteristics of the eye, the REF.
  • the amount of change in the scale of axis 522 is preferably provided to match values within the range of 1D to 3D. REF. when the amount of change in the scale of the AL axis 521 is 1 mm. More preferably, the amount of change in scale of axis 522 corresponds to a value within the 2D to 3D range. Based on these, in the first embodiment, REF. The amount of change in the scale of axis 522 is provided to match 2.5D.
  • Chart 50 shows an example in which the type of myopia of the subject's eye is likely to be axial myopia.
  • AL axis 521 scale and REF.
  • the scale of the axis 522 has the correspondence relationship as described above. Therefore, when the type of myopia of the subject's eye is axial myopia and the AL value of the subject's eye changes in the direction of lengthening, the slope of the AL graph 56 and the REF.
  • the slope of the graph 57 tends to be parallel. For this reason, chart 50 shows the REF. It is possible for a user or the like to easily predict the change in the value of .
  • the ophthalmologic information processing apparatus 1 that provides the chart 50 to the user can improve the efficiency of myopia diagnosis by the user.
  • the control unit 10 When generating the initial drawing data in the process of S11, the control unit 10 arranges the oldest examination date and time associated with each piece of past ophthalmologic information obtained in the process of S6 on the left end of the time axis 51, and arranges the current examination date and time obtained in the process of S1 on the right end of the time axis 51.
  • the control unit 10 In the process of S11, the control unit 10 generates initial drawing data for displaying the chart 50 with the time-series range of the time axis 51 from the earliest examination time to the latest examination time. Therefore, the chart 50 is displayed on the display unit 13 as a chart that allows viewing of ophthalmologic information from the earliest examination period to the latest examination period. Therefore, by viewing the chart 50, the user can also observe myopia tendencies over a long period of time.
  • the control unit 10 determines whether an instruction to change the contents of the chart output in the process of S12 has been input via the operation unit 12 (S13). If an instruction to change the contents of the output chart has not been input via the operation unit 12 (S13: NO), the control unit 10 shifts the process to the judgment of S18. If an instruction to change the content of the output chart has been input via the operation unit 12 (S13: YES), the control unit 10 executes output content change processing (S15).
  • the control unit 10 determines whether the instruction input in the process of S13 is range designation information that designates the time series range of the time axis 51 in the chart (S21). If the input instruction is not range designation information (S21: NO), the control unit 10 shifts the process to the determination of S23. If the input instruction is range designation information (S21: YES), the control unit 10 acquires the range designation information, and generates drawing data for drawing a diagram corresponding to the time-series range designated by the acquired range designation information (S22). The control unit 10 shifts the process to the determination of S23.
  • the control unit 10 determines whether the instruction input in the process of S13 designates to display, in a chart, a first boundary value for determining that the subject's eye is myopic and a second boundary value for indicating that the subject's eye is myopic that is stronger than the first boundary value, that is, so-called strong myopia (S23).
  • the first boundary value and the second boundary value are REF. It is provided corresponding to the shaft 522 .
  • the first boundary value is "-0.5D”.
  • the second boundary value is "-6D". Since the first boundary value and the second boundary value are examples, they may be values different from "-0.5D" and "-6D".
  • the control unit 10 shifts the process to the judgment of S26. If the input instruction specifies to display the first boundary value and the second boundary value on the chart (S23: YES), the control unit 10 generates drawing data for drawing the chart on which the first boundary value and the second boundary value are displayed (S25). The control unit 10 shifts the process to the determination of S26.
  • the control unit 10 determines whether the instruction input in the process of S13 is an instruction to reflect the treatment information on the chart (S26). If the input instruction does not instruct to reflect the treatment information on the chart (S26: NO), the control section 10 shifts the process to the process of S31. If the content of the instruction is to reflect the treatment information in the chart (S26: YES), the control unit 10 identifies the treatment history data 30 corresponding to the ID acquired in the process of S2 from among the treatment history data 30 stored in the storage unit 11. The control unit 10 acquires the treatment information of the subject's eye from the identified treatment history data 30 (S28). In the first embodiment, an instruction to reflect treatment information in the chart is selectively input for each treatment content.
  • control unit 10 acquires, from the treatment history data 30, treatment information corresponding to the treatment content indicated by the instruction input via the operation unit 12 in the process of S13.
  • the control unit 10 generates drawing data for drawing a chart reflecting the acquired treatment information (S29).
  • the control unit 10 shifts the process to the process of S31.
  • the control unit 10 determines whether the instruction input in the process of S13 is an instruction to display the genetic factor information on the chart (S31). If the input instruction is to display genetic factor information in a diagram (S31: YES), the control unit 10 identifies the myopia-related data 40 corresponding to the ID obtained in the process of S2 from among the plurality of myopia-related data 40 stored in the storage unit 11. The control unit 10 acquires the subject's genetic factor information from the identified myopia-related data 40 (S32). The control unit 10 generates drawing data for drawing a chart displaying the acquired genetic factor information (S33).
  • the control unit 10 determines whether the input instruction instructs to display the environmental factor information on the chart (S35). If the input instruction instructs to display the environmental factor information on the chart (S35: YES), the control unit 10 identifies the myopia-related data 40 corresponding to the ID acquired in the process of S2 from among the plurality of myopia-related data 40 stored in the storage unit 11. The control unit 10 acquires the subject's environmental factor information, that is, the first time and the second time, from the specified myopia-related data 40 (S36). The control unit 10 generates drawing data for drawing a chart that reflects the acquired first time and second time in chronological order (S38).
  • the control unit 10 determines whether the input instruction instructs to display the myopia risk level on the chart (S41). If the input instruction instructs to display the myopia risk level on the chart (S41: YES), the control unit 10 identifies the myopia-related data 40 corresponding to the ID acquired in the process of S2 from among the plurality of myopia-related data 40 stored in the storage unit 11. The control unit 10 acquires the subject's myopia risk level from the identified myopia-related data 40 (S42). The control unit 10 generates drawing data for drawing a chart that reflects the acquired myopia risk levels in chronological order (S43).
  • the myopia risk level may be derived based on at least one of the first time and the second time.
  • the control unit 10 acquires the myopia risk level by deriving the myopia risk level from at least one of the first time and the second time based on a predetermined derivation method in the process of S42.
  • the method of deriving the myopia risk level using the first time and/or the second time may be configured in various ways.
  • a myopia risk level may be derived according to the ratio between the first time and the second time.
  • a derivation technique may be employed in which a myopia risk level equal to or less than a predetermined level is derived when the length of the first time period is equal to or less than a predetermined time period.
  • a myopia risk level greater than or equal to a predetermined level may be derived if the length of the second time period is greater than or equal to a predetermined time period.
  • the control unit 10 can superimpose each process of S22, S25 and S29. Also, the control unit 10 can alternatively execute the processes of S32, S38 and S43. Each of the processes of S32, S38 and S43 can be superimposed with each of the processes of S22, S25 and S29. The control unit 10 returns the processing to the ophthalmic information processing.
  • the control unit 10 outputs the drawing data generated in the output content change process (S16).
  • the drawing data generated in the ophthalmologic information processing including the initial drawing data is output by displaying on the display unit 13 .
  • the control unit 10 determines whether an instruction to end ophthalmologic information processing has been input via the operation unit 12 (S18). If an instruction to end the ophthalmologic information processing has not been input via the operation unit 12 (S18: NO), the control unit 10 returns the process to S12 and continues the subsequent processes. If an instruction to end the ophthalmic information processing has been input via the operation unit 12 (S18: YES), the control unit 10 ends the ophthalmic information processing.
  • the ophthalmologic information processing apparatus 1 allows the user to grasp the myopia status and the genetic factor information of the subject at once, thereby improving the efficiency of myopia diagnosis.
  • the control unit 10 generates drawing data having the first boundary axis 71 and the second boundary axis 72 .
  • the first boundary axis 71 is REF.
  • axis 522 indicates the first boundary value of -0.5D, REF. It is a horizontal axis perpendicular to the axis 522 .
  • the second boundary axis 72 is REF. At the position where axis 522 indicates the second boundary value of -6D, REF. It is a horizontal axis perpendicular to the axis 522 .
  • the characters "strong myopia” are attached to indicate that the line indicated by the second boundary axis 72 is the boundary between whether or not there is strong myopia.
  • a user who visually recognizes the diagram 70 has a first boundary axis 71 and a second boundary axis 72, and REF.
  • the degree of myopia of the subject's eye can be easily grasped.
  • the AL value may be defined such that the first boundary value is "25 mm" and the second boundary value is "27 mm". That is, the first boundary axis 71 and the second boundary axis 72 may be provided corresponding to the AL axis 521 .
  • the user can easily grasp the degree of myopia of the subject's eye by comparing the first boundary axis 71 and the second boundary axis 72 with the AL graph 56 .
  • the control unit 10 generates drawing data that includes a time display unit 73 that indicates the first time and the second time, corresponding to the times indicated by the time axis 51.
  • the time display portion 73 is a bar graph including a first time portion 731 extending downward from the reference axis 74 to indicate a first time and a second time portion 732 extending upward from the reference axis 74 to indicate a second time, with reference to a reference axis 74, which is a horizontal axis extending parallel to the time axis 51.
  • the aspect of the time display portion 73 is an example.
  • the first time portion 731 may extend upward from the reference axis 74 and the second time portion 732 may extend downward from the reference axis 74 .
  • the time display portion 73 is not limited to a bar graph, and may be a pie graph or the like.
  • the time display unit 73 may be configured to display the first time and the second time using a numerical value, the number of icons, or the like, in addition to displaying the first time and the second time graphically. Also, the time display section 73 may be configured to have only one of the first time section 731 and the second time section 732 .
  • a user viewing the chart 70 can view the AL graph 56 and the REF.
  • the transition of the graph 57 with the transition of the first time and the second time indicated by the time display section 73, it is possible to consider the influence of the subject's environmental factors on the subject's degree of myopia. Changes in the subject's living behavior tend to affect changes in the first and second hours. For example, when the diagram 70 shows a tendency to suppress the progression of myopia as the second time increases, the user can advise the subject to secure the second time in daily life.
  • information indicating changes in living behavior that can affect changes in the first time and the second time may be stored in association with the time when the living behavior changed.
  • Information that indicates changes in lifestyle behavior that can affect changes in the first and second hours includes, for example, acquisition of objects handled with near vision such as personal computers, smartphones, and game consoles, accustomed to playing sports in club activities, etc., changes in commuting routes to school, etc.
  • the control unit 10 may generate drawing data corresponding to a chart that displays information indicating changes in living behavior that can affect changes in the first time and the second time in association with the timing of the change in living behavior.
  • the ophthalmologic information processing apparatus 1 can allow the user to visually recognize, in the chart, information indicating changes in living behavior that can affect changes in the first time and the second time. Therefore, it becomes easier for the user to grasp the reason why the first time and the second time have changed.
  • the control unit 10 generates drawing data having treatment information axes 82 and 83 .
  • Treatment information axes 82 and 83 are horizontal axes for reflecting treatment information in chronological order in the chart.
  • a treatment information axis 82 reflects, in chronological order, the implementation status of the treatment contents of "eye drops" among the information on the treatment related to the eye to be examined corresponding to the ID of "G034" in the treatment history data 30.
  • the treatment information axis 83 reflects, in chronological order, the implementation status of the treatment contents of "contact lens” among the information on the treatment for the eye to be examined corresponding to the ID "G034" of the treatment history data 30.
  • FIG. On the left side of the treatment information axis 83, the letters "contact lens” representing the treatment contents corresponding to the treatment information axis 83 are attached.
  • the left ends of the treatment information axes 82 and 83 are arranged on the time axis 51 at the positions of the start times of the treatment contents corresponding to the treatment information axes 82 and 83 respectively.
  • the right ends of the treatment information axes 82 and 83 are arranged on the time axis 51 at the end times of the treatment contents corresponding to the treatment information axes 82 and 83 respectively.
  • the treatment contents corresponding to the respective treatment information axes 82 and 83 are still ongoing at the present time, so the right ends of the treatment information axes 82 and 83 are arranged at the right end of the chart 80 .
  • a user who visually recognizes the chart 80 can grasp the treatment information of the subject's eye along with the time when the treatment was performed based on the treatment information axes 82 and 83 . Therefore, the user can consider the myopia status of the subject's eye according to the content of the treatment performed on the subject's eye and the timing of the treatment.
  • control unit 10 generates drawing data including a myopia risk level display 81 that indicates the myopia risk level corresponding to the time indicated by the time axis 51 .
  • the myopia risk level display 81 reflects the myopia risk level corresponding to the ID of "G034" in the myopia-related data 40 in a graph in chronological order.
  • myopia risk level display 81 arranges four levels of L, M, H, and VH in order from the bottom to the top on the vertical axis, and shows the myopia risk level corresponding to the time indicated by time axis 51.
  • the myopia risk level display 81 may indicate the myopia risk level in the form of a graph, or may indicate the myopia risk level using a numerical value, the number of icons, or the like.
  • a second embodiment which is one of typical embodiments according to the present disclosure, will be described with reference to FIGS.
  • the ophthalmologic information processing apparatus 1 of the second embodiment stores measurement value history data 21 shown in FIG. 11 in the storage unit 11 instead of the measurement value history data 20 of the first embodiment shown in FIG.
  • the control unit 10 of the ophthalmologic information processing apparatus 1 of the second embodiment executes the ophthalmologic information processing shown in FIG. 12 instead of the ophthalmologic information processing of the first embodiment shown in FIG.
  • the ophthalmologic information processing apparatus 1 is an optical interference type axial length measuring apparatus capable of acquiring corneal refractive power in addition to ocular axial length and eyeball refractive power as ophthalmic information.
  • the ophthalmologic information processing apparatus 1 may be a PC capable of acquiring and processing the corneal refractive power from an external ophthalmologic apparatus, an electronic chart, an external storage device such as a server that stores ophthalmologic information, or the like. Acquisition of the corneal refractive power by the ophthalmic information processing apparatus 1 may be performed by the user of the ophthalmic information processing apparatus 1 manually inputting the corneal refractive power to the ophthalmic information processing apparatus 1 via the operation unit 12 described later.
  • Other configurations of the ophthalmologic information processing apparatus 1 of the second embodiment are the same as those of the first embodiment. In the second embodiment, descriptions of the same configurations as those in the first embodiment will be omitted as appropriate.
  • the measurement value history data 21 is a database that stores a plurality of pieces of ophthalmologic information acquired by the ophthalmologic information processing apparatus 1, like the measured value history data 20 of the first embodiment.
  • Each of "Steep K”, “Flat K”, “KM”, and “KKI” is ophthalmologic information of the eye to be examined.
  • Steep K, Flat K, KM and KKI are values related to corneal refractive power. Among these, Steep K, Flat K, and KM are values indicating the radius of curvature of the cornea.
  • Steep K indicates the value of the radius of curvature of the cornea at the strong principal meridian of the eye to be examined.
  • Flat K indicates the value of the radius of curvature of the cornea at the weak principal meridian of the eye to be examined.
  • KM indicates the average value of Steep K and Flat K.
  • the unit of Steep K, Flat K and KM is "mm".
  • the ophthalmologic information processing apparatus 1 measures Steep K and Flat K and calculates the average value of Steep K and Flat K to obtain the value of KM.
  • the value of corneal refractive power may be calculated by dividing a predetermined constant by the value of the radius of curvature of the cornea.
  • Steep K, Flat K and KM are treated as values indicating corneal refractive power.
  • the corneal refractive power value calculated from each value of Steep K, Flat K, and KM may be used.
  • the KKI is a value that indicates the accuracy of keratoconus and is a value calculated based on the corneal refractive power.
  • the KKI is also called the "Keratoconus Screening Index” and the like.
  • KKI is calculated from each value of Steep K and Flat K by a regression formula shown in Japanese Patent No. 6707239 or the like.
  • a KKI value exceeding a predetermined cutoff value corresponds to an increased risk of keratoconus in the subject's eye.
  • the cutoff value is "0.461".
  • the measured value history data 21 stores each of the values obtained and calculated by the ophthalmologic information processing apparatus 1 in association with the examination date/time, ID, and R/L.
  • the ophthalmologic information processing of the second embodiment will be described with reference to FIG.
  • the ophthalmic information processing shown in FIG. 12 includes the same processing as the ophthalmic information processing shown in FIG.
  • the same step numbers as those in the ophthalmologic information processing shown in FIG. 5 are assigned to the same processes as in the ophthalmic information processing shown in FIG.
  • the control unit 10 sequentially executes the processes from S1 to S3.
  • the control unit 10 uses AL, REF. , Steep K and Flat K are obtained (S51).
  • the control unit 10 controls the AL and REF. , Steep K and Flat K to obtain measurements.
  • the control unit 10 calculates the value of KM based on the obtained values of Steep K and Flat K (S52).
  • the control unit 10 stores the calculated KM value in the measured value history data 21 .
  • the control unit 10 calculates the value of KKI based on the obtained values of Steep K and Flat K and the above regression equation (S53).
  • the control unit 10 stores the ophthalmologic information acquired in S51, S52, and S53 in the measurement value history data 21 in association with the R/L value acquired in the process of S3.
  • control unit 10 may acquire part or all of the ophthalmologic information from other external information equipment or the like connected to the ophthalmologic information processing apparatus 1 via the external equipment connection unit 18 .
  • AL and REF. may be obtained from a first ophthalmic device
  • Steep K and Flat K may be obtained from a second ophthalmic device.
  • Acquisition of each value of KM and KKI is not limited to the aspect calculated by the control unit 10 .
  • the control unit 10 may perform a process of acquiring the values of KM and KKI obtained by other external information equipment or the like connected to the ophthalmologic information processing apparatus 1 via the external equipment connection unit 18.
  • the control unit 10 executes each process of S6, S11, S12 and S13. If "NO" is determined in S13, the control unit 10 determines whether the instruction input in the process of S13 is selection information indicating which value of ophthalmologic information is to be displayed in the chart (S61). In the second embodiment, the selection information is graphically represented by the AL graph 56, REF. It corresponds to information for selecting which of the graph 57, KM graph 58, and KKI graph 59 to display in the chart. If the input instruction is not selection information (S61: NO), the control unit 10 shifts the process to S15.
  • the control unit 10 acquires the selection information, and generates drawing data for drawing a chart displaying values of ophthalmological information corresponding to the acquired selection information (S62). The control unit 10 shifts the process to S15. After that, the control unit 10 executes the processes of S15, S16 and S18.
  • a chart 90 shows an example of a chart when the right eye of the subject with the ID of "A101" is the subject's eye.
  • the control unit 10 generates the initial drawing data so that the time series of the time axis 51 ranges from the earliest examination date to the latest examination date.
  • the chart 90 is orthogonal to the time axis 51, AL axis 521, REF. It comprises four longitudinal axes: axis 522 , KM axis 523 and KKI axis 524 .
  • a KM axis 523 is a vertical axis that indicates the value of KM.
  • the KKI axis 524 is the vertical axis that indicates the value of KKI.
  • the chart 90 also has a cutoff axis 53, which is a horizontal axis perpendicular to the KKI axis 524 at a position where the KKI axis 524 exhibits a cutoff value of 0.461. Note that in the second embodiment, REF.
  • the scale of the axis 522 is set so that it changes by 1.5D when the scale of the AL axis 521 changes by 1 mm.
  • Chart 90 is an AL graph 56 and REF.
  • KM graph 58 and KKI graph 59 are provided.
  • the KM graph 58 is a graph in which the KM values are arranged in chronological order according to the examination date and time while making the KM values correspond to the scale of the KM axis 523 .
  • the markers for arranging the KM values according to the inspection time are " ⁇ ".
  • the KKI graph 59 is a graph in which the KKI values are arranged in chronological order according to the inspection date and time while making the KKI values correspond to the scale of the KKI axis 524 .
  • the marker for arranging the KKI values according to the inspection time is "o".
  • the latest value column 553 contains the AL graph 56 and REF.
  • the types of markers of each of the graph 57, the KM graph 58 and the KKI graph 59 and the values of the latest ophthalmic information are displayed in a chart 90.
  • the user can view the KM graph 58 and REF.
  • the degree of progression of refractive myopia of the subject's eye can be determined.
  • the user can see the KKI graph 59 and REF.
  • it can be determined whether keratoconus is suspected in the subject's eye. Since the chart 90 is provided with the cutoff axis 53, the user can easily determine whether keratoconus is suspected in the eye to be examined by observing whether the value of the KKI graph 59 exceeds the cutoff axis 53.
  • Chart 90 shows AL graph 56, REF.
  • Graph 57, KM graph 58 and KKI graph 59 can be viewed by the user. Therefore, the ophthalmologic information processing apparatus 1 can allow the user to multilaterally determine the type of myopia of the subject's eye and the degree of progression of myopia.
  • the control unit 10 places December 14, 2020 on the left end of the time axis 51 and places October 12, 2021 on the right end to generate drawing data. Also, the control unit 10 does not display the AL graph 56, and displays the REF. Rendering data is generated in such a manner that a graph 57, a KM graph 58 and a KKI graph 59 are displayed. A user who views the chart 100 without the AL graph 56 may read REF. Graph 57, KM graph 58 and KKI graph 59 and the myopia trends represented by these graphs can be more closely watched.
  • the user can delete the AL graph 56 showing the tendency for axial myopia from the chart. This allows the user to view the REF. Focusing on the graph 57, the KM graph 58, and the KKI graph 59, the degree of progression of refractive myopia or whether keratoconus is suspected in the subject's eye can be examined in detail. In addition, since the user can visually recognize the chart 60 in which the time-series range is arbitrarily divided, the progress of the ophthalmic information over the divided period can be observed more closely.
  • the chart 90 is also provided with a genetic factor information column 61, the user can read the AL graph 56, REF. Along with ophthalmic information shown in graph 57, KM graph 58 and KKI graph 59, the subject's genetic factor information can be viewed.
  • the control unit 10 generates drawing data with hatching 111 indicating the period during which the eye drops were administered and hatching 113 indicating the period during which the contact lens was prescribed.
  • the control unit 10 displays a diagram 110 corresponding to the generated drawing data on the display unit 13 .
  • an indication 112 is provided on the chart 110 to clearly indicate that the hatching 111 reflects treatment information regarding the administration of eye drops.
  • An indication 114 is also provided on the chart 110 to clarify that the hatching 113 reflects treatment information regarding contact lens prescriptions.
  • a user viewing chart 110 may see AL graph 56, REF. Each transition of the graph 57, the KM graph 58, and the KKI graph 59 can be observed in association with the treatment history regarding the subject's eye.
  • the treatment information axes 82 and 83 were used to reflect the treatment information on the chart.
  • a technique using the hatching 111, 113 illustrated in the second embodiment may be adopted.
  • the chart displayed on the display unit 13 of the ophthalmologic information processing apparatus 1 of the second embodiment may reflect the environmental factor information and the myopia risk level in chronological order.
  • the first boundary value and the second boundary value may be displayed on the chart displayed on the display unit 13 of the ophthalmologic information processing apparatus 1 of the second embodiment.
  • the display modes of the environmental factor information, the myopia risk level, the first boundary value, and the second boundary value may be changed in various ways with respect to the example of the first embodiment.
  • Drawing data is generated so that the four vertical axes of the axis 522, the KM axis 523 and the KKI axis 524 are orthogonal, and the generated drawing data is output as charts 90, 100 and 110.
  • the drawing data may be generated so as to display a plurality of graphs in which one vertical axis is orthogonal to one time axis 51 side by side in one chart. A specific example is shown in FIG.
  • the chart 120 is provided with four time axes 51, and an AL axis 521, a REF.
  • Axis 522, KM axis 523 and KKI axis 524 are orthogonal to each other.
  • An AL graph 56 is displayed corresponding to the AL axis 521 .
  • REF. Corresponding to axis 522, REF.
  • a graph 57 is displayed.
  • a KM graph 58 is displayed corresponding to the KM axis 523 .
  • a KKI graph 59 is displayed corresponding to the KKI axis 524 .
  • the control unit 10 employs the values of KM and KKI as values relating to the corneal refractive power, and generates chart drawing data for displaying a KM graph 58 and a KKI graph 59 in which the KM and KKI values are arranged in chronological order.
  • the control unit 10 may generate drawing data using only one of the KM value and the KKI value as the value related to the corneal refractive power.
  • the control unit 10 may generate drawing data by adopting a value such as Steep K or Flat K in addition to the value of KM or instead of the value of KM as a value indicating the corneal refractive power.
  • drawing data is generated in the processes of S11, S22, S25, S29, S33, S38, and S43 in response to the acquisition of the latest ophthalmologic information of the subject's eye in the process of S5.
  • the process of S5 may not be executed, and the ophthalmologic information of the subject's eye may be acquired including the latest information in the process of S6.
  • the control unit 10 may acquire past ophthalmological information in the process of S6 without acquiring the latest ophthalmological information of the eye to be examined in the process of S5, and generate drawing data based on the acquired past ophthalmological information.
  • the output of drawing data in S12 and S16 is executed as the display of charts on the display unit 13.
  • the drawing data may be output by displaying the chart on an external display device or the like that is wired or wirelessly connected to the ophthalmologic information processing apparatus 1 via the external device connection section 18 .
  • the drawing data may be output by printing the chart on paper or the like by the printing unit 15 of the ophthalmologic information processing apparatus 1 .
  • the printed output of the chart corresponding to the drawing data may be performed by an external printing device or the like that is wired or wirelessly connected to the ophthalmologic information processing apparatus 1 via the external device connection section 18 .
  • the range designation information acquired in the process of S21 may arbitrarily designate a chronological range as in the first and second embodiments.
  • the range designation information predetermines a time series range that can be designated, such as one year from the latest date of examination, two years from the latest date of examination, three years from the latest date of examination, etc., and may be configured so that the user can select any one.
  • the scale of axis 522 may be arranged arbitrarily relative to the scale of AL axis 521 without considering the average properties of the eye. Even in this case, the ophthalmologic information processing apparatus 1 can improve the efficiency of myopia diagnosis by presenting one chart that can list a plurality of pieces of ophthalmologic information.
  • control unit 10 may superimpose the processes of S32, S38 and S43. Therefore, the control unit 10 may generate drawing data in which two or more of the genetic factor information column 61 and the time display unit 73 are displayed in one chart.
  • the ophthalmologic information processing apparatus 1 may be configured so that the user can arbitrarily set the amount of change in the scale of the axis 522 .
  • REF ophthalmologic information processing
  • a process may be performed to prompt the user to input the amount of change in the scale of axis 522, for example, in a range of 2D to 3D.
  • the ophthalmologic information processing apparatus 1 uses REF. Since the amount of change in the scale of the axis 522 can be adjusted according to the subject, etc., the value of AL and REF. It is possible to provide a chart that makes it easier to view each change in the value of .
  • the AL graph 56 and REF There are cases where it is desired to adjust the spacing from the graph 57 .
  • REF. 27.5 mm of the AL axis 521 is arranged at the position where the axis 522 indicates -3D, but the AL graph 56 and REF.
  • the user may want to observe a chart in which the vertical interval with respect to the graph 57 is changed.
  • the ophthalmologic information processing apparatus 1 may be configured such that the value of the AL axis 521 arranged at the position where the axis 522 indicates a predetermined value (eg, -3D) can be changed. For this reason, for example, in output content change processing, REF.
  • a process may be performed in which the user inputs the value of the AL axis 521 arranged at the position where the axis 522 indicates the predetermined value.
  • AL graph 56 and REF Since the interval from the graph 57 can be adjusted, the ophthalmologic information processing apparatus 1 can calculate the value of AL and REF. It is possible to provide a chart that makes it easier to view each change in the value of .
  • Each process of S5 and S6 in the first embodiment is an example of "value acquisition process” and "value acquisition step”.
  • Each process of S11, S22, S25, S29, S33, S38, and S43 is an example of a "drawing data generation process” and a "drawing data generation step.”
  • the process of acquiring the range designation information in S21 is an example of the "range acquisition process”.
  • the process of acquiring the first time and the second time in S36 is an example of the "time acquisition process”.
  • the process of acquiring the treatment information in S28 is an example of the "treatment information acquisition process”.
  • the process of acquiring gene information in S32 is an example of the "factor information acquisition process.”
  • the process of acquiring the myopia risk level in S42 is an example of the "level acquisition process”.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Pathology (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

眼科情報処理装置の制御部は、被検眼の眼科情報として、少なくとも、眼軸長の値及び眼全体の屈性力値を、検査時期を特定して取得する。制御部は、取得された同一の被検眼に対応する各値を、検査時期に応じて時系列に並べて表示した一つの図表を描画するための描画データを生成する(S11及びS15)。

Description

眼科情報処理装置及び眼科情報処理プログラム
 本開示は、眼科情報処理装置及び眼科情報処理プログラムに関する。
 従来、眼科情報を提示する眼科情報処理装置が知られている。特許文献1は、被検眼の屈折力と眼内距離とを測定し、測定した被検眼の屈折力及び眼内距離の経時変化を表示部に表示する眼科装置を開示する。
特開2019-13391号公報
 眼全体の屈折力を示す眼球屈折力は、被検眼が近視であるかを示す指標となる。近視にはさまざまな種類がある。その一つとして、眼軸長の過伸展によって生ずる軸性近視がある。軸性近視の診断には、眼軸長の変化を観察することが有用となる場合がある。また、近視に関する総合的な診断を行うために、種々の情報を考慮する必要がある。従来の眼科装置は、近視に関する診断の効率を十分に向上することが困難である。
 本開示は、近視に関する診断の効率を向上することができる眼科情報処理装置及び眼科情報処理プログラムを提供することを目的とする。
 本開示における典型的な実施形態が提供する眼科情報処理装置は、被検眼の眼科情報を処理する眼科情報処理装置であって、前記眼科情報処理装置の制御部は、被検眼の前記眼科情報として、少なくとも、眼軸長の値と、眼全体の屈折力を示す眼球屈折力の値とを、検査時期を特定して取得する値取得処理と、前記値取得処理において取得された同一の被検眼に対応する各値を、検査時期に応じて時系列に並べて表示した一つの図表に描画するための描画データを生成する描画データ生成処理とを実行する。
 本開示における典型的な実施形態が提供する眼科情報処理プログラムは、被検眼の眼科情報を処理するための眼科情報処理プログラムであって、被検眼の前記眼科情報として、少なくとも、眼軸長の値と、眼全体の屈折力を示す眼球屈折力の値とを、検査時期を特定して取得する値取得ステップと、前記値取得ステップにおいて取得された同一の被検眼に対応する各値を、検査時期に応じて時系列に並べて表示した一つの図表に描画するための描画データを生成する描画データ生成ステップとをコンピュータに実行させる。
 本開示における眼科情報処理装置及び眼科情報処理プログラムによると、近視に関する診断の効率を向上することができる。
 本開示で例示される眼科情報処理装置の制御部は、少なくとも、眼軸長の値と、眼全体の屈折力を示す眼球屈折力の値とを取得する。制御部は、取得した同一の被検眼に対応する各値を検査時期に応じて時系列に並べて表示した一つの図表を描画するための描画データを生成する。これにより、眼科情報処理装置は、各値を検査時期に応じて時系列に並べて表示させた一つの図表を、医師等のユーザに提供できる。よって、眼科情報処理装置は、近視に関する診断の効率を向上することができる。
 本開示で例示される第一態様の眼科情報処理装置の制御部は、眼軸長の値と、眼球屈折力の値とを取得する。制御部は、取得した同一の被検眼に対応する各値を検査時期に応じて時系列に並べて表示した一つの図表を描画するための描画データを生成する。生成される描画データに対応する図表は、眼軸長の値を所定の単位量に応じたスケールで示す第一軸と、第一軸に平行に配置される第二軸とを備える。一つの図表において、眼軸長の値は第一軸のスケールに応じて、眼球屈折力の値は第二軸のスケールに応じて、それぞれ検査時期に応じて時系列に並べて表示される。第一軸のスケールは、眼軸長の値を所定の単位量に応じたスケールで示す。第二軸における眼球屈折力のスケールは、眼軸長の値が単位量だけ変化した場合の眼球屈折力の値の変化量に一致して設けられる。これにより、一つの図表に表示される眼軸長の値の変化量と、眼球屈折力の値の変化量とが同等になりやすくなる。よって、眼科情報処理装置は、図表におけるそれぞれの値の変化量を一覧しやすい一つの図表を、医師等のユーザに提供できる。したがって、眼科情報処理装置は、近視に関する診断の効率を向上することができる。
 眼軸長の値が前記単位量だけ変化した場合の前記眼球屈折力の値の変化量は、単位量が1mmである場合に1ディオプターから3ディオプターの範囲内の値であってもよい。
 眼軸長の値が単位量だけ変化した場合の眼球屈折力の値の変化量は、Gullstrand模型眼を用いた検討、眼内レンズ(Intraocular lens、以下、「IOL」という。)の度数決定のための計算式、眼軸長と屈折異常の進行度との相関等の少なくともいずれかから導出され得る。このようにして導出される変化量に一致して、第二軸における眼球屈折力の値のスケールが設けられる場合、ユーザは2つの値を適切に比較し易くなる。したがって、眼科情報処理装置は、眼軸長の値の変化量と、眼球屈折力の値の変化量との相関を把握しやすい一つの図表を、ユーザに提供できる。
 描画データ生成処理は、一つの図表に表示される時系列の範囲を、最古の検査時期から最新の検査時期までとして、描画データを生成してもよい。
 制御部は、値取得処理によって取得された各値を、最古の検査時期から最新の検査時期までの全てに亘って一覧できる一つの図表を描画するための描画データを生成できる。したがって、眼科情報処理装置は、被検眼の近視の状態の履歴を一つの図表でユーザに一覧させることができるので、長期に亘る近視の傾向であってもユーザに容易に観察させることができる。
 制御部は、一つの図表に表示される時系列の範囲を指定する範囲指定情報を取得する範囲取得処理を実行してもよい。描画データ生成処理は、範囲取得処理によって取得された範囲指定情報に応じて、一つの図表に表示される時系列の範囲を指定した描画データを生成してもよい。
 例えば、一つの図表を一覧することによって被検眼の近視の種類を特定したユーザは、特定した種類の近視の経過を、期間を任意に区切って観察したいこともある。制御部は、範囲取得処理を実行するので、ユーザは一つの図表に表示される時系列の範囲を任意に指定することができる。
 制御部は、被検者が近視の進行に作用する作業を行った第一時間及び被検者が近視の抑制に作用する作業を行った第二時間の少なくともいずれかを示す時間情報を、時期を特定して取得する時間取得処理を実行してもよい。描画データ生成処理は、時系列に対応して時間情報を反映させた描画データを生成してもよい。
 近視になる要因の一つとして、環境的な要因がある。勉強、読書、及びテレビ・パソコン・ゲーム機の画面等を見る等、近くを見る近見視力で過ごす時間が長くなるほど、近視が進行しやすくなる傾向がある。また、スポーツ、通勤、通学等、遠くを見る遠見視力で過ごす時間が長くなるほど、近視が抑制される場合がある。制御部は、時間取得処理を実行できるので、近視の進行に作用する作業を行った第一時間及び近視の抑制に作用する作業を行った第二時間の少なくともいずれかを示す時間情報が反映された一つの図表をユーザに提示できる。ユーザは、時間情報が反映された一つの図表を一覧することによって、時間情報に応じて近視の進行の度合いを考察することができる。
 制御部は、被検眼に関する処置の内容及び処置がなされた時期を示す処置情報を取得する処置情報取得処理を実行してもよい。描画データ生成処理は、時系列に対応して処置情報を反映させた描画データを生成してもよい。
 例えば、近視の状況に応じた眼鏡、コンタクトレンズ及び薬剤等の処方並びに手術等、被検眼に関する各種の処置が行われる場合がある。制御部は、処置情報取得処理を実行するので、処置情報が反映された一つの図表をユーザに提示できる。ユーザは、処置情報が反映された一つの図表を一覧することによって、被検眼の近視の状況を、各種の処置との関係から考察することができる。
 制御部は、近視に関する被検者の遺伝的因子を示す遺伝的因子情報を取得する因子情報取得処理を実行してもよい。描画データ生成処理は、遺伝的因子情報を表示した図表に対応する描画データを生成してもよい。
 近視になる要因の一つとして、遺伝的な要因がある。遺伝的な要因としては、例えば、近親者が近視である、近視になりやすい遺伝子を持っている等が挙げられる。制御部は、因子情報取得処理を実行できるので、遺伝的因子情報が表示された一つの図表をユーザに提示できる。ユーザは、一つの図表を一覧することによって、被検者の近視の状況と、近視に関する被検者の遺伝的因子情報とを一度に把握することができる。
 描画データ生成処理は、被検眼が近視であると判定される第一境界値と、前記第一境界値よりも強度の近視であることを示す第二境界値とを、第一軸又は第二軸に応じて示す図表に対応する描画データを生成してもよい。
 第一境界値と第二境界値とが一つの図表に示される場合、ユーザは、値取得処理によって取得され、第一軸又は第二軸に対応して図表に表示される眼軸長の値又は眼球屈折力の値が示す近視の強度の程度を容易に把握できる。
 制御部は、被検者の近視が進行する可能性のレベルを、時期を特定して取得するレベル取得処理を実行してもよい。描画データ生成処理は、時系列に対応してレベルを反映させた描画データを生成してもよい。
 近視になる要因として、環境的な要因、遺伝的な要因等がある。医師等が複数の要因を総合的に判断する等によって、被検者の近視が進行する可能性のレベルを判定する場合がある。制御部は、レベル取得処理を実行する場合、被検者の近視のリスクのレベルを取得することができるので、被検者の近視が進行する可能性のレベルが反映された一つの図表をユーザに提示できる。ユーザは、一つの図表を一覧することによって、眼軸長の値及び眼球屈折力の値に対応付けて被検者の近視が進行する可能性のレベルを把握できるので、近視に関する診断等を多角的に行うことができる。
 レベルは、被検者が近視の進行に作用する作業を行った第一時間及び被検者が近視の抑制に作用する作業を行った第二時間の少なくともいずれかに基づいて導出されてもよい。
 第一時間及び第二時間は、被検者の生活習慣等によって変動する環境的な事象である。眼科情報処理は、図表に被検者の近視が進行する可能性のレベルを反映できるので、図表を見たユーザに、被検者の近視に関する環境的な要因を時系列に応じて把握させることができる。
 本開示で例示される第二態様の眼科情報処理装置の制御部は、眼軸長の値及び眼全体の屈折力の値に加えて、角膜屈折力に関する値を取得する。制御部は、取得した同一の被検眼に対応する各値を検査時期に応じて時系列に並べて表示した一つの図表を描画するための描画データを生成する。これにより、眼科情報処理装置は、眼軸長の値、眼全体の屈折力の値及び角膜屈折力に関する値を、検査時期に応じて時系列に並べて表示させた一つの図表を、医師等のユーザに提供できる。よって、眼科情報処理装置は、一つの図表をユーザに一覧させることによって、被検眼の近視の種類及び近視の進行の度合いを、ユーザに多角的に判断させることができる。したがって、眼科情報処理装置は、近視に関する診断の効率を向上することができる。
 角膜屈折力に関する値は、角膜屈折力を示す値又は円錐角膜であることの確度を示す値であって角膜屈折力に基づいて算出される値のいずれかを少なくとも含んでもよい。
 例えば、一つの図表に表示される角膜屈折力を示す値が高い場合には、ユーザは被検眼の近視の種類が屈折性近視であることを推測できる。また、角膜屈折力を示す値が急激に変化している場合には、ユーザは、被検眼に円錐角膜が生じていることを疑うことができる。さらに、円錐角膜であることの確度を示す値であって角膜屈折力に基づいて算出される値が一つの図表に表示される場合には、ユーザは、被検眼に円錐角膜が生じている可能性を特定しやすくなる。一方、角膜屈折力に関する値が正常値である場合には、ユーザは、被検眼の軸性近視の進行度合いに注目することができる。このように、眼科情報処理装置は、近視の種類及び原因をユーザに多角的に判断させることができる。
 制御部は、一つの図表において、眼軸長の値、眼全体の屈折力の値及び角膜屈折力に関する値のうちいずれを表示するかを選択するための選択情報を取得する選択情報取得処理を実行してもよい。描画データ生成処理は、選択情報取得処理によって取得された選択情報に対応する描画データを生成してもよい。
 例えば、近視の種類を特定した後のユーザは、特定した近視の種類に対応しない値については図表に表示せず、特定した近視の種類に対応する値を図表に表示することによって、特定した近視の種類の経時変化に注目したいことがある。制御部は、選択情報取得処理を実行できるので、ユーザは一つの図表に表示される値を任意に選択し、診断の効率を向上させることができる。
 描画データ生成処理は、一つの図表に表示される時系列の範囲を、最古の検査時期から最新の検査時期までとして、描画データを生成してもよい。
 この場合、制御部は、値取得処理によって取得された各値を、最古の検査時期から最新の検査時期までの全てに亘って一覧できる一つの図表を描画するための描画データを生成できる。したがって、眼科情報処理装置は、被検眼の近視の状態の履歴を一つの図表でユーザに一覧させることができるので、長期に亘る近視の傾向であってもユーザに容易に観察させることができる。
 制御部は、一つの図表に表示される時系列の範囲を指定する範囲指定情報を取得する範囲取得処理を実行してもよい。描画データ生成処理は、範囲取得処理によって取得された範囲指定情報に応じて、一つの図表に表示される時系列の範囲を指定した描画データを生成してもよい。
 例えば、一つの図表を一覧することによって被検眼の近視の種類を特定したユーザは、特定した種類の近視の経過を、期間を任意に区切って観察したいこともある。制御部は、範囲取得処理を実行できるので、ユーザは一つの図表に表示される時系列の範囲を任意に指定することができる。
 制御部は、被検眼に関する処置の内容及び処置がなされた時期を示す処置情報を取得する処置情報取得処理を実行してもよい。描画データ生成処理は、時系列に対応して処置情報を反映させた描画データを生成してもよい。
 例えば、近視の状況に応じた眼鏡、コンタクトレンズ及び薬剤等の処方並びに手術等、被検眼に関する各種の処置が行われる場合がある。制御部は、処置情報取得処理を実行できるので、処置情報が反映された一つの図表をユーザに提示できる。ユーザは、処置情報が反映された一つの図表を一覧することによって、近視の状況を、各種の処置との関係から判断することができる。
 本開示で例示される眼科情報処理プログラムが実行されることによって、近視に関する診断の効率が向上する。
眼科情報処理装置1の電気的構成を示すブロック図である。 計測値履歴データ20の説明図である。 処置履歴データ30の説明図である。 近視関連データ40の説明図である。 眼科情報処理のフローチャートである。 出力内容変更処理のフローチャートである。 初期描画データに対応する図表50の一例を示す説明図である。 描画データに対応する図表60の一例を示す説明図である。 描画データに対応する図表70の一例を示す説明図である。 描画データに対応する図表80の一例を示す説明図である。 計測値履歴データ21の説明図である。 第二実施形態における眼科情報処理のフローチャートである。 初期描画データに対応する図表90の一例を示す説明図である。 描画データに対応する図表100の一例を示す説明図である。 描画データに対応する図表110の一例を示す説明図である。 描画データに対応する図表120の一例を示す説明図である。
 以下、本開示に係る典型的な実施形態の一つである第一実施形態について、図面を参照して説明する。参照する図面は、本発明が採用しうる技術的特徴を説明するために用いられるものであり、記載される構成等は、それのみに限定する趣旨ではなく、単なる説明例である。
 第一実施形態に係る眼科情報処理装置1は、被検眼の撮影、検査及び測定の少なくともいずれかを実行する眼科装置である。眼科装置は、例えば、OCT装置、走査型レーザ検眼鏡(SLO)、眼底カメラ、角膜内皮細胞撮影装置、眼軸長測定装置、眼屈折力測定装置、眼圧測定装置等の各種の眼科装置のいずれかであってよい。眼科情報は、眼科装置による撮影、検査及び測定等によって得られる情報である。第一実施形態において、眼科情報処理装置1は、被検眼を検査することによって、眼科情報として眼軸長及び眼全体の屈折力を取得することができる、光干渉式眼軸長測定装置である。眼全体の屈折力のことを、以下、眼球屈折力という。なお、眼科情報処理装置1は、眼科装置に限定されない。眼科情報処理装置1は、外部の眼科装置、電子カルテ及び眼科情報を記憶するサーバ等の外部の記憶装置等から眼科情報を取得し処理できる、パーソナルコンピュータ(以下、「PC」という。)又は携帯端末等であってもよい。眼科情報処理装置1による眼科情報の取得は、眼科情報処理装置1のユーザが、後述する操作部12を介して、眼科情報を眼科情報処理装置1に対して手動で入力することによって行われてもよい。
 図1を参照して、眼科情報処理装置1の電気的構成を説明する。眼科情報処理装置1は、制御部10と、制御部10に電気的に接続された記憶部11、操作部12、表示部13、印刷部15、駆動部16及び外部機器接続部18を備える。制御部10は、眼科情報処理装置1の全体の制御を司るCPUを備える。制御部10は、CPUからの指示に応じて、表示部13、印刷部15、駆動部16に対して駆動信号(例えば、駆動電流)を送信する所定の電気回路等を備える。
 記憶部11は、制御部10による各種プログラムの実行時に必要な各種パラメータ等を記憶するROM、RAM及びフラッシュメモリ等を含む。記憶部11は、図5で後述する眼科情報処理を制御部10に実行させるためのプログラムを記憶する。制御部10は、記憶部11に記憶されたプログラムを展開することで、印刷実行処理を実行するプロセッサの一例として機能する。眼科情報処理を実行するためのプログラムは、例えば、図示外のネットワークに接続されたサーバから後述する外部機器接続部18を介してダウンロードされ、すなわち、伝送信号として送信されて、記憶部11に記憶されてもよい。この場合、眼科情報処理を実行するためのプログラムは、サーバに備えられたHDDなどの非一時的な記憶媒体に保存されていればよい。
 操作部12は、眼科情報処理装置1に各種指示を入力するためにユーザによって操作されるボタン等である。眼科情報処理装置1がPCである場合、操作部12は、キーボード、マウス、タッチパネル等の操作デバイスであってもよい。表示部13は、例えば、モニタ、プロジェクタ等の、各種画像を表示できるデバイスである。印刷部15は、画像を印刷するプリントヘッドである。印刷部15は、サーマルプリントヘッド、インクジェットヘッド、LEDプリントヘッド等、いずれのプリントヘッドであってもよい。駆動部16は、眼科情報処理装置1が被検眼の撮影、検査及び測定を実行するために必要な各種構成を備える。外部機器接続部18は、他の眼科装置又はPC等の外部の情報機器と電気的に接続するための入出力インタフェースである。外部機器接続部18は、外部情報機器が無線接続できるように構成されていてもよい。
 図2を参照して、計測値履歴データ20について説明する。第一実施形態において、計測値履歴データ20は、記憶部11に記憶されている。計測値履歴データ20は、眼科情報処理装置1によって取得された眼科情報を複数記憶するデータベースである。「検査日時」は、被検眼の眼科情報が取得された日時を示す。「ID」は、被検者を識別する情報である。「R/L」は、被検眼が被検者の右眼又は左眼のいずれであるかを示す。R/Lの値が「R」の場合は右眼を示し、「L」の場合は左眼を示す。「AL」及び「REF.」は、被検眼の眼科情報である。ALは、被検眼の眼軸長の値を示す。ALの単位は「mm」である。REF.は、被検眼の眼球屈折力を示す。REF.の単位は「D(ディオプター)」である。
 計測値履歴データ20は、眼科情報処理装置1によって取得された眼科情報の値のそれぞれを、検査日時、ID及びR/Lに対応付けて記憶する。なお、計測値履歴データ20は、眼科情報処理装置1によって取得された眼科情報の値以外に、眼科情報処理装置1のユーザが操作部12を操作することによって眼科情報処理装置1に対して手動で入力した各種の値を記憶してもよい。
 図3を参照して、処置履歴データ30について説明する。第一実施形態において、処置履歴データ30は、記憶部11に記憶されている。処置履歴データ30は、被検眼に関する処置の履歴を記憶するデータベースである。処置履歴データ30における「ID」及び「R/L」は、図2で示した計測値履歴データ20と同様である。処置履歴データ30は、IDに対応する被検者の右眼及び左眼のそれぞれについて、被検眼に関する処置についての情報を、処置が実施された日時に対応して記憶している。処置履歴データ30は、ID毎に設けられる。処置履歴データ30は、被検眼に関する処置についての情報を、IDに応じて複数記憶している。図3に示す処置履歴データ30は、「A101」及び「G034」のIDに応じた処置履歴データ30の例である。
 被検眼に関する処置には、被検眼に対する眼鏡の処方、コンタクトレンズの処方、薬剤及びサプリメント等の投与、手術の実施等の治療行為等が含まれる。薬剤は、点眼薬の他、内服薬、注射薬等も含む。処置履歴データ30において、「処置内容」は、被検眼に関する処置の内容を示す。第一実施形態において、処置内容は、「点眼薬」、「眼鏡」、「コンタクトレンズ」、「手術」のいずれかである。「点眼薬」は、所定の点眼薬の投与を示す。「点眼薬」の欄は、点眼薬の種類等に応じて複数設けられてもよい。「眼鏡」は、眼鏡の処方を示す。「コンタクトレンズ」は、コンタクトレンズの処方を示す。「手術」は、所定の手術の実施を示す。「手術」の欄は、手術の内容に応じて複数設けられてもよい。処置履歴データ30が、内服薬の投与等の他の処置内容も示すように構成されてもよい。
 「処置実施日」の欄は、「処置内容」に対応する処置が実施された日を示す。処置実施日に対応する処置内容の詳細を示す情報を、以下、「処置情報」という。「投与開始」及び「投与終了」を示す処置情報は、点眼薬の投与が開始されたこと及び投与が終了されたことを表す。「→」を示す処置情報は、処置内容に対応する処置が継続して行われていることを表す。「処方」を示す処置情報は、処置内容に対応する処方がなされたことを表す。「-」を示す処置情報は、処置内容に対応する処置が行われていないことを表す。図3では図示しないが、被検眼に所定の手術が行われた場合、処置情報は所定の手術が実施されたことを表す。すなわち、処置情報は、被検眼に関する処置の内容及び被検眼に関する処置がなされた時期を示す。なお、「眼鏡」及び「コンタクトレンズ」に対応する処置情報については、一度行われた処方の内容が、次回の処方まで継続していることとして扱う。
 処置履歴データ30は、外部機器接続部18を介して外部情報機器からインポートされることによって、記憶部11に記憶されてもよい。また、処置履歴データ30は、眼科情報処理装置1のユーザが操作部12を操作することによって眼科情報処理装置1に対して手動で入力された値を記憶してもよい。
 図4を参照して、近視関連データ40について説明する。第一実施形態において、近視関連データ40は、記憶部11に記憶されている。近視関連データ40は、ID毎に設けられる。図4に示す近視関連データ40は、「G034」及び「C425」のIDに応じた近視関連データ40の例である。近視関連データ40は、近視関連情報を記憶するデータベースである。近視関連情報は、被検者に関する情報であって、近視に影響を及ぼす可能性がある情報及び近視に及ぼす影響のレベルを示す情報を含む。第一実施形態において、近視関連情報は、「遺伝的因子情報」、「環境的因子情報」及び「近視リスクレベル」の三種類に大別される。遺伝的因子情報は、近視に関する被検者の遺伝的因子を示す。環境的因子情報は、近視に関する被検者の環境的因子を示す。近視には、遺伝的因子と環境的因子とが複合的に関与すると考えられている。したがって、近視関連情報は、遺伝的因子情報と環境的因子情報とを含むことが好ましい。ただし、遺伝的因子情報と環境的因子情報の一方のみが近視関連情報として用いられてもよい。
 遺伝的因子情報は、「両親の近視の状況」に関する情報及び「その他遺伝的リスク」に関する情報を含む。「両親の近視の状況」は、被検者の両親の一方又は双方が近視であるかである。ユーザは、被検者に聞き取りを行うこと等によって両親の近視の状況を取得することができる。ユーザが取得した内容を眼科情報処理装置1に対して手動で入力することによって、「両親の近視の状況」を示す情報が近視関連データ40に記憶される。遺伝的因子情報は、「両親の近視の状況」に替えて、被検者の兄弟等その他の近親者の近視の状況等を含んでもよい。
 「その他遺伝的リスク」は、近視の発症・進行に関与する様々な遺伝子を解析することによって得られる、被検者が遺伝的に近視になる可能性の高さを示す。「その他遺伝的リスク」の導出には、被検者の血液検査の結果によるもの等、公知の手法が用いられる。第一実施形態において、「その他遺伝的リスク」は、「低」、「中」、「高」の三段階で示される。ユーザは、公知の手法によって導出された「その他遺伝的リスク」を示す情報を、眼科情報処理装置1に対して手動で入力することによって、「その他遺伝的リスク」を示す情報が近視関連データ40に記憶される。また、被検者の「両親の近視の状況」及び「その他遺伝的リスク」が、外部情報機器に記憶されている被検者の電子カルテに登録されている場合がある。この場合には、外部機器接続部18を介して電子カルテの情報が外部情報機器からインポートされることによって、「両親の近視の状況」及び「その他遺伝的リスク」が近視関連データ40に記憶されてもよい。なお、「その他遺伝的リスク」の導出には、将来に開発される様々な手法が採用されてもよい。
 第一実施形態は、環境的因子情報として、一日のうち、被検者が近視の進行に作用する作業を行った「第一時間」と、被検者が近視の抑制に作用する作業を行った「第二時間」とを定義している。第一時間は、被検者が近くを見る近見視力で過ごした時間である。勉強、読書及びテレビ・パソコン・ゲーム機の画面等を見る等の生活行動の時間が、第一時間に該当する。第二時間は、被検者が遠くを見る遠見視力で過ごした時間である。スポーツ、通勤、通学等の生活行動の時間が、第二時間に該当する。第一時間が長くなるほど、近視が進行しやすくなると考えられている。第二時間が長くなるほど、近視の進行が抑制されやすくなると考えられている。
 「環境的因子」は、被検者の生活行動の変化に伴い変化しうる。ユーザは、被検者に聞き取りを行うこと等によって、第一時間及び第二時間を取得することができる。近視関連データ40は、第一時間及び第二時間を、被検者から聞き取った時期に対応付けて記憶できるように構成されている。第一実施形態において、ユーザによる被検者に対する第一時間及び第二時間の聞き取りは、眼科情報処理装置1を用いた検査を行う毎に行われる。被検者から聞き取られた第一時間及び第二時間は、ユーザによって眼科情報処理装置1に対して操作部12を介して入力されることによって、第一時間及び第二時間が近視関連データ40に記憶される。眼科情報処理装置1を用いた検査時に被検者への聞き取りを失念した場合等には、第一時間及び第二時間が空欄になる。なお、第一時間及び第二時間が、外部情報機器に記憶されている被検者の電子カルテに登録されている場合がある。この場合には、外部機器接続部18を介して電子カルテの情報が外部情報機器からインポートされることによって、第一時間及び第二時間が近視関連データ40に記憶されてもよい。また、第一実施形態では、第一時間及び第二時間の双方が眼科情報処理装置1に入力され、近視関連データ40に記憶される。この他、第一時間及び第二時間の少なくともいずれかが眼科情報処理装置1に入力され、近視関連データ40に記憶されてもよい。
 なお、近年の研究によって、所定の明るさ以上の光を所定時間以上浴びることによって、近視の発症が抑制される可能性があることが判明してきている。また、太陽光に含まれる360~400nmの波長の可視光である「バイオレットライト」に、近視の進行を抑制する可能性があることも判明してきている。人は、屋外活動を行うことによって、所定の明るさ以上の光及び太陽光に含まれるバイオレットライトを浴びることができる。このため、「第二時間」を、屋外活動を行った時間としてもよい。
 近視リスクレベルは、ユーザが判断した、被検者の近視が進行する可能性のレベルを示す。第一実施形態において、近視リスクレベルは、VH(Very High)、H(High)、M(Middle)、L(Low)の四段階で示される。医師等のユーザは、被検者の遺伝的因子、環境的因子等を総合的に勘案して、近視リスクレベルを判定することができる。近視リスクレベルの判定には、被検者が点眼薬を処方通りの容量及び頻度で正しく点眼したか、被検者が処方したコンタクトレンズを正しく装着したか等の情報が用いられてもよい。第一実施形態において、近視リスクレベルの判定は、ユーザが眼科情報処理装置1を用いた検査を行う毎に行われる。判定された近視リスクレベルが、ユーザによって眼科情報処理装置1に対して手動で入力されることによって、近視リスクレベルが近視関連データ40に記憶される。なお、近視リスクレベルが、外部情報機器に記憶されている被検者の電子カルテに登録されている場合がある。この場合には、外部機器接続部18を介して電子カルテの情報が外部情報機器からインポートされることによって、近視リスクレベルが近視関連データ40に記憶されてもよい。
 なお、計測値履歴データ20、処置履歴データ30及び近視関連データ40が記憶されるのは、記憶部11に限定されない。計測値履歴データ20、処置履歴データ30及び近視関連データ40は、外部機器接続部18を介して眼科情報処理装置1に接続できる外部情報機器の記憶部、サーバ等に記憶されてもよい。サーバは、眼科情報処理装置1の提供者のオンプレミスサーバであってもよいし、いわゆるクラウドサーバ等の他のサーバであってもよい。この場合、眼科情報処理装置1の制御部10は、外部機器接続部18を介して計測値履歴データ20、処置履歴データ30及び近視関連データ40を参照し、後述する眼科情報処理を実行してもよい。
 図5を参照して、第一実施形態における眼科情報処理の一例について説明する。眼科情報処理は、被検眼を検査する指示が制御部10によって検出された場合に実行される。第一実施形態において、被検眼を検査する指示は、操作部12を介してユーザによって眼科情報処理装置1に入力される。以下の説明において、各処理のステップを「S」と略記する。眼科情報処理装置1の眼科情報処理の各ステップは、眼科情報処理装置1の制御部10のCPUによって実行される例に限定されず、一部又は全部が他の電子機器(例えば、ASIC等)、あるいは外部情報機器であるPCのCPU等によって実行されてもよい。眼科情報処理の各ステップは、複数の電子機器(例えば、複数のCPU)によって分散処理されてもよい。眼科情報処理の各ステップは、必要に応じて順序の変更、ステップの省略及び追加をすることができる。眼科情報処理装置1上で稼動しているオペレーティングシステム(OS)等が、制御部10からの指示に基づき眼科情報処理の一部又は全部を行う態様も、本開示の範囲に含まれる。
 眼科情報処理が開始されると、制御部10は、現在の日時を検査日時として取得する(S1)。制御部10は、取得した検査日時を、計測値履歴データ20に記憶する。制御部10は、IDを取得する(S2)。IDの取得は、ユーザが操作部12を介して眼科情報処理装置1に対して入力するものを取得することによって行われてもよい。眼科情報処理装置1がカードリーダ等の情報読取部を備え、医療機関の診察券等のカードに内蔵されるIDを示す情報が情報読取部によって読み取られることによって、IDが取得されてもよい。制御部10は、取得したIDを、S1の処理で取得した検査日時に対応付けて、計測値履歴データ20に記憶する。制御部10は、R/Lの値を取得する(S3)。R/Lの値の取得は、ユーザが操作部12を介して眼科情報処理装置1に対して入力するものを取得することによって行われてもよい。R/Lの値が、眼科情報処理装置1に対する被検眼の位置等に応じて制御部10に自動判別されることによって取得されてもよい。制御部10は、R/Lの値を、S2の処理で取得したIDに対応付けて、計測値履歴データ20に記憶する。S2及びS3の処理によって、被検眼が特定される。
 制御部10は、被検眼の眼科情報として、AL及びREF.を取得する(S5)。制御部10は駆動部16を駆動することによって被検眼のAL及びREF.を測定し、測定値を取得する。なお、制御部10は、眼科情報の一部又は全部を、外部機器接続部18を介して眼科情報処理装置1に接続する他の外部情報機器等から取得してもよい。例えば、眼科情報のうちALが第一の眼科装置から取得され、REF.が第二の眼科装置から取得されてもよい。また、前述したように、制御部10は、ユーザが被検者のカルテ等に記載されている眼科情報を見て、操作部12を介して眼科情報処理装置1に手動で入力したものを取得することによって、S5の処理を行ってもよい。
 制御部10は、S2及びS3の処理で特定した被検眼と同一の被検眼に対応する過去の眼科情報を、計測値履歴データ20から抽出することによって取得する(S6)。制御部10は、S5及びS6の処理で取得した眼科情報の各値を、検査時期に応じて時系列に並べて表示した一つの図表を描画するための描画データを生成する(S11)。第一実施形態において、S11の処理で生成される描画データを、「初期描画データ」という。制御部10は、生成した初期描画データを記憶部11に記憶する。制御部10は、初期描画データを出力する(S12)。第一実施形態において、初期描画データを含む眼科情報処理において生成される描画データの出力は、表示部13への表示によって行われる。
 図7を参照して、S11の処理で生成された初期描画データに対応する図表50が、S12の処理によって眼科情報処理装置1の表示部13に表示された例について説明する。図表50は、「G034」のIDの被検者の左眼が被検眼である場合の図表の一例を示す。図表50は、横軸として時間軸51を備える。時間軸51は、所定のスケールで時間経過を示す。
 図表50は、一つの時間軸51に対して直交する、AL軸521及びREF.軸522の二つの縦軸を備える。AL軸521は、ALの値を示す縦軸である。REF.軸522は、REF.の値を示す縦軸である。
 図表50は、ALグラフ56及びREF.グラフ57を備える。ALグラフ56は、ALの値をAL軸521のスケールに対応させつつ、検査日時を時間軸51のスケールに対応させて時系列に並べたグラフである。ALグラフ56において、検査日時に応じてALの値を並べるマーカーは「■」である。REF.グラフ57は、REF.の値をREF.軸522に対応させつつ、検査日時に応じて時系列に並べたグラフである。REF.グラフ57において、検査日時に応じてREF.の値を並べるマーカーは「●」である。この他、図表50は、ID欄551、左右欄552、最新値欄553等を備える。ID欄551は、図表50にID等を表示するため欄である。左右欄552は、被検眼が右眼又は左眼のいずれであるかを図表50に表示するための欄である。最新値欄553は、ALグラフ56及びREF.グラフ57のそれぞれのマーカーの種類と、最新の眼科情報の値とを図表50に表示するための欄である。
 ヒトの眼球の光学定数を模型化した模型眼であるGullstrand模型眼において、眼軸長を1mm変化させた場合の眼球屈折力の変化量は、2.57Dと算出されている。また、IOLの度数決定のための計算式の一つであるSRK式では、眼軸長を1mm変化させた場合、IOLの度数が2.5D変化すると定義されている。眼軸長の値が単位量だけ変化した場合の眼球屈折力の値の変化量は、人種、年齢等によっても左右され得ることが、種々の調査によって明らかになっている。したがって、眼の平均的特性に合致するように配慮した上で軸性近視によって眼軸長が変化した場合を想定して、AL軸521のスケールの変化量が1mmである場合のREF.軸522のスケールの変化量は1Dから3Dの範囲内の値に一致するように設けられることが好ましい。AL軸521のスケールの変化量が1mmである場合のREF.軸522のスケールの変化量は2Dから3Dの範囲内の値に一致することが、より好ましい。これらに基づいて、第一実施形態においては、AL軸521のスケールの変化量が1mmである場合のREF.軸522のスケールの変化量は2.5Dに一致して設けられている。
 ユーザは、図表50においてALグラフ56及びREF.グラフ57を参照することによって、被検眼の軸性近視の進行度合いを判断できる。図表50は、被検眼の近視の種類が、軸性近視である可能性が高い場合の例を示す。AL軸521のスケールとREF.軸522のスケールとは、上記のような対応関係にある。このため、被検眼の近視の種類が軸性近視であり、被検眼のALの値が長くなる方向に変化した場合、ALグラフ56の傾きとREF.グラフ57の傾きとが平行になりやすい。このため、図表50は、ALの値の変化に応じたREF.の値の変化をユーザ等が予測することを容易にできる。一方、被検眼の近視の種類が軸性近視ではなく他の種類の場合には、ALグラフ56の傾きとREF.グラフ57の傾きとが平行になりにくくなる。このため、ユーザは、眼科情報処理装置1が提供する図表を一覧することによって、被検眼の近視の種類が軸性近視であるか否かを容易に判断できる。よって、ユーザは、被検眼の近視の種類及び近視の進行の度合いを多角的に判断することができる。したがって、図表50をユーザに提供する眼科情報処理装置1は、ユーザによる近視に関する診断の効率を向上させることができる。
 制御部10は、S11の処理で初期描画データを生成する場合、S6の処理で取得した過去の眼科情報のそれぞれに関連付けられる検査日時のうち最古のものを時間軸51の左端部に配置し、S1の処理で取得した今回の検査日時を時間軸51の右端部に配置する。第一実施形態において、最古の検査時期が2018年11月30日であり、最新の検査時期が2021年10月12日であるとする。制御部10は、S11の処理で、時間軸51の時系列の範囲を最古の検査時期から最新の検査時期までとした図表50を表示するための、初期描画データを生成する。このため、図表50は、最古の検査時期から最新の検査時期までにわたる眼科情報を一覧できる図表として表示部13に表示される。したがって、ユーザは、図表50を一覧することによって、長期に亘る近視の傾向についても観察することができる。
 図5の説明に戻る。制御部10は、S12の処理で出力した図表の内容を変更させる指示が操作部12を介して入力されたかを判断する(S13)。出力した図表の内容を変更させる指示が操作部12を介して入力されていない場合(S13:NO)、制御部10は、処理をS18の判断へ移行する。出力した図表の内容を変更させる指示が操作部12を介して入力されている場合(S13:YES)、制御部10は、出力内容変更処理を実行する(S15)。
 図6を参照して、出力内容変更処理(S15、図5参照)の詳細について説明する。出力内容変更処理が開始されると、制御部10は、S13の処理で入力された指示が、図表における時間軸51の時系列の範囲を指定する範囲指定情報であるかを判断する(S21)。入力された指示が、範囲指定情報でない場合(S21:NO)、制御部10は、処理をS23の判断へ移行する。入力された指示が範囲指定情報である場合(S21:YES)、制御部10は、範囲指定情報を取得し、取得した範囲指定情報が指定する時系列の範囲に対応した図表を描画するための描画データを生成する(S22)。制御部10は、処理をS23の判断へ移行する。
 制御部10は、S13の処理で入力された指示が、被検眼が近視であると判定される第一境界値と、第一境界値よりも強度の近視である、いわゆる強度近視であることを示す第二境界値とを、図表に表示することを指定するものであるかを判断する(S23)。第一実施形態において、第一境界値及び第二境界値は、REF.軸522に対応して設けられる。第一境界値は「-0.5D」である。第二境界値は「-6D」である。第一境界値及び第二境界値は一例であるので、「-0.5D」及び「-6D」とは異なる値であってもよい。入力された指示が、第一境界値及び第二境界値を図表に表示することを指定するものでない場合(S23:NO)、制御部10は、処理をS26の判断へ移行する。入力された指示が、第一境界値及び第二境界値を図表に表示することを指定するものである場合(S23:YES)、制御部10は、第一境界値及び第二境界値が表示された図表を描画するための描画データを生成する(S25)。制御部10は、処理をS26の判断へ移行する。
 制御部10は、S13の処理で入力された指示が、図表に処置情報を反映させることを指示するものであるかを判断する(S26)。入力された指示が図表に処置情報を反映させることを指示するものでない場合(S26:NO)、制御部10は、処理をS31の処理へ移行する。指示の内容が、図表に処置情報を反映させることを指示するものである場合(S26:YES)、制御部10は、記憶部11に記憶される処置履歴データ30のうちから、S2の処理で取得したIDに対応する処置履歴データ30を特定する。制御部10は、特定した処置履歴データ30から被検眼の処置情報を取得する(S28)。第一実施形態において、図表に処置情報を反映させる指示は、処置内容毎に選択的に入力されるものとする。S28の処理において、制御部10は、S13の処理において操作部12を介して入力されている指示の示す処置内容に対応する処置情報を、処置履歴データ30から取得する。制御部10は、取得した処置情報を反映させた図表を描画するための描画データを生成する(S29)。制御部10は、処理をS31の処理へ移行する。
 制御部10は、S13の処理で入力された指示が、図表に遺伝的因子情報を表示することを指示するものであるかを判断する(S31)。入力された指示が、図表に遺伝的因子情報を表示することを指示するものである場合(S31:YES)、制御部10は、記憶部11に記憶される複数の近視関連データ40のうちから、S2の処理で取得したIDに対応する近視関連データ40を特定する。制御部10は、特定した近視関連データ40から被検者の遺伝的因子情報を取得する(S32)。制御部10は、取得した遺伝的因子情報を表示した図表を描画するための描画データを生成する(S33)。
 一方、制御部10は、S13の処理で入力された指示が、図表に遺伝的因子情報を表示することを指示するものでない場合(S31:NO)、入力された指示が、図表に環境的因子情報を表示することを指示するものであるかを判断する(S35)。入力された指示が、図表に環境的因子情報を表示することを指示するものである場合(S35:YES)、制御部10は、記憶部11に記憶される複数の近視関連データ40のうちから、S2の処理で取得したIDに対応する近視関連データ40を特定する。制御部10は、特定した近視関連データ40から被検者の環境的因子情報、すなわち第一時間及び第二時間を取得する(S36)。制御部10は、取得した第一時間及び第二時間を時系列に対応して反映させた図表を描画するための描画データを生成する(S38)。
 一方、制御部10は、S13の処理で入力された指示が、図表に環境的因子情報を表示することを指示するものでない場合(S35:NO)、入力された指示が、図表に近視リスクレベルを表示することを指示するものであるかを判断する(S41)。入力された指示が、図表に近視リスクレベルを表示することを指示するものである場合(S41:YES)、制御部10は、記憶部11に記憶される複数の近視関連データ40のうちから、S2の処理で取得したIDに対応する近視関連データ40を特定する。制御部10は、特定した近視関連データ40から被検者の近視リスクレベルを取得する(S42)。制御部10は、取得した近視リスクレベルを時系列に対応して反映させた図表を描画するための描画データを生成する(S43)。
 なお、近視リスクレベルは、第一時間及び第二時間の少なくともいずれかに基づいて導出されてもよい。この場合、制御部10は、S42の処理において近視リスクレベルを所定の導出手法に基づいて第一時間及び第二時間の少なくともいずれかから導出することによって、近視リスクレベルを取得する。第一時間及び第二時間の少なくともいずれかを用いた近視リスクレベルの導出手法は、さまざまに構成されてよい。例えば、第一時間と第二時間との比率に応じて近視リスクレベルが導出されてもよい。第一時間の長さが所定の時間以下である場合に、所定レベル以下の近視リスクレベルが導出される導出手法が採用されてもよい。第二時間の長さが所定の時間以上である場合に、所定レベル以上の近視リスクレベルが導出されてもよい。
 制御部10は、S22、S25及びS29の各処理を重畳的に実行することができる。また、制御部10は、S32、S38及びS43の処理を択一的に実行することができる。S32、S38及びS43の処理のそれぞれは、S22、S25及びS29の各処理と重畳的に実行することができる。制御部10は、処理を眼科情報処理へ戻す。
 図5の説明に戻る。制御部10は、出力内容変更処理で生成した描画データを出力する(S16)。第一実施形態において、初期描画データを含む眼科情報処理において生成される描画データの出力は、表示部13への表示によって行われる。制御部10は、眼科情報処理を終了させる指示が操作部12を介して入力されたかを判断する(S18)。眼科情報処理を終了させる指示が操作部12を介して入力されていない場合(S18:NO)、制御部10は、処理をS12へ戻し、以降の処理を続行する。眼科情報処理を終了させる指示が操作部12を介して入力されている場合(S18:YES)制御部10は、眼科情報処理を終了する。
 図8を参照して、S22及びS33の処理で生成された描画データに対応する図表60が、S16の処理によって眼科情報処理装置1の表示部13に表示された例について説明する。S21において、時間軸51の時系列の範囲を2021年1月6日から2021年10月12日までとする指示があったと判断されたとする。この場合、制御部10は、時間軸51の左端部に2021年1月6日を、右端部に2021年10月12日を配置して描画データを生成する。また、制御部10は、遺伝的因子情報を表示するための遺伝的因子情報欄61を設けた描画データを生成する。遺伝的因子情報欄61には、被検者の「両親の近視の状況」及び「その他遺伝的リスク」が表示される。
 この場合、ユーザは、時系列の範囲を任意に区切った図表60を視認することができるので、区切った期間に亘るALグラフ56及びREF.グラフ57を、より注視することができる。また、図表60を視認するユーザは、ALグラフ56及びREF.グラフ57で示される眼科情報とともに、被検者の遺伝的因子情報を一覧できる。したがって、眼科情報処理装置1は、被検者の近視の状況と遺伝的因子情報とをユーザに一度に把握させて、近視に関する診断の効率を向上することができる。
 図9を参照して、S25及びS38の処理で生成された描画データに対応する図表70が、S16の処理によって眼科情報処理装置1の表示部13に表示された例について説明する。この場合、制御部10は、第一境界軸71及び第二境界軸72を設けた描画データを生成する。図表70に示すように、第一境界軸71は、REF.軸522が第一境界値である-0.5Dを示す位置において、REF.軸522に対して直交する横軸である。第一境界軸71の左部には、第一境界軸71が示すラインが近視か否かの境界であることを示すための「近視」の文字が添えられている。第二境界軸72は、REF.軸522が第二境界値である-6Dを示す位置において、REF.軸522に対して直交する横軸である。第二境界軸72の左部には、第二境界軸72が示すラインが強度近視か否かの境界であることを示すための「強度近視」の文字が添えられている。
 図表70を視認するユーザは、第一境界軸71及び第二境界軸72と、REF.グラフ57とを対比することによって、被検眼の近視の程度を容易に把握することができる。なお、第一境界値が「25mm」、第二境界値が「27mm」等として、ALの値で定義されてもよい。すなわち、第一境界軸71及び第二境界軸72は、AL軸521に対応して設けられてもよい。この場合、ユーザは、第一境界軸71及び第二境界軸72と、ALグラフ56とを対比することによって、被検眼の近視の程度を容易に把握することができる。
 また、制御部10は、図表70に示すように、時間軸51の示す時期に対応させて、第一時間及び第二時間を示す時間表示部73を備える描画データを生成する。時間表示部73は、時間軸51に平行に延びる横軸である基準軸74を基準として、基準軸74から下方に延びて第一時間を示す第一時間部731と、基準軸74から上方に延びて第二時間を示す第二時間部732とを備える棒グラフである。時間表示部73の態様は一例である。第一時間部731が基準軸74から上方に、第二時間部732が基準軸74から下方に、それぞれ延びるように構成されていてもよい。時間表示部73は、棒グラフに限られず、円グラフ等であってもよい。時間表示部73は、第一時間及び第二時間をグラフ状で表す他、数値、アイコンの個数等を用いて第一時間及び第二時間を示すように構成されてもよい。また、時間表示部73が、第一時間部731及び第二時間部732のいずれかのみを有して構成されてもよい。
 図表70を視認するユーザは、ALグラフ56及びREF.グラフ57の推移と、時間表示部73によって示される第一時間及び第二時間の変遷とを対比することによって、被検者の環境的因子が被検者の近視の程度に及ぼす影響を考察することができる。被検者の生活行動の変化は、第一時間及び第二時間の変化に影響を与えやすい。例えば、図表70において、第二時間が増加することに応じて近視の進行が抑制される傾向が示される場合には、ユーザは、日々の生活において第二時間を確保するように被検者にアドバイスすることができる。
 近視関連データ40は、環境的因子情報として第一時間及び第二時間に加えて、第一時間及び第二時間の変化に影響を与え得る生活行動の変化を示す情報を、生活行動が変化した時期に対応付けて記憶してもよい。第一時間及び第二時間の変化に影響を与え得る生活行動の変化を示す情報は、例えば、パソコン、スマートフォン、ゲーム機等の近見視力で取り扱う物を取得した、クラブ活動等でスポーツをする習慣がついた、通学・通勤経路が変更した等である。制御部10は、S38の処理において、第一時間及び第二時間の変化に影響を与え得る生活行動の変化を示す情報を、生活行動が変化した時期に対応付けて表示する図表に対応する描画データを生成してもよい。この場合、眼科情報処理装置1は、第一時間及び第二時間の変化に影響を与え得る生活行動の変化を示す情報を、図表においてユーザに視認させることができる。したがって、ユーザは、第一時間及び第二時間に変化が生じた理由を把握しやすくなる。
 図10を参照して、S29及びS43の処理で生成された描画データに対応する図表80が、S16の処理によって眼科情報処理装置1の表示部13に表示された例について説明する。この場合、制御部10は、処置情報軸82,83を設けた描画データを生成する。処置情報軸82,83は、図表において時系列に対応して処置情報を反映させるための横軸である。図表80に示すように、処置情報軸82は、処置履歴データ30の「G034」のIDに対応する被検眼に関する処置に関する情報のうち、「点眼薬」の処置内容の実施状況を、時系列に対応して反映させたものである。処置情報軸82の左部には、処置情報軸82に対応する処置内容を表す「点眼薬」の文字が付されている。処置情報軸83は、処置履歴データ30の「G034」のIDに対応する被検眼に関する処置に関する情報のうち、「コンタクトレンズ」の処置内容の実施状況を、時系列に対応して反映させたものである。処置情報軸83の左部には、処置情報軸83に対応する処置内容を表す「コンタクトレンズ」の文字が付されている。処置情報軸82,83の左端は、時間軸51に対して、処置情報軸82,83のそれぞれに対応する処置内容の開始時期の位置に配置される。処置情報軸82,83の右端は、時間軸51に対して、処置情報軸82,83のそれぞれに対応する処置内容の終了時期の位置に配置される。図表80においては、処置情報軸82,83のそれぞれに対応する処置内容が現時点も継続中であるので、処置情報軸82,83の右端は図表80の右端部に配置される。
 図表80を視認するユーザは、処置情報軸82,83に基づいて、被検眼の処置情報を、処置が施された時期とともに把握することができる。したがって、ユーザは、被検眼の近視の状況を、被検眼に対して行われた処置内容及び処置の時期に応じて考察することができる。
 また、制御部10は、時間軸51の示す時期に対応して近視リスクレベルを示す、近視リスクレベル表示81を備える描画データを生成する。近視リスクレベル表示81は、近視関連データ40のうち「G034」のIDに対応する近視リスクレベルを、時系列に対応してグラフ状に反映させたものである。図表80に示すように、近視リスクレベル表示81は、L、M、H、VHの四段階のレベルを縦軸において下方から上方に順に配置し、時間軸51の示す時期に対応する近視リスクレベルを示す。
 図表80を視認するユーザは、近視リスクレベル表示81に基づいて、被検眼の「近視リスクレベル」を、時期に即して把握することができる。したがって、ユーザは、被検眼の近視の状況を、被検眼の近視リスクレベルに応じて考察することができる。第一実施形態において、近視リスクレベル表示81は近視リスクレベルをグラフ状に示す他、近視リスクレベルを数値、アイコンの個数等を用いて示すものであってもよい。
 図11から図16を参照して、本開示に係る典型的な実施形態の一つである第二実施形態について説明する。第二実施形態の眼科情報処理装置1は、図2に示す第一実施形態の計測値履歴データ20に替えて、図11に示す計測値履歴データ21を、記憶部11に記憶する。また、第二実施形態の眼科情報処理装置1の制御部10は、図5に示す第一実施形態の眼科情報処理に替えて、図12に示す眼科情報処理を実行する。
 第二実施形態に係る眼科情報処理装置1は、眼科情報として眼軸長及び眼球屈折力に加えて、角膜屈折力を取得することができる、光干渉式眼軸長測定装置である。眼科情報処理装置1は、外部の眼科装置、電子カルテ及び眼科情報を記憶するサーバ等の外部の記憶装置等から角膜屈折力を取得し処理できるPCであってもよい。眼科情報処理装置1による角膜屈折力の取得は、眼科情報処理装置1のユーザが、後述する操作部12を介して、角膜屈折力を眼科情報処理装置1に対して手動で入力することによって行われてもよい。第二実施形態の眼科情報処理装置1のその他の構成は、第一実施形態と同様である。第二実施形態において第一実施形態と同様の構成については、説明を適宜省略する。
 図11を参照して、計測値履歴データ21について説明する。計測値履歴データ21は、第一実施形態の計測値履歴データ20と同様に、眼科情報処理装置1によって取得された眼科情報を複数記憶するデータベースである。「Steep K」、「Flat K」、「KM」、「KKI」のそれぞれは、被検眼の眼科情報である。Steep K、Flat K、KM及びKKIは、角膜屈折力に関する値である。このうち、Steep K、Flat K、KMは、角膜の曲率半径を示す値である。Steep Kは、被検眼の強主経線における角膜の曲率半径の値を示す。Flat Kは被検眼の弱主経線における角膜の曲率半径の値を示す。KMは、Steep KとFlat Kとの平均値を示す。Steep K、Flat K及びKMの単位は「mm」である。第二実施形態において、眼科情報処理装置1は、Steep K及びFlat Kを測定し、Steep KとFlat Kとの平均値を算出することによってKMの値を取得する。角膜屈折力の値は、所定の定数を角膜の曲率半径の値で除することによって算出される場合もある。第一実施形態では、Steep K、Flat K及びKMを、角膜屈折力を示す値として扱う。一方、角膜屈折力を示す値として、Steep K、Flat K及びKMの各値から算出された角膜屈折力の値が用いられてもよい。
 KKIは、円錐角膜であることの確度を示す値であって角膜屈折力に基づいて算出される値である。KKIは、「円錐角膜スクリーニング指標」等とも呼ばれる。KKIは、特許第6707239号公報等で示される回帰式によって、Steep K及びFlat Kの各値から算出される。KKIの値が所定のカットオフ値を超えることは、被検眼に円錐角膜のリスクが高まっていることに対応する。第一実施形態において、カットオフ値は、「0.461」である。計測値履歴データ21は、眼科情報処理装置1によって取得及び算出された値のそれぞれを、検査日時、ID及びR/Lに対応付けて記憶する。
 図12を参照して、第二実施形態の眼科情報処理について説明する。図12に示す眼科情報処理は、図5に示す眼科情報処理と同様の処理を含む。図12に示す眼科情報処理において、図5に示す眼科情報処理と同様の処理については、図5に示す眼科情報処理と同じステップ番号を付して、説明を適宜省略する。
 図12に示すように、眼科情報処理が開始されると、制御部10は、S1からS3の処理を順に実行する。制御部10は、被検眼の眼科情報として、AL、REF.、Steep K及びFlat Kを取得する(S51)。制御部10は駆動部16を駆動することによって被検眼のAL及びREF.、Steep K及びFlat Kを測定し、測定値を取得する。制御部10は、取得したSteep K及びFlat Kの各値に基づいて、KMの値を算出する(S52)。制御部10は、算出したKMの値を、計測値履歴データ21に記憶する。制御部10は、取得したSteep K及びFlat Kの各値と、前述の回帰式とに基づいて、KKIの値を算出する(S53)。制御部10は、S51、S52及びS53で取得した眼科情報を、S3の処理で取得したR/Lの値に対応付けて、計測値履歴データ21に記憶する。
 なお、制御部10は、眼科情報の一部又は全部を、外部機器接続部18を介して眼科情報処理装置1に接続する他の外部情報機器等から取得してもよい。例えば、眼科情報のうちAL及びREF.が第一の眼科装置から取得され、Steep K及びFlat Kが第二の眼科装置から取得されてもよい。KM、KKIの各値の取得は、制御部10によって算出される態様に限られない。例えば、制御部10は、S52及びS53の処理に替えて、眼科情報処理装置1に接続する他の外部情報機器等において取得されたKM、KKIの各値を、外部機器接続部18を介して取得する処理を行ってもよい。
 制御部10は、S6、S11、S12及びS13の各処理を実行する。S13において「NO」と判断された場合、制御部10は、S13の処理で入力された指示が、図表にいずれの眼科情報の値を表示するかを選択することを示す選択情報であるかを判断する(S61)。第二実施形態において、選択情報は、図表にALグラフ56、REF.グラフ57、KMグラフ58及びKKIグラフ59のうち、図表に表示させるグラフをいずれとするかを選択する情報に対応する。入力された指示が選択情報でない場合(S61:NO)、制御部10は、処理をS15へ移行する。入力された指示が、選択情報である場合(S61:YES)、制御部10は、選択情報を取得し、取得した選択情報に応じた眼科情報の値が表示された図表を描画するための描画データを生成する(S62)。制御部10は、処理をS15へ移行する。以降は、制御部10は、S15、S16及びS18の各処理を実行する。
 図13を参照して、第二実施形態の眼科情報処理のS11の処理で生成された初期描画データに対応する図表90が、S12の処理によって眼科情報処理装置1の表示部13に表示された例について説明する。図表90は、「A101」のIDの被検者の右眼が被検眼である場合の図表の一例を示す。S11の処理において、制御部10は、時間軸51の時系列の範囲が最古の被検日から最新の被検日となるように、初期描画データを生成する。
 図表90は、時間軸51に対して直交する、AL軸521、REF.軸522、KM軸523及びKKI軸524の四つの縦軸を備える。KM軸523は、KMの値を示す縦軸である。KKI軸524は、KKIの値を示す縦軸である。また、図表90は、KKI軸524がカットオフ値である0.461を示す位置においてKKI軸524に直交する横軸である、カットオフ軸53を備える。なお、第二実施形態においては、REF.軸522のスケールは、AL軸521のスケールが1mm変化した場合に1.5D変化するように設けられている。
 図表90は、ALグラフ56及びREF.グラフ57に加えて、KMグラフ58及びKKIグラフ59を備える。KMグラフ58は、KMの値をKM軸523のスケールに対応させつつ、検査日時に応じて時系列に並べたグラフである。KMグラフ58において、検査時期に応じてKMの値を並べるマーカーは「□」である。KKIグラフ59は、KKIの値をKKI軸524のスケールに対応させつつ、検査日時に応じて時系列に並べたグラフである。KKIグラフ59において、検査時期に応じてKKIの値を並べるマーカーは「〇」である。最新値欄553は、ALグラフ56及びREF.グラフ57、KMグラフ58及びKKIグラフ59のそれぞれのマーカーの種類と、最新の眼科情報の値とを図表90に表示する。
 ユーザは、図表90においてKMグラフ58及びREF.グラフ57を参照することによって、被検眼の屈折性近視の進行度合いを判断できる。ユーザは、図表90においてKKIグラフ59及びREF.グラフ57を参照することによって、被検眼に円錐角膜が疑われるかを判断できる。図表90にはカットオフ軸53が設けられるので、ユーザは、KKIグラフ59の値がカットオフ軸53を超えるか否かを観察することによって、被検眼に円錐角膜が疑われるかを容易に判断できる。図表90は、ALグラフ56、REF.グラフ57、KMグラフ58及びKKIグラフ59をユーザに一覧させることができる。したがって、眼科情報処理装置1は、被検眼の近視の種類及び近視の進行の度合いを、ユーザに多角的に判断させることができる。
 図14を参照して、S22、S33及びS62の処理で生成された描画データに対応する図表100が、S16の処理によって眼科情報処理装置1の表示部13に表示された例について説明する。S21において、時間軸51の時系列の範囲を2020年12月14日から2021年10月12日までとする指示があったと判断されたとする。また、S62においてALグラフ56を表示せず、REF.グラフ57、KMグラフ58及びKKIグラフ59を表示する指示があったと判断されたとする。
 この場合、制御部10は、時間軸51の左端部に2020年12月14日を、右端部に2021年10月12日を配置して描画データを生成する。また、制御部10は、ALグラフ56を表示せず、REF.グラフ57、KMグラフ58及びKKIグラフ59を表示する態様で描画データを生成する。ALグラフ56が表示されない図表100を視認するユーザは、REF.グラフ57、KMグラフ58及びKKIグラフ59及びこれらのグラフによって表される近視の傾向を、より注視することができる。例えば、ユーザは、近視の種類が軸性近視ではなく、屈折性近視又は円錐角膜によるものであると推定した場合、軸性近視の傾向を示すALグラフ56を図表から削除することができる。これにより、ユーザは、図表に表示されるREF.グラフ57、KMグラフ58及びKKIグラフ59に注目して、屈折性近視の進行度合い又は被検眼に円錐角膜が疑われるかについて詳細に検討することができる。また、ユーザは時系列の範囲を任意に区切った図表60を視認することができるので、区切った期間に亘る眼科情報の経過を、より注視することができる。さらに、図表90には遺伝的因子情報欄61も設けられるので、ユーザはALグラフ56、REF.グラフ57、KMグラフ58及びKKIグラフ59で示される眼科情報とともに、被検者の遺伝的因子情報を一覧できる。
 図15を参照して、S29の処理で生成された描画データに対応する図表110が、S16の処理によって眼科情報処理装置1の表示部13に表示された例について説明する。図表110は、S26において、「点眼薬」の投与及び「コンタクトレンズ」の処方に関する処置情報を図表に反映させる指示があったと判断された場合に表示されたものとする。
 この場合、制御部10は、点眼薬が投与された期間を示すハッチング111及びコンタクトレンズが処方された期間を示すハッチング113を付した描画データを生成する。制御部10は、生成した描画データに対応する図表110を表示部13に表示する。第一実施形態において、ハッチング111が点眼薬の投与に関する処置情報を反映させたものであることを明示するための表示112が、図表110に設けられる。ハッチング113がコンタクトレンズの処方に関する処置情報を反映させたものであることを明示するための表示114も、図表110に設けられる。図表110を視認するユーザは、ALグラフ56、REF.グラフ57、KMグラフ58及びKKIグラフ59のそれぞれの推移を、被検眼に関する処置の履歴と関連付けて観察することができる。
 第一実施形態では、処置情報を図表に反映させるために、処置情報軸82,83が用いられた。処置情報を図表に反映させるため、第二実施形態で例示したハッチング111,113を用いる手法が採用されてもよい。また、第二実施形態の眼科情報処理装置1の表示部13に表示される図表が、環境的因子情報及び近視リスクレベルを時系列に対応して反映させてもよい。第二実施形態の眼科情報処理装置1の表示部13に表示される図表に、第一境界値及び第二境界値が表示されてもよい。環境的因子情報、近視リスクレベル、第一境界値及び第二境界値の表示態様は、第一実施形態の例に対して種々に変更されてもよい。
 第二実施形態では、横軸である一つの時間軸51に対してAL軸521、REF.軸522、KM軸523及びKKI軸524の四つの縦軸が直交するように描画データが生成され、生成された描画データが図表90,100,110として出力される。この他、描画データは、一つの時間軸51に対して一つの縦軸が直交したグラフを、一つの図表に複数並べて表示するように生成されてもよい。具体例を図16に示す。
 図16に示すように、図表120は、四つの時間軸51のそれぞれが設けられ、それぞれの時間軸51に対してAL軸521、REF.軸522、KM軸523及びKKI軸524のそれぞれが直交している。AL軸521に対応してALグラフ56が表示される。REF.軸522に対応してREF.グラフ57が表示される。KM軸523に対応してKMグラフ58が表示される。KKI軸524に対応してKKIグラフ59が表示される。一つの図表120がこのように構成される場合であっても、ユーザは図表120によって各グラフを一覧できるので、被検眼の近視の種類及び近視の進行の度合いを多角的に判断することができる。
 第二実施形態において、制御部10は、角膜屈折力に関する値としてKM及びKKIの各値を採用し、KM及びKKIの値を時系列に並べたKMグラフ58及びKKIグラフ59を表示する図表の描画データを生成する。制御部10は、角膜屈折力に関する値として、KMの値又はKKIの値のいずれか一方のみを採用して、描画データを生成してもよい。制御部10は、角膜屈折力を示す値として、KMの値に加えて、また、KMの値に替えて、Steep K、Flat K等の値を採用して描画データを生成してもよい。
 上記第一実施形態及び第二実施形態で開示された技術は一例に過ぎない。したがって、第一実施形態及び第二実施形態で例示された技術を変更することも可能である。例えば、第一実施形態及び第二実施形態で例示された技術の一部のみを実行することも可能である。具体的には、第一実施形態では、S5の処理で被検眼の最新の眼科情報が取得されたことに応じて、S11、S22、S25、S29、S33、S38及びS43の処理において描画データが生成される。しかし、S5の処理が実行されず、被検眼の眼科情報は、S6の処理において最新のものも含めて取得される態様であってもよい。また、制御部10は、S5の処理で被検眼の最新の眼科情報を取得することなく、S6の処理において過去の眼科情報を取得し、取得した過去の眼科情報に基づいて描画データを生成してもよい。
 第一実施形態及び第二実施形態においてS12及びS16における描画データの出力は表示部13への図表の表示として実行される。描画データの出力は、外部機器接続部18を介して眼科情報処理装置1に有線接続又は無線接続する外部の表示装置等に図表が表示されることによって実行されてもよい。また、描画データの出力は、眼科情報処理装置1の印刷部15によって図表が紙等に印刷されることによって実行されてもよい。描画データに対応する図表の印刷による出力は、外部機器接続部18を介して眼科情報処理装置1に有線接続又は無線接続する外部の印刷装置等によって実行されてもよい。
 S21の処理で取得される範囲指定情報は、第一実施形態及び第二実施形態のように時系列の範囲を任意に指定するものであってもよい。また、範囲指定情報は、最新の被検日から1年、最新の被検日から2年、最新の被検日から3年等、指定できる時系列の範囲を予め定めており、ユーザがいずれかを選択できるように構成されていてもよい。
 図表におけるREF.軸522のスケールは、眼の平均的特性を考慮せず、AL軸521のスケールに対して任意に設けられてもよい。この場合であっても、眼科情報処理装置1は、複数の眼科情報を一覧できる一つの図表を提示することによって、近視に関する診断の効率を向上することができる。
 出力内容変更処理において、制御部10は、S32、S38及びS43の処理を重畳的に実行してもよい。したがって、制御部10は、遺伝的因子情報欄61、時間表示部73及びのうち二つ以上が一つの図表に表示される描画データを生成してもよい。
 描画データを生成する際に、AL軸521のスケールの変化量に一致するREF.軸522のスケールの変化量をユーザが任意に設定できるように、眼科情報処理装置1が構成されていてもよい。例えば、眼科情報処理において、S11の処理が行われるより前に、AL軸521のスケールの変化量が1mmである場合のREF.軸522のスケールの変化量を、例えば2Dから3Dの範囲内の値でユーザに入力させる処理が行われてもよい。この場合、眼科情報処理装置1は、AL軸521のスケールの変化量に一致するREF.軸522のスケールの変化量を、被検者等に応じて調整できるので、ALの値及びREF.の値のそれぞれの変化をより一覧しやすい図表を提供することができる。
 図表において、ALグラフ56とREF.グラフ57との間隔を調節したい場合がある。具体的には、例えば図7に示す図表50において、REF.軸522が-3Dを示す位置には、AL軸521の27.5mmが配置されているが、ALグラフ56とREF.グラフ57との上下方向における間隔を変更した図表をユーザが観察したい場合がある。このような場合に対応するため、図表においてREF.軸522が所定の値(例えば-3D)を示す位置に配置されるAL軸521の値を変更できるように、眼科情報処理装置1が構成されていてもよい。このため、例えば出力内容変更処理において、REF.軸522が所定の値を示す位置に配置されるAL軸521の値を、ユーザに入力させる処理が行われてもよい。図表におけるALグラフ56とREF.グラフ57との間隔を調節できるので、眼科情報処理装置1は、ALの値及びREF.の値のそれぞれの変化をより一覧しやすい図表を提供することができる。
 第一実施形態におけるS5及びS6の各処理が、「値取得処理」及び「値取得ステップ」の一例である。S11、S22、S25、S29、S33、S38及びS43の各処理が、「描画データ生成処理」及び「描画データ生成ステップ」の一例である。S21で範囲指定情報を取得する処理が、「範囲取得処理」の一例である。S36で第一時間及び第二時間を取得する処理が、「時間取得処理」の一例である。S28で処置情報を取得する処理が、「処置情報取得処理」の一例である。S32で遺伝子情報を取得する処理が、「因子情報取得処理」の一例である。S42で近視リスクレベルを取得する処理が、「レベル取得処理」の一例である。
1  眼科情報処理装置
10  制御部
11  記憶部
13  表示部
15  印刷部
50,60,70,80  図表

Claims (15)

  1.  被検眼の眼科情報を処理する眼科情報処理装置であって、
     前記眼科情報処理装置の制御部は、
     被検眼の前記眼科情報として、少なくとも、眼軸長の値と、眼全体の屈折力を示す眼球屈折力の値とを、検査時期を特定して取得する値取得処理と、
     前記値取得処理において取得された同一の被検眼に対応する各値を、検査時期に応じて時系列に並べて表示した一つの図表を描画するための描画データを生成する描画データ生成処理と
     を実行することを特徴とする眼科情報処理装置。
  2.  前記描画データ生成処理は、前記値取得処理において取得された同一の被検眼に対応する前記眼軸長の値を第一軸のスケールに応じて、前記値取得処理において取得された同一の被検眼に対応する前記眼球屈折力の値を前記第一軸に平行に配置される第二軸のスケールに応じて、それぞれ検査時期に応じて時系列に並べて表示した一つの図表に描画するための描画データを生成し、
     前記第一軸は、前記眼軸長の値を所定の単位量に応じたスケールで示し、
     前記第二軸における前記眼球屈折力の値のスケールは、前記眼軸長の値が前記単位量だけ変化した場合の前記眼球屈折力の値の変化量に一致して設けられる
     ことを特徴とする請求項1に記載の眼科情報処理装置。
  3.  前記眼軸長の値が前記単位量だけ変化した場合の前記眼球屈折力の値の変化量は、前記単位量が1mmである場合に1ディオプターから3ディオプターの範囲内の値であることを特徴とする請求項2に記載の眼科情報処理装置。
  4.  前記描画データ生成処理は、被検眼が近視であると判定される第一境界値と、前記第一境界値よりも強度の近視であることを示す第二境界値とを、前記第一軸又は前記第二軸に応じて示す前記図表に対応する前記描画データを生成することを特徴とする請求項2又は3に記載の眼科情報処理装置。
  5.  前記描画データ生成処理は、前記一つの図表に表示される時系列の範囲を、最古の検査時期から最新の検査時期までとして、前記描画データを生成することを特徴とする請求項1から4のいずれかに記載の眼科情報処理装置。
  6.  前記制御部は、前記一つの図表に表示される時系列の範囲を指定する範囲指定情報を取得する範囲取得処理を実行し、
     前記描画データ生成処理は、前記範囲取得処理によって取得された前記範囲指定情報に応じて、前記一つの図表に表示される時系列の範囲を指定した前記描画データを生成することを特徴とする請求項1から5のいずれかに記載の眼科情報処理装置。
  7.  前記制御部は、被検者が近視の進行に作用する作業を行った第一時間及び被検者が近視の抑制に作用する作業を行った第二時間の少なくともいずれかを示す時間情報を、時期を特定して取得する時間取得処理を実行し、
     前記描画データ生成処理は、前記時系列に対応して前記時間情報を反映させた前記描画データを生成することを特徴とする請求項1から6のいずれかに記載の眼科情報処理装置。
  8.  前記制御部は、被検眼に関する処置の内容及び前記処置がなされた時期を示す処置情報を取得する処置情報取得処理を実行し、
     前記描画データ生成処理は、前記時系列に対応して前記処置情報を反映させた前記描画データを生成することを特徴とする請求項1から7のいずれかに記載の眼科情報処理装置。
  9.  前記制御部は、近視に関する被検者の遺伝的因子を示す遺伝的因子情報を取得する因子情報取得処理を実行し、
     前記描画データ生成処理は、前記遺伝的因子情報を表示した前記図表に対応する前記描画データを生成することを特徴とする請求項1から8のいずれかに記載の眼科情報処理装置。
  10.  前記制御部は、被検者の近視が進行する可能性のレベルを、時期を特定して取得するレベル取得処理を実行し、
     前記描画データ生成処理は、前記時系列に対応して前記レベルを反映させた前記描画データを生成することを特徴とする請求項1から9のいずれかに記載の眼科情報処理装置。
  11.  前記レベルは、被検者が近視の進行に作用する作業を行った第一時間及び被検者が近視の抑制に作用する作業を行った第二時間の少なくともいずれかに基づいて導出されることを特徴とする請求項10に記載の眼科情報処理装置。
  12.  前記値取得処理は、眼軸長の値、眼全体の屈折力の値及び角膜屈折力に関する値を、検査時期を特定して取得することを特徴とする請求項1から11のいずれかに記載の眼科情報処理装置。
  13.  前記角膜屈折力に関する値は、角膜屈折力を示す値又は円錐角膜であることの確度を示す値であって角膜屈折力に基づいて算出される値のいずれかを少なくとも含む
     ことを特徴とする請求項12に記載の眼科情報処理装置。
  14.  前記制御部は、前記一つの図表において、前記眼軸長の値、前記眼全体の屈折力の値及び前記角膜屈折力に関する値のうちいずれを表示するかを選択するための選択情報を取得する選択情報取得処理を実行し、
     前記描画データ生成処理は、前記選択情報取得処理によって取得された選択情報に対応する前記描画データを生成する
     ことを特徴とする請求項12又は13に記載の眼科情報処理装置。
  15.  被検眼の眼科情報を処理するための眼科情報処理プログラムであって、
     被検眼の前記眼科情報として、少なくとも、眼軸長の値と、眼全体の屈折力を示す眼球屈折力の値とを、検査時期を特定して取得する値取得ステップと、
     前記値取得ステップにおいて取得された同一の被検眼に対応する各値を、検査時期に応じて時系列に並べて表示した一つの図表を描画するための描画データを生成する描画データ生成ステップと
     をコンピュータに実行させることを特徴とする眼科情報処理プログラム。
PCT/JP2022/048028 2022-01-24 2022-12-26 眼科情報処理装置及び眼科情報処理プログラム WO2023140064A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022008928A JP2023107640A (ja) 2022-01-24 2022-01-24 眼科情報処理装置及び眼科情報処理プログラム
JP2022-008928 2022-01-24
JP2022008927A JP2023107639A (ja) 2022-01-24 2022-01-24 眼科情報処理装置及び眼科情報処理プログラム
JP2022-008927 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023140064A1 true WO2023140064A1 (ja) 2023-07-27

Family

ID=87348604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048028 WO2023140064A1 (ja) 2022-01-24 2022-12-26 眼科情報処理装置及び眼科情報処理プログラム

Country Status (1)

Country Link
WO (1) WO2023140064A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530598A (ja) * 2005-02-15 2008-08-07 クイーンズランド ユニバーシティ オブ テクノロジー コンタクトレンズを使用する近視の制御
JP2014504873A (ja) * 2011-01-14 2014-02-27 ザ ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャライゼーション 眼軸長関連障害を診断および治療する方法
WO2015064545A1 (ja) * 2013-10-29 2015-05-07 株式会社ニデック 眼科観察装置および眼科観察プログラム
JP2017170193A (ja) * 2017-06-12 2017-09-28 株式会社ニデック 眼科解析装置、及び眼科解析プログラム
JP2019170706A (ja) * 2018-03-28 2019-10-10 株式会社トプコン 眼科装置、及び眼科情報処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530598A (ja) * 2005-02-15 2008-08-07 クイーンズランド ユニバーシティ オブ テクノロジー コンタクトレンズを使用する近視の制御
JP2014504873A (ja) * 2011-01-14 2014-02-27 ザ ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャライゼーション 眼軸長関連障害を診断および治療する方法
WO2015064545A1 (ja) * 2013-10-29 2015-05-07 株式会社ニデック 眼科観察装置および眼科観察プログラム
JP2017170193A (ja) * 2017-06-12 2017-09-28 株式会社ニデック 眼科解析装置、及び眼科解析プログラム
JP2019170706A (ja) * 2018-03-28 2019-10-10 株式会社トプコン 眼科装置、及び眼科情報処理プログラム

Similar Documents

Publication Publication Date Title
KR101785255B1 (ko) 형상 구별 시력 평가 및 추적 시스템
Wu et al. Intrasession test–retest variability of microperimetry in age-related macular degeneration
Chandramohan et al. Visual function measures in early and intermediate age-related macular degeneration
JP5042740B2 (ja) 眼内レンズ選択装置及びプログラム
JP7166473B2 (ja) 眼検査
Ribeiro et al. Predictability of different calculators in the minimization of postoperative astigmatism after implantation of a toric intraocular lens
US7470026B2 (en) Method and apparatus for measuring operating visual acuity
JP2014533587A (ja) 網膜疾患を監視するビデオゲーム
CN105844103A (zh) 用于定制镜片的系统和方法
US9572486B2 (en) Device and method for checking human vision
JP5073377B2 (ja) 眼科測定装置
Ravikumar et al. Image quality metric derived refractions predicted to improve visual acuity beyond habitual refraction for patients with Down syndrome
WO2023140064A1 (ja) 眼科情報処理装置及び眼科情報処理プログラム
EP2698098A1 (en) Campimeter
JP2023107640A (ja) 眼科情報処理装置及び眼科情報処理プログラム
JP2023107639A (ja) 眼科情報処理装置及び眼科情報処理プログラム
Erraguntla et al. Assessment of change of optic nerve head cupping in pediatric glaucoma using the RetCam 120
Zhang et al. Comparison of corneal curvature parameters obtained from two different instruments—Pentacam and VX120
Phu et al. Deployment of the Water Drinking Test and iCare HOME phasing for intraocular pressure profiling in glaucoma evaluation
EP4057886A1 (en) System and method for determining prescription of corrective lenses using predictive calculations and corrected-eyesight simulation
Abrahamsen et al. Are gain values significantly altered by manual data selection when performing the video Head Impulse Test (v-HIT) on all six semicircular canals with two different v-HIT systems
JP2022063796A (ja) 近視進行分析装置、近視進行分析システム、近視進行分析方法、及び近視進行分析プログラム。
KR102624293B1 (ko) 어지럼증 진단 치료 서비스 시스템 및 방법
WO2011162120A1 (ja) 水晶体評価装置、制御プログラム、及び水晶体評価装置の制御方法
Neveu et al. Agreement between clinical and laboratory methods assessing tonic and cross‐link components of accommodation and vergence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE