WO2023139863A1 - ガスクロマトグラフ分析方法及びガスクロマトグラフ分析用プログラム - Google Patents
ガスクロマトグラフ分析方法及びガスクロマトグラフ分析用プログラム Download PDFInfo
- Publication number
- WO2023139863A1 WO2023139863A1 PCT/JP2022/039122 JP2022039122W WO2023139863A1 WO 2023139863 A1 WO2023139863 A1 WO 2023139863A1 JP 2022039122 W JP2022039122 W JP 2022039122W WO 2023139863 A1 WO2023139863 A1 WO 2023139863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- analysis
- retention time
- compound
- sample
- gas
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 72
- 150000001875 compounds Chemical class 0.000 claims abstract description 206
- 230000014759 maintenance of location Effects 0.000 claims abstract description 150
- 238000000034 method Methods 0.000 claims abstract description 112
- 238000005259 measurement Methods 0.000 claims description 87
- 239000012491 analyte Substances 0.000 claims description 26
- 238000012937 correction Methods 0.000 claims description 18
- 238000004587 chromatography analysis Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 4
- 238000004817 gas chromatography Methods 0.000 abstract description 47
- 239000007789 gas Substances 0.000 description 25
- 235000019645 odor Nutrition 0.000 description 24
- 239000003153 chemical reaction reagent Substances 0.000 description 20
- 238000012545 processing Methods 0.000 description 18
- 238000000691 measurement method Methods 0.000 description 15
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 13
- 150000001335 aliphatic alkanes Chemical class 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 238000010561 standard procedure Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 8
- 238000013500 data storage Methods 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- 230000008016 vaporization Effects 0.000 description 7
- 238000009835 boiling Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940090047 auto-injector Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
Definitions
- the present invention relates to an analysis method using a gas chromatograph (GC) and a computer program for implementing the analysis method, and more specifically, to a GC analysis method and a GC analysis program that utilize a headspace method for sample introduction into a column.
- the GC analysis referred to here includes gas chromatography/mass spectrometry (GC/MS) using a mass spectrometer as a detector.
- retention time is used to identify the peaks observed in the chromatogram.
- the retention time is not a compound-specific value, but a value that varies with various separation conditions such as carrier gas flow rate (velocity), column temperature, and column length. Therefore, unless the separation conditions for the measurement of the target sample are the same as the separation conditions for the measurement of the standard substance or the like when the retention time used for identification is obtained, it is impossible to accurately identify the peak using the retention time. In many cases this is virtually impossible. Therefore, in peak identification in GC analysis, a retention index (RI), which is less dependent on separation conditions and inter-instrumental differences, is often used instead of retention time.
- the retention index is obtained by indexing the retention time of various compounds using the peak retention time of n-alkane, which is a reference compound, and the retention index values for many compounds are widely known.
- Non-Patent Document 1 a conventional GC apparatus is equipped with a function of estimating the retention time of an analysis target compound from the known retention index of the analysis target compound, the retention index of the reference compound, and the retention time obtained by actually measuring the reference compound, and using the estimated value to correct the retention time of the analysis target compound previously registered in the device.
- this function is called AART (Automatic Adjustment of Retention Time).
- n-alkane standard reagent which is the standard for the retention index, contains a wide variety of straight-chain alkanes with a carbon number ranging from about a few to 30 or more, and the range of boiling points is also quite wide.
- the HS method is a technique in which a liquid sample or solid sample contained in a sealed sample container is heated to a constant temperature for a certain period of time to volatilize components in the sample, and a certain amount of sample gas containing these components is collected from the upper space in the sample container and introduced into a column.
- the components can be volatilized and collected at a relatively low temperature close to room temperature.
- many of the aromatic components in food and drink and the odorous components of chemical products are compounds with low boiling points, ie, high volatility.
- the target sample is measured using the HS method, while a standard reagent containing n-alkane is measured by injecting the reagent into a sample vaporization chamber provided at the entrance of the column, and the retention time of the analyte compound (odor component) is corrected using the measurement results for the standard reagent.
- the sample introduction method is different, the retention time for the same compound may differ even if the other separation conditions are exactly the same. Imprecise retention time corrections can lead to imprecise peak identification and thus compound identification. There is also the possibility of missing unknown compounds contained in the sample.
- the present invention was made in view of these problems, and one of its objectives is to identify compounds with high accuracy using the retention times corresponding to various compounds in the sample in the GC analysis method in which the sample is introduced by the HS method.
- One aspect of the GC analysis method according to the present invention is a GC analysis method for separating and detecting components contained in a sample gas with a column, a sampling step of collecting a sample gas from a solution containing an n-alkane, which is a retention index reference compound, using a headspace method; a reference compound analysis step of introducing the sample gas collected in the sample collection step into a column and performing GC analysis; a retention time calculation step of obtaining an actually measured retention time for n-alkane based on the chromatogram obtained by GC analysis in the reference compound analysis step, and estimating the retention time of the compound to be analyzed from the measured retention time and a known retention index of the compound to be analyzed; have
- one aspect of the GC analysis program according to the present invention is a GC analysis program for controlling a system including a headspace sampler and a measurement unit that separates and detects components contained in a sample gas with a GC column, wherein a computer,
- a reference compound measurement condition setting step of displaying a screen for setting measurement conditions including vial oven temperature for measuring n-alkane, which is a reference compound of a retention index, in response to an operation by a user, and accepting settings by the user on the screen;
- a retention time correction step of obtaining the measured retention time for n-alkane based on the chromatogram obtained by GC analysis in the reference compound measurement step, estimating the retention time of the analyte compound from the measured retention time and the known retention index of the an
- the n-alkane which is the reference compound
- the n-alkane is also analyzed by GC using the HS method in the same way as the target compound, so that the retention time of the target compound can be obtained or corrected with high accuracy.
- the retention time of the target compound can be obtained or corrected with high accuracy.
- the work load on the user can be reduced, and the efficiency of measurement can be improved.
- FIG. 1 is a schematic block configuration diagram showing an example of a GC-MS system for carrying out a GC analysis method according to an embodiment of the present invention
- FIG. FIG. 2 is a flow chart showing the procedure for identifying compounds to be analyzed, including retention time automatic correction processing, in the GC-MS system shown in FIG. 1.
- FIG. 4 is a flow chart showing a procedure for measuring a reference compound;
- FIG. 1 is a schematic block diagram showing an example of a GC-MS system for carrying out the GC analysis method of this embodiment.
- This GC-MS system includes a headspace sampler (sometimes abbreviated as HSS) 1, a measurement unit 2 including a gas chromatograph unit (GC unit) 3 and a mass spectrometry unit (MS unit) 4, a control/processing unit 5 that controls the headspace sampler 1 and the measurement unit 2 and processes data (mass spectrum data, chromatogram data) obtained by the measurement unit 2, a main control unit 6 that controls the entire system, an input unit 7 that is a user interface, and a display unit 8;
- HSS headspace sampler
- measurement unit 2 including a gas chromatograph unit (GC unit) 3 and a mass spectrometry unit (MS unit) 4
- a control/processing unit 5 that controls the headspace sampler 1 and the measurement unit 2 and processes data (mass spectrum data, chromatogram data) obtained by the measurement unit 2
- main control unit 6 that controls the entire system
- an input unit 7 that is a user interface
- a display unit 8 a display unit
- the headspace sampler 1 includes a vial oven that heats a vial containing a liquid (or solid), and a sampling unit that includes a syringe that draws and discharges a predetermined amount of sample gas from the headspace in the vial.
- the headspace sampler 1 can also include a changer mechanism that selects a large number of vials prepared in advance in a predetermined (programmed) order and sets them in the vial oven.
- a headspace sampler "HS-20 NX Series" manufactured by Shimadzu Corporation see Non-Patent Document 2 can be used.
- the GC section 3 in the measurement section 2 includes a column for separating components in the sample gas, a column oven for controlling the temperature of the column, and a gas supply section for supplying a constant flow rate of carrier gas to the column.
- the MS section 4 includes an ion source that momentarily ionizes the components in the sample gas sent from the GC section 3, a mass separator such as a quadrupole mass filter that separates ions according to their mass-to-charge ratio (m/z), and a detector that detects ions.
- the MS unit 4 may be a mass spectrometer capable of MS/MS analysis, such as a triple quadrupole mass spectrometer or a quadrupole-time-of-flight mass spectrometer, instead of a single-type quadrupole mass spectrometer.
- the measurement unit 2 may be a GC apparatus using various detectors other than a mass spectrometer instead of a GC-MS.
- the control/processing unit 5 includes functional blocks such as a measurement control unit 51, a method creation/editing unit 52, a method storage unit 53, a retention time correction processing unit 54, an identification processing unit 55, and a data storage unit 56.
- the method storage unit 53 stores at least a reference compound measurement method and an analysis target compound measurement method.
- the data storage unit 56 stores at least reference compound measurement data and analysis target compound measurement data.
- control/processing unit 5 and the main control unit 6 can realize their respective functions by using a personal computer as a hardware resource and running dedicated control/processing software (computer program) installed in the computer on the computer.
- this computer program may be software that is entirely integrated into one package, it can usually consist of a plurality of software, such as basic control and processing software that controls the headspace sampler 1 and the measurement unit 2 and processes the data obtained by the measurement unit 2, and a method package that is software containing methods such as a compound table containing information about various compounds for specific purposes, such as for residual pesticide testing and metabolites, and measurement and analysis conditions for the measurement and analysis processing.
- software such as basic control and processing software that controls the headspace sampler 1 and the measurement unit 2 and processes the data obtained by the measurement unit 2
- a method package that is software containing methods such as a compound table containing information about various compounds for specific purposes, such as for residual pesticide testing and metabolites, and measurement and analysis conditions for the measurement and analysis processing.
- the computer program may be stored in a computer-readable non-temporary recording medium such as a CD-ROM, DVD-ROM, memory card, USB memory (dongle) and provided to the user.
- the program can also be provided to the user in the form of data transfer via a communication line such as the Internet.
- the program can be pre-installed in a computer that is part of the system (strictly speaking, a storage device that is part of the computer) when the user purchases the system.
- Odor-related compounds are often compounds that easily volatilize at relatively low temperatures (normal temperature or slightly higher).
- samples usually contain compounds that are completely unrelated to odors, and in order to accurately evaluate odors, it is desirable to qualitatively and quantify odor-related compounds while eliminating as many odor-related compounds as possible.
- heating over a wide temperature range from relatively low to high temperatures is possible, so it is a sampling method that meets the above purpose, and is suitable for detecting trace amounts of odor-related compounds in a sample with high sensitivity.
- the reference compound measurement method and the analyte compound measurement method stored in the method storage unit 53 are provided as part of the method package.
- the compound table included in the analysis target compound measurement method contains information necessary for compound measurement, identification, etc., such as mass, retention time, retention index, m/z value, etc., for each of the various analysis target compounds (here, odor-related compounds).
- FIG. 2 is a flow chart showing the identification procedure including automatic correction of the retention time of the compound to be analyzed in the GC-MS system.
- the user In order to measure the reference compound, the user first creates a measurement method for the reference compound (step S1).
- the reference compound measurement method is stored in the method storage unit 53 as a part of the method package, the actual work performed by the user is only the work of correcting a part of the measurement conditions, etc. as necessary as described later.
- the user prepares a vial containing a solution containing n-alkane, which is a reference compound, as a sample for measurement (step S2).
- the user loads the prepared vial into the headspace sampler 1 and performs a predetermined operation on the input unit 7.
- the measurement control unit 51 controls the headspace sampler 1 and the measurement unit 2 according to the reference compound measurement method stored in the method storage unit 53, and performs measurement (GC/MS analysis) of the n-alkane that is the reference compound (step S3).
- FIG. 3 is a flow chart showing detailed procedures of the processing corresponding to steps S1 to S3. An example of the procedure of steps S1 to S3 will be described in detail with reference to FIG.
- the user selects one of two sample introduction methods in the reference compound measurement method.
- the two sample introduction methods are the standard method and the high-precision method, and the difference between them will be described later.
- the user performs a predetermined operation on the input unit 7 to open the headspace sampler (HSS) setting screen (step S21). Then, if the user wishes to perform retention time correction processing with standard accuracy using the measurement results of the reference compound (Yes in step S22), the user selects the standard method on the setting screen (step S23). On the other hand, if the user wishes to correct the retention time of the compound to be analyzed with high accuracy using the measurement results of the reference compound (No in step S22), the user selects the high-precision method on the setting screen (step S26).
- the user sets the vial oven temperature, which is one of the important measurement conditions for the headspace sampler 1, to an appropriate temperature value within the range of 10-99°C, often within the range of 40-80°C, and more preferably within the range of 40-60°C (step S24).
- the method creation/editing unit 52 accepts the set temperature value as part of the reference compound measurement method, and stores it in the method or in association with the method. Thereafter, the user dissolves a predetermined amount of n-alkane standard reagent in a predetermined amount of water, and seals the solution in a vial to prepare a measurement sample (step S25). That is, in this case, the measurement sample prepared in step S2 is a standard reagent dissolved in water.
- the user sets the vial oven temperature to an appropriate temperature value within the range of 150-220°C (step S27).
- the method creation/editing unit 52 accepts the set temperature value as part of the reference compound measurement method, and stores it in the method or in association with the method. Thereafter, the user prepares a sample for measurement by encapsulating a very small amount (eg, about 1 to 2 ⁇ L) of n-alkane standard reagent in a vial (step S28). That is, in this case, the measurement sample prepared in step S2 is not dissolved in water, but a trace amount of pure standard reagent.
- a very small amount eg, about 1 to 2 ⁇ L
- the user uses the input unit 7 to issue an instruction to start measurement execution, for example.
- the headspace sampler 1 heats the vial to the instructed vial oven temperature and maintains that temperature for a predetermined time.
- a portion of the sample gas containing n-alkane filling the internal space of the vial is introduced into the GC section 3 along with the flow of the carrier gas. While the sample gas passes through the column of the GC section 3, the n-alkanes in the gas are temporally separated according to the number of carbon atoms.
- the MS unit 4 sequentially detects the n-alkanes temporally separated in the GC unit 3 and outputs detection signals corresponding to their concentrations.
- the measurement data obtained for n-alkane is stored in the data storage section 56 in the control/processing section 5 .
- Standard reagents for n-alkanes include a wide variety of linear alkanes with a few carbon atoms to 30 or more carbon atoms.
- "Qualitative Retention Time Index Standard” sold by GL Sciences Co., Ltd. contains n-alkanes with different numbers of carbon atoms from C7 to C33. The boiling point of straight-chain alkanes increases as the number of carbon atoms increases, and a temperature of 200° C. or higher is required to volatilize all straight-chain alkanes contained in the standard reagent.
- odor-related compounds which are the compounds to be analyzed in this example, are low-boiling compounds that easily volatilize at room temperature.
- a sample containing odor-related compounds also contains many contaminants with relatively high boiling points. Therefore, in order to measure odor-related compounds with high sensitivity and accuracy, it is desirable to use the HS method at a relatively low temperature, specifically, a temperature of about 10 to 99° C. (generally about 40 to 60° C.) at which the odor-related compounds volatilize while most of the contaminants do not volatilize.
- analyte compounds with relatively large retention times are important, it may be desirable to modify the retention times of those compounds with high accuracy in order to accurately identify such analyte compounds.
- the vial is heated to about 200° C. in the HS method, bumping may occur if a certain amount of water is contained in the vial. Therefore, in the high-precision method, it is desirable to store a very small amount of the standard reagent directly in the vial without dissolving the standard reagent in water.
- the heating temperature of the vial in the HS method differs greatly between the measurement of n-alkane and the measurement of the target sample.
- almost all linear alkane-derived chromatographic peaks contained in the standard reagent can be used to estimate the retention time of the analyte compound, so the retention time of the analyte compound can be estimated and corrected with high accuracy.
- step S4 when the measurement of the reference compound n-alkane is completed and the measurement data is stored in the data storage unit 56, the retention time correction processing unit 54 creates a chromatogram based on the reference compound measurement data, and detects peaks in the chromatogram. Then, the compound table of the reference compound included in the reference compound measurement method is used to identify the chromatopeak for the n-alkane (step S4). Further, the retention time correction processing unit 54 acquires the retention time of each identified chromatopeak, and corrects the retention time of each n-alkane in the compound table of the reference compound to its measured value (step S5). As a result, the retention time of the reference compound in the compound table reflects the latest measurement conditions, and even if the column length has changed since the previous measurement due to, for example, cutting the column, the retention time is corrected to reflect the changed column length.
- the retention time correction processing unit 54 reads out the compound table of the analysis target compound included in the analysis target compound measurement method stored in the method storage unit 53, and uses the retention index of each analysis target compound in the compound table and the measured values of the retention index and retention time of each reference compound in the compound table of the reference compound to estimate the retention time of each analysis target compound (step S6). Then, based on the estimation result, the retention time of each compound to be analyzed in the compound table of the compounds to be analyzed is corrected (step S7).
- the retention time calculation method is the same as the conventional retention time automatic correction process described in Non-Patent Document 1 and the like. Specifically, when the peak of the compound to be analyzed exists between the peak of the n-th linear alkane and the peak of the n+1-th linear alkane on the chromatogram, the retention time of the compound to be analyzed can be calculated using the following formula (1).
- RT T RT vn + (RT vn+1 ⁇ RT vn ) ⁇ (R T ⁇ RI vn )/(RI vn+1 ⁇ RI vn ) ⁇ ...(1)
- RTT Retention time of target compound
- RIT Retention index of target compound
- RI vn retention index of n-th reference compound
- RT vn+1 retention time of n+1-th reference compound (measured value)
- RI vn+1 Retention index of n+1th reference compound
- the retention time can be calculated by assuming that the peak of the reference compound exists at the interval between the retention times and retention indices of the two reference compounds that are temporally closest to the target compound.
- the method creation/editing unit 52 receives the user's instruction via the input unit 7, and stores the file of the analysis target compound measurement method including the compound table with the corrected retention time in the method storage unit 53 (step S9).
- the measurement control unit 51 controls the headspace sampler 1 and the measurement unit 2 according to the analysis target compound measurement method stored in the method storage unit 53, thereby performing measurement (GC/MS analysis) on the target sample (step S10).
- the temperature of the vial oven in the headspace sampler 1 is set within the range of 10-99°C.
- Measurement data obtained by GC/MS analysis of the target sample is stored in the data storage unit 56 .
- the identification processing unit 55 creates a chromatogram based on the analysis target compound measurement data stored in the data storage unit 56, and detects peaks in the chromatogram. Then, using the analysis target compound table with the corrected retention time, the analysis target compound is identified by identifying the chromatographic peak derived from each analysis target compound (step S11).
- the retention time corrected using the measurement results of the reference compound obtained by the HS method is used in the same way as when measuring the target sample, so each compound can be identified with higher accuracy compared to the case of using the retention time calculated based on the measurement results of the reference compound obtained by the sample introduction method using the sample vaporization chamber. As a result, it is possible to avoid situations in which the compound cannot be identified even though it has been detected, or an identification error occurs.
- One aspect of the GC analysis method according to the present invention is a GC analysis method in which components contained in a sample gas are separated by a column and detected, a sampling step of collecting a sample gas from a solution containing an n-alkane, which is a retention index reference compound, using a headspace method; a reference compound analysis step of introducing the sample gas collected in the sample collection step into a column and performing GC analysis; a retention time calculation step of obtaining the measured retention time for n-alkane based on the chromatogram obtained by GC analysis, and estimating the retention time of the compound to be analyzed from the measured retention time and the known retention index of the compound to be analyzed; have
- One aspect of the GC analysis program according to the present invention is a GC analysis program for controlling a system including a headspace sampler and a measurement unit that separates and detects components contained in a sample gas with a GC column, wherein a computer,
- a reference compound measurement condition setting step of displaying a screen for setting measurement conditions including vial oven temperature for measuring n-alkane, which is a reference compound of a retention index, in response to an operation by a user, and accepting settings by the user on the screen; a reference compound measurement step of controlling the headspace sampler and the measurement unit according to the measurement conditions set in the reference compound measurement condition setting step, and performing GC analysis on the n-alkane in the prepared vial; a retention time correction step of obtaining the measured retention time for n-alkane based on the chromatogram obtained by GC analysis, estimating the retention time of the compound to be analyzed from the measured retention time and the known retention index of the compound to be analyzed, and correcting the retention time in the compound
- n-alkanes are also analyzed by GC using the headspace method in the same way as the target compound, so the retention time of the target compound is obtained or corrected with high accuracy.
- the retention time of the target compound is obtained or corrected with high accuracy.
- the estimated retention time of the compound to be analyzed may be used to correct the retention time in the compound table in which information on the compound to be analyzed is described.
- the retention time of each analyte compound set based on actual measurement before changing the separation conditions such as before column cutting can be corrected to an accurate retention time that reflects the latest device state after column cutting.
- the GC analysis method described in Section 1 or 2 is an analysis target component analysis step of performing gas chromatographic analysis on a sample gas collected from a target sample using the headspace method;
- a peak identification step of identifying peaks detected in the chromatogram obtained by the analysis target component analysis step using the retention time estimated or corrected in the retention time calculation step; can further have
- the GC analysis program according to Section 9 is stored in the computer, an analysis target component analysis step of performing a gas chromatographic analysis on a sample gas sampled from a target sample using a headspace method by controlling the headspace sampler and the measurement unit; A peak identification step of identifying peaks detected in the chromatogram obtained by the analyte component analysis step using the retention time corrected in the retention time correction step; may be further executed.
- a container containing a solution of n-alkane dissolved in water may be heated to a temperature within the range of 10 to 99°C.
- the n-alkane By dissolving the n-alkane in water, the n-alkane can be easily volatilized even at relatively low temperatures.
- samples are often collected using the headspace method at a temperature within the range of about 10 to 99° C. (in many cases, within the range of about 40 to 60°C).
- the GC analysis method described in Section 4 it is possible to collect samples using the headspace method for n-alkanes at the same temperature as the target sample. As a result, the GC analysis of the target sample and the GC analysis of the n-alkane can be performed in no time, and the target compound in the target sample can be efficiently identified and quantified.
- a container containing a trace amount of n-alkane in the sample collection step, may be heated to a temperature within the range of 150 to 220°C.
- n-alkanes of C20 or higher contained in general n-alkane mixed solutions can be detected with sufficient sensitivity, and the identification results of such n-alkanes can be used to accurately estimate the retention time of analyte compounds whose retention times are close to those of them.
- the GC analysis method according to Section 5 or 6 is an analyte component analysis step of performing a gas chromatographic analysis on a sample gas sampled using the headspace method at a temperature within the range of 10 to 99° C. for the target sample;
- a peak identification step of identifying peaks detected in the chromatogram obtained by the analysis target component analysis step using the retention time estimated or corrected in the retention time calculation step; can further have
- the GC analysis for the target sample and the GC analysis for n-alkane are performed by the headspace method at the same temperature.
- the GC analysis can be performed substantially continuously without leaving time, and the identification and quantification of the analyte compound in the target sample can be efficiently performed.
- the heating temperature in the headspace sampler is within the range of 10 to 99°C, the heating temperature is about the same as the heating temperature in the headspace sampler for the target sample, so the work can be performed efficiently.
- n-alkanes with a large number of carbon atoms (generally C17 or more) in the n-alkane mixed solution are not detected with sufficient sensitivity, so the accuracy of estimating the retention time of an analyte compound with a long retention time is relatively low.
- the heating temperature in the headspace sampler is within the range of 150 to 220° C.
- even n-alkanes with a large number of carbon atoms in the n-alkane mixed solution can be detected with sufficient sensitivity. Therefore, the retention time of an analyte compound with a long retention time can be accurately estimated.
- the heating temperature in the headspace sampler is greatly different between the n-alkane and the target sample, it is difficult to continuously perform GC analysis on both over time, which is disadvantageous in terms of analysis efficiency.
- the user can select the first sampling mode when emphasizing analysis efficiency and the second sampling mode when emphasizing identification accuracy rather than analysis efficiency, according to the purpose of analysis, the type of target sample, etc. As a result, it is possible to easily perform analysis that satisfies the user's needs.
- the compound to be analyzed can be a compound related to odor.
- the compound to be analyzed can be a compound related to odor.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
保持指標の基準化合物であるn-アルカンを含む溶液からヘッドスペース法を用いて試料ガスを採取する試料採取ステップと、
前記試料採取ステップにおいて採取された試料ガスをカラムに導入してGC分析を行う基準化合物分析ステップと、
前記基準化合物分析ステップにおけるGC分析により得られたクロマトグラムに基いてn-アルカンに対する実測の保持時間を求め、該実測の保持時間と分析対象化合物の既知である保持指標とから該分析対象化合物の保持時間を推算する保持時間算出ステップと、
を有する。
ユーザーによる操作を受けて、保持指標の基準化合物であるn-アルカンを測定するための、バイアルオーブン温度を含む測定条件を設定する画面を表示し、該画面上でのユーザーによる設定を受け付ける基準化合物測定条件設定ステップと、
前記基準化合物測定条件設定ステップにおいて設定された測定条件に従って前記ヘッドスペースサンプラー及び前記測定部を制御し、用意されたバイアル中のn-アルカンに対するGC分析を実行する基準化合物測定ステップと、
前記基準化合物測定ステップにおけるGC分析により得られたクロマトグラムに基いてn-アルカンに対する実測の保持時間を求め、該実測の保持時間と分析対象化合物の既知である保持指標とから該分析対象化合物の保持時間を推算し、分析対象化合物に関する情報が記載された化合物テーブル中の保持時間を修正する保持時間修正ステップと、
を実行させるものである。
図1は、本実施形態のGC分析方法を実施するためのGC-MSシステムの一例を示す概略ブロック構成図である。
ヘッドスペースサンプラー1を用いたHS法により測定を実施する際に、ユーザーは基準化合物測定メソッドにおいて二つの試料導入法のいずれかを選択する。その二つの試料導入法とは標準法と高精度法とであるが、その相違については後述する。
n-アルカンの標準試薬は、炭素数が数個程度から30個以上までの幅広い種類の直鎖アルカンを含む。一例として、ジーエルサイエンス株式会社が販売している「Qualitative Retention Time Index Standard」には、C7~C33の炭素数が異なるn-アルカンが含まれる。直鎖アルカンの沸点は炭素数が多いほど高く、標準試薬に含まれる全ての直鎖アルカンを揮発させるには200℃以上の温度が必要である。
具体的には、クロマトグラム上でn番目の直鎖アルカンのピークとn+1番目の直鎖アルカンのピークとの間に、分析対象化合物のピークが存在する場合には、次の(1)式を用いて分析対象化合物の保持時間を算出することができる。
RTT=RTvn+(RTvn+1-RTvn)×{(RIT-RIvn)/(RIvn+1-RIvn)} …(1)
RTT:分析対象化合物の保持時間
RIT:分析対象化合物の保持指標
RTvn:n番目の基準化合物の保持時間(実測値)
RIvn:n番目の基準化合物の保持指標
RTvn+1:n+1番目の基準化合物の保持時間(実測値)
RIvn+1:n+1番目の基準化合物の保持指標
上述した例示的な実施形態が以下の態様の具体例であることは、当業者には明らかである。
保持指標の基準化合物であるn-アルカンを含む溶液からヘッドスペース法を用いて試料ガスを採取する試料採取ステップと、
前記試料採取ステップにおいて採取された試料ガスをカラムに導入してGC分析を行う基準化合物分析ステップと、
GC分析により得られたクロマトグラムに基いてn-アルカンに対する実測の保持時間を求め、該実測の保持時間と分析対象化合物の既知である保持指標とから該分析対象化合物の保持時間を推算する保持時間算出ステップと、
を有する。
ユーザーによる操作を受けて、保持指標の基準化合物であるn-アルカンを測定するための、バイアルオーブン温度を含む測定条件を設定する画面を表示し、該画面上でのユーザーによる設定を受け付ける基準化合物測定条件設定ステップと、
前記基準化合物測定条件設定ステップにおいて設定された測定条件に従って前記ヘッドスペースサンプラー及び前記測定部を制御し、用意されたバイアル中のn-アルカンに対するGC分析を実行する基準化合物測定ステップと、
GC分析により得られたクロマトグラムに基いてn-アルカンに対する実測の保持時間を求め、該実測の保持時間と分析対象化合物の既知である保持指標とから該分析対象化合物の保持時間を推算し、分析対象化合物に関する情報が記載された化合物テーブル中の保持時間を修正する保持時間修正ステップと、
を実行させるものである。
目的試料からヘッドスペース法を用いて採取された試料ガスに対しガスクロマトグラフ分析を行う分析対象成分分析ステップと、
前記保持時間算出ステップにおいて推算された又は修正された保持時間を利用して、前記分析対象成分分析ステップにより得られたクロマトグラムにおいて検出されるピークを同定するピーク同定ステップと、
をさらに有するものとすることができる。
前記ヘッドスペースサンプラー及び前記測定部を制御することにより、目的試料からヘッドスペース法を用いて採取された試料ガスに対しガスクロマトグラフ分析を行う分析対象成分分析ステップと、
前記保持時間修正ステップにおいて修正された保持時間を利用して、前記分析対象成分分析ステップにより得られたクロマトグラムにおいて検出されるピークを同定するピーク同定ステップと、
をさらに実行させるものとすることができる。
目的試料に対して10~99℃の範囲内の温度でのヘッドスペース法を用いて採取された試料ガスに対しガスクロマトグラフ分析を行う分析対象成分分析ステップと、
前記保持時間算出ステップにおいて推算された又は修正された保持時間を利用して、前記分析対象成分分析ステップにより得られたクロマトグラムにおいて検出されるピークを同定するピーク同定ステップと、
をさらに有するものとすることができる。
2…測定部
3…ガスクロマトグラフ部(GC部)
4…質量分析部(MS部)
5…制御・処理部
51…測定制御部
52…メソッド作成・編集部
53…メソッド記憶部
54…保持時間修正処理部
55…同定処理部
56…データ記憶部
6…主制御部
7…入力部
8…表示部
Claims (12)
- 試料ガスに含まれる成分をカラムで分離して検出するガスクロマトグラフ分析方法であって、
保持指標の基準化合物であるn-アルカンを含む溶液からヘッドスペース法を用いて試料ガスを採取する試料採取ステップと、
前記試料採取ステップにおいて採取された試料ガスをカラムに導入してガスクロマトグラフ分析を行う基準化合物分析ステップと、
ガスクロマトグラフ分析により得られたクロマトグラムに基いてn-アルカンに対する実測の保持時間を求め、該実測の保持時間と分析対象化合物の既知である保持指標とから該分析対象化合物の保持時間を推算する保持時間算出ステップと、
を有するガスクロマトグラフ分析方法。 - 前記保持時間算出ステップでは、推算された分析対象化合物の保持時間を利用して、分析対象化合物に関する情報が記載されている化合物テーブル中の保持時間を修正する、請求項1に記載のガスクロマトグラフ分析方法。
- 目的試料からヘッドスペース法を用いて採取された試料ガスに対しガスクロマトグラフ分析を行う分析対象成分分析ステップと、
前記保持時間算出ステップにおいて推算された又は修正された保持時間を利用して、前記分析対象成分分析ステップにより得られたクロマトグラムにおいて検出されるピークを同定するピーク同定ステップと、
をさらに有する、請求項1に記載のガスクロマトグラフ分析方法。 - 前記試料採取ステップでは、n-アルカンを水に溶解させた溶液を収容した容器を、10~99℃の範囲内の温度に加熱する、請求項1に記載のガスクロマトグラフ分析方法。
- 前記試料採取ステップでは、微量のn-アルカンを収容した容器を、150~220℃の範囲内の温度に加熱する、請求項1に記載のガスクロマトグラフ分析方法。
- 前記試料採取ステップでは、微量のn-アルカンを収容した容器を、190~210℃の範囲内の温度に加熱する、請求項5に記載のガスクロマトグラフ分析方法。
- 目的試料に対して10~99℃の範囲内の温度でのヘッドスペース法を用いて採取された試料ガスに対しガスクロマトグラフ分析を行う分析対象成分分析ステップと、
前記保持時間算出ステップにおいて推算された又は修正された保持時間を利用して、前記分析対象成分分析ステップにより得られたクロマトグラムにおいて検出されるピークを同定するピーク同定ステップと、
をさらに有する、請求項5に記載のガスクロマトグラフ分析方法。 - 分析対象化合物は匂いに関連する化合物である、請求項1に記載のガスクロマトグラフ分析方法。
- ヘッドスペースサンプラーと、試料ガスに含まれる成分をガスクロマトグラフのカラムで分離して検出する測定部と、を含むシステムを制御するためのガスクロマトグラフ分析用プログラムであって、コンピューターに、
ユーザーによる操作を受けて、保持指標の基準化合物であるn-アルカンを測定するための、バイアルオーブン温度を含む測定条件を設定する画面を表示し、該画面上でのユーザーによる設定を受け付ける基準化合物測定条件設定ステップと、
前記基準化合物測定条件設定ステップにおいて設定された測定条件に従って前記ヘッドスペースサンプラー及び前記測定部を制御し、用意されたバイアル中のn-アルカンに対するガスクロマトグラフ分析を実行する基準化合物測定ステップと、
ガスクロマトグラフ分析により得られたクロマトグラムに基いてn-アルカンに対する実測の保持時間を求め、該実測の保持時間と分析対象化合物の既知である保持指標とから該分析対象化合物の保持時間を推算し、分析対象化合物に関する情報が記載された化合物テーブル中の保持時間を修正する保持時間修正ステップと、
を実行させるガスクロマトグラフ分析用プログラム。 - コンピューターに、
前記ヘッドスペースサンプラー及び前記測定部を制御することにより、目的試料からヘッドスペース法を用いて採取された試料ガスに対しガスクロマトグラフ分析を行う分析対象成分分析ステップと、
前記保持時間修正ステップにおいて修正された保持時間を利用して、前記分析対象成分分析ステップにより得られたクロマトグラムにおいて検出されるピークを同定するピーク同定ステップと、
をさらに実行させる、請求項9に記載のガスクロマトグラフ分析用プログラム。 - 前記基準化合物測定条件設定ステップにおいて、前記ヘッドスペースサンプラーにおける加熱温度が10~99℃の範囲内の温度である第1の試料採取モードと、加熱温度が150~220℃の範囲内の温度である第2の試料採取モードとを、選択可能である、請求項9に記載のガスクロマトグラフ分析用プログラム。
- 分析対象化合物は匂いに関連する化合物である、請求項9に記載のガスクロマトグラフ分析用プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023575067A JPWO2023139863A1 (ja) | 2022-01-18 | 2022-10-20 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-005663 | 2022-01-18 | ||
JP2022005663 | 2022-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023139863A1 true WO2023139863A1 (ja) | 2023-07-27 |
Family
ID=87348043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/039122 WO2023139863A1 (ja) | 2022-01-18 | 2022-10-20 | ガスクロマトグラフ分析方法及びガスクロマトグラフ分析用プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023139863A1 (ja) |
WO (1) | WO2023139863A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5611846A (en) * | 1994-01-14 | 1997-03-18 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Portable gas chromatograph |
JP2010066185A (ja) * | 2008-09-12 | 2010-03-25 | Shimadzu Corp | ガスクロマトグラフ装置 |
JP2010071651A (ja) * | 2008-09-16 | 2010-04-02 | Shimadzu Corp | クロマトグラフ質量分析装置 |
JP2014219200A (ja) * | 2013-04-30 | 2014-11-20 | ジーエルサイエンス株式会社 | ヘッドスペース試料導入装置及び方法 |
JP2018529817A (ja) * | 2015-09-24 | 2018-10-11 | ジボダン エス エー | 香料組成物 |
JP2021177130A (ja) * | 2020-05-07 | 2021-11-11 | 群馬県 | クロマトグラムの解析方法 |
-
2022
- 2022-10-20 JP JP2023575067A patent/JPWO2023139863A1/ja active Pending
- 2022-10-20 WO PCT/JP2022/039122 patent/WO2023139863A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5611846A (en) * | 1994-01-14 | 1997-03-18 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Portable gas chromatograph |
JP2010066185A (ja) * | 2008-09-12 | 2010-03-25 | Shimadzu Corp | ガスクロマトグラフ装置 |
JP2010071651A (ja) * | 2008-09-16 | 2010-04-02 | Shimadzu Corp | クロマトグラフ質量分析装置 |
JP2014219200A (ja) * | 2013-04-30 | 2014-11-20 | ジーエルサイエンス株式会社 | ヘッドスペース試料導入装置及び方法 |
JP2018529817A (ja) * | 2015-09-24 | 2018-10-11 | ジボダン エス エー | 香料組成物 |
JP2021177130A (ja) * | 2020-05-07 | 2021-11-11 | 群馬県 | クロマトグラムの解析方法 |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: "Automatic correction of retention time, input of retention index", SHIMADZU - SERVICE & SUPPORT - ANALYSIS BASICS - GCMSSOLUTION OPERATION Q&A - DURING ANALYSIS - AUTOMATIC CORRECTION OF RETENTION TIME, INPUT OF RETENTION INDEX, SHIMADZU, JP, JP, pages 1 - 6, XP009548002, Retrieved from the Internet <URL:https://www.an.shimadzu.co.jp/gcms/support/faq/gcmssol/faq12.htm> [retrieved on 20221220] * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023139863A1 (ja) | 2023-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tiscione et al. | Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection | |
Isaacman-VanWertz et al. | Automated single-ion peak fitting as an efficient approach for analyzing complex chromatographic data | |
JP6036304B2 (ja) | クロマトグラフ質量分析用データ処理装置 | |
JP5262482B2 (ja) | ガスクロマトグラフ装置 | |
EP3051286A1 (en) | Multi-component quantitative analysis method using chromatography | |
JP6871376B2 (ja) | クロマトグラフィー質量分析方法及びクロマトグラフ質量分析装置 | |
Wang et al. | Stability control for breath analysis using GC-MS | |
JP7173293B2 (ja) | クロマトグラフ質量分析装置 | |
Risticevic et al. | Protocol for the development of automated high-throughput SPME–GC methods for the analysis of volatile and semivolatile constituents in wine samples | |
JP5757264B2 (ja) | クロマトグラフ質量分析データ処理装置 | |
Ingels et al. | Determination of gamma-hydroxybutyric acid in biofluids using a one-step procedure with “in-vial” derivatization and headspace-trap gas chromatography–mass spectrometry | |
JPWO2015189945A1 (ja) | 分析装置用制御装置 | |
CN111398487A (zh) | 一种保留指数在气相色谱-串联质谱分析烟草香味成分中的应用方法 | |
CN108027345B (zh) | 分析数据解析装置以及分析数据解析用程序 | |
JP2007285719A (ja) | 質量分析データ解析方法 | |
KR20110139968A (ko) | 시료분석장치 및 시료분석방법 | |
WO2023139863A1 (ja) | ガスクロマトグラフ分析方法及びガスクロマトグラフ分析用プログラム | |
US11841351B2 (en) | Sample analysis apparatus | |
JP6226823B2 (ja) | クロマトグラフ質量分析装置及びその制御方法 | |
JP4438674B2 (ja) | ガスクロマトグラフ装置及び該装置のデータ処理方法 | |
JP7088306B2 (ja) | クロマトグラフ装置 | |
Remane et al. | Application of a UHPLC MS/MS–Based Multianalyte Approach for Screening and Validated Quantification of Drugs in Human Blood Plasma Often Requested in the Context of Brain Death Diagnosis | |
Lappin et al. | High-performance liquid chromatography accelerator mass spectrometry: correcting for losses during analysis by internal standardization | |
JP4507962B2 (ja) | ガスクロマトグラフ装置 | |
Marriott et al. | The modulation ratio in comprehensive two-dimensional gas chromatography: a review of fundamental and practical considerations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22922015 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023575067 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18727568 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22922015 Country of ref document: EP Kind code of ref document: A1 |