WO2023139721A1 - 鋼管継手構造及び鋼管加工方法 - Google Patents

鋼管継手構造及び鋼管加工方法 Download PDF

Info

Publication number
WO2023139721A1
WO2023139721A1 PCT/JP2022/001960 JP2022001960W WO2023139721A1 WO 2023139721 A1 WO2023139721 A1 WO 2023139721A1 JP 2022001960 W JP2022001960 W JP 2022001960W WO 2023139721 A1 WO2023139721 A1 WO 2023139721A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
steel pipe
threaded portion
pin
box
Prior art date
Application number
PCT/JP2022/001960
Other languages
English (en)
French (fr)
Inventor
照明 鈴木
正嗣 西
信秀 佐藤
憲三 占部
智紀 井上
Original Assignee
株式会社メタルワン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メタルワン filed Critical 株式会社メタルワン
Priority to JP2023574972A priority Critical patent/JPWO2023139721A1/ja
Priority to PCT/JP2022/001960 priority patent/WO2023139721A1/ja
Publication of WO2023139721A1 publication Critical patent/WO2023139721A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings

Definitions

  • the present invention relates to a steel pipe joint structure, and more particularly to the structure and processing method of a threaded portion formed in a steel pipe.
  • a steel pipe joint structure that uses male and female tapered threads is widely used as a technology for connecting oil country tubular goods used for exploration and production of oil fields.
  • the male threaded portion and the female threaded portion are closely fitted.
  • a structure in which a pair of steel pipes are connected via a joint by screwing a female thread and a male thread together will be referred to as a "steel pipe joint structure”.
  • the integral method there are two types of steel pipe joint structures: the integral method and the coupling method.
  • the integral method one end of an oil country tubular good is provided with a male thread as a pin, and the other end is provided with a female thread as a box, and the female thread of the box and the male thread of the pin are screwed together.
  • male threads are provided at both ends of an oil country tubular good to form a pin
  • female threads are provided at both ends of another tube to form a box
  • the female thread at one end of the box and the male thread of the pin of the oil country tubular good at the one end are screwed together
  • the female thread at the other end of the same box and the male thread of the pin of the other oil country tubular good are screwed together.
  • the pin and the threaded portion of the box are called the threaded portion.
  • the non-threaded portion from the tip of the pin to the first thread of the thread, and the non-threaded portion from the innermost end of the box (the portion where the tip of the pin abuts) to the first root of the thread are called the inner shoulder, and the innermost end of the pin and the tip of the box are called the outer shoulder.
  • the tight fit between the male threaded portion and the female threaded portion ensures the sealing performance and pressure resistance of the steel pipe joint structure.
  • the female thread and the male thread are screwed together, and the sealing performance and pressure resistance of the steel pipe joint structure are ensured by the metal seal due to the contact between the seal portions (see, for example, Patent Document 1).
  • the abutment surfaces of the pin and the box come into contact with each other as the pin is screwed in, and are in close contact with each other.
  • the abutment surface plays a role of a stopper that restricts the screwing of the pin, and also plays a role of applying a load to the male threaded portion in a direction opposite to the screwing direction, that is, a so-called screw tightening axial force.
  • This tightening axial force brings the threaded portion or metal seal portion of the steel pipe joint structure into close contact with each other, ensuring the sealing performance and pressure resistance of the steel pipe joint structure.
  • the root of the threaded portion is the portion where the cross-sectional areas of the pin and the box are the smallest, and the ends of the meshing region of the threaded portion, that is, the end of the pin with a larger diameter and the end of the box with a smaller diameter bear the tensile load applied after tightening.
  • the cross-sections of the roots of the ends of the engaging regions of the threads where the cross-sectional area is the smallest are referred to as the critical cross-sections of the pin thread and the critical cross-sections of the box thread, respectively.
  • the joint's dangerous cross-sectional area exists on the side where the threaded portion of the pin has a larger diameter or on the side where the threaded portion of the box has a smaller diameter.
  • the thickness of the steel pipe must be increased, and to increase the critical cross-sectional area of the box, the outer diameter of the steel pipe must be increased. In this case, the contact area between the inner shoulder portion 96 and the outer shoulder portion 95 is reduced, resulting in a decrease in rigidity and a high tightening torque that cannot be endured. Therefore, the steel pipe joint structure had a problem that sufficient tightening torque could not be ensured.
  • An object of the present invention is to provide a steel pipe joint structure and a steel pipe processing method that can obtain a high tightening torque without increasing the outer diameter and without increasing the wall thickness.
  • the steel pipe joint structure according to the present invention is a steel pipe joint structure for connecting a first steel pipe having a male thread formed on at least one end and a second steel pipe having a female thread formed at at least one end, wherein the first steel pipe has a pin front portion, a male thread portion having the male thread formed thereon, and a pin rear portion arranged side by side in order from the tip of the first steel pipe, and the second steel pipe is the box front portion in order from the tip of the second steel pipe.
  • the male threaded portion has a pin front parallel threaded portion that is a parallel and incomplete thread at the end on the pin front side, and a pin full threaded portion that is a tapered and completely threaded at the center of the male threaded portion
  • the female threaded portion has a tapered and incompletely threaded box rear portion at the end on the box rear side, and a tapered and completely threaded at the center of the female threaded portion.
  • the steel pipe joint structure according to the present invention is a steel pipe joint structure for connecting a first steel pipe having a male thread formed on at least one end and a second steel pipe having a female thread formed at at least one end, wherein the first steel pipe has a pin front portion, a male thread portion having the male thread formed thereon, and a pin rear portion arranged side by side in order from the tip of the first steel pipe, and the second steel pipe is arranged in order from the tip of the second steel pipe to form a box.
  • a front portion, a female thread portion in which the female thread is formed, and a box rear portion are arranged side by side, and the male thread portion has a pin rear incomplete thread portion that is a tapered and incomplete thread at the end on the pin rear side, and a pin complete thread portion that is a tapered and complete thread at the center of the male thread portion. and a box full threaded portion that is a full thread, the pin rear incomplete threaded portion and the box front parallel threaded portion are screwed together, and in a cross section including the pipe axis, the root of the box front parallel threaded portion is wider than the root of the box full threaded portion.
  • a steel pipe processing method is a steel pipe processing method for processing a male threaded portion or a female threaded portion in an end portion of a steel pipe, wherein the male threaded portion or the female threaded portion is formed with a parallel thread portion and a tapered thread portion in order from the tip of the steel pipe.
  • a second thread thinning pass for processing the stabbing flank of the parallel thread portion at the second feed rate and processing the stubbing flank of the tapered thread portion at the first feed rate; and a third thread thinning pass for processing the load flank of the parallel thread portion at a third feed rate and processing the tapered thread portion at the first feed rate, wherein the first thread thinning pass and the second thread thinning pass start processing from a position closer to the steel pipe than the initial position. In the third ridge thinning process pass, the process is started from a position farther from the steel pipe than the initial position.
  • a steel pipe processing method is a steel pipe processing method for processing a male threaded portion or a female threaded portion in an end portion of a steel pipe, wherein the male threaded portion or the female threaded portion is formed with a parallel thread portion and a tapered thread portion in order from the tip of the steel pipe, and a plurality of normal machining passes for continuously processing the parallel thread portion and the tapered thread portion by feeding the thread cutting insert at a first feed rate from an initial position, and part of the parallel thread portion and the tapered thread portion at a second feed rate.
  • first thread thinning pass for processing a stabbing flank
  • second thread thinning pass for processing the partial stabbing flank of the parallel thread portion and the tapered thread portion at the second feed rate and processing the stubbing flank of the portion other than the portion of the tapered thread portion at the first feed speed
  • a 3-ridge thinning pass wherein the first ridge-shrinking pass and the second ridge-shrinking pass start from a position closer to the steel pipe than the initial position, and the third ridge-shrinking pass starts from a position farther from the steel pipe than the initial position.
  • the incomplete thread (parallel threaded portion at the front of the pin or the parallel threaded portion at the front of the box) at the tip of the pin or box of the steel pipe joint is formed with a small width, so that it can be screwed without interference with the thread of the incomplete threaded portion at the rear of the mating side. Therefore, the steel pipe joint structure can increase the area of the dangerous cross section of the threaded portion of the first steel pipe, which is the pin, and secure the cross-sectional area of the second steel pipe in the vicinity of the front shoulder surface of the box without increasing the outer diameter of the second steel pipe, which is the box.
  • the pin rear incomplete threaded portion has a small width of the threaded portion of the box side parallel threaded portion on the mating side and is formed so that the threaded portions do not interfere with each other, so that it can be screwed with the box side parallel threaded portion without reducing the root diameter. Therefore, the steel pipe joint structure can secure a cross-sectional area in the vicinity of the pin rear shoulder surface provided in the first steel pipe without increasing the wall thickness of the first steel pipe. That is, there is no need to reduce the critical cross-sectional area of the pin. Therefore, the steel pipe joint structure has improved strength and rigidity against tightening axial force, it is possible to increase the tightening torque, and the tightness and pressure resistance are improved.
  • FIG. 1 is an explanatory diagram of a steel pipe joint structure 100 according to Embodiment 1.
  • FIG. 4 is a single enlarged view of pin 11 of first steel pipe 10 according to Embodiment 1.
  • FIG. 4 is an enlarged view of a shoulder portion of the steel pipe joint structure 100 according to Embodiment 1.
  • FIG. 11 is an enlarged view of a shoulder portion of a steel pipe joint structure 1100 according to a comparative example; 4 is an enlarged view of a single box 31 of the second steel pipe 30 according to Embodiment 1.
  • FIG. FIG. 12 is an explanatory diagram of a steel pipe joint structure 1200 according to a comparative example;
  • FIG. 4 is a cross-sectional view showing an example of full thread engagement;
  • FIG. 6 is a cross-sectional view showing a state of full thread engagement at the A portion of FIGS. 2 and 5 ;
  • FIG. 6 is a cross-sectional view showing an example of a state in which incomplete threads are engaged with each other in a portion B of FIGS. 2 and 5 ;
  • FIG. 10 is an explanatory diagram of a meshing state near a connecting portion between a completely threaded portion and an incompletely threaded portion of a steel pipe joint structure 1000 according to a comparative example;
  • FIG. 7 is an explanatory diagram of machining of a screw thread around the connection portion 21 of the pin 11 according to the first embodiment and the comparative example;
  • FIG. 5 is an explanatory diagram of an example of machining using the threaded insert 90 according to the first embodiment and a comparative example
  • FIG. 11 is an explanatory diagram of the thread size relationship between the pin front parallel thread portion 14 and the box rear incomplete thread portion 37 of the steel pipe joint structure 1000 according to the comparative example of FIG. 10
  • 4A and 4B are explanatory diagrams of an example of processing of the male threaded portion 13 according to the first embodiment
  • FIG. 4 is an explanatory diagram of rough material machining performed before screw thread machining according to Embodiment 1
  • FIG. 6 is a cross-sectional view showing an example of a state in which incomplete threads are engaged with each other in a portion B of FIGS. 2 and 5 ;
  • FIG. 1 is an explanatory diagram of a steel pipe joint structure 100 according to Embodiment 1.
  • FIG. The upper half of FIG. 1 is a cross-sectional view along the central axis of the steel pipe joint structure 100, and the lower half of FIG. 1 is a side view. Note that each part in FIG. 1 is schematically shown, and the present invention is not limited to the illustrated form.
  • the steel pipe joint structure 100 connects the first steel pipe 10 and the second steel pipe 30 by screwing threads formed on the pin 11 and the box 31, respectively.
  • the first steel pipe 10 is a steel pipe provided with a pin 11 at at least one end thereof.
  • the second steel pipe 30 is a steel pipe provided with a box 31 at at least one end.
  • each of the first steel pipe 10 and the second steel pipe 30 is a steel pipe provided with a pin 11 at one end and a box 31 at the other end, and is integrally connected. That is, as shown in FIG. 1, the pin 11 and the box 31 in Embodiment 1 are one end and the other end of two steel pipes having the same structure.
  • a tubular portion that connects the pin 11 and the box 31 at both ends of one steel pipe is called a tubular portion 50 .
  • the steel pipe joint structure 100 is not limited to connecting steel pipes by an integral method, and can also be applied to connecting steel pipes by a coupling method.
  • the first steel pipe 10 is formed with pins 11 at both ends
  • the second steel pipe 30 is formed with boxes 31 at both ends.
  • the pin 11 of the first steel pipe 10 is formed thicker from the pin front shoulder surface 23, which is one end face, toward the pipe portion 50 side.
  • the pin 11 has an externally threaded portion 13 (see FIG. 2) having, at least in part, a tapered surface whose outer diameter increases from the pin front shoulder surface 23 toward the tubular portion 50 .
  • a male thread is formed on the outer peripheral surface of the male threaded portion 13 .
  • the box 31 of the second steel pipe 30 is formed thicker from the box front shoulder surface 42, which is one end face, toward the pipe portion 50 side.
  • the box 31 has, at least in part, a female threaded portion 33 (see FIG. 5) having a tapered surface whose inner diameter decreases from the box front shoulder surface 42 toward the tubular portion 50 .
  • a female thread is formed on the inner peripheral surface of the female threaded portion 33 .
  • the pin 11 of the first steel pipe 10 and the box 31 of the second steel pipe 30 each have a tapered thread and are screwed together.
  • the box front shoulder surface 42 which is the tip surface of the second steel pipe 30 , abuts the pin rear shoulder surface 22 .
  • the pin rear shoulder surface 22 and the box front shoulder surface 42 are located on the outer peripheral side of the pipe portion 50 side of the pin 11 formed in the first steel pipe 10, and are surfaces that intersect the pipe axis C of the steel pipe, i.
  • the pin rear shoulder surface 22 is a surface in which the outer diameter side is inclined toward the second steel pipe 30 side rather than the inner diameter side.
  • the box front shoulder surface 42 is also a surface in which the outer diameter side is inclined toward the tube portion 50 side of the second steel pipe 30 rather than the inner diameter side corresponding to the pin rear shoulder surface 22 .
  • the box front shoulder surface 42 and the pin rear shoulder surface 22 are inclined so that when an axial load is applied to the box front shoulder surface 42, the box front 32 is displaced inward, thereby improving buckling performance.
  • the pin front shoulder surface 23 and the box rear shoulder surface 43 also abut to function as metal seals.
  • the pin front shoulder surface 23 which is the tip surface of the first steel pipe 10 , is in contact with the box rear shoulder surface 43 .
  • the pin front shoulder surface 23 is the tip surface of the first steel pipe 10 and is a surface that intersects the pipe axis C of the steel pipe, that is, the central axis of the steel pipe joint structure 100 at an angle close to or perpendicular to it.
  • the pin front shoulder surface 23 and the box rear shoulder surface 43 are perpendicular to the tube axis C.
  • the pin front shoulder surface 23 and the box rear shoulder surface 43 may be surfaces in which the outer diameter side is inclined toward the second steel pipe 30 rather than the inner diameter side.
  • FIG. 2 is a single enlarged view of the pin 11 of the first steel pipe 10 according to the first embodiment.
  • the pin 11 of the first steel pipe 10 has a pin front portion 12, a male thread portion 13, and a pin rear portion 18 arranged in the direction of the tube axis C in this order from the tip.
  • the pin front portion 12 is located at the most distal end of the pin 11 and includes a pin front shoulder surface 23 which is the tip surface of the first steel pipe 10 and a non-male threaded portion 24 having a cylindrical outer periphery and no male thread.
  • the pin front portion 12 is the portion indicated by section P6 in FIG.
  • the non-male threaded portion 24 may not be provided, in which case the pin front portion 12 is formed with a male thread.
  • the male threaded portion 13 includes a pin front parallel thread portion 14 (pin side run-in portion), a pin front incomplete taper thread portion 15, a pin complete thread portion 16 and a pin rear incomplete thread portion 17 (pin side run-out portion) in order from the tip side.
  • the pin front parallel threaded portion 14 is located at the end on the pin front portion 12 side and is a portion indicated by section P1 in FIG.
  • the root diameter of the male thread of the pin front portion parallel thread portion 14 is a value equal to or larger than the outer diameter dimension of the non-male thread portion 24 of the pin front portion 12 . Further, since the outer periphery of the pin front parallel thread portion 14 is tapered, the male thread of the pin front parallel thread portion 14 is an incomplete thread.
  • the pin front incompletely tapered threaded portion 15 is the portion indicated by section P2 in FIG.
  • the portion indicated by the section P2 continues from the pin front parallel screw portion 14 and has a tapered surface on the outer periphery.
  • the effective diameter of the male thread formed in the portion indicated by section P2 is a tapered thread that increases in diameter from the distal end side toward the tube portion 50 side.
  • the outer circumference (the crest of the thread) of the pin front incompletely tapered thread portion 15 in the section P2 is smaller than the outer circumference (the crest of the thread) of the pin completely threaded section 16 shown in the section P3, and the formed male thread is an incomplete thread.
  • step 15a between the outer circumference (the crest of the thread crest) of the pin front incompletely tapered threaded portion 15 in the section P2 and the outer circumference (the crest of the threaded crest) of the pin complete threaded section 16 shown in the section P3, forming a discontinuous surface.
  • the outer periphery (thread crest) of the pin front incompletely tapered thread portion 15 in section P2 is smaller than the outer periphery (thread crest) of the pin complete thread section 16 shown in section P3.
  • the root of the male thread also expands in diameter from the tip side toward the pipe portion 50 side, so the thickness of the steel pipe gradually increases toward the pipe portion 50 side.
  • a stepped portion 15 a is formed at the end of the pin front incompletely tapered threaded portion 15 on the side of the tube portion 50 , and is connected to the pin fully threaded portion 16 .
  • the pin front parallel thread portion 14 and the pin front incomplete taper thread portion 15, which are incomplete thread portions, may be collectively referred to as a pin front incomplete thread portion.
  • the section P2 of the male threaded portion 13 may be omitted.
  • the male threaded portion 13 may have a form in which the pin front parallel threaded portion 14 and the pin complete threaded portion 16 are directly connected.
  • the pin fully threaded portion 16 is the portion indicated by section P3 in FIG.
  • the fully threaded portion 16 of the pin has a tapered surface at the top of the thread so that the male thread is fully threaded.
  • the tapered surface and the effective diameter E1 of the male thread are parallel, and the male thread is a complete thread.
  • the tapered surface of the outer circumference (the crest of the screw thread) of the fully threaded portion 16 of the pin switches to a cylindrical surface at a point 25 at which the outer diameter dimension is approximately the same as that of the large diameter portion 19, which is the outer circumference of the shoulder.
  • the point 25 may have an outer diameter dimension slightly smaller than that of the large diameter portion 19 which is the shoulder outer peripheral surface, or may have the same outer diameter dimension as the large diameter portion 19 .
  • the male threaded portion 13 has the fully pin threaded portion 16 formed in the section P3 up to the point 25 .
  • the pin rear incomplete threaded portion 17 is the end on the pin rear 18 side and is the portion indicated by section P4 in FIG. Since the section P4 is a cylindrical surface with a constant outer diameter, the formed tapered thread is an incomplete thread whose height gradually decreases.
  • the pin rear incompletely threaded portion 17 is formed up to a point 26 where the root diameter of the male thread coincides with the outer diameter dimension of the outer peripheral surface.
  • the pin rear portion 18 may have a small diameter portion 20 with a small outer diameter on the tip side portion and a large diameter portion 19 with a large outer diameter on the tube portion 50 side portion.
  • the small diameter portion 20 has the same outer diameter as the pin rear incompletely threaded portion 17, and is a portion to be a cut portion of the tapered thread.
  • a step between the small diameter portion 20 and the large diameter portion 19 may be omitted. That is, the small diameter portion 20 may be directly connected to the pin rear shoulder surface 22 .
  • Sections P1 to P4 shown in FIG. 2 are collectively referred to as the male screw portion 13. That is, the section P5 is the male screw portion 13 . Sections P2 to P4 are referred to as a taper screw portion 28. As shown in FIG.
  • the male threaded portion 13 is formed by combining the pin front parallel threaded portion 14 and the tapered threaded portion 28 . With this configuration, the pin 11 can sufficiently secure the length of the male threaded portion 13, the thickness of the pin front portion 12, and the thickness of the portion where the pin rear incomplete thread portion 17 is provided, while securing a large angle between the tapered threaded portion 28 and the tube axis C.
  • the pin 11 can ensure a sufficient wall thickness at the tip and a sufficient wall thickness at the rear portion, the strength and rigidity against tightening torque are improved, and the tightening torque of the steel pipe joint structure 100 can be increased when the pin front shoulder surface 23 and the box rear shoulder surface 43 are in contact with each other. Thereby, the steel pipe joint structure 100 is improved in sealing performance and pressure resistance.
  • FIG. 3 is an enlarged view of the shoulder portion of the steel pipe joint structure 100 according to Embodiment 1.
  • FIG. FIG. 4 is an enlarged view of a shoulder portion of a steel pipe joint structure 1100 according to a comparative example.
  • the full threaded portion 1017 is formed up to the vicinity of the pin rear shoulder surface 22, so the thickness of the critical section is thin.
  • the thickness of the first steel pipe 1010 that is, the thickness from the bottom of the male thread to the inner peripheral surface, becomes thin at the end of the meshing of the male threaded portion 1013 of the pin 1011 . Therefore, the steel pipe joint structure 1100 according to the comparative example has low strength against tensile load after tightening.
  • the thickness of the first steel pipe 10 at the end of the meshing of the male threaded portion 13, that is, the thickness from the bottom of the male thread to the inner peripheral surface 51 can be increased (W1 shown in FIG. 3 can be made thicker than W2 shown in FIG. 4).
  • W1 shown in FIG. 3 can be made thicker than W2 shown in FIG. 4.
  • the steel pipe joint structure 100 can increase the risky cross-sectional area and increase the strength against tensile load after tightening.
  • the steel pipe joint structure 100 can ensure sufficient abutting surfaces at the inner shoulder portion 96 and the outer shoulder portion 95, the tightening torque can be increased. As a result, the steel pipe joint structure 100 has improved sealing performance and pressure resistance.
  • FIG. 5 is a single enlarged view of the box 31 of the second steel pipe 30 according to the first embodiment.
  • the box 31 of the second steel pipe 30 has a box front portion 32, a female screw portion 33, and a box rear portion 38 arranged in the direction of the pipe axis C in this order from the tip.
  • the box front part 32 is located at the extreme tip of the box 31, and has a box front shoulder surface 42, which is the tip surface of the second steel pipe 30, and a non-female threaded part 44 having a cylindrical inner periphery and no female threads.
  • the box front part 32 is the part indicated by section B6 in FIG.
  • the non-female threaded portion 44 may not be provided, in which case the box front portion 32 is formed with a female thread.
  • the female threaded portion 33 includes a box front parallel threaded portion 34 (box side run-in portion), a box front incomplete taper threaded portion 35, a box complete threaded portion 36, and a box rear incompletely threaded portion 37 (box side run-out portion) in order from the tip side.
  • the box front parallel threaded portion 34 is an end on the box rear 38 side and is a portion indicated by section B1 in FIG.
  • the root diameter of the female thread of the box front parallel threaded portion 34 is equal to or smaller than the inner diameter dimension of the non-female threaded portion 44 of the box front portion 32 .
  • the female thread of the box front parallel threaded portion 34 is an incomplete thread.
  • the box front incomplete taper threaded portion 35 is the portion indicated by section B2 in FIG.
  • the portion indicated by the section B2 continues from the box front parallel screw portion 34 and has a tapered surface on the inner circumference.
  • the effective diameter of the internal thread formed in the portion indicated by section B2 is a tapered thread that decreases in diameter from the distal end side toward the tube portion 50 side.
  • the inner circumference (the crest of the thread) of the box front incomplete tapered thread portion 35 in the section B2 is larger than the inner circumference (the crest of the thread) of the box fully threaded section 36 shown in the section B3, and the formed female thread is an incomplete thread.
  • step 35a between the inner circumference (top of the thread crest) of the box front incomplete taper threaded portion 35 in the section B2 and the inner circumference (the crest of the threaded section) of the complete box threaded section 36 shown in the section B3, forming a discontinuous surface.
  • the inner circumference (top of the screw thread) of the box front incomplete taper threaded portion 35 in section B2 is larger than the inner circumference (top of the threaded thread) of the complete box threaded section 36 shown in section B3.
  • the tip end of the box front part incompletely tapered threaded portion 35 that is, the boundary between the section B2 and the section B1 shown in FIG.
  • the root of the female thread is also reduced in diameter from the tip side toward the pipe portion 50 side, so the thickness of the steel pipe gradually increases toward the pipe portion 50 side.
  • the end of the box front incompletely tapered threaded portion 35 on the pipe portion 50 side is formed with a step and is connected to the box fully threaded portion 36 .
  • the box front parallel threaded portion 34 and the box front incomplete tapered threaded portion 35, which are incompletely threaded portions, are collectively referred to as a shoulder side second incomplete threaded portion.
  • the box fully threaded portion 36 is the portion indicated by section B3 in FIG.
  • the box full thread portion 36 has a tapered surface at the crest of the thread so that the female thread becomes a full thread.
  • the tapered surface and the effective diameter of the internal thread are parallel, and the internal thread is a complete thread.
  • the tapered surface of the inner periphery (top of thread) of the box fully threaded portion 36 switches to a cylindrical surface at a point 45 where the inner diameter dimension is the same as that of the small diameter portion 39 which is the inner peripheral surface of the box rear portion 38 .
  • the point 45 has the same inner diameter dimension as the small diameter portion 39 that is the inner peripheral surface of the box rear portion 38 .
  • the female threaded portion 33 is formed with the box full threaded portion 36 in the section B3 up to the point 45 .
  • the box rear incomplete threaded portion 37 is the end on the box rear 38 side and is the portion indicated by section B4 in FIG. Since the section B4 is a cylindrical surface with a constant inner diameter, the formed tapered thread is an incomplete thread whose height gradually decreases.
  • the box rear part incompletely threaded portion 37 is formed up to a point 46 where the root diameter of the female thread matches the inner diameter dimension of the inner peripheral surface of the box rear part 38 .
  • the box rear portion 38 may have a large diameter portion 40 with a large inner diameter on the tip end side and a small diameter portion 39 with a small inner diameter on the pipe portion 50 side.
  • the large diameter portion 40 is formed to have the same inner diameter as the box rear incompletely threaded portion 37, and serves as a cut portion of the tapered thread.
  • Sections B1 to B4 shown in FIG. 5 are collectively referred to as a female screw portion 33.
  • Sections B2 to B4 are referred to as a taper screw portion 48.
  • the female threaded portion 33 is formed by combining the box front parallel threaded portion 34 and the tapered threaded portion 48 . With this configuration, the box 31 can secure the length of the female threaded portion 33 and the thickness of the box front portion 32 and the box rear portion 38 while securing a large angle between the tapered threaded portion 48 and the tube axis C.
  • the box 31 can ensure a sufficient thickness at the tip and a sufficient thickness at the box rear portion 38 at the same time, the strength and rigidity against tightening torque are improved, and the tightening torque of the steel pipe joint structure 100 can be increased when the pin rear shoulder surface 22 and the box front shoulder surface 42 abut and when the pin front shoulder surface 23 and the box rear shoulder surface 43 abut. Thereby, the steel pipe joint structure 100 is improved in sealing performance and pressure resistance.
  • the box rear incompletely threaded portion 37 is formed at the end of the female threaded portion 33 on the tube portion 50 side, so that the thickness of the second steel pipe 30 at the end of engagement of the female threaded portion 33, that is, the thickness from the bottom of the female thread to the outer peripheral surface 52 can be increased.
  • the steel pipe joint structure 100 can increase the dangerous cross-sectional area and increase the strength against tensile load after tightening.
  • the steel pipe joint structure 100 can ensure sufficient abutment surfaces at the inner shoulder portion 96 and the outer shoulder portion 95, the tightening torque can be increased. As a result, the steel pipe joint structure 100 has improved sealing performance and pressure resistance.
  • FIG. 6 is an explanatory diagram of a steel pipe joint structure 1200 according to a comparative example.
  • the box 1031 and the pin 1011 according to the comparative example are provided with tapered threads from the tip portions 1031a and 1011a to the tube portion 50 by changing the diameters of the tip portions 1031a and 1011a.
  • the steel pipe joint structure 1200 according to the comparative example it is possible to ensure engagement between the female thread and the male thread from the distal end portion to the pipe portion. Further, the distal end portion of the female thread is enlarged in advance, and the distal end portion of the male thread is contracted in advance to form a tapered screw.
  • the steel pipe joint structure 1200 according to the comparative example since the pipe ends 1010a and 1030 are enlarged or reduced, it is not possible to sufficiently provide the structure in which the pin rear shoulder surface 22 and the box front shoulder surface 42 abut and the structure in which the pin front shoulder surface 23 and the box rear shoulder surface 43 abut, unlike the steel pipe joint structure 100 according to Embodiment 1, and sufficient metal sealing cannot be achieved. Therefore, the steel pipe joint structure 1200 according to the comparative example has a problem in sealing performance.
  • FIG. 7 is a cross-sectional view showing an example of full thread engagement.
  • FIG. 7(a) shows a thread meshing state in which the bottom and crest of the thread are in contact (Root to Crest Contact)
  • FIG. 7(b) illustrates a thread meshing state in which the stabbing flank and the load flank are in contact (Flank to Flank Contact).
  • FIG. 7A there are two types of thread meshing: a root to crest contact method in which the crest of the thread on the box side and the bottom of the thread on the pin side contact each other, and a flank to flank contact method in which the slopes of the thread of the box and the pin contact each other.
  • engagement by the Flank to Flank Contact method which is advantageous in sealing performance and compression performance of the steel pipe joint structure 100, is employed.
  • the cross-sectional shape of the thread is a trapezoidal thread or a triangular thread in which the stabbing flank and the load flank are inclined with respect to the direction perpendicular to the pipe axis C of the thread.
  • a square screw whose flank angle is perpendicular to the tube axis C cannot be a flank-to-flank contact fit.
  • FIG. 8 is a cross-sectional view showing a state of full thread engagement at the A portion of FIGS. 2 and 5.
  • FIG. 8 When fully threaded portions having the same effective diameter, such as the pin fully threaded portion 16 and the box fully threaded portion 36, are meshed properly, the combination of the male thread side load surface 84 and the female thread side load surface 86, and the male thread side stabbing surface 85 and the female thread side stabbing surface 87 are properly meshed.
  • the steel pipe joint structure 100 according to Embodiment 1 employs the flank to flank contact method, and the thread ridge shape in the cross section including the pipe axis C is such that the load flank angle ⁇ 1 and the stabbing flank angle ⁇ 2 of the male and female threads are inclined from the direction perpendicular to the pipe axis C.
  • FIG. 9 is a cross-sectional view showing an example of the state of meshing of incomplete threads in the B portion of FIGS. 2 and 5 .
  • the pin front incomplete tapered thread portion 15 which is a tapered thread and a thread that is lowered by crest cutting, is omitted.
  • 2 and 5 are incompletely threaded portions for both the male and female threads, the pin front parallel thread portion 14 on the pin 11 side, and the box rear incomplete thread portion 37 on the box 31 side.
  • a pin front parallel thread portion 14 located on the tip side of the pin 11 is a parallel thread and an incomplete thread.
  • the box rear incomplete thread portion 37 located on the tube portion 50 side of the box 31 is a tapered thread and an incomplete thread.
  • the female thread on the box 31 side has an effective diameter E4 inclined with respect to the tube axis C
  • the male thread on the pin side has an effective diameter E2 parallel to the tube axis C. Due to the difference between the effective diameter E4 and the effective diameter E2, the stabbing surface and the load surface of the male and female threads are displaced from each other. Therefore, in the first embodiment, as shown in FIG. 9, the pin front parallel thread portion 14 of the male thread portion 13 is processed so as to move the load surface 54 on the male thread side to match the load surface 56 on the female thread side. This processing will be described later. Further, the stabbing surface 55 on the male thread side is also processed so as to move along with the stabbing surface 57 on the female thread side.
  • the thread 71 of the pin front parallel threaded portion 14 of the pin 11 of Embodiment 1 is processed so that the width thereof is smaller than that of the complete threaded portion 76 of the pin fully threaded portion 16 formed in the central portion of the male threaded portion 13 formed in the pin 11.
  • the width of the thread 71 of the pin front parallel threaded portion 14 on the effective diameter E2 is smaller than the width of the full thread 76 on the effective diameter E1 of the pin fully threaded portion 16 (see FIGS. 5 and 8).
  • the load surface 54 on the male thread side coincides with the load surface 56 on the female thread side.
  • the stabbing surface 55 on the male thread side is similarly processed so as to match the stabbing surface 57 on the female thread side.
  • the root 74 of the pin front parallel threaded portion 14 of the pin 11 of Embodiment 1 is processed so as to be wider than the root 83 of the pin fully threaded portion 16 formed in the central portion of the male thread formed on the pin 11.
  • width r1 of root 74 of pin front parallel threaded portion 14 is wider than width r0 of root 83 of pin fully threaded portion 16 .
  • roots r2 to r4 of the other pin front parallel threaded portions 14 are also wider than width r0 of the roots 83 of the pin completely threaded portion 16. As shown in FIG.
  • the widths r1 to r4 of the respective roots 74 of the pin front parallel threaded portion 14 become wider toward the tip side of the pin 11 . That is, the relationship of the width of the valley bottom 74 is r1 ⁇ r2 ⁇ r3 ⁇ r4. By being formed in this manner, the thread 61 of the box rear incomplete thread 37 can be screwed with the root of the pin front parallel thread 14 .
  • the box rear incomplete threaded portion 37 is a portion in which a tapered thread is cut in the cylindrical portion of the box 31 . Therefore, the root 64 of the box rear incomplete threaded portion 37 has the same width as the root 89 of the box fully threaded portion 36 .
  • the pin front parallel threaded portion 14 of the pin 11 and the box rear incomplete threaded portion 37 of the box 31 are meshed up to the vicinity of the pin front shoulder surfaces 23 and 43 . Therefore, not only can the length of engagement of the screws be sufficiently secured, but also the thickness of the critical section between the pin 11 and the box 31 can be sufficiently secured. Thereby, the steel pipe joint structure 100 can sufficiently withstand the tensile load applied after tightening. Moreover, the steel pipe joint structure 100 can increase the tightening torque. As a result, the steel pipe joint structure 100 has improved sealing performance and pressure resistance.
  • the region from the tip end side of the pin 11 to the connecting portion 21 is a thinning region processed so that the width of the thread 71 on the effective diameter E2 is smaller than the width of the complete thread 76 of the fully threaded portion 16 of the pin. That is, at least a portion of the pin front incomplete taper thread portion 15 or a portion of the pin complete thread portion 16, which is the taper thread portion shown in FIG. 2, may be thinned. In this case, at least a portion of the pin front incompletely tapered thread portion 15 indicated by section P2 in FIG. 2 or a portion of the pin fully threaded portion 16 indicated by section P3 in FIG. That is, in the first embodiment, when all or part of section P2 in FIG.
  • part of section P3 in FIG. 2 may be an incomplete thread with thread thinning.
  • the thinned region of the male threaded portion 13 can be adjusted according to the length of the box rear incompletely threaded portion 37 (section B4) of the box 31 that meshes with the region on the tip side of the male threaded portion 13 of the pin 11. Therefore, the thread 71 of the pin 11 on the distal end side of the male threaded portion 13 can avoid interference with the thread 61 of the box rear incomplete threaded portion 37 of the box 31 .
  • the pin front parallel threaded portion 14 is subjected to crest grinding so that the crest 73 of the thread 71 does not come into contact with the root 64 of the box rear incomplete threaded portion 37 .
  • the crest cutting process is applied to a range in which the pin front parallel threaded portion 14 is provided in the rough material shape before threading the pin 11 . The crest cutting process will be described later.
  • the root diameter decreases toward the box rear portion 38 side, that is, toward the pipe portion 50 side.
  • the root 64 of the box rear incomplete threaded portion 37 is on the straight line L1 shown in FIG.
  • the crest portion 73 of the pin front parallel thread portion 14 obtained by crest cutting is positioned so as not to interfere with the root 64 of the box rear incomplete thread portion 37 which is a tapered thread.
  • the roots 74 of the pin front parallel threaded portion 14 are located on the cylindrical surface (formed to have the same outer diameter), and are configured so as not to interfere with the crests 63 of the threads 61 of the box rear incomplete threaded portion 37, which are also located on the cylindrical surface. Since the pin front parallel threaded portion 14 is formed by cylindrical processing, the root 74 is formed to have a single outer diameter (see the portion on the right side from the connection portion 21 of L4 shown in FIG. 9).
  • the pin front parallel thread portion 14 and the box rear incomplete thread portion 37 can avoid interference between the female screw thread 61 and the male screw thread 71 by adjusting the width of the thread 71 of the pin front parallel thread portion 14. Moreover, interference between the crest portion 73 of the thread ridge 71 of the male thread and the root 64 of the female thread can be avoided.
  • the pin front parallel thread portion 14 and the box rear incomplete thread portion 37 have, for example, a stabbing flank angle ⁇ 2 of 45° and a load flank angle ⁇ 1 of 2°.
  • the above relationship between the box rear incomplete threaded portion 37 and the pin front parallel threaded portion 14 is similarly established for engagement between the incompletely threaded portions of the box front parallel threaded portion 34 and the pin rear incomplete threaded portion 17 .
  • the incompletely threaded portions shown in FIG. 2 and FIG. the box front parallel threaded portion 34, which is a female thread, is machined so as to move the load surface 56 on the female thread side to match the load surface 54 on the male thread side.
  • the stabbing surface 57 on the female thread side is also processed so as to move along with the stabbing surface 55 on the male thread side.
  • the box front parallel threaded portion 34 of the box 31 of Embodiment 1 is processed so that the width thereof is smaller than that of the fully threaded portion 36 of the box fully threaded portion 36 formed in the central portion of the female thread formed in the box 31 in the direction of the pipe axis C.
  • the width of the thread 71 of the box front parallel threaded portion 34 on the effective diameter E3 is smaller than the width of the complete thread 66 on the effective diameter E4 of the box complete threaded portion 36 (see FIG. 5).
  • the thinned area of the female threaded portion 33 of the box 31 may extend beyond the connecting portion 41 (see FIG. 5) to the box rear portion 38 side. That is, at least a portion of the box front incomplete tapered thread portion 35 or a portion of the box complete thread portion 36, which is the tapered thread portion shown in FIG. 5, may be thinned. In this case, at least a portion of the box front incompletely tapered thread portion 35 indicated by section B2 in FIG. 5 or a portion of the box fully threaded portion 36 indicated by section B3 in FIG. That is, in the first embodiment, all or part of section B2 in FIG. 5 may be an incomplete thread with thread thinning, and a part of section B3 in FIG.
  • the thinned region of the female threaded portion 33 can be adjusted according to the length of the pin rear incompletely threaded portion 17 of the pin 11 that meshes with the region on the tip side of the female threaded portion 33 of the box 31 . Therefore, the screw thread 71 in the region on the distal end side of the female threaded portion 33 of the box 31 can avoid interference with the screw thread 61 of the pin rear incompletely threaded portion 17 of the pin 11 .
  • FIG. 10 is an explanatory diagram of the meshing state near the connecting portion 21 between the completely threaded portion and the incompletely threaded portion of the steel pipe joint structure 1000 according to the comparative example.
  • FIG. 10 is an enlarged view of a portion corresponding to the periphery of the connecting portion 21 in FIG. 2 and the connecting portion 45 in FIG. That is, it shows the periphery of the boundary between the fully threaded portion and the incompletely threaded portion in the front portion of the pin 11 and the periphery of the boundary between the fully threaded portion and the incompletely threaded portion in the rear portion of the box 31 .
  • the thinning process is not applied to the pin front parallel threaded portion 14 . Therefore, the pin front parallel threaded portion 14 and the box rear incompletely threaded portion 37 shown in FIG.
  • FIG. 11A and 11B are explanatory diagrams of processing of the thread around the connecting portion 21 of the pin 11 according to the first embodiment and the comparative example.
  • the male threaded portion 13 of the pin 11 according to Embodiment 1 is formed by thread turning using a threaded insert 90 .
  • Arrows K1 and K2 shown in FIG. 11 indicate trajectories of the threaded insert 90 in thread turning.
  • a threaded insert 90 has a cutting edge 91 with the same cross-sectional shape as the root of the thread and moves along arrows K1 and K2 to form threads in the pin 11 .
  • Threaded insert 90a of FIG. 11 shows threaded insert 90 moving along arrow K1
  • threaded insert 90b shows threaded insert 90 moving along arrow K2.
  • the threaded insert 90 moves parallel to the pipe axis C as indicated by an arrow K1 up to the connection portion 21, which is the boundary between the pin front parallel thread portion 14 and the tapered thread portion 28, of the male thread portion 13.
  • the threaded insert 90 thereby forms parallel threads.
  • the threaded insert 90 moves obliquely to the tube axis C as indicated by arrow K2.
  • the threaded insert 90 thereby forms a tapered thread.
  • the pin front parallel threaded portion 14 corresponds to the section P1 shown in FIG.
  • the tapered threaded portion 28 corresponds to the sections P2 to P4 shown in FIG.
  • the pin 11 has the pin front parallel threaded portion 14 formed at the tip thereof, so that the male threaded portion 13 can be lengthened without reducing the thickness.
  • the width of the root 74 of the pin front parallel threaded portion 14 (the portion on the right side from the connecting portion 21 in FIG. 11) is the same as the width of the root 83 of the fully threaded pin portion 16 (the portion on the left side from the connecting portion 21 in FIG. 11).
  • FIG. 12 is an explanatory diagram of an example of machining using the threaded insert 90 according to Embodiment 1 and Comparative Example. Machining by the threaded insert 90 shown in FIG. 11 is divided into multiple passes in consideration of the life of the threaded insert 90 and the precision (appearance and dimensions) of the thread after machining. For example, the thread shown in FIG. 12 shows the case where five passes form the final thread form. In FIG. 12, the final pass has a smaller shaving margin than the other passes to improve accuracy.
  • the male threaded portion 13 and the female threaded portion 33 of the steel pipe joint structure 1000 according to the comparative example have inclined load surfaces and stabbing surfaces. Therefore, as shown by W1 to W5 in FIG. 10, when the incomplete thread portion of the male thread portion 13 is subjected to normal thread cutting, the width of the peak of the thread increases as the height of the thread decreases. This is because the shape of the cutting edge 91 of the threading insert 90 is transferred to the male threaded portion 13 by performing processing with the initial position of the threading insert 90 set to S1 in the explanatory view of processing shown in FIG.
  • the widths W1 to W5 of the crest 73 of the incompletely threaded portion of the pin 11 become larger than the width X of the root 64 of the incompletely threaded portion 37 of the box rear portion. Therefore, the pin front parallel thread portion 14 of the steel pipe joint structure 1000 according to the comparative example cannot be screwed into the box rear incomplete thread portion 37 .
  • FIG. 13 is an explanatory diagram of the thread size relationship between the pin front parallel thread portion 14 and the box rear incomplete thread portion 37 of the steel pipe joint structure 1000 according to the comparative example of FIG.
  • the pin front parallel threaded portion 14 has widths W1 to W5 of crest crests larger than the width of root 64 of box rear incompletely threaded portion 37. Therefore, the load flanks of the male thread and the female thread interfere with each other with a width indicated by R in FIG. 13, and the stabbing flanks interfere with each other with a width indicated with Q in FIG.
  • the pin front parallel thread portion 14 of the steel pipe joint structure 100 according to Embodiment 1 is subjected to the following thinning process in order to avoid interference between the load flank and the stabbing flank shown in FIG.
  • FIG. 14 is an explanatory diagram of an example of processing of the male threaded portion 13 according to Embodiment 1.
  • FIG. The pin front parallel threaded portion 14 of the steel pipe joint structure 100 according to Embodiment 1 is thinned so that the load surface 54 and the stabbing surface 55 are aligned with the load surface 56 and the stabbing surface 57 of the box rear incomplete threaded portion 37 .
  • the thread thinning process thins the thread by performing three passes for thinning the stabbing surface 55 and one pass for thinning the load surface 54 .
  • the uppermost pass shown in FIG. 14 indicates a normal pass, which is a pass for forming a thread before thinning.
  • the second pass shown from the top in FIG. 14 is the first thinning pass on the stubbing surface 55 side.
  • the movement start position S2 of the threading insert 90 moves toward the pin 11, so the threading insert 90 cuts the stabbing surface 55 of the thread in the direction of thinning.
  • the third and fourth passes shown from the top in FIG. 14 are the second and third mountain slimming passes, respectively.
  • the movement start position of the thread cutting insert 90 is moved further to S3 on the pin 11 side than in the first thinning pass, and in the third thinning pass, it is further moved to S4 on the pin 11 side than in the second thinning pass.
  • the path shown at the bottom of FIG. 14 is a narrowed path on the side of the load surface 54 .
  • the pin front parallel thread portion 14, the pin front incomplete taper thread portion 15, and the pin complete thread portion 16, which are incomplete thread portions, are processed so as to smoothly connect.
  • the thread cutting insert 90 reaches the connection portion 21, which is the boundary with the complete thread portion, the feeding speed is returned to normal, so that the thread shape of the complete thread portion is not damaged.
  • the connection portion 21 is a position where the incomplete parallel thread and the complete taper thread meet, and is indicated by line C1 in FIG.
  • the thread thinning performed on the pin front parallel threaded portion 14 may be performed to the region of the complete threads (taper threaded portions 15 and 16) shown in Fig. 14 beyond the connecting portion 21, corresponding to the length of the fitting box rear incomplete threaded portion 37. That is, the male thread portion 13 according to Embodiment 1 may have the thinned thread up to the region P2 or P3 of Fig. 2 .
  • the male threaded portion 13 formed at the end of the steel pipe is machined by the threading insert 90 .
  • This is called a normal machining pass.
  • a normal machining pass may be composed of a plurality of normal machining passes.
  • the 1st pass to the final pass in FIG. 12 and the 1st pass to the 5th pass in FIG. 15 correspond to a plurality of normal machining passes.
  • the threading insert 90 starts moving from a processing start position closer to the steel pipe than the initial position, and at least the pin front parallel threaded portion 14 is processed at a second feed rate slower than the first feed rate.
  • This is called a first crest thinning machining pass.
  • the first ridge thinning pass may be composed of a plurality of first ridge thinning passes that are started from a plurality of positions closer to the steel pipe than the initial position.
  • the second feedrate includes a plurality of second feedrates that are slower than the first feedrate.
  • the ridge thinning pass 1 starting from S2 in FIG.
  • the first thinning processing pass is a processing pass for cutting the stubbing flank of the pin front parallel thread portion 14 .
  • the first thread thinning pass applied to the pin front parallel threaded portion 14 may be applied to the fully threaded region (tapered threaded portions 15, 16) beyond the connecting portion 21 and shown in FIG. That is, in the first thinning pass, the region processed at the second feed rate may exceed the connecting portion 21 .
  • the movement of the threading insert 90 is started from the processing start position closer to the steel pipe than the initial position, the pin front parallel threaded portion 14 is processed at a second feed rate slower than the first feed rate, and the taper threaded portions 15, 16 and 17 are continuously processed at the first feed rate.
  • This is called a second crest reduction machining pass.
  • the ridge thinning pass 3 starting from S4 in FIG. 14 corresponds to the second ridge thinning pass.
  • the second thread thinning pass is for continuously processing the pin front parallel threaded portion 14 and the tapered threaded portions 15, 16 and 17, which are subjected to thread thinning, to connect the threads at the connection portion 21 with a smooth surface.
  • the second thread thinning pass is for cutting the stabbing flanks of the pin front parallel thread portion 14 and the tapered thread portions 15 , 16 and 17 .
  • the second thread thinning pass applied to the pin front parallel threaded portion 14 may be applied to the fully threaded region (tapered threaded portions 15, 16) beyond the connection portion 21 and shown in FIG. That is, in the second thinning pass, the region processed at the second feed rate may exceed the connecting portion 21 .
  • the movement of the threading insert 90 is started from a processing start position farther from the steel pipe than the initial position, the pin front parallel threaded portion 14 is processed at a third feed rate faster than the first feed rate, and the tapered threaded portions 15, 16 and 17 are continuously processed at the first feed rate.
  • This is called a third crest thinning machining pass.
  • the third ridge thinning pass is the ridge thinning pass 4 starting from S5 in FIG. 14, and is for processing the load flank.
  • the third thread thinning pass is for continuously processing the pin front parallel thread portion 14 and the tapered thread portions 15, 16 and 17, which are subjected to thread thinning, to connect the threads at the connection portion 21 with a smooth surface.
  • the third thread thinning pass may be configured such that, depending on the cutting allowance of the load flank, only the pin front parallel threaded portion 14 is machined a plurality of times, and finally the pin front parallel threaded portion 14 and the taper threaded portions 15, 16 and 17 are continuously machined.
  • the third thread thinning pass applied to the pin front parallel threaded portion 14 may be applied to the fully threaded region (tapered threaded portions 15, 16) beyond the connection portion 21 shown in FIG. That is, in the third crest reduction machining pass, the area machined at the third feed rate may exceed the connecting portion 21 .
  • the female threaded portion 33 is also processed in the same manner.
  • the box front parallel thread portion 34 and the tapered thread portions 35, 36 and 37 are processed by the normal machining pass, the first thread thinning pass, the second thread thinning pass and the third thread thinning pass.
  • FIG. 15 shows the machining process by all the machining passes, focusing on one trough of the pin front parallel threaded portion 14 in FIG.
  • attention is focused on the valley of the pin front parallel thread portion 14 where the width of the valley bottom 74 is r2 as a representative, but other valleys are basically machined by similar machining passes only by changing the cutting amount.
  • the 1st pass to 5th pass shown in FIG. 15 correspond to the normal pass in FIG.
  • the normal pass shown in FIG. 14 cuts the rough material in five passes as shown in, for example, FIGS. 12 and 15 . Thread thinning is performed after normal threads are formed.
  • the root 74 is machined to have the same width r0 as the normal root 83 (the root 83 in the complete thread portion).
  • the valley bottom 74 is processed to have a width r2 larger than the width r0.
  • Valleys other than those shown in FIG. 15 are similarly processed to have widths r1 to r4 larger than the width r0 by thinning.
  • FIG. 16 is an explanatory diagram of rough material machining performed before screw thread machining according to the first embodiment.
  • the crest 73 of the thread is at the position L3 in FIG. Therefore, for example, the corner 76a of the crest 73a of the pin front parallel threaded portion 14 may be set to have a corner R shape larger than that of the root so as not to interfere with the thread root 64 of the box rear incomplete threaded portion 37.
  • a special tool for processing the crest portion 73a of the thread is required. Therefore, in the first embodiment, the crest portion 73a of the pin front parallel thread portion 14 shown in FIG. 16(a) is processed so that the crest portion 73a of the thread ridge is positioned as shown in FIG. 16(b).
  • the rough material of the pin 11 is processed so that the outer diameter is smaller than the tapered surface L3 (see FIGS. 9 and 10) formed by the crest of the thread of the fully threaded portion 16 of the pin at least in the range where the pin front parallel threaded portion 14 is provided.
  • the trajectory m shown in FIG. 16 moves outward so as to leave the thread of the fully threaded portion at position M, which is the end of the incompletely threaded portion of the pin 11, to leave a finishing margin during threading.
  • the locus m shown in FIGS. 16(a) and 16(b) represents the outer shape of the rough material before the thread of the pin 11 is processed.
  • the outer diameter of the crest 73 of the pin front parallel threaded portion 14 is smaller than the imaginary line L3 (see FIGS. 10 and 11) where the crest 82 of the thread of the pin fully threaded portion 16 is located.
  • the crest 73 of the thread 71 is lower than the imaginary line L3a, and the crest 82 of the complete thread 76 coincides with the imaginary line L3b.
  • the pin 11 has a step 15 a formed on the outer peripheral surface of the male threaded portion 13 on the pin rear portion 18 side of the pin front parallel threaded portion 14 .
  • the position M shown in FIG. For example, as shown in FIG. 2, if the pin front parallel thread 14 is followed by the pin front incompletely tapered thread 15, the position M can be moved to the position where the tapered thread of the pin 11 is formed.
  • the box front parallel threaded portion 34 is similarly subjected to thinning and roughing.
  • the female thread is subjected to thinning and roughing so that the meshing of the screw threads in the C part of FIGS. 2 and 5 is similar to the meshing of the B part.
  • the width of the root 74 of the box front parallel threaded portion 34 is greater than the width of the root 89 of the box full threaded portion 36 .
  • the outer diameter of the crest portion 73 of the box front parallel threaded portion 34 is larger than the outer diameter of the crest portion 82 of the box fully threaded portion 36 .
  • the box 31 has a step 35 a formed on the inner peripheral surface of the female screw portion 33 on the box rear portion 38 side of the box front parallel screw portion 34 .
  • FIG. 17 is a cross-sectional view showing an example of the meshing state of the incomplete threads in the B portion of FIGS. 2 and 5.
  • FIG. 17 in the meshing between the pin front parallel threaded portion 14 and the box rear incomplete threaded portion 37 or the meshing between the box front parallel threaded portion 34 and the pin rear incomplete threaded portion 17, the width of the thread of the pin front parallel threaded portion 14 or the box front parallel threaded portion 34 is reduced.
  • the female thread of the box rear part incompletely threaded portion 37 is machined so that the female thread side load surface 56a is moved to match the male thread side load surface 54a to form a load surface 56b.
  • the stabbing surface 57a on the female thread side is also moved in accordance with the stabbing surface 55a on the male thread side, and processed to become the stabbing surface 57b.
  • the box rear incompletely threaded portion 37 of the box 31 of Embodiment 1 is processed so that its width is smaller than the screw thread of the box completely threaded portion 36 formed in the central portion of the female thread formed in the box 31.
  • the width of the thread 61 of the box rear incomplete threaded portion 37 at the effective diameter E4 is smaller than the width of the complete thread 66 on the effective diameter E4 (see FIG. 5) of the box fully threaded portion 36 .
  • the crest portion 73 of the screw thread 71 of the pin 11 is subjected to the rough material processing of FIG.
  • a sufficient dangerous cross-sectional area can be secured without increasing the outer diameter of the steel pipe joint structure and without increasing the wall thickness, so the strength against tensile load is improved.
  • the first steel pipe and the second steel pipe that constitute the steel pipe joint structure do not require neck drawing or pipe expansion before threading.
  • the steel pipe joint structure can obtain a high tightening torque, the steel pipe joint structure has improved sealing performance and pressure resistance, and can be widely used as a joint structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

外径を大きくすることなくかつ肉厚を厚くすることなく高い締め付けトルクを得ることができる鋼管継手構造を提供することを目的とする。本発明に係る鋼管継手構造は、少なくとも一方の端部に雄ねじが形成された第1鋼管と、少なくとも一方の端部に雌ねじが形成された第2鋼管と、を接続する鋼管継手構造であって、第1鋼管は、雄ねじが形成され、第2鋼管は、雌ねじが形成されている。雄ねじ部は、ピン前部側の端部に、平行ねじかつ不完全ねじであるピン前部平行ねじ部と、当該雄ねじ部の中央部にテーパねじかつ完全ねじであるピン完全ねじ部と、を備え、雌ねじ部は、ボックス後部側の端部にテーパねじかつ不完全ねじであるボックス後部不完全ねじ部と、当該雌ねじ部の中央部にテーパねじかつ完全ねじであるボックス完全ねじ部と、を備える。ボックス後部不完全ねじ部とピン前部平行ねじ部とは、互いに螺合し、管軸を含む断面において、ピン前部平行ねじ部の谷底の幅は、ピン完全ねじ部の谷底よりも幅が大きい。

Description

鋼管継手構造及び鋼管加工方法
 本発明は、鋼管継手構造に関し、特に鋼管に形成されたねじ部の構造及び加工方法に関する。
 油田等の探査及び生産に使用される油井管を接続する技術として、雌雄のテーパねじを用いて接続する鋼管継手構造が広く用いられている。鋼管継手構造は、雄ねじ部と雌ねじ部とが嵌合密着する。以下、雌ねじと雄ねじとを螺合することによって、一対の鋼管が継手を介して接続された構成を「鋼管継手構造」と称する。
 鋼管継手構造には、インテグラル方式とカップリング方式の2種類がある。インテグラル方式は、油井管の一端部に雄ねじを設けてピンとし、他端部に雌ねじを設けてボックスとし、該ボックスの雌ねじと前記ピンの雄ねじが螺合するものである。カップリング方式は、油井管の両端部に雄ねじを設けてピンとし、別の管の両端部に雌ねじを設けてボックスとし、該ボックスの一端側の雌ねじと一端側の油井管のピン部の雄ねじが螺合し、同ボックスの他端側の雌ねじと他の油井管のピンの雄ねじが螺合するものである。例えば、インテグラル方式の場合、ピン及びボックスのねじ設置部分をねじ部と呼ぶ。そして、ピンの最先端部からねじ部の1番目のねじ山にかけての非ねじの部分、及びボックスの最奥端部(ピンの最先端部を当接させる部分)からねじ部の1番目のねじ谷にかけての非ねじの部分をそれぞれ内面ショルダ部、ピンの最奥端部とボックスの最先端部をそれぞれ外面ショルダ部と呼ぶ。ねじ継手を締付けると、ピン及びボックスの内面ショルダ部同士及び外面ショルダ部同士が局所的にメタル‐メタル接触し、該接触した箇所がシールの役割を担う。
 シール面(ねじ無し面)を持たない鋼管継手構造などでは、雄ねじ部と雌ねじ部とが嵌合密着することにより、鋼管継手構造の密封性と耐圧性が確保される。または、雌ねじと雄ねじが螺合すると共に、シール部同士の当接によるメタルシールによって鋼管継手構造の密封性と耐圧性とが確保される(例えば、特許文献1を参照)。
国際公開第2015/033997号
 特許文献1に開示されている油井管の鋼管継手構造においては、ピン及びボックスの突き当たり面は、ピンをねじ込むのに伴って互いに接触して密着する。突き当り面は、ピンのねじ込みを制限するストッパの役割を担うとともに、雄ねじ部にねじ込み進行方向とは反対方向への荷重、いわゆるねじの締め付け軸力を付与する役割を担っている。この締め付け軸力は、鋼管継手構造のねじ部又はメタルシール部を密着させ、鋼管継手構造の密封性と耐圧性とを確保する。ねじ部の谷底は、ピン及びボックスの断面積が最小となる部分であり、ねじ部の噛み合い領域の端部、即ちピンのねじ部の径が大きい側の端部及びボックスのねじ部の径が小さい側の端部においては、締め付け後に付与される引張荷重を負担する。この断面積が最小となるねじ部の噛み合い領域の端部の谷底の断面を、それぞれピンのねじ部の危険断面及びボックスのねじ部の危険断面と称する。ピンのねじ部の径が大きい側の端部の谷底断面積と、ボックスのねじ部の径が小さい側の端部の谷底断面積とを比較して小さいほうが、継手の危険断面積となる。
 特許文献1に係る油井管の鋼管継手構造においては、ねじ部の噛み合い領域の端部のうち、ピンのねじ部の径が大きい側又はボックスのねじ部の径が小さい側に継手の危険断面積が存在するが、引張による耐荷重を大きくするためには、それぞれの危険断面積を大きくする必要がある。ピンの危険断面積を大きくする場合には鋼管肉厚を厚く、ボックスの危険断面積を大きくする場合は鋼管外径を大きくする必要がある。その場合、内面ショルダ部96と外面ショルダ部95の当接させる面積が少なくなり剛性が低下し、高い締め付けトルクに耐えられない。よって、鋼管継手構造は、十分な締め付けトルクを確保できないという課題があった。
 本発明は、外径を大きくすることなく、かつ肉厚を厚くすることなく高い締め付けトルクを得ることができる鋼管継手構造及び鋼管加工方法を提供することを目的とする。
 本発明に係る鋼管継手構造は、少なくとも一方の端部に雄ねじが形成された第1鋼管と、少なくとも一方の端部に雌ねじが形成された第2鋼管と、を接続する鋼管継手構造であって、前記第1鋼管は、当該第1鋼管の先端から順に、ピン前部と、前記雄ねじが形成されている雄ねじ部と、ピン後部と、が並んで配置され、前記第2鋼管は、当該第2鋼管の先端から順に、ボックス前部と、前記雌ねじが形成されている雌ねじ部と、ボックス後部と、が並んで配置され、前記雄ねじ部は、前記ピン前部側の端部に、平行ねじかつ不完全ねじであるピン前部平行ねじ部と、当該雄ねじ部の中央部にテーパねじかつ完全ねじであるピン完全ねじ部と、を備え、前記雌ねじ部は、前記ボックス後部側の端部にテーパねじかつ不完全ねじであるボックス後部不完全ねじ部と、当該雌ねじ部の中央部にテーパねじかつ完全ねじであるボックス完全ねじ部と、を備え、前記ボックス後部不完全ねじ部と前記ピン前部平行ねじ部とは、互いに螺合し、管軸を含む断面において、前記ピン前部平行ねじ部の谷底の幅は、前記ピン完全ねじ部の谷底よりも幅が大きい。
 また、本発明に係る鋼管継手構造は、少なくとも一方の端部に雄ねじが形成された第1鋼管と、少なくとも一方の端部に雌ねじが形成された第2鋼管と、を接続する鋼管継手構造であって、前記第1鋼管は、当該第1鋼管の先端から順に、ピン前部と、前記雄ねじが形成されている雄ねじ部と、ピン後部と、が並んで配置され、前記第2鋼管は、当該第2鋼管の先端から順に、ボックス前部と、前記雌ねじが形成されている雌ねじ部と、ボックス後部と、が並んで配置され、前記雄ねじ部は、前記ピン後部側の端部に、テーパねじかつ不完全ねじであるピン後部不完全ねじ部と、当該雄ねじ部の中央部にテーパねじかつ完全ねじであるピン完全ねじ部と、を備え、前記雌ねじ部は、前記ボックス前部側の端部に平行ねじかつ不完全ねじであるボックス前部平行ねじ部と、当該雌ねじ部の中央部にテーパねじかつ完全ねじであるボックス完全ねじ部と、を備え、前記ピン後部不完全ねじ部と前記ボックス前部平行ねじ部とは、互いに螺合し、管軸を含む断面において、前記ボックス前部平行ねじ部の谷底は、前記ボックス完全ねじ部の谷底よりも幅が大きい。
 本発明に係る鋼管加工方法は、鋼管の端部に雄ねじ部又は雌ねじ部を加工する鋼管加工方法であって、前記雄ねじ部又は雌ねじ部は、前記鋼管の先端から順に平行ねじ部、テーパねじ部が形成されており、初期位置から第1の送り速度でねじ切りインサートを送り前記平行ねじ部及び前記テーパねじ部を連続して加工する複数の通常加工パスと、第2の送り速度で前記平行ねじ部のスタビングフランクを加工する第1山痩せ加工パスと、前記第2の送り速度で前記平行ねじ部のスタビングフランクを加工し、前記第1の送り速度で前記テーパねじ部のスタビングフランクを加工する第2山痩せ加工パスと、第3の送り速度で前記平行ねじ部のロードフランクを加工し、前記第1の送り速度で前記テーパねじ部を加工する第3山痩せ加工パスと、を備え、前記第1山痩せ加工パス及び前記第2山痩せ加工パスは、前記初期位置よりも前記鋼管に近い位置から加工が開始され、前記第3山痩せ加工パスは、前記初期位置よりも前記鋼管から遠い位置から加工が開始される。
 また、本発明に係る鋼管加工方法は、鋼管の端部に雄ねじ部又は雌ねじ部を加工する鋼管加工方法であって、前記雄ねじ部又は前記雌ねじ部は、前記鋼管の先端から順に平行ねじ部、テーパねじ部が形成されており、初期位置から第1の送り速度でねじ切りインサートを送り前記平行ねじ部及び前記テーパねじ部を連続して加工する複数の通常加工パスと、第2の送り速度で前記平行ねじ部及び前記テーパねじ部の一部のスタビングフランクを加工する第1山痩せ加工パスと、前記第2の送り速度で前記平行ねじ部及び前記テーパねじ部の前記一部のスタビングフランクを加工し、前記第1の送り速度で前記テーパねじ部の前記一部以外の部分のスタビングフランクを加工する第2山痩せ加工パスと、第3の送り速度で前記平行ねじ部及び前記テーパねじ部の前記一部のロードフランクを加工し、前記第1の送り速度で前記テーパねじ部の前記一部以外の部分を加工する第3山痩せ加工パスと、を備え、前記第1山痩せ加工パス及び前記第2山痩せ加工パスは、前記初期位置よりも前記鋼管に近い位置から加工が開始され、前記第3山痩せ加工パスは、前記初期位置よりも前記鋼管から遠い位置から加工が開始される。
 本発明によれば、鋼管継手のピン又はボックスの先端部の不完全ねじ山(ピン前部平行ねじ部又はボックス前部平行ねじ部)は、幅が小さく形成されるため、相手側の後部の不完全ねじ部のねじ山と干渉せずに螺合できる。そのため、鋼管継手構造は、ピンである第1鋼管のねじ部の危険断面の面積を大きくできるとともに、ボックスである第2鋼管の外径を大きくすることなく第2鋼管のボックス前部ショルダ面近傍の断面積を確保することができる。また、ピン後部不完全ねじ部は、相手側のボックス側平行ねじ部のねじ山の幅が小さく、ねじ山同士が干渉しないように形成されているため、谷底径を小さくすることなくボックス側平行ねじ部と螺合できる。よって、鋼管継手構造は、第1鋼管の肉厚を厚くすることなく、第1鋼管に設けられたピン後部ショルダ面近傍の断面積を確保できる。つまり、ピンの危険断面積を小さくする必要がない。よって、鋼管継手構造は、締め付け軸力に対する強度及び剛性が向上し、締め付けトルクを大きくすることが可能となり、密閉性及び耐圧性が向上する。
実施の形態1に係る鋼管継手構造100の説明図である。 実施の形態1に係る第1鋼管10のピン11の単品拡大図である。 実施の形態1に係る鋼管継手構造100のショルダ部の拡大図である。 比較例に係る鋼管継手構造1100のショルダ部の拡大図である。 実施の形態1に係る第2鋼管30のボックス31の単品拡大図である。 比較例に係る鋼管継手構造1200の説明図である。 完全ねじの噛み合いの例を示す断面図である。 図2及び図5のA部における完全ねじの噛み合いの状態を示す断面図である。 図2及び図5のB部における不完全ねじ同士の噛み合いの状態の一例を示す断面図である。 比較例に係る鋼管継手構造1000の完全ねじ部と不完全ねじ部との接続部付近の噛み合い状態の説明図である。 実施の形態1及び比較例に係るピン11の接続部21周辺のねじ山の加工の説明図である。 実施の形態1及び比較例に係るねじ切りインサート90を用いた加工の一例の説明図である。 図10の比較例に係る鋼管継手構造1000のピン前部平行ねじ部14とボックス後部不完全ねじ部37とのねじ山の大きさの関係の説明図である。 実施の形態1に係る雄ねじ部13の加工の一例の説明図である。 図14のピン前部平行ねじ部14のうち1つの谷に着目して全ての加工パスによる加工工程を示したものである。 実施の形態1に係るねじ山加工の前に行われる粗材加工の説明図である。 図2及び図5のB部における不完全ねじ同士の噛み合いの状態の一例を示す断面図である。
 実施の形態1.
 図1は、実施の形態1に係る鋼管継手構造100の説明図である。図1の上半分は、鋼管継手構造100の中心軸に沿った断面図であり、図1の下半分は側面図である。なお、図1の各部は模式的に表されており、本発明は図示された形態に限定されるものではない。
 図1に示されるように、鋼管継手構造100は、第1鋼管10と第2鋼管30とがピン11及びボックス31にそれぞれ形成されたねじを螺合させることにより接続するものである。第1鋼管10は、鋼管の少なくとも一方の端部にピン11が設けられたものである。また、第2鋼管30は、鋼管の少なくとも一方の端部にボックス31が設けられたものである。実施の形態1において、第1鋼管10及び第2鋼管30のそれぞれは、一方の端部にピン11が設けられ、他方の端部にボックス31が設けられた鋼管であり、インテグラル方式で接続されている。つまり、図1に示すように、実施の形態1におけるピン11及びボックス31は、同じ構造の2本の鋼管の一方の端部と他方の端部である。なお、一本の鋼管の両端部にあるピン11及びボックス31を繋ぐ管状の部分を管部50と呼ぶ。ただし、鋼管継手構造100は、鋼管をインテグラル方式で接続するものに限定されず、カップリング方式で接続するものにも適用することができる。カップリング方式の場合、第1鋼管10は、両端部にピン11が形成され、第2鋼管30は、両端部にボックス31が形成されることになる。
 第1鋼管10のピン11は、一方の端面であるピン前部ショルダ面23から管部50側に向かうに従い厚肉に形成されている。ピン11は、少なくとも一部分にピン前部ショルダ面23から管部50に向かって外径が大きくなるテーパ面を有する雄ねじ部13(図2参照)を備える。雄ねじ部13は、外周面に雄ねじが形成されている。
 第2鋼管30のボックス31は、一方の端面であるボックス前部ショルダ面42から管部50側に向かうに従い厚肉に形成されている。ボックス31は、少なくとも一部分にボックス前部ショルダ面42から管部50に向かって内径が小さくなるテーパ面を有する雌ねじ部33(図5参照)を備える。雌ねじ部33は、内周面に雌ねじが形成されている。
 第1鋼管10のピン11と第2鋼管30のボックス31とは、それぞれテーパねじが形成されており、互いに螺合している。第2鋼管30の先端面であるボックス前部ショルダ面42は、ピン後部ショルダ面22に当接している。ピン後部ショルダ面22及びボックス前部ショルダ面42は、第1鋼管10に形成されたピン11の管部50側の外周側に位置し、鋼管の管軸C、すなわち鋼管継手構造100の中心軸に対し垂直又は垂直に近い角度で交差する面である。実施の形態1においては、ピン後部ショルダ面22は、内径側よりも外径側が第2鋼管30側に傾斜している面となっている。ボックス前部ショルダ面42も、ピン後部ショルダ面22に対応して内径側よりも外径側が第2鋼管30の管部50側に傾斜している面となっている。ボックス前部ショルダ面42及びピン後部ショルダ面22は、傾斜していることにより、ボックス前部ショルダ面42に軸方向荷重が掛かると、ボックス前部32が内側に向かって変位するため、座屈性能が向上する。また、ピン前部ショルダ面23及びボックス後部ショルダ面43も、当接してメタルシールとして機能する。
 第1鋼管10の先端面であるピン前部ショルダ面23は、ボックス後部ショルダ面43に当接している。ピン前部ショルダ面23は、第1鋼管10の先端面であり、鋼管の管軸C、すなわち鋼管継手構造100の中心軸に垂直に近い角度又は垂直に交差する面である。実施の形態1においては、ピン前部ショルダ面23及びボックス後部ショルダ面43は、管軸Cに対し垂直になっている。なお、ピン前部ショルダ面23及びボックス後部ショルダ面43は、内径側よりも外径側が第2鋼管30側に傾斜している面となっていても良い。
 (第1鋼管10)
 図2は、実施の形態1に係る第1鋼管10のピン11の単品拡大図である。第1鋼管10のピン11は、先端から順にピン前部12、雄ねじ部13及びピン後部18が管軸C方向に並んで位置している。
 ピン前部12は、ピン11の最も先端に位置しており、第1鋼管10の先端面であるピン前部ショルダ面23及び外周が円筒面となっており雄ねじが形成されていない非雄ねじ部24を備える。ピン前部12は、図2において区間P6で示される部分である。なお、非雄ねじ部24は、設けられていなくてもよく、この場合ピン前部12には雄ねじが形成されている。
 雄ねじ部13は、先端側から順に、ピン前部平行ねじ部14(ピン側ランイン部)、ピン前部不完全テーパねじ部15、ピン完全ねじ部16及びピン後部不完全ねじ部17(ピン側ランアウト部)を備える。ピン前部平行ねじ部14は、ピン前部12側の端部に位置し、図2の区間P1で示される部分であり、外周が先端面から管部50側に向かうに従い拡径するテーパ面であり、雄ねじの有効径が所定の値になるように形成されている部分である。ピン前部平行ねじ部14の雄ねじの谷底径は、ピン前部12の非雄ねじ部24の外径寸法以上の値になっている。また、ピン前部平行ねじ部14の外周がテーパ面となっているため、ピン前部平行ねじ部14における雄ねじは、不完全ねじとなっている。
 ピン前部不完全テーパねじ部15は、図2の区間P2で示される部分である。区間P2で示される部分は、ピン前部平行ねじ部14から続いて外周がテーパ面となっている。区間P2で示されている部分に形成されている雄ねじの有効径は、先端側から管部50側に向かうに従い拡径しているテーパねじとなっている。ただし、区間P2のピン前部不完全テーパねじ部15の外周(ねじ山の山頂)は、区間P3に示されているピン完全ねじ部16の外周(ねじ山の山頂)と比較して小さく、形成されている雄ねじは不完全ねじとなっている。区間P2のピン前部不完全テーパねじ部15の外周(ねじ山の山頂)と区間P3に示されているピン完全ねじ部16の外周(ねじ山の山頂)との間は段差15aがあり、不連続な面になっている。また、区間P2のピン前部不完全テーパねじ部15の外周(ねじ山の山頂)は、区間P3に示されているピン完全ねじ部16の外周(ねじ山の山頂)よりも小さい。ピン前部不完全テーパねじ部15の先端側の端部、即ち図5に示される区間P2と区間P1との境界は、平行ねじからテーパねじに切り替わる接続部21となっている。ピン前部不完全テーパねじ部15は、雄ねじの谷底も先端側から管部50側に向かうに従い拡径しているため、鋼管の肉厚も管部50側に向かうに従い徐々に厚くなる。また、ピン前部不完全テーパねじ部15の管部50側の端部は、段差15aが形成されており、ピン完全ねじ部16に接続している。なお、不完全ねじ部であるピン前部平行ねじ部14及びピン前部不完全テーパねじ部15を合わせて、ピン前部不完全ねじ部と称する場合がある。なお、雄ねじ部13においてP2の区間は、省略されていても良い。つまり、雄ねじ部13は、ピン前部平行ねじ部14とピン完全ねじ部16とが直接接続している形態でも良い。
 ピン完全ねじ部16は、図2の区間P3で示される部分である。ピン完全ねじ部16は、雄ねじが完全ねじとなるようにねじ山の山頂がテーパ面となっている。そのテーパ面と雄ねじの有効径E1とは平行になっており、雄ねじは完全ねじとなっている。ピン完全ねじ部16の外周(ねじ山の山頂)のテーパ面は、ショルダ外周面である大径部19と略同じ外径寸法となる点25で円筒面に切り替わる。実施の形態1においては、点25は、ショルダ外周面である大径部19よりも若干小さい外径寸法となっていても良いし、大径部19と同じ外径寸法であっても良い。以上のように、雄ねじ部13は、点25までの区間P3にピン完全ねじ部16が形成されている。
 ピン後部不完全ねじ部17は、ピン後部18側の端部であり図2の区間P4で示される部分である。区間P4は、外径寸法が一定の円筒面であるため、形成されているテーパねじは、徐々に高さが低くなる不完全ねじとなる。ピン後部不完全ねじ部17は、雄ねじの谷底径が外周面の外径寸法と一致する点26まで形成されている。
 ピン後部18は、先端側の部分に外径の小さい小径部20と、管部50側の部分に外径の大きい大径部19と、を有していても良い。小径部20は、ピン後部不完全ねじ部17と同じ外径寸法であり、テーパねじの切りあがり部となる部分である。なお、小径部20と大径部19との段差は、なくともよい。つまり、小径部20が直接ピン後部ショルダ面22に接続されていても良い。
 図2に示される区間P1~P4までを総称して雄ねじ部13と称する。つまり、区間P5が、雄ねじ部13である。また、区間P2~P4をテーパねじ部28と称する。雄ねじ部13は、ピン前部平行ねじ部14とテーパねじ部28とを組み合わせて形成されている。このように構成されることにより、ピン11は、テーパねじ部28と管軸Cとがなす角度を大きく確保しつつ、雄ねじ部13の長さ、ピン前部12の肉厚及びピン後部不完全ねじ部17が設けられている部分の肉厚を十分に確保することができる。つまり、ピン11は、先端の肉厚と後部の肉厚とを十分に確保できるため、締め付けトルクに対する強度及び剛性が向上し、ピン前部ショルダ面23とボックス後部ショルダ面43とが当接する場合に鋼管継手構造100の締め付けトルクを高くすることができる。これにより、鋼管継手構造100は、密閉性及び耐圧性が向上する。
 図3は、実施の形態1に係る鋼管継手構造100のショルダ部の拡大図である。図4は、比較例に係る鋼管継手構造1100のショルダ部の拡大図である。図4に示される比較例に係る鋼管継手構造1100は、ピン後部ショルダ面22の近傍に至るまで完全ねじ部1017が形成されているため、危険断面の肉厚が薄くなる。つまり、ピン1011の雄ねじ部1013の噛み合いの端部において、第1鋼管1010の肉厚、すなわち雄ねじの谷底から内周面までの厚みが薄くなる。従って、比較例に係る鋼管継手構造1100は、締め付け後において、引張荷重に対する強度が低い。
 一方、ピン後部不完全ねじ部17が雄ねじ部13の管部50側の端部に形成されていることにより、雄ねじ部13の噛み合いの端部において第1鋼管10の肉厚、すなわち雄ねじの谷底から内周面51までの厚みを大きくすることができる(図3に示すW1は図4に示すW2よりも厚くできる)。これにより、鋼管継手構造100は、危険断面積を大きくすることができ、締付け後の引張荷重に対する強度が高くなる。また、鋼管継手構造100は、内面ショルダ部96と外面ショルダ部95での突き当て面を十分に確保できるので、締め付けトルクを高くすることができる。ひいては、鋼管継手構造100は、密閉性及び耐圧性が向上する。
 (第2鋼管30)
 図5は、実施の形態1に係る第2鋼管30のボックス31の単品拡大図である。第2鋼管30のボックス31は、先端から順にボックス前部32、雌ねじ部33及びボックス後部38が管軸C方向に並んで位置している。
 ボックス前部32は、ボックス31の最も先端に位置しており、第2鋼管30の先端面であるボックス前部ショルダ面42及び内周が円筒面となっており雌ねじが形成されていない非雌ねじ部44を備える。ボックス前部32は、図5において区間B6で示される部分である。なお、非雌ねじ部44は、設けられていなくてもよく、この場合ボックス前部32には雌ねじが形成されている。
 雌ねじ部33は、先端側から順に、ボックス前部平行ねじ部34(ボックス側ランイン部)、ボックス前部不完全テーパねじ部35、ボックス完全ねじ部36及びボックス後部不完全ねじ部37(ボックス側ランアウト部)を備える。ボックス前部平行ねじ部34は、ボックス後部38側の端部であり図5の区間B1で示される部分であり、内周が先端面から管部50側に向かうに従い縮径するテーパ面であり、雌ねじの有効径が所定の値になるように形成されている部分である。ボックス前部平行ねじ部34の雌ねじの谷底径は、ボックス前部32の非雌ねじ部44の内径寸法以下の値になっている。また、ボックス前部平行ねじ部34の内周(ねじ山の山頂部が成す面)がテーパ面となっているため、ボックス前部平行ねじ部34における雌ねじは、不完全ねじとなっている。
 ボックス前部不完全テーパねじ部35は、図5の区間B2で示される部分である。区間B2で示される部分は、ボックス前部平行ねじ部34から続いて内周がテーパ面となっている。区間B2で示されている部分に形成されている雌ねじの有効径は、先端側から管部50側に向かうに従い縮径しているテーパねじとなっている。ただし、区間B2のボックス前部不完全テーパねじ部35の内周(ねじ山の山頂)は、区間B3に示されているボックス完全ねじ部36の内周(ねじ山の山頂)と比較して大きく、形成されている雌ねじは不完全ねじとなっている。区間B2のボックス前部不完全テーパねじ部35の内周(ねじ山の山頂)と区間B3に示されているボックス完全ねじ部36の内周(ねじ山の山頂)との間は段差35aがあり、不連続な面になっている。また、区間B2のボックス前部不完全テーパねじ部35の内周(ねじ山の山頂)は、区間B3に示されているボックス完全ねじ部36の内周(ねじ山の山頂)よりも大きい。また、ボックス前部不完全テーパねじ部35の先端側の端部、即ち図5に示される区間B2と区間B1との境界は、平行ねじからテーパねじに切り替わる接続部41となっている。ボックス前部不完全テーパねじ部35は、雌ねじの谷底も先端側から管部50側に向かうに従い縮径しているため、鋼管の肉厚も管部50側に向かうに従い徐々に厚くなる。また、ボックス前部不完全テーパねじ部35の管部50側の端部は、段差が形成されており、ボックス完全ねじ部36に接続している。なお、不完全ねじ部であるボックス前部平行ねじ部34とボックス前部不完全テーパねじ部35とを合わせて、ショルダ側第2不完全ねじ部と称する。
 ボックス完全ねじ部36は、図5の区間B3で示される部分である。ボックス完全ねじ部36は、雌ねじが完全ねじとなるようにねじ山の山頂がテーパ面となっている。そのテーパ面と雌ねじの有効径とは平行になっており、雌ねじは完全ねじとなっている。ボックス完全ねじ部36の内周(ねじ山の山頂)のテーパ面は、ボックス後部38の内周面である小径部39と同じ内径寸法となる点45で円筒面に切り替わる。実施の形態1においては、点45は、ボックス後部38の内周面である小径部39と同じ内径寸法となっている。以上のように、雌ねじ部33は、点45までの区間B3にボックス完全ねじ部36が形成されている。
 ボックス後部不完全ねじ部37は、ボックス後部38側の端部であり、図5の区間B4で示される部分である。区間B4は、内径寸法が一定の円筒面であるため、形成されているテーパねじは、徐々に高さが低くなる不完全ねじとなる。ボックス後部不完全ねじ部37は、雌ねじの谷底径がボックス後部38の内周面の内径寸法と一致する点46まで形成されている。
 なお、ボックス後部38は、先端側の部分に内径の大きい大径部40と、管部50側の部分に内径の小さい小径部39と、を有していても良い。大径部40は、ボックス後部不完全ねじ部37と同じ内径寸法に形成され、テーパねじの切りあがり部となる部分である。
 図5に示される区間B1~B4までを総称して雌ねじ部33と称する。また区間B2~B4をテーパねじ部48と称する。雌ねじ部33は、ボックス前部平行ねじ部34とテーパねじ部48とを組み合わせて形成されている。このように構成されることにより、ボックス31は、テーパねじ部48と管軸Cとがなす角度を大きく確保しつつ、雌ねじ部33の長さ、ボックス前部32及びボックス後部38の肉厚を確保することができる。つまり、ボックス31は、先端の肉厚とボックス後部38の肉厚とを同時に十分に確保できるため、締め付けトルクに対する強度及び剛性が向上し、ピン後部ショルダ面22とボックス前部ショルダ面42とが当接する場合及びピン前部ショルダ面23とボックス後部ショルダ面43とが当接する場合に鋼管継手構造100の締め付けトルクを高くすることができる。これにより、鋼管継手構造100は、密閉性及び耐圧性が向上する。
 雌ねじ部33は、ボックス後部不完全ねじ部37が雌ねじ部33の管部50側の端部に形成されていることにより、雌ねじ部33の噛み合いの端部において第2鋼管30の肉厚、すなわち雌ねじの谷底から外周面52までの厚みを大きくすることができる。これにより、鋼管継手構造100は、危険断面積を厚くすることができ締付け後の引張荷重に対する強度を大きくすることができる。また、鋼管継手構造100は、内面ショルダ部96と外面ショルダ部95での突き当て面を十分に確保できるので締め付けトルクを高くすることができる。ひいては、鋼管継手構造100は、密閉性及び耐圧性が向上する。
 図6は、比較例に係る鋼管継手構造1200の説明図である。図4に示されている危険断面の肉厚が薄くなる状態を回避するためには、図6に示されるように先端部1030を拡大したボックス1031及び先端部1011aを縮小したピン1011を採用することも考えられる。比較例に係るボックス1031及びピン1011は、先端部1031a及び1011aの径を変更することにより、先端部1031a及び1011aから管部50に亘ってテーパねじが設けられている。これにより、比較例に係る鋼管継手構造1200においては、先端部から管部まで雌ねじと雄ねじとの噛み合いが確保できる。また、雌ねじの先端部は予め拡大され、雄ねじの先端部は予め縮小し、テーパねじとなるように構成されている。しかし、比較例に係る鋼管継手構造1200は、管端1010a及び1030を拡大又は縮小しているため、実施の形態1に係る鋼管継手構造100のようにピン後部ショルダ面22とボックス前部ショルダ面42とが当接する構造、及びピン前部ショルダ面23とボックス後部ショルダ面43とが当接する構造を十分に設けることができず、十分なメタルシールができない。従って、比較例に係る鋼管継手構造1200は、シール性能に課題がある。
 (ねじの噛合方式について)
 図7は、完全ねじの噛み合いの例を示す断面図である。図7(a)は、ねじの谷底と山頂とが接触する方式(Root to Crest Contact)のねじの噛み合い状態を示し、図7(b)は、スタビングフランクとロードフランクとが接触する方式(Flank to Flank Contact)のねじの噛み合い状態を示している。ねじの噛み合いは、図7(a)に示す様に、ボックス側ねじ山の山頂とピン側ねじ山の谷底とが接触するRoot to Crest Contact方式と、ボックス及びピンのねじ山の斜面同士が接触するFlank to Flank Contact方式とがある。実施の形態1においては、鋼管継手構造100のシール性能及び圧縮性能において有利な、Flank to Flank Contact方式による噛み合いを採用している。
 実施の形態1に係る鋼管継手構造100においては、Flank to Flank Contact方式を採用しているため、ねじ山の断面形状は、スタビングフランク及びロードフランクがねじの管軸Cに対し直交する方向に対し傾斜している台形ねじ又は三角ねじである。なお、フランク角が管軸Cに対し垂直である角ねじは、Flank to Flank Contactの篏合にはなりえない。
 (完全ねじ部)
 図8は、図2及び図5のA部における完全ねじの噛み合いの状態を示す断面図である。ピン完全ねじ部16及びボックス完全ねじ部36のように有効径が同じ大きさの完全ねじ部同士の噛み合いにおいては、雄ねじ側ロード面84と雌ねじ側ロード面86、雄ねじ側スタビング面85と雌ねじ側スタビング面87の組み合わせで適正に噛み合う。実施の形態1に係る鋼管継手構造100においてはFlank to Flank Contact方式を採用しており、管軸Cを含む断面におけるねじ山形状は、雄ねじ及び雌ねじのロードフランク角θ1及びスタビングフランク角θ2が管軸Cに対する直交方向から傾斜している。
 (不完全ねじ部)
 図9は、図2及び図5のB部における不完全ねじ同士の噛み合いの状態の一例を示す断面図である。なお、図9においては、テーパねじかつ山頂削り加工により低くなったねじ山であるピン前部不完全テーパねじ部15が省略して表示されている。図2及び図5のB部は、雄ねじ及び雌ねじとも不完全ねじ部であり、ピン11側は、ピン前部平行ねじ部14であり、ボックス31側は、ボックス後部不完全ねじ部37である。ピン11の先端側に位置するピン前部平行ねじ部14は、平行ねじかつ不完全ねじである。これに対しボックス31の管部50側に位置するボックス後部不完全ねじ部37は、テーパねじかつ不完全ねじである。ボックス31側の雌ねじは、管軸Cに対し傾斜した有効径E4であり、ピン側の雄ねじは、管軸Cに平行な有効径E2を有している。この、有効径E4と有効径E2とのずれにより、雄ねじと雌ねじとは、スタビング面及びロード面に互いにずれが生じる。そのため、実施の形態1においては、図9に示すように、雄ねじ部13のピン前部平行ねじ部14は、雄ねじ側のロード面54を雌ねじ側のロード面56に合うように移動させるように加工される。この加工については後述する。また、雄ねじ側のスタビング面55も雌ねじ側のスタビング面57に合わせて移動させるように加工される。つまり、実施の形態1のピン11のピン前部平行ねじ部14のねじ山71は、ピン11に形成されている雄ねじ部13の中央部に形成されているピン完全ねじ部16の完全ねじ山76に対し幅が小さくなるように加工されている。詳しくは、ピン前部平行ねじ部14のねじ山71の有効径E2上における幅は、ピン完全ねじ部16の有効径E1(図5及び図8参照)上における完全ねじ山76の幅よりも小さい。なお、図9において、雄ねじ側のロード面54は、雌ねじ側のロード面56と一致している。雄ねじ側のスタビング面55も同様に雌ねじ側のスタビング面57と一致する様に加工されている。
 また、言い換えると実施の形態1のピン11のピン前部平行ねじ部14の谷底74は、ピン11に形成されている雄ねじの中央部に形成されているピン完全ねじ部16の谷底83に対し幅が大きくなるように加工されている。例えば、ピン前部平行ねじ部14の谷底74の幅r1は、ピン完全ねじ部16の谷底83の幅r0よりも広い。また、他のピン前部平行ねじ部14の谷底r2~r4も、同様にピン完全ねじ部16の谷底83の幅r0よりも広い。さらに、ピン前部平行ねじ部14のそれぞれの谷底74の幅r1~r4は、ピン11の先端側に向かうほど幅が広くなっている。つまり、谷底74の幅の関係は、r1<r2<r3<r4となっている。このように形成されることにより、ボックス後部不完全ねじ部37のねじ山61は、ピン前部平行ねじ部14の谷と螺合できる。
 なお、図9において、ボックス後部不完全ねじ部37は、ボックス31の円筒形状部分にテーパねじが切削された部分である。したがって、ボックス後部不完全ねじ部37の谷底64の幅は、ボックス完全ねじ部36の谷底89と同じ幅になっている。
 このように形成されることにより、ピン11のピン前部平行ねじ部14とボックス31のボックス後部不完全ねじ部37とは、ピン前部ショルダ面23及び43の近傍に至るまでねじが噛み合う。そのため、ねじの噛み合い長さを十分に確保できるだけでなく、ピン11とボックス31とは危険断面の肉厚を十分に確保することができる。これにより、鋼管継手構造100は、締付け後に負荷される引張荷重に十分に耐えられる。また、鋼管継手構造100は、締め付けトルクを高くすることができる。ひいては、鋼管継手構造100は、密閉性及び耐圧性が向上する。
 なお、実施の形態1においては、図9に示すように、ピン11の先端側から接続部21までの領域が、ねじ山71の有効径E2上における幅がピン完全ねじ部16の完全ねじ山76に対し幅が小さくなるように加工されている山痩せ加工領域であるが、山痩せ加工領域は、接続部21を超えてピン後部18側まで設けられていても良い。つまり、図2に示されているテーパねじ部であるピン前部不完全テーパねじ部15の少なくとも一部又はピン完全ねじ部16の一部まで山痩せ加工が施されていても良い。この場合、図2に区間P2で示されているピン前部不完全テーパねじ部15の少なくとも一部又は図2に区間P3で示されているピン完全ねじ部16の一部は、ねじ山71の有効径E1上における幅がピン完全ねじ部16の完全ねじ山76に対し幅が小さくなるように加工されている。つまり、実施の形態1において、図2の区間P2の全部又は一部が山痩せ加工が施された不完全ねじになる場合、図2の区間P3の一部が山痩せ加工が施された不完全ねじになる場合もあり得る。このように構成されることにより、ピン11の雄ねじ部13の先端側の領域と噛み合うボックス31のボックス後部不完全ねじ部37(区間B4)の長さに対応して、雄ねじ部13の山痩せ加工領域を調整できる。そのため、ピン11の雄ねじ部13の先端側の領域のねじ山71は、ボックス31のボックス後部不完全ねじ部37のねじ山61との干渉を回避できる。
 また、図9において、ピン前部平行ねじ部14は、ねじ山71の山頂部73がボックス後部不完全ねじ部37の谷底64に接触しないように山頂削り加工が施されている。山頂削り加工は、ピン11のねじ切り加工を実施する前に、粗材形状においてピン前部平行ねじ部14が設けられる範囲に施される。山頂削り加工については、後述する。
 ピン前部平行ねじ部14と噛み合うボックス後部不完全ねじ部37は、ボックス完全ねじ部36に連続して形成されたテーパねじであるため、谷底径がボックス後部38側、つまり管部50側に向かうに従い小さくなっている。ボックス後部不完全ねじ部37の谷底64は、図9に示す直線L1上にあり、ボックス完全ねじ部36の谷底89と同じ直線L1上にある。山頂削り加工により得られたピン前部平行ねじ部14の山頂部73は、テーパねじであるボックス後部不完全ねじ部37の谷底64に干渉しない位置にある。なお、ピン前部平行ねじ部14の谷底74は、それぞれ円筒面上に位置しており(同一の外径に形成されている)、同じく円筒面上に位置しているボックス後部不完全ねじ部37のねじ山61の山頂部63と干渉しないように構成されている。ピン前部平行ねじ部14は、シリンドリカル加工により形成されるため、谷底74が単一の外径となるように形成される(図9に示されるL4の接続部21から右側の部分を参照)。
 以上のように、ピン前部平行ねじ部14とボックス後部不完全ねじ部37とは、ピン前部平行ねじ部14のねじ山71の幅調整を行うことにより、雌ねじのねじ山61と雄ねじのねじ山71との干渉を回避できる。また、雄ねじのねじ山71の山頂部73と雌ねじの谷底64との干渉も回避できる。なお、実施の形態1においては、ピン前部平行ねじ部14及びボックス後部不完全ねじ部37のねじ形状は、例えばスタビングフランク角θ2を45°とし、ロードフランク角θ1を2°としている。
 なお、上記のボックス後部不完全ねじ部37とピン前部平行ねじ部14との関係は、ボックス前部平行ねじ部34とピン後部不完全ねじ部17の不完全ねじ部同士の噛み合いについても同様に成立する。ボックス前部平行ねじ部34とピン後部不完全ねじ部17との噛み合いについては、図2及び図5のC部における不完全ねじ同士の噛み合いとなるため、図9における下側に示された平行ねじがボックス前部平行ねじ部34に相当し、上側に示されたテーパねじがピン後部不完全ねじ部17に相当することになる。このとき、雌ねじであるボックス前部平行ねじ部34は、雌ねじ側のロード面56を雄ねじ側のロード面54に合うように移動させるように加工される。また、雌ねじ側のスタビング面57も雄ねじ側のスタビング面55に合わせて移動させるように加工される。つまり、実施の形態1のボックス31のボックス前部平行ねじ部34は、ボックス31に形成されている雌ねじの管軸C方向の中央部に形成されているボックス完全ねじ部36の完全ねじ山66に対し幅が小さくなるように加工されている。詳しくは、ボックス前部平行ねじ部34のねじ山71の有効径E3(図5参照)上における幅は、ボックス完全ねじ部36の有効径E4(図5参照)上における完全ねじ山66の幅よりも小さい。
 なお、ボックス31の雌ねじ部33の山痩せ加工領域は、接続部41(図5を参照)を超えてボックス後部38側まで設けられていても良い。つまり、図5に示されているテーパねじ部であるボックス前部不完全テーパねじ部35の少なくとも一部又はボックス完全ねじ部36の一部まで山痩せ加工が施されていても良い。この場合、図5に区間B2で示されているボックス前部不完全テーパねじ部35の少なくとも一部又は図5に区間B3で示されているボックス完全ねじ部36の一部は、ねじ山71の有効径E4上における幅がボックス完全ねじ部46の完全ねじ山76に対し幅が小さくなるように加工されている。つまり、実施の形態1において、図5の区間B2の全部又は一部が山痩せ加工が施された不完全ねじになる場合、及び図5の区間B3の一部が山痩せ加工が施された不完全ねじになる場合もあり得る。このように構成されることにより、ボックス31の雌ねじ部33の先端側の領域と噛み合うピン11のピン後部不完全ねじ部17の長さに対応して、雌ねじ部33の山痩せ加工領域を調整できる。そのため、ボックス31の雌ねじ部33の先端側の領域のねじ山71は、ピン11のピン後部不完全ねじ部17のねじ山61との干渉を回避できる。
 図10は、比較例に係る鋼管継手構造1000の完全ねじ部と不完全ねじ部との接続部21付近の噛み合い状態の説明図である。図10は、図2の接続部21及び図4の接続部45の周辺に相当する部分の拡大図である。つまり、ピン11の前部の完全ねじ部と不完全ねじ部との境界の周辺と、ボックス31の後部の完全ねじ部と不完全ねじ部との境界の周辺とを示している。比較例に係る鋼管継手構造1000においては、ピン前部平行ねじ部14に山痩せ加工を適用していない。そのため、図10に示すピン前部平行ねじ部14とボックス後部不完全ねじ部37とは噛み合わないようなねじ山の関係になっている。
 図11は、実施の形態1及び比較例に係るピン11の接続部21周辺のねじ山の加工の説明図である。実施の形態1に係るピン11の雄ねじ部13は、ねじ切りインサート90を用いてねじ切り旋削加工により形成される。図11に示されている矢印K1及びK2は、ねじ切り旋削加工におけるねじ切りインサート90の軌跡を示している。ねじ切りインサート90は、ねじの谷部の断面形状と同じ形の刃91を有しており、矢印K1及びK2に沿って動き、ピン11にねじ山を形成する。図11のねじ切りインサート90aは、矢印K1に沿って動いているねじ切りインサート90を示しており、ねじ切りインサート90bは矢印K2に沿って動いているねじ切りインサート90を示している。
 図11に示すように、ねじ切りインサート90は、雄ねじ部13のうちピン前部平行ねじ部14とテーパねじ部28との境界である接続部21までは、矢印K1に示すように管軸Cに平行に動く。これにより、ねじ切りインサート90は、平行ねじを形成する。接続部21からは、ねじ切りインサート90は、矢印K2に示すように管軸Cに対し傾斜して動く。これにより、ねじ切りインサート90は、テーパねじを形成する。ピン前部平行ねじ部14は、図2に示されている区間P1の部分に相当する。テーパねじ部28は、図2に示されている区間P2~P4の部分に相当する。ピン11は、先端部にピン前部平行ねじ部14が形成されることにより、肉厚を薄くせずに雄ねじ部13を長くできる。
 なお、図11においては、ピン前部平行ねじ部14(図11の接続部21から右側の部分)の谷底74の幅は、ピン完全ねじ部16(図11の接続部21から左側の部分)の谷底83の幅と同じである。図11のピン11に山痩せ加工を行うことにより、図9などに示されるピン前部平行ねじ部14のような、谷底74の幅がピン完全ねじ部16の谷底83の幅よりも広いねじ山形状が得られる。
 図12は、実施の形態1及び比較例に係るねじ切りインサート90を用いた加工の一例の説明図である。図11に示されるねじ切りインサート90による加工は、ねじ切りインサート90の寿命及び加工後のねじの精度(外観及び寸法)を考慮して、複数回のパスに分けて加工される。例えば、図12に示されているねじ山は、5パスで最終ねじ形状が形成される場合を示している。図12においては、最終パスは他のパスに比べて削り代を小さくして精度向上を図っている。
 図10に示すように、比較例に係る鋼管継手構造1000の雄ねじ部13及び雌ねじ部33は、傾斜したロード面とスタビング面とを有する。したがって、図10に示すW1~W5のように、雄ねじ部13の不完全ねじ部は、通常のねじ切り加工を行うと、ねじ山の高さが低くなるごとにねじ山の山頂の幅が大きくなる。これは、図11に示す加工の説明図において、ねじ切りインサート90の初期位置をS1にして加工を行うことにより、ねじ切りインサート90の刃91の形状が雄ねじ部13に転写されていくためである。ねじ切りインサート90の初期位置をS1のままにして加工すると、ピン11の不完全ねじ部の山頂部73の幅W1~W5は、ボックス後部不完全ねじ部37の谷底64の幅Xに対して大きくなる。したがって、比較例に係る鋼管継手構造1000のピン前部平行ねじ部14は、ボックス後部不完全ねじ部37に螺合できない。
 図13は、図10の比較例に係る鋼管継手構造1000のピン前部平行ねじ部14とボックス後部不完全ねじ部37とのねじ山の大きさの関係の説明図である。比較例に係る鋼管継手構造1000の雄ねじ部13の場合、図13に示すように、ピン前部平行ねじ部14は、ねじ山の山頂の幅W1~W5がボックス後部不完全ねじ部37の谷底64の幅よりも大きい。そのため、雄ねじと雌ねじのロードフランクが図13中のRで示される幅で干渉しており、スタビングフランクが図13中のQで示される幅で干渉している。実施の形態1に係る鋼管継手構造100のピン前部平行ねじ部14は、図13に示されるロードフランク及びスタビングフランクの干渉を避けるために、次に説明する山痩せ加工を行っている。
 図14は、実施の形態1に係る雄ねじ部13の加工の一例の説明図である。実施の形態1に係る鋼管継手構造100のピン前部平行ねじ部14は、ロード面54及びスタビング面55をボックス後部不完全ねじ部37のロード面56及びスタビング面57に一致するように山痩せ加工が施される。例えば、山痩せ加工は、スタビング面55を痩せさせるためのパスを3回、ロード面54を痩せさせるためのパスを1回行うことによりねじ山を痩せさせる。
 図14に示されている最も上に示されているパスは、通常パスを示しており、山痩せ加工をする前のねじ山を形成するためのパスである。通常パスにおいては、ねじ切りインサート90は、基準位置であるS1から移動を開始し、工具の送りをピッチで表示したときにf2=0.2″(インチ当り5山のねじの場合)となるように移動する。
 図14の上から2番目に示されているパスは、スタビング面55側の1回目の山痩せパスである。1回目の山痩せパスにおいては、ねじ切りインサート90は、S1よりもピン11に近いS2から移動を開始し、工具の送りピッチがf3=0.1975″となるように移動する。1回目の山痩せパスにおいては、ねじ切りインサート90の移動開始位置S2が、ピン11側に移動しているため、ねじ切りインサート90はねじ山のスタビング面55を痩せさせる方向に切削することになる。
 図14の上から3番目、4番目に示されているパスは、それぞれ2回目、3回目の山痩せパスである。2回目の山痩せパスは、ねじ切りインサート90の移動開始位置が1回目の山痩せパスよりもさらにピン11側のS3に移動しており、3回目の山痩せパスは、2回目の山痩せパスよりも更にピン11側のS4に移動している。2回目の山痩せパスは、工具の送りピッチがf4=0.195″であり、3回目の山痩せパスは、工具の送りピッチがf5=0.1925″である。つまり、山痩せパスにおいては、ねじ切りインサート90の移動開始位置を徐々にピン11側に近づけることにより、スタビング面55を切削している。また、ねじ切りインサート90の移動開始位置がピン11側に近づいた分だけ工具の送りピッチを少なくし(送り速度を遅くし)、ねじ山が接続部21に近づくに従って、切削量が少なくなるように設定されている。
 図14の最も下に示されているパスは、ロード面54側の山痩せパスである。ロード面54側の山痩せパスにおいては、ねじ切りインサート90の移動開始位置をピン11から遠ざけ、送りピッチがf6=0.2015″と少し送り速度を早くしている。これにより、ロード面54を痩せさせる方向に切削される。
 図14において、通常パス、スタビング面55側の3回目の山痩せパス(スタビング面55側の最終山痩せパス)及びロード面54側の山痩せパス(ロード面54側の最終山痩せパス)は、接続部21において通常の送りピッチf=0.2″で工具を送るようにし、完全ねじ部も連続的に加工する。このように、ロード面54側及びスタビング面55側のそれぞれの山痩せ加工において完全ねじ部も連続的に加工することによって、不完全ねじ部であるピン前部平行ねじ部14、ピン前部不完全テーパねじ部15及びピン完全ねじ部16が滑らかにつながるように加工される。なお、ねじ切りインサート90が完全ねじ部との境界である接続部21に至ったときには、通常の送り速度に戻されるため、完全ねじ部のねじ山の形状は損なわれない。また、接続部21は、不完全平行ねじと完全テーパねじとが合致する位置であり、図14中に線C1で示されている。ただし、ピン前部平行ねじ部14に施していた山痩せ加工は、嵌合するボックス後部不完全ねじ部37の長さに対応して、接続部21を超えて図14に示される完全ねじ(テーパねじ部15、16)の領域まで施されていても良い。つまり、実施の形態1に係る雄ねじ部13は、山痩せ加工が施されたねじ山が図2の区間P2又は区間P3の領域まで施されていても良い。
 以上のように、鋼管の端部に形成される雄ねじ部13は、ねじ切りインサート90により加工される。まず、雄ねじ部13は、初期位置であるS1から第1の送り速度である送りピッチf2=0.2でねじ切りインサート90を移動させてピン前部平行ねじ部14及びテーパねじ部15、16及び17が連続して加工される。これを通常加工パスと呼ぶ。通常加工パスは、複数の通常加工パスにより構成されていても良い。実施の形態1においては、図12の1stパス~最終パス、図15の1stパス~5thパスが複数の通常加工パスに相当する。
 次に、雄ねじ部13は、初期位置よりも鋼管に近い加工開始位置からねじ切りインサート90が移動を開始され、第1の送り速度よりも遅い第2の送り速度で、少なくともピン前部平行ねじ部14が加工される。これを第1山痩せ加工パスと呼ぶ。第1山痩せ加工パスは、初期位置よりも鋼管に近い複数の位置から開始される複数の第1山痩せ加工パスにより構成されていても良い。この場合、第2の送り速度は、第1の送り速度よりも遅い複数の第2の送り速度を含む。また、実施の形態1においては、図14のS2から始まる山痩せパス1及びS3から始まる山痩せパス2が複数の第1山痩せ加工パスに相当する。なお、第1山痩せ加工パスは、ピン前部平行ねじ部14のスタビングフランクを切削するための加工パスである。ただし、ピン前部平行ねじ部14に施していた第1山痩せ加工パスは、嵌合するボックス後部不完全ねじ部37の長さに対応して、接続部21を超えて図14に示される完全ねじの領域(テーパねじ部15、16)まで施されていても良い。つまり、第1山痩せ加工パスにおいて、第2の送り速度で加工される領域は、接続部21を超えても良い。
 次に、雄ねじ部13は、初期位置よりも鋼管に近い加工開始位置からねじ切りインサート90の移動が開始され、第1の送り速度よりも遅い第2の送り速度でピン前部平行ねじ部14が加工され、連続して第1の送り速度でテーパねじ部15、16及び17が加工される。これを第2山痩せ加工パスと呼ぶ。実施の形態1においては、図14のS4から始まる山痩せ加工パス3が第2山痩せ加工パスに相当する。第2山痩せ加工パスは、山痩せ加工が施されるピン前部平行ねじ部14とテーパねじ部15、16及び17とを連続的に加工することにより、接続部21においてねじ山をなめらかな面で接続させるためのものである。なお、第2山痩せ加工パスは、ピン前部平行ねじ部14及びテーパねじ部15、16及び17のスタビングフランクを切削するための加工パスである。ただし、ピン前部平行ねじ部14に施していた第2山痩せ加工パスは、嵌合するボックス後部不完全ねじ部37の長さに対応して、接続部21を超えて図14に示される完全ねじの領域(テーパねじ部15、16)まで施されていても良い。つまり、第2山痩せ加工パスにおいて、第2の送り速度で加工される領域は、接続部21を超えても良い。
 次に、雄ねじ部13は、初期位置よりも鋼管から遠い加工開始位置からねじ切りインサート90の移動が開始され、第1の送り速度よりも速い第3の送り速度でピン前部平行ねじ部14が加工され、連続して第1の送り速度でテーパねじ部15、16及び17が加工される。これを第3山痩せ加工パスと呼ぶ。実施の形態1においては、第3山痩せ加工パスは、図14のS5から始まる山痩せパス4であり、ロードフランクを加工するためのものである。また、第3山痩せ加工パスは、山痩せ加工が施されるピン前部平行ねじ部14とテーパねじ部15、16及び17とを連続的に加工することにより、接続部21においてねじ山をなめらかな面で接続させるためのものである。なお、第3山痩せ加工パスは、ロードフランクの削り代によっては、ピン前部平行ねじ部14のみの加工を複数回備え、最後にピン前部平行ねじ部14とテーパねじ部15、16及び17とを連続的に加工するように構成されていても良い。ただし、ピン前部平行ねじ部14に施していた第3山痩せ加工パスは、嵌合するボックス後部不完全ねじ部37の長さに対応して、接続部21を超えて図14に示される完全ねじの領域(テーパねじ部15、16)まで施されていても良い。つまり、第3山痩せ加工パスにおいて、第3の送り速度で加工される領域は、接続部21を超えても良い。
 以上においては、雄ねじ部13を加工する場合について説明したが、雌ねじ部33も同様に加工される。雌ねじ部33の加工においては、ボックス前部平行ねじ部34とテーパねじ部35、36及び37とが上記の通常加工パス、第1山痩せ加工パス、第2山痩せ加工パス及び第3山痩せ加工パスによって加工される。
 図15は、図14のピン前部平行ねじ部14のうち1つの谷に着目して全ての加工パスによる加工工程を示したものである。図15では、代表として谷底74の幅がr2となるピン前部平行ねじ部14の谷に着目しているが、他の谷においても切削量が変わるだけで基本的には同じような加工パスにより加工される。図15に示されている1stパス~5thパスは、図14の通常パスに相当するものである。図14に示される通常パスは、例えば図12及び図15に示すように5回のパスに分けて粗材を切削する。ねじ山の山痩加工は、通常のねじ山が形成されたあとに行われる。通常パスである1stパス~5thパスでは、谷底74が通常の谷底83(完全ねじ部における谷底83)と同じ幅r0に加工される。その後、山痩せパスである6thパス~9thパスを経て谷底74は、幅r0よりも大きい幅r2に加工される。図15に示す以外の谷についても同様に山痩せ加工により幅r0よりも大きい幅r1~r4に加工される。
 図16は、実施の形態1に係るねじ山加工の前に行われる粗材加工の説明図である。実施の形態1に係るピン11のピン前部平行ねじ部14は、通常のねじ山加工により形成されたままだと、ねじ山の山頂部73が図9のL3の位置にあり、ピン前部平行ねじ部14のねじ山の山頂部73aとボックス後部不完全ねじ部37の谷底64とが干渉してしまう。そのため、例えばピン前部平行ねじ部14の山頂部73aの角部76aは、ボックス後部不完全ねじ部37のねじの谷底64に干渉しないように、角R形状を谷底の隅R形状よりも大きく設定する場合がある。しかし、そのように山頂部73aの角R形状を大きくするには、ねじ山の山頂部73aを加工する特殊な工具が必要となる。したがって、実施の形態1においては、図16(a)に示されるピン前部平行ねじ部14のねじ山の山頂部73aが図16(b)の位置になるように、ねじ山加工の前に図16に示される粗材加工を実施することにより、ねじ山の山頂部73と谷底64とが干渉しないように加工される。
 ピン11の粗材は、少なくともピン前部平行ねじ部14が設けられる範囲において、ピン完全ねじ部16のねじ山の山頂が形成するテーパ面L3(図9及び図10参照)よりも外径が小さくなるように加工される。図16に示されている軌跡mは、ピン11の不完全ねじ部の端である位置Mで完全ねじ部のねじ山にねじ山加工時の仕上げ代を残すように外側に移動している。つまり、図16(a)及び(b)に示される軌跡mは、ピン11のねじ山を加工する前の粗材の外形を表している。
 言い換えると、管軸Cを含む断面において、ピン完全ねじ部16のねじ山の山頂部82が位置する仮想線L3(図10及び図11参照)よりも、ピン前部平行ねじ部14の山頂部73の外径は小さい。図11に示すように、ねじ山71の山頂部73は、仮想線L3aよりも低く、完全ねじ山76の山頂部82は仮想線L3bと一致している。また、図2に示すように、ピン11は、ピン前部平行ねじ部14よりもピン後部18側において雄ねじ部13の外周面に段差15aが形成されている。
 なお、図16に示されている位置Mは、ピン前部平行ねじ部14よりもピン後部18側に移動できる。例えば、図2に示すように、ピン前部平行ねじ部14に続いて、ピン前部不完全テーパねじ部15が形成される場合には、位置Mは、ピン11のテーパねじ部が形成されている位置まで移動できる。
 また、以上の説明においては、ピン11のねじ山について説明しているが、ボックス前部平行ねじ部34も同様に山痩せ加工及び粗材加工が行われている。つまり、図2及び図5のC部におけるねじ山の噛み合いも、B部と同様の噛み合いとなるように雌ねじに山痩せ加工と粗材加工が行われている。言い換えると、ボックス前部平行ねじ部34の谷底74の幅は、ボックス完全ねじ部36の谷底89の幅よりも大きい。また、ボックス前部平行ねじ部34の山頂部73の外径は、ボックス完全ねじ部36の山頂部82の外径よりも大きい。また、ボックス31は、ボックス前部平行ねじ部34よりもボックス後部38側において雌ねじ部33の内周面に段差35aが形成されている。
 (変形例)
 図17は、図2及び図5のB部における不完全ねじ同士の噛み合いの状態の一例を示す断面図である。以上の説明においては、ピン前部平行ねじ部14とボックス後部不完全ねじ部37との噛み合い又はボックス前部平行ねじ部34とピン後部不完全ねじ部17との噛み合いにおいて、ピン前部平行ねじ部14又はボックス前部平行ねじ部34のねじ山の幅を小さくするように加工しているのに対し、図17はボックス後部不完全ねじ部37又はピン後部不完全ねじ部17のねじ山の幅を小さくするように加工した例を示している。この場合、ボックス後部不完全ねじ部37の雌ねじは、雌ねじ側のロード面56aを雄ねじ側のロード面54aに合うように移動させ、ロード面56bとなるように加工される。また、雌ねじ側のスタビング面57aも雄ねじ側のスタビング面55aに合わせて移動させ、スタビング面57bとなるように加工される。つまり、実施の形態1のボックス31のボックス後部不完全ねじ部37は、ボックス31に形成されている雌ねじの中央部に形成されているボックス完全ねじ部36のねじ山に対し幅が小さくなるように加工されている。詳しくは、ボックス後部不完全ねじ部37のねじ山61の有効径E4(図5参照)における幅は、ボックス完全ねじ部36の有効径E4(図5参照)上における完全ねじ山66幅よりも小さい。なお、ピン11のねじ山71の山頂部73は、上記において説明した図16の粗材加工を行い、ボックス31の雌ねじの谷底64との干渉を回避すると良い。
 なお、図17に示すボックス後部不完全ねじ部37とピン前部平行ねじ部14との関係は、ボックス前部平行ねじ部34とピン後部不完全ねじ部17の不完全ねじ同士の噛み合いについても同様に成立する。
 本発明によれば、鋼管継手構造の外径を大きくすることなく、かつ肉厚を厚くすることなく、十分な危険断面積を確保できるので引張荷重に対して強度が向上する。また、鋼管継手構造を構成する第1鋼管及び第2鋼管は、ねじ切り加工前の口絞り加工又は拡管加工などを必要としない。また鋼管継手構造は、高い締め付けトルクを得ることができるから、鋼管継手構造の密閉性及び耐圧性が向上し、継手構造として広く利用することができる。
10 第1鋼管
11 ピン
12 ピン前部
13 雄ねじ部
14 ピン前部平行ねじ部
15 ピン前部不完全テーパねじ部(テーパねじ部)
15a 段差
16 ピン完全ねじ部(テーパねじ部)
17 ピン後部不完全ねじ部
18 ピン後部
19 大径部
20 小径部
21 接続部
22 ピン後部ショルダ面
23 ピン前部ショルダ面
24 非雄ねじ部
28 テーパねじ部
30 第2鋼管
31 ボックス
32 ボックス前部
33 雌ねじ部
34 ボックス前部平行ねじ部
35 ボックス前部不完全テーパねじ部(テーパねじ部)
35a 段差
36 ボックス完全ねじ部(テーパねじ部)
37 ボックス後部不完全ねじ部
38 ボックス後部
39 小径部
40 大径部
41 接続部
42 ボックス前部ショルダ面
43 ボックス後部ショルダ面
44 非雌ねじ部
45 接続部
46 ボックス完全ねじ部
48 テーパねじ部
50 管部
51 内周面
52 外周面
54 ロード面
54a ロード面
55 スタビング面
55a スタビング面
56 ロード面
56a ロード面
56b ロード面
57 スタビング面
57a スタビング面
57b スタビング面
61 ねじ山
63 山頂部
64 谷底
71 ねじ山
73 山頂部
73a 山頂部
74 谷底
76 完全ねじ山
76a 角部
82 山頂部
83 谷底
84 雄ねじ側ロード面
85 雄ねじ側スタビング面
86 雌ねじ側ロード面
87 雌ねじ側スタビング面
89 谷底
90 ねじ切りインサート
90a ねじ切りインサート
90b ねじ切りインサート
91 刃
100 鋼管継手構造
1000 鋼管継手構造
1010 第1鋼管
1010a 管端
1011 ピン
1011a 先端部
1013 雄ねじ部
1017 完全ねじ部
1030 先端部
1031 ボックス
1031a 先端部
1100 鋼管継手構造
1200 鋼管継手構造

Claims (18)

  1.  少なくとも一方の端部に雄ねじが形成された第1鋼管と、少なくとも一方の端部に雌ねじが形成された第2鋼管と、を接続する鋼管継手構造であって、
     前記第1鋼管は、
     当該第1鋼管の先端から順に、ピン前部と、前記雄ねじが形成されている雄ねじ部と、ピン後部と、が並んで配置され、
     前記第2鋼管は、
     当該第2鋼管の先端から順に、ボックス前部と、前記雌ねじが形成されている雌ねじ部と、ボックス後部と、が並んで配置され、
     前記雄ねじ部は、
     前記ピン前部側の端部に、平行ねじかつ不完全ねじであるピン前部平行ねじ部と、
     当該雄ねじ部の中央部にテーパねじかつ完全ねじであるピン完全ねじ部と、を備え、
     前記雌ねじ部は、
     前記ボックス後部側の端部にテーパねじかつ不完全ねじであるボックス後部不完全ねじ部と、
     当該雌ねじ部の中央部にテーパねじかつ完全ねじであるボックス完全ねじ部と、を備え、
     前記ボックス後部不完全ねじ部と前記ピン前部平行ねじ部とは、互いに螺合し、
     管軸を含む断面において、前記ピン前部平行ねじ部の谷底の幅は、
     前記ピン完全ねじ部の谷底よりも幅が大きい、鋼管継手構造。
  2.  前記雌ねじ部は、
     前記ボックス前部側の端部に、平行ねじかつ不完全ねじであるボックス前部平行ねじ部を更に備え、
     前記雄ねじ部は、
     前記ピン後部側の端部にテーパねじかつ不完全ねじであるピン後部不完全ねじ部を更に備え、
     前記ボックス前部平行ねじ部と前記ピン後部不完全ねじ部とは、互いに螺合し、
     前記ボックス前部平行ねじ部の谷底は、
     前記ボックス完全ねじ部の谷底よりも幅が大きい、請求項1に記載の鋼管継手構造。
  3.  少なくとも一方の端部に雄ねじが形成された第1鋼管と、少なくとも一方の端部に雌ねじが形成された第2鋼管と、を接続する鋼管継手構造であって、
     前記第1鋼管は、
     当該第1鋼管の先端から順に、ピン前部と、前記雄ねじが形成されている雄ねじ部と、ピン後部と、が並んで配置され、
     前記第2鋼管は、
     当該第2鋼管の先端から順に、ボックス前部と、前記雌ねじが形成されている雌ねじ部と、ボックス後部と、が並んで配置され、
     前記雄ねじ部は、
     前記ピン後部側の端部に、テーパねじかつ不完全ねじであるピン後部不完全ねじ部と、
     当該雄ねじ部の中央部にテーパねじかつ完全ねじであるピン完全ねじ部と、を備え、
     前記雌ねじ部は、
     前記ボックス前部側の端部に平行ねじかつ不完全ねじであるボックス前部平行ねじ部と、
     当該雌ねじ部の中央部にテーパねじかつ完全ねじであるボックス完全ねじ部と、を備え、
     前記ピン後部不完全ねじ部と前記ボックス前部平行ねじ部とは、互いに螺合し、
     管軸を含む断面において、前記ボックス前部平行ねじ部の谷底は、
     前記ボックス完全ねじ部の谷底よりも幅が大きい、鋼管継手構造。
  4.  少なくとも一方の端部に雄ねじが形成された第1鋼管と、少なくとも一方の端部に雌ねじが形成された第2鋼管と、を接続する鋼管の継手構造であって、
     前記第1鋼管は、
     当該第1鋼管の先端から順に、ピン前部と、前記雄ねじが形成されている雄ねじ部と、ピン後部と、が並んで配置され、
     前記第2鋼管は、
     当該第2鋼管の先端から順に、ボックス前部と、前記雌ねじが形成されている雌ねじ部と、ボックス後部と、が並んで配置され、
     前記雄ねじ部は、
     前記ピン前部側の端部に、平行ねじかつ不完全ねじであるピン前部平行ねじ部と、
     当該雄ねじ部の中央部側にテーパねじかつ完全ねじであるピン完全ねじ部と、を備え、
     前記雌ねじ部は、
     前記ボックス後部側の端部にテーパねじかつ不完全ねじであるボックス後部不完全ねじ部と、
     当該雌ねじ部の中央部側にテーパねじかつ完全ねじであるボックス完全ねじ部と、を備え、
     前記ピン前部平行ねじ部と前記ボックス後部不完全ねじ部とは、互いに螺合し、
     前記ボックス後部不完全ねじ部の谷底は、
     前記ボックス完全ねじ部の谷底よりも幅が大きい、鋼管継手構造。
  5.  前記雄ねじ部は、
     前記ピン後部側の端部に、テーパねじかつ不完全ねじであるピン後部不完全ねじ部を更に備え、
     前記雌ねじ部は、
     前記ボックス前部側の端部に、平行ねじかつ不完全ねじであるボックス側平行ねじ部を更に備え、
     前記ピン後部不完全ねじ部と前記ボックス側平行ねじ部とは、互いに螺合し、
     前記ピン後部不完全ねじ部の谷底は、
     前記ピン完全ねじ部の谷底よりも幅が大きい、請求項4に記載の鋼管継手構造。
  6.  少なくとも一方の端部に雄ねじが形成された第1鋼管と、少なくとも一方の端部に雌ねじが形成された第2鋼管と、を接続する鋼管の継手構造であって、
     前記第1鋼管は、
     当該第1鋼管の先端から順に、ピン前部と、前記雄ねじが形成されている雄ねじ部と、ピン後部と、が並んで配置され、
     前記第2鋼管は、
     当該第2鋼管の先端から順に、ボックス前部と、前記雌ねじが形成されている雌ねじ部と、ボックス後部と、が並んで配置され、
     前記雄ねじ部は、
     前記ピン後部側の端部に、平行ねじかつ不完全ねじであるピン後部不完全ねじ部と、
     当該雄ねじ部の中央部側にテーパねじかつ完全ねじであるピン完全ねじ部と、を備え、
     前記雌ねじ部は、
     前記ボックス前部側の端部に平行ねじかつ不完全ねじであるボックス側平行ねじ部と、
     当該雌ねじ部の中央部にテーパねじかつ完全ねじであるボックス完全ねじ部と、を備え、
     前記ピン後部不完全ねじ部と前記ボックス側平行ねじ部とは、互いに螺合し、
     前記ピン後部不完全ねじ部の谷底は、
     前記ピン完全ねじ部の谷底よりも幅が大きい、鋼管継手構造。
  7.  前記ピン後部は、
     前記第1鋼管の管軸に交差する面であるピン後部ショルダ面を備え、
     前記ボックス前部は、
     当該第2鋼管の先端面であり、かつ管軸に交差する面であるボックス前部ショルダ面を備え、
     前記ピン後部ショルダ面と前記ボックス前部ショルダ面とが当接する、請求項1~6の何れか1項に記載の鋼管継手構造。
  8.  前記ピン前部は、
     前記第1鋼管の先端面であり、かつ管軸に交差するピン前部ショルダ面を備え、
     前記ボックス後部は、
     前記第2鋼管の管軸に交差する面であるボックス後部ショルダ面を備え、
     前記ピン前部ショルダ面と前記ボックス後部ショルダ面とが当接する、請求項1~7の何れか1項に記載の鋼管継手構造。
  9.  前記ピン前部は、
     前記雄ねじが形成されていない非雄ねじ部を備える、請求項1~8の何れか1項に記載の鋼管継手構造。
  10.  前記ボックス後部は、
     前記雌ねじが形成されていない非雌ねじ部を備える、請求項1~9の何れか1項に記載の鋼管継手構造。
  11.  前記第1鋼管及び前記第2鋼管は、
     一方の端部にピンが形成され、他方の端部にボックスが形成されている、請求項1~10の何れか1項に記載の鋼管継手構造。
  12.  前記第1鋼管は、
     両端部にピンが形成され、
     前記第2鋼管は、
     両端部にボックスが形成されている、請求項1~11の何れか1項に記載の鋼管継手構造。
  13.  前記雄ねじ部は、
     前記ピン前部平行ねじ部よりも前記ピン後部側の外周面に段差が形成されている、請求項1又は2に記載の鋼管継手構造。
  14.  前記雌ねじ部は、
     前記ボックス前部平行ねじ部よりも前記ボックス後部側の内周面に段差が形成されている、請求項2又は3に記載の鋼管継手構造。
  15.  前記雄ねじ部は、
     前記ピン前部平行ねじ部の前記ピン後部側に接続されたテーパねじ部を備え、
     管軸を含む断面において、前記テーパねじ部のうち前記ピン前部平行ねじ部と接続された一部の領域の谷底の幅は、
     前記ピン完全ねじ部の谷底よりも幅が大きい、請求項1又は2に記載の鋼管継手構造。
  16.  前記雌ねじ部は、
     前記ボックス前部平行ねじ部の前記ボックス後部側に接続されたテーパねじ部を備え、
     管軸を含む断面において、前記テーパねじ部のうち前記ボックス前部平行ねじ部と接続された一部の領域の谷底の幅は、
     前記ボックス完全ねじ部の谷底よりも幅が大きい、請求項2又は3に記載の鋼管継手構造。
  17.  鋼管の端部に雄ねじ部又は雌ねじ部を加工する鋼管加工方法であって、
     前記雄ねじ部又は前記雌ねじ部は、
     前記鋼管の先端から順に平行ねじ部、テーパねじ部が形成されており、
     初期位置から第1の送り速度でねじ切りインサートを送り前記平行ねじ部及び前記テーパねじ部を連続して加工する複数の通常加工パスと、
     第2の送り速度で前記平行ねじ部のスタビングフランクを加工する第1山痩せ加工パスと、
     前記第2の送り速度で前記平行ねじ部のスタビングフランクを加工し、前記第1の送り速度で前記テーパねじ部のスタビングフランクを加工する第2山痩せ加工パスと、
     第3の送り速度で前記平行ねじ部のロードフランクを加工し、前記第1の送り速度で前記テーパねじ部を加工する第3山痩せ加工パスと、を備え、
     前記第1山痩せ加工パス及び前記第2山痩せ加工パスは、
     前記初期位置よりも前記鋼管に近い位置から加工が開始され、
     前記第3山痩せ加工パスは、
     前記初期位置よりも前記鋼管から遠い位置から加工が開始される、鋼管加工方法。
  18.  鋼管の端部に雄ねじ部又は雌ねじ部を加工する鋼管加工方法であって、
     前記雄ねじ部又は前記雌ねじ部は、
     前記鋼管の先端から順に平行ねじ部、テーパねじ部が形成されており、
     初期位置から第1の送り速度でねじ切りインサートを送り前記平行ねじ部及び前記テーパねじ部を連続して加工する複数の通常加工パスと、
     第2の送り速度で前記平行ねじ部及び前記テーパねじ部の一部のスタビングフランクを加工する第1山痩せ加工パスと、
     前記第2の送り速度で前記平行ねじ部及び前記テーパねじ部の前記一部のスタビングフランクを加工し、前記第1の送り速度で前記テーパねじ部の前記一部以外の部分のスタビングフランクを加工する第2山痩せ加工パスと、
     第3の送り速度で前記平行ねじ部及び前記テーパねじ部の前記一部のロードフランクを加工し、前記第1の送り速度で前記テーパねじ部の前記一部以外の部分を加工する第3山痩せ加工パスと、を備え、
     前記第1山痩せ加工パス及び前記第2山痩せ加工パスは、
     前記初期位置よりも前記鋼管に近い位置から加工が開始され、
     前記第3山痩せ加工パスは、
     前記初期位置よりも前記鋼管から遠い位置から加工が開始される、鋼管加工方法。
PCT/JP2022/001960 2022-01-20 2022-01-20 鋼管継手構造及び鋼管加工方法 WO2023139721A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023574972A JPWO2023139721A1 (ja) 2022-01-20 2022-01-20
PCT/JP2022/001960 WO2023139721A1 (ja) 2022-01-20 2022-01-20 鋼管継手構造及び鋼管加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001960 WO2023139721A1 (ja) 2022-01-20 2022-01-20 鋼管継手構造及び鋼管加工方法

Publications (1)

Publication Number Publication Date
WO2023139721A1 true WO2023139721A1 (ja) 2023-07-27

Family

ID=87348321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001960 WO2023139721A1 (ja) 2022-01-20 2022-01-20 鋼管継手構造及び鋼管加工方法

Country Status (2)

Country Link
JP (1) JPWO2023139721A1 (ja)
WO (1) WO2023139721A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384737A (en) * 1980-04-25 1983-05-24 Republic Steel Corporation Threaded joint for well casing and tubing
JPS6069387A (ja) * 1983-09-06 1985-04-20 川崎製鉄株式会社 管継手
JPH0280886A (ja) * 1988-09-14 1990-03-20 Nippon Steel Corp シール面圧保持機能の優れた油井管用ネジ継手
JPH05500842A (ja) * 1989-07-28 1993-02-18 エキヴァラン ソシエテ アノニム ねじ付き筒状連結部
WO2015105054A1 (ja) * 2014-01-09 2015-07-16 新日鐵住金株式会社 鋼管用ねじ継手
JP2018500526A (ja) * 2011-08-05 2018-01-11 ヴァルレック オイル アンド ガス フランス 石油産業において使用される自動ロック式のねじ山を設けた管状接続
WO2021044862A1 (ja) * 2019-09-02 2021-03-11 日本製鉄株式会社 鋼管用ねじ継手

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384737A (en) * 1980-04-25 1983-05-24 Republic Steel Corporation Threaded joint for well casing and tubing
JPS6069387A (ja) * 1983-09-06 1985-04-20 川崎製鉄株式会社 管継手
JPH0280886A (ja) * 1988-09-14 1990-03-20 Nippon Steel Corp シール面圧保持機能の優れた油井管用ネジ継手
JPH05500842A (ja) * 1989-07-28 1993-02-18 エキヴァラン ソシエテ アノニム ねじ付き筒状連結部
JP2018500526A (ja) * 2011-08-05 2018-01-11 ヴァルレック オイル アンド ガス フランス 石油産業において使用される自動ロック式のねじ山を設けた管状接続
WO2015105054A1 (ja) * 2014-01-09 2015-07-16 新日鐵住金株式会社 鋼管用ねじ継手
WO2021044862A1 (ja) * 2019-09-02 2021-03-11 日本製鉄株式会社 鋼管用ねじ継手

Also Published As

Publication number Publication date
JPWO2023139721A1 (ja) 2023-07-27

Similar Documents

Publication Publication Date Title
US4384737A (en) Threaded joint for well casing and tubing
EP0767024B1 (en) Thread forming tap
CA3008029C (en) Tubular coupling
MX2014002972A (es) Conjunto para la realizacion de una junta roscada para la perforacion y la explotacion de pozos de hidrocarburos y la junta roscada resultante.
JP2020537723A (ja) 部分的に自動ロック式に係合するねじ接続部
JPS5821157B2 (ja) パイプ特に石油採堀用パイプの接合装置
JP2018500526A (ja) 石油産業において使用される自動ロック式のねじ山を設けた管状接続
US20230400126A1 (en) Self-locking threaded connection partially in non-locking engagement
CN114402116A (zh) 用于油井套管柱的螺纹连接件
EP0236430B1 (en) Cylindrical threaded connection with uniform interference
WO2023139721A1 (ja) 鋼管継手構造及び鋼管加工方法
US20100230959A1 (en) Low cost, high performance pipe connection
CN114270012B (zh) 螺纹接头
US20190017634A1 (en) Tubular coupling
JPH0280886A (ja) シール面圧保持機能の優れた油井管用ネジ継手
US3175850A (en) Wide angle thread and method of forming same
JP5779990B2 (ja) ねじ切削方法
US11007590B2 (en) Thread forming tap and manufacturing method for thread forming tap
JP3685242B2 (ja) テーパ付角形ねじの切削加工方法
CN210920416U (zh) 一种双线海洋隔水管接头
CN110608321A (zh) 一种双线海洋隔水管接头
JP3756652B2 (ja) 管継手
EP4179177B1 (en) A threaded joint
CN112118930A (zh) 挤压丝锥
RU2403131C1 (ru) Способ изготовления герметичных резьбовых соединений нефтепромысловых труб

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023574972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE