WO2023138459A1 - 解码方法、设备及可读存储介质 - Google Patents

解码方法、设备及可读存储介质 Download PDF

Info

Publication number
WO2023138459A1
WO2023138459A1 PCT/CN2023/071803 CN2023071803W WO2023138459A1 WO 2023138459 A1 WO2023138459 A1 WO 2023138459A1 CN 2023071803 W CN2023071803 W CN 2023071803W WO 2023138459 A1 WO2023138459 A1 WO 2023138459A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
symbol period
decoding end
original
decoder
Prior art date
Application number
PCT/CN2023/071803
Other languages
English (en)
French (fr)
Inventor
黄伟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023138459A1 publication Critical patent/WO2023138459A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a decoding method, device and readable storage medium.
  • OSTBC Orthogonal Space Time Block Code
  • Alamouti codes can obtain full diversity gain and full rate, they are all designed for traditional active radio frequency communication, without considering the modulation characteristics and implementation complexity of passive terminals such as backscatter communication; at the same time, the decoding end is required to know the channel state information (Channel State Information, CSI) between all transmitting antennas and receiving antennas.
  • CSI Channel State Information
  • the traditional differential group code is only suitable for constant modes such as Multiple Phase Shift Keying (MPSK).
  • MPSK Multiple Phase Shift Keying
  • Non -constant modes such as Ude Modulation, QAM), because the energy of each constellation symbol is different, it is impossible to directly use the traditional differential empty -coding coding method.
  • Embodiments of the present application provide a decoding method, device, and readable storage medium, which can reduce the complexity of system implementation and the problem of application to non-constant modulus modulation without knowing the CSI between all transmitting antennas and receiving antennas at the decoding end.
  • a decoding method including:
  • the decoding end determines the coding coefficient vector according to the received signal and the new space-time block code NSTBC codebook;
  • the decoding end determines the power sum of the transmitted symbols on the transmitted antennas in the first two symbol periods according to the received signal
  • the decoding end decodes the original coded input symbols of the current symbol period according to the encoding coefficient vector, the differential space-time block code DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas of the first two symbol periods, and the first two symbol periods are two adjacent symbol periods before the current symbol period.
  • a decoding device including:
  • the first determination module is used for the decoding end to determine the encoding coefficient vector according to the received signal and the NSTBC codebook;
  • the second determination module is used for the decoding end to determine the power sum of the transmitted symbols on the transmitted antennas in the first two symbol periods according to the received signal;
  • the differential decoding module is used for the decoding end to decode the original coded input symbols of the current symbol period according to the encoding coefficient vector, the differential space-time block code DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the antennas for the first two symbol periods, and the first two symbol periods are two adjacent symbol periods before the current symbol period.
  • a third aspect provides a decoding terminal, the terminal includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the steps of the method described in the first aspect are implemented.
  • a decoding end including a processor and a communication interface, wherein the processor is used for the decoding end to determine the encoding coefficient vector according to the received signal and the NSTBC codebook; the decoding end determines the power sum of the transmitted symbols on the antenna for the first two symbol periods according to the received signal; the decoding end decodes the original coded input symbol of the current symbol period according to the encoding coefficient vector, the DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the antenna for the first two symbol periods, and the first two symbol periods are two adjacent before the current symbol period symbol period.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method as described in the first aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the signal vector is constructed according to the received signal and the NSTBC codebook structure and the encoding coefficient vector is calculated; on the other hand, according to the received signal, the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods is determined, and then the original encoded input symbols of the current symbol period are calculated and restored according to the calculated encoding coefficient vector, DSTBC decoding method, NSTBC codebook, and the power sum of the transmitting symbols on the transmitting antennas in the first two symbol periods.
  • this decoding method it is possible to restore the original symbols without pilots, reducing system overhead; when decoding the original coded input symbols of the current symbol period, the power sum of the transmitted symbols on the transmitting antennas in the previous two symbol periods is used to realize the application of non-constant modulus modulation; at the same time, based on the NSTBC codebook, the number or types of load impedances on each antenna can be reduced while ensuring diversity gain, and the detection error probability is effectively reduced.
  • Figure 1a is a schematic structural diagram of a backscatter communication transmitting end
  • Figure 1b is a schematic diagram of Alamouti space-time block code diversity transmission
  • FIG. 2 is a schematic flow chart of a decoding method provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a decoding device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It should be understood that the terms used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first” and “second” are usually of one type, and the number of objects is not limited. For example, there can be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for exemplary purposes, and uses NR terminology in most of the following descriptions, but these technologies can also be applied to applications other than NR system applications, such as the 6th generation ( 6th Generation, 6G) communication system.
  • NR New Radio
  • 6G 6th Generation
  • the decoding end may be deployed on the receiving device, for example, it may be a terminal or a network side device.
  • the terminal may be a mobile phone, a tablet personal computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality ( virtual reality (VR) equipment, robot, wearable device (Wearable Device), vehicle equipment (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication function, Such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (PC), teller machines or self-service machines and other terminal-side devices.
  • PC personal computers
  • teller machines or self-service machines and other terminal-side devices
  • the network side equipment may include access network equipment or core network equipment, where the access network equipment may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • RAN Radio Access Network
  • the access network equipment may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a WiFi node, etc.
  • the base station may be called a node B, an evolved node B (Evolved Node B, eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ESS), a home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary.
  • the core network equipment may include but not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and Policy and Charging Rules Function (PCRF), Edge Application Server Discovery Function (EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized network configuration (CN) C), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application
  • MME mobility management entity
  • AMF Access Mobility Management Function
  • SMF session management function
  • User Plane Function User Plane Function
  • Policy Control Function Policy Control Function
  • the future 6G communication network needs to support massive Internet of Everything, among which the number of IoT devices will reach hundreds of billions, and its connection density will increase by 10-100 times compared to 5G, reaching a connection density of 10-100/ m2 .
  • Massive IoT devices pose new challenges to both cost and power consumption.
  • Cellular networking, low cost, low power consumption and even zero power consumption are the main trends in the development of IoT devices in the future.
  • Traditional passive terminals are limited by their power consumption and hardware capabilities, and their communication transmission distances are mostly less than 10 meters, which is far from reaching the goal of cellular coverage of 100 meters. Therefore, how to effectively increase the communication distance of passive terminals becomes a difficult point to be solved after the technology is turned into a cellular network.
  • backscatter communication controls the amplitude or phase of the signal by changing the load impedance
  • backscatter communication modulation circuit considering other non-ideal factors of the backscatter communication modulation circuit, there are more or less errors in the amplitude or phase of the output signal. But as long as these signal errors are within the resolvable range, they have no effect on signal demodulation. ring. Therefore, if the number or types of load impedances to be controlled on each antenna is smaller, the tolerable error can be larger, and the probability of false detection is smaller.
  • BSC UE backscatter communication equipment
  • Backscatter communication means that backscatter communication devices use radio frequency signals from other devices or the environment to perform signal modulation to transmit their own information. Its modulation circuit is shown in Figure 1a.
  • the backscatter communication device controls the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, and phase of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • the backscatter communication device may be a Tag in a traditional radio frequency identification (Radio Frequency Identification, RFID), or a passive or semi-passive Internet of Things (Passive/Semi-passive Internet of Things, IoT). For convenience, it is collectively referred to as BSC UE here.
  • RFID Radio Frequency Identification
  • IoT passive/Semi-passive Internet of Things
  • Typical modulation techniques can be classified into constant modulus modulation and non-constant modulus modulation.
  • the so-called constant modulus modulation means that the power or amplitude of the modulated symbol constellation points is the same, and MPSK is a typical constant modulus modulation.
  • Non-constant modulus modulation means that the power or amplitude of the modulated symbol constellation points is different.
  • Typical non-constant modulus modulation includes APSK, QAM, etc.
  • OSTBC Orthogonal Space Time Block Code
  • STBC Space-time block code
  • STBC is widely used in cellular communication and wireless local area network. STBC obtains diversity without increasing bandwidth by introducing signal redundancy in the space and time domains and constructing a block-encoded transmission matrix reasonably gain and antenna gain.
  • OSTBC is a special linear STBC whose linear space-time block code S satisfies the following single condition:
  • I represents the identity matrix with dimension M
  • i represents the i-th element of M dimension
  • s i is the diagonal element
  • the i-th row element in S represents the symbol transmitted on the i-th transmitting antenna within M time
  • the j-th column element in S represents the symbol transmitted on the n t antenna at the j-th time.
  • Each column in the transmission matrix S that satisfies the above formula is orthogonal to each other, which means that the transmitted signal sequences on different antennas are also orthogonal, thereby ensuring that STBC can obtain full diversity gain at the same time.
  • the corresponding decoding end only needs to perform simple maximum ratio combining (MRC) to sequentially decouple the transmitted symbols on different antennas, and detect and estimate through the maximum likelihood detection (Maximum likelihood, ML) algorithm.
  • MRC maximum ratio combining
  • Alamouti code is the most representative OSTCB code, and can obtain full diversity and full rate gain.
  • Figure 1b shows the functional block diagram of the Alamouti code.
  • the symbol sent on antenna 1 is marked as s 1
  • the symbol sent on antenna 2 is marked as s 2 .
  • the symbol transmitted on antenna 1 is And the symbols transmitted on antenna 2 are
  • the following space-time block code matrix is formed:
  • n 1 and n 2 represent receiving noise and signal interference.
  • the decoder performs combined reception according to the following criteria:
  • the signals s 1 and s 2 can be estimated by the ML detector.
  • NTBC New Space Time Block Code
  • the symbol sent on antenna 1 is denoted as s 1
  • the symbol sent on antenna 2 is denoted as But in the next symbol period, the symbol sent on antenna 1 is s 2 , and the symbol sent on antenna 2 is According to the definition of OSTBC code word, S 2 belongs to OSTBC code word, so it can obtain full diversity gain and full rate transmission. The difference between this type of codeword and the traditional Alamouti code in backscatter communication is analyzed below.
  • mapping rules of symbols 0 and 1 and reflection coefficients are:
  • the symbols 0 and 1 are represented by controlling two phase-reversed load impedances. Therefore, the coding table for the diversity coding code word S2 to transmit different symbols simultaneously on two antennas is shown in Table 5.
  • Table 3 and Table 4 also provide coding tables for the Alamouti codeword and the extended Alamouti codeword to transmit different symbols simultaneously on two antennas. Among them, the extended Alamouti codeword is:
  • antenna 1 only needs two kinds of coefficients
  • antenna 2 also only needs two kinds of coefficients
  • antenna 1 and antenna 2 need four kinds of coefficients
  • the same approach can be extended to four-antenna and above scenarios.
  • DTBC Differential Space Time Block Code
  • the decoding end adopts the decoding scheme of coherent detection, so the decoding end needs the exact channel state information (Chanel State Information, CSI) from the transmitting antenna to the receiving antenna.
  • CSI Channel State Information
  • the decoder cannot obtain the CSI information of the project.
  • the differential space-time block code is a scheme in which neither the encoding end nor the decoding end needs to know the CSI information, the encoding and decoding are simple, and the diversity gain can be obtained.
  • two-antenna transmission and single-antenna reception are taken as examples for description.
  • the information s 1 and s 2 sent twice do not carry information and are only used as reference signals.
  • the encoding end uses differential encoding to send. Assuming that in the 2t-1 symbol period, the symbols sent from the first antenna and the second antenna are s 2t-1 and s 2t respectively, then in the 2t symbol period, the symbols sent from the first antenna and the second antenna are respectively and In the 2t+1 symbol period, a group of 2m bits arrive at the encoding end, and the corresponding encoding coefficient vector is generated The encoding end sends the symbol vector and the current encoding coefficient vector according to the previous two symbol periods Calculate the symbols sent in the current 2t+1 symbol period:
  • the transmitted symbols on the two antennas of the 2t+2 symbol period are calculated as and Among them, the coding coefficient vector satisfy:
  • the symbols are repeatedly encoded and sent.
  • the channel matrix is defined as:
  • the noise signal is:
  • the new space-time block codebook NSTBC proposed for backscatter communication reduces the complexity of hardware implementation and the high probability of detection errors by optimizing the codebook of the traditional Alamouti code, but this method requires the receiving end to know the CSI information between all transmitting antennas and receiving antennas.
  • Differential space-time block codes do not need to know the CSI information between all transmitting antennas and receiving antennas, but they do not consider the modulation characteristics and implementation complexity of passive terminals such as backscatter communication.
  • the embodiment of the present application provides a decoding method
  • the execution body of the method is the decoding end
  • the decoding end may be a terminal device or a network side device
  • the method includes:
  • Step 201 the decoder determines the encoding coefficient vector according to the received signal and the NSTBC codebook
  • Step 202 The decoding end determines the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods according to the received signal;
  • Step 203 The decoding end decodes the original coded input symbols of the current symbol period according to the coding coefficient vector, the DSTBC coding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas in the previous two symbol periods.
  • the preceding two symbol periods are two adjacent symbol periods before the current symbol period.
  • the signal vector is constructed according to the received signal and the NSTBC codebook structure and the encoding coefficient vector is calculated; on the other hand, according to the received signal, the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods is determined, and then the original encoded input symbols of the current symbol period are calculated and restored according to the calculated encoding coefficient vector, DSTBC decoding method, NSTBC codebook, and the power sum of the transmitting symbols on the transmitting antennas in the first two symbol periods.
  • this decoding method it is possible to restore the original symbols without a pilot, reducing system overhead; when decoding the original coded input symbols of the current symbol period, the power sum of the transmitted symbols on the transmitting antennas in the previous two symbol periods is used for normalization, so as to realize the application of non-constant modulus modulation; at the same time, based on the NSTBC codebook, the number or types of load impedances on each antenna can be reduced while ensuring diversity gain, and the detection error probability is effectively reduced.
  • the decoding method provided by the embodiment of the present application combines the DSTBC decoding method with the NSTBC codebook to extract the advantages of the two, and when decoding the original coded input symbols of the current symbol period, the power sum of the transmitted symbols on the transmitting antennas in the previous two symbol periods is used for normalization so as to be suitable for non-constant modulus modulation.
  • this new type of decoding method obtained it can be called a differential NSTBC decoding method under non-constant modulus modulation.
  • the above-mentioned signal vectors can also be called statistical signal vectors
  • the above-mentioned original coded input symbols refer to symbols that have been coded at the coding end and have not undergone channel gain and/or noise, which are different from signals directly received by the decoding end, and are symbols that need to be decoded by the decoding end.
  • the encoder sends the symbols on the two antennas and encodes the coefficient vector at the current moment Calculate the symbols sent on the two antennas at the current moment, the current moment is the 2t+1 symbol period:
  • s 2t+1 and s 2t+2 are the transmitted symbols on the two transmit antennas obtained by coding at the encoding end in the 2t+2 symbol period; where the symbols is the conjugate of the symbol s 2t+2 , the symbol is the negative conjugate of symbol s 2t+1 ; the 2t+1 symbol period is the current symbol period, and the 2t+2 symbol period is the next symbol period of the current symbol period.
  • s 1 and s 2 are constellation symbols of non-constant modulus modulation such as APSK.
  • Another implementation could be:
  • the encoder sends the symbols on the two antennas and encodes the coefficient vector at the current moment Calculate the symbols sent on the two antennas at the current moment, the current moment is the 2t+1 symbol period:
  • s 1 and s 2 are constellation symbols of non-constant modulus modulation such as APSK.
  • the codebook structure of the NSTBC codebook satisfies:
  • s 2t+1 and is the transmitted symbols on the two transmitting antennas encoded by the encoding end in the 2t+1 symbol period (it should be noted that the transmitted symbols can also be called constellation symbols, constellation points, etc., and this embodiment of the present application does not specifically limit the name)
  • the codebook structure of the NSTBC codebook satisfies:
  • s 2t+1 and is the original encoded input symbol of the 2t+1 symbol period decoded by the decoder
  • s 2t+2 and is the original encoded input symbol of the 2t+2 symbol period decoded by the decoder
  • the symbol is the conjugate of the symbol s 2t+2
  • the symbol is the negative conjugate of symbol s 2t+1
  • the 2t+1 symbol period is the current symbol period
  • the 2t+2 symbol period is the next symbol period of the current symbol period.
  • the decoder determines according to the received signal and the new space-time block code NSTBC codebook Coding coefficient vector
  • the decoder determines the signal vector according to the received signal and the NSTBC codebook
  • the decoding end determines the encoding coefficient vector of the decoding end in the current symbol period according to the signal vector
  • the above (2) decoding end determines the encoding coefficient vector of the decoding end in the current symbol period according to the signal vector, including:
  • the embodiment of the present application provides two implementation modes, including:
  • the decoding end determines the power sum of the transmitted symbols on the transmitted antennas in the first two symbol periods according to the received signal, including:
  • the decoding end determines the power sum
  • ⁇ 1 and ⁇ 2 are the channel gains from the two transmitting antennas encoded by the encoding end to the receiving antenna of the decoding end respectively
  • ⁇ ( ⁇ 1 , ⁇ 2 ) is the channel matrix
  • S 1 and S 2 are respectively the symbol vectors of dimension L from the two encoded transmitting antennas at the encoding end to the receiving antenna at the decoding end
  • W is the signal noise.
  • 2 can be transmitted by the demodulated 2t-1th symbol period of the two antenna symbols is calculated; alternatively, the symbol power
  • 2 can be calculated by calculating the received signal vector Multiplying with its own self-conjugate matrix (Hermitian) is calculated as:
  • ⁇ ( ⁇ 1 , ⁇ 2 ) is the channel matrix
  • 2 ) can be obtained through the statistical signal expectation of the received signal.
  • One possible estimation method is:
  • s 2t-1 and is the original encoded input symbol of the 2t-1 symbol period decoded by the decoder is the square root of the power sum of the transmitted symbols on the two transmitting antennas at the encoding end in the 2t-1th symbol period.
  • the calculation method of can refer to the calculation process of
  • the method further includes:
  • the decoding end is based on the original bit or original symbol and A preset mapping table to determine the original bit or original symbol;
  • the preset mapping table contains original bits or original symbols and coding coefficient vectors Of mapping relationship between them.
  • the decoding end determines the original bits or original symbols by directly looking up the table.
  • the advantage of this process is that the original bits or original symbols are restored and determined by directly querying the mapping table, and the implementation complexity is low and the decoding delay will be lower.
  • the above-mentioned original bit or original symbol refers to the initial data bit or initial symbol to be encoded at the encoding end
  • the above-mentioned initial reference symbol refers to the reference symbol on the transmitting antenna in the initial symbol period, that is, in the first symbol period.
  • the decoding end performs decoding processing in the above manner, and finally decodes to obtain initial data bits or initial symbols.
  • the method also includes:
  • the decoder inputs symbols according to the decoded original code Determine the original sign (s 2t+1 ,s 2t+2 );
  • the decoder determines the original bits according to the (s 2t+1 , s 2t+2 ).
  • the decoding end uses direct calculation to calculate the original bits or original symbols.
  • the advantage of this processing is that the decoding end does not need to store the mapping table, but decodes the original encoded input symbols through real-time calculation. It should be noted.
  • the method further includes:
  • the decoding end determines that the original coded input symbol or initial reference symbol of the first symbol period is and the raw coded input symbols for the 2nd symbol period are
  • the decoding end completes the decoding processing for the first two symbol periods, and the above-mentioned decoding processing method for the 2t+1 symbol period can be used for the subsequent third symbol period and subsequent symbol periods.
  • the method further includes:
  • the decoding end determines that the original coded input symbol or initial reference symbol of the first symbol period is and the raw coded input symbols for the 2nd symbol period are
  • the decoding end completes the decoding processing for the first two symbol periods, and the above-mentioned decoding processing method for the 2t+1 symbol period can be used for the subsequent third symbol period and subsequent symbol periods.
  • the decoder determines the signal vector according to the received signal and the NSTBC codebook, including:
  • r 2t-1 is the signal received by the decoder in the 2t-1 symbol period
  • r 2t is the signal received by the decoder in the 2t symbol period
  • r 2t+1 is the signal received by the decoder in the 2t+1 symbol period
  • r 2t+2 is the signal received by the decoder in the 2t+2 symbol period.
  • the received signal is:
  • ⁇ 1 and ⁇ 2 are the channel gains from the encoded two transmitting antennas at the encoding end to the receiving antenna at the decoding end, respectively, ⁇ 2t-1 is the receiving noise at the decoding end at the 2t-1 symbol period, and ⁇ 2t is the receiving noise at the decoding end at the 2t symbol period.
  • the signal vector satisfy:
  • the linear combination vector of useful signals is the noise interference vector.
  • the signal vector is the linear combination vector of useful signals Interference vector with noise It consists of two parts.
  • ⁇ ( ⁇ 1 , ⁇ 2 ) is the channel matrix, characterized by:
  • N 2t-1 , N 2t+1 , M 2t are noise vectors, expressed as:
  • ⁇ 1 and ⁇ 2 are the channel gains from the two transmitting antennas at the encoding end to the receiving antenna at the decoding end respectively, s 2t-1 and is the original encoded input symbol decoded by the decoder in the 2t-1 symbol period, s 2t and is the original encoded input symbol decoded by the decoder in the 2t symbol period, s 2t+1 and is the original encoded input symbol in the 2t+1 symbol period decoded by the decoder, s 2t+2 and is the original encoded input symbol of the 2t+2 symbol period decoded by the decoder;
  • ⁇ 2t-1 is the receiving noise of the decoding end in the 2t-1 symbol period
  • ⁇ 2t is the receiving noise of the decoding end in the 2t symbol period
  • ⁇ 2t+1 is the receiving noise of the decoding end in the 2t+1 symbol period
  • ⁇ 2t+2 is the receiving noise of the decoding end in the 2t+2 symbol period.
  • Example 1 take two transmitting antennas and one receiving antenna and APSK modulation as an example for illustration.
  • the symbol length L satisfies a certain length
  • the above is just a method for estimating channel power, but not limited thereto.
  • the received signal vector is:
  • ⁇ ( ⁇ 1 , ⁇ 2 ) is a channel matrix. According to the channel power calculated in (1), the signal power can be estimated
  • 2 can be transmitted through the demodulated symbols of the 2t-1th symbol period of the two antennas directly calculated;
  • the received signals of the receiving antennas at the 2t-1, 2t, 2t+1, and 2t+2 symbol periods are r 2t-1 , r 2t , r 2t+1 , and r 2t+2 respectively.
  • the channel matrix as:
  • the noise vector is:
  • the received signal vector is:
  • the received signal vectors on the 2t-1 and 2t+1 symbol periods are processed as follows:
  • the first statistical signal component can be obtained for:
  • M 2t is the noise vector, defined as:
  • the received signal vectors on the 2t-1 and 2t+1 symbol periods are processed as follows
  • the second statistical signal component can be obtained for:
  • the decoding end obtains the statistical signal vector of the received signal After that, the decoder selects the decision and statistical signal vector Vector of encoded coefficients with closest Euclidean distance As decoded output:
  • the decoding end first decodes the transmitted symbols on the two antennas in the third symbol period through the differential decoding method
  • Example 1 the original bits or original symbols are calculated directly.
  • the encoding coefficient vector may also be obtained directly by querying a preset mapping table.
  • the second example is to demap and decode the original input symbols by querying the mapping table.
  • Tool The body plan is as follows:
  • the set of constellation points is ⁇ -3,-1,1,3 ⁇
  • the set of encoding coefficient vectors is ⁇ .
  • the mapping rule "00, 01, 10, 11" ⁇ 1,3,-1,-3 ⁇ the first two bits c 1 c 2 are mapped to symbol s 3 , and the last two bits c 3 c 4 are mapped to symbol s 4 , the mapping relationship is:
  • Table 6 Mapping Table of APSK Input Bits and Coding Coefficient Vectors
  • the mapping table has different encoding coefficient vectors under different symbol periods are applicable, so the coded coefficient vector obtained in the calculation After the signal power and the channel power, the input symbols or input bits (c 1 c 2 , c 3 c 4 ) can be obtained by reverse mapping by querying the mapping table.
  • the present application may also include an example in which the original code of the current symbol period is decoded When inputting a symbol, the square root of the power sum of the transmitted symbols on the transmitting antenna in the first two symbol periods is used, which corresponds to the second embodiment described above, and the second real-time method also includes direct calculation and querying the mapping table.
  • the decoding method provided in the embodiment of the present application may be executed by a decoding device.
  • the decoding device provided in the embodiment of the present application is described by taking the decoding device executing the decoding method as an example.
  • the embodiment of the present application provides a decoding device 300, including:
  • the first determination module 301 is used for the decoding end to determine the encoding coefficient vector according to the received signal and the NSTBC codebook;
  • the second determination module 302 is used for the decoding end to determine the power sum of the transmitted symbols on the transmitted antennas in the first two symbol periods according to the received signal;
  • the differential decoding module 303 is used for the decoding end to decode the original coded input symbols of the current symbol period according to the encoding coefficient vector, the differential space-time block code DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas of the previous two symbol periods.
  • the signal vector is constructed according to the received signal and the NSTBC codebook structure and the encoding coefficient vector is calculated; on the other hand, according to the received signal, the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods is determined, and then the original encoded input symbols of the current symbol period are calculated and restored according to the calculated encoding coefficient vector, DSTBC decoding method, NSTBC codebook, and the power sum of the transmitting symbols on the transmitting antennas in the first two symbol periods.
  • this decoding method it is possible to restore the original symbols without a pilot, reducing system overhead; when decoding the original coded input symbols of the current symbol period, the power sum of the transmitted symbols on the transmitting antennas in the previous two symbol periods is used for normalization, so as to realize the application of non-constant modulus modulation; at the same time, based on the NSTBC codebook, the number or types of load impedances on each antenna can be reduced while ensuring diversity gain, and the detection error probability is effectively reduced.
  • the codebook structure of the NSTBC codebook satisfies:
  • the s 2t+1 and the is the original encoded input symbol of the 2t+1 symbol period decoded by the decoder, the s 2t+2 and the The original encoded input symbol of the 2t+2 symbol period decoded by the decoder; where the symbol is the conjugate of the symbol s 2t+2 , the symbol is the negative conjugate of symbol s 2t+1 ; the 2t+1 symbol period is the current symbol period, and the 2t+2 symbol period is the next symbol period of the current symbol period.
  • the first determination module is specifically used for:
  • the decoder determines the signal vector according to the received signal and the NSTBC codebook
  • the decoding end determines the encoding coefficient vector of the decoding end in the current symbol period according to the signal vector.
  • the first determination module is specifically used for:
  • the is a set of coding coefficient vectors, the is the signal vector, the is the encoding coefficient vector determined by the decoder in the 2t+1 symbol period.
  • the differential decoding module is specifically used for:
  • the s 2t-1 and the is the original encoded input symbol of the 2t-1 symbol period decoded by the decoder
  • 2 is the power sum of the transmitted symbols on the two transmit antennas of the encoder in the 2t-1-th symbol period.
  • the second determination module is specifically used for:
  • the decoding end determines the power sum
  • the for autocorrelation the is the received signal vector at the 2t-1 symbol period, the is a noise vector, the R is the signal received by the decoding end from the two transmitting antennas of the encoding end through the channel and noise, the ⁇ 1 and ⁇ 2 are respectively the channel gains from the two transmitting antennas encoded by the encoding end to the receiving antenna of the decoding end, and the ⁇ ( ⁇ 1 , ⁇ 2 ) is a channel matrix, and the r 2t-1 and is the signal received by the decoding end in the 2t-1 symbol period, the ⁇ 2t-1 and is the receiving noise of the decoding end in the 2t-1 symbol period, the S 1 and S 2 are symbol vectors whose dimension is L from the two transmitting antennas encoded by the encoding end to the receiving antenna of the decoding end respectively, and the W is signal noise.
  • the differential decoding module can also be specifically used for:
  • the s 2t-1 and the is the original encoded input symbol of the 2t-1 symbol period decoded by the decoder
  • the s 2t and the is the original coded input symbol of the 2t symbol period decoded by the decoder is the square root of the power sum of the transmitted symbols on the two transmitting antennas at the encoding end in the 2t-1th symbol period.
  • the device also includes:
  • the third determination module is used for the decoding end to compare the original bit or original symbol with the A preset mapping table to determine the original bit or original symbol;
  • the preset mapping table includes the original bits or original symbols and the encoding coefficient vector The mapping relationship between them after the initial reference symbols are determined.
  • the device also includes:
  • the fourth determination module is used for the decoding end to input symbols according to the decoded original code Determine the original sign (s 2t+1 ,s 2t+2 );
  • the decoding end determines the original bits according to the (s 2t+1 , s 2t+2 ).
  • the device also includes:
  • the fifth determination module is used for the decoding end to determine that the original coded input symbol of the first symbol period is and the raw coded input symbols for the 2nd symbol period are
  • the original encoded input symbol is the initial reference symbol
  • the differential decoding module is also used for the decoding end according to the formula:
  • the device also includes:
  • the fifth determination module is used for the decoding end to determine that the original coded input symbol of the first symbol period is and the raw coded input symbols for the 2nd symbol period are
  • the original encoded input symbol is the initial reference symbol
  • the differential decoding module is also used for the decoding end according to the formula:
  • the first determination module is specifically used for:
  • the r 2t-1 is the signal received by the decoding end in the 2t-1 symbol period
  • the r 2t is the signal received by the decoding end in the 2t symbol period
  • the r 2t +1 is the signal received by the decoding end in the 2t+1 symbol period
  • the r 2t+2 is the signal received by the decoding end in the 2t+2 symbol period.
  • the signal vector satisfy:
  • ⁇ 1 and ⁇ 2 are the channel gains from the two transmitting antennas encoded by the encoding end to the receiving antennas of the decoding end respectively, and the s 2t-1 and the is the original encoded input symbol decoded by the decoder in the 2t-1 symbol period, the s 2t and the is the original encoded input symbol decoded by the decoder in the 2t symbol period, the s 2t+1 and the is the original encoded input symbol of the 2t+1 symbol period decoded by the decoder, the s 2t+2 and the The original encoded input symbol of the 2t+2 symbol period decoded by the decoder;
  • the ⁇ ( ⁇ 1 , ⁇ 2 ) is a channel matrix
  • the N 2t-1 , the N 2t+1 , and the M 2t are noise vectors
  • the ⁇ 2t-1 is the receiving noise of the decoding end in the 2t-1 symbol period
  • the ⁇ 2t is the receiving noise of the decoding end in the 2t symbol period
  • the ⁇ 2t+1 is the receiving noise of the decoding end in the 2t+1 symbol period
  • the ⁇ 2t+2 is the receiving noise of the decoding end in the 2t+2 symbol period.
  • the decoding apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include but not limited to the types of terminal 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., the embodiment of the present application Not specifically limited.
  • the decoding device provided in the embodiment of the present application can realize each process realized by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 400, including a processor 401 and a memory 402.
  • the memory 402 stores programs or instructions that can run on the processor 401.
  • the programs or instructions are executed by the processor 401 to implement the steps of the above-mentioned decoding device method embodiment, and can achieve the same technical effect.
  • the communication device 400 is a network-side device, when the program or instruction is executed by the processor 401, each step of the above embodiment of the decoding device and method can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a decoding end, including a processor and a communication interface.
  • the processor is used for the decoding end to determine the encoding coefficient vector according to the received signal and the NSTBC codebook; the decoding end decodes the original encoding input symbol of the current symbol period according to the encoding coefficient vector, the DSTBC encoding method and the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas of the first two symbol periods.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 500 includes, but is not limited to: at least some components in a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, and a processor 510.
  • the terminal 500 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 510 through the power management system, so as to implement functions such as management of charging, discharging, and power consumption management through the power management system.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processing unit (Graphics Processing Unit, GPU) 5041 and a microphone 5042, and the graphics processor 5041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or image capture mode.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes at least one of a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 501 may transmit the downlink data from the network side device to the processor 510 for processing after receiving it; in addition, the radio frequency unit 501 may send uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 509 can be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, to There is one less application program or instruction required for a function (such as a sound playing function, an image playing function, etc.) and the like.
  • memory 59 may include volatile memory or nonvolatile memory, or memory 509 may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or a flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Volatile memory can be Random Access Memory (Random Access Memory, RAM), Static Random Access Memory (Static RAM, SRAM), Dynamic Random Access Memory (Dynamic RAM, DRAM), Synchronous Dynamic Random Access Memory (Synchronous DRAM, SDRAM), Double Data Rate Synchronous Dynamic Random Access Memory (Double Data Rate SDRAM, DDRSDRAM), Enhanced Synchronous Dynamic Random Access Memory (Enhanced SDRAM, ESD RAM), synchronous connection dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • the memory x09 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 510 may include one or more processing units; optionally, the processor 510 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to operating systems, user interfaces, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It can be understood that the foregoing modem processor may not be integrated into the processor 510 .
  • the processor 510 is used for the decoding end to determine the encoding coefficient vector according to the received signal and the NSTBC codebook;
  • the processor 510 is used for the decoding end to determine the power sum of the transmitted symbols on the transmitted antennas in the first two symbol periods according to the received signal;
  • the processor 510 is used for the decoding end to decode the original encoded input symbols of the current symbol period according to the encoding coefficient vector, the differential space-time block code DSTBC encoding method, the NSTBC codebook, and the power sum of the transmitted symbols on the transmitting antennas of the previous two symbol periods.
  • the signal vector is constructed according to the received signal and the NSTBC codebook structure and the encoding coefficient vector is calculated; on the other hand, according to the received signal, the power sum of the transmitted symbols on the transmitting antennas in the first two symbol periods is determined, and then the original encoded input symbols of the current symbol period are calculated and restored according to the calculated encoding coefficient vector, DSTBC decoding method, NSTBC codebook, and the power sum of the transmitting symbols on the transmitting antennas in the first two symbol periods.
  • the codebook structure of the NSTBC codebook satisfies:
  • the s 2t+1 and the is the original encoded input symbol of the 2t+1 symbol period decoded by the decoder, the s 2t+2 and the The original encoded input symbol of the 2t+2 symbol period decoded by the decoder; where the symbol is the conjugate of the symbol s 2t+2 , the symbol is the negative conjugate of the symbol s 2t+1 ; the first The 2t+1 symbol period is the current symbol period, and the 2t+2 th symbol period is the next symbol period of the current symbol period.
  • the processor 510 is specifically configured to:
  • the decoder determines the signal vector according to the received signal and the NSTBC codebook
  • the decoding end determines the encoding coefficient vector of the decoding end in the current symbol period according to the signal vector.
  • the processor 510 is specifically configured to:
  • the is a set of coding coefficient vectors, the is the signal vector, the is the encoding coefficient vector determined by the decoder in the 2t+1 symbol period.
  • the processor 510 is specifically configured to:
  • the s 2t-1 and the is the original encoded input symbol of the 2t-1 symbol period decoded by the decoder
  • 2 is the power sum of the transmitted symbols on the two transmit antennas of the encoder in the 2t-1-th symbol period.
  • the processor 510 is specifically configured to:
  • the decoding end determines the power sum
  • the for autocorrelation the is the received signal vector at the 2t-1 symbol period
  • the R is the signal received by the decoding end from the two transmitting antennas of the encoding end through the channel and noise
  • the ⁇ 1 and ⁇ 2 are respectively the channel gains from the two transmitting antennas encoded by the encoding end to the receiving antenna of the decoding end
  • the ⁇ ( ⁇ 1 , ⁇ 2 ) is a channel matrix
  • the r 2t-1 and is the signal received by the decoding end in the 2t-1 symbol period
  • the S 1 and S 2 are respectively the symbol vectors of dimension L from the two encoded transmitting antennas at the encoding end to the receiving antenna at the decoding end
  • the W is signal noise.
  • processor 510 may also be specifically configured to:
  • the s 2t-1 and the is the original encoded input symbol of the 2t-1 symbol period decoded by the decoder
  • the s 2t and the is the original coded input symbol of the 2t symbol period decoded by the decoder is the square root of the power sum of the transmitted symbols on the two transmitting antennas at the encoding end in the 2t-1th symbol period.
  • the processor 510 is specifically configured to:
  • the decoding end according to the original bit or the original symbol and the A preset mapping table to determine the original bit or original symbol;
  • the preset mapping table includes the original bits or original symbols and the encoding coefficient vector The mapping relationship between them after the initial reference symbols are determined.
  • the processor 510 is specifically configured to:
  • the decoding terminal inputs symbols according to the decoded original code Determine the original sign (s 2t+1 ,s 2t+2 );
  • the decoding end determines the original bits according to the (s 2t+1 , s 2t+2 ).
  • the processor 510 is specifically configured to:
  • the decoding end determines that the original coded input symbol of the first symbol period is and the raw coded input symbols for the 2nd symbol period are
  • the original encoded input symbol is the initial reference symbol
  • the differential decoding module is also used for the decoding end according to the formula:
  • the processor 510 is specifically configured to:
  • the decoding end determines that the original coded input symbol of the first symbol period is and the raw coded input symbols for the 2nd symbol period are
  • the original encoded input symbol is the initial reference symbol
  • the differential decoding module is also used for the decoding end according to the formula:
  • the processor 510 is specifically configured to:
  • the r 2t-1 is the signal received by the decoding end in the 2t-1 symbol period
  • the r 2t is the signal received by the decoding end in the 2t symbol period
  • the r 2t +1 is the signal received by the decoding end in the 2t+1 symbol period
  • the r 2t+2 is the signal received by the decoding end in the 2t+2 symbol period.
  • the signal vector satisfy:
  • ⁇ 1 and ⁇ 2 are the channel gains from the two transmitting antennas encoded by the encoding end to the receiving antennas of the decoding end respectively, and the s 2t-1 and the is the original encoded input symbol decoded by the decoder in the 2t-1 symbol period, the s 2t and the is the original encoded input symbol decoded by the decoding end in the 2t symbol period, the s 2t+1 and the is the original encoded input symbol of the 2t+1 symbol period decoded by the decoder, the s 2t+2 and the The original encoded input symbol of the 2t+2 symbol period decoded by the decoder;
  • the ⁇ ( ⁇ 1 , ⁇ 2 ) is a channel matrix
  • the N 2t-1 , the N 2t+1 , and the M 2t are noise vectors
  • the ⁇ 2t-1 is the receiving noise of the decoding end in the 2t-1 symbol period
  • the ⁇ 2t is the receiving noise of the decoding end in the 2t symbol period
  • the ⁇ 2t+1 is the receiving noise of the decoding end in the 2t+1 symbol period
  • the ⁇ 2t+2 is the receiving noise of the decoding end in the 2t+2 symbol period.
  • the antenna 61 is connected to the radio frequency device 62 .
  • the radio frequency device 62 receives information through the antenna 61, and sends the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be sent and sends it to the radio frequency device 62
  • the radio frequency device 62 processes the received information and sends it out through the antenna 61 .
  • the methods in the above method embodiments may be implemented in the baseband device 63, where the baseband device 63 includes a baseband processor.
  • the baseband device 63 can include at least one baseband board, on which a plurality of chips are arranged, as shown in FIG.
  • the network side device may also include a network interface 66, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 66 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 600 in the embodiment of the present invention further includes: instructions or programs stored in the memory 65 and operable on the processor 64.
  • the processor 64 invokes the instructions or programs in the memory 65 to execute the methods performed by the modules shown in FIG.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores a program or an instruction.
  • the program or instruction is executed by a processor, each process of the above-mentioned decoding method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement each process of the above decoding method embodiment, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement each process of the above-mentioned decoding method embodiment, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product in essence or the part that contributes to the prior art.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes several instructions to make a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) execute the method described in each embodiment of the application.

Abstract

本申请公开了一种解码方法、设备及可读存储介质,属于通信技术领域,该方法包括:解码端根据接收的信号和新型空时分组码NSTBC码本,确定编码系数向量;解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;解码端根据编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,前两个符号周期为当前符号周期之前的两个相邻的符号周期。

Description

解码方法、设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年01月18日在中国提交的中国专利申请No.202210055297.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种解码方法、设备及可读存储介质。
背景技术
传统的包括Alamouti码在内的正交空时分组码(Orthogonal Space Time Block Code,OSTBC)类编码码本虽然能够获得满分集增益同时获得满速率,它们都是针对传统有源射频通信而设计的,而没有考虑类似于反向散射通信等无源终端的调制特性与实现复杂度;同时要求解码端需知道所有发送天线到接收天线之间的信道状态信息(Channel State Information,CSI)。
传统的差分空时分组码只适用于多进制数字相位调制(Multiple Phase Shift Keying,MPSK)等恒模调制,对于振幅移相键控(Amplitude Phase Shift Keying,APSK)、正交振幅调制(Quadrature Amplitude Modulation,QAM)等非恒模调制,因为各星座符号的能量不同因而无法直接采用传统的差分空时分组码的编解码方法。
目前亟需一种即不需要解码端获知所有发送天线到接收天线之间的CSI,同时能够降低系统实现复杂度,而且能够适用于非恒模调制的差分空时分组码的解码方法。
发明内容
本申请实施例提供一种解码方法、设备及可读存储介质,能够在解码端无法实现在不获知所有发送天线到接收天线之间的CSI的同时,降低系统实现复杂度,以及对非恒模调制的适用的问题。
第一方面,提供了一种解码方法,包括:
解码端根据接收的信号和新型空时分组码NSTBC码本,确定编码系数向量;
解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;
所述解码端根据所述编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
第二方面,提供了一种解码装置,包括:
第一确定模块,用于解码端根据接收的信号和NSTBC码本,确定编码系数向量;
第二确定模块,用于解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;
差分解码模块,用于所述解码端根据所述编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
第三方面,提供了一种解码端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种解码端,包括处理器及通信接口,其中,所述处理器用于解码端根据接收的信号和NSTBC码本,确定编码系数向量;解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;所述解码端根据所述编码系数向量、DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,一方面根据接收信号与NSTBC码本结构来构造信号向量并计算编码系数向量;另一方面,根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和,然后根据计算的编码系数向量、DSTBC解码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算并恢复出当前符号周期的原始编码输入符号。基于该解码方式,能够实现在无导频的情况下恢复出原始符号,降低系统开销;在解码出当前符号周期的原始编码输入符号时采用前两个符号周期发送天线上的发送符号的功率和,实现对非恒模调制的适用;同时基于NSTBC码本在保证分集增益的同时能够减少每根天线上的负载阻抗个数或种类,并且有效降低检测错误概率。
附图说明
图1a是反向散射通信发射端的结构示意图;
图1b是Alamouti空时分组码分集传输示意图;
图2是本申请实施例提供的解码方法的流程示意图;
图3是本申请实施例提供的解码装置的结构示意图;
图4是本申请实施例提供的通信设备的结构示意图;
图5是本申请实施例提供的终端的结构示意图;
图6是本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
本申请实施例中,解码端可以部署在接收设备上,例如可以是终端或网络侧设备。其中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备, 如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端的具体类型。网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM)、统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF)、网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为更好理解本申请的技术方案,首先对以下内容进行介绍:
未来的6G通信网络需要支持海量的万物互联,其中物联网设备数量将达到千亿级别,其连接密度相比5G提升了10-100倍,达到10-100个/m2的连接密度。海量的物联网设备对成本和功耗都提出了新的挑战。蜂窝网络化、低成本、低功耗甚至零功耗无源化是未来物联网设备发展的主要趋势。传统的无源终端受限于其功耗与硬件能力,其通信传输距离大多在10米以下,远远达不到蜂窝化百米覆盖范围的目标。因此,如何有效的提高无源终端的通信距离成为该技术蜂窝网络化后需要解决的难点。
由于反向散射通信(Backscatter Communication,BSC)是通过改变负载阻抗来控制信号的幅度或相位,考虑反向散射通信调制电路其它非理想因素,输出信号的幅度或相位或多或少存在误差。但只要这些信号误差在可分辨的范围之内,对于信号解调就没有什么影 响。因此,如果每根天线上需要控制的负载阻抗个数或种类越少,可容忍的误差就可越大,错误检测概率也就越小。另外,受限于反向散射通信设备(BSC UE)的功耗与能力限制,在某些情况下不希望因为发送导频和浪费功耗和资源,即要求解码端不需要知道CSI信息即可完成信号解调。
反向散射通信(Backscatter Communication,BSC)
反向散射通信是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息。其调制电路如图1a所示,反向散射通信设备通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗,j表示复数,θT表示相位。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。基于此,反向散射通信设备,可以是传统射频识别标识(Radio Frequency Identification,RFID)中的Tag,或者是无源或半无源物联网(Passive/Semi-passive Internet of Things,IoT)。为了方便,这里统称为BSC UE。
恒模调制与非恒模调制(Constant Modulation and Nonconstant Modulation)
典型的调制技术可以分为恒模调制和非恒模调制。所谓的恒模调制即调制后的符号星座点的功率或者幅度是相同的,其中MPSK就是一种典型的恒模调制。而非恒模调制即调制后的符号星座点的功率或幅度是不相同的,典型的非恒模调制包括APSK,QAM等。
由于典型的恒模调制MPSK只在相位维度上区分星座点,因而星座点之间的欧式距离相对较小,很容易受到噪声的干扰。而APSK或QAM等非恒模调制的星座点扩展到了幅度和相位二维空间,星座点之间的欧式距离增大,因而抗噪声或抗干扰能力更强。表1给出了相同的频带效率或调制阶数下MPSK和MQAM调制的信噪比(Signal to Noise Ratio,SNR)差异。从表中可以看出,在一定比特误率(Bit Error Ratio,BER)性能时,64PSK相比于64QAM需要额外的9.95dB SNR才能获得相同的BER性能。
表1
正交空时分组码(Orthogonal Space Time Block Code,OSTBC)
空时分组码STBC被广泛应用在蜂窝通信和无线局域网中。STBC通过在空间和时间域引入信号冗余,通过合理的构造分组编码传输矩阵,在不增加带宽的情况下来获得分集 增益和天线增益。
OSTBC是一种特殊的线性STBC,其线性空时分组码S满足如下单一条件:
其中,I表示维度为M的单位矩阵,i表示M维的第i个元素,si是对角线元素,S中的第i行元素表示在M个时刻内在第i根发送天线上传输的符号,S中的第j列元素表示在nt根天线上在第j个时刻上传输的符号。满足如上公式的传输矩阵S中的每一列都是互相正交的,这就意味着,不同天线上的发送信号序列也是正交的,从而保证STBC能够在同一时间获得满分集增益。其对应的解码端只需要进行简单的最大比合并(Maximal ratio combining,MRC)就能够顺序的解耦不同天线上的发送符号,并通过最大似然检测(Maximum likelihood,ML)算法进行检测和估计。
Alamouti码是最具有代表性的OSTCB码,并且能够获得满分集和满速率增益。如图1b所示为Alamouti码的原理框图,在给定的符号周期内,两个符号同时在两根天线上发送。假设在当前符号周期,天线1上发送的符号记为s1,而在天线2上发送的符号记为s2。但是在下一个符号周期,天线1上发送的符号为而在天线2上发送的符号为从而构成如下空时分组码矩阵:
假设两根发送天线到接收天线上的信道分别表示为h1,h2,并且在两个相邻的符号周期内满足时不变特性,即:

则在两个符号周期上,接收天线上的接收信号为:
r1=r(t)=h1s1+h2s2+n1
其中,n1,n2表示接收噪声和信号干扰。解码端按照如下准则进行合并接收:

将接收信号r1,r2代入,可得:

最后通过ML检测器就可以估计出信号s1,s2
除了典型的Alamouti分组码之外,典型的两天线OSTBC码的码本如表1所示。
表1

新型空时分组码(New Space Time Block Code,NSTBC)
近些年,随着反向散射通信研究的深入,有研究学者提出了Backscatter分集的概念及设计出相应的空时分组码码字。这类码字通过优化传统Alamouti码的码本来降低硬件实现的复杂度及降低检测错误概率高。
以两天线发射分集为例,即此时的码字矩阵S的维度为2×2,其编码结构为:
根据上述编码结构,假设在当前符号周期,天线1上发送的符号记为s1,而在天线2上发送的符号记为但是在下一个符号周期,天线1上发送的符号为s2,而在天线2上发送的符号为根据OSTBC码字定义,S2属于OSTBC码字,因而能够获得满分集增益与满速率传输。下面分析这类码字相比传统的Alamouti码在反向散射通信中的区别。
假设基于BPSK调制符号进行传输,根据反向散射通信映射原则,符号0和1与反射系数的映射规则为:
即通过控制两个相位反转的负载阻抗来表征符号0和1。因此,分集编码码字S2在两天线同时发送不同的符号的编码表为表5。作为对比,表3和表4也给出了Alamouti码字与扩展Alamouti码字的在两天线同时发送不同的符号的编码表。其中,扩展的Alamouti码字为:
表3
表4
表5
根据表3可知,基于NSTBC设计出的码本,天线1只需要2种系数|Γ|e和|Γ|ej(θ+π);天线2也只需要2种系数|Γ|e-jθ和|Γ|e-j(θ+π),即每根天线上只需要2种负载阻抗就可以。根据表4-5可知,基于Alamouti码字和扩展的Alamouti码字,天线1和天线2都需要4种系数|Γ|e,|Γ|ej(θ+π),|Γ|e-jθ,|Γ|e-j(θ+π),即每根天线上需要4种负载阻抗。相同的方法可以扩展到四天线及以上场景。
差分空时分组码(Differential Space Time Block Code,DSTBC)
对于传统的OSTBC和NSTBC,解码端采用相干检测的解码方案,因此解码端需要发送天线到接收天线确切信道状态信息(Chanel State Information,CSI)。但是在高速移动场景或者信道衰落条件快速变化的场景,或者在反向散射通信中由于受功率限制发送导频困难的场景下,解码端就很难确切的进行信道估计或者准确进行信道估计的代价很高,此时解码端就无法获得立项的CSI信息。差分空时分组码就是一种编码端和解码端都不需要知道CSI信息,编译码简单并且能够获得分集增益的方案。下面以两天线发送和单天线接收为例进行说明。
在发送编码端,假设在符号周期1和符号周期2编码端按照Alamouti方案发送如下符号:
其中这两次发送的信息s1,s2不携带信息,只是作为参考信号。接下来编码端采用差分编码方式进行发送。假设在2t-1个符号周期,从第一根天线和第二根天线发送的符号分别是s2t-1和s2t,则在2t个符号周期,从第一根天线和第二根天线上发送的符号分别是在2t+1个符号周期,一组2m个比特到达编码端,并产生对应的编码系数向量编码端根据前两个符号周期发送的符号向量和当前编码系数向量计算出当前第2t+1符号周期发送的符号:
同时根据Alamouti码本,计算出第2t+2个符号周期的两根天线上的发送符号分别为其中,编码系数向量满足:

按照上述编码规则,重复编码发送符号。
在接收解码端,假设信号r2t-1,r2t,r2t+1,r2t+2被接收到,定义信道矩阵为:
噪声信号为:
则接收信号可表示为:

因此,有:
合并处理后可得:
为了表述简单,定义:

由此可得:
根据之前的数学推导,有:
因此有:
其中,
将四个时刻的信号进行如下处理:
展开,得:
为了表述简单,定义:

可得:
联合之前的数学推导,有:
由于编码系数向量集合中所有编码系数矢量长度相等且与输入符号信息具有一一对应的关系,接收机选择到判决与统计信号向量欧式距离最近
计算得到后,再反映射到原始符号,从而恢复出原始比特。
传统的包括Alamouti在内的OSTBC类编码码本虽然能够获得满分集增益同时获得满速率,它们都是针对传统有源射频通信而设计的,而没有考虑类似于反向散射通信等无源终端的调制特性与实现复杂度;同时要求接收端知道所有发送天线到接收天线之间的信道状态信息CSI。
针对反向散射通信提出的新型空时分组码码本NSTBC通过优化传统Alamouti码的码本来降低硬件实现的复杂度及降低检测错误概率高,但这种方式要求接收端知道所有发送天线到接收天线之间的CSI信息。差分空时分组码不需要知道所有发送天线到接收天线之间的CSI信息,但没有考虑类似于反向散射通信等无源终端的调制特性与实现复杂度。
更进一步,传统的差分空时分组码只适用于MPSK等恒模调制,对于APSK、QAM等非恒模调制,因为各星座符号的能量不同因而无法直接采用传统的差分空时分组码的编解码方法。但考虑到非恒模调制相比于恒模调制所带来的星座成形增益,以及反向散射通信中调幅能力和调相能力的差异,需要解决基于非恒模调制下的差分空时分组码编解码问题。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的解码方法进行详细地说明。
参见图2,本申请实施例提供一种解码方法,该方法的执行主体为解码端,该解码端可以是终端设备或网络侧设备,方法包括:
步骤201:解码端根据接收的信号和NSTBC码本,确定编码系数向量;
步骤202:解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;
步骤203:解码端根据编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号。
上述前两个符号周期为当前符号周期之前的两个相邻的符号周期。
在本申请实施例中,一方面根据接收信号与NSTBC码本结构来构造信号向量并计算编码系数向量;另一方面,根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和,然后根据计算的编码系数向量、DSTBC解码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算并恢复出当前符号周期的原始编码输入符号。基于该解码方式,能够实现在无导频的情况下恢复出原始符号,降低系统开销;在解码出当前符号周期的原始编码输入符号时采用前两个符号周期发送天线上的发送符号的功率和进行归一化,实现对非恒模调制的适用;同时基于NSTBC码本在保证分集增益的同时能够减少每根天线上的负载阻抗个数或种类,并且有效降低检测错误概率。
本申请实施例所提供的解码方法是通过将DSTBC解码方式与NSTBC码本结合,提取两者优点,并且在解码出当前符号周期的原始编码输入符号时采用前两个符号周期发送天线上的发送符号的功率和进行归一化以适用于非恒模调制,对于这种得到的新型解码方法,可以称之为非恒模调制下的差分NSTBC解码方式。
需要说明的是,上述信号向量也可以称为统计信号向量,上述原始编码输入符号指代的是在编码端完成了编码,且还未经过信道增益和/或噪声的符号,其与解码端直接接收的信号不同,是需要解码端进行解码得到的符号。
在具体介绍差分NSTBC的解码方案之前,先简单给出差分NSTBC的编码过程,其过程如下:
(1)编码器根据前两个符号周期,即第2t-1和第2t个符号周期,在两根天线上发送的符号与当前时刻编码系数向量计算当前时刻在两根天线上发送的符号,当前时刻即第2t+1个符号周期:
(2)在第2t+2符号周期,两根天线上发送的符号为即第2t+1符号周期和第2t+2符号周期,两根发送天线上的符号满足NSTBC码本结构:
其中,s2t+1为编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号,s2t+2为编码端在第2t+2个符号周期编码得到的两根发送天线上的发送符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;第2t+1个符号周期为当前符号周期,第2t+2个符号周期为当前符号周期的下一个符号周期。
也即,其中,s2t+1为第个符号周期在两根天线上发送的星座符号;s2t+2为在第2t+2个符号周期为在两根天线上发送的星座符号。
(3)第2t+1个符号周期的编码系数向量满足:

(4)在第1个和第2个符号周期在两根天线上的发送的参考符号为两根发送天线上的符号同样满足NSTBC码本结构:
其中s1,s2为APSK等非恒模调制的星座符号。
另外一种实现方案可以为:
(1)编码器根据前两个符号周期,即第2t-1和第2t个符号周期,在两根天线上发送的符号与当前时刻编码系数向量计算当前时刻在两根天线上发送的符号,当前时刻即第2t+1个符号周期:
(2)在第2t+2符号周期,两根天线上发送的符号为即第2t+1符号周期和第2t+2符号周期,两根发送天线上的符号满足NSTBC码本结构:
其中,s2t+1为第2t-1个符号周期在两根天线上发送的星座符号;s2t+2为在第2t个符号周期为在两根天线上发送的星座符号。
(3)第2t+1个符号周期的编码系数向量满足:

(4)在第1个和第2个符号周期在两根天线上的发送的参考符号为两根发送天线上的符号同样满足NSTBC码本结构:
其中s1,s2为APSK等非恒模调制的星座符号。
在具体的实施方式中,NSTBC码本的码本结构满足:
其中,s2t+1为编码端在第2t+1个符号周期编码得到的两根发送天线上的发送符号(需要说明的是,发送符号也可以称为星座符号、星座点等,本申请实施例对该名称不做具体限定),s2t+2为编码端在第2t+2个符号周期编码得到的两根发送天线上的发送符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;第2t+1个符号周期为当前符号周期,第2t+2个符号周期为当前符号周期的下一个符号周期。
在具体的实施方式中,NSTBC码本的码本结构满足:
其中,s2t+1为解码器解码出的第2t+1个符号周期的原始编码输入符号,s2t+2为解码器解码出的第2t+2个符号周期的原始编码输入符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;第2t+1个符号周期为当前符号周期,第2t+2个符号周期为当前符号周期的下一个符号周期。
在具体的实施方式中,解码端根据接收的信号和新型空时分组码NSTBC码本,确定 编码系数向量
(1)解码端根据接收的信号和NSTBC码本,确定信号向量;
(2)解码端根据信号向量,确定解码端在当前符号周期的编码系数向量;
具体地,上述(2)解码端根据信号向量,确定解码端在当前符号周期的编码系数向量,包括:
(2.1)解码端根据公式:
确定解码端在第2t+1个符号周期的编码系数向量
其中,为编码系数向量的集合,为信号向量,为解码端在第2t+1个符号周期确定的编码系数向量。
需要说明的是,编码系数向量集合中所有编码系数矢量长度相等且与输入符号具有一一对应的关系,解码端根据上述公式选择到与信号向量欧式距离最近的编码系数向量作为判决输出,一般通过最大似然算法估算。
具体地,针对上述解码端根据所述编码系数向量、DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,本申请实施例提供两种实施方式,包括:
实施方式一:
解码端根据公式:
解码出在第2t+1个符号周期的原始编码输入符号
其中,s2t-1为解码端解码出的第2t-1个符号周期的原始编码输入符号,s2t为解码端解码出的第2t个符号周期的原始编码输入符号,|s2t-1|2+|s2t|2为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和。
在具体的实施方式中,解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和,包括:
解码端根据以下公式确定前两个符号周期发送天线上的发送符号的功率和|s2t-1|2+|s2t|2



R=α1S12S2+W;


W=[w1,w2,…,wL]T
其中,的自相关,为在第2t-1个符号周期的接收信号向量,为噪声向量,R为实施解码端接收到的来自编码端的两根发送天线上的发送符号经过信道和噪声后的信号,α1和α2分别为从编码端编码后的两根发送天线到解码端的接收天线的信道增益,Λ(α12)为信道矩阵,r2t-1为解码端在第2t-1个符号周期接收的信号,η2t-1为解码端在第2t-1个符号周期的接收噪声,S1和S2分别为从编码端编码后的两根发送天线到解码端的接收天线的维度为L的符号矢量,W为信号噪声。
具体地,符号功率|s2t-1|2+|s2t|2可以通过已解调的第2t-1个符号周期两根天线的发送符号计算得到;或者,符号功率|s2t-1|2+|s2t|2可以通过计算接收信号向量与其自身的自共轭矩阵(Hermitian)乘积计算得到:
其中,为接收信号的向量;Λ(α12)为信道矩阵。
所述信道功率(|α1|2+|α2|2)可以通过接收信号的统计信号期望得到。一种可能的估计方法为:
其中,
R=α1S12S2+W
表示接收信号矢量;表示从第一根天线和第二根天线上发送的维度为L的符号矢量;W=[w1,w2,…,wL]T为信号噪声。
实施方式二:
解码端根据公式:
解码出在第2t+1个符号周期的原始编码输入符号
其中,s2t-1为解码端解码出的第2t-1个符号周期的原始编码输入符号,s2t为解码端解码出的第2t个符号周期的原始编码输入符号,为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和的开方。
相应地,的计算方式可以参照上述实施方式一中|s2t-1|2+|s2t|2的计算过程,只需在计算出|s2t-1|2+|s2t|2之后进行开方即可。
在具体的实施方式中,针对上述实施方式一或实施方式二,本方法还包括:
解码端根据原始比特或原始符号与的预设映射表,确定原始比特或原始符号;
其中,预设映射表中包含原始比特或原始符号与编码系数向量之 间的映射关系。
在本申请实施例中,解码端采用直接查表的方式确定出原始比特或原始符号,这样处理的好处在于通过直接查询映射表的方式恢复确定原始比特或原始符号,实现复杂度较低和解码时延都会更低。
上述原始比特或原始符号指的是在编码端的待编码的初始数据比特或初始符号,上述初始参考符号指的是在最初的符号周期,即在第1符号周期,发送天线上的参考符号。本申请实施例中解码端通过上述方式进行解码处理,最终解码得到初始数据比特或初始符号。
在具体的实施方式中,针对上述实施方式一和二,本方法还包括:
(1)解码端根据解码出的原始编码输入符号确定原始符号(s2t+1,s2t+2);
(2)解码端根据所述(s2t+1,s2t+2),确定原始比特。
在本申请实施例中,解码端采用直接计算的方式计算出原始比特或原始符号,这样处理的好处在于解码端不需要存储映射表,而是通过实时计算的方式解码原始编码输入符号。需要说明的是。
在具体的实施方式中,针对上述实施方式一,本方法还包括:
解码端确定第1个符号周期的原始编码输入符号或初始参考符号为以及第2个符号周期的原始编码输入符号为
解码端根据公式:
解码出第3个符号周期的原始编码输入符号;
其中,为解码端在第3个符号周期得到的编码系数向量,满足如下NSTBC码本:
这样解码端就完成了对最初两个符号周期的解码处理,之后的第3个符号周期及后续符号周期即可采用上述对第2t+1个符号周期的解码处理方式。
在具体的实施方式中,针对上述实施方式二,本方法还包括:
解码端确定第1个符号周期的原始编码输入符号或初始参考符号为以及第2个符号周期的原始编码输入符号为
解码端根据公式:
解码出第3个符号周期的原始编码输入符号;
其中,为解码端在第3个符号周期得到的编码系数向量,满足如下NSTBC码本:
这样解码端就完成了对最初两个符号周期的解码处理,之后的第3个符号周期及后续符号周期即可采用上述对第2t+1个符号周期的解码处理方式。
在具体的实施方式中,解码端根据接收的信号和NSTBC码本,确定信号向量,包括:
解码端根据公式:

确定信号向量
其中,r2t-1为解码端在第2t-1个符号周期接收的信号,r2t为解码端在第2t个符号周期接收的信号,,r2t+1为解码端在第2t+1个符号周期接收的信号,r2t+2为解码端在第2t+2个符号周期接收的信号。
以第2t-1和第2t个符号周期为例,接收信号为:

其中,α1和α2分别为从编码端编码后的两根发送天线到解码端的接收天线的信道增益,η2t-1为解码端在第2t-1个符号周期的接收噪声,η2t为解码端在第2t个符号周期的接收噪声。
具体地,信号向量满足:

其中,为有用信号的线性组合向量,为噪声干扰向量。即信号向量为有用信号的线性组合向量与噪声干扰向量两部分构成。
具体地,满足:

满足:

Λ(α12)为信道矩阵,表征为:
N2t-1,N2t+1,M2t为噪声向量,分别表示为:


其中,α1和α2分别为从编码端编码后的两根发送天线到解码端的接收天线的信道增益,s2t-1为解码端在第2t-1个符号周期解码出的原始编码输入符号,s2t为解码端在第2t个符号周期解码出的原始编码输入符号,s2t+1为解码端解码出的在第2t+1个符号周期的原始编码输入符号,s2t+2为解码端解码出的在第2t+2个符号周期的原始编码输入符号;
η2t-1为解码端在第2t-1个符号周期的接收噪声,η2t为解码端在第2t个符号周期的接收噪声,η2t+1为解码端在第2t+1个符号周期的接收噪声,η2t+2为解码端在第2t+2个符号周期的接收噪声。
上文描述了解码端解码出当前符号周期的原始编码输入符号的过程,通过重复上述过程即可完成整体的差分NSTBC解码传输。
下面结合具体实施示例对本申请实施例的技术方案进行描述:
示例一,以两发送天线单接收天线且为APSK调制为例进行说明。
(1)估计信道功率
假设在一段时间内接收端接收到L个符号,表示为:
R=α1S12S2+W
表示从编码端第一根天线和第二根天线上发送的维度为L的符号矢量;W=[η12,…,ηL]T为加性高斯噪声。接收信号与接收信号的共轭转置乘积的期望为;
由此一种可行的可以估计出信道功率的方法为:
此时符号长度L满足一定长度就可以;
上述只是给出了一种信道功率的估计方法,但不限于此。
(2)估计发送信号功率
一种实现方式,假设则第2t-1个符号周期,接收信号向量为:
则有:
其中,Λ(α12)为信道矩阵。根据所述(1)计算出的信道功率就可以估计出信号功率
另外一种实现方式,信号功率|s2t-1|2+|s2t|2可以通过已解调的第2t-1个符号周期两根天线的发送符号直接计算得到;
(3)根据接收信号计算统计信号向量
假设接收天线在第2t-1,2t,2t+1,2t+2个符号周期的接收信号分别为r2t-1,r2t,r2t+1,r2t+2。定义信道矩阵为:
噪声向量为:
则第2t-1和2t+1个符号周期,接收信号向量为:

将第2t-1和2t+1个符号周期上的接收信号向量进行如下处理:
合并处理后得到:
为了表述简单,定义统计信号分量噪声干扰分量和有用信号分量分别为:


由此可以得到第一个统计信号分量为:
相同的,定义接收信号向量:
其中,M2t为噪声向量,定义为:
将第2t-1和2t+1个符号周期上的接收信号向量进行如下处理
合并处理后得到:
为了表述简单,定义统计信号分量噪声干扰分量和有用信号分量分别为:


由此可以得到第二个统计信号分量为:
由此,计算得到接收信号的统计信号向量:
(4)计算编码系数向量
解码端在获得接收信号的统计信号向量后,解码器选择判决与统计信号向量欧式距离最近的编码系数向量作为解码输出:
(5)通过计算解码出原始符号
(a)解码端先通过差分解码方法解码出第3个符号周期两根天线上的发送符号
其中,为第1个符号周期上两根天线上的发送符号,且为已知符号。且与第2个符号周期上的两根天线上的发送符号满足NSTBC码本结构:
为根据(2)中计算得到的第3个符号周期的编码系数向量。
(b)假设为解码出的第2t-1个符号周期两根天线的发送符号,且与恢复的第2t个符号周期两根天线的发送符号满足NSTBC码本结构:
(c)在第2t+1个符号周期,通过(2)计算得到第2t+1个符号周期的编码系数向量后,根据差分解码方法解码出第2t+1个符号周期两根发送天线的发送符号
解码出第2t+1个符号周期两根天线的发送符号后,即可恢复原始输入符号(s2t+1,s2t+2)及对应的输入比特。
(6)重复步骤(1)—(5)即可完成所有接收信号的解码。
需要说明的是,示例一中是以直接计算的方式计算出原始比特或原始符号,可选地,也可以采用查询预设映射表的方式直接得到编码系数向量。
示例二:
不同于示例一中在得到编码系数向量后通过计算得到其对应的输入符号示例二是通过查询映射表的方式反映射解码出原始输入符号。具 体方案如下:
(1)根据接收信号估计信道功率,具体示例一;
(2)根据接收信号计算信号功率,具体示例一;
(3)根据接收信号计算统计信号向量具体参考示例一;
(4)计算编码系数向量具体参考示例一;
(5)通过查询编码系数向量与输入符号/比特的映射表的方式,反映射解码出原始输入符号/比特。
(6)重复步骤(1)—(5)即可完成所有接收信号的解码。
以APSK为例来说明差分NSTBC解码过程。假设采用(2,2)-APSK调制,则星座点的集合为{-3,-1,1,3},编码系数向量的集合为设两个参考调制信号为s1=1和s2=3,在编码器输入端的4个输入比特分别为c1c2c3c4。按照映射规则“00,01,10,11”→{1,3,-1,-3},前两个比特c1c2映射成符号s3,后两个比特c3c4映射成符号s4,映射关系为:

根据编码系数向量的定义,有

根据输入比特c1和c2的不同取值,可得为:
表6:APSK输入比特与编码系数向量映射表
由于该映射表对不同符号周期下的编码系数向量都是适用的,因此在计算得到编码系数向量以及信号功率和信道功率之后,可以通过查询映射表的方式反映射得到输入符号或输入比特(c1c2,c3c4)。
可以理解的是,本申请还可以包括一种示例,其中在解码出当前符号周期的原始编码 输入符号时,使用的是前两个符号周期发送天线上的发送符号的功率和的开方,即对应前文中所述的实施方式二,实时方式二中同样也包括直接计算和查询映射表两种方式。
本申请实施例提供的解码方法,执行主体可以为解码装置。本申请实施例中以解码装置执行解码方法为例,说明本申请实施例提供的解码装置。
参见图3,本申请实施例提供一种解码装置300,包括:
第一确定模块301,用于解码端根据接收的信号和NSTBC码本,确定编码系数向量;
第二确定模块302,用于所述解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;
差分解码模块303,用于所述解码端根据所述编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号。
在本申请实施例中,一方面根据接收信号与NSTBC码本结构来构造信号向量并计算编码系数向量;另一方面,根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和,然后根据计算的编码系数向量、DSTBC解码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算并恢复出当前符号周期的原始编码输入符号。基于该解码方式,能够实现在无导频的情况下恢复出原始符号,降低系统开销;在解码出当前符号周期的原始编码输入符号时采用前两个符号周期发送天线上的发送符号的功率和进行归一化,实现对非恒模调制的适用;同时基于NSTBC码本在保证分集增益的同时能够减少每根天线上的负载阻抗个数或种类,并且有效降低检测错误概率。
在具体的实施方式中,所述NSTBC码本的码本结构满足:
其中,所述s2t+1和所述为所述解码器解码出的第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码器解码出的第2t+2个符号周期的原始编码输入符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
在具体的实施方式中,所述第一确定模块,具体用于:
所述解码端根据所述接收的信号和NSTBC码本,确定所述信号向量;
所述解码端根据所述信号向量,确定所述解码端在所述当前符号周期的编码系数向量。
在具体的实施方式中,所述第一确定模块,具体用于:
所述解码端根据公式:
确定所述解码端在第2t+1个符号周期的编码系数向量
其中,所述为编码系数向量集合,所述为所述信号向量,所述为解码端在第2t+1个符号周期确定的编码系数向量。
在具体的实施方式中,所述差分解码模块,具体用于:
所述解码端根据公式:
解码出在第2t+1个符号周期的原始编码输入符号;
其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和。
在具体的实施方式中,所述第二确定模块,具体用于:
所述解码端根据以下公式确定前两个符号周期发送天线上的发送符号的功率和|s2t-1|2+|s2t|2



R=α1S12S2+W;


W=[w1,w2,…,wL]T
其中,所述的自相关,所述为在第2t-1个符号周期的接收信号向量,所述为噪声向量,所述R为实施解码端接收到的来自编码端的两根发送天线上的发送符号经过信道和噪声后的信号,所述α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述Λ(α12)为信道矩阵,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述η2t-1为所述解码端在第2t-1个符号周期的接收噪声,所述S1和S2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的维度为L的符号矢量,所述W为信号噪声。
在具体的实施方式中,所述差分解码模块,具体还可以用于:
所述解码端根据公式:
解码出在第2t+1个符号周期的原始编码输入符号;
其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和的开方。
在具体的实施方式中,所述装置还包括:
第三确定模块,用于所述解码端根据原始比特或原始符号与所述的预设映射表,确定原始比特或原始符号;
其中,所述的预设映射表中包含所述原始比特或原始符号与所述编码系数向量之间在初始参考符号确定后的映射关系。
在具体的实施方式中,所述装置还包括:
第四确定模块,用于所述解码端根据所述解码出的原始编码输入符号确定原始符号(s2t+1,s2t+2);
所述解码端根据所述(s2t+1,s2t+2),确定原始比特。
在具体的实施方式中,所述装置还包括:
第五确定模块,用于所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
所述原始编码输入符号为初始参考符号;
所述差分解码模块,还用于所述解码端根据公式:
解码出第3个符号周期的原始编码输入符号;
其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
在具体的实施方式中,所述装置还包括:
第五确定模块,用于所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
所述原始编码输入符号为初始参考符号;
所述差分解码模块,还用于所述解码端根据公式:
解码出第3个符号周期的原始编码输入符号;
其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
在具体的实施方式中,所述第一确定模块,具体用于:
所述解码端根据公式:

确定所述信号向量
其中,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述r2t为所述解码端在第2t个符号周期接收的信号,所述,r2t+1为所述解码端在第2t+1个符号周期接收的信号,所述r2t+2为所述解码端在第2t+2个符号周期接收的信号。
在具体的实施方式中,所述信号向量满足:

其中,为有用信号的线性组合向量,为噪声干扰向量。
在具体的实施方式中,所述满足:

所述满足:





其中,α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述s2t-1和所述为所述解码端在第2t-1个符号周期解码出的原始编码输入符号,所述s2t和所述为所述解码端在第2t个符号周期解码出的原始编码输入符号,所述s2t+1和所述为所述解码端解码出的在第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码端解码出的在第2t+2个符号周期的原始编码输入符号;
所述Λ(α12)为信道矩阵;
所述N2t-1、所述N2t+1、所述M2t为噪声向量;
所述η2t-1为所述解码端在第2t-1个符号周期的接收噪声,所述η2t为所述解码端在第2t个符号周期的接收噪声,所述η2t+1为所述解码端在第2t+1个符号周期的接收噪声,所述η2t+2为所述解码端在第2t+2个符号周期的接收噪声。
本申请实施例中的解码装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例 不作具体限定。
本申请实施例提供的解码装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图4所示,本申请实施例还提供一种通信设备400,包括处理器401和存储器402,存储器402上存储有可在所述处理器401上运行的程序或指令,例如,该通信设备400为终端时,该程序或指令被处理器401执行时实现上述解码装置方法实施例的各个步骤,且能达到相同的技术效果。该通信设备400为网络侧设备时,该程序或指令被处理器401执行时实现上述解码装置方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种解码端,包括处理器和通信接口,处理器用于解码端根据接收的信号和NSTBC码本,确定编码系数向量;所述解码端根据所述编码系数向量,DSTBC编码方式和NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号。
具体地,针对解码端是终端的情况,图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理单元(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072中的至少一种。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501接收来自网络侧设备的下行数据后,可以传输给处理器510进行处理;另外,射频单元501可以向网络侧设备发送上行数据。通常,射频单元501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至 少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器59可以包括易失性存储器或非易失性存储器,或者,存储器509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器x09包括但不限于这些和任意其它适合类型的存储器。
处理器510可包括一个或多个处理单元;可选地,处理器510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于解码端根据接收的信号和NSTBC码本,确定编码系数向量;
处理器510,用于所述解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;
处理器510,用于所述解码端根据所述编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号。
在本申请实施例中,一方面根据接收信号与NSTBC码本结构来构造信号向量并计算编码系数向量;另一方面,根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和,然后根据计算的编码系数向量、DSTBC解码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和来计算并恢复出当前符号周期的原始编码输入符号。基于该解码方式,能够实现在无导频的情况下恢复出原始符号,降低系统开销;在解码出当前符号周期的原始编码输入符号时采用前两个符号周期发送天线上的发送符号的功率和进行归一化,实现对非恒模调制的适用;同时基于NSTBC码本在保证分集增益的同时能够减少每根天线上的负载阻抗个数或种类,并且有效降低检测错误概率。在具体的实施方式中,所述NSTBC码本的码本结构满足:
其中,所述s2t+1和所述为所述解码器解码出的第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码器解码出的第2t+2个符号周期的原始编码输入符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第 2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
具体地,所述处理器510,具体用于:
所述解码端根据所述接收的信号和NSTBC码本,确定所述信号向量;
所述解码端根据所述信号向量,确定所述解码端在所述当前符号周期的编码系数向量。
具体地,所述处理器510,具体用于:
所述解码端根据公式:
确定所述解码端在第2t+1个符号周期的编码系数向量
其中,所述为编码系数向量集合,所述为所述信号向量,所述为解码端在第2t+1个符号周期确定的编码系数向量。
具体地,所述处理器510,具体用于:
所述解码端根据公式:
解码出在第2t+1个符号周期的原始编码输入符号;
其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和。
具体地,所述处理器510,具体用于:
所述解码端根据以下公式确定前两个符号周期发送天线上的发送符号的功率和|s2t-1|2+|s2t|2



R=α1S12S2+W;


W=[w1,w2,…,wL]T
其中,所述的自相关,所述为在第2t-1个符号周期的接收信号向量,所述为噪声向量,所述R为实施解码端接收到的来自编码端的两根发送天线上的发送符号经过信道和噪声后的信号,所述α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述Λ(α12)为信道矩阵,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述η2t-1为所述解码端在第2t-1个符号周期的接收 噪声,所述S1和S2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的维度为L的符号矢量,所述W为信号噪声。
具体地,所述处理器510,具体还可以用于:
所述解码端根据公式:
解码出在第2t+1个符号周期的原始编码输入符号;
其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和的开方。
具体地,所述处理器510,具体用于:
所述解码端根据原始比特或原始符号与所述的预设映射表,确定原始比特或原始符号;
其中,所述的预设映射表中包含所述原始比特或原始符号与所述编码系数向量之间在初始参考符号确定后的映射关系。
具体地,所述处理器510,具体用于:
所述解码端根据所述解码出的原始编码输入符号确定原始符号(s2t+1,s2t+2);
所述解码端根据所述(s2t+1,s2t+2),确定原始比特。
具体地,所述处理器510,具体用于:
所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
所述原始编码输入符号为初始参考符号;
所述差分解码模块,还用于所述解码端根据公式:
解码出第3个符号周期的原始编码输入符号;
其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
具体地,所述处理器510,具体用于:
所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
所述原始编码输入符号为初始参考符号;
所述差分解码模块,还用于所述解码端根据公式:
解码出第3个符号周期的原始编码输入符号;
其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
具体地,所述处理器510,具体用于:
所述解码端根据公式:

确定所述统计信号向量
其中,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述r2t为所述解码端在第2t个符号周期接收的信号,所述,r2t+1为所述解码端在第2t+1个符号周期接收的信号,所述r2t+2为所述解码端在第2t+2个符号周期接收的信号。
具体地,所述信号向量满足:

其中,为有用信号的线性组合向量,为噪声干扰向量。
具体地,所述满足:

所述满足:





其中,α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述s2t-1和所述为所述解码端在第2t-1个符号周期解码出的原始编码输入符号,所述s2t和所述为所述解码端在第2t个符号周期解码出的原始编码输入符号,所述 s2t+1和所述为所述解码端解码出的在第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码端解码出的在第2t+2个符号周期的原始编码输入符号;
所述Λ(α12)为信道矩阵;
所述N2t-1、所述N2t+1、所述M2t为噪声向量;
所述η2t-1为所述解码端在第2t-1个符号周期的接收噪声,所述η2t为所述解码端在第2t个符号周期的接收噪声,所述η2t+1为所述解码端在第2t+1个符号周期的接收噪声,所述η2t+2为所述解码端在第2t+2个符号周期的接收噪声。
具体地,针对解码端是网络侧设备的情况,如图6所示,该网络侧设备600包括:天线61、射频装置62、基带装置63、处理器64和存储器65。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
以上方法实施例中的方法可以在基带装置63中实现,该基带装置63包括基带处理器。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图6所示,其中一个芯片例如为基带处理器,通过总线接口与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口66,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备600还包括:存储在存储器65上并可在处理器64上运行的指令或程序,处理器64调用存储器65中的指令或程序执行图3所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排 他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种解码方法,包括:
    解码端根据接收的信号和新型空时分组码NSTBC码本,确定编码系数向量;
    所述解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;
    所述解码端根据所述编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
  2. 根据权利要求1所述的方法,其中,所述NSTBC码本的码本结构满足:
    其中,所述s2t+1和所述为所述解码端解码出的第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码端解码出的第2t+2个符号周期的原始编码输入符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
  3. 根据权利要求1所述的方法,其中,所述解码端根据接收的信号和NSTBC码本,确定编码系数向量,包括:
    所述解码端根据所述接收的信号和NSTBC码本,确定信号向量;
    所述解码端根据所述信号向量,确定所述解码端在所述当前符号周期的编码系数向量。
  4. 根据权利要求3所述的方法,其中,所述解码端根据所述信号向量,确定所述解码端在所述当前符号周期的编码系数向量,包括:
    所述解码端根据公式:
    确定所述解码端在第2t+1个符号周期的编码系数向量
    其中,所述v为编码系数向量集合,所述为所述信号向量,所述为解码端在第2t+1个符号周期确定的编码系数向量。
  5. 根据权利要求4所述的方法,其中,所述解码端根据所述编码系数向量、DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,包括:
    所述解码端根据公式:
    解码出在第2t+1个符号周期的原始编码输入符号;
    其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入 符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和。
  6. 根据权利要求1所述的方法,其中,所述解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和,包括:
    所述解码端根据以下公式确定前两个符号周期发送天线上的发送符号的功率和|s2t-1|2+|s2t|3



    R=α1S12S2+W;


    W=[w1,w2,…,wL]T
    其中,所述的自相关,所述为在第2t-1个符号周期的接收信号向量,所述为噪声向量,所述R为实施解码端接收到的来自编码端的两根发送天线上的发送符号经过信道和噪声后的信号,所述α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述Λ(α12)为信道矩阵,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述η2t-1为所述解码端在第2t-1个符号周期的接收噪声,所述S1和S2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的维度为L的符号矢量,所述W为信号噪声。
  7. 根据权利要求4所述的方法,其中,所述解码端根据所述编码系数向量、DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前符号周期的原始编码输入符号,还包括:
    所述解码端根据公式:
    解码出在第2t+1个符号周期的原始编码输入符号;
    其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和的开方。
  8. 根据权利要求5或7所述的方法,其中,所述方法还包括:
    所述解码端根据原始比特或原始符号与所述的预设映射表,确定原始比特或原始符号;
    其中,所述预设映射表中包含所述原始比特或原始符号与所述编码系数向量之间在确定初始参考符号后的映射关系。
  9. 根据权利要求5或7所述的方法,其中,所述方法还包括:
    所述解码端根据所述解码出的原始编码输入符号确定原始符号(s2t+1,s2t+2);
    所述解码端根据所述(s2t+1,s2t+2),确定原始比特。
  10. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
    所述原始编码输入符号为初始参考符号;
    所述解码端根据公式:
    解码出第3个符号周期的原始编码输入符号;
    其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
  11. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
    所述原始编码输入符号为初始参考符号;
    所述解码端根据公式:
    解码出第3个符号周期的原始编码输入符号;
    其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
  12. 根据权利要求3所述的方法,其中,所述解码端根据接收的信号和NSTBC码本,确定信号向量,包括:
    所述解码端根据公式:

    确定所述信号向量
    其中,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述r2t为所述解码 端在第2t个符号周期接收的信号,所述,r2t+1为所述解码端在第2t+1个符号周期接收的信号,所述r2t+2为所述解码端在第2t+2个符号周期接收的信号。
  13. 根据权利要求12所述的方法,其中,所述信号向量满足:

    其中,为有用信号的线性组合向量,为噪声干扰向量。
  14. 根据权利要求13所述的方法,其中,
    所述满足:

    所述满足:





    其中,α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述s2t-1和所述为所述解码端在第2t-1个符号周期解码出的原始编码输入符号,所述s2t和所述为所述解码端在第2t个符号周期解码出的原始编码输入符号,所述s2t+1和所述为所述解码端解码出的在第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码端解码出的在第2t+2个符号周期的原始编码输入符号;
    所述Λ(α12)为信道矩阵;
    所述N2t-1、所述N2t+1、所述M2t为噪声向量;
    所述η2t-1为所述解码端在第2t-1个符号周期的接收噪声,所述η2t为所述解码端在第2t个符号周期的接收噪声,所述η2t+1为所述解码端在第2t+1个符号周期的接收噪声,所述η2t+2为所述解码端在第2t+2个符号周期的接收噪声。
  15. 一种解码装置,包括:
    第一确定模块,用于解码端根据接收的信号和NSTBC码本,确定编码系数向量;
    第二确定模块,用于所述解码端根据接收的信号,确定前两个符号周期发送天线上的发送符号的功率和;
    差分解码模块,用于所述解码端根据所述编码系数向量、差分空时分组码DSTBC编码方式、NSTBC码本以及前两个符号周期发送天线上的发送符号的功率和,解码出当前 符号周期的原始编码输入符号,所述前两个符号周期为所述当前符号周期之前的两个相邻的符号周期。
  16. 根据权利要求15所述的装置,其中,所述NSTBC码本的码本结构满足:
    其中,所述s2t+1和所述为所述解码端解码出的第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码端解码出的第2t+2个符号周期的原始编码输入符号;其中符号为符号s2t+2的共轭,符号为符号s2t+1的负数共轭;所述第2t+1个符号周期为所述当前符号周期,所述第2t+2个符号周期为所述当前符号周期的下一个符号周期。
  17. 根据权利要求15所述的装置,其中,所述第一确定模块,具体用于:
    所述解码端根据所述接收的信号和NSTBC码本,确定所述信号向量;
    所述解码端根据所述信号向量,确定所述解码端在所述当前符号周期的编码系数向量。
  18. 根据权利要求17所述的装置,其中,所述第一确定模块,具体用于:
    所述解码端根据公式:
    确定所述解码端在第2t+1个符号周期的编码系数向量
    其中,所述v为编码系数向量集合,所述为所述信号向量,所述为解码端在第2t+1个符号周期确定的编码系数向量。
  19. 根据权利要求18所述的装置,其中,所述差分解码模块,具体用于:
    所述解码端根据公式:
    解码出在第2t+1个符号周期的原始编码输入符号;
    其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述|s2t-1|2+|s2t|2为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和。
  20. 根据权利要求15所述的装置,其中,所述第二确定模块,具体用于:
    所述解码端根据以下公式确定前两个符号周期发送天线上的发送符号的功率和|s2t-1|2+|s2t|2



    R=α1S12S2+W;


    W=[w1,w2,…,wL]T
    其中,所述的自相关,所述为在第2t-1个符号周期的接收信号向量,所述为噪声向量,所述R为实施解码端接收到的来自编码端的两根发送天线上的发送符号经过信道和噪声后的信号,所述α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述Λ(α12)为信道矩阵,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述η2t-1为所述解码端在第2t-1个符号周期的接收噪声,所述S1和S2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的维度为L的符号矢量,所述W为信号噪声。
  21. 根据权利要求18所述的装置,其中,所述差分解码模块,具体还可以用于:
    所述解码端根据公式:
    解码出在第2t+1个符号周期的原始编码输入符号;
    其中,所述s2t-1和所述为所述解码端解码出的第2t-1个符号周期的原始编码输入符号,所述s2t和所述为所述解码端解码出的第2t个符号周期的原始编码输入符号,所述为第2t-1个符号周期内编码端的两根发送天线上的发送符号的功率和的开方。
  22. 根据权利要求19所述的装置,其中,所述装置还包括:
    第三确定模块,用于所述解码端根据原始比特或原始符号与所述的预设映射表,确定原始比特或原始符号;
    其中,所述的预设映射表中包含所述原始比特或原始符号与所述编码系数向量之间在初始参考符号确定后的映射关系。
  23. 根据权利要求19或21所述的方法,其中,所述装置还包括:
    第四确定模块,用于所述解码端根据所述解码出的原始编码输入符号确定原始符号(s2t+1,s2t+2);
    所述解码端根据所述(s2t+1,s2t+2),确定原始比特。
  24. 根据权利要求19所述的装置,其中,所述装置还包括:
    第五确定模块,用于所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
    所述原始编码输入符号为初始参考符号;
    所述差分解码模块,还用于所述解码端根据公式:
    解码出第3个符号周期的原始编码输入符号;
    其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
  25. 根据权利要求21所述的装置,其中,所述装置还包括:
    第五确定模块,用于所述解码端确定第1个符号周期的原始编码输入符号为以及第2个符号周期的原始编码输入符号为
    所述原始编码输入符号为初始参考符号;
    所述差分解码模块,还用于所述解码端根据公式:
    解码出第3个符号周期的原始编码输入符号;
    其中,为所述解码端在第3个符号周期得到的编码系数向量,所述与所述满足如下NSTBC码本:
  26. 根据权利要求17所述的装置,其中,所述第一确定模块,具体用于:
    所述解码端根据公式:

    确定所述信号向量
    其中,所述r2t-1为所述解码端在第2t-1个符号周期接收的信号,所述r2t为所述解码端在第2t个符号周期接收的信号,所述,r2t+1为所述解码端在第2t+1个符号周期接收的信号,所述r2t+2为所述解码端在第2t+2个符号周期接收的信号。
  27. 根据权利要求26所述的装置,其中,所述信号向量满足:

    其中,为有用信号的线性组合向量,为噪声干扰向量。
  28. 根据权利要求27所述的装置,其中,
    所述满足:

    所述满足:





    其中,α1和α2分别为从编码端编码后的两根发送天线到所述解码端的接收天线的信道增益,所述s2t-1和所述为所述解码端在第2t-1个符号周期解码出的原始编码输入符号,所述s2t和所述为所述解码端在第2t个符号周期解码出的原始编码输入符号,所述s2t+1和所述为所述解码端解码出的在第2t+1个符号周期的原始编码输入符号,所述s2t+2和所述为所述解码端解码出的在第2t+2个符号周期的原始编码输入符号;
    所述Λ(α12)为信道矩阵;
    所述N2t-1、所述N2t+1、所述M2t为噪声向量;
    所述η2t-1为所述解码端在第2t-1个符号周期的接收噪声,所述η2t为所述解码端在第2t个符号周期的接收噪声,所述η2t+1为所述解码端在第2t+1个符号周期的接收噪声,所述η2t+2为所述解码端在第2t+2个符号周期的接收噪声。
  29. 一种解码端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的解码方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14任一项所述的解码方法的步骤。
PCT/CN2023/071803 2022-01-18 2023-01-11 解码方法、设备及可读存储介质 WO2023138459A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210055297.6 2022-01-18
CN202210055297.6A CN116505984A (zh) 2022-01-18 2022-01-18 解码方法、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023138459A1 true WO2023138459A1 (zh) 2023-07-27

Family

ID=87323582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071803 WO2023138459A1 (zh) 2022-01-18 2023-01-11 解码方法、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116505984A (zh)
WO (1) WO2023138459A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213353A1 (en) * 2003-04-25 2004-10-28 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving differential STBC using channel power
CN101267234A (zh) * 2007-03-13 2008-09-17 上海贝尔阿尔卡特股份有限公司 空时分组码编解码的方法及装置
WO2013017077A1 (zh) * 2011-08-01 2013-02-07 华为技术有限公司 编解码方法及相关设备和通信系统
CN102986156A (zh) * 2011-05-11 2013-03-20 华为技术有限公司 编码方法及设备、解码方法及设备、编解码系统
WO2022001367A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种编码方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213353A1 (en) * 2003-04-25 2004-10-28 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving differential STBC using channel power
CN101267234A (zh) * 2007-03-13 2008-09-17 上海贝尔阿尔卡特股份有限公司 空时分组码编解码的方法及装置
CN102986156A (zh) * 2011-05-11 2013-03-20 华为技术有限公司 编码方法及设备、解码方法及设备、编解码系统
WO2013017077A1 (zh) * 2011-08-01 2013-02-07 华为技术有限公司 编解码方法及相关设备和通信系统
WO2022001367A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种编码方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG LI, JIANG LINGGE, RONG MENGTIAN: "Differential Detections Method of Space-time Block Codes Multiple-symbol Differentia Detection of Space-time Block Codes", COMMUNICATIONS TECHNOLOGY, vol. 137, no. 5, 30 June 2003 (2003-06-30), pages 18 - 19, XP093079730 *
TAO DONG, YOU XIAO/HU: "Iterative interference cancellation based on decoding algorithm of space-time block coding in frequency-selective fading", JOURNAL ON COMMUNICATIONS, vol. 27, no. 10, 1 October 2006 (2006-10-01), pages 94 - 99, XP093079731 *
XIN LU: "Impact of Imperfect Channel Estimates on STBC", COMPUTER & DIGITAL ENGINEERING, vol. 36, no. 8, 20 August 2008 (2008-08-20), pages 185 - 187, XP093079732 *

Also Published As

Publication number Publication date
CN116505984A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
CN109688596B (zh) 一种基于noma的移动边缘计算系统构建方法
US9634747B2 (en) Apparatus and method of processing signal, and recording medium
TWI591973B (zh) A signal detection method and device
WO2017045575A1 (en) System and method for multiple-input and multiple-output (mimo) full-duplex precoding algorithms
Chen et al. Transceiver design and signal detection in backscatter communication systems with multiple-antenna tags
WO2022094778A1 (zh) 多输入多输出mimo系统的检测方法和装置
CN102014085B (zh) 双向多输入多输出中继信道中物理层网络编码的检测方法
Liu et al. A Low complexity high performance weighted Neumann series-based Massive MIMO detection
WO2023138459A1 (zh) 解码方法、设备及可读存储介质
WO2023138458A1 (zh) 编码方法、设备及可读存储介质
CN103401657A (zh) 一种协作通信部分相干非差分分布式空时编码方法
WO2023125423A1 (zh) 编码方法、设备及可读存储介质
WO2023125424A1 (zh) 解码方法、设备及可读存储介质
US11483039B2 (en) Method and apparatus for detecting signal with quantum computing in MIMO system
CN114389655A (zh) 一种相关信道下大规模mimo系统非相干编码的检测方法
CN103873125A (zh) 一种多天线系统中下行信号的发射方法和设备
Sanjana et al. Deep learning approaches used in downlink MIMO-NOMA system: a survey
WO2023138523A1 (zh) 编码方法、设备及可读存储介质
WO2023103912A1 (zh) 分集传输方法、终端及网络侧设备
US20230171026A1 (en) Zigzag decoding of upstream-processed signals from independent receiver subarrays
WO2022228282A1 (zh) 一种全双工天线及通信节点
US8649251B2 (en) Multi-user multiplexing method and transmission device
WO2023088376A1 (zh) 上行传输方法、装置、终端及bsc接收设备
US20240063969A1 (en) Channel reconstruction method, base station and terminal
WO2023207783A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742774

Country of ref document: EP

Kind code of ref document: A1